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This study aims to explore a method capable of generating high-naturalness expressions for animated 

characters, thereby enhancing the audience’s emotional resonance. This study proposes a 3D face 

reconstruction system named Deep Convolutional Neural Network-Faces Learned with an Articulated 

Model and Expressions (DCNN-FLAME). DCNN-FLAME consists of an identity encoder, a mapping 

network, a Facial Landmark Embedding Model (FLAME) geometric decoding module, and a detail 

reconstruction network, forming an end-to-end processing pipeline from input images to 3D meshes and 

appearance textures. A style transfer module is constructed based on Deep Convolutional Neural Network 

(DCNN). It uses a pre-trained convolutional network to achieve effective separation of content and style, 

providing high-level semantic constraints for texture detail modeling of animated character expressions. 

On this basis, a dual-branch feature supervision mechanism composed of expression classification 

features and facial Action Units (AU) detection features is designed. Expression classification features 

provide global emotional semantic constraints to ensure macro-expression consistency. AU detection 

features guide local muscle movements from an anatomical perspective to enhance the realism of 

expression details. Experiments are conducted based on the large-scale face dataset VGGFace2. 

Systematic comparisons are performed with four 3D face reconstruction algorithms: 3D Morphable 

Model Fitting (3DMM-Fitting), RingNet, Detailed Expression Capture and Animation (DECA), and 

Fourier Analysis Networks-3D (FAN-3D). The proposed DCNN-FLAME model achieves a mean value of 

1.29 in non-metric evaluation and 1.72 in metric evaluation. Both indicators are lower than those of all 

baseline methods, demonstrating higher geometric reconstruction accuracy and facial alignment quality. 

In the overall expression restoration evaluation, the F1 score of the proposed method reaches 0.564, 

reflecting comprehensive advantages in complex expression modeling. When both the expression 

classification branch and facial AU detection branch are enabled, the expression classification accuracy 

rate is 0.571 and the F1 score is 0.563, which are significantly better than the configuration using only a 

single feature for supervision. This verifies the key role of the dual-branch feature supervision mechanism 

in improving the naturalness and controllability of animated character expressions. This study provides 

an effective technical path integrating geometric reconstruction and texture enhancement for 3D animated 

character expression generation, and also offers new ideas and practical basis for the field of 

unsupervised 3D face reconstruction. 

Povzetek: Študija predstavlja model DCNN-FLAME za 3D rekonstrukcijo obrazov, ki z združevanjem 

geometrijske rekonstrukcije, prenosa sloga ter dvo-vejne nadzorne mehanike (čustvena klasifikacija in 

akcijske enote) omogoča bolj naravne, realistične in natančno nadzorovane izraze animiranih likov. 

 

1 Introduction 
In the world of animation, a character’s expressions are 

the window to its soul. When a character slightly lifts the 

corner of its mouth, or a trace of sadness flashes in its eyes, 

the audience can instantly resonate with it. With the rapid 

development of digital technology, the production of 

animated characters has gradually shifted from traditional 

hand-drawing to digital production [1-3]. However, in this 

process, the generation of character expressions still faces 

many challenges. Especially for non-human-shaped 

characters, how to endow them with rich and reasonable 

expressions has become an urgent problem for animation  

 

creators to solve. In traditional animation production, the 

generation of expressions often relies on a large amount of 

manual drawing by artists, which is inefficient and the 

effect is difficult to guarantee. In 3D animation, the 

generation of expressions mainly depends on blend shape 

technology. Although it can realize basic expression 

changes, there is still much room for improvement in the 

naturalness and expressiveness of expressions. 

Most existing deep learning methods either rely on 

large amounts of annotated data or still have shortcomings 

in the naturalness of expressions. For example, face-

swapping technology based on 3D models [4, 5] can 
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realize basic expression transfer, but it often requires 

complex calculations and a large amount of manual 

intervention. While methods based on Generative 

Adversarial Network (GAN) can generate high-definition 

images, the coherence and naturalness of expressions are 

difficult to guarantee. Among numerous technologies, 

style transfer technology has attracted much attention due 

to its ability to effectively extract and transfer the style 

features of images. It can retain the content of the source 

image, and integrate the style features of the target image 

into it, thereby generating more natural images [6, 7]. This 

technology has broad application prospects in facial 

expression generation. Through style transfer, the 

expression features of real humans can be extracted and 

then applied to animated characters, making the 

characters' expressions more vivid and natural. 

To address the aforementioned challenges, this study 

sets the overall goal of improving the realism, stability, 

and controllability of animated character expressions, and 

conducts research around a 3D expression generation 

framework based on style transfer and feature supervision. 

The research focuses on three interrelated research 

questions: 

1) Can the style transfer loss significantly improve 

the reconstruction quality of high-frequency detail regions 

while maintaining the stability of the overall geometric 

structure, making the reconstruction results closer to the 

source image in terms of skin texture, light and shadow 

transitions, and local expression details? 

2) Can the dual-branch feature supervision 

mechanism integrating expression classification and 

Action Units (AU) features effectively constrain the 

learning of 3D expression parameters during the training 

phase, enabling the generated animated expressions to 

have significant advantages over baseline methods with 

single-branch supervision or no feature supervision in 

terms of semantic emotion, consistency, and rationality of 

muscle movement? 

3) Can the Deep Convolutional Neural Network-

Faces Learned with an Articulated Model and Expressions 

(DCNN-FLAME) framework built on Deep 

Convolutional Neural Network (DCNN) and Facial 

Landmark Embedding Model (FLAME) achieve or 

exceed representative methods in terms of reconstruction 

error, detail preservation, and pose generalization ability 

on large-scale face datasets, while maintaining acceptable 

computational overhead? 

Centering on the above questions, this study conducts 

systematic demonstrations from three aspects (model 

design, training strategy, and experimental evaluation) in 

the subsequent sections, and thereby verifies the 

effectiveness of the style transfer loss and dual-branch 

feature supervision in the task of animated character 

expression generation. 

 

2  Related work 
In the field of animated character generation and 

visual enhancement, Cao and Huang [8] proposed a deep 

learning-based method for character generation and visual 

quality enhancement. They utilized a multi-layer 

convolutional generative network to achieve automatic 

modeling and texture refinement of animated characters. 

By introducing perceptual loss and style consistency 

constraints, it effectively improved the realism and visual 

coherence of animated character expressions. While 

maintaining the performance of a diffusion model with 2 

billion parameters, this model increased the generation 

speed by 9 times and reduced computational consumption 

by 31%, laying the foundation for real-time expression 

generation. At the same time, research in the field of low-

light image enhancement has also made remarkable 

progress. The horizontal/vertical intensity color space and 

CIDNet decoupling network proposed by Zhao et al. [9] 

effectively suppressed color cast and artifact issues in 

traditional methods by separating color and brightness 

information, achieving an improvement of 6.68 dB on 

extreme low-light datasets. This provided a basis for the 

application of expression generation in complex lighting 

environments. Expression generation technology is 

evolving from single-modal to multi-modal, from static to 

dynamic, and from rule-driven to data-driven. The 

expression decoupling generation method based on facial 

AUs proposed by Liu et al. [10] realized the generation of 

natural and delicate facial expressions for robots through 

fine control of AU combinations. This method performed 

excellently in continuous expression transition 

experiments, enabling smooth generation of intermediate 

states from happiness to anger and significantly enhancing 

the authenticity of emotional HCI. 

Zeng et al. [11] explored cross-modal expression 

generation and fusion technology. By fusing multi-source 

inputs such as speech, text, and physiological signals, they 

realized the synchronous generation of expressions and 

semantics. The multi-modal fusion model used an 

attention mechanism to dynamically assign weights, 

making expression generation more in line with the laws 

of human emotional expression, with cross-modal 

consistency reaching over 85%. Mohana et al. [12] 

developed an emotion-driven real-time facial expression 

generation system. This system adopted CNN and LSTM 

networks to achieve real-time expression generation at 30 

frames per second. The researchers also used GAN to 

generate simulated face images, which enhanced the 

generalization ability of the model. Krithika and Priya [13] 

focused on a feature enhancement method based on 

expression ratio maps. By calculating the ratio of the 

movement of feature points and pixel brightness before 

and after expression changes, this method better 

transferred expression details to other faces as a whole. 

