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To address the limitations of traditional fire scene image processing systems, such as insufficient edge
detection accuracy and poor denoising performance, this paper proposes a comprehensive image
processing framework based on dynamic models. The core contributions include: an image
enhancement model is built based on a nonlinear dynamic diffusion process, which introduces a
dynamic adjustment term to achieve adaptive denoising while preserving edges. An image segmentation
model that improves the Geodesic Active Contour Model is built by constructing a gradient-adaptive
extended geodesic activity contour model, significantly enhancing its capability to handle weak edges
and complex structures. Experiments were conducted on specialized fire image datasets. For
enhancement, the Fire Scene Image Enhancement (RFSIE) dataset and the NTIRE20 dataset were used.
For segmentation, the FLAME dataset and the Fire Segmentation Dataset were employed. The proposed
enhancement model improved the Peak Signal-to-Noise Ratio (PSNR) by approximately 20.0%
compared with median filtering on the RFSIE dataset and by 25.0% on the NTIRE20 dataset. The
segmentation model achieved an accuracy of 5.6% higher than that of the Fully Convolutional Network
(FCN) on the FLAME dataset. Furthermore, in image classification tasks, the proposed model improved
the accuracy of flame, smoke, and background classification by about 30.8%, 16.1%, and 8.6%,
respectively, compared with median filtering. The research demonstrates that the dynamic system
provides a more efficient and robust solution for fire scene analysis, with significant potential for
application in fire monitoring and rescue operations.
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1 Introduction

With global climate change and the continuous
development of forest resources, the frequency and
severity of forest fires are increasing. Forest fires not
only cause serious damage to the ecological environment
and threaten biodiversity, but also pose a huge threat to
lives and property. However, traditional fire scene image
processing systems have challenges such as insufficient
edge detection accuracy, limited dynamic detection
capability of fire, and insufficient details in smoke
images. Therefore, to reduce the occurrence and
widespread spread of fires, researchers have conducted
extensive research to optimize fire scene image
processing systems. For example, to address the low
accuracy and severe missed detection of small targets in
forest fire recognition, Liu W et al. proposed an
improved network based on YOLOv7. The results
demonstrated that the algorithm significantly enhanced
small-target detection performance on a self-constructed
forest fire dataset and met the requirements for
edge-device deployment [1]. Wu et al. built a multi-scale
fire image detection method that combined
Convolutional Neural Network (CNN) and Transformer

to address the high computational complexity, slow
detection speed, and low accuracy in existing fire
detection methods. The detection accuracy reached
94.62%, the fastest detection speed was 158.12 FPS, and
the Fl-score was 94% [2]. Oghabi et al. built a fire
detection method relying on the Red Green Blue and
Luminance Chrominance Blue Chrominance Red color
space backgrounds to meet the high efficiency and
accuracy requirements. The algorithm could more
accurately detect fire areas and had a lower false alarm
rate [3]. Kwak et al. proposed a preprocessing combined
with deep learning method for early image detection of
flames and smoke in fires. Compared with the detection
model without preprocessing, this method improved the
flame detection accuracy [4]. Cao et al. proposed
combined feature fusion with channel attention for
various scenarios. Experiments showed that this method
achieved an Average Precision (AP)@50 of 63.9% on
self-annotated datasets, with the fastest detection speed
of 114FPS and a stable F1-score of around 63%,
effectively balancing detection speed and precision [5].
Image processing algorithms, as logical steps for
analyzing, transforming, enhancing, restoring, encoding,
compressing, and extracting features from images, aim to
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extract useful information from images, improve image
quality, or make them more suitable for specific
applications. With the advent of the digital image
information era, it has been widely explored in fields
such as target recognition, localization and tracking, and
image enhancement. Yan et al. proposed a method to
review cutting-edge technologies and conduct critical
analysis on key issues in quantum image processing. The
results indicated that this method could clarify future
research directions and promote the practical application
of quantum image processing technology [6]. Daglish et
al. proposed an automatic tracking liquid image
processing method to address the low efficiency of
product extraction in post reaction processing. The
results indicated that liquid mixtures suitable for various
separation behaviors could assist in high-throughput
experiments and early detection of separation problems
[7]. Subarnan et al. combined image processing and
firebug swarm optimization for maximum power point
tracking of photovoltaic arrays under partial occlusion
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conditions. This method successfully improved the
output power and efficiency of the photovoltaic array in
MATLAB simulation, which was superior to the current
method [8]. Wang et al. proposed a method combining
deep learning with flame image quantification to address
the black box nature of Al models in fire detection,
guantification, and extinguishing. Improving the
segmentation accuracy could reduce the computer vision
fire quantification error to below 20%, providing support
for related applications in the field of intelligent fire
protection [9]. de Venancio et al. built an automatic fire
detection method based on spatial and temporal patterns
to address the interference and slow recognition of
manual monitoring in open area fire detection.
Concatenating these two stages could reduce the false
positive rate [10]. To more clearly delineate the progress
and limitations of existing work and identify the
proposed method, Table 1 summarizes several
representative state-of-the-art methods together with their
core characteristics.

Table 1: Comparison of representative state-of-the-art methods in fire scene image processing

Method Core Approach Key Metrics

Reported

Results/Focus ldentified Limitations

Outperformed existing | Lacks explicit handling of smoke;

Channel-space attention | Accuracy, Precision, s . .
mechanism Recall Fl-score methoc!s_ in fire image perfo_rmance in edge preservation
' recognition not discussed.
94.62% accuracy, | High computational complexity;
CNN + Transformer Accuracy, FPS, Fl-score | 158.12 FPS, 94% | weak generalization to varying
F1-score smoke density.

