
https://doi.org/10.31449/inf.v49i35.12439 Informatica 49 (2025) 23–38 23 

 

Dynamic System-Based Image Enhancement and Segmentation for 

Fire Scene Analysis 

 

Ang Li 

School of Intelligent Control, Nanjing University of Science and Technology Zijin College, Nanjing, 210023, China 

E-mail: An.g_Li@outlook.com 

Keywords: dynamic system, fire scene image processing, gradient adaptive term, dynamic adjustment term, image 

processing algorithm 

Received: October 14, 2025 

To address the limitations of traditional fire scene image processing systems, such as insufficient edge 

detection accuracy and poor denoising performance, this paper proposes a comprehensive image 

processing framework based on dynamic models. The core contributions include: an image 

enhancement model is built based on a nonlinear dynamic diffusion process, which introduces a 

dynamic adjustment term to achieve adaptive denoising while preserving edges. An image segmentation 

model that improves the Geodesic Active Contour Model is built by constructing a gradient-adaptive 

extended geodesic activity contour model, significantly enhancing its capability to handle weak edges 

and complex structures. Experiments were conducted on specialized fire image datasets. For 

enhancement, the Fire Scene Image Enhancement (RFSIE) dataset and the NTIRE20 dataset were used. 

For segmentation, the FLAME dataset and the Fire Segmentation Dataset were employed. The proposed 

enhancement model improved the Peak Signal-to-Noise Ratio (PSNR) by approximately 20.0% 

compared with median filtering on the RFSIE dataset and by 25.0% on the NTIRE20 dataset. The 

segmentation model achieved an accuracy of 5.6% higher than that of the Fully Convolutional Network 

(FCN) on the FLAME dataset. Furthermore, in image classification tasks, the proposed model improved 

the accuracy of flame, smoke, and background classification by about 30.8%, 16.1%, and 8.6%, 

respectively, compared with median filtering. The research demonstrates that the dynamic system 

provides a more efficient and robust solution for fire scene analysis, with significant potential for 

application in fire monitoring and rescue operations. 

Povzetek:  

 

1 Introduction 
With global climate change and the continuous 

development of forest resources, the frequency and 

severity of forest fires are increasing. Forest fires not 

only cause serious damage to the ecological environment 

and threaten biodiversity, but also pose a huge threat to 

lives and property. However, traditional fire scene image 

processing systems have challenges such as insufficient 

edge detection accuracy, limited dynamic detection 

capability of fire, and insufficient details in smoke 

images. Therefore, to reduce the occurrence and 

widespread spread of fires, researchers have conducted 

extensive research to optimize fire scene image 

processing systems. For example, to address the low 

accuracy and severe missed detection of small targets in 

forest fire recognition, Liu W et al. proposed an 

improved network based on YOLOv7. The results 

demonstrated that the algorithm significantly enhanced 

small-target detection performance on a self-constructed 

forest fire dataset and met the requirements for 

edge-device deployment [1]. Wu et al. built a multi-scale 

fire image detection method that combined 

Convolutional Neural Network (CNN) and Transformer  

 

to address the high computational complexity, slow  

detection speed, and low accuracy in existing fire 

detection methods. The detection accuracy reached 

94.62%, the fastest detection speed was 158.12 FPS, and 

the F1-score was 94% [2]. Oghabi et al. built a fire 

detection method relying on the Red Green Blue and 

Luminance Chrominance Blue Chrominance Red color 

space backgrounds to meet the high efficiency and 

accuracy requirements. The algorithm could more 

accurately detect fire areas and had a lower false alarm 

rate [3]. Kwak et al. proposed a preprocessing combined 

with deep learning method for early image detection of 

flames and smoke in fires. Compared with the detection 

model without preprocessing, this method improved the 

flame detection accuracy [4]. Cao et al. proposed 

combined feature fusion with channel attention for 

various scenarios. Experiments showed that this method 

achieved an Average Precision (AP)@50 of 63.9% on 

self-annotated datasets, with the fastest detection speed 

of 114FPS and a stable F1-score of around 63%, 

effectively balancing detection speed and precision [5]. 

Image processing algorithms, as logical steps for 

analyzing, transforming, enhancing, restoring, encoding, 

compressing, and extracting features from images, aim to 
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extract useful information from images, improve image 

quality, or make them more suitable for specific 

applications. With the advent of the digital image 

information era, it has been widely explored in fields 

such as target recognition, localization and tracking, and 

image enhancement. Yan et al. proposed a method to 

review cutting-edge technologies and conduct critical 

analysis on key issues in quantum image processing. The 

results indicated that this method could clarify future 

research directions and promote the practical application 

of quantum image processing technology [6]. Daglish et 

al. proposed an automatic tracking liquid image 

processing method to address the low efficiency of 

product extraction in post reaction processing. The 

results indicated that liquid mixtures suitable for various 

separation behaviors could assist in high-throughput 

experiments and early detection of separation problems 

[7]. Subarnan et al. combined image processing and 

firebug swarm optimization for maximum power point 

tracking of photovoltaic arrays under partial occlusion 

conditions. This method successfully improved the 

output power and efficiency of the photovoltaic array in 

MATLAB simulation, which was superior to the current 

method [8]. Wang et al. proposed a method combining 

deep learning with flame image quantification to address 

the black box nature of AI models in fire detection, 

quantification, and extinguishing. Improving the 

segmentation accuracy could reduce the computer vision 

fire quantification error to below 20%, providing support 

for related applications in the field of intelligent fire 

protection [9]. de Venâncio et al. built an automatic fire 

detection method based on spatial and temporal patterns 

to address the interference and slow recognition of 

manual monitoring in open area fire detection. 

Concatenating these two stages could reduce the false 

positive rate [10]. To more clearly delineate the progress 

and limitations of existing work and identify the 

proposed method, Table 1 summarizes several 

representative state-of-the-art methods together with their 

core characteristics.

