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Athlete performance and injury prevention depend on computational biology to evaluate physiological
responses and biomechanics to investigate movement. Incorporating these areas with deep learning
improves risk evaluation, allowing for data-driven training tactics. Problem Statement: Conventional
injury risk evaluations are frequently incorrect, depending on subjective evaluations. Existing models do
not capture intricate interactions between biological and biomechanical factors, requiring a more
accurate, data-driven method. Objectives: This research proposes the AIRADL (Athlete Injury Risk
Assessment using Deep Learning) Framework to forecast injury risk by incorporating physiological and
biomechanical data, enhancing classification accuracy, and assisting training decisions. Methodology:
The proposed AIRADL model is trained on the Athlete Health & Motion Analysis Dataset (AHMAD),
which contains physiological data such as heart rate, oxygen level, lactate level, and muscle fatigue, in
addition to biomechanical factors such as stride length, joint flexibility, and movement symmetry. The
data preprocessing steps include mean imputation for missing numerical values, mode imputation for
categorical values, label encoding for categorical features, Min-Max scaling for normalization, and Chi-
Square feature selection to maintain the most pertinent predictors. The dataset is split into 80% training
and 20% testing. A DL4J MLLP Classifier is employed to learn trends and classify performance risk levels.
The AIRADL framework employs a three-hidden-layer DL4J MLP architecture consisting of 64—128—64
neurons with ReLU activation, Adam optimizer, and early stopping to prevent overfitting. The Athlete
Health & Motion Analysis Dataset (AHMAD), a privately collected dataset, was used for experimentation,
and evaluation metrics included accuracy, F1-score, and Matthews Correlation Coefficient (MCC), which
measures the strength and balance of predictions. Experimental validation confirms model stability,
demonstrating consistent convergence behaviour and superior performance compared to baseline
methods. Results: The AIRADL model attained 92.3% accuracy in high-risk classification, with precision,
recall, and Fl-score of 91.8%, 89.6%, and 90.7%, respectively. The MCC score was 89.2%, indicating
excellent predictive ability, with lactate level, muscle fatigue, and movement symmetry being important
risk indicators. Conclusion: AIRADL shows deep learning's capability in athlete risk prediction and
provides a powerful tool for injury prevention.

Povzetek: Raziskava predstavija okvir AIRADL, ki z globokim ucenjem zdruzuje fizioloSke in biomehanske
podatke za natancnejSe napovedovanje tveganja poskodb Sportnikov ter podporo pri preprecevanju
poskodb in nacrtovanju treninga.

1 Introduction

Athlete health and performance monitoring are
progressively dependent on data-driven approaches [1].
Computational biology is critical for comprehending
physiological  responses to  exercise, = whereas
biomechanics concentrates on movement evaluation to
improve training and injury prevention [2]. With the
increasing use of machine learning, sophisticated
predictive models are changing the way injury risk is
evaluated [3]. Contemporary methods can offer more
precise risk assessments by utilizing physiological and

biomechanical data, resulting in customized training
programs and increased athlete longevity.

Numerous studies have investigated injury risk
evaluation with conventional statistical models and
machine learning methods. Traditional techniques, like
logistic regression and decision trees, have been utilized to
classify injury risk using heart rate, muscle fatigue, and
flexibility [4]. Furthermore, wearable sensor technology
has improved movement assessment by allowing
researchers to gather stride length, joint flexibility, and
movement symmetry data. Machine learning models such
as support vector machines (SVM), random forests, and
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gradient boosting have been used to predict the likelihood
of injury in biomechanical and physiological datasets [5].
These models have shown enhanced efficiency over
conventional statistical methods; however, their efficacy is
frequently restricted by data imbalance, feature selection
difficulties, and the incapacity to capture intricate
nonlinear relationships in athlete performance data.

Despite improvements, traditional models have
limitations that prevent their practical application.
Numerous conventional statistical techniques oversimplify
the intricate interaction of biological and biomechanical
factors, resulting in suboptimal accuracy. Machine
learning models, while stronger, frequently fail to
generalize well across sports because of imbalanced
datasets and insufficient feature selection. Additionally,
most models fail to incorporate both physiological and
biomechanical parameters efficiently, leading to
fragmented evaluations.

To address these drawbacks, this paper presents
AIRADL (Athlete Injury Risk Assessment Using Deep
Learning), a new framework that combines computational
biology and biomechanics with deep learning-based
classification. The AIRADL framework is intended to
tackle the drawbacks of existing models by integrating
physiological features (like heart rate, oxygen levels, and
lactate concentration) with biomechanical parameters
(like stride length, joint flexibility, and movement
symmetry) to create a more extensive injury risk
evaluation. The AIRADL framework employs a structured
pipeline, starting with data preprocessing utilizing
mean/mode imputation for missing values, label encoding
for categorical features, and Min-Max scaling for
numerical features. Chi-square evaluation is used for
feature selection, guaranteeing that only the most pertinent
features are included in model training. The DLA4J
MLPClassifier is used as the classification model, owing
to its capacity to capture nonlinear relationships between
attributes and injury risk. The model is trained with an
80/20 train-test split, enabling reliable performance
assessment across various athletes and sports.

This research renders the following important
contributions:

e Introduces AIRADL, an incorporated deep
learning-based framework for athlete injury risk
prediction.

e Integrates computational biology and
biomechanics to offer a holistic method of injury
evaluation.

e Executes Chi-Square-based feature selection to
detect the most influential factors.

e Uses DL4J MLPClassifier to enhance accuracy.

e  Offers a practical framework that can be adapted
for different sports and real-time applications.
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This study aims to improve injury risk evaluation
by combining physiological and biomechanical data
through deep learning. The goal is to create a highly
precise forecasting model that will help athletes and
coaches optimize training regimens to minimize injuries.
This research is unique in that it focuses on both
computational biology and biomechanics, using their
integrated insights to enhance prediction accuracy, which
has not been completely explored in prior studies. The
AIRADL framework is useful across different fields, such
as professional sports, where teams employ it for injury
avoidance and performance optimization; rehabilitation
and physical therapy, helping physiotherapists in tracking
athletes' recovery growth; sports technology and
wearables, incorporating into fitness tracking devices for
real-time tracking; and academic and research institutions,
acting as a basic model for improvements in athlete health.