RGB & YCbCr color | False alarm rate,
space Accuracy

Accurate fire area | Limited dynamic detection
detection, lower false | capability; ineffective for weak or
alarm rate small fire edges.

Preprocessing + Deep

. Flame detection accuracy
Learning

Focused primarily on flames, with
insufficient detail preservation in
smoke images.

Improved flame
detection accuracy

Feature fusion + Channel AP@50, FPS, F1-score

Balanced speed and precision but

= 0,
AP@50=63.9%, 114 lack robustness in extreme (e.g.,

attention FPS, F1-score~63%
smoky/blurry) scenes.
Dynamic System | PSNR,  SSIM,  SNR, | Significant . .
(Nonlinear Diffusion + | Accurac Recall improvement  across | Specifically designed to address
Gradient-adaptive GAC) Fl-scorey,IoU " all metrics  (see | the limitations listed above.
P ' Section 3)

Although existing studies have achieved notable
progress in fire recognition, detection speed, and
false-alarm reduction, they share several common
weaknesses. Most methods perform well on clean flame
images, but their model design does not explicitly
consider extreme conditions that severely degrade image
quality, such as thick smoke or haze. Based on its
dynamic adjustment term, the proposed model
adaptively controls the diffusion intensity according to
local gradient information. This greatly suppresses the
noise and blur caused by smoke or haze, while retaining
the main structural content, greatly improving
robustness in extreme scenarios. Methods based on
color space or general depth architecture often fail to
capture and preserve faint and blurry boundaries

between flames and smoke or between flames and
background. To address this, the introduced
gradient-adaptive term enhances resilience to complex
edges and noise interference. Prior methods struggle to
balance dynamic detection and detail preservation: They
lack an intrinsic, self-adaptive mechanism to reconcile
noise suppression with feature protection, so aggressive
denoising frequently erases critical edge cues. The
proposed system unifies denoising and edge detection
within a single adaptive evolution process governed by
partial differential equations. By dynamically tuning
model behavior through gradient information, it realizes
an intelligent, pixel-level trade-off between noise
removal and detail conservation instead of imposing a
global and hard decision. Unlike static pipelines based
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on CNN or Transformer, the dynamic system reshapes
fire image analysis into a continuous evolution
controlled by partial differential equations, with smoke
diffusion and blurred edges. This physics-inspired
framework furnishes built-in spatial adaptivity: It
accommodates variable fire scenes without massive
training data and naturally handles fire-specific
challenges such as blurred edges and heavy noise.

In summary, existing research has made excellent
progress in fire scene image processing systems and
algorithms, but there are still challenges such as
untimely dynamic monitoring and poor denoising and
enhancement effects. To tackle these problems, a
kinetic-model-based framework that answers two key
questions is introduced: (i) Adaptive enhancement that
outperforms traditional methods in denoising while
preserving critical edges; (ii) Robust segmentation that
localizes boundaries more accurately than deep-learning
baselines despite weak edges and noise. This is achieved
via nonlinear dynamic diffusion, gradient-adaptive
active contours, on-the-fly parameter tuning, and
adaptive thresholding for higher detail fidelity and
real-time capability. The innovation of the research lies
in proposing an image processing method based on
dynamic systems. By introducing nonlinear dynamic
models and dynamic parameter adjustment mechanisms,
it efficiently suppresses noise in fire scene images and
accurately detect flame and smoke edges, significantly
improving the performance and real-time performance
of fire scene image processing.
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2 Methods and materials

2.1 Construction of fire scene image
enhancement algorithm based on dynamic

system

Image enhancement plays a crucial role in fire scene
image processing, aiming to remove noise and improve
image clarity. In a fire scene, noise caused by
environmental factors leads to overall blurring of the
image and a decrease in effective resolution. Therefore,
noise removal is a key step in enhancing fire scene
images. Fourier domain processing, as a common
denoising algorithm, can effectively remove noise
interference by transforming the image from the spatial
domain to the frequency domain. Fourier Transform (FT)
decomposes the image into components of various
frequencies, thereby filtering out high-frequency noise,
as shown in equation (1) [11-12].

U(f,, f,)=F{ux y)}= Zx: i u(x, y)yexp(—2zi(f,x+ f,y))
1)

In equation (1), U(X,Y) represents a two-dimensional
image defined in the spatial domain. U(f,,f))
represents a signal or image in the frequency domain. i
represents the imaginary unit. f  and fy are

frequency domain coordinates, representing frequencies
in the horizontal and vertical directions, respectively. X
and Y are spatial coordinates, representing the
horizontal and vertical positions of the signal or image,
respectively. Afterwards, the image is changed back into
the spatial domain through inverse FT, as shown in
equation (2).