 

Table 1: Comparison of representative state-of-the-art methods in fire scene image processing 

 

Method Core Approach Key Metrics 
Reported 

Results/Focus 
Identified Limitations 

Channel-space attention 

mechanism 

Accuracy, Precision, 

Recall, F1-score 

Outperformed existing 

methods in fire image 

recognition 

Lacks explicit handling of smoke; 

performance in edge preservation 

not discussed. 

CNN + Transformer Accuracy, FPS, F1-score 

94.62% accuracy, 

158.12 FPS, 94% 

F1-score 

High computational complexity; 

weak generalization to varying 

smoke density. 

RGB & YCbCr color 

space 

False alarm rate, 

Accuracy 

Accurate fire area 

detection, lower false 

alarm rate 

Limited dynamic detection 

capability; ineffective for weak or 

small fire edges. 

Preprocessing + Deep 

Learning 
Flame detection accuracy 

Improved flame 

detection accuracy 

Focused primarily on flames, with 

insufficient detail preservation in 

smoke images. 

Feature fusion + Channel 

attention 
AP@50, FPS, F1-score 

AP@50=63.9%, 114 

FPS, F1-score≈63% 

Balanced speed and precision but 

lack robustness in extreme (e.g., 

smoky/blurry) scenes. 

Dynamic System 

(Nonlinear Diffusion + 

Gradient-adaptive GAC) 

PSNR, SSIM, SNR, 

Accuracy, Recall, 

F1-score, IoU 

Significant 

improvement across 

all metrics (see 

Section 3) 

Specifically designed to address 

the limitations listed above. 

Although existing studies have achieved notable 

progress in fire recognition, detection speed, and 

false-alarm reduction, they share several common 

weaknesses. Most methods perform well on clean flame 

images, but their model design does not explicitly 

consider extreme conditions that severely degrade image 

quality, such as thick smoke or haze. Based on its 

dynamic adjustment term, the proposed model 

adaptively controls the diffusion intensity according to 

local gradient information. This greatly suppresses the 

noise and blur caused by smoke or haze, while retaining 

the main structural content, greatly improving 

robustness in extreme scenarios. Methods based on 

color space or general depth architecture often fail to 

capture and preserve faint and blurry boundaries 

between flames and smoke or between flames and 

background. To address this, the introduced 

gradient-adaptive term enhances resilience to complex 

edges and noise interference. Prior methods struggle to 

balance dynamic detection and detail preservation: They 

lack an intrinsic, self-adaptive mechanism to reconcile 

noise suppression with feature protection, so aggressive 

denoising frequently erases critical edge cues. The 

proposed system unifies denoising and edge detection 

within a single adaptive evolution process governed by 

partial differential equations. By dynamically tuning 

model behavior through gradient information, it realizes 

an intelligent, pixel-level trade-off between noise 

removal and detail conservation instead of imposing a 

global and hard decision. Unlike static pipelines based 
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on CNN or Transformer, the dynamic system reshapes 

fire image analysis into a continuous evolution 

controlled by partial differential equations, with smoke 

diffusion and blurred edges. This physics-inspired 

framework furnishes built-in spatial adaptivity: It 

accommodates variable fire scenes without massive 

training data and naturally handles fire-specific 

challenges such as blurred edges and heavy noise. 

In summary, existing research has made excellent 

progress in fire scene image processing systems and 

algorithms, but there are still challenges such as 

untimely dynamic monitoring and poor denoising and 

enhancement effects. To tackle these problems, a 

kinetic-model-based framework that answers two key 

questions is introduced: (i) Adaptive enhancement that 

outperforms traditional methods in denoising while 

preserving critical edges; (ii) Robust segmentation that 

localizes boundaries more accurately than deep-learning 

baselines despite weak edges and noise. This is achieved 

via nonlinear dynamic diffusion, gradient-adaptive 

active contours, on-the-fly parameter tuning, and 

adaptive thresholding for higher detail fidelity and 

real-time capability. The innovation of the research lies 

in proposing an image processing method based on 

dynamic systems. By introducing nonlinear dynamic 

models and dynamic parameter adjustment mechanisms, 

it efficiently suppresses noise in fire scene images and 

accurately detect flame and smoke edges, significantly 

improving the performance and real-time performance 

of fire scene image processing. 

 

 

 

 

 

2 Methods and materials 

2.1 Construction of fire scene image 

enhancement algorithm based on dynamic 

system 
Image enhancement plays a crucial role in fire scene 

image processing, aiming to remove noise and improve 

image clarity. In a fire scene, noise caused by 

environmental factors leads to overall blurring of the 

image and a decrease in effective resolution. Therefore, 

noise removal is a key step in enhancing fire scene 

images. Fourier domain processing, as a common 

denoising algorithm, can effectively remove noise 

interference by transforming the image from the spatial 

domain to the frequency domain. Fourier Transform (FT) 

decomposes the image into components of various 

frequencies, thereby filtering out high-frequency noise, 

as shown in equation (1) [11-12]. 
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In equation (1), ,( )u x y  represents a two-dimensional 

image defined in the spatial domain. ( ),x yU f f  

represents a signal or image in the frequency domain. i  

represents the imaginary unit. xf  and yf  are 

frequency domain coordinates, representing frequencies 

in the horizontal and vertical directions, respectively. x  

and y  are spatial coordinates, representing the 

horizontal and vertical positions of the signal or image, 

respectively. Afterwards, the image is changed back into 

the spatial domain through inverse FT, as shown in 

equation (2). 

Figure 1 presents the conversion process from spatial 

domain to frequency domain in the image. 
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Figure 1: Schematic diagram of image frequency domain transformation 

 

Figure 1 shows the frequency domain transformation 

process. The transformation process mainly involves 

two-dimensional discrete cosine transform and its inverse 

transformation operation. The original image is first 

transformed through two-dimensional IDCT and 

decomposed into four low-frequency components and 

high-frequency components. They represent different 

frequency information, with low-frequency components 
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containing the main structural information, while 

high-frequency components contain detailed information. 