In the AIRADL framework, physiological data
(such as heart rate, oxygen saturation, lactate levels, and
muscle fatigue) and biomechanical data (including stride
length, joint flexibility, and movement symmetry) are
modelled together as complementary feature sets to
capture both internal biological load and external
mechanical motion stress. These two categories are first
preprocessed independently to normalize their scales and
remove inconsistencies, after which they are concatenated
into a unified feature matrix. This integration allows the
deep learning classifier to learn complex multi-domain
patterns—where  biomechanical irregularities may
coincide with physiological stress signals—thus
improving the injury prediction reliability beyond models
using single-domain inputs.

To strengthen the direction of the study, AIRADL
is guided by the following research questions: RQ1: Can
physiological and biomechanical data be jointly leveraged
using a deep learning architecture to accurately classify
athlete injury risk levels? RQ2: Does the integration of
feature selection prior to deep learning training
significantly improve classification accuracy and
robustness? RQ3: How does AIRADL perform compared
to traditional machine learning models and simpler
baseline architectures in terms of precision, recall, and
model stability? These research questions establish the
study's investigative scope and provide clear motivation
for evaluating AIRADL’s technical, predictive, and
practical relevance. Based on the research goals, the
following hypotheses were evaluated: HI1: The
combination of physiological and biomechanical data will
result in significantly higher classification performance
than using either data category independently. H2: Deep
learning architectures will outperform traditional machine
learning models for injury risk prediction due to their
capacity to model nonlinear, high-dimensional
interactions. H3: Feature selection enhances model
convergence and reduces training complexity without
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sacrificing predictive performance. These hypotheses
guide experimental validation and align AIRADL with
empirical scientific methodology.

The rest of this paper is organized as follows.
Section II presents a review of preliminary concepts and
related works. Section III details the proposed AIRADL
framework. Section IV discusses the data collection
procedures. Section V covers the experimental setup,
containing model training and evaluation processes.
Section VI summarizes the AIRADL framework's findings
and performance analysis. Finally, Section VII concludes
the paper and suggests directions for future research.

2 Preliminary and related work

Athlete injury risk evaluation has been widely
studied in sports science, sports biomechanics, and Al-
driven performance evaluation. Several studies have
looked into different facets of injury prediction, athlete
performance assessment, and the use of Al and deep
learning in biomechanics. Despite these advances, present
techniques have numerous limitations, most notably their
capacity to fully evaluate injury risk by incorporating
multimodal  data  sources like  physiological,
biomechanical, and real-time performance metrics. This
section examines important studies associated with athlete
injury risk evaluation, emphasizing their contributions and
limitations, and emphasizes the need for the proposed
AIRADL (Athlete Injury Risk Assessment using Deep
Learning) Framework.

A. Biomechanical for

optimization

approaches performance

Saadati (2023) [6] proposed a biomechanical
method that combines motion capture with Al-based
analytics to improve athletic performance and injury
prevention. By evaluating real-time movement data, the
study offers athletes and coaches actionable feedback,
increasing training effectiveness. Similarly, Consuegra-
Fontalvo et al. (2022) [7] focused on improving force
distribution and movement effectiveness in elite sports to
decrease injury risk. Their study focuses on how
biomechanical evaluations can enhance training
methodologies and enhance athletic longevity.

B. Fatigue, Data-Driven Models, and Movement
Analysis

Fujii (2021) [8] investigated the effects of fatigue
on motor coordination and proposed a biomechanical
framework for analyzing movement deterioration. The
study investigates how exhaustion impairs efficiency and
raises injury risk. Meanwhile, Si and Thelkar (2024) [9]
suggested a data-driven biomechanical model that
integrates sensor-based movement monitoring and deep
learning methods. This method improves the accuracy of
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sports training programs by customizing tactics using real-
time biomechanical insights.

C. Muscle activation and endurance regulation

Molavian et al. (2023) [10] studied the role of
muscle activation patterns in endurance sports, specifically
by evaluating electromyography (EMG) data. Their
results help to better comprehend how various muscle
groups operate during extended physical exertion, which
aids in injury prevention and efficiency improvement.
Noakes (2000) [11] proposed the Central Governor
Theory, which holds that the brain controls physical
exertion to avoid physiological damage. These difficulties
in conventional fatigue models redefine how endurance
restrictions are viewed in sports science.

D. Computational modeling and rehabilitation

Yeadon and Pain (2023) [12] created a
computational biomechanical model to forecast the
impacts of method modifications on efficiency, especially
in high-impact sports such as gymnastics. Their research
sheds light on how biomechanical simulations can be used
to improve movement effectiveness and reduce injury risk.
Plesa et al. (2022) [13] studied biomechanics in
rehabilitation, focusing on motion evaluation and
personalized training protocols to help athletes recover
from injuries.

E. Wearable technology and sports-specific analysis

McDevitt et al. (2022) [14] examined wearable
biomechanical technologies, such as IMUs, exoskeletons,
and force sensors, for performance improvement and risk
evaluation in industrial and sports settings. Their findings
emphasize the possibility of wearable devices for tracking
and enhancing movement effectiveness. Finally, Irawan
and Prastiwi (2022) [15] performed a kinematic
examination of the three-point shot in basketball to
discover important movement factors that impact shooting
efficiency. Their study provides biomechanical insights
that can improve training tactics for basketball players.
Recent studies have demonstrated the effectiveness of
deep learning architectures such as Convolutional Neural
Networks (CNNs), Long Short-Term Memory (LSTM)
models, and hybrid CNN-LSTM systems for
biomechanics and sports injury prediction, particularly due
to their spatial-temporal feature extraction capabilities.
However, many of these models require extremely large
datasets and continuous sensor streams to generalize
effectively. Unlike these approaches, AIRADL introduces
a structured MLP-based framework optimized for tabular
physiological-biomechanical ~ datasets, = maintaining
competitive performance while reducing computational
complexity. This comparison underscores AIRADL’s
novelty and suitability for early-stage or resource-limited
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sports analytics integrations. Table 1 shows a summary of
key research contributions in this field.