Compared with traditional expression mapping, this 

method solved the defect of being unable to synthesize 

expression details. 

From the perspective of control theory, animated 

character expression generation can also be regarded as a 

type of nonlinear dynamic system control problem with 

significant uncertainty and external disturbances. In recent 

years, the adaptive control and robust control communities 

have achieved numerous results in output feedback control, 

adaptive fuzzy control, and robust neural adaptive control. 

For example, Boulkroune et al. [14] proposed a projective 

lag synchronization controller based on output feedback 
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for chaotic systems with input nonlinearity. It could still 

ensure system synchronization performance when input 

nonlinearity and model uncertainty exist simultaneously. 

Boulkroune et al. [15] further developed a practical fixed-

time adaptive fuzzy synchronization control strategy for 

fractional-order chaotic systems. By constructing 

appropriate adaptive laws, the goal of suppressing system 

uncertainty and disturbances within a finite time was 

achieved. Zouari et al. [16] proposed an adaptive 

backstepping control method for a class of uncertain 

single-input single-output (SISO) nonlinear systems. 

Zouari et al. [17] presented a robust neural adaptive 

control framework for multivariable complex nonlinear 

systems. By introducing neural network approximation 

and robust compensation terms, the tolerance to model 

uncertainty and external disturbances was improved. 

Meanwhile, Rigatos et al. [18] applied nonlinear optimal 

control methods to natural gas compressor systems driven 

by induction motors. This demonstrated the effectiveness 

of nonlinear control and optimal control in handling strong 

nonlinearity and operating condition changes in industrial 

scenarios. Merazka et al. [19] designed an adaptive fuzzy 

controller for multivariable nonlinear systems based on 

high-gain observers. Robust regulation of system states 

was achieved through output feedback and state 

estimation. These works collectively indicated that in 

complex systems with parameter uncertainty, external 

disturbances, and strong nonlinearity, introducing 

adaptive feedback and robust control structures was an 

effective means to improve system responsiveness and 

dynamic stability. Inspired by this, this study regards 

expression classification and AU detection features as 

"output feedback signals" and explores the potential value 

of introducing similar adaptive feedback mechanisms in 

the task of animated character expression generation. 

Table 1 summarizes and compares the main expression 

generation and control methods in recent years. 

 

Table 1: Comparison and summary of main related work 

 
References Model/method Dataset Modal type Supervision 

type 

Main performance index 

Cao & 

Huang [8] 

Animation character 

generation and visual 

enhancement based on 
deep learning 

Self-built animated 

character dataset 

Image Supervised The visual quality is improved by 

23%, and the expression 

naturalness score is improved by 
18%. 

Zhao et al., 

[9] 

CIDNet low illumination 

image enhancement 

LOL Dataset Image Supervised PSNR increases by 6.68 dB. 

Liu et al., 
[10] 

AU-driven expression 
decoupling generation 

BP4D Image Supervised The smoothness of continuous 
expression is 93.5% 

Zeng et al. 

[11] 

Semantic fusion of 

multimodal expressions 

RAVDESS +self-

built multimodal set 

Image+Voice+Text Supervised Cross-modal consistency is 

85.3% 

Mohana et 
al. [12] 

CNN-LSTM+GAN real-
time generation 

AffectNet Image+video frame 
sequence 

Supervised The real-time frame rate is 30 
fps, and the accuracy rate is 

89.2% 

Krithika & 

Priya [13] 

Expression scale 

diagram 

CK+ Image Supervised The accuracy of detail migration 

is 91.5% 

Boulkroune 

et al. 

[14,15] 

Output feedback and 

adaptive fuzzy 

synchronization control 

Simulation system Dynamic signal Supervised The synchronization error 

converges to 0, and the stability 

verification is passed. 

Zouari et 
al. [16,17] 

Adaptive backstepping 
and robust neural 

adaptive control 

Simulation and 
nonlinear system 

Dynamic signal Semi-
supervised 

The average error is reduced by 
27% 

Rigatos et 
al. [18] 

Nonlinear optimal 
control 

Industrial compressor 
system 

Dynamic signal Supervised The control accuracy is improved 
by 18% 

Merazka et 

al. [19] 

Fuzzy control of high 

gain observer 

Multivariable 

nonlinear system 

Dynamic signal Supervised The error of state estimation is 

less than 5% 

DCNN-
FLAME 

Dual-branch feature 
supervision and style 

transfer integration 

VGGFace2 Image Supervised The average non-metric error is 
1.29, the metric error is 1.72, and 

the F1 value is 0.564, which is 

about 7.8% higher than the 
baseline. 

In Table 1, existing studies mainly focus on 

expression generation tasks driven by unimodal or static 

images. Although certain breakthroughs have been made 

in generation quality or speed, limitations remain in 

aspects such as multi-pose robustness, cross-modal 

consistency, and dynamic stability. Especially under 

complex lighting and multi-view conditions, most 

methods rely on fixed network parameters and lack 

adaptive feedback mechanisms to address external 

disturbances. In contrast, the proposed DCNN-FLAME 

model structurally introduces a dual-branch feature 

supervision mechanism (expression classification and AU 

detection), and combines style transfer features to achieve 

dual constraints on expression semantics and muscle 

movements. Thus, it outperforms current mainstream 

methods in terms of generation naturalness, dynamic 

stability, and cross-domain generalization. In addition, 

from the perspective of control theory, the problem of 

animated character expression generation can also be 

analogized to a dynamic system control problem with 

uncertainty and external disturbances. Traditional 

adaptive control and robust neural adaptive control 
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methods usually suppress the impact of model uncertainty 

and external disturbances (such as pose and lighting 

changes) on system output through means such as online 

system parameter identification, feedback law 

construction, and introduction of robust compensation 

terms, thereby ensuring the stability and performance of 

the system under multiple operating conditions. In 

contrast, the proposed DCNN-FLAME framework 

focuses on jointly constraining 3D expression parameters 

through style transfer loss, expression classification loss, 

and AU detection loss during the offline training phase. It 

is essentially a "data-driven high-dimensional feature 

supervision" strategy. The two share commonalities in 

ideology: both use feedback signals on the output side to 

constrain the evolution of internal states. However, their 

implementation methods differ. Adaptive control 

emphasizes online updates and stability proof, while the 

current version of this study mainly focuses on end-to-end 

learning and reconstruction accuracy. In the future, 

introducing mature feedback and robust mechanisms from 

adaptive control into expression generation models is 

expected to further improve their robustness and 

generalization ability under complex pose and lighting 

conditions. 

 

3  Method 
At the input level, the DCNN-FLAME model takes 

one or multiple face images of the same identity as input. 

For the multi-view configuration, four face images with 

different poses and expressions are usually selected. 

Through unified face detection and alignment 

preprocessing, these images are normalized to face 

regions with a fixed resolution. At the output level, the 

model simultaneously predicts a set of parameters and 

mappings related to facial geometry and appearance. 

These include 3D mesh shape parameters provided by the 

Facial Landmark Embedding Model, identity and 

expression encodings, head and neck pose parameters, as 

well as corresponding UV albedo maps and displacement 

maps. This forms an end-to-end mapping relationship 

from 2D images to 3D render able faces. In terms of the 

training mechanism, this study adopts an end-to-end 

supervised learning strategy. Geometric and appearance 

losses are constructed based on reprojection error and 

photometric consistency. Meanwhile, a style transfer loss 

based on VGG features is introduced to strengthen high-

frequency texture constraints. Additionally, feature 

supervision losses from the expression classification 

branch and AU detection branch are added to form a 

jointly optimized total objective function. To verify the 

three research questions proposed in the introduction, the 

experimental section in Section 4 will focus on several 

core evaluation criteria: non-metric and metric 

reconstruction errors, used to measure 3D geometric 

reconstruction and face alignment accuracy.  

 

 

 

 

 

Expression classification accuracy and F1 score, used to 

quantify the role of dual-branch feature supervision in 

expression semantics and AU consistency. Visual 

comparison with existing methods under complex pose 

and lighting conditions, used for subjective evaluation of 

detail preservation and expression naturalness. Through 

the corresponding relationships between the above input-

output settings, training mechanism, and evaluation 

indicators, this study forms an overall research design loop 

centered on clear research questions. 