Subsequently, the positions of high and low frequencies 

are swapped through inverse transformation. This 

process not only helps with image compression, but also 

removes redundant details while preserving the main 

information, thereby achieving efficient image 

processing and analysis. The dynamic system is a 

mathematical model that describes the changes in system 

state over time, and its core idea is to adapt to different 

input conditions by dynamically adjusting system 

parameters. The noise distribution and edge features that 

are difficult to adapt to in Fourier domain processing 

vary due to the complexity of the scene. Therefore, the 

study introduces a dynamic model to achieve adaptive 

denoising by constructing a dynamic diffusion process 

[13-14]. The core idea is to use the gradient information 

of the image to construct a dynamic model, and to 

effectively suppress noise by solving partial differential 

equations. Specifically, this method is implemented by 

equation (3). 

 

( ( ) )u
t

u
u

c



=  ∣ ∣             (3) 

 

 

 

 

In equation (3), 
u

t




 represents the image intensity. 

u  represents the gradient of u .   represents the 

divergence operator. tu  represents the derivative in the 

time direction. ( )c u∣ ∣  represents the diffusion 

coefficient function, which is defined in equation (4). 
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In equation (4),   represents the adaptive threshold 

parameter used to control the diffusion intensity. To 

further improve the denoising effect, a dynamic 

adjustment term is introduced to enable the diffusion 

coefficient to be dynamically adjusted based on local 

image features, as presented in equation (5). 

 

( ) ( ) ( )u c u ex uc p  =  − ∣ ∣ ∣ ∣ ∣ ∣         (5) 

 

In equation (5),   represents a positive constant that 

controls the weight of the exponential component.   

represents a positive constant that controls the decay rate 

of the exponential function. c  represents the adjusted 

diffusion coefficient. The workflow of the nonlinear 

diffusion denoising process is shown in Figure 2. 
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Figure 2: Workflow of the nonlinear diffusion denoising process 

 

Figure 2 shows the workflow of the nonlinear diffusion 

denoising process. The left image shows the input of the 

original noise image, which intuitively displays the blur 

and noise interference of flames, smoke, and background. 

The arrow annotation highlights the direction and 

magnitude of the gradient, laying the foundation for 

subsequent denoising steps. The middle figure shows the 

diffusion coefficient calculation, which is dynamically 

adjusted according to the equation to achieve a balance 

between noise suppression and edge protection. The time 

chart on the right shows the dynamic changes in image 

intensity over time and the direction of the denoising 

process. Multiple curves depict the entire process of 

gradually smoothing the image from the initial noise 

state through multiple iterations, ultimately obtaining a 

clear denoised image. To construct a complete dynamic 

model, a time evolution equation is introduced to 

describe the dynamic changes of images during 

denoising [15], as shown in equation (6). 
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In equation (6), 
( ), ,u x y t

t




 represents the rate of 

change of image intensity over time, reflecting the 

dynamic evolution during the denoising process. The 

dynamic evolution process of the dynamic model is 

achieved through finite difference method, and the 

gradient information of the image is approximated by 

finite difference calculation, as shown in equation (7). 
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In equation (7), 1,i ju +  and 1,i ju −  represent the function 

values of adjacent grid points along the positive and 

negative directions of the x-axis at point ( , )i j . , 1i ju +  

and , 1i ju −  represent the function values of adjacent grid 

points along the positive and negative y-axis directions at 

point ( , )i j . Through this finite difference 

approximation, the gradient information of the image can 

be effectively calculated, and the diffusion coefficient 

can be dynamically adjusted. The update for diffusion 

coefficient is shown in equation (8). 
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In equation (8), 
~

,i jc  signifies the diffusion coefficient at 

position ( , )i j . ,i ju∣ ∣  represents the gradient 

amplitude of the image at pixel ( , )i j . Based on this 

update mechanism, the diffusion coefficient can be 

dynamically adjusted based on the local features of the 

image, thereby achieving finer and more efficient 

denoising effects. Figure 3 illustrates the complete 

pipeline of the proposed image-enhancement algorithm. 

The flowchart traces the entire chain from the noisy input 

to the final enhanced result and highlights the central 

iterative loop driven by nonlinear dynamic diffusion. 

Input: noisy fire scene image

Fourier transform and 

frequency-domain filtering

Invert to the spatial domain

Calculate the dynamic 

diffusion coefficient

Calculate the 

image gradient

The finite difference 

method is used to 

solve PDE

Update the image

Has it been achieved

Number of iterations N?

Output: Enhanced denoised image

Core iterative processing

Yes

No

 

 

Figure 3: Flowchart of image enhancement algorithm based on dynamic system 

 

As shown in Figure 3, the enhancement algorithm first 

preprocesses the input image through Fourier transform 

and frequency domain filtering to effectively remove 

high-frequency noise. It then proceeds with the core 

nonlinear dynamic diffusion iterative process, which 

progressively optimizes image quality by calculating 

image gradients, dynamically adjusting diffusion 

coefficients, and solving partial differential equations. 

This iterative mechanism ensures that the algorithm can 

suppress noise while adaptively preserving edge 

structures. Ultimately, after a preset number of iterations, 

an enhanced image with improved clarity is output. 

Enhancement parameters: Diffusion threshold k=0.05, 

dynamic-adjustment weight α=1.0, decay λ=0.1, time 

step Δt=0.1, and number of iterations N=50. 

Implemented with finite differences: Spatial derivatives 

via central difference, and temporal integration via 

explicit Euler. Δt guarantees stability, and N is set based 

on validation set convergence. 