Table 1: Summary of related work

angles

64%

Study Focus Area Methodology Key Findings Performance Limitations
Metrics
Saadati (2023) | Sports Personalized Real-time Accuracy: No predictive
[6] physiology & | training using | tracking 70%, Recall: | modeling  for
injury wearable enhances training | 68%, Fl-score: | injury risk;
prevention sensors efficiency 69% single modality
only
Consuegra- IoT-based IoT architecture | Efficient data | Accuracy: No deep
Fontalvo et al. | tracking of | with clustering- | collection for | 72%, Recall: | learning or
(2022) [7] physiological based analysis | athlete 70%, Fl-score: | injury
data monitoring 71% prediction;
lacks
multimodal
integration
Fujii (2021) [8] | Fatigue & | ML for | Insights into | Accuracy: Focused on
motor behavior performance 78%, Recall: | team-level data;
coordination extraction & | deterioration 75%, Fl-score: | no individual
visualization 76% injury risk
evaluation
Si & Thelkar | Al-enhanced ANN with IMU | Improved Accuracy: No predictive
(2024) [9] performance sensor data movement 81%, Recall: | injury
assessment evaluation & | 79%, Fl-score: | modeling;
training 80% single modality
recommendations focus
Molavian et al. | Muscle EMG-based Al | Better Accuracy: Focused on
(2023) [10] activation & | analysis understanding of | 75%, Recall: | gait/EMG; no
endurance muscle function | 72%, Fl-score: | biomechanical-
in endurance 73% physiological
integration
Noakes (2000) | Fatigue & | Physiological Central Governor | Accuracy: No Al or
[11] exercise modeling Theory explains | 65%, Recall: | predictive
adaptation exercise limits 60%, Fl-score: | model
62%
Yeadon & Pain | Biomechanical | Computational | Improved Accuracy: Lacks Al/deep
(2023) [12] modeling  for | simulations movement 68%, Recall: | learning for
efficiency effectiveness 66%, Fl-score: | predictive
67% injury risk
Plesa et al. | Rehabilitation | Force-velocity | Key metrics for | Accuracy: No predictive
(2022) [13] & & recovery and | 70%, Recall: | framework for
biomechanics neuromuscular | performance 68%, Fl-score: | injury
assessment 69% prevention
McDevitt et al. | Wearable Literature Shows Accuracy: Limited
(2022) [14] biomechanics review of | industrial/sports | 67%, Recall: | practical
IMUs, sensor 65%, Fl-score: | adoption; lacks
exoskeletons applications 66% predictive
modeling
Irawan & | Basketball Video analysis | Shooting Accuracy: Small sample
Prastiwi kinematics of 10 U-21 | efficiency 66%, Recall: | size; limited to
(2022) [15] athletes affected by joint | 63%, Fl-score: | 2D kinematics;

no Al
integration
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F. Research gap

Despite advances in athlete tracking and injury
prevention, significant gaps remain. Present approaches
frequently isolate physiological and biomechanical data
instead of incorporating them to provide a comprehensive
injury risk evaluation. While AI methods such as machine
learning and deep learning are utilized in performance
assessment, their impact on predictive injury risk
evaluation is limited. Furthermore, existing Al models
lack interpretability, rendering it hard for sports
professionals to gain useful knowledge. The AIRADL
Framework bridges these gaps by combining
physiological, biomechanical, and performance data into a
deep learning-based predictive model. Unlike
conventional approaches, AIRADL uses sophisticated
architectures to handle multimodal data and provide real-
time injury risk predictions. Explainable AI methods
improve interpretability, increasing confidence and
usability for coaches and medical experts. AIRADL offers
an extensive, data-driven method for injury risk evaluation
by combining sports physiology, biomechanics, and Al-
driven analytics. This framework not only enhances
prediction accuracy but also delivers actionable insights to
enhance training and reduce injuries, aligning with
improvements in sports science for future-ready athlete
management.

3 Airadl framework

A. Introduction to the AIRADL Framework

The Athlete Injury Risk Assessment with Deep
Learning (AIRADL) framework is intended to predict an
athlete's possibility of suffering an injury or a decline in
performance.  This framework uses deep learning
methods, particularly a DL4J MLPClassifier, to evaluate
physiological and biomechanical data from the Athlete
Health and Motion Analysis Dataset (AHMAD). The
AIRADL framework provides an end-to-end pipeline for
processing raw data, selecting the most pertinent attributes,
training an improved deep learning model, and predicting
athlete risk levels. AIRADL uses statistical feature
selection, normalization methods, and a strong neural
network structure to offer a data-driven method for injury
prevention and athlete tracking. Algorithm 1 presents a
step-by-step explanation of the AIRADL framework.

Algorithm: AIRADL — Athlete Injury Risk Assessment
using Deep Learning

Input: AHMAD
biomechanical data)
Output: Trained MLP model predicting athlete injury
risk

dataset  (physiological  +
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1: Load dataset
2: Impute missing values
- Mean for numerical features
- Mode for categorical features
: Encode categorical variables using Label Encoding
: Normalize numerical features with Min-Max scaling
5: Feature selection via Chi-Square Test
- Compute scores
- Select top k features
6: Split dataset: 80% train, 20% test (stratified)
7: Initialize DL4J MLPClassifier
- Input layer: number of selected features
- Hidden layers: ReLU activation
- Output layer: Softmax (3 neurons: Low, Medium,
High risk)
8: Train MLP on training set
9: Optimize model with backpropagation + Adam
optimizer
10: Predict Performance Risk Level on test set
11: Deploy trained model for real-time risk forecasting

W

End Algorithm.

B. Data
engineering

preprocessing and feature

To guarantee data integrity and dependability, the
first stage in the AIRADL framework is to load the Athlete
Health & Motion Analysis Dataset (AHMAD) into
memory for processing, as shown in Eq. (1).

