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This study aims to explore a method capable of generating high-naturalness expressions for animated
characters, thereby enhancing the audience’s emotional resonance. This study proposes a 3D face
reconstruction system named Deep Convolutional Neural Network-Faces Learned with an Articulated
Model and Expressions (DCNN-FLAME). DCNN-FLAME consists of an identity encoder, a mapping
network, a Facial Landmark Embedding Model (FLAME) geometric decoding module, and a detail
reconstruction network, forming an end-to-end processing pipeline from input images to 3D meshes and
appearance textures. A style transfer module is constructed based on Deep Convolutional Neural Network
(DCNN). It uses a pre-trained convolutional network to achieve effective separation of content and style,
providing high-level semantic constraints for texture detail modeling of animated character expressions.
On this basis, a dual-branch feature supervision mechanism composed of expression classification
features and facial Action Units (AU) detection features is designed. Expression classification features
provide global emotional semantic constraints to ensure macro-expression consistency. AU detection
features guide local muscle movements from an anatomical perspective to enhance the realism of
expression details. Experiments are conducted based on the large-scale face dataset VGGFace2.
Systematic comparisons are performed with four 3D face reconstruction algorithms: 3D Morphable
Model Fitting (3DMM-Fitting), RingNet, Detailed Expression Capture and Animation (DECA), and
Fourier Analysis Networks-3D (FAN-3D). The proposed DCNN-FLAME model achieves a mean value of
1.29 in non-metric evaluation and 1.72 in metric evaluation. Both indicators are lower than those of all
baseline methods, demonstrating higher geometric reconstruction accuracy and facial alignment quality.
In the overall expression restoration evaluation, the F1 score of the proposed method reaches 0.564,
reflecting comprehensive advantages in complex expression modeling. When both the expression
classification branch and facial AU detection branch are enabled, the expression classification accuracy
rate is 0.571 and the F1 score is 0.563, which are significantly better than the configuration using only a
single feature for supervision. This verifies the key role of the dual-branch feature supervision mechanism
in improving the naturalness and controllability of animated character expressions. This study provides
an effective technical path integrating geometric reconstruction and texture enhancement for 3D animated
character expression generation, and also offers new ideas and practical basis for the field of
unsupervised 3D face reconstruction.

Povzetek: Studija predstavija model DCNN-FLAME za 3D rekonstrukcijo obrazov, ki z zdruzevanjem

geometrijske rekonstrukcije, prenosa sloga ter dvo-vejne nadzorne mehanike (Custvena klasifikacija in
akcijske enote) omogoca bolj naravne, realisticne in natancno nadzorovane izraze animiranih likov.

Introduction

creators to solve. In traditional animation production, the

In the world of animation, a character’s expressions are
the window to its soul. When a character slightly lifts the
corner of its mouth, or a trace of sadness flashes in its eyes,
the audience can instantly resonate with it. With the rapid
development of digital technology, the production of
animated characters has gradually shifted from traditional
hand-drawing to digital production [1-3]. However, in this
process, the generation of character expressions still faces
many challenges. Especially for non-human-shaped
characters, how to endow them with rich and reasonable
expressions has become an urgent problem for animation

generation of expressions often relies on a large amount of
manual drawing by artists, which is inefficient and the
effect is difficult to guarantee. In 3D animation, the
generation of expressions mainly depends on blend shape
technology. Although it can realize basic expression
changes, there is still much room for improvement in the
naturalness and expressiveness of expressions.

Most existing deep learning methods either rely on
large amounts of annotated data or still have shortcomings
in the naturalness of expressions. For example, face-
swapping technology based on 3D models [4, 5] can
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realize basic expression transfer, but it often requires
complex calculations and a large amount of manual
intervention. While methods based on Generative
Adversarial Network (GAN) can generate high-definition
images, the coherence and naturalness of expressions are
difficult to guarantee. Among numerous technologies,
style transfer technology has attracted much attention due
to its ability to effectively extract and transfer the style
features of images. It can retain the content of the source
image, and integrate the style features of the target image
into it, thereby generating more natural images [6, 7]. This
technology has broad application prospects in facial
expression generation. Through style transfer, the
expression features of real humans can be extracted and
then applied to animated characters, making the
characters' expressions more vivid and natural.

To address the aforementioned challenges, this study
sets the overall goal of improving the realism, stability,
and controllability of animated character expressions, and
conducts research around a 3D expression generation
framework based on style transfer and feature supervision.
The research focuses on three interrelated research
questions:

1) Can the style transfer loss significantly improve
the reconstruction quality of high-frequency detail regions
while maintaining the stability of the overall geometric
structure, making the reconstruction results closer to the
source image in terms of skin texture, light and shadow
transitions, and local expression details?

2) Can the dual-branch feature supervision
mechanism integrating expression classification and
Action Units (AU) features effectively constrain the
learning of 3D expression parameters during the training
phase, enabling the generated animated expressions to
have significant advantages over baseline methods with
single-branch supervision or no feature supervision in
terms of semantic emotion, consistency, and rationality of
muscle movement?

3) Can the Deep Convolutional Neural Network-
Faces Learned with an Articulated Model and Expressions
(DCNN-FLAME)  framework  built on  Deep
Convolutional Neural Network (DCNN) and Facial
Landmark Embedding Model (FLAME) achieve or
exceed representative methods in terms of reconstruction
error, detail preservation, and pose generalization ability
on large-scale face datasets, while maintaining acceptable
computational overhead?

Centering on the above questions, this study conducts
systematic demonstrations from three aspects (model
design, training strategy, and experimental evaluation) in
the subsequent sections, and thereby verifies the
effectiveness of the style transfer loss and dual-branch
feature supervision in the task of animated character
expression generation.

2 Related work

In the field of animated character generation and
visual enhancement, Cao and Huang [8] proposed a deep
learning-based method for character generation and visual
quality enhancement. They utilized a multi-layer
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convolutional generative network to achieve automatic
modeling and texture refinement of animated characters.
By introducing perceptual loss and style consistency
constraints, it effectively improved the realism and visual
coherence of animated character expressions. While
maintaining the performance of a diffusion model with 2
billion parameters, this model increased the generation
speed by 9 times and reduced computational consumption
by 31%, laying the foundation for real-time expression
generation. At the same time, research in the field of low-
light image enhancement has also made remarkable
progress. The horizontal/vertical intensity color space and
CIDNet decoupling network proposed by Zhao et al. [9]
effectively suppressed color cast and artifact issues in
traditional methods by separating color and brightness
information, achieving an improvement of 6.68 dB on
extreme low-light datasets. This provided a basis for the
application of expression generation in complex lighting
environments. Expression generation technology is
evolving from single-modal to multi-modal, from static to
dynamic, and from rule-driven to data-driven. The
expression decoupling generation method based on facial
AUs proposed by Liu et al. [10] realized the generation of
natural and delicate facial expressions for robots through
fine control of AU combinations. This method performed
excellently in  continuous expression transition
experiments, enabling smooth generation of intermediate
states from happiness to anger and significantly enhancing
the authenticity of emotional HCI.