 

 

 

To evaluate enhancement quality, the enhanced images 

are input to a ResNet-18 classifier initialized with 

ImageNet weights and fine-tuned for three classes 

(fire/smoke/background) using SGD (lr=0.001) and 

cross-entropy loss. All comparison experiments use the 

same architecture and hyperparameters. The denoising 

process for fire scene images is shown in Figure 4. 

Figure 4 shows the flowchart of image denoising 

processing. Starting from the input of the original image, 

the image is changed from the spatial domain to the 

frequency domain through FT. The high-frequency 

noise is filtered out in the frequency domain. The image 

is transformed back to the spatial domain through 

inverse FT. Nonlinear diffusion processing is then 

performed to dynamically adjust the diffusion 

coefficient. Finally, the denoised image is output. The 

entire process ends. 
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Figure 4: Pipeline of the proposed image denoising 

algorithm 

 

2.2 Construction of fire scene image 

segmentation model based on dynamic 

model 
In addition to image enhancement processing, image 

segmentation is also an important part of fire scene 

image processing. In fire scene images, there are usually 

problems such as difficulty in distinguishing the flame 

area from the background and difficulty in target 

localization. Image segmentation can separate different 

regions such as flames and backgrounds, thereby 

precisely positioning flame states. The commonly used 

image segmentation model previously is the Geodesic 

Active Contour (GAC) model, which is an image 

segmentation method based on curve evolution. Its core 

idea is to drive the curve to move towards the edge of 

the image by minimizing the energy function. The 

energy function of the GAC is defined in equation (9). 

 

( )
C

E C G I ds=   ∣ ∣            (9) 

 

In equation (9), C  represents the evolution curve. G  

represents a Gaussian function.   represents the 

standard deviation. I  represents the input image.   

represents convolution operation. Based on this energy 

function, the curve evolution equation is derived, as 

presented in equation (10). 
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       (10) 

 

In equation (10), div  represents the divergence 

operator, which is used to measure the degree of 

divergence of the unit vector field. The gradient operator 

C  acts on curve C , representing the gradient of 

curve C . The GAC model has achieved certain results 

in edge detection and complex image structures, but it 

has limitations such as poor segmentation performance 

in weak edge regions and low computational efficiency, 

which will significantly affect the segmentation effect. 

To address these issues, a gradient adaptive extended 

GAC model based on dynamic systems is proposed. By 

introducing dynamic mechanisms and gradient 

adaptation terms, it is possible to better adapt to 

complex edges and noise interference in images. The 

study first improves the energy function of the GAC 

model to balance the relationship between edge 

detection and curve smoothing, and enhances the 

model's adaptability to complex images. The improved 

energy function is defined in equation (11). 

 

2( ) ( ) ( ) ( )E C g I h I dxdy
t


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

 
=  +       
 ∣ ∣  (11) 

 

In equation (11),   represents the domain of the 

image.   represents the level set function used to 

implicitly represent the segmentation curve C .   and 
  represent regularization parameters used to balance 

the contribution of energy terms.   is the gradient of 

the level set function  , representing the direction and 

rate of change of curve C . ( )h I  represents a 

function related to the image gradient I , typically 

used to further emphasize certain features in the image. 

( )g I  indicates the introduced edge indicator function, 

as shown in equation (12) [16]. 

 

2

1

1
( )g I

G I

=
+  ∣ ∣

         (12) 

 

To present the distribution of each component of the 

improved energy function and its guiding effect on the 

segmentation curve more clearly, the process is shown 

in Figure 5. 
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Figure 5: Schematic diagram of the improved energy function structure 
 

Figure 5 displays the schematic diagram of the improved 

energy function. It is based on a three-dimensional 

coordinate system and includes four energy terms: 

regularization, image gradient correlation, edge 

indication, and gradient adaptation. Different terms 

represent different surface features. Finally, the total 

energy function is generated by superimposing each term. 

To solve the applicability of complex edges, a gradient 

adaptive term ( )h I  is introduced in the study, as 

shown in equation (13) [17-18]. 

 
2

  ( ) Ih I e −  = ∣ ∣            (13) 

 

In equation (13),   represents the parameter that 

controls the gradient effect. Curve evolution starts from a 

circle centred on the image. The maximum iteration is to 

run 200 steps, or until the relative change of the level set 

function drops below 10-6, whichever occurs first. To 

maintain numerical stability, the level-set function is 

re-initialized to a signed-distance function every 20 

iterations. The gradient calculation module plays a key 

role in extracting image gradient information, and its 

internal refinement execution process is shown in Figure 

6. 

As shown in Figure 7, the segmentation algorithm begins 

with initializing the level-set function and computing 

image-gradient features. By incorporating a 

gradient-adaptive term, the core curve-evolution 

iterations become markedly more sensitive to weak edges. 

In each iteration, the algorithm aggregates all energy 

components, updates the level-set function, and 

periodically re-initializes it to preserve numerical 

stability. This dynamic process drives the contour to 

converge accurately onto the true fire-and-smoke 

boundaries. Segmentation parameters: Regularization 

weight μ=0.2, gradient weight ν=1.5, gradient-adaptive 

coefficient λ_g=2.0, time step Δt=0.5, max iterations 

M=200, re-initialization every 20 steps, and convergence 

threshold 10-6. 
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Figure 6: Flowchart of gradient adaptive term calculation 
 

Figure 6 displays the flowchart of introducing adaptive 

terms into the model. Firstly, the gradient information of 

the input image calculates the gradient amplitude. The 

amplitude calculation is done by adding the squares of 

the horizontal and vertical gradient components and then 

square them. Next, a gradient adaptive term is introduced 

into the obtained results. Finally, the optimized results 

are output. The study ultimately optimizes the curve 

evolution equation to improve the efficiency of 

segmenting curves and the ability to track complex edges. 

The improved evolution equation is shown in equation 

(14). 