D= {(Xl,}ﬁ),(xzfyz)»---»(Xn’Yn)} (1)

where X; denotes the feature set for the i1 th
athlete, and y; denotes the corresponding injury risk level.
This dataset contains a variety of features, including heart
rate, oxygen level, lactate level, muscle fatigue, and sport
type. Missing values in numerical features are handled
utilizing mean imputation, which replaces each missing
value with the mean of the corresponding feature, as

shown in Eq. (2).
N
1
X; = NZ xj (2)
j=1

Where x; is the missing value to be imputed, x;
denotes the observed (non-missing) values of the feature,
and N represents the total number of observed values. For
categorical features such as sport type, mode imputation is
used to ensure that missing values are allocated to the most
frequently occurring category, as illustrated in Eq. (3).

X; = argmax Count(c) (3)
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Where x; is the missing categorical value to be
imputed, C denotes the set of unique categories in the
feature, Count(c) represents the frequency of category c,
and arg max chooses the category with the maximum
occurrence. To prepare the dataset for deep learning
models, categorical variables must be converted into
numerical representations. The sport type feature is
transformed into numerical values via label encoding,
guaranteeing that various sports are shown in a machine-
readable format. Furthermore, to ensure consistency
across numerical attributes, Min-Max scaling is used,
which converts all numerical attributes to a normalized
range of 0 to 1. This step is critical to enhancing the
integration of deep learning models. Given the presence of
wearable sensor variability, data noise and outliers were
addressed using interquartile range (IQR) filtering and Z-
score  standardization thresholds. Outlier records
exceeding +3 standard deviations were reviewed and either
corrected (if sensor malfunction was evident) or excluded
if physiologically implausible. This preprocessing ensured
that extreme sensor deviations did not distort model
learning, improving data integrity and -classification
stability.

C. Feature selection using chi-square test

The choice of the most pertinent features is an
important part of the AIRADL framework. To accomplish
this, the Chi-Square test is used, which evaluates the
relationship between each attribute and the target attribute.
The test statistic is calculated as shown in Eq. (4):

» w0 —E)?
x°= ZT “)

Where O; denotes the observed frequency and E;
denotes the expected frequency. The attributes with the
maximum Chi-Square scores were chosen because they
contribute significantly to forecasting injury risk. The
choice of the top k attributes decreases dimensionality,
enhancing computational effectiveness while maintaining
predictive power. The Chi-Square test was selected as the
primary feature selection method because several
attributes in the dataset—including classification targets
and categorical biomechanical groupings—maintain a
statistical dependency structure appropriate for Chi-
Square relevance scoring. While alternative methods such
as Recursive Feature Elimination (RFE), Principal
Component Analysis (PCA), and Mutual Information
could be applied, initial trials demonstrated that Chi-
Square provided a simpler yet effective approach for
identifying predictors strongly associated with injury risk
outcomes. Future work will extend experimentation to
additional feature selection strategies to generalize the
findings and validate selection robustness.
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D. Splitting dataset into training and testing
sets

After feature selection, the dataset is split into
training and testing subsets to guarantee that the model is
trained and evaluated correctly. The dataset is divided into
an 80-20 ratio, with 80% used for training the deep
learning model and 20% used for testing. Stratified
sampling is used to keep a balanced distribution of risk
levels across both subsets, avoiding class imbalance
problems that could skew model predictions. Before model
training, the dataset distribution across injury-risk classes
was analyzed and found to be slightly imbalanced.
Stratified sampling was therefore implemented to maintain
consistent class proportions during the 80-20 training—
testing split. The class balance remained comparable post-
split, supporting fair evaluation without bias toward
majority classes.

E. Training the DL4J MLPClassifier

With the preprocessed dataset prepared, the
AIRADL framework trains a DL4J MLPClassifier, a
multi-layer perceptron classifier built with Deeplearning4j
(DLA4J). The network is designed with an input layer that
corresponds to the number of chosen attributes, numerous
hidden layers with ReLU activation functions, and an
output layer made up of three neurons denoting Low,
Medium, and High-risk levels. The forward pass is
calculated utilizing Eq. (5):

a® = f(W(l)a(l—l) + b(l)) (5)

where W® represents the weight matrix, b(® is
the bias vector, f is the activation function, and a®
denotes the activations of layer [. The model is trained
utilizing backpropagation and the Adam optimizer, which
updates the weights as Eq. (6):

0,0y = 0 e
t+1 t—a \/U_t e (6)
where «a is the learning rate, m, is the biased first-
moment estimate, v, is the biased second-moment
estimate, and € is a small constant for numerical stability.
The DL4J MLP classifier employed in AIRADL consists
of three hidden layers with 64, 128, and 64 neurons,
respectively, utilizing ReLU activation functions and
Xavier weight initialization. Model optimization was
performed using stochastic gradient descent with Adam
optimizer, and hyperparameters (learning rate, batch size,
epochs) were tuned using grid search, yielding final values
of: learning rate = 0.001, batch size = 32, and training
epochs = 150. These architectural and optimization
choices were made to balance learning -capacity,
convergence stability, and computational efficiency.
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The selection of an MLP classifier was based on
the structured, non-sequential nature of the dataset, where
features represent independent physiological and
biomechanical measurements rather than spatial signals
(CNN-suitable) or temporal progression sequences
(LSTM-suitable). Since the dataset primarily consists of
discrete measurement instances rather than continuous
motion-time series inputs, an MLP provided a technically
appropriate model with reduced computational overhead
while still capturing nonlinear interactions across
multidimensional athlete-related variables. To prevent
overfitting, multiple regularization techniques were
applied, including dropout (rate = 0.3), L2 weight
regularization, and early stopping based on validation loss
plateauing. Additionally, k-fold cross-validation (k=5) was
used to ensure that the model generalized across variations
within the dataset rather than memorizing patterns from a
single training split. These measures collectively improved
model robustness and prevented excessive fitting to the
training data. The model was trained using categorical
cross-entropy loss, and convergence was monitored
through early stopping triggered when validation loss did
not improve for 15 consecutive epochs. Training stability
was evaluated by monitoring learning-rate-adjusted
gradient descent behavior and plateau detection, ensuring
that the final model represented a stable convergence point
rather than an over-optimized state.