Zeng et al. [11] explored cross-modal expression
generation and fusion technology. By fusing multi-source
inputs such as speech, text, and physiological signals, they
realized the synchronous generation of expressions and
semantics. The multi-modal fusion model used an
attention mechanism to dynamically assign weights,
making expression generation more in line with the laws
of human emotional expression, with cross-modal
consistency reaching over 85%. Mohana et al. [12]
developed an emotion-driven real-time facial expression
generation system. This system adopted CNN and LSTM
networks to achieve real-time expression generation at 30
frames per second. The researchers also used GAN to
generate simulated face images, which enhanced the
generalization ability of the model. Krithika and Priya [13]
focused on a feature enhancement method based on
expression ratio maps. By calculating the ratio of the
movement of feature points and pixel brightness before
and after expression changes, this method better
transferred expression details to other faces as a whole.
Compared with traditional expression mapping, this
method solved the defect of being unable to synthesize
expression details.

From the perspective of control theory, animated
character expression generation can also be regarded as a
type of nonlinear dynamic system control problem with
significant uncertainty and external disturbances. In recent
years, the adaptive control and robust control communities
have achieved numerous results in output feedback control,
adaptive fuzzy control, and robust neural adaptive control.
For example, Boulkroune et al. [14] proposed a projective
lag synchronization controller based on output feedback
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for chaotic systems with input nonlinearity. It could still
ensure system synchronization performance when input
nonlinearity and model uncertainty exist simultaneously.
Boulkroune et al. [15] further developed a practical fixed-
time adaptive fuzzy synchronization control strategy for
fractional-order chaotic systems. By constructing
appropriate adaptive laws, the goal of suppressing system
uncertainty and disturbances within a finite time was
achieved. Zouari et al. [16] proposed an adaptive
backstepping control method for a class of uncertain
single-input single-output (SISO) nonlinear systems.
Zouari et al. [17] presented a robust neural adaptive
control framework for multivariable complex nonlinear
systems. By introducing neural network approximation
and robust compensation terms, the tolerance to model
uncertainty and external disturbances was improved.
Meanwhile, Rigatos et al. [18] applied nonlinear optimal
control methods to natural gas compressor systems driven
by induction motors. This demonstrated the effectiveness
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of nonlinear control and optimal control in handling strong
nonlinearity and operating condition changes in industrial
scenarios. Merazka et al. [19] designed an adaptive fuzzy
controller for multivariable nonlinear systems based on
high-gain observers. Robust regulation of system states
was achieved through output feedback and state
estimation. These works collectively indicated that in
complex systems with parameter uncertainty, external
disturbances, and strong nonlinearity, introducing
adaptive feedback and robust control structures was an
effective means to improve system responsiveness and
dynamic stability. Inspired by this, this study regards
expression classification and AU detection features as
"output feedback signals" and explores the potential value
of introducing similar adaptive feedback mechanisms in
the task of animated character expression generation.
Table 1 summarizes and compares the main expression
generation and control methods in recent years.

Table 1: Comparison and summary of main related work

References Model/method Dataset Modal type Supervision Main performance index
type
Cao & Animation character Self-built animated Image Supervised The visual quality is improved by
Huang [8] generation and visual character dataset 23%, and the expression
enhancement based on naturalness score is improved by
deep learning 18%.
Zhao etal., | CIDNet low illumination LOL Dataset Image Supervised PSNR increases by 6.68 dB.
[9] image enhancement
Liuetal., AU-driven expression BP4D Image Supervised The smoothness of continuous
[10] decoupling generation expression is 93.5%
Zeng etal. Semantic fusion of RAVDESS +self- Image+Voice+Text Supervised Cross-modal consistency is
[11] multimodal expressions built multimodal set 85.3%
Mohana et CNN-LSTM+GAN real- AffectNet Image+video frame Supervised The real-time frame rate is 30
al. [12] time generation sequence fps, and the accuracy rate is
89.2%
Krithika & Expression scale CK+ Image Supervised The accuracy of detail migration
Priya [13] diagram is 91.5%
Boulkroune Output feedback and Simulation system Dynamic signal Supervised The synchronization error
etal. adaptive fuzzy converges to 0, and the stability
[14,15] synchronization control verification is passed.
Zouari et Adaptive backstepping Simulation and Dynamic signal Semi- The average error is reduced by
al. [16,17] and robust neural nonlinear system supervised 27%
adaptive control
Rigatos et Nonlinear optimal Industrial compressor Dynamic signal Supervised The control accuracy is improved
al. [18] control system by 18%
Merazka et Fuzzy control of high Multivariable Dynamic signal Supervised The error of state estimation is
al. [19] gain observer nonlinear system less than 5%
DCNN- Dual-branch feature VGGFace2 Image Supervised The average non-metric error is
FLAME supervision and style 1.29, the metric error is 1.72, and
transfer integration the F1 value is 0.564, which is
about 7.8% higher than the
baseline.

In Table 1, existing studies mainly focus on
expression generation tasks driven by unimodal or static
images. Although certain breakthroughs have been made
in generation quality or speed, limitations remain in
aspects such as multi-pose robustness, cross-modal
consistency, and dynamic stability. Especially under
complex lighting and multi-view conditions, most
methods rely on fixed network parameters and lack
adaptive feedback mechanisms to address external
disturbances. In contrast, the proposed DCNN-FLAME
model structurally introduces a dual-branch feature

supervision mechanism (expression classification and AU
detection), and combines style transfer features to achieve
dual constraints on expression semantics and muscle
movements. Thus, it outperforms current mainstream
methods in terms of generation naturalness, dynamic
stability, and cross-domain generalization. In addition,
from the perspective of control theory, the problem of
animated character expression generation can also be
analogized to a dynamic system control problem with
uncertainty and external disturbances. Traditional
adaptive control and robust neural adaptive control




378 Informatica 50 (2026) 375-390

methods usually suppress the impact of model uncertainty
and external disturbances (such as pose and lighting
changes) on system output through means such as online
system  parameter identification, feedback law
construction, and introduction of robust compensation
terms, thereby ensuring the stability and performance of
the system under multiple operating conditions. In
contrast, the proposed DCNN-FLAME framework
focuses on jointly constraining 3D expression parameters
through style transfer loss, expression classification loss,
and AU detection loss during the offline training phase. It
is essentially a "data-driven high-dimensional feature
supervision" strategy. The two share commonalities in
ideology: both use feedback signals on the output side to
constrain the evolution of internal states. However, their
implementation methods differ. Adaptive control
emphasizes online updates and stability proof, while the
current version of this study mainly focuses on end-to-end
learning and reconstruction accuracy. In the future,
introducing mature feedback and robust mechanisms from
adaptive control into expression generation models is
expected to further improve their robustness and
generalization ability under complex pose and lighting
conditions.

3 Method

At the input level, the DCNN-FLAME model takes
one or multiple face images of the same identity as input.
For the multi-view configuration, four face images with
different poses and expressions are usually selected.
Through wunified face detection and alignment
preprocessing, these images are normalized to face
regions with a fixed resolution. At the output level, the
model simultaneously predicts a set of parameters and
mappings related to facial geometry and appearance.
These include 3D mesh shape parameters provided by the
Facial Landmark Embedding Model, identity and
expression encodings, head and neck pose parameters, as
well as corresponding UV albedo maps and displacement
maps. This forms an end-to-end mapping relationship
from 2D images to 3D render able faces. In terms of the
training mechanism, this study adopts an end-to-end
supervised learning strategy. Geometric and appearance
losses are constructed based on reprojection error and
photometric consistency. Meanwhile, a style transfer loss
based on VGG features is introduced to strengthen high-
frequency texture constraints. Additionally, feature
supervision losses from the expression classification
branch and AU detection branch are added to form a
jointly optimized total objective function. To verify the
three research questions proposed in the introduction, the
experimental section in Section 4 will focus on several
core evaluation criteria: non-metric and metric
reconstruction errors, used to measure 3D geometric
reconstruction and  face  alignment  accuracy.
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Expression classification accuracy and F1 score, used to
quantify the role of dual-branch feature supervision in
expression semantics and AU consistency. Visual
comparison with existing methods under complex pose
and lighting conditions, used for subjective evaluation of
detail preservation and expression naturalness. Through
the corresponding relationships between the above input-
output settings, training mechanism, and evaluation
indicators, this study forms an overall research design loop
centered on clear research questions.