 

( )[ ( ( ) ( ) ) ]  g I h I
t


     


=       + 


∣ ∣   (14) 

A dynamic model-based fire scene image segmentation 

model is constructed, which introduces gradient adaptive 

term, regularization term, and dynamic mechanism, 

effectively improving the accuracy and robustness of fire 

scene image segmentation, and providing more accurate 

and reliable image segmentation results for fire scene 

processing. Figure 7 depicts the execution logic of the 

segmentation model. The flowchart systematically maps 

the entire pathway from image input to 

segmentation-mask generation, emphasizing the iterative 

evolution mechanism of the gradient-adaptive 

active-contour model.
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Figure 7: Flowchart of image enhancement algorithm based on dynamic system 

 

The evolution equation is discretized by central finite 

differences and integrated with explicit Euler. 

Re-initialization preserves stability, and iterations stop 

when either M is reached or the level-set change falls 

below 10-6. A dynamic model-based fire scene image 

segmentation model is constructed based on this 

research, and its structural flowchart is shown in Figure 

8. 
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Figure 8: Flowchart of the fire scene image 

segmentation model 

 

In Figure 8, starting from the input image, the gradient 

calculation module extracts gradient information, and 

the dynamic parameter initialization module completes 

parameter settings. The two are jointly input into the 

energy function construction module to generate the 

energy function. The energy function is input into the 

curve evolution module for processing, and the 

segmentation curve and evolution result are output to 

ultimately segment the output image. 

All classification tasks should use a unified threshold 

selection protocol. To enhance image classification, 

softmax-maximum probability is directly used. Binary 

segmentation masks are generated with Otsu’s adaptive 

threshold automatically computed on each image. 

Multi-class segmentation uses one-vs-rest to determine 

per-class thresholds. Every threshold is validated on an 

independent validation set to guarantee generalisability. 

The algorithm code is shown below. 

 

Algorithm 1: Dynamic system-based fire image 

processing pipeline 

Input: Raw fire scene image I 

Output: Enhanced image I_enhanced, Segmentation 

mask M 

 

// Stage 1: Image Enhancement via Nonlinear Dynamic 

Diffusion 

1. Preprocess: Normalize I to [0,1] range 

2. Apply Fourier Transform to I → I_freq 

3. Filter high-frequency noise in frequency domain 

4. Apply Inverse Fourier Transform → I_preprocessed 

5. Initialize: I_current = I_preprocessed 

6. Set diffusion parameters: k=0.05, α=1.0, λ=0.1, 

Δt=0.1, N=50 

7. For n = 1 to N iterations: 

   a. Compute image gradient ∇I using Sobel operator 
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   b. Calculate gradient magnitude |∇I| 

   c. Compute dynamic diffusion coefficient 

c_dynamic (Eq. 5) 

   d. Solve PDE using finite difference method (Eq. 3, 

6, 7) 

   e. Update: I_current = I_current + Δt * ∂I/∂t 

8. Output enhanced image I_enhanced = I_current 

 

// Stage 2: Image Segmentation via Gradient-adaptive 

GAC 

9. Initialize level set function φ as signed distance 

function 

10. Compute image gradient |∇I_enhanced| and edge 

indicator g (Eq. 12) 

11. Set segmentation parameters: μ=0.2, ν=1.5, λ_g=2.0, 

Δt=0.5, M=200 

12. For m = 1 to M iterations: 

    a. Calculate gradient adaptive term A_g (Eq. 13) 

    b. Compute curve evolution (Eq. 14) using finite 

differences 

    c. Update: φ = φ + Δt * ∂φ/∂t 

    d. If m mod 20 == 0: reinitialize φ to signed 

distance function 

    e. If ||φ_new - φ_old||/||φ_old|| < 1e-6: break 

13. Extract zero level set: M = { (x,y) | φ(x,y) ≥ 0 } 

14. Output segmentation mask M 

 

3 Results 

3.1 Validation of fire scene image 

enhancement model based on dynamic 

system 
The study implements the construction process of the 

model in the above content. To verify the actual 

effectiveness, the performance is demonstrated by 

comparing typical indicators. Before conducting the 

experiment, the experimental environment requires 

sufficient hardware performance support and stable 

software assistance. Table 2 presents the hardware and 

software parameters. 

 

Table 2: Hardware and software configuration 

 

Classification Name Model 

Hardware 

Computer 
Dell precision 

tower 7000 

Image 

acquisition card 
Matrox solios 

Camera FLIR A65 SC64 

Monitor 
Dell ultraSharp 

24-inch 

Server 
HP proLiant 

dL380 gen10 

Software 

Operating 

system 

Windows 10 Pro 

64-bit 

Programming 

language 
Python 3.8 

Deep learning 

framework 
TensorFlow 2.4.1 

Image 

processing 

library 

OpenCV 4.5.1 

Data analysis 

tool 
MATLAB R2021a 

 

After setting up the experimental environment based on 

the configuration parameters shown in Table 2, the 

study introduces two test datasets RFSIE and NTIRE to 

verify the enhancement effect of fire scene images. The 

RFSIE dataset is a specialized dataset for fire scene 

image enhancement tasks, mainly used to study 

dehazing and enhancement algorithms for fire scene 

images. The NTIRE competition dataset is a 

high-quality dataset widely used for image enhancement 

tasks, suitable for evaluating image dehazing algorithms. 