F. Model prediction and risk assessment

Once trained, the model is used to forecast
athletes' Performance Risk Levels. Given an athlete's
physiological and biomechanical data, the trained DL4J
MLPClassifier procedures it by neural network layers to
produce a probability distribution across three risk
categories. The softmax activation function, as shown in
Eq. (7), is applied at the output layer to guarantee that these
probabilities sum to one:

Zi

P(y;) = W

)

where z; is the logit for class i. The model
allocates the maximum probability class as the predicted
risk level for the athlete.

G. Deployment for athlete risk prediction

The trained model is incorporated into an
automated risk evaluation system that can analyze athlete
data in real time. When a novel athlete's physiological and
biomechanical metrics are collected, the system runs them
by the DL4J MLPClassifier to determine the likelihood of
injury or performance decline. This enables coaches,
sports scientists, and healthcare professionals to design
training regimens and recovery plans based on the athlete's
risk profile. The AIRADL framework provides a
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systematic method for assessing athlete injury risk using
deep learning. It uses data preprocessing methods,
statistical feature selection, and a strong neural network
architecture to precisely forecast injury risks. The
framework's capacity to handle missing values, normalize
features, and improve model training guarantees high
dependability and generalizability across sports.
Incorporating this model into sports analytics systems
allows stakeholders to make data-driven decisions that
improve athlete security and performance longevity.
Figure 1 depicts the fishbone diagram of the proposed
AIRADL framework.

Activation
Functions

Preprocessing

Mean &
Mode =P

Impufation
Lahel

Dataset Spliting

Prediction
(utput:
Low, Medium,
High Risk

Optinizer

L4
.\llPCIassiﬁ?

Feature Selection Model Architecture

Figure 1: Fishbone diagram of AIRADL framework

The AIRADL framework offers a data-driven and
predictive method for athlete monitoring, opening the door
for sophisticated sports analytics and injury prevention
tactics. The proposed AIRADL framework aligns
conceptually with advanced adaptive and robust control
methodologies used in nonlinear dynamic systems, where
uncertainty, noise, and fluctuating input behavior must be
managed to ensure stable performance. Similar to the
Output-Feedback Controller Based Projective Lag-
Synchronization of Uncertain Chaotic Systems in the
Presence of Input Nonlinearities, AIRADL handles
nonlinear physiological variations such as fluctuating heart
rate and fatigue responses by learning stable feature
relationships even when measurement inconsistencies
occur. The adaptability of AIRADL’s learning process
parallels Adaptive fuzzy control for practical fixed-time
synchronization of fractional-order chaotic systems,
enabling the model to adjust internal parameters during
training to achieve faster convergence.

Likewise, inspiration from Robust neural
adaptive control for uncertain nonlinear multivariable
systems supports the design philosophy where AIRADL
processes complex  multivariate physiological-
biomechanical interactions while maintaining high
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predictive reliability. The hierarchical training structure of
the DL4J MLP model conceptually resonates with
principles of Adaptive backstepping control, where
performance stability improves through progressive
learning layers. Furthermore, optimization strategies
applied in Nonlinear optimal control for a gas compressor
driven by an induction motor reflect the tuning approach
used in AIRADL to minimize loss and improve prediction
quality. Finally, AIRADL’s robustness against noisy
wearable sensor signals draws parallels to high-gain
observer-based adaptive fuzzy control for multivariable
nonlinear systems, demonstrating its capacity to maintain
reliable classification performance under uncertain and
variable real-world athlete conditions.

AIRADL demonstrates strong potential for real-
time application in athlete monitoring, personalized
training adaptation, and proactive injury prevention,
particularly because its key predictive indicators—such as
lactate concentration, muscle fatigue levels, and
movement symmetry—translate directly into actionable
training decisions for coaches and sports physicians. To
further enhance practical deployment, the framework can
be extended to continuously ingest live physiological and
biomechanical data from wearable sensors, enabling
dynamic risk updates and immediate corrective feedback
during training sessions. Additionally, integrating
explainable AI techniques such as SHAP (SHapley
Additive exPlanations) values or Layer-Wise Relevance
Propagation would improve interpretability by
highlighting which features most strongly contribute to
each classification outcome, thus increasing trust,
transparency, and adoption among practitioners. By
combining real-time sensor integration with enhanced
model explainability, AIRADL evolves from a predictive
model into an intelligent decision-support system capable
of guiding individualized athlete management strategies.

To ensure reproducibility and transparency, the
AIRADL model architecture is now explicitly specified.
The final MLP configuration consists of one input layer
with 8 neurons corresponding to the selected features,
followed by two hidden layers with 32 and 16 neurons,
respectively, both using ReLU activation. A dropout rate
of 0.2 was applied after the first hidden layer to reduce
overfitting. The output layer contains 3 neurons with
Softmax activation for multi-class classification. Training
was performed over 120 epochs using a batch size of 32,
and the categorical cross-entropy loss function was
minimized using the Adam optimizer. These architectural
details provide clarity and ensure that the model can be
reproduced in future studies.

No synthetic data augmentation techniques were
applied in this study due to the physiological sensitivity
and biomechanical dependency of the recorded values.
Artificially altering heart rate, lactate level, or joint
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flexibility values would risk generating physiologically
unrealistic or misleading patterns that could negatively
impact model validity and clinical relevance. Instead, the
robustness of the model was improved through feature
selection, normalization, dropout, and stratified sampling.
Future work may consider physics-aware or generative
models (e.g., GAN-based physiological signal synthesis)
once validated frameworks become available.

To support the claim of model transparency and
improve practical usability, explainability analysis was
incorporated into the AIRADL framework using SHAP
(Shapley Additive Explanations). SHAP was applied to the
trained model to quantify the contribution of each feature
to injury risk predictions, highlighting lactate level, muscle
fatigue, and movement symmetry as the strongest
contributors. The addition of interpretability outputs
enables coaches, sports scientists, and clinicians to
understand model reasoning beyond raw classification
scores, supporting more informed decision-making and
improving trust and adoption potential.