 

3.1 The mechanism and realization of style 

transfer feature enhancement 
In the process of animated character expression 

generation, how to effectively retain and enhance the 

subtle features of expressions is a key challenge for 

achieving high-quality expression generation. Traditional 

expression generation methods are often limited to simple 

geometric transformations or rule-based expression 

mapping, making it difficult to capture the rich detailed 

information contained in real human facial expressions. 

This study adopts a style transfer algorithm based on Deep 

Convolution Neural Network (DCNN). It uses a pre-

trained CNN to achieve effective separation of content and 

style, thereby providing technical support for the 

generation of animated character expressions [20-22]. In a 

traditional CNN, each convolution kernel in the 

convolution layer only performs parameter sharing at 

different positions of the input image. In contrast, in a 

DCNN, parameter sharing is implemented in the spatial 

dimension and can be carried out at deeper levels of the 

network. This parameter sharing method helps reduce the 

number of network parameters and improve the 

computational efficiency of the network. As an evolved 

form of CNN, DCNN possesses characteristics such as 

deep structure, parameter sharing, and feature hierarchy. 

These characteristics enable DCNN to have stronger 

expressive ability and performance in computer vision 

tasks. 

The style transfer algorithm based on DCNN is 

detailed as follows. In algorithm implementation, this 

study selects VGG-19 as the basic network architecture. 

This network has been pre-trained on the ImageNet 

classification task and can effectively extract multi-scale 

features of images. VGG-19 consists of 19 convolutional 

layers and 5 fully connected layers, with the specific 

architecture shown in Figure 1. For the style transfer task, 

only the first 13 convolutional layers are needed, as these 

layers can gradually extract low-level to high-level 

features of images. In this study, convolutional features 

from layers 1, 2, 3, 4, and 5 of VGG-19 are extracted 

(corresponding to conv1_1, conv2_1, conv3_1, conv4_1, 

and conv5_1 respectively). The feature maps of these 

layers can effectively represent the content and style 

information of images. 
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Figure 1: VGG-19 architecture 

 

During the training phase, the weights of VGG-19 are 

frozen, and it only serves as a "fixed feature extractor" to 

participate in the calculation of perceptual loss and style 

loss. For the perceptual loss, conv4_2 is selected as the 

content representation. The L1 norm is used to constrain 

the difference between the feature maps of the generated 

image and the content image at this layer, ensuring that the 

expression semantics are not damaged during the 

stylization process. For the style loss, features from five 

layers (conv1_1, conv2_1, conv3_1, conv4_1, and 

conv5_1) are integrated. The difference in the Frobenius 

norm of the Gram matrix is calculated to capture the 

statistical distribution of textures and strokes at various 

scales. To balance the sparse color blocks and strong edge 

characteristics of anime styles, "channel-spatial" 

separation is performed on the Gram matrix. First, K-

means clustering is applied to the feature map of each 

layer to obtain K=8 representative color prototypes. Then, 

the covariance matrix between the prototypes is calculated 

to replace the traditional Gram matrix, reducing the 

memory overhead caused by high-resolution features. 

The image content loss function of style migration 

based on DCNN can be expressed as Eq. (1): 

( ) ( ) ( )( )
2

,

,l l l

content ij ij

i j

L c x F x F c= −                           (1) 

x  represents a given target image and c  represents 

a content image. 

Let nmC  represent trained CNN, x  represent any 

image, and ( )nmC x  is the neural network provided for x . 

The loss function of the style image s  can be 

expressed as Eq. (2): 

( ) ( )( ) ( )( )( )
2

,

, ' 'l l l

style ij ij

i j

L s x G F x G F c= −                      (2) 

 

 

 

( )l

ijF x  and ( )l

ijF c  respectively represent the 

intermediate feature representations of the input image x  

and the content image c  in the l -layer network. G  

represents the Gran matrix of the content image and the 

target image. 

The total loss function of DCNN's style transfer can 

be expressed as Eq. (3): 

total content styleL L L = +                               (3) 

  and   are hyperparameters that balance content 

and style. The geometric reconstruction loss mainly 

constrains the 3D shape and poses consistency of the 

model, while the feature supervision loss guides the 

network to learn facial semantics and detailed expressions 

through expression classification and AU detection. To 

determine the reasonable values of 𝛼  and 𝛽 , this study 

conducts systematic parameter tuning in the early stage of 

model training. A grid search strategy is adopted, with 

multiple groups of experiments carried out within the 

combination range of 𝛼 ∈ {0.1, 0.3, 0.5, 0.7, 1.0} and 𝛽 ∈
{0.1, 0.2, 0.3, 0.5, 1.0} . The weighted average of the 

average F1 score and non-metric reconstruction error on 

the validation set is used as the comprehensive evaluation 

indicator. When 𝛼 = 0.7  and 𝛽 = 0.3 , the model 

achieved the optimal balance among expression 

classification accuracy, geometric reconstruction 

precision, and texture consistency. Compared with other 

parameter combinations, the comprehensive performance 

of this setting improved by approximately 3.4%, and the 

training process converged more stably. This parameter 

configuration ensures the collaborative optimization of 

geometric constraints and semantic feature supervision, 

enabling the model to effectively improve expression 

naturalness and detail fidelity while maintaining 3D 

structure accuracy. This study proposes a novel high-

dimensional supervision mechanism based on style 

transfer. By introducing a portrait style transfer feature 

extractor, it combines style transfer loss with traditional 

geometric loss to construct a more refined reconstruction 

optimization framework. When reconstructing micro-

expressions in facial expressions, such as subtle changes 

at the corners of the eyes and slight upward curvature of 

the mouth, style transfer loss can perceive these details 

through differences in high-level features. In contrast, 

photometric loss focuses only on pixel-level differences 

and thus struggles to capture such subtle changes. In 3D 

facial reconstruction, low-frequency information is 

usually dominated by geometric loss and photometric loss, 

while style transfer loss focuses on high-frequency texture 

details, thereby effectively compensating for the 

shortcomings of photometric loss [23, 24]. The 

complementarity between the two enables the loss 

function to cover multiple scales of facial features 

simultaneously. The calculation framework of the loss 

function for the 3D facial reconstruction model is shown 

in Figure 2. 
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Figure 2: Calculation framework of loss function of 

3D face reconstruction model 

 

3.2 Fine 3D face reconstruction algorithm 

based on FLAME 
In the field of 3D facial reconstruction, Facial 

Landmark Embedding Model (FLAME), as a high-

precision and parameterized 3D facial model, provides a 

technical foundation for achieving fine-grained facial 

reconstruction. This study proposes a FLAME-based fine-

grained 3D facial reconstruction algorithm. The FLAME 

model consists of a mesh structure with approximately 

5000 vertices, and can describe subtle changes in human 

faces through about 500 shape parameters and 200 

expression parameters. This parameterized representation 

ensures the compactness of the model, and provides a clear 

parameter space for the subsequent optimization process. 

The FLAME-based fine-grained 3D facial reconstruction 

process is shown in Figure 3. 

 
Rough 
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Identity encoder Detail encoder

Mapping network

FLAME decoder Detail decoder

Face geometry
Displacement 

map

Detail 

reconstruction

Detail rendering

 

 

Figure 3: Fine 3D face reconstruction based on 

FLAME 

 

In the process of rough facial reconstruction, first, a 

pre-trained identity encoder is used to extract deep 

features from the input 2D image. Then, a specially 

designed mapping network converts the extracted features 

into the parameters required by the FLAME model. 

Finally, the FLAME model reconstructs the initial facial 

geometric structure based on these parameters. The 

training process of rough reconstruction is shown in 

Figure 4. In the input image processing stage, the input 2D 

image is first resized to 224×224 and normalized [25-27]. 

Then, through the convolutional layers of the identity 

encoder, the deep feature representation of the image is 

extracted. These features contain the overall structural 

information of the face, and include rich identity-specific 

details, such as facial contours and facial feature 

proportions. The specific structure of the mapping 

network is shown in Table 2. 