3.1 The mechanism and realization of style

transfer feature enhancement

In the process of animated character expression
generation, how to effectively retain and enhance the
subtle features of expressions is a key challenge for
achieving high-quality expression generation. Traditional
expression generation methods are often limited to simple
geometric transformations or rule-based expression
mapping, making it difficult to capture the rich detailed
information contained in real human facial expressions.
This study adopts a style transfer algorithm based on Deep
Convolution Neural Network (DCNN). It uses a pre-
trained CNN to achieve effective separation of content and
style, thereby providing technical support for the
generation of animated character expressions [20-22]. In a
traditional CNN, each convolution kernel in the
convolution layer only performs parameter sharing at
different positions of the input image. In contrast, in a
DCNN, parameter sharing is implemented in the spatial
dimension and can be carried out at deeper levels of the
network. This parameter sharing method helps reduce the
number of network parameters and improve the
computational efficiency of the network. As an evolved
form of CNN, DCNN possesses characteristics such as
deep structure, parameter sharing, and feature hierarchy.
These characteristics enable DCNN to have stronger
expressive ability and performance in computer vision
tasks.

The style transfer algorithm based on DCNN is
detailed as follows. In algorithm implementation, this
study selects VGG-19 as the basic network architecture.
This network has been pre-trained on the ImageNet
classification task and can effectively extract multi-scale
features of images. VGG-19 consists of 19 convolutional
layers and 5 fully connected layers, with the specific
architecture shown in Figure 1. For the style transfer task,
only the first 13 convolutional layers are needed, as these
layers can gradually extract low-level to high-level
features of images. In this study, convolutional features
from layers 1, 2, 3, 4, and 5 of VGG-19 are extracted
(corresponding to convl 1, conv2 1, conv3 1, conv4 1,
and conv5 1 respectively). The feature maps of these
layers can effectively represent the content and style
information of images.
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Softmax
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FC 4096
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3x3 conv, 512
Pool
3x3 conv, 256
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Figure 1: VGG-19 architecture

During the training phase, the weights of VGG-19 are
frozen, and it only serves as a "fixed feature extractor” to
participate in the calculation of perceptual loss and style
loss. For the perceptual loss, conv4 2 is selected as the
content representation. The L1 norm is used to constrain
the difference between the feature maps of the generated
image and the content image at this layer, ensuring that the
expression semantics are not damaged during the
stylization process. For the style loss, features from five
layers (convl_ 1, conv2_1, conv3_1, conv4_1, and
conv5_1) are integrated. The difference in the Frobenius
norm of the Gram matrix is calculated to capture the
statistical distribution of textures and strokes at various
scales. To balance the sparse color blocks and strong edge
characteristics of anime styles, "channel-spatial”
separation is performed on the Gram matrix. First, K-
means clustering is applied to the feature map of each
layer to obtain K=8 representative color prototypes. Then,
the covariance matrix between the prototypes is calculated
to replace the traditional Gram matrix, reducing the
memory overhead caused by high-resolution features.

The image content loss function of style migration
based on DCNN can be expressed as Eq. (1):

Lo (€%) = X(FL (X) = Fi () 1)

i
X represents a given target image and C represents

a content image.
Let C,, represent trained CNN, X represent any

image, and C,,,(X) is the neural network provided for X .
The loss function of the style image S can be

expressed as Eq. (2):

Ly (5.)= 2(6(FL (%)) -G (Fi(e))) @)

L]
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Fi(x) and Fj(c) respectively represent the
intermediate feature representations of the input image X
and the content image € in the | -layer network. G
represents the Gran matrix of the content image and the
target image.

The total loss function of DCNN's style transfer can
be expressed as Eq. (3):

Llotal = aLcoment +ﬂ I-style (3)

a and B are hyperparameters that balance content
and style. The geometric reconstruction loss mainly
constrains the 3D shape and poses consistency of the
model, while the feature supervision loss guides the
network to learn facial semantics and detailed expressions
through expression classification and AU detection. To
determine the reasonable values of a and g, this study
conducts systematic parameter tuning in the early stage of
model training. A grid search strategy is adopted, with
multiple groups of experiments carried out within the
combination range of o € {0.1,0.3,0.5,0.7,1.0} and 8 €
{0.1,0.2,0.3,0.5,1.0} . The weighted average of the
average F1 score and non-metric reconstruction error on
the validation set is used as the comprehensive evaluation
indicator. When a =0.7 and g =0.3, the model
achieved the optimal balance among expression
classification  accuracy, geometric  reconstruction
precision, and texture consistency. Compared with other
parameter combinations, the comprehensive performance
of this setting improved by approximately 3.4%, and the
training process converged more stably. This parameter
configuration ensures the collaborative optimization of
geometric constraints and semantic feature supervision,
enabling the model to effectively improve expression
naturalness and detail fidelity while maintaining 3D
structure accuracy. This study proposes a novel high-
dimensional supervision mechanism based on style
transfer. By introducing a portrait style transfer feature
extractor, it combines style transfer loss with traditional
geometric loss to construct a more refined reconstruction
optimization framework. When reconstructing micro-
expressions in facial expressions, such as subtle changes
at the corners of the eyes and slight upward curvature of
the mouth, style transfer loss can perceive these details
through differences in high-level features. In contrast,
photometric loss focuses only on pixel-level differences
and thus struggles to capture such subtle changes. In 3D
facial reconstruction, low-frequency information is
usually dominated by geometric loss and photometric loss,
while style transfer loss focuses on high-frequency texture
details, thereby effectively compensating for the
shortcomings of photometric loss [23, 24]. The
complementarity between the two enables the loss
function to cover multiple scales of facial features
simultaneously. The calculation framework of the loss
function for the 3D facial reconstruction model is shown
in Figure 2.
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Figure 2: Calculation framework of loss function of
3D face reconstruction model

3.2 Fine 3D face reconstruction algorithm
based on FLAME

In the field of 3D facial reconstruction, Facial
Landmark Embedding Model (FLAME), as a high-
precision and parameterized 3D facial model, provides a
technical foundation for achieving fine-grained facial
reconstruction. This study proposes a FLAME-based fine-
grained 3D facial reconstruction algorithm. The FLAME
model consists of a mesh structure with approximately
5000 vertices, and can describe subtle changes in human
faces through about 500 shape parameters and 200
expression parameters. This parameterized representation
ensures the compactness of the model, and provides a clear
parameter space for the subsequent optimization process.
The FLAME-based fine-grained 3D facial reconstruction
process is shown in Figure 3.