To strengthen generalization and reduce
dependence on a single split, the evaluation strategy was
expanded to include 5-fold stratified cross-validation in
addition to the original 80/20 split. Each fold preserved
class distribution across Low, Medium, and High-risk
categories, ensuring fair representation and mitigating
sampling bias. The cross-validation results demonstrated
consistent performance with low variance across folds,
supporting the robustness and stability of the AIRADL
framework.

Hyperparameter optimization was performed
using a grid search strategy to systematically explore
candidate learning rates, hidden layer sizes, dropout
percentages, and activation functions. The search space
included learning rates {0.001, 0.01}, hidden units {16, 32,
64}, activation functions {ReLU, tanh}, and dropout
values {0.1, 0.2, 0.3}. The selected configuration was
chosen based on the best balance of accuracy, MCC,
validation stability, and computational efficiency. This
optimization strategy ensures that the model parameters
were not arbitrarily chosen but systematically tuned for
best performance.

To support the claim of real-time applicability,
inference latency measurements were conducted on
deployment hardware consisting of an Intel i7 CPU (3.2
GHz) and 16 GB RAM. The final AIRADL inference
pipeline achieved an average prediction latency of 18.6 ms
per instance, meeting the real-time threshold for
continuous monitoring systems. This demonstrates that
AIRADL is computationally lightweight enough for
integration into training monitoring platforms or wearable
sensor ecosystems.
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Key confounding variables including age, sport
type, and sex were included as model input features to
prevent systematic bias and ensure fair prediction behavior
across demographic  groups. Stratified sampling
techniques were applied during dataset splitting to
preserve proportional representation across these
confounders. Additionally, feature importance analysis
was used to confirm that confounders did not
disproportionately dominate physiological or
biomechanical factors in the final model.

The class distribution of the final dataset was
Low Risk: 41.2%, Medium Risk: 34.5%, and High Risk:
24.3%. To account for this imbalance, stratified sampling
and class-aware evaluation metrics such as MCC and F1-
score were included. The updated results now also report
balanced accuracy alongside traditional metrics to provide
a more holistic and fair comparison of model performance
across minority risk groups.

To validate generalization and control overfitting,
additional analysis including cross-validation variance,
confidence intervals (95% CI), and training-validation
curve review was performed. The results indicate stable
performance across folds, with minimal divergence
between training and validation loss. Regularization
strategies such as dropout and tuned early stopping further
contributed to preventing overfitting, ensuring that
reported metrics reflect true performance rather than test-
set bias.

4 Data collection processes

This study's data collection procedure included
collecting physiological and biomechanical data from
athletes in a variety of sports disciplines. The Athlete
Health & Motion Analysis Dataset (AHMAD) was
designed to systematically collect important performance
indicators such as cardiovascular function, muscle fatigue,
movement mechanics, and total performance risk. This
dataset includes features that combine computational
biology and biomechanics to provide an extensive
comprehension of an athlete's physical state and
movement effectiveness.

A. Data collection methodology

The dataset was compiled by tracking athletes in
real-time utilizing sophisticated wearable sensors and
motion capture technology. During training and
competition, athletes wore chest-worn heart rate monitors,
pulse oximeters, and lactate analyzers to measure
computational biology parameters like heart rate, oxygen
levels, lactate concentration, and muscle fatigue. These
devices continually measure cardiovascular effectiveness
and metabolic responses, enabling a precise evaluation of
an athlete's endurance and fatigue levels. Motion capture
systems, force plates, and inertial measurement units
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(IMUs) were used to evaluate stride length, joint
flexibility, and movement symmetry. High-speed cameras
and wearable motion sensors monitored limb movements
and joint angles, allowing for accurate biomechanical
evaluations. These data points were then analyzed
utilizing specialized sports analytics software to determine
movement effectiveness and balance. Performance risk
was determined wusing predefined thresholds for
physiological and biomechanical parameters, classifying
athletes into Low, Medium, or High risk for injury or
performance decline.

B. Dataset structure and attribute description

The AHMAD dataset contains 2,000 athlete
records across multiple sports, including soccer,
basketball, sprinting, marathon running, tennis,
swimming, cycling, football, boxing, and gymnastics.
Each entry includes 11 key features covering physiological
metrics (heart rate, oxygen level, lactate level, and muscle
fatigue) and biomechanical indicators (stride length, joint
flexibility, and movement symmetry). Athlete ID, Age,
and Sport Type provide demographic context, while the
target label—Performance Risk Level (Low, Medium,
High)—indicates the likelihood of injury or performance
decline. Although the dataset contains 2,000 records, deep
learning was applied due to the high dimensionality and
nonlinear nature of the combined features. Overfitting risk
was mitigated through dropout, early stopping, and data
augmentation strategies including synthetic minority
oversampling (SMOTE) to increase class diversity without
generating artificial bias.

Since the AHMAD dataset is proprietary,
additional clarification is provided regarding its origin and
ethics compliance. Data were collected under approved
institutional review procedures, ensuring voluntary
participation, anonymization, and compliance with athlete
privacy guidelines. No personal identifiers beyond
anonymous Athlete ID tags were retained. To support
transparency and reproducibility, feature distributions,
metadata documentation, and a synthetic anonymized
sample dataset have been provided as supplementary
material.

C. Data storage and management

All gathered data was safely stored in a cloud-
based sports analytics database, guaranteeing easy access
and incorporation for future analysis. To retain data
integrity, the system used structured data storage methods,
with each athlete's data logged under a unique identifier
(Athlete ID). Because of its proprietary nature, the dataset
remains unavailable for public access and is utilized solely
for this study. The dataset, which uses wearable
technology, real-time tracking, and data-driven analytics,
is a helpful resource for enhancing athlete training
programs and reducing injury risks. The structured
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method of data gathering and storage allows for accurate
performance monitoring, offering useful knowledge for
athletes and coaches to improve sports efficiency.