 

AdaFace
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Figure 4: Rough reconstruction process 

 
Table 2: Specific structure of mapping network 

 
Layer Dimension Output 

Linear 

regression layer 

(512, 300) 1×300 

Linear 
regression layer 

(300, 300) 1×300 

Linear 

regression layer 

(300, 300) 1×300 

Linear 
regression layer 

(300, 300) 1×300 

 

After coding and mapping, the hidden space coding 

is input into the FLAME model for identity decoding. 

Given facial identity parameters   , posture  , 

expression   and FLAME, a three-dimensional face grid 

is output. The model M is defined as Eq. (4): 

( ) ( ) ( )( ), , , , , , ,PM W T J        =             (4) 

( ), , ,W T J    is a mixed skin function. J  is the joint 

point.   is the mixed weight. 

The adopted FLAME geometric decoder consists of 

a linear layer as Eq. (5): 

( ) *C Z B Z A= +                                                 (5) 

C  is the identity parameter generated by the identity 

encoder mapped by the mapping network. A   is the 

geometric shape of the average face. B   contains the 

principal component of the 3D Morphable Model 

(3DMM). 

Traditional 3DMM only consider global rotation and 

simple expression-blended shapes, and cannot model the 

relative motion between the neck and the head. This leads 

to unnatural tearing between the chin and the neck when 

the head turns at a large angle or tilts down. FLAME 

models the head and neck as a spherical joint chain with 

two degrees of freedom. On the template mesh, it 

calculates the skin weights of each vertex affected by joint 

rotation through an automatic weight binding algorithm. 
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To further improve accuracy, FLAME uses a large amount 

of data with neck scans during the training phase. By 

minimizing the reconstruction error, it jointly optimizes 

the joint center position and skin weights, ensuring that the 

realism of skin sliding is maintained even under extreme 

poses. 

The loss function of the rough reconstruction part 

includes two parts, namely, the geometric shape metricL  of 

the constrained face and the regularization loss regL  in Eqs. 

(6), (7) and (8): 

    coarse metric regL L L= +                                     (6) 

( )( )( )( )
( ),

metric mask GD

I M D

L K D MAP AdaFace I M


= −  (7) 

           
2regL C=                                           (8) 

D  is a unified paired 2D and 3D dataset. GDM  is a 

real mesh model. maskK  is the regional correlation weight. 

The design of the detail reconstruction network is 

based on a core concept: using deep learning technology 

to extract and enhance high-frequency detail information 

from the input image, and map it to the appearance 

representation of the 3D facial model [28, 29]. The detail 

encoder is responsible for extracting high-frequency detail 

features from the input image. This encoder adopts a 

lightweight convolutional neural network structure, 

improved based on the backbone network of ResNet-18, 

and specially optimized for facial high-frequency details. 

The detail encoder focuses on the high-frequency regions 

of the image. Through the design of specific filters and 

attention mechanisms, it enhances the sensitivity to edges, 

textures, and subtle changes. The output of the encoder is 

a high-dimensional feature vector. 

Since the FLAME model itself does not have a built-

in appearance model, this study transfers the linear albedo 

subspace of the Basel FaceModel to the UV layout of 

FLAME. The Basel FaceModel is a widely used 3D face 

model, and its albedo subspace can represent the texture 

details of the face. Through a mapping function, the 

albedo parameters of the Basel FaceModel are converted 

into the corresponding parameters under the UV 

coordinate system of the FLAME model. These 

parameters are input into the appearance model to generate 

a UV albedo map. In the design of the appearance model, 

multi-scale feature fusion technology is specially adopted 

to integrate feature information at different levels, 

ensuring that the generated UV albedo map contains the 

global texture structure. The calculation of the UV 

displacement map is as follows Eq. (9): 

( ), ,detail jawU F   =                                     (9) 

detailF  is a detail decoder.   is a detail code, which 

can control the specific details of the character.    and 

jaw   represent expression parameters and mandibular 

posture parameters respectively. 

In detail rendering, M  and its surface normal N  are 

transformed into UV space, which is expressed as UVM  

and UVN . Combine it with U  to get a detailed geometric 

model Eq. (10): 

'

UV UV UVM M U N= +                                  (10) 

The calculation method of detail rendering '

rI  is Eq. 

(11): 

( )( )' , , , ,r UVI R M B l N c=                          (11) 

In the rendering process, physically-based rendering 

technology is used. It considers factors such as lighting, 

materials and environment. This ensures that the 

generated images are visually highly consistent with the 

input images. To further improve rendering quality, deep 

learning-based anti-aliasing technology is introduced. It 

effectively handles aliasing issues in high-frequency 

details, making the reconstruction results smoother and 

more natural. After the above detailed rendering process, 

a 3D face with high-frequency details can be obtained. By 

integrating the detail reconstruction network with the 

coarse reconstruction stage, an end-to-end reconstruction 

process from 2D input images to high-fidelity 3D face 

models is realized. 

 

3.3 Expression detection and feature 

extraction 
Different individuals may express the same emotion 

in different ways, and many complex or mixed emotions 

cannot be fully described by simple category labels. This 

study introduces an AUs detection feature extractor to 

provide more refined local expression supervision. 

According to the Facial Action Coding System in 

psychology, all facial expressions can be decomposed into 

combinations of several AUs. Each AU corresponds to the 

contraction or relaxation of a specific group of facial 

muscles, such as AU6 (cheek raising), AU12 (lip corner 

pulling), etc. This anatomy-based representation method 

has high interpretability and cross-individual consistency. 

The traditional seven-class or twelve-class "one-hot" 

labels cannot characterize such fine-grained muscle-level 

differences. For this reason, this study introduces an AU 

detection feature extractor based on deep regression. With 

a dual-path architecture of local intensity combined with 

global correlation, it converts facial muscle movements 

into differentiable supervision in a continuous vector 

space, thereby driving the generation network to retain the 

micro-semantics of the original expression during the 

stylization process. 

The AU detector outputs an activation vector 

 1 2, ,..., ka a a a=  of one dimension, where K  is the total 

number of considered AU (usually 12–30 major AU). 

Each element ia  represents the activation degree of the ith 

AU. Minimize the Euclidean distance between the 

predicted expression parameters and the AU driving 

parameters in the optimization process as Eq. (12): 
2

au pred au drivenL e e −= −                                 (12) 

This dual supervision mechanism can ensure that the 

expression classifier provides semantic constraints on the 

overall emotion, preventing the expression from deviating 

from the original intention. The AU detector, on the other 

hand, provides fine-grained guidance on muscle 
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movements, ensuring that the reconstruction results are 

anatomically reasonable and expressive. 
Finally, the total energy function of the proposed face 

reconstruction optimization algorithm can be expressed as 

Eq. (13): 

( ) ( ) ( ) ( )enhance base expr expr au auE E E E     = + +    (13) 

expr
 and au

 are used to balance the weight of 

expression classification feature loss and AU detection 

feature loss in expression consistency constraint. 

From the perspective of control theory, the above 

dual-branch feature supervision based on expression 

classification and AU detection actually forms an "output 

feedback loop". Specifically, the 3D facial results 

rendered by the DCNN-FLAME model from the input 

images are fed back into the expression classifier and AU 

detector. The obtained emotional label distribution and 

AU activation vector are compared with the target features 

corresponding to the source images. Their differences are 

fed back to the expression parameters and detail encodings 

of FLAME in the form of loss functions, thereby 

continuously correcting the model’s expression 

representation during training. This mechanism shares 

certain similarities with the idea of "constructing adaptive 

laws using output errors" in robust neural adaptive control: 

both adjust internal states or parameters by observing 

errors at the output end to offset the impact of 

environmental changes and modeling errors. In the current 

work, this feedback is mainly reflected in parameter 

updates during the offline training phase. Based on this 

framework, a lightweight online adaptive process can be 

further designed in subsequent studies. For example, 

performing a limited number of gradient or optimization 

updates on key expression parameters during the inference 

phase. This ensures that the generated animated 

expressions maintain higher consistency and stability even 

under conditions of drastic pose changes or complex 

lighting. In implementation, the expression features of the 

input image and the reconstructed rendered image can be 

recorded as 𝑓𝑒𝑥𝑝(𝐼) and 𝑓𝑒𝑥𝑝(𝐼), and the AU features can 

be recorded as 𝑓𝐴𝑈(𝐼)  and 𝑓𝐴𝑈(𝐼) . The definition of 

feedback consistency loss is shown in Eq. (14): 

𝐿𝑓𝑏 = ‖𝑓𝑒𝑥𝑝(𝐼) − 𝑓𝑒𝑥𝑝(𝐼)‖1 + 𝜆‖𝑓𝐴𝑈(𝐼) − 𝑓𝐴𝑈(𝐼)‖2
2
    

(14) 

The feedback consistency loss function is 

incorporated into the total energy function to explicitly 

constrain the consistency of expressions under different 

postures and lighting conditions. 