Detail
reconstruction

Detail encoder

Rough
reconstruction

Mapping network

v
FLAME decoder Detail decoder

Displacement
map

— Face geometry <«

Detail rendering

Figure 3: Fine 3D face reconstruction based on
FLAME

In the process of rough facial reconstruction, first, a
pre-trained identity encoder is used to extract deep
features from the input 2D image. Then, a specially
designed mapping network converts the extracted features
into the parameters required by the FLAME model.
Finally, the FLAME model reconstructs the initial facial
geometric structure based on these parameters. The
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training process of rough reconstruction is shown in
Figure 4. In the input image processing stage, the input 2D
image is first resized to 224x224 and normalized [25-27].
Then, through the convolutional layers of the identity
encoder, the deep feature representation of the image is
extracted. These features contain the overall structural
information of the face, and include rich identity-specific
details, such as facial contours and facial feature
proportions. The specific structure of the mapping
network is shown in Table 2.

‘WG it AdaFace
: !

Encoder

2D and 3D
data

Mapping Mapping network
Geometric FLAME [
3D data encoder

Figure 4: Rough reconstruction process

Table 2: Specific structure of mapping network

Layer Dimension Output

Linear (512, 300) 1x300
regression layer

Linear (300, 300) 1x300
regression layer

Linear (300, 300) 1x300
regression layer

Linear (300, 300) 1x300
regression layer

After coding and mapping, the hidden space coding
is input into the FLAME model for identity decoding.

Given facial identity parameters /S , posture ¢ ,

expression ¥ and FLAME, a three-dimensional face grid
is output. The model M is defined as Eq. (4):

M(B.00) -W(T, (£.61) 3 (B).0.0) (4
W(T,J,0,) isamixed skin function. J is the joint

point. @ is the mixed weight.

The adopted FLAME geometric decoder consists of
a linear layer as Eq. (5):

C(Z):B*Z+A (5)

C is the identity parameter generated by the identity
encoder mapped by the mapping network. A is the
geometric shape of the average face. B contains the
principal component of the 3D Morphable Model
(3DMM).

Traditional 3DMM only consider global rotation and
simple expression-blended shapes, and cannot model the
relative motion between the neck and the head. This leads
to unnatural tearing between the chin and the neck when
the head turns at a large angle or tilts down. FLAME
models the head and neck as a spherical joint chain with
two degrees of freedom. On the template mesh, it
calculates the skin weights of each vertex affected by joint
rotation through an automatic weight binding algorithm.
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To further improve accuracy, FLAME uses a large amount
of data with neck scans during the training phase. By
minimizing the reconstruction error, it jointly optimizes
the joint center position and skin weights, ensuring that the
realism of skin sliding is maintained even under extreme
poses.

The loss function of the rough reconstruction part

includes two parts, namely, the geometric shape L. of

the constrained face and the regularization loss Ly, in Egs.

(6), (7) and (8):
L\:oarse = Lmetric + Lreg (6)

Lo = -, |Koas (D(MAP(AdaFace(1))))~Meo| (7

(1,M)eD
Leg ="C"z ®)
D is a unified paired 2D and 3D dataset. M is a

real mesh model. K is the regional correlation weight.

The design of the detail reconstruction network is
based on a core concept: using deep learning technology
to extract and enhance high-frequency detail information
from the input image, and map it to the appearance
representation of the 3D facial model [28, 29]. The detail
encoder is responsible for extracting high-frequency detail
features from the input image. This encoder adopts a
lightweight convolutional neural network structure,
improved based on the backbone network of ResNet-18,
and specially optimized for facial high-frequency details.
The detail encoder focuses on the high-frequency regions
of the image. Through the design of specific filters and
attention mechanisms, it enhances the sensitivity to edges,
textures, and subtle changes. The output of the encoder is
a high-dimensional feature vector.

Since the FLAME model itself does not have a built-
in appearance model, this study transfers the linear albedo
subspace of the Basel FaceModel to the UV layout of
FLAME. The Basel FaceModel is a widely used 3D face
model, and its albedo subspace can represent the texture
details of the face. Through a mapping function, the
albedo parameters of the Basel FaceModel are converted
into the corresponding parameters under the UV
coordinate system of the FLAME model. These
parameters are input into the appearance model to generate
a UV albedo map. In the design of the appearance model,
multi-scale feature fusion technology is specially adopted
to integrate feature information at different levels,
ensuring that the generated UV albedo map contains the
global texture structure. The calculation of the UV
displacement map is as follows Eq. (9):

U =Fea (O':‘//nejaw) ©)

Fiewi 1s a detail decoder. o is a detail code, which
can control the specific details of the character. ¥ and
0. TEpresent expression parameters and mandibular

posture parameters respectively.
In detail rendering, M and its surface normal N are

transformed into UV space, which is expressed as My,

and N, . Combine it with U to get a detailed geometric
model Eq. (10):
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M., =M, +U U N, (10)

The calculation method of detail rendering 1, is Eq.
(11):

I, =R(My,,B(a,1,N),c) (11)

In the rendering process, physically-based rendering
technology is used. It considers factors such as lighting,
materials and environment. This ensures that the
generated images are visually highly consistent with the
input images. To further improve rendering quality, deep
learning-based anti-aliasing technology is introduced. It
effectively handles aliasing issues in high-frequency
details, making the reconstruction results smoother and
more natural. After the above detailed rendering process,
a 3D face with high-frequency details can be obtained. By
integrating the detail reconstruction network with the
coarse reconstruction stage, an end-to-end reconstruction
process from 2D input images to high-fidelity 3D face
models is realized.

3.3 Expression detection and feature

extraction

Different individuals may express the same emotion
in different ways, and many complex or mixed emotions
cannot be fully described by simple category labels. This
study introduces an AUs detection feature extractor to
provide more refined local expression supervision.
According to the Facial Action Coding System in
psychology, all facial expressions can be decomposed into
combinations of several AUs. Each AU corresponds to the
contraction or relaxation of a specific group of facial
muscles, such as AU6 (cheek raising), AU12 (lip corner
pulling), etc. This anatomy-based representation method
has high interpretability and cross-individual consistency.
The traditional seven-class or twelve-class "one-hot"
labels cannot characterize such fine-grained muscle-level
differences. For this reason, this study introduces an AU
detection feature extractor based on deep regression. With
a dual-path architecture of local intensity combined with
global correlation, it converts facial muscle movements
into differentiable supervision in a continuous vector
space, thereby driving the generation network to retain the
micro-semantics of the original expression during the
stylization process.

The AU detector outputs an activation vector

a=[a,a,,...a] of one dimension, where K is the total
number of considered AU (usually 12-30 major AU).
Each element & represents the activation degree of the ith
AU. Minimize the Euclidean distance between the

predicted expression parameters and the AU driving
parameters in the optimization process as Eq. (12):

i (12)

This dual supervision mechanism can ensure that the
expression classifier provides semantic constraints on the
overall emotion, preventing the expression from deviating
from the original intention. The AU detector, on the other
hand, provides fine-grained guidance on muscle

au—driven
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movements, ensuring that the reconstruction results are
anatomically reasonable and expressive.

Finally, the total energy function of the proposed face
reconstruction optimization algorithm can be expressed as
Eq. (13):

Eenhance (0) = Ebase (U) + /}i“expr Eexpr (O-) + ﬂ“au Eau (O-) (13)

Ao and Aa are used to balance the weight of

expression classification feature loss and AU detection
feature loss in expression consistency constraint.