Figure 1 presents the conversion process from spatial
domain to frequency domain in the image.

u(x,y)=FqU(f,, f,)}= j j U(f,, f,)exp(2zi( f,x+ f,y))df df, )
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Figure 1: Schematic diagram of image frequency domain transformation

Figure 1 shows the frequency domain transformation
process. The transformation process mainly involves
two-dimensional discrete cosine transform and its inverse
transformation operation. The original image is first

transformed through two-dimensional IDCT and
decomposed into four low-frequency components and
high-frequency components. They represent different
frequency information, with low-frequency components
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containing the main structural information, while
high-frequency components contain detailed information.
Subsequently, the positions of high and low frequencies
are swapped through inverse transformation. This
process not only helps with image compression, but also
removes redundant details while preserving the main
information,  thereby achieving efficient image
processing and analysis. The dynamic system is a
mathematical model that describes the changes in system
state over time, and its core idea is to adapt to different
input conditions by dynamically adjusting system
parameters. The noise distribution and edge features that
are difficult to adapt to in Fourier domain processing
vary due to the complexity of the scene. Therefore, the
study introduces a dynamic model to achieve adaptive
denoising by constructing a dynamic diffusion process
[13-14]. The core idea is to use the gradient information
of the image to construct a dynamic model, and to
effectively suppress noise by solving partial differential
equations. Specifically, this method is implemented by
equation (3).

ou

5 V- (c( Vul)Vu) @)

Gradient calculation

B Gradie
nt VI>0

Gradie c
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In equation (3), represents the image intensity.

Vu represents the gradient of U. V represents the
divergence operator. U, represents the derivative in the

time direction. c( Vul) represents the diffusion
coefficient function, which is defined in equation (4).

1

2
1+[|VU|J

A

In equation (4), A represents the adaptive threshold
parameter used to control the diffusion intensity. To
further improve the denoising effect, a dynamic
adjustment term is introduced to enable the diffusion

coefficient to be dynamically adjusted based on local
image features, as presented in equation (5).

c( Vul) =

(4)

Eq vul) =c¢( Vul)exp(-al Vul?) (%)

In equation (5), @ represents a positive constant that
controls the weight of the exponential component. S
represents a positive constant that controls the decay rate

of the exponential function. [c represents the adjusted

diffusion coefficient. The workflow of the nonlinear
diffusion denoising process is shown in Figure 2.

nt VI=0
| —
Gradie c( Vul) =c( Vul)exp(—al Vul”)
nt VI<0
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Figure 2: Workflow of the nonlinear diffusion denoising process

Figure 2 shows the workflow of the nonlinear diffusion
denoising process. The left image shows the input of the
original noise image, which intuitively displays the blur

and noise interference of flames, smoke, and background.

The arrow annotation highlights the direction and
magnitude of the gradient, laying the foundation for
subsequent denoising steps. The middle figure shows the
diffusion coefficient calculation, which is dynamically
adjusted according to the equation to achieve a balance
between noise suppression and edge protection. The time
chart on the right shows the dynamic changes in image
intensity over time and the direction of the denoising
process. Multiple curves depict the entire process of
gradually smoothing the image from the initial noise
state through multiple iterations, ultimately obtaining a
clear denoised image. To construct a complete dynamic

model, a time evolution equation is introduced to
describe the dynamic changes of images during
denoising [15], as shown in equation (6).

ou(x,y,t)

o =V-(c( Vul)Vu)

(6)

In equation (6), represents the rate of

au(x,y,t)
ot
change of image intensity over time, reflecting the
dynamic evolution during the denoising process. The
dynamic evolution process of the dynamic model is
achieved through finite difference method, and the
gradient information of the image is approximated by
finite difference calculation, as shown in equation (7).
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Y]

| vulz\/(ui+l,j _ui—l,j)z + (ui,j+1 _ui,j—l)z

2 2
In equation (7), U,;; and U_;; represent the function
values of adjacent grid points along the positive and
negative directions of the x-axis at point (i, ). U,

and U;;_; represent the function values of adjacent grid

points along the positive and negative y-axis directions at
point (i, J) Through this finite difference
approximation, the gradient information of the image can
be effectively calculated, and the diffusion coefficient
can be dynamically adjusted. The update for diffusion
coefficient is shown in equation (8).
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- 1
Cij =—————exp(—al Vu, .1?)
Vu 1 " 8
1+ (] 2
ol
In equation (8), é” signifies the diffusion coefficient at
position  (i,j) . 1VU ;I represents the gradient

amplitude of the image at pixel (i, j). Based on this

update mechanism, the diffusion coefficient can be
dynamically adjusted based on the local features of the
image, thereby achieving finer and more efficient
denoising effects. Figure 3 illustrates the complete
pipeline of the proposed image-enhancement algorithm.
The flowchart traces the entire chain from the noisy input
to the final enhanced result and highlights the central
iterative loop driven by nonlinear dynamic diffusion.

| Input: noisy fire scene image |

v

Fourier transform and
frequency-domain filtering

| Invert to the spatial domain |

v

Core iterative processing

The finite difference

Calculate the
image gradient

Calculate the dynamic
diffusion coefficient

method is used to
solve PDE

Update the image

No

Has it been achieved
Number of iterations N?2

Yes
v

Output: Enhanced denoised image

Figure 3: Flowchart of image enhancement algorithm based on dynamic system

As shown in Figure 3, the enhancement algorithm first
preprocesses the input image through Fourier transform
and frequency domain filtering to effectively remove
high-frequency noise. It then proceeds with the core
nonlinear dynamic diffusion iterative process, which
progressively optimizes image quality by calculating
image gradients, dynamically adjusting diffusion
coefficients, and solving partial differential equations.
This iterative mechanism ensures that the algorithm can
suppress noise while adaptively preserving edge
structures. Ultimately, after a preset number of iterations,
an enhanced image with improved clarity is output.
Enhancement parameters: Diffusion threshold k=0.05,
dynamic-adjustment weight a=1.0, decay A=0.1, time
step  At=0.1, and number of iterations N=50.
Implemented with finite differences: Spatial derivatives
via central difference, and temporal integration via
explicit Euler. At guarantees stability, and N is set based
on validation set convergence.