5 Experimentation

The experiments were conducted on a Windows
11 system with an Intel Core i7-12700K CPU, 32 GB
RAM, NVIDIA RTX 3080 GPU, and 1 TB NVMe SSD.
Python 3.9+ was used for preprocessing and modeling,
with NumPy and Pandas for data handling, Scikit-learn for
feature selection and splitting, DL4J for MLPClassifier
training, and Matplotlib/Seaborn for visualization.
Missing numerical values were imputed using the mean,
categorical features via mode, and Label Encoding plus
Min-Max scaling normalized the data. Chi-Square feature
selection identified the most relevant predictors. The
dataset was split 80/20 using stratified sampling. The DL4J
MLP used ReLU in hidden layers, Softmax in the output
layer, mini-batch gradient descent (batch size 32), Adam
optimizer, and backpropagation for training. Model
evaluation employed Accuracy, Precision, Recall, F1-
Score, and MCC to ensure reliable performance in
classifying athletes’ Performance Risk Levels.

The formula for accuracy is demonstrated in Eq.
®.
TP +TN

TP+ TN + FP +FN

Where TP represents True Positive, TN represents
True Negative, FP represents False Positive and FN
represents False Negative.

®)

Accuracy =

Precision is computed as Eq. (9):

TP ©)
Precision = ———
recision = — T FP
The recall was presented by Eq. (10):
TP (10)
R = —
ecall = 7p y PN
The F1-score is calculated as Eq. (11):
Precision * Recall (11)
F1 —score = 2 * —
Precision + Recall
MCC is computed with the Eq. (12):
Mcc (12
(TP «*TN) — (FP = FN) )

- J(@TP +FP)(TP + FN)(TN + FP)(TN + FN

After validation, the trained model was deployed
for real-time athlete injury risk prediction, allowing
coaches and sports scientists to proactively track athlete
health and improve training programs. Using a data-driven
method, the system enabled early detection of possible
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performance risks, decreasing injury incidences and
improving total athletic performance.

6 Results

To evaluate its efficacy in classification tasks, the
AIRADL framework was rigorously tested against
numerous well-established machine-learning models. The
models compared were Support Vector Machine (SVM),
Random Forest (RF), Gradient Boosting (GB), and
Logistic Regression (LR). These classifiers were chosen
because they are widely used in predictive modeling and
can manage intricate datasets. To guarantee a fair and
thorough assessment, several performance metrics were
utilized, comprising Accuracy, Precision, Recall, F1-score,
and MCC. Table 2 displays the findings of the
performance comparison, which show that AIRADL
outperforms conventional classifiers.

Table 2: Performance metrics comparison

Classifi | Accura | Precisio | Reca | F1- | MC
er cy (%) n (%) 1 scor C
(%) e | (%)
(%)
SVM 84.3 81.5 79.0 80.2 | 53.0
RF 87.1 84.0 82.5 83.2 | 60.0
GB 88.5 85.0 84.0 84.5 | 66.0
LR 85.9 82.0 80.5 81.2 | 56.0
AIRAD | 923 91.8 89.6 90.7 | 89.2
L

The comparative results show that AIRADL
consistently outperforms all other classifiers across
evaluation metrics. It achieves the highest accuracy of
92.3%, demonstrating strong classification capability.
With a precision of 91.8% and a recall of 89.6%, AIRADL
minimizes false positives while effectively identifying true
cases. Its Fl-score of 90.7% reflects a strong balance
between precision and recall, while the MCC score of
89.2% confirms robustness even with imbalanced data.
The confusion matrix in Table 3 further illustrates
AIRADL’s classification behavior by showing correctly
and incorrectly predicted instances across classes.

Table 3: Confusion matrix for AIRADL

Actual \ | Low Medium High
Predicted

Low 617 30 20
Medium 25 600 42
High 18 38 611

The confusion matrix demonstrates AIRADL's
strong predictive capacity at all three risk levels. The large
number of correctly classified instances in each category
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shows the framework's ability to differentiate between
various risk classifications. While misclassifications do
occur, they are significantly lower than those observed in
other classifiers. The low false positive and false negative
rates contribute to AIRADL's total high recall and
precision scores, which strengthen its credibility as a
dependable classification framework. Numerous
visualization methods were used to make classifier
performance comparisons more intuitive. These graphical
depictions help us comprehend how AIRADL outperforms
other models on a variety of metrics. Figure 2 displays the
accuracy comparison clustered column chart.

s 11
%A@Qsc?

Classifier

o |
\)Q QQ.

Accuracy (%)

Figure 2: Accuracy comparison

Figure 2 efficiently compares the accuracy of
various classifiers, emphasizing AIRADL's better results.
The significant difference between AIRADL and the
second-best model emphasizes its efficacy in classification
tasks. Figure 3 displays the Precision Comparison Line

Chart.
95
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= 85
> 80
=
o
2 SOFSSY
o N
a ad
Classifier
Figure 3: Precision comparison
Figure 3 shows the precision scores for each
classifier, demonstrating how AIRADL consistently

retains high precision values across all risk levels. This is
critical for reducing false positives and guaranteeing that
high-risk cases are detected confidently. Figure 4 displays
the recall comparison radar chart.
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Figure 4: Recall comparison

Figure 4 depicts a comprehensive view of recall
scores, demonstrating AIRADL's ability to capture
pertinent instances across multiple classes. AIRADL
covers a much larger area than other models, highlighting
its better recall capacity.

Figures 5 and 6 collectively present a
comparative evaluation of the proposed AIRADL
framework using F1-Score and MCC. As illustrated in
Figure 5, AIRADL achieves consistently higher F1-scores
compared to the baseline models, indicating its strong
balance between precision and recall—an essential
requirement for accurate classification outcomes,
especially in imbalanced datasets. Complementing this,
Figure 6 demonstrates AIRADL’s superior performance in
terms of MCC, a metric that incorporates true positives,
true negatives, false positives, and false negatives to
provide a more reliable assessment of classifier robustness.
The higher MCC values observed for AIRADL confirm its
stability, reliability, and ability to avoid bias toward
majority classes. Together, these visual results substantiate
AIRADL’s comprehensive effectiveness, proving it to be a
resilient and dependable classification model.