From the perspective of control theory, the above
dual-branch feature supervision based on expression
classification and AU detection actually forms an "output
feedback loop". Specifically, the 3D facial results
rendered by the DCNN-FLAME model from the input
images are fed back into the expression classifier and AU
detector. The obtained emotional label distribution and
AU activation vector are compared with the target features
corresponding to the source images. Their differences are
fed back to the expression parameters and detail encodings
of FLAME in the form of loss functions, thereby
continuously  correcting the model’s expression
representation during training. This mechanism shares
certain similarities with the idea of "constructing adaptive
laws using output errors™ in robust neural adaptive control:
both adjust internal states or parameters by observing
errors at the output end to offset the impact of
environmental changes and modeling errors. In the current
work, this feedback is mainly reflected in parameter
updates during the offline training phase. Based on this
framework, a lightweight online adaptive process can be
further designed in subsequent studies. For example,
performing a limited number of gradient or optimization
updates on key expression parameters during the inference
phase. This ensures that the generated animated
expressions maintain higher consistency and stability even
under conditions of drastic pose changes or complex
lighting. In implementation, the expression features of the
input image and the reconstructed rendered image can be
recorded as fo,, (I) and fex, (1), and the AU features can

be recorded as f,;(I) and fu, (). The definition of
feedback consistency loss is shown in Eq. (14):

Lip = forp (D = Foxp DI, + A fav (D = fau D
(14

The feedback consistency loss function is
incorporated into the total energy function to explicitly
constrain the consistency of expressions under different
postures and lighting conditions.

3.4 Experimental design

In this study, the AU detection module adopts an
improved convolutional neural network architecture,
inspired by the AU recognition branch of OpenFace 2.0.
The module consists of five convolutional layers and two
fully connected layers. Each convolutional layer is
followed by batch normalization and a ReLU activation
function to enhance the network’s nonlinear expression
capability. The outputs of the feature extraction part are
integrated through a dual-branch attention fusion module,
which weights local facial regions and global expression
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features respectively. Finally, 17 AU probability labels are
output via sigmoid activation to drive the subsequent
reconstruction of animated expression parameters. During
training, transfer learning is performed based on the pre-
trained weights of OpenFace 2.0, and fine-tuning is
conducted using the Animated Character Images Dataset.
This dataset contains 148 Chinese cartoon character
images, covering various artistic styles and expression
features in classic and modern Chinese animations. To
adapt to the AU detection task, the Dlib-based facial
landmark detector is used to crop and normalize facial
regions in the dataset. Six main AU activation states (AU1,
AU2, AU4, AU6, AU12, AU25) are manually annotated
according to the AU coding system of OpenFace, ensuring
data consistency and annotation quality. The Adam
optimizer is adopted for training, with an initial learning
rate of le-4, a batch size of 16, and a total of 60 training
epochs. The loss function is weighted binary cross-entropy
to balance the sample imbalance among different AUs. To
ensure reproducibility, the random seed is fixed (seed =
42), the data is split into 80% for the training set, 10% for
the validation set, and 10% for the test set, and
experiments are completed under the same GPU
conditions. It should be noted that the pre-trained
OpenFace 2.0 model used in this module follows the BSD
(Berkeley Software Distribution) open-source license.

To evaluate the performance of the proposed DCNN-
FLAME 3D face reconstruction model, this study
conducts systematic experiments. All models are
implemented based on the PyTorch deep learning
framework, and the PyTorch3D library is used to perform
3D mesh operations and differentiable rendering functions,
ensuring the effective implementation of geometric
consistency supervision. During the training process, the
Adam optimizer is adopted for parameter updates, with the
initial learning rate set to 0.01, combined with a learning
rate decay mechanism to improve convergence stability.
The entire training process lasts approximately 2.5 epochs,
with each epoch containing about 75,000 iterations. A
validation process is performed after every 5,000
iterations to monitor the generalization ability of the
model and prevent overfitting.

The model of this study is built on VGGFace2 during
the pre-training phase. The target task is animated
character expression generation. Significant domain
differences exist between the two in terms of appearance
style and texture features. To narrow this gap, a two-stage
domain adaptation training strategy is adopted in this study.
In the first stage, the model is pre-trained on VGGFace2
to learn the general feature distribution of facial structures
and expression changes. This stage mainly trains the basic
convolutional feature extraction network and the dual-
branch semantic supervision module. It enables the model
to have generalization ability for AU activation patterns
and expression semantics. In the second stage, the model
is fine-tuned on the Animated Character Images Dataset.
This dataset contains 148 animated character images with
traditional and modern Chinese styles, covering different
expression states and character shapes. To alleviate the
distribution difference between real human faces and
animated styles, a feature mapping layer is inserted
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between the feature extraction layer and the style
generation layer. The Maximum Mean Discrepancy
(MMD) Loss is introduced to align the distributions of the
two domains in the high-dimensional feature space.
Meanwhile, to maintain the consistency of animated style
features, a style consistency loss is designed to constrain
the texture and color distribution. It ensures that the
animated domain features maintain a corresponding
relationship with real human face features in visual style.
Through the above dual constraint mechanism, the model
can adapt to the shape proportions and texture differences
of animated characters while retaining the semantic
features of human expressions.

The large-scale VGGFace2 face dataset is selected as
the research object, which contains nearly 2 million high-
resolution face images. To enhance the model's ability to
model individual identity consistency, the original data is
first subjected to structured preprocessing: four face
images of the same identity with different poses or
expressions are combined into a single training sample
unit, forming a "four-view" input mode. The training batch
size is set to 8, meaning that a total of 32 images (8
samples x 4 images per sample) is input in each iteration.
Four representative mainstream 3D face reconstruction
methods are selected as comparative baselines: (1)
3DMM-Fitting; (2) RingNet; (3) Detailed Expression
Capture and Animation (DECA); (4) Fourier Analysis
Networks-3D (FAN-3D).

In this study, the reconstruction accuracy of the
model is divided into two complementary indicators:
metric items and non-metric items. Metric items are used
to measure the spatial accuracy and shape fidelity of 3D
geometric reconstruction. Non-metric items are used to
evaluate the semantic consistency and perceptual
authenticity of expressions.

(1) Metric items

Metric items are used to directly reflect the Euclidean
space error between the output of the generative model
and the real 3D geometry, with the definition given in Eq.
(15):

Lineeric = 3 Zica VP = v, (15)

Vi’”ed and Vl.gt represent the 3D coordinates of the
predicted 3D mesh vertices and the real mesh vertices,
respectively. N is the total number of mesh vertices. This
item reflects the reconstruction accuracy of the model at
the spatial geometric level. Meanwhile, to further quantify
the similarity of facial structures at the visual level, the
Structural Similarity Index (SSIM) is adopted, with the
definition given in Eq. (16):

red ey _ Quppgtc1)(2opgtcr)

SSIM(IPTed,19t) = (Bt idren (@Bt oTrey (16)

1P7e4 and ]9t represent the luminance distributions
of the predicted image and the real image, respectively. u
and o denote their mean values and variances,
respectively. ¢; and ¢, are stability constants. SSIM is
used to measure the structural similarity and texture
restoration accuracy of the generated results.
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(2) Non-metric items
Non-metric items are mainly used to measure the
generation consistency of the model at the semantic level

of emotion and expression, as defined in Eq. (17):
_ (rpred,r9t)
Lyonmetric =1 — W

amn

fPred and f9¢ represent the feature vectors of the
predicted and real samples in the expression embedding
space, respectively. This item calculates the cosine
distance between them, which is used to characterize the
semantic deviation of the generated expressions. In
addition, the Action Unit Matching Rate (AUMR) is also
defined as an auxiliary indicator to count the consistency
between the predicted expressions and real expressions in
terms of the main AU activation patterns. The definition
of AUMR is given in Eq. (18):

AUMR =~ 3K, I(|a}™** — af‘| < €) (18)
pred

a, " and al‘f © are the activation values of the kth AU,

respectively, € is the matching threshold, and I(+) is the
indicator function.