To evaluate enhancement quality, the enhanced images
are input to a ResNet-18 classifier initialized with
ImageNet weights and fine-tuned for three classes
(fire/smoke/background) using SGD (Ir=0.001) and
cross-entropy loss. All comparison experiments use the
same architecture and hyperparameters. The denoising
process for fire scene images is shown in Figure 4.
Figure 4 shows the flowchart of image denoising
processing. Starting from the input of the original image,
the image is changed from the spatial domain to the
frequency domain through FT. The high-frequency
noise is filtered out in the frequency domain. The image
is transformed back to the spatial domain through
inverse FT. Nonlinear diffusion processing is then
performed to dynamically adjust the diffusion
coefficient. Finally, the denoised image is output. The
entire process ends.
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Figure 4: Pipeline of the proposed image denoising
algorithm

2.2 Construction of fire scene
segmentation model

model

In addition to image enhancement processing, image
segmentation is also an important part of fire scene
image processing. In fire scene images, there are usually
problems such as difficulty in distinguishing the flame
area from the background and difficulty in target
localization. Image segmentation can separate different
regions such as flames and backgrounds, thereby
precisely positioning flame states. The commonly used
image segmentation model previously is the Geodesic
Active Contour (GAC) model, which is an image
segmentation method based on curve evolution. Its core
idea is to drive the curve to move towards the edge of
the image by minimizing the energy function. The
energy function of the GAC is defined in equation (9).

image
based on dynamic

E(C) :jc| VG, * 1| ds 9)

In equation (9), C represents the evolution curve. G_
represents a Gaussian function. O represents the
standard deviation. | represents the input image. *
represents convolution operation. Based on this energy
function, the curve evolution equation is derived, as
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presented in equation (10).

vC (10)

VCl

oC .
— g4 VG_ *1]| div
AV M)

In equation (10), div represents the divergence
operator, which is used to measure the degree of
divergence of the unit vector field. The gradient operator
VC acts on curve C, representing the gradient of
curve C. The GAC model has achieved certain results
in edge detection and complex image structures, but it
has limitations such as poor segmentation performance
in weak edge regions and low computational efficiency,
which will significantly affect the segmentation effect.
To address these issues, a gradient adaptive extended
GAC model based on dynamic systems is proposed. By
introducing dynamic mechanisms and gradient
adaptation terms, it is possible to better adapt to
complex edges and noise interference in images. The
study first improves the energy function of the GAC
model to balance the relationship between edge
detection and curve smoothing, and enhances the
model's adaptability to complex images. The improved
energy function is defined in equation (11).

E(C) =jg[u-%)z vV ~g(|)~h(vn>}dxdy (11)

In equation (11), Q represents the domain of the
image. @ represents the level set function used to
implicitly represent the segmentation curve C. # and
v represent regularization parameters used to balance
the contribution of energy terms. V¢ is the gradient of
the level set function ¢, representing the direction and
rate of change of curve C . h(VI) represents a
function related to the image gradient VI, typically
used to further emphasize certain features in the image.
g(l) indicates the introduced edge indicator function,
as shown in equation (12) [16].

1

N=——~
9= VG, * 112

(12)

To present the distribution of each component of the
improved energy function and its guiding effect on the
segmentation curve more clearly, the process is shown
in Figure 5.
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Figure 5: Schematic diagram of the improved energy function structure

Figure 5 displays the schematic diagram of the improved
energy function. It is based on a three-dimensional
coordinate system and includes four energy terms:
regularization, image gradient correlation, edge
indication, and gradient adaptation. Different terms
represent different surface features. Finally, the total
energy function is generated by superimposing each term.
To solve the applicability of complex edges, a gradient
adaptive term h(VI) is introduced in the study, as

shown in equation (13) [17-18].

h(V1) =e ™" (13)
In equation (13), a represents the parameter that
controls the gradient effect. Curve evolution starts from a
circle centred on the image. The maximum iteration is to
run 200 steps, or until the relative change of the level set
function drops below 10, whichever occurs first. To
maintain numerical stability, the level-set function is
re-initialized to a signed-distance function every 20
iterations. The gradient calculation module plays a key
role in extracting image gradient information, and its
internal refinement execution process is shown in Figure
6.

As shown in Figure 7, the segmentation algorithm begins
with initializing the level-set function and computing
image-gradient ~ features. By  incorporating a
gradient-adaptive term, the core curve-evolution
iterations become markedly more sensitive to weak edges.
In each iteration, the algorithm aggregates all energy
components, updates the level-set function, and
periodically re-initializes it to preserve numerical
stability. This dynamic process drives the contour to
converge accurately onto the true fire-and-smoke
boundaries. Segmentation parameters: Regularization
weight u=0.2, gradient weight v=1.5, gradient-adaptive
coefficient A_g=2.0, time step At=0.5, max iterations
M=200, re-initialization every 20 steps, and convergence
threshold 10°®.