Both datasets have high practicality and 

representativeness in the field of fire scene image 

enhancement, and can provide strong data support for 

experiments. The official segmentation method is used 

to randomly divide the data into a training set (70%), a 

validation set (20%), and a testing set (10%). All images 

are re-sized to 512×512 pixels and normalized to the 

[0,1] range. Enhancement quality is gauged by a 

ResNet-18 classifier: ImageNet-pre-trained, output layer 

fine-tuned for three classes, trained for 50 epochs with 

SGD; this identical setup is used in all comparative 

experiments. ImageNet undergoes pre-training and 

fine-tunes the output layer for three categories, training 

with SGD for 50 iteration cycles The same settings are 

used in all comparative experiments. Signal-to-Noise 

Ratio (SNR) is the ratio of signal to noise intensity, 

which can intuitively reflect the effectiveness of noise 

reduction. The Peak SNR (PSNR) reflects the noise 

reduction, which is used to quantify the effect of noise 

reduction on image detail restoration. The Structure 

Similarity Index (SSIM) measures the image similarity 

based on brightness, contrast, and structure, and 

evaluates the performance of denoising algorithms in 

preserving image texture and structure. The following 

study compares the three indicators of different 

algorithms on different test sets to verify the denoising 

effect, as shown in Figure 9. 
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Figure 9: Comparison of denoising performance indicators of different models 

 

Figure 9 (a) and (b) compare the denoising performance 

on the RFSE and NTIRE20 datasets, respectively. On 

the RFSIE dataset, the PSNR index value of the 

proposed denoising processing increased by 20%, 15%, 

and 10% respectively compared to the median filtering, 

Gaussian filtering, and bilateral filtering denoising 

models. The SNR indicators were about 15%, 10% and 

8% higher, respectively. On the SSIM index value, the 

median filtering, Gaussian filtering, and bilateral 

filtering denoising models were about 15%, 10%, and 

5% higher, respectively. On the NTIRE20 dataset, the 

proposed denoising processing showed an improvement 

of approximately 25%, 20%, and 15% in PSNR metrics 

compared to median filtering, Gaussian filtering, and 

bilateral filtering denoising models, respectively. The 

SNR indicators improved by about 20%, 15%, and 12% 

respectively. The SSIM of the proposed denoising 

method increased by about 20%, 15%, and 10% 

compared to the median filtering, Gaussian filtering, and 

bilateral filtering denoising methods. The proposed 

denoising processing outperforms other models on 

denoising performance indicators. The following study 

aims to verify the performance improvement effect of 

various denoising algorithms during the training process. 

By gradually increasing the iteration, the performance 

improvement effect is compared, as presented in Figure 

10. 

Figures 10 (a) and (b) compare the SNR and PSNR 

metrics of different denoising models on the training set. 

As the training rounds increased, the SNR index of the 

dynamical system improved by an average of about 

42.6% compared to median filtering, 38.1% compared 

to Gaussian filtering, and 29.8% compared to bilateral 

filtering. The PSNR index of the dynamic system had an 

average improvement of about 27.1% compared to 

median filtering, about 28.0% compared to Gaussian 

filtering, and about 16.5% compared to bilateral filtering. 

These data indicate that the dynamic system 

outperforms other models in terms of training efficiency. 

To verify the classification ability of fire scene images, 

the confusion matrix is taken to compare the 

classification accuracy, as shown in Figure 11. 
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Figure 10: The performance variation trends of different denoising algorithms on the training set 

 



Dynamic System-Based Image Enhancement and Segmentation… Informatica 49 (2025) 23–38 33 
 

Flame

Smoke

Backg

round

T
ru

e 
la

b
le

Predicted label

200

160

120

80

40

0

130 40 30

35 155 10

15 10 175

(a) Median filtering confusion matrix

Flame Smoke

Backgr

ound

Flame

Smoke

Backgr

ound

T
ru

e 
la

b
le

Predicted label

120 50 30

40 150 10

10 15 175

(b) Gaussian filter confusion matrix

Flame Smoke

Backgr

ound

Flame

Smoke

Backg

round

T
ru

e 
la

b
le

Predicted label

140 30 30

25 165 10

10 10 180

(c) Bilateral filtering confusion matrix

Flame Smoke

Backgr

ound

Flame

Smoke

Backgr

ound
T

ru
e 

la
b

le

Predicted label

170 20 10

10 180 10

5 5 190

(d) Dynamic system confusion matrix

Flame Smoke

Backgr

ound

200

160

120

80

40

200

160

120

80

40

200

160

120

80

40

 
Figure 11: Comparison of confusion matrices of different models in fire scene image enhancement tasks 

 

Figures 11 (a), (b), (c), and (d) show the confusion 

matrices of actual image enhancement effects for 

different models. Through comparative analysis, the 

accuracy of flame classification based on the dynamic 

system model improved by about 30.8% compared to 

median filtering, about 41.7% compared to Gaussian 

filtering, and about 21.4% compared to bilateral filtering. 

In smoke classification, the classification accuracy of the 

dynamic system was 16.1% higher than that of median 

filtering, about 20% higher than that of Gaussian filtering, 

and about 9.1% higher than that of bilateral filtering. In 

background classification, the classification accuracy of 

the dynamic system increased by about 8.6% compared 

to median filtering, about 8.6% compared to Gaussian 

filtering, and about 5.6% compared to bilateral filtering. 

These data indicate that the dynamic system model can 

more accurately identify and distinguish features of 

different categories, with better classification 

performance and generalization ability. 

 

Table 3: Post-enhancement classification performance 

metrics 

 

Category Precision Recall F1-score Support 

Flame 0.94 0.92 0.93 1500 

Smoke 0.88 0.86 0.87 1200 

Background 0.96 0.97 0.965 2300 

Macro Avg 0.927 0.917 0.922 5000 

 

In Table 3, the proposed dynamic system model achieved 

a precision of 94% and a recall of 92% in flame 

classification. The dynamic enhancement pipeline 

enhances the discriminative features and outperforms all 

baselines in performance. 

 

3.2 Validation of fire scene image 

segmentation model based on dynamic 

model 
The research focuses on the performance verification in 

fire scene image segmentation tasks. Two datasets, 

FLAME Dataset and Fire Segmentation Dataset, are 

selected for the study. The FLAME Dataset includes 

forest burning debris images collected by drones, suitable 

for object detection and image segmentation tasks, and 

can help researchers establish fire detection and 

segmentation models. The Fire Segmentation Dataset 

contains various fire scenarios that are carefully 

annotated to ensure the accuracy of segmentation masks, 

making it suitable for training and validating fire 

segmentation models. The dataset is randomly split into 

training (60%), validation (20%), and test (20%) subsets. 