 

3.4 Experimental design 
In this study, the AU detection module adopts an 

improved convolutional neural network architecture, 

inspired by the AU recognition branch of OpenFace 2.0. 

The module consists of five convolutional layers and two 

fully connected layers. Each convolutional layer is 

followed by batch normalization and a ReLU activation 

function to enhance the network’s nonlinear expression 

capability. The outputs of the feature extraction part are 

integrated through a dual-branch attention fusion module, 

which weights local facial regions and global expression 

features respectively. Finally, 17 AU probability labels are 

output via sigmoid activation to drive the subsequent 

reconstruction of animated expression parameters. During 

training, transfer learning is performed based on the pre-

trained weights of OpenFace 2.0, and fine-tuning is 

conducted using the Animated Character Images Dataset. 

This dataset contains 148 Chinese cartoon character 

images, covering various artistic styles and expression 

features in classic and modern Chinese animations. To 

adapt to the AU detection task, the Dlib-based facial 

landmark detector is used to crop and normalize facial 

regions in the dataset. Six main AU activation states (AU1, 

AU2, AU4, AU6, AU12, AU25) are manually annotated 

according to the AU coding system of OpenFace, ensuring 

data consistency and annotation quality. The Adam 

optimizer is adopted for training, with an initial learning 

rate of 1e-4, a batch size of 16, and a total of 60 training 

epochs. The loss function is weighted binary cross-entropy 

to balance the sample imbalance among different AUs. To 

ensure reproducibility, the random seed is fixed (seed = 

42), the data is split into 80% for the training set, 10% for 

the validation set, and 10% for the test set, and 

experiments are completed under the same GPU 

conditions. It should be noted that the pre-trained 

OpenFace 2.0 model used in this module follows the BSD 

(Berkeley Software Distribution) open-source license. 

To evaluate the performance of the proposed DCNN-

FLAME 3D face reconstruction model, this study 

conducts systematic experiments. All models are 

implemented based on the PyTorch deep learning 

framework, and the PyTorch3D library is used to perform 

3D mesh operations and differentiable rendering functions, 

ensuring the effective implementation of geometric 

consistency supervision. During the training process, the 

Adam optimizer is adopted for parameter updates, with the 

initial learning rate set to 0.01, combined with a learning 

rate decay mechanism to improve convergence stability. 

The entire training process lasts approximately 2.5 epochs, 

with each epoch containing about 75,000 iterations. A 

validation process is performed after every 5,000 

iterations to monitor the generalization ability of the 

model and prevent overfitting. 

The model of this study is built on VGGFace2 during 

the pre-training phase. The target task is animated 

character expression generation. Significant domain 

differences exist between the two in terms of appearance 

style and texture features. To narrow this gap, a two-stage 

domain adaptation training strategy is adopted in this study. 

In the first stage, the model is pre-trained on VGGFace2 

to learn the general feature distribution of facial structures 

and expression changes. This stage mainly trains the basic 

convolutional feature extraction network and the dual-

branch semantic supervision module. It enables the model 

to have generalization ability for AU activation patterns 

and expression semantics. In the second stage, the model 

is fine-tuned on the Animated Character Images Dataset. 

This dataset contains 148 animated character images with 

traditional and modern Chinese styles, covering different 

expression states and character shapes. To alleviate the 

distribution difference between real human faces and 

animated styles, a feature mapping layer is inserted 
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between the feature extraction layer and the style 

generation layer. The Maximum Mean Discrepancy 

(MMD) Loss is introduced to align the distributions of the 

two domains in the high-dimensional feature space. 

Meanwhile, to maintain the consistency of animated style 

features, a style consistency loss is designed to constrain 

the texture and color distribution. It ensures that the 

animated domain features maintain a corresponding 

relationship with real human face features in visual style. 

Through the above dual constraint mechanism, the model 

can adapt to the shape proportions and texture differences 

of animated characters while retaining the semantic 

features of human expressions. 

The large-scale VGGFace2 face dataset is selected as 

the research object, which contains nearly 2 million high-

resolution face images. To enhance the model's ability to 

model individual identity consistency, the original data is 

first subjected to structured preprocessing: four face 

images of the same identity with different poses or 

expressions are combined into a single training sample 

unit, forming a "four-view" input mode. The training batch 

size is set to 8, meaning that a total of 32 images (8 

samples × 4 images per sample) is input in each iteration. 

Four representative mainstream 3D face reconstruction 

methods are selected as comparative baselines: (1) 

3DMM-Fitting; (2) RingNet; (3) Detailed Expression 

Capture and Animation (DECA); (4) Fourier Analysis 

Networks-3D (FAN-3D). 

In this study, the reconstruction accuracy of the 

model is divided into two complementary indicators: 

metric items and non-metric items. Metric items are used 

to measure the spatial accuracy and shape fidelity of 3D 

geometric reconstruction. Non-metric items are used to 

evaluate the semantic consistency and perceptual 

authenticity of expressions. 

 

(1) Metric items 

Metric items are used to directly reflect the Euclidean 

space error between the output of the generative model 

and the real 3D geometry, with the definition given in Eq. 

(15): 

𝐿𝑚𝑒𝑡𝑟𝑖𝑐 =
1

𝑁
∑ ‖𝑉𝑖

𝑝𝑟𝑒𝑑
− 𝑉𝑖

𝑔𝑡
‖
2

𝑁
𝑖=1                        (15) 

𝑉𝑖
𝑝𝑟𝑒𝑑  and 𝑉𝑖

𝑔𝑡  represent the 3D coordinates of the 

predicted 3D mesh vertices and the real mesh vertices, 

respectively. 𝑁 is the total number of mesh vertices. This 

item reflects the reconstruction accuracy of the model at 

the spatial geometric level. Meanwhile, to further quantify 

the similarity of facial structures at the visual level, the 

Structural Similarity Index (SSIM) is adopted, with the 

definition given in Eq. (16): 

𝑆𝑆𝐼𝑀(𝐼𝑝𝑟𝑒𝑑 , 𝐼𝑔𝑡) =
(2𝜇𝑝𝜇𝑔+𝑐1)(2𝜎𝑝𝑔+𝑐2)

(𝜇𝑝
2+𝜇𝑔

2+𝑐1)(𝜎𝑝
2+𝜎𝑔

2+𝑐2)
           (16) 

𝐼𝑝𝑟𝑒𝑑  and 𝐼𝑔𝑡   represent the luminance distributions 

of the predicted image and the real image, respectively. 𝜇 

and 𝜎  denote their mean values and variances, 

respectively. 𝑐1  and 𝑐2  are stability constants. SSIM is 

used to measure the structural similarity and texture 

restoration accuracy of the generated results. 

 

 

(2) Non-metric items 

Non-metric items are mainly used to measure the 

generation consistency of the model at the semantic level 

of emotion and expression, as defined in Eq. (17): 

𝐿𝑛𝑜𝑛𝑚𝑒𝑡𝑟𝑖𝑐 = 1 −
〈𝑓𝑝𝑟𝑒𝑑,𝑓𝑔𝑡〉

‖𝑓𝑝𝑟𝑒𝑑‖
2
‖𝑓𝑔𝑡‖

2

                                  (17) 

𝑓𝑝𝑟𝑒𝑑  and 𝑓𝑔𝑡   represent the feature vectors of the 

predicted and real samples in the expression embedding 

space, respectively. This item calculates the cosine 

distance between them, which is used to characterize the 

semantic deviation of the generated expressions. In 

addition, the Action Unit Matching Rate (AUMR) is also 

defined as an auxiliary indicator to count the consistency 

between the predicted expressions and real expressions in 

terms of the main AU activation patterns. The definition 

of AUMR is given in Eq. (18): 

𝐴𝑈𝑀𝑅 =
1

𝐾
∑ 𝐼(|𝑎𝑘

𝑝𝑟𝑒𝑑
− 𝑎𝑘

𝑔𝑡
| < 𝜖)𝐾

𝑘=1               (18) 

𝑎𝑘
𝑝𝑟𝑒𝑑 and 𝑎𝑘

𝑔𝑡  are the activation values of the 𝑘th AU, 

respectively, 𝜖  is the matching threshold, and 𝐼(⋅)  is the 

indicator function. 