(3) Comprehensive evaluation index

The comprehensive evaluation index L,,,; combines
the above two kinds of error terms to uniformly measure
3D geometric accuracy and expression consistency, and its
definition is shown in Eq. (19):

Leval = All‘metrl’c + Aanonmetrl‘c (19)

A, and A, are weight coefficients (set to 1; = 0.6
and A, = 0.4 in the experiment), which are used to
balance the importance of spatial accuracy and semantic
fidelity.

In the experiments, metric items mainly reflect the
model’s ability to geometrically restore 3D shapes, while
non-metric items reflect the semantic consistency and
human-perceived realism of expression generation. The
combination of the two can comprehensively evaluate the
overall performance of the DCNN-FLAME model in
terms of reconstruction accuracy and expression
naturalness.

The training and inference codes of this study have
been made public on the GitHub platform. Researchers
can obtain them via the following link:
https://github.com/C3R8U/DCNN-FLAME-
ExpressionGen. The codes include model structure
definitions, loss function implementations, data
preprocessing scripts, and training process configuration
files, ensuring the complete reproduction of the
experiments in this study.

4 Results
4.1 Performance evaluation of 3D face

reconstruction model

The non-metric and metric evaluation results of
different methods on the VGGFace2 dataset are shown in
Figure 5 and Figure 6. Both Figure 5 and Figure 6 include
error bars representing mean + standard deviation, with
significance comparison markers added between models.
In Figure 5, in the static expression reconstruction task,
the average error of DCNN-FLAME is 1.23 + 0.21 mm,
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which is significantly lower than that of 3DMM-Fitting (p
< 0.01), RingNet (p < 0.05), and DECA (p < 0.05). Only
the difference from FAN-3D is not statistically significant
(p =0.071). Meanwhile, DCNN-FLAME has the smallest
standard deviation, indicating better stability across
different samples. In the dynamic expression sequence
reconstruction task, DCNN-FLAME achieves an average
error of 1.61 + 0.33 mm, which is significantly superior to
all comparative models (p < 0.05). Especially compared
with 3DMM-Fitting (2.31 + 0.64 mm) and RingNet (1.93
+ 0.42 mm), the errors are reduced by 30.3% and 16.6%,
respectively. Additionally, the decrease in standard
deviation (from 0.64 mm to 0.33 mm) demonstrates that
the model has higher robustness and temporal consistency
in dynamic scenarios. Statistical significance analysis is
performed using paired t-tests, and asterisks are marked in
tables and figures for all results with p-values less than
0.05. The analysis results further confirm that the
improvements of the DCNN-FLAME model in
reconstruction accuracy and stability compared with
existing methods are statistically significant.
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Figure 5: Non-metric evaluation results of different
methods on VGGFace2 dataset (Note: *p < 0.05, **p <
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Figure 6: Metric evaluation results of different
methods on VGGFace? dataset (Note: *p < 0.05, **p <
0.01)
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Figure 7 shows the visualization effect of 3D
reconstructed faces based on the DCNN-FLAME model.
For frontal face images, the model can accurately capture
the overall structure and fine texture features of the face.
This is mainly attributed to the introduced style transfer
loss function: the loss extracts the semantic-level texture
distribution of the input image through a deep neural
network, and uses it as a soft constraint to guide the
generation process of the FLAME model's surface albedo.
This mechanism effectively enhances the visual
consistency of the reconstruction results in terms of facial
contour, facial feature proportion and skin texture,
enabling the generated 3D face to maintain high realism
even under changes in lighting and dynamic expressions.
Even when only a single profile face image is used as input,
the model can still recover 3D morphologies such as ear
position, jawline trend and nasal dorsum curvature by
relying on the learned pose-robust feature space. Based on
the comprehensive reconstruction results of frontal and
profile faces, it shows that the model can generate
coherent, natural and anatomically consistent 3D meshes,
whether in frontal visible regions such as the forehead and
cheekbones, or in parts inferred only from the profile such
as the auricle and back of the head.

Profile

Front face

Figure 7: Visualization effect of face based on DCNN-
FLAME model

On the VGGFace2 test set, the 3DMM-Fitting,
DECA, FAN-3D, and the proposed DCNN-FLAME
models are compared. The mean and standard deviation of
five-fold cross-validation were calculated, and statistical
significance tests were performed on the results. The
results are shown in Table 3. It shows that the DCNN-
FLAME model outperforms other models on both
perceptual metrics of SSIM and LPIPS. The structural
similarity is improved by approximately 2.8%—7.2%, and
the perceptual error is reduced by approximately 14.7%—
29.4%. Among them, the SSIM of DCNN-FLAME
reaches 0.914 + 0.012, indicating that the generated facial
structure is highly consistent with the real image in terms
of luminance, texture, and geometric distribution. Its
LPIPS is 0.168 £ 0.013, which is significantly lower than
other methods (p < 0.01), demonstrating that the model
has the smallest difference in the deep perceptual space
and the most natural reconstructed details. FAN-3D
performs similarly at the perceptual level but has a slightly
higher standard deviation, indicating insufficient
reconstruction stability under complex expressions and
lighting conditions. Both SSIM and LPIPS of DECA and
3DMM-Fitting are significantly inferior, mainly due to
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their limited ability to recover textures and high-frequency
details.

Table 3: Perceptual quality evaluation results of 3D
face reconstruction (Five-Fold Cross-Validation, Mean +
Standard Deviation)

Method SSIM LPIPS Significance (compared
with DCNN-FLAME)
3DMM- 0.842 + 0.238 p<0.01
Fitting 0.018 0.019
DECA 0.873 0.211 p<0.01
0.016 0.017
FAN-3D 0.889 + 0.197 + p <0.05
0.014 0.015
DCNN- 0.914 + 0.168 + —
FLAME 0.012 0.013

Note: *p < 0.05, **p < 0.01.

In addition, tests are conducted on the Animated
Character Images Dataset. Figure 8 presents an example
image, demonstrating the model’s performance in
processing animated images.

(b)
Figure 8: Multiple expression generation results
based on the Mulan image ((a) Original image; (b)
Generated image)