Gradient amplitude

Gradient
calculation module
calculation

Local image area

|

|

|

I| Calculate the horizontal Calculate the vertical

: gradient componentg_x gradient componentg_y
| | I
|

|

|

|

v

Calculate the gradient amplitude
G =sqrtg_x"2 + g_y”"2

Introduce the gradient
adaptive term

Output
result

Figure 6: Flowchart of gradient adaptive term calculation

Figure 6 displays the flowchart of introducing adaptive
terms into the model. Firstly, the gradient information of
the input image calculates the gradient amplitude. The
amplitude calculation is done by adding the squares of
the horizontal and vertical gradient components and then
square them. Next, a gradient adaptive term is introduced
into the obtained results. Finally, the optimized results
are output. The study ultimately optimizes the curve
evolution equation to improve the efficiency of
segmenting curves and the ability to track complex edges.
The improved evolution equation is shown in equation
(14).

0 5@V (@(1)- NV Vg1 V) + prg]
A dynamic model-based fire scene image segmentation
model is constructed, which introduces gradient adaptive
term, regularization term, and dynamic mechanism,
effectively improving the accuracy and robustness of fire
scene image segmentation, and providing more accurate
and reliable image segmentation results for fire scene
processing. Figure 7 depicts the execution logic of the
segmentation model. The flowchart systematically maps
the entire pathway from image input to
segmentation-mask generation, emphasizing the iterative
evolution  mechanism of the gradient-adaptive
active-contour model.

(14)
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Input: Fire scene
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Figure 7: Flowchart of image enhancement algorithm based on dynamic system

The evolution equation is discretized by central finite
differences and integrated with explicit Euler.
Re-initialization preserves stability, and iterations stop
when either M is reached or the level-set change falls
below 10°. A dynamic model-based fire scene image
segmentation model is constructed based on this
research, and its structural flowchart is shown in Figure
8.

Input image

Gradient information
Gradient
calculation module

Dynamic parameter
initialization module

Parameter setting

Energy function
building module

iEnergy function

Curve evolution
module

Segmentation Evolutionary
curve result

Segment the
output image

Figure 8: Flowchart of the fire scene image
segmentation model

In Figure 8, starting from the input image, the gradient
calculation module extracts gradient information, and

the dynamic parameter initialization module completes
parameter settings. The two are jointly input into the
energy function construction module to generate the
energy function. The energy function is input into the
curve evolution module for processing, and the
segmentation curve and evolution result are output to
ultimately segment the output image.

All classification tasks should use a unified threshold
selection protocol. To enhance image classification,
softmax-maximum probability is directly used. Binary
segmentation masks are generated with Otsu’s adaptive
threshold automatically computed on each image.
Multi-class segmentation uses one-vs-rest to determine
per-class thresholds. Every threshold is validated on an
independent validation set to guarantee generalisability.
The algorithm code is shown below.

Algorithm 1: Dynamic system-based fire
processing pipeline

image

Input: Raw fire scene image |
Output: Enhanced image |_enhanced, Segmentation
mask M

/I Stage 1: Image Enhancement via Nonlinear Dynamic
Diffusion
1. Preprocess: Normalize | to [0,1] range
2. Apply Fourier Transform to I — I freq
3. Filter high-frequency noise in frequency domain
4. Apply Inverse Fourier Transform — I_preprocessed
5. Initialize: |_current = 1_preprocessed
6. Set diffusion parameters: k=0.05, a=1.0, A=0.1,
At=0.1, N=50
7. Forn=1to N iterations:
a. Compute image gradient VI using Sobel operator
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b. Calculate gradient magnitude |VI|

c. Compute dynamic diffusion
¢_dynamic (Eq. 5)

d. Solve PDE using finite difference method (Eg. 3,
6,7)

e. Update: I _current =1 current + At * ol/0t
8. Output enhanced image |_enhanced = |_current

coefficient

/I Stage 2: Image Segmentation via Gradient-adaptive
GAC
9. Initialize level set function ¢ as signed distance
function
10. Compute image gradient |VI_enhanced| and edge
indicator g (Eqg. 12)
11. Set segmentation parameters: p=0.2, v=1.5, 4 _g=2.0,
At=0.5, M=200
12. For m = 1 to M iterations:

a. Calculate gradient adaptive term A_g (Eq. 13)

b. Compute curve evolution (Eq. 14) using finite
differences

c. Update: ¢ = ¢ + At * ¢/t

d. If m mod 20 == 0: reinitialize ¢ to signed
distance function

e. If [[o_new - ¢_old|//||¢_old|| < le-6: break
13. Extract zero level set: M = { (X,y) | o(x,y) >0 }
14. Output segmentation mask M

3 Results

3.1 Validation of fire
enhancement model

system

The study implements the construction process of the
model in the above content. To verify the actual
effectiveness, the performance is demonstrated by
comparing typical indicators. Before conducting the
experiment, the experimental environment requires
sufficient hardware performance support and stable
software assistance. Table 2 presents the hardware and
software parameters.

scene image
based on dynamic

Table 2: Hardware and software configuration

Classification | Name Model
Computer towor 7000

Hardware ;?;Siesition carg | Matrox solios
Camera FLIR A65 SC64
Monitor ?f-lilnch ultraSharp