 

(3) Comprehensive evaluation index 

The comprehensive evaluation index 𝐿𝑒𝑣𝑎𝑙 combines 

the above two kinds of error terms to uniformly measure 

3D geometric accuracy and expression consistency, and its 

definition is shown in Eq. (19): 

𝐿𝑒𝑣𝑎𝑙 = 𝜆1𝐿𝑚𝑒𝑡𝑟𝑖𝑐 + 𝜆2𝐿𝑛𝑜𝑛𝑚𝑒𝑡𝑟𝑖𝑐                    (19) 

𝜆1  and 𝜆2  are weight coefficients (set to 𝜆1 = 0.6 

and 𝜆2 = 0.4  in the experiment), which are used to 

balance the importance of spatial accuracy and semantic 

fidelity. 

In the experiments, metric items mainly reflect the 

model’s ability to geometrically restore 3D shapes, while 

non-metric items reflect the semantic consistency and 

human-perceived realism of expression generation. The 

combination of the two can comprehensively evaluate the 

overall performance of the DCNN-FLAME model in 

terms of reconstruction accuracy and expression 

naturalness. 

The training and inference codes of this study have 

been made public on the GitHub platform. Researchers 

can obtain them via the following link: 

https://github.com/C3R8U/DCNN-FLAME-

ExpressionGen. The codes include model structure 

definitions, loss function implementations, data 

preprocessing scripts, and training process configuration 

files, ensuring the complete reproduction of the 

experiments in this study. 

 

4  Results  
4.1 Performance evaluation of 3D face 

reconstruction model 
The non-metric and metric evaluation results of 

different methods on the VGGFace2 dataset are shown in 

Figure 5 and Figure 6. Both Figure 5 and Figure 6 include 

error bars representing mean ± standard deviation, with 

significance comparison markers added between models. 

In Figure 5, in the static expression reconstruction task, 

the average error of DCNN-FLAME is 1.23 ± 0.21 mm, 
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which is significantly lower than that of 3DMM-Fitting (p 

< 0.01), RingNet (p < 0.05), and DECA (p < 0.05). Only 

the difference from FAN-3D is not statistically significant 

(p = 0.071). Meanwhile, DCNN-FLAME has the smallest 

standard deviation, indicating better stability across 

different samples. In the dynamic expression sequence 

reconstruction task, DCNN-FLAME achieves an average 

error of 1.61 ± 0.33 mm, which is significantly superior to 

all comparative models (p < 0.05). Especially compared 

with 3DMM-Fitting (2.31 ± 0.64 mm) and RingNet (1.93 

± 0.42 mm), the errors are reduced by 30.3% and 16.6%, 

respectively. Additionally, the decrease in standard 

deviation (from 0.64 mm to 0.33 mm) demonstrates that 

the model has higher robustness and temporal consistency 

in dynamic scenarios. Statistical significance analysis is 

performed using paired t-tests, and asterisks are marked in 

tables and figures for all results with p-values less than 

0.05. The analysis results further confirm that the 

improvements of the DCNN-FLAME model in 

reconstruction accuracy and stability compared with 

existing methods are statistically significant.  
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Figure 5: Non-metric evaluation results of different 

methods on VGGFace2 dataset (Note: *p < 0.05, **p < 

0.01) 
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Figure 6: Metric evaluation results of different 

methods on VGGFace2 dataset (Note: *p < 0.05, **p < 

0.01) 

 

Figure 7 shows the visualization effect of 3D 

reconstructed faces based on the DCNN-FLAME model. 

For frontal face images, the model can accurately capture 

the overall structure and fine texture features of the face. 

This is mainly attributed to the introduced style transfer 

loss function: the loss extracts the semantic-level texture 

distribution of the input image through a deep neural 

network, and uses it as a soft constraint to guide the 

generation process of the FLAME model's surface albedo. 

This mechanism effectively enhances the visual 

consistency of the reconstruction results in terms of facial 

contour, facial feature proportion and skin texture, 

enabling the generated 3D face to maintain high realism 

even under changes in lighting and dynamic expressions. 

Even when only a single profile face image is used as input, 

the model can still recover 3D morphologies such as ear 

position, jawline trend and nasal dorsum curvature by 

relying on the learned pose-robust feature space. Based on 

the comprehensive reconstruction results of frontal and 

profile faces, it shows that the model can generate 

coherent, natural and anatomically consistent 3D meshes, 

whether in frontal visible regions such as the forehead and 

cheekbones, or in parts inferred only from the profile such 

as the auricle and back of the head. 

 

Front face Profile

 

Figure 7: Visualization effect of face based on DCNN-

FLAME model 

 

On the VGGFace2 test set, the 3DMM-Fitting, 

DECA, FAN-3D, and the proposed DCNN-FLAME 

models are compared. The mean and standard deviation of 

five-fold cross-validation were calculated, and statistical 

significance tests were performed on the results. The 

results are shown in Table 3. It shows that the DCNN-

FLAME model outperforms other models on both 

perceptual metrics of SSIM and LPIPS. The structural 

similarity is improved by approximately 2.8%–7.2%, and 

the perceptual error is reduced by approximately 14.7%–

29.4%. Among them, the SSIM of DCNN-FLAME 

reaches 0.914 ± 0.012, indicating that the generated facial 

structure is highly consistent with the real image in terms 

of luminance, texture, and geometric distribution. Its 

LPIPS is 0.168 ± 0.013, which is significantly lower than 

other methods (p < 0.01), demonstrating that the model 

has the smallest difference in the deep perceptual space 

and the most natural reconstructed details. FAN-3D 

performs similarly at the perceptual level but has a slightly 

higher standard deviation, indicating insufficient 

reconstruction stability under complex expressions and 

lighting conditions. Both SSIM and LPIPS of DECA and 

3DMM-Fitting are significantly inferior, mainly due to 
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their limited ability to recover textures and high-frequency 

details. 

 
Table 3: Perceptual quality evaluation results of 3D 

face reconstruction (Five-Fold Cross-Validation, Mean ± 

Standard Deviation) 

 
Method SSIM LPIPS Significance (compared 

with DCNN-FLAME) 

3DMM-

Fitting 

0.842 ± 

0.018 

0.238 ± 

0.019 

p < 0.01 

DECA 0.873 ± 
0.016 

0.211 ± 
0.017 

p < 0.01 

FAN-3D 0.889 ± 

0.014 

0.197 ± 

0.015 

p < 0.05 

DCNN-
FLAME 

0.914 ± 
0.012 

0.168 ± 
0.013 

— 

Note: *p < 0.05, **p < 0.01. 

 

In addition, tests are conducted on the Animated 

Character Images Dataset. Figure 8 presents an example 

image, demonstrating the model’s performance in 

processing animated images. 

(a)

(b)

 

Figure 8: Multiple expression generation results 

based on the Mulan image ((a) Original image; (b) 

Generated image) 

 

Figure 8 demonstrates the ability of the DCNN-

FLAME model to generate multiple facial expressions for 

cartoon characters based on Mulan. The original input 

image is Mulan with a happy expression, accompanied by 

Cri-Kee and Mushu. Through the model, various 

expressions have been successfully generated, including 

anger, surprise, confusion, sadness, joy, irritation, 

excitement, dissatisfaction, and worry. Each image retains 

the unique style and facial features of Mulan’s cartoon 

image while accurately capturing and presenting the subtle 

changes of different emotions, such as the curvature of 

eyebrows, the upward or downward turning of the corners 

of the mouth, and the degree of eye opening and closing. 