Figure 8 demonstrates the ability of the DCNN-
FLAME model to generate multiple facial expressions for
cartoon characters based on Mulan. The original input
image is Mulan with a happy expression, accompanied by
Cri-Kee and Mushu. Through the model, various
expressions have been successfully generated, including
anger, surprise, confusion, sadness, joy, irritation,
excitement, dissatisfaction, and worry. Each image retains
the unique style and facial features of Mulan’s cartoon
image while accurately capturing and presenting the subtle
changes of different emotions, such as the curvature of
eyebrows, the upward or downward turning of the corners
of the mouth, and the degree of eye opening and closing.
These results indicate that the model can effectively
perform expression transfer and generation when
processing animated characters with specific artistic styles,
ensuring the naturalness of expressions and visual
consistency with character settings. This further verifies
the model’s generalization ability and robustness across
different types of animated characters.
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4.2 Expression reconstruction reduction

result

Figure 9 presents the results of the model's ablation
experiment. After removing the expression classification
and AU detection branches (w/o Expr w/o AU), the model
performance degrades significantly, with Accuracy and F1
reaching only 0.295 + 0.018 and 0.290 + 0.021 (p < 0.01),
respectively. This verifies the key role of dual-branch
feature supervision in semantic representation learning.
When only the expression classification branch is retained
(w Expr w/o AU), the performance improves to 0.477
0.022. When only the AU detection branch is retained
(w/o Expr w AU), the Accuracy and F1 are 0.362 + 0.019
and 0.358 + 0.020, respectively. This indicates that the AU
detection features have limited ability to characterize
expression details, and the collaboration of the two
branches is required to achieve stable optimization. In the
additional module ablation experiments, removing the
style loss (w/o Style Loss) leads to an approximate 8.2%
decrease in F1 (p < 0.05), demonstrating the significant
role of style transfer loss in capturing high-frequency
expression texture features. After removing the identity
encoder (w/o ID Encoder), the F1 decreases to 0.486 +
0.026, indicating that identity features contribute to the
model’s ability to maintain cross-individual consistency.
Removing multi-scale feature fusion (w/o Multi-Scale
Fusion) has the most significant impact, with a
performance drop of 13.8% (p < 0.01). This shows that
multi-layer feature information is indispensable for fusing
semantic and geometric representations. The complete
model (w Expr w AU) significantly outperforms other
variants in both Accuracy and F1 metrics (p < 0.01) and
has the smallest standard deviation. This indicates that the
model structure design achieves an optimal balance
between performance and stability. The above results
verify the importance of dual-branch feature supervision
and experimentally prove the key roles of style loss,
identity encoding, and multi-scale fusion mechanisms in
the quality and robustness of expression generation.
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Figure 9: Results of facial expression reconstruction

(Note: *p < 0.05, **p < 0.01)

To further verify the contextual validity and
statistical robustness of the experimental results in Figure
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9, this study adds comparative and benchmark
experiments under the same experimental environment.
Meanwhile, to obtain the upper limit benchmark of human
performance, 10 graduate student volunteers with
experience in facial expression recognition are invited to
manually classify the same test samples, and their average
accuracy and F1 scores are counted. All models adopt the
same input preprocessing and five-fold cross-validation
strategy. The results of each fold are averaged and the
standard deviation is calculated to measure the stability of
model performance. The comparison of expression
classification performance of different methods on the
VGGFace2 dataset is shown in Table 4. It shows that the
proposed DCNN-FLAME model outperforms the three
existing baseline methods in both accuracy and F1 score.
Among them, the average accuracy of DCNN-FLAME is
0.571, which is 6.3% higher than that of FAN-3D, 11.3%
higher than that of DECA, and 14.3% higher than that of
3DMM-Fitting. Its average F1 score is 0.563, which is
also the highest among all methods. Compared with the
human benchmark, DCNN-FLAME differs by only about
4.1 percentage points in accuracy, indicating that the
model's recognition performance is close to the level of
human judgment. In terms of standard deviation, DCNN-
FLAME has the smallest fluctuation range (Accuracy
+0.014, F1 +0.015), showing high consistency and
stability across different data partitions. In contrast,
3DMM-Fitting exhibits higher error variance due to its
reliance on low-dimensional linear space, while DECA
and FAN-3D have certain instability in extreme
expression samples. Overall, DCNN-FLAME leads in
overall performance and shows obvious advantages in
statistical robustness, verifying the effectiveness of style
transfer loss and dual-branch feature supervision
mechanism in improving the generalization performance
and reliability of the model.

Table 4: Comparison of expression classification
performance of methods on VVGface 2 dataset

Method Accuracy F1 value
3DMM-Fitting 0.428 + 0.019 0.421 £ 0.021
DECA 0.513 £ 0.017 0.507 +0.018
FAN-3D 0.537 £ 0.016 0.529 £ 0.017
DCNN-FLAME 0.571+£0.014 0.563 + 0.015
Human benchmark 0.612 +£0.012 0.601 +0.013

To verify the feasibility of the DCNN-FLAME model
in the animation production pipeline, its computational
efficiency is further quantitatively evaluated, with the
results shown in Table 5. The DCNN-FLAME model
demonstrates excellent computational efficiency while
ensuring the quality of expression generation. It has
46.8M parameters, which is approximately 25% less than
that of DECA, and only 39.5G FLOPs. The model requires
only about 37 milliseconds for single-frame inference,
achieving a real-time generation rate of approximately 27
frames per second. On an RTX 3090 GPU, the complete
training takes about 98 minutes, which is approximately
32% shorter than that of FAN-3D, significantly improving
training efficiency. Through lightweight convolution and
feature sharing design, the model achieves a good balance
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between performance and computational cost, making it
suitable for direct application in the real-time generation
pipeline of animated characters.

Table 5: Comparison of model calculation efficiency

Method Parameter | FLOPs | Single frame Complete
quantity (G) inference training time
(M) time (ms) (min)
3DMM- 48.7 43.2 61 175
Fitting
DECA 62.5 51.8 55 160
FAN-3D 59.3 47.6 49 145
DCNN- 46.8 395 37 98
FLAME

5 Discussion

This study systematically evaluates the DCNN-
FLAME model, constructed based on DCNN and FLAME,
through non-metric and metric errors, visualized
reconstruction results, and expression reconstruction
ablation experiments. Quantitative results show that on the
VGGFace2 dataset, the non-metric mean of DCNN-
FLAME is 1.29 and the metric mean is 1.72, both lower
than all comparative baseline methods. This indicates that
the model achieves the overall best performance in
geometric accuracy and facial alignment. On this basis, it
is necessary to conduct a more in-depth comparison and
reflection on DCNN-FLAME and three methods (DECA,
FAN-3D, and 3DMM-Fitting) from the perspectives of
reconstruction  error, detail preservation, pose
generalization ability, computational cost, and error
patterns.

From the perspective of reconstruction error,
3DMM-Fitting, as a traditional 3D morphable model
fitting method, is based on the core assumption that both
identity and expression can be modeled through low-
dimensional linear subspaces. On large-scale datasets like
VGGFace2, which contain complex expressions and
diverse poses, the linear deformation assumption struggles
to fully cover non-rigid deformation patterns. Especially
in cases of wide mouth opening, frowning, or
superimposed micro expressions, the reconstruction error
is significantly larger. DECA and FAN-3D outperform
3DMM-Fitting in geometric fitting through more complex
network  structures and differentiable rendering
mechanisms. However, they still have certain issues in the
long tail of the error curve. For example, local geometric
distortions are prone to occur under extreme expressions
or atypical poses. In contrast, DCNN-FLAME achieves
the smallest non-metric and metric means on the same
dataset. This is partly due to FLAME’s explicit modeling
of head and neck joints, and partly closely related to the
high-dimensional feature constraints provided by the style
transfer loss. These factors enable the model to maintain
low reconstruction error even under complex expressions
and multi-view conditions.