Server HP proLiant
dL380 genl0

Operating Windows 10 Pro

system 64-bit

Iprogramm'“g Python 3.8

anguage

Deep learning

Software framework TensorFlow 2.4.1

Image

processing OpenCV 4.5.1

library

gztla analysis | \\ AT AB R2021a

After setting up the experimental environment based on
the configuration parameters shown in Table 2, the
study introduces two test datasets RFSIE and NTIRE to
verify the enhancement effect of fire scene images. The
RFSIE dataset is a specialized dataset for fire scene
image enhancement tasks, mainly used to study
dehazing and enhancement algorithms for fire scene
images. The NTIRE competition dataset is a
high-quality dataset widely used for image enhancement
tasks, suitable for evaluating image dehazing algorithms.
Both  datasets have high  practicality and
representativeness in the field of fire scene image
enhancement, and can provide strong data support for
experiments. The official segmentation method is used
to randomly divide the data into a training set (70%), a
validation set (20%), and a testing set (10%). All images
are re-sized to 512x512 pixels and normalized to the
[0,1] range. Enhancement quality is gauged by a
ResNet-18 classifier: ImageNet-pre-trained, output layer
fine-tuned for three classes, trained for 50 epochs with
SGD; this identical setup is used in all comparative
experiments. ImageNet undergoes pre-training and
fine-tunes the output layer for three categories, training
with SGD for 50 iteration cycles The same settings are
used in all comparative experiments. Signal-to-Noise
Ratio (SNR) is the ratio of signal to noise intensity,
which can intuitively reflect the effectiveness of noise
reduction. The Peak SNR (PSNR) reflects the noise
reduction, which is used to quantify the effect of noise
reduction on image detail restoration. The Structure
Similarity Index (SSIM) measures the image similarity
based on brightness, contrast, and structure, and
evaluates the performance of denoising algorithms in
preserving image texture and structure. The following
study compares the three indicators of different
algorithms on different test sets to verify the denoising
effect, as shown in Figure 9.
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(b) Comparison of noise reduction indicators of different models
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Figure 9: Comparison of denoising performance indicators of different models

Figure 9 (a) and (b) compare the denoising performance
on the RFSE and NTIRE20 datasets, respectively. On
the RFSIE dataset, the PSNR index value of the
proposed denoising processing increased by 20%, 15%,
and 10% respectively compared to the median filtering,
Gaussian filtering, and bilateral filtering denoising
models. The SNR indicators were about 15%, 10% and
8% higher, respectively. On the SSIM index value, the
median filtering, Gaussian filtering, and bilateral
filtering denoising models were about 15%, 10%, and
5% higher, respectively. On the NTIRE20 dataset, the
proposed denoising processing showed an improvement
of approximately 25%, 20%, and 15% in PSNR metrics
compared to median filtering, Gaussian filtering, and
bilateral filtering denoising models, respectively. The
SNR indicators improved by about 20%, 15%, and 12%
respectively. The SSIM of the proposed denoising
method increased by about 20%, 15%, and 10%
compared to the median filtering, Gaussian filtering, and
bilateral filtering denoising methods. The proposed
denoising processing outperforms other models on

Gaussian Filter
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—.—-- Bilateral filtering =— — Dynamic System
25
20

15

10

SNR value (dB)
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(a) Comparison of SNR of different denoising

algorithms on the training set

PSNR value (dB)

denoising performance indicators. The following study
aims to verify the performance improvement effect of
various denoising algorithms during the training process.
By gradually increasing the iteration, the performance
improvement effect is compared, as presented in Figure
10.

Figures 10 (a) and (b) compare the SNR and PSNR
metrics of different denoising models on the training set.
As the training rounds increased, the SNR index of the
dynamical system improved by an average of about
42.6% compared to median filtering, 38.1% compared
to Gaussian filtering, and 29.8% compared to bilateral
filtering. The PSNR index of the dynamic system had an
average improvement of about 27.1% compared to
median filtering, about 28.0% compared to Gaussian
filtering, and about 16.5% compared to bilateral filtering.
These data indicate that the dynamic system
outperforms other models in terms of training efficiency.
To verify the classification ability of fire scene images,
the confusion matrix is taken to compare the
classification accuracy, as shown in Figure 11.
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(b) Comparison of PSNR of different denoising
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Figure 10: The performance variation trends of different denoising algorithms on the training set
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Figure 11: Comparison of confusion matrices of different models in fire scene image enhancement tasks

Figures 11 (a), (b), (c), and (d) show the confusion
matrices of actual image enhancement effects for
different models. Through comparative analysis, the
accuracy of flame classification based on the dynamic
system model improved by about 30.8% compared to
median filtering, about 41.7% compared to Gaussian
filtering, and about 21.4% compared to bilateral filtering.
In smoke classification, the classification accuracy of the
dynamic system was 16.1% higher than that of median
filtering, about 20% higher than that of Gaussian filtering,
and about 9.1% higher than that of bilateral filtering. In
background classification, the classification accuracy of
the dynamic system increased by about 8.6% compared
to median filtering, about 8.6% compared to Gaussian
filtering, and about 5.6% compared to bilateral filtering.
These data indicate that the dynamic system model can
more accurately identify and distinguish features of
different  categories, with  better  classification
performance and generalization ability.

Table 3: Post-enhancement classification performance

metrics
Category Precision | Recall | Fl-score | Support
Flame 0.94 0.92 0.93 1500
Smoke 0.88 0.86 0.87 1200
Background | 0.96 0.97 0.965 2300
Macro Avg | 0.927 0.917 0.922 5000

In Table 3, the proposed dynamic system model achieved
a precision of 94% and a recall of 92% in flame
classification. The dynamic enhancement pipeline
enhances the discriminative features and outperforms all
baselines in performance.