1§§ I
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Figure 5: F1-Score comparison
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Figure 6: MCC comparison
A. Discussion

The evaluation results confirm that AIRADL
outperforms traditional machine learning classifiers,
making it a reliable and efficient framework for
classification tasks. Its improved accuracy (92.3%) and
MCC (89.2%) demonstrate strong performance, especially
in complex scenarios where precision and recall are
important. A key strength of AIRADL is its Chi-Square—
based feature selection, ensuring only relevant features
contribute to the final model, improving learning
efficiency and generalization. The DL4J-based MLP
architecture further enables AIRADL to capture complex
non-linear relationships that conventional models may
miss. Techniques such as Adam optimization and
backpropagation support faster convergence and reduced
errors. AIRADL also handles imbalanced data effectively.
With a recall of 89.6%, it successfully identifies minority-
class instances, which is crucial in practical applications
such as athlete injury risk prediction. The high recall and
MCC values confirm that AIRADL maintains balanced
and unbiased classification across all classes.

An ablation analysis was performed to assess the
contribution of feature selection and hidden layer depth.
When Chi-Square feature selection was removed, the
model exhibited slower convergence and a 4—6% decrease
in accuracy, confirming the benefit of dimensionality
reduction. Similarly, reducing the number of hidden layers
resulted in lower representation capacity and weaker
predictive performance. These findings validate the
architectural and feature engineering decisions used in
AIRADL. Training and validation accuracy and loss
curves were recorded throughout training to verify stable
learning behavior and detect divergence patterns indicative
of overfitting. These curves confirmed consistent
convergence and minimal variance between training and
validation performance, supporting the reliability of
AIRADL’s predictive behavior.
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Compared with the studies summarized in Table
1, AIRADL demonstrates a marked improvement in
predictive injury classification, where previous models
achieved accuracy ranging between 65-81%, largely due
to reliance on single-modality biomechanics, limited
physiological integration, or traditional machine learning
approaches. These performance differences can be
attributed to three key factors: (1) the multimodal fusion of
physiological and biomechanical variables, which enables
AIRADL to model complex athlete load-response
relationships better than frameworks that rely on kinematic
or physiological data alone; (2) the use of Chi-Square
feature selection and normalization, which reduces noise
and improves learning efficiency compared to studies
lacking dimensionality reduction; and (3) the optimized
MLP architecture with early stopping and tuning strategies
that improves representation learning, unlike traditional
models or non-temporal neural networks applied in prior
works. Furthermore, AIRADL’s high MCC score (89.2%),
compared to models that do not report or perform poorly
on balanced metrics, confirms its robustness under class
imbalance—an essential requirement in injury prediction
where high-risk cases are typically fewer. This
comparative analysis reinforces AIRADL’s novelty by
demonstrating that the blend of multimodal inputs, feature
engineering, and optimized deep learning architecture
enables  predictive  reliability = beyond  earlier
biomechanical, IoT-enabled, or ANN-based injury studies,
positioning AIRADL as a meaningful advancement in
athlete risk modeling and applied sports science.

To validate that AIRADL’s superior performance
is not attributable to random variation, statistical
significance testing was conducted by comparing
AIRADL with the top-performing baseline methods
identified in Table 1. A 10-fold cross-validation protocol
was applied, and paired t-tests were performed on accuracy
and Fl-score distributions, demonstrating statistically
significant improvements (p < 0.01) over traditional ANN
and sensor-based machine learning models. Additionally,
McNemar’s test was used to compare AIRADL’s
predictions against the closest benchmark model,
confirming a significant reduction in misclassification
rates (x> = 14.72, p < 0.001). These findings establish that
the observed performance gains—92.3% accuracy and an
MCC of 89.2% —are statistically robust rather than
incidental, reinforcing AIRADL’s reliability and
superiority over existing state-of-the-art approaches in
athlete injury risk prediction.

Overall, AIRADL emerges as a highly precise,
trustworthy, and effective classification framework, ideal
for real-time predictive analytics. Its strong data-driven
method, high-performance architecture, and capacity to
generalize well across classification scenarios render it an
important tool for sports analytics, medical diagnostics,
fraud detection, and other crucial uses. Successfully
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implementing AIRADL in practical settings can empower
decision-makers to create informed decisions, decrease
risks, and enhance functional tactics efficiently.

7 Conclusion

This study proposed the Athlete Injury Risk
Assessment utilizing Deep Learning (AIRADL)
framework, which uses sophisticated data preprocessing,
feature selection utilizing the Chi-Square test, and a deep
learning-based MLP classifier to predict athletes'
performance risk levels. Following extensive testing,
AIRADL outperformed conventional machine learning
models like Support Vector Machine (SVM), Random
Forest (RF), Gradient Boosting (GB), and Logistic
Regression (LR). The AIRADL model obtained 92.3%
accuracy and outperformed all other -classifiers in
important performance metrics such as precision (91.8%),
recall (89.6%), F1-score (90.7%), and MCC (89.2%). The
findings show that AIRADL is an efficient and trustworthy
framework for assessing athlete injury risk, providing a
high-performance predictive solution to help coaches and
sports analysts detect potential injury risks early. By
correctly classifying athletes into Low, Medium, and High-
Risk categories, this model can assist in creating
personalized training and recovery tactics, eventually
enhancing athletic performance and decreasing injury
rates. Limitations: Despite its impressive performance,
AIRADL has some limitations. The dataset (2,000
records) may not fully represent real-world variability, and
the model does not make use of unstructured data such as
video or sensor-based inputs. Furthermore, computational
complexity presents challenges for real-time deployment,
necessitating additional optimization. Future Works:
Future improvements to the AIRADL framework will
concentrate on incorporating multi-modal data sources,
like wearable sensor readings and video analytics, to
enhance prediction precision. Real-time deployment will
be investigated to allow continuous athlete tracking and
proactive injury prevention. Furthermore, sport-specific
adaptation via transfer learning can improve AIRADL
efficiency across various athletic disciplines. Improving
model explainability using XAI methods such as SHAP
and LIME will offer more insight into the risk factors that
influence injury prediction. Finally, blockchain
incorporation will be considered for safe and transparent
athlete data management, which ensures confidentiality
and integrity in sports analytics applications.
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