Images are re-sized to 640×640 and augmented by 

random horizontal flip (p=0.5) and random rotation 

(±15°) to improve generalization. Ground truth is 

provided as pixel-wise binary segmentation masks. To 

assess stability and statistical significance, the 5-fold 

cross-validation is conducted. As summarized in Table 4, 

the proposed method achieved a mean segmentation 

accuracy of 89.3% (±0.4%) on the FLAME dataset, 

significantly outperforming that of U-Net’s 85.8% 

(±0.6%). A paired t-test confirmed that this improvement 

was statistically significant (*p*<0.01). 

Statistical results confirmed that the proposed method 

achieved the best mean performance on all datasets, with 

consistently lower standard deviations, indicating 

superior stability. Moreover, all key comparisons were 

statistically significant (*p*<0.05), ensuring that the 

observed improvements were not due to random 

variation, providing statistical evidence for the method’s 

effectiveness and reliability. In the comprehensive 
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evaluation, key indicators like accuracy, recall, F1-score, 

and intersection over union ratio are selected for 

comparison. These indicators reflect performance such as 

classification accuracy, positive sample recognition 

ability, comprehensive balance performance, and 

segmentation region overlap. The comparison is shown 

in Figure 12. 

 

 

Table 4: 5-fold cross-validation performance comparison of image segmentation models 

 

Model 
FLAME Dataset 

(Accuracy) 

*p*-value vs. 

Proposed Method 

Fire Segmentation 

Dataset 

(IoU) 

*p*-value vs. 

Proposed Method 

FCN 0.839 ± 0.009 < 0.001* 0.798 ± 0.011 < 0.001* 

U-Net 0.858 ± 0.006 0.003* 0.818 ± 0.008 0.007* 

Proposed Method 0.893 ± 0.004 - 0.869 ± 0.005 - 
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Figure 12: Performance comparison of different segmentation models on two datasets 

 

Figures 12 (a) and (b) present the performance metrics 

comparison on the FLAME and Fire Segmentation 

datasets. On the FLAME dataset, the accuracy based on 

the dynamic system model improved by 5.56% compared 

to FCN, 3.26% compared to U-Net, and 11.76% 

compared to Mask R-CNN. The recall increased by 

13.33%, 6.25%, and 21.43% respectively, the F1-score 

increased by 12.5%, 5.88%, and 20%, and the IoU 

increased by 14.29%, 6.67%, and 23.08%. On the Fire 

Segmentation dataset, its accuracy improved by 5.38% 

compared to FCN, 3.16% compared to U-Net, and 8.89% 

compared to Mask R-CNN, the recall increased by 

12.82%, 7.32%, and 17.33% respectively, the F1-scores 

increased by 9.41%, 5.68%, and 13.41%, and the IoU 

increased by 13.33%, 9.09%, and 21.43%. This indicates 

that the module based on dynamic systems has 

significant performance advantages in fire scene image 

segmentation tasks. In the verification of actual 

performance, the study also uses confusion matrices for 

comparison to validate the performance of the model, as 

shown in Figure 13. 

According to Figures 13 (a) and (b), the dynamic system 

model outperformed the U-Net model in the 

classification tasks of flames, smoke, woods, and 

buildings. Specifically, there was a 14.29% improvement 

in flame classification, a 6.25% improvement in smoke 

classification, a 5.88% improvement in woods 

classification, and a 2.86% improvement in building 

classification. This demonstrates a significant advantage 

in accuracy when dealing with flame segmentation tasks 

based on the dynamic system model.  

Table 5 indicates that the gradient-adaptive 

active-contour model maintains high F1-scores across all 

categories, with particularly strong performance on flame 

and smoke detection, underscoring its precise recognition 

capability for fire-related features. The following study 

compares the performance and effectiveness of the 

research model in terms of accuracy, as shown in Figure 

14. 

 

Table 5: Post-enhancement classification performance 

metrics 

 

Category Precision Recall F1-score Support 

Flame 0.91 0.89 0.9 1800 

Smoke 0.85 0.83 0.84 1400 

Woods 0.93 0.95 0.94 2200 

Building 0.9 0.88 0.89 1600 
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Figure 13: Comparison of confusion matrices of different models 

 

1

0.95

0.9

0.85

0.8

0.75

0.7

Sample index

A
cc

u
ra

c
y
 (

%
)

(a) Comparison chart of segmentation accuracy 

rates of different models

U-Net model

Dynamic system

0 1 2 3 4 5 6 7 8 9 10

Sample index

(b) The classification accuracy rate of flame 

categories in different models

U-Net model

Dynamic system

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

c
y
 (

%
)

1

0.95

0.9

0.85

0.8

0.75

0.7

 

 

Figure 14: Comparison of accuracy rates of different models 

 

Figures 14 (a) and (b) compare the segmentation 

accuracy and flame category classification accuracy. 

Specifically, the segmentation accuracy based on the 

dynamic system model was about 4.5% higher than that 

of U-Net. The accuracy of flame category classification 

was about 4.8% higher. This verifies that the dynamic 

system has better performance and reliability in flame 

recognition. To evaluate the robustness of the proposed 

method under extreme conditions and its advantages over 

dynamic control strategies, this study compares the 

segmentation performance of different methods in 

extreme environments, focusing on key metrics and 

dynamic control strategies, as detailed in Figure 15.
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Figure 15: Comparison and verification of robustness in extreme scenarios and dynamic control strategies 
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Figure 15 illustrates the performance superiority of the 