3.2 \Validation of
segmentation model

model

The research focuses on the performance verification in
fire scene image segmentation tasks. Two datasets,
FLAME Dataset and Fire Segmentation Dataset, are
selected for the study. The FLAME Dataset includes
forest burning debris images collected by drones, suitable
for object detection and image segmentation tasks, and
can help researchers establish fire detection and
segmentation models. The Fire Segmentation Dataset
contains various fire scenarios that are carefully
annotated to ensure the accuracy of segmentation masks,
making it suitable for training and validating fire
segmentation models. The dataset is randomly split into
training (60%), validation (20%), and test (20%) subsets.
Images are re-sized to 640x640 and augmented by
random horizontal flip (p=0.5) and random rotation
(x15°) to improve generalization. Ground truth is
provided as pixel-wise binary segmentation masks. To
assess stability and statistical significance, the 5-fold
cross-validation is conducted. As summarized in Table 4,
the proposed method achieved a mean segmentation
accuracy of 89.3% (+£0.4%) on the FLAME dataset,
significantly outperforming that of U-Net’s 85.8%
(20.6%). A paired t-test confirmed that this improvement
was statistically significant (*p*<0.01).

Statistical results confirmed that the proposed method
achieved the best mean performance on all datasets, with
consistently lower standard deviations, indicating
superior stability. Moreover, all key comparisons were
statistically significant (*p*<0.05), ensuring that the
observed improvements were not due to random
variation, providing statistical evidence for the method’s
effectiveness and reliability. In the comprehensive

fire scene image
based on dynamic
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evaluation, key indicators like accuracy, recall, F1-score,
intersection over union
comparison. These indicators reflect performance such as
classification accuracy,

and
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positive sample

ratio are selected for

ability,

recognition

comprehensive
segmentation region overlap. The comparison is shown
in Figure 12.

balance
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performance, and

Table 4: 5-fold cross-validation performance comparison of image segmentation models

Model FLAME Dataset *p*-value vs. Fire Ssgtmasgtatlon *p*-value vs.
(Accuracy) Proposed Method (loU) Proposed Method
FCN 0.839 £ 0.009 <0.001* 0.798 £ 0.011 <0.001*
U-Net 0.858 £ 0.006 0.003* 0.818 £ 0.008 0.007*
Proposed Method 0.893 £ 0.004 - 0.869 £ 0.005 -
B Based on the dynamic system model [ Based on the dynamic system model
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Figure 12: Performance comparison of different segmentation models on two datasets

Figures 12 (a) and (b) present the performance metrics
comparison on the FLAME and Fire Segmentation
datasets. On the FLAME dataset, the accuracy based on
the dynamic system model improved by 5.56% compared
to FCN, 3.26% compared to U-Net, and 11.76%
compared to Mask R-CNN. The recall increased by
13.33%, 6.25%, and 21.43% respectively, the F1-score
increased by 12.5%, 5.88%, and 20%, and the loU
increased by 14.29%, 6.67%, and 23.08%. On the Fire
Segmentation dataset, its accuracy improved by 5.38%
compared to FCN, 3.16% compared to U-Net, and 8.89%
compared to Mask R-CNN, the recall increased by
12.82%, 7.32%, and 17.33% respectively, the F1-scores
increased by 9.41%, 5.68%, and 13.41%, and the loU
increased by 13.33%, 9.09%, and 21.43%. This indicates
that the module based on dynamic systems has
significant performance advantages in fire scene image
segmentation tasks. In the verification of actual
performance, the study also uses confusion matrices for
comparison to validate the performance of the model, as
shown in Figure 13.

According to Figures 13 (a) and (b), the dynamic system
model outperformed the U-Net model in the
classification tasks of flames, smoke, woods, and
buildings. Specifically, there was a 14.29% improvement

in flame classification, a 6.25% improvement in smoke
classification, a 5.88% improvement in woods
classification, and a 2.86% improvement in building
classification. This demonstrates a significant advantage
in accuracy when dealing with flame segmentation tasks
based on the dynamic system model.

Table 5 indicates that the gradient-adaptive
active-contour model maintains high F1-scores across all
categories, with particularly strong performance on flame
and smoke detection, underscoring its precise recognition
capability for fire-related features. The following study
compares the performance and effectiveness of the
research model in terms of accuracy, as shown in Figure
14.

Table 5: Post-enhancement classification performance

metrics
Category | Precision | Recall F1-score | Support
Flame 0.91 0.89 0.9 1800
Smoke 0.85 0.83 0.84 1400
Woods 0.93 0.95 0.94 2200
Building | 0.9 0.88 0.89 1600
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Figure 14: Comparison of accuracy rates of different models

Figures 14 (a) and (b) compare the segmentation
accuracy and flame category classification accuracy.
Specifically, the segmentation accuracy based on the
dynamic system model was about 4.5% higher than that
of U-Net. The accuracy of flame category classification
was about 4.8% higher. This verifies that the dynamic
system has better performance and reliability in flame
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Figure 15: Comparison and verification of robustness in extreme scenarios and dynamic control strategies
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recognition. To evaluate the robustness of the proposed
method under extreme conditions and its advantages over
dynamic control strategies, this study compares the
segmentation performance of different methods in
extreme environments, focusing on key metrics and
dynamic control strategies, as detailed in Figure 15.
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Figure 15 illustrates the performance superiority of the
proposed method under extreme scenarios and its
practical application compared with existing dynamic
control strategies. In the standard scenario shown in
Figure 15(a), the proposed method achieved an loU of
0.896, representing a 4.1% improvement over the U-Net
baseline. In the most challenging small-flame target
detection scenario, the method attained an loU of 0.851,
outperforming U-Net by 14.2%, FCN by 22.6%, and
Gaussian filtering by 39.5%. Under heavy smoke
interference, the method maintained an loU of 0.882,
marking a 10.1% improvement over U-Net. In strong
glare conditions, it reached an loU of 0.868, surpassing
U-Net by 10.2%. In the dynamic control strategy
comparison presented in Figure 15(b), the proposed
method achieved an loU of 0.896, exceeding adaptive
backstepping control by 37.4% and nonlinear optimal
control by 30.8%. Additionally, the method led
comprehensively in two critical metrics: F1-score (0.934)
and accuracy (0.957), showing improvements of 3.5%
and 2.8% respectively over the U-Net baseline. These
quantitative results consistently demonstrate that the
proposed method significantly enhances adaptability and
detection stability in extreme scenarios while
maintaining high precision. In addition to accuracy,
computational efficiency is crucial for field deployment
in time-critical tasks such as wild-fire monitoring.
Therefore, Table 6 comprehensively compares the
computational demands of all evaluation models.