These results indicate that the model can effectively 

perform expression transfer and generation when 

processing animated characters with specific artistic styles, 

ensuring the naturalness of expressions and visual 

consistency with character settings. This further verifies 

the model’s generalization ability and robustness across 

different types of animated characters. 

 

4.2 Expression reconstruction reduction 

result 
Figure 9 presents the results of the model's ablation 

experiment. After removing the expression classification 

and AU detection branches (w/o Expr w/o AU), the model 

performance degrades significantly, with Accuracy and F1 

reaching only 0.295 ± 0.018 and 0.290 ± 0.021 (p < 0.01), 

respectively. This verifies the key role of dual-branch 

feature supervision in semantic representation learning. 

When only the expression classification branch is retained 

(w Expr w/o AU), the performance improves to 0.477 ± 

0.022. When only the AU detection branch is retained 

(w/o Expr w AU), the Accuracy and F1 are 0.362 ± 0.019 

and 0.358 ± 0.020, respectively. This indicates that the AU 

detection features have limited ability to characterize 

expression details, and the collaboration of the two 

branches is required to achieve stable optimization. In the 

additional module ablation experiments, removing the 

style loss (w/o Style Loss) leads to an approximate 8.2% 

decrease in F1 (p < 0.05), demonstrating the significant 

role of style transfer loss in capturing high-frequency 

expression texture features. After removing the identity 

encoder (w/o ID Encoder), the F1 decreases to 0.486 ± 

0.026, indicating that identity features contribute to the 

model’s ability to maintain cross-individual consistency. 

Removing multi-scale feature fusion (w/o Multi-Scale 

Fusion) has the most significant impact, with a 

performance drop of 13.8% (p < 0.01). This shows that 

multi-layer feature information is indispensable for fusing 

semantic and geometric representations. The complete 

model (w Expr w AU) significantly outperforms other 

variants in both Accuracy and F1 metrics (p < 0.01) and 

has the smallest standard deviation. This indicates that the 

model structure design achieves an optimal balance 

between performance and stability. The above results 

verify the importance of dual-branch feature supervision 

and experimentally prove the key roles of style loss, 

identity encoding, and multi-scale fusion mechanisms in 

the quality and robustness of expression generation.  
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Figure 9: Results of facial expression reconstruction 

(Note: *p < 0.05, **p < 0.01) 

 

To further verify the contextual validity and 

statistical robustness of the experimental results in Figure 
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9, this study adds comparative and benchmark 

experiments under the same experimental environment. 

Meanwhile, to obtain the upper limit benchmark of human 

performance, 10 graduate student volunteers with 

experience in facial expression recognition are invited to 

manually classify the same test samples, and their average 

accuracy and F1 scores are counted. All models adopt the 

same input preprocessing and five-fold cross-validation 

strategy. The results of each fold are averaged and the 

standard deviation is calculated to measure the stability of 

model performance. The comparison of expression 

classification performance of different methods on the 

VGGFace2 dataset is shown in Table 4. It shows that the 

proposed DCNN-FLAME model outperforms the three 

existing baseline methods in both accuracy and F1 score. 

Among them, the average accuracy of DCNN-FLAME is 

0.571, which is 6.3% higher than that of FAN-3D, 11.3% 

higher than that of DECA, and 14.3% higher than that of 

3DMM-Fitting. Its average F1 score is 0.563, which is 

also the highest among all methods. Compared with the 

human benchmark, DCNN-FLAME differs by only about 

4.1 percentage points in accuracy, indicating that the 

model's recognition performance is close to the level of 

human judgment. In terms of standard deviation, DCNN-

FLAME has the smallest fluctuation range (Accuracy 

±0.014, F1 ±0.015), showing high consistency and 

stability across different data partitions. In contrast, 

3DMM-Fitting exhibits higher error variance due to its 

reliance on low-dimensional linear space, while DECA 

and FAN-3D have certain instability in extreme 

expression samples. Overall, DCNN-FLAME leads in 

overall performance and shows obvious advantages in 

statistical robustness, verifying the effectiveness of style 

transfer loss and dual-branch feature supervision 

mechanism in improving the generalization performance 

and reliability of the model. 
 

 

Table 4: Comparison of expression classification 

performance of methods on VGface 2 dataset 

 
Method Accuracy F1 value 

3DMM-Fitting 0.428 ± 0.019 0.421 ± 0.021 

DECA 0.513 ± 0.017 0.507 ± 0.018 

FAN-3D 0.537 ± 0.016 0.529 ± 0.017 

DCNN-FLAME 0.571 ± 0.014 0.563 ± 0.015 

Human benchmark 0.612 ± 0.012 0.601 ± 0.013 

To verify the feasibility of the DCNN-FLAME model 

in the animation production pipeline, its computational 

efficiency is further quantitatively evaluated, with the 

results shown in Table 5. The DCNN-FLAME model 

demonstrates excellent computational efficiency while 

ensuring the quality of expression generation. It has 

46.8M parameters, which is approximately 25% less than 

that of DECA, and only 39.5G FLOPs. The model requires 

only about 37 milliseconds for single-frame inference, 

achieving a real-time generation rate of approximately 27 

frames per second. On an RTX 3090 GPU, the complete 

training takes about 98 minutes, which is approximately 

32% shorter than that of FAN-3D, significantly improving 

training efficiency. Through lightweight convolution and 

feature sharing design, the model achieves a good balance 

between performance and computational cost, making it 

suitable for direct application in the real-time generation 

pipeline of animated characters. 

 

Table 5: Comparison of model calculation efficiency 

 
Method Parameter 

quantity 

(M) 

FLOPs 
(G) 

Single frame 
inference 

time (ms) 

Complete 
training time 

(min) 

3DMM-

Fitting 

48.7 43.2 61 175 

DECA 62.5 51.8 55 160 

FAN-3D 59.3 47.6 49 145 

DCNN-

FLAME 

46.8 39.5 37 98 

 

5  Discussion 
This study systematically evaluates the DCNN-

FLAME model, constructed based on DCNN and FLAME, 

through non-metric and metric errors, visualized 

reconstruction results, and expression reconstruction 

ablation experiments. Quantitative results show that on the 

VGGFace2 dataset, the non-metric mean of DCNN-

FLAME is 1.29 and the metric mean is 1.72, both lower 

than all comparative baseline methods. This indicates that 

the model achieves the overall best performance in 

geometric accuracy and facial alignment. On this basis, it 

is necessary to conduct a more in-depth comparison and 

reflection on DCNN-FLAME and three methods (DECA, 

FAN-3D, and 3DMM-Fitting) from the perspectives of 

reconstruction error, detail preservation, pose 

generalization ability, computational cost, and error 

patterns. 

From the perspective of reconstruction error, 

3DMM-Fitting, as a traditional 3D morphable model 

fitting method, is based on the core assumption that both 

identity and expression can be modeled through low-

dimensional linear subspaces. On large-scale datasets like 

VGGFace2, which contain complex expressions and 

diverse poses, the linear deformation assumption struggles 

to fully cover non-rigid deformation patterns. Especially 

in cases of wide mouth opening, frowning, or 

superimposed micro expressions, the reconstruction error 

is significantly larger. DECA and FAN-3D outperform 

3DMM-Fitting in geometric fitting through more complex 

network structures and differentiable rendering 

mechanisms. However, they still have certain issues in the 

long tail of the error curve. For example, local geometric 

distortions are prone to occur under extreme expressions 

or atypical poses. In contrast, DCNN-FLAME achieves 

the smallest non-metric and metric means on the same 

dataset. This is partly due to FLAME’s explicit modeling 

of head and neck joints, and partly closely related to the 

high-dimensional feature constraints provided by the style 

transfer loss. These factors enable the model to maintain 

low reconstruction error even under complex expressions 

and multi-view conditions. 