proposed method under extreme scenarios and its 

practical application compared with existing dynamic 

control strategies. In the standard scenario shown in 

Figure 15(a), the proposed method achieved an IoU of 

0.896, representing a 4.1% improvement over the U-Net 

baseline. In the most challenging small-flame target 

detection scenario, the method attained an IoU of 0.851, 

outperforming U-Net by 14.2%, FCN by 22.6%, and 

Gaussian filtering by 39.5%. Under heavy smoke 

interference, the method maintained an IoU of 0.882, 

marking a 10.1% improvement over U-Net. In strong 

glare conditions, it reached an IoU of 0.868, surpassing 

U-Net by 10.2%. In the dynamic control strategy 

comparison presented in Figure 15(b), the proposed 

method achieved an IoU of 0.896, exceeding adaptive 

backstepping control by 37.4% and nonlinear optimal 

control by 30.8%. Additionally, the method led 

comprehensively in two critical metrics: F1-score (0.934) 

and accuracy (0.957), showing improvements of 3.5% 

and 2.8% respectively over the U-Net baseline. These 

quantitative results consistently demonstrate that the 

proposed method significantly enhances adaptability and 

detection stability in extreme scenarios while 

maintaining high precision. In addition to accuracy, 

computational efficiency is crucial for field deployment 

in time-critical tasks such as wild-fire monitoring. 

Therefore, Table 6 comprehensively compares the 

computational demands of all evaluation models. 

In Table 6, the enhancement step took 1.5s, which was 

longer than that of conventional filters, but with 

significantly higher quality. The segmentation was 

completed within 2.3s, outperforming all comparison 

deep learning models while providing the highest 

accuracy. The complexity was O(N·M·T) for 

gradient-driven finite-difference updates (N, M = image 

size, T = iterations), giving predictable cost for 

high-resolution inputs. Although CNNs have faster 

inference speeds, their training requires more resources. 

Overall, the method offers a practical trade-off between 

precision and speed, well-suited to quasi-real-time 

wild-fire monitoring where extreme latency is not 

critical but high accuracy is mandatory. 

 

Table 6: Computational efficiency comparison of 

different models 

Model 

Average 

Processing Time 

(s) 

Peak Memory 

Usage  

(MB) 

Median Filtering 0.1 50 

Gaussian Filtering 0.08 45 

Bilateral Filtering 0.5 60 

Proposed 

Enhancement Model 
1.5 300 

FCN 3.2 1,200 

U-Net 2.8 1,100 

Mask R-CNN 8.5 2,500 

Proposed 

Segmentation Model 
2.3 1,000 

 

4 Discussion 
The proposed model recasts image processing as 

spatio-temporal evolution, mirroring control-theoretic 

treatment of uncertain nonlinear systems. Compared 

with adaptive backstepping control [19], nonlinear 

optimal control [20], adaptive fuzzy control [21], robust 

neuro-adaptive control [22], and high-gain 

observer-based control [23], it achieves superior 

segmentation accuracy. Classical controllers stabilize 

low-dimensional, well-defined dynamics via Lyapunov 

theory [19, 20, 24]. Directly transmitting to 

high-dimensional images faces obstacles in terms of 

dimensionality and dynamic clarity. By embedding 

evolution in the gradient domain, the proposed method 

avoids these obstacles: The dynamic-adjustment and 

gradient-adaptive terms serve as spatially distributed 

controllers that modulate diffusion locally without an 

explicit global dynamic model. The PDE theory ensures 

the stability of curve evolution, and convergence comes 

from minimizing the energy functional. 

This image-centric design maintains theoretical rigor 

while demonstrating unique value in real-world 

scenarios such as wildfire monitoring. The local 

adaptability of this model can robustly handle 

environmental uncertainties such as lighting changes 

and occlusion, providing reliable support for fire 

detection in drone patrols and emergency response. 

Future work will focus on model lightweighting to 

facilitate deployment in practical systems. 

The dynamic system model for fire image processing is 

experimentally validated. Its gain depends on two 

adaptive terms: A dynamic adjustment term that 

balances denoising and edge preservation on pixels, and 

a gradient adaptation term that promotes evolution at 

weak edges and repairs classical active contour defects. 

Cross-dataset testing has shown stable advantages, but 

has revealed accuracy limits related to data complexity. 

The limitations lie in the fact that speed iteration 

optimization is not yet ultra real-time, and its robustness 

has not been tested in extreme weather conditions. 

Future work will reduce the burden on algorithms and 

make them more robust in harsher scenarios.5 

Conclusion 

A comprehensive image processing method based on 

dynamic models was proposed to address the 

insufficient edge detection accuracy, limited dynamic 

detection capability, and insufficient details in smoke 

images in traditional fire scene image processing 

systems. This study introduced nonlinear dynamic 

models and dynamic parameter adjustment mechanisms 

to efficiently suppress noise in fire scene images and 

achieve edge segmentation detection of flames and 

smoke. The proposed enhancement model improved the 

PSNR index by about 20% compared to median filtering 

on the RFSIE dataset and by about 25% on the 

NTIRE20 dataset. In terms of image segmentation, the 

accuracy on the FLAME dataset improved by 5.56% 

compared to FCN, and the IoU on the Fire Segmentation 

dataset improved by 9.09% compared with U-Net. In 

addition, in the classification task, the proposed model 
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improved the accuracy of flame classification by about 

30.8% compared to median filtering, about 41.7% 

compared with Gaussian filtering, and about 21.4% 

compared with bilateral filtering. In terms of smoke 

classification, they increased by about 16.1%, 20%, and 

9.1% respectively. In the background classification, 

there were improvements of approximately 8.6%, 8.6%, 

and 5.6%, respectively. In the flame category 

classification of image segmentation, the accuracy 

improved by about 4.8% compared to the U-Net model. 

Overall, the research has shown excellent results in 

improving the clarity and segmentation accuracy of fire 

scene image processing. However, the real-time 

performance and the ability to handle extreme weather 

fires still need improvement. Future research will 

optimize the computational efficiency and combine 

multi-source data to enhance the robustness to better 

adapt to diverse fire scenarios. 
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