In Table 6, the enhancement step took 1.5s, which was
longer than that of conventional filters, but with
significantly higher quality. The segmentation was
completed within 2.3s, outperforming all comparison
deep learning models while providing the highest
accuracy. The complexity was O(N-M-T) for
gradient-driven finite-difference updates (N, M = image
size, T = iterations), giving predictable cost for
high-resolution inputs. Although CNNs have faster
inference speeds, their training requires more resources.
Overall, the method offers a practical trade-off between
precision and speed, well-suited to quasi-real-time
wild-fire  monitoring where extreme latency is not
critical but high accuracy is mandatory.

Table 6: Computational efficiency comparison of
different models

Average Peak Memory
Model Processing  Time | Usage

(s) (MB)
Median Filtering 0.1 50
Gaussian Filtering 0.08 45
Bilateral Filtering 0.5 60
Proposed
Enhancement Model 15 300
FCN 3.2 1,200
U-Net 2.8 1,100
Mask R-CNN 8.5 2,500
Proposed
Segmentation Model 2.3 1,000

A. Li

4 Discussion

The proposed model recasts image processing as
spatio-temporal evolution, mirroring control-theoretic
treatment of uncertain nonlinear systems. Compared
with adaptive backstepping control [19], nonlinear
optimal control [20], adaptive fuzzy control [21], robust
neuro-adaptive  control  [22], and  high-gain
observer-based control [23], it achieves superior
segmentation accuracy. Classical controllers stabilize
low-dimensional, well-defined dynamics via Lyapunov
theory [19, 20, 24]. Directly transmitting to
high-dimensional images faces obstacles in terms of
dimensionality and dynamic clarity. By embedding
evolution in the gradient domain, the proposed method
avoids these obstacles: The dynamic-adjustment and
gradient-adaptive terms serve as spatially distributed
controllers that modulate diffusion locally without an
explicit global dynamic model. The PDE theory ensures
the stability of curve evolution, and convergence comes
from minimizing the energy functional.

This image-centric design maintains theoretical rigor
while demonstrating unique value in real-world
scenarios such as wildfire monitoring. The local
adaptability of this model can robustly handle
environmental uncertainties such as lighting changes
and occlusion, providing reliable support for fire
detection in drone patrols and emergency response.
Future work will focus on model lightweighting to
facilitate deployment in practical systems.

The dynamic system model for fire image processing is
experimentally validated. Its gain depends on two
adaptive terms: A dynamic adjustment term that
balances denoising and edge preservation on pixels, and
a gradient adaptation term that promotes evolution at
weak edges and repairs classical active contour defects.
Cross-dataset testing has shown stable advantages, but
has revealed accuracy limits related to data complexity.
The limitations lie in the fact that speed iteration
optimization is not yet ultra real-time, and its robustness
has not been tested in extreme weather conditions.
Future work will reduce the burden on algorithms and
make them more robust in harsher scenarios.5
Conclusion

A comprehensive image processing method based on
dynamic models was proposed to address the
insufficient edge detection accuracy, limited dynamic
detection capability, and insufficient details in smoke
images in traditional fire scene image processing
systems. This study introduced nonlinear dynamic
models and dynamic parameter adjustment mechanisms
to efficiently suppress noise in fire scene images and
achieve edge segmentation detection of flames and
smoke. The proposed enhancement model improved the
PSNR index by about 20% compared to median filtering
on the RFSIE dataset and by about 25% on the
NTIRE20 dataset. In terms of image segmentation, the
accuracy on the FLAME dataset improved by 5.56%
compared to FCN, and the 1oU on the Fire Segmentation
dataset improved by 9.09% compared with U-Net. In
addition, in the classification task, the proposed model
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improved the accuracy of flame classification by about
30.8% compared to median filtering, about 41.7%
compared with Gaussian filtering, and about 21.4%
compared with bilateral filtering. In terms of smoke
classification, they increased by about 16.1%, 20%, and
9.1% respectively. In the background classification,
there were improvements of approximately 8.6%, 8.6%,
and 5.6%, respectively. In the flame category
classification of image segmentation, the accuracy
improved by about 4.8% compared to the U-Net model.
Overall, the research has shown excellent results in
improving the clarity and segmentation accuracy of fire
scene image processing. However, the real-time
performance and the ability to handle extreme weather
fires still need improvement. Future research will
optimize the computational efficiency and combine
multi-source data to enhance the robustness to better
adapt to diverse fire scenarios.
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