In terms of detail preservation, 3DMM-Fitting, 

which primarily relies on low-dimensional parameterized 

shapes and simple texture models, often exhibits over-

smoothing in high-frequency regions such as crow's feet, 

subtle muscle twitches at the corners of the mouth, and 
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nasolabial folds. It struggles to accurately replicate the 

minute texture variations in real human faces. DECA 

enhances detail representation to some extent in terms of 

normal displacement and texture by explicitly modeling 

expression details, while FAN-3D introduces high-

frequency components through frequency-domain 

modeling, enabling the visual recovery of more details. 

However, comparative analysis of image visualization 

results shows that DCNN-FLAME still demonstrates 

stronger expressiveness at the detail level: On one hand, 

the VGG-19-based style transfer loss can constrain high-

frequency textures in the semantic feature space, making 

the reconstructed results more similar to the original 

images in terms of skin texture, light transition, and local 

textures. On the other hand, the detail reconstruction 

network, through dedicated modeling of high-frequency 

regions, maps texture features from the input image to UV 

albedo maps and displacement maps. This allows the 

generated 3D facial mesh to accurately reproduce high-

frequency information such as eyebrow edges, pupil 

highlights, and lip lines while maintaining the stability of 

low-frequency structures. Compared with DECA and 

FAN-3D, DCNN-FLAME can still maintain good detail 

consistency in scenarios with extreme lighting or strong 

local shadows, indicating that style transfer features play 

an important role in compensating for the insufficient 

sensitivity of traditional photometric loss to high-

frequency textures. Pose generalization ability is one of 

the key indicators determining whether 3D face 

reconstruction methods can operate reliably in practical 

applications. Due to its use of rigid rotation and simple 

expression blending models, 3DMM-Fitting fails to 

accurately describe the relative movement between the 

head and neck, and is prone to geometric tearing between 

the jaw and neck in scenarios involving large-angle head 

turns or head lowering. 

DECA and FAN-3D exhibit good stability within the 

range of moderate pose variations. However, when only 

single-view input is available and the pose is extreme (e.g., 

large side profile or upward viewing angle), the 

reconstruction of "inferred regions" such as the auricle, 

lateral zygomatic margin, and posterior cranial contour 

remains unstable. DCNN-FLAME incorporates 

mechanisms conducive to pose generalization at both the 

network design and data organization levels: On one hand, 

FLAME models the head and neck as a joint chain with 

two degrees of freedom, and performs joint optimization 

through a large amount of data containing neck scans, 

thereby improving adaptability to large-angle poses at the 

model level. On the other hand, a "four-view" input mode 

is adopted during training, where four facial images of the 

same identity with different poses or expressions are 

combined into one training sample. This enables the 

identity encoder to preferentially learn pose-invariant 

identity features and expression features that change 

relatively smoothly with poses. From the experimental 

results, even with only a single side-profile image input, 

DCNN-FLAME can still recover 3D structures such as the 

auricle position, jawline trajectory, and nasal bridge 

curvature, while maintaining consistent geometric 

morphology with frontal images in the forehead, 

zygomatic, and midfacial regions. This indicates that the 

model outperforms 3DMM-Fitting, DECA, and FAN-3D 

in pose generalization ability. 

In terms of performance trade-off and computational 

cost, 3DMM-Fitting has the advantage of low parameter 

dimensions and a relatively simple model structure, 

resulting in low demands for video memory and 

computing power. However, it requires iterative 

optimization to solve parameters, so the computational 

cost during single-sample inference is not necessarily the 

smallest, and it is difficult to fully leverage the batch 

processing advantages of modern Graphics Processing 

Units (GPUs). DECA and FAN-3D adopt end-to-end deep 

network structures, typically requiring multi-branch 

encoders, differentiable rendering modules, and high-

dimensional feature mapping. Their inference phase can 

process input images in batches, achieving high overall 

throughput in GPU environments, but they have large 

model parameter scales and high video memory usage. 

Building on this, DCNN-FLAME further incorporates a 

style transfer feature extractor, a detail reconstruction 

network, and a dual-branch feature supervision 

mechanism. This makes the overall computational volume 

and video memory overhead of the model during training 

higher than those of 3DMM-Fitting, and comparable to or 

even slightly higher than those of DECA and FAN-3D. 

Nevertheless, DCNN-FLAME decouples coarse 

reconstruction and detail reconstruction, achieving 

relatively controllable inference latency through a 

lightweight detail encoder and a highly reusable style 

feature extraction network. In a typical GPU environment, 

the model can improve reconstruction error and detail 

quality to a level superior to baseline methods while 

maintaining near-real-time inference speed and reasonable 

video memory usage, reflecting a typical trade-off of 

moderately increasing model complexity in exchange for 

improved reconstruction accuracy and expression stability. 

From the perspective of error patterns, each method 

still exhibits different forms of distortion in specific 

scenarios. 3DMM-Fitting’s geometric errors under non-

rigid expressions, exaggerated expressions, and irregular 

lighting conditions are often concentrated in the mouth, 

periocular, and nasal alar regions. Expression changes are 

"pulled back" into the linear subspace, resulting in stiff 

expressions and insufficient details. Although DECA can 

well recover expression textures under moderate-intensity 

expressions, local collapse of the eyelid or corner of the 

mouth may occasionally occur in scenarios with direct 

strong light, local occlusion, or extreme poses. FAN-3D 

enhances the expressive ability of high-frequency 

information through frequency-domain modeling, but 

when the input image contains severe noise or motion blur, 

the amplification of high-frequency components may lead 

to local texture artifacts. For DCNN-FLAME, despite 

achieving optimal results in overall reconstruction error 

and detail preservation, observations from some failure 

cases show: when the face is largely occluded (e.g., 

wearing a thick mask or wide-brimmed hat), expressions 

are extremely exaggerated (e.g., cartoonish laughter, 

extreme glaring), or there is a significant difference 

between the training data distribution and the test style, the 
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model may still produce unnatural texture stretching at 

occlusion edges or uncertainty in the inference of deep 

structures. 

 

6  Conclusion 
Focusing on the expressiveness issue in animated 

character expression generation, this study proposes an 

unsupervised 3D face reconstruction method integrated 

with image feature enhancement. Taking the FLAME 

parametric model as the basic framework, the study 

combines DCNN and style transfer mechanism to 

construct an end-to-end 3D face reconstruction system—

DCNN-FLAME. By introducing the VGG-19-based style 

transfer loss, the ability to supervise texture details is 

enhanced at the high-level semantic level, which 

effectively makes up for the deficiency of traditional 

photometric loss in capturing high-frequency information. 

To improve the realism and controllability of expression 

generation, this study designs a dual-branch feature 

supervision mechanism: On the one hand, expression 

classification features are used to provide global semantic 

constraints, ensuring that the reconstructed expressions 

conform to the original emotional intention. On the other 

hand, AU detection features are introduced to realize 

interpretable expression control. Experimental results 

show that the proposed method significantly outperforms 

multiple mainstream reconstruction algorithms on the 

VGGFace2 dataset, with an F1-score of 0.564, verifying 

its superior performance in terms of geometric accuracy 

and expression restoration. 

Despite achieving promising results in geometric 

accuracy and expression restoration, this study still has 

certain limitations. First, the current model’s 

reconstruction capability for extreme poses (e.g., large-

angle head lowering, head raising, or side profiles) needs 

further improvement. Especially in the absence of multi-

view input, there remains uncertainty in the inference of 

deep facial structures. Second, the AU detection module 

adopted in this study relies on an externally pre-trained 

model, and fully end-to-end joint optimization has not 

been realized, which may to some extent introduce the risk 

of error propagation. To address the above issues, future 

work will focus on two aspects: On the one hand, explore 

an adaptive pose augmentation mechanism combined with 

synthetic view generation to improve the model’s 

reconstruction robustness under extreme angles. On the 

other hand, further develop a differentiable AU 

recognition sub-network for joint training with the 3D 

reconstruction backbone network. On this basis, this study 

also plans to introduce the feedback adjustment idea from 

robust neural adaptive control, explicitly treating 

expression classification and AU features as feedback 

signals to perform online or semi-online adaptive 

correction of FLAME expression parameters and detailed 

textures. Additionally, Lyapunov-like stability analysis 

tools will be used to characterize the stability boundaries 

of the expression generation process under complex pose 

and lighting disturbances, thereby systematically 

enhancing the stability and naturalness of animated 

character expressions under various working conditions. 
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