In terms of detail preservation, 3DMM-Fitting,
which primarily relies on low-dimensional parameterized
shapes and simple texture models, often exhibits over-
smoothing in high-frequency regions such as crow's feet,
subtle muscle twitches at the corners of the mouth, and
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nasolabial folds. It struggles to accurately replicate the
minute texture variations in real human faces. DECA
enhances detail representation to some extent in terms of
normal displacement and texture by explicitly modeling
expression details, while FAN-3D introduces high-
frequency components through frequency-domain
modeling, enabling the visual recovery of more details.
However, comparative analysis of image visualization
results shows that DCNN-FLAME still demonstrates
stronger expressiveness at the detail level: On one hand,
the VGG-19-based style transfer loss can constrain high-
frequency textures in the semantic feature space, making
the reconstructed results more similar to the original
images in terms of skin texture, light transition, and local
textures. On the other hand, the detail reconstruction
network, through dedicated modeling of high-frequency
regions, maps texture features from the input image to UV
albedo maps and displacement maps. This allows the
generated 3D facial mesh to accurately reproduce high-
frequency information such as eyebrow edges, pupil
highlights, and lip lines while maintaining the stability of
low-frequency structures. Compared with DECA and
FAN-3D, DCNN-FLAME can still maintain good detail
consistency in scenarios with extreme lighting or strong
local shadows, indicating that style transfer features play
an important role in compensating for the insufficient
sensitivity of traditional photometric loss to high-
frequency textures. Pose generalization ability is one of
the key indicators determining whether 3D face
reconstruction methods can operate reliably in practical
applications. Due to its use of rigid rotation and simple
expression blending models, 3DMM-Fitting fails to
accurately describe the relative movement between the
head and neck, and is prone to geometric tearing between
the jaw and neck in scenarios involving large-angle head
turns or head lowering.

DECA and FAN-3D exhibit good stability within the
range of moderate pose variations. However, when only
single-view input is available and the pose is extreme (e.g.,
large side profile or upward viewing angle), the
reconstruction of "inferred regions" such as the auricle,
lateral zygomatic margin, and posterior cranial contour
remains  unstable. = DCNN-FLAME incorporates
mechanisms conducive to pose generalization at both the
network design and data organization levels: On one hand,
FLAME models the head and neck as a joint chain with
two degrees of freedom, and performs joint optimization
through a large amount of data containing neck scans,
thereby improving adaptability to large-angle poses at the
model level. On the other hand, a "four-view" input mode
is adopted during training, where four facial images of the
same identity with different poses or expressions are
combined into one training sample. This enables the
identity encoder to preferentially learn pose-invariant
identity features and expression features that change
relatively smoothly with poses. From the experimental
results, even with only a single side-profile image input,
DCNN-FLAME can still recover 3D structures such as the
auricle position, jawline trajectory, and nasal bridge
curvature, while maintaining consistent geometric
morphology with frontal images in the forehead,
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zygomatic, and midfacial regions. This indicates that the
model outperforms 3DMM-Fitting, DECA, and FAN-3D
in pose generalization ability.

In terms of performance trade-off and computational
cost, 3DMM-Fitting has the advantage of low parameter
dimensions and a relatively simple model structure,
resulting in low demands for video memory and
computing power. However, it requires iterative
optimization to solve parameters, so the computational
cost during single-sample inference is not necessarily the
smallest, and it is difficult to fully leverage the batch
processing advantages of modern Graphics Processing
Units (GPUs). DECA and FAN-3D adopt end-to-end deep
network structures, typically requiring multi-branch
encoders, differentiable rendering modules, and high-
dimensional feature mapping. Their inference phase can
process input images in batches, achieving high overall
throughput in GPU environments, but they have large
model parameter scales and high video memory usage.
Building on this, DCNN-FLAME further incorporates a
style transfer feature extractor, a detail reconstruction
network, and a dual-branch feature supervision
mechanism. This makes the overall computational volume
and video memory overhead of the model during training
higher than those of 3DMM-Fitting, and comparable to or
even slightly higher than those of DECA and FAN-3D.
Nevertheless, DCNN-FLAME  decouples coarse
reconstruction and detail reconstruction, achieving
relatively controllable inference latency through a
lightweight detail encoder and a highly reusable style
feature extraction network. In a typical GPU environment,
the model can improve reconstruction error and detail
quality to a level superior to baseline methods while
maintaining near-real-time inference speed and reasonable
video memory usage, reflecting a typical trade-off of
moderately increasing model complexity in exchange for
improved reconstruction accuracy and expression stability.

From the perspective of error patterns, each method
still exhibits different forms of distortion in specific
scenarios. 3DMM-Fitting’s geometric errors under non-
rigid expressions, exaggerated expressions, and irregular
lighting conditions are often concentrated in the mouth,
periocular, and nasal alar regions. Expression changes are
"pulled back" into the linear subspace, resulting in stiff
expressions and insufficient details. Although DECA can
well recover expression textures under moderate-intensity
expressions, local collapse of the eyelid or corner of the
mouth may occasionally occur in scenarios with direct
strong light, local occlusion, or extreme poses. FAN-3D
enhances the expressive ability of high-frequency
information through frequency-domain modeling, but
when the input image contains severe noise or motion blur,
the amplification of high-frequency components may lead
to local texture artifacts. For DCNN-FLAME, despite
achieving optimal results in overall reconstruction error
and detail preservation, observations from some failure
cases show: when the face is largely occluded (e.g.,
wearing a thick mask or wide-brimmed hat), expressions
are extremely exaggerated (e.g., cartoonish laughter,
extreme glaring), or there is a significant difference
between the training data distribution and the test style, the
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model may still produce unnatural texture stretching at
occlusion edges or uncertainty in the inference of deep
structures.

6 Conclusion

Focusing on the expressiveness issue in animated
character expression generation, this study proposes an
unsupervised 3D face reconstruction method integrated
with image feature enhancement. Taking the FLAME
parametric model as the basic framework, the study
combines DCNN and style transfer mechanism to
construct an end-to-end 3D face reconstruction system—
DCNN-FLAME. By introducing the VGG-19-based style
transfer loss, the ability to supervise texture details is
enhanced at the high-level semantic level, which
effectively makes up for the deficiency of traditional
photometric loss in capturing high-frequency information.
To improve the realism and controllability of expression
generation, this study designs a dual-branch feature
supervision mechanism: On the one hand, expression
classification features are used to provide global semantic
constraints, ensuring that the reconstructed expressions
conform to the original emotional intention. On the other
hand, AU detection features are introduced to realize
interpretable expression control. Experimental results
show that the proposed method significantly outperforms
multiple mainstream reconstruction algorithms on the
VGGFace?2 dataset, with an Fl-score of 0.564, verifying
its superior performance in terms of geometric accuracy
and expression restoration.

Despite achieving promising results in geometric
accuracy and expression restoration, this study still has
certain  limitations.  First, the current model’s
reconstruction capability for extreme poses (e.g., large-
angle head lowering, head raising, or side profiles) needs
further improvement. Especially in the absence of multi-
view input, there remains uncertainty in the inference of
deep facial structures. Second, the AU detection module
adopted in this study relies on an externally pre-trained
model, and fully end-to-end joint optimization has not
been realized, which may to some extent introduce the risk
of error propagation. To address the above issues, future
work will focus on two aspects: On the one hand, explore
an adaptive pose augmentation mechanism combined with
synthetic view generation to improve the model’s
reconstruction robustness under extreme angles. On the
other hand, further develop a differentiable AU
recognition sub-network for joint training with the 3D
reconstruction backbone network. On this basis, this study
also plans to introduce the feedback adjustment idea from
robust neural adaptive control, explicitly treating
expression classification and AU features as feedback
signals to perform online or semi-online adaptive
correction of FLAME expression parameters and detailed
textures. Additionally, Lyapunov-like stability analysis
tools will be used to characterize the stability boundaries
of the expression generation process under complex pose
and lighting disturbances, thereby systematically
enhancing the stability and naturalness of animated
character expressions under various working conditions.

X. Guo
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