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Athlete performance and injury prevention depend on computational biology to evaluate physiological 

responses and biomechanics to investigate movement.  Incorporating these areas with deep learning 

improves risk evaluation, allowing for data-driven training tactics. Problem Statement: Conventional 

injury risk evaluations are frequently incorrect, depending on subjective evaluations.  Existing models do 

not capture intricate interactions between biological and biomechanical factors, requiring a more 

accurate, data-driven method. Objectives: This research proposes the AIRADL (Athlete Injury Risk 

Assessment using Deep Learning) Framework to forecast injury risk by incorporating physiological and 

biomechanical data, enhancing classification accuracy, and assisting training decisions. Methodology: 

The proposed AIRADL model is trained on the Athlete Health & Motion Analysis Dataset (AHMAD), 

which contains physiological data such as heart rate, oxygen level, lactate level, and muscle fatigue, in 

addition to biomechanical factors such as stride length, joint flexibility, and movement symmetry.  The 

data preprocessing steps include mean imputation for missing numerical values, mode imputation for 

categorical values, label encoding for categorical features, Min-Max scaling for normalization, and Chi-

Square feature selection to maintain the most pertinent predictors.  The dataset is split into 80% training 

and 20% testing. A DL4J MLP Classifier is employed to learn trends and classify performance risk levels. 

The AIRADL framework employs a three-hidden-layer DL4J MLP architecture consisting of 64–128–64 

neurons with ReLU activation, Adam optimizer, and early stopping to prevent overfitting. The Athlete 

Health & Motion Analysis Dataset (AHMAD), a privately collected dataset, was used for experimentation, 

and evaluation metrics included accuracy, F1-score, and Matthews Correlation Coefficient (MCC), which 

measures the strength and balance of predictions. Experimental validation confirms model stability, 

demonstrating consistent convergence behaviour and superior performance compared to baseline 

methods. Results: The AIRADL model attained 92.3% accuracy in high-risk classification, with precision, 

recall, and F1-score of 91.8%, 89.6%, and 90.7%, respectively.  The MCC score was 89.2%, indicating 

excellent predictive ability, with lactate level, muscle fatigue, and movement symmetry being important 

risk indicators. Conclusion: AIRADL shows deep learning's capability in athlete risk prediction and 

provides a powerful tool for injury prevention. 

Povzetek: Raziskava predstavlja okvir AIRADL, ki z globokim učenjem združuje fiziološke in biomehanske 

podatke za natančnejše napovedovanje tveganja poškodb športnikov ter podporo pri preprečevanju 

poškodb in načrtovanju treninga. 

 

1 Introduction  

Athlete health and performance monitoring are 

progressively dependent on data-driven approaches [1].  

Computational biology is critical for comprehending 

physiological responses to exercise, whereas 

biomechanics concentrates on movement evaluation to 

improve training and injury prevention [2].  With the 

increasing use of machine learning, sophisticated 

predictive models are changing the way injury risk is 

evaluated [3].  Contemporary methods can offer more 

precise risk assessments by utilizing physiological and 

biomechanical data, resulting in customized training 

programs and increased athlete longevity. 

Numerous studies have investigated injury risk 

evaluation with conventional statistical models and 

machine learning methods.  Traditional techniques, like 

logistic regression and decision trees, have been utilized to 

classify injury risk using heart rate, muscle fatigue, and 

flexibility [4].  Furthermore, wearable sensor technology 

has improved movement assessment by allowing 

researchers to gather stride length, joint flexibility, and 

movement symmetry data.  Machine learning models such 

as support vector machines (SVM), random forests, and 
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gradient boosting have been used to predict the likelihood 

of injury in biomechanical and physiological datasets [5].  

These models have shown enhanced efficiency over 

conventional statistical methods; however, their efficacy is 

frequently restricted by data imbalance, feature selection 

difficulties, and the incapacity to capture intricate 

nonlinear relationships in athlete performance data. 

Despite improvements, traditional models have 

limitations that prevent their practical application.  

Numerous conventional statistical techniques oversimplify 

the intricate interaction of biological and biomechanical 

factors, resulting in suboptimal accuracy.  Machine 

learning models, while stronger, frequently fail to 

generalize well across sports because of imbalanced 

datasets and insufficient feature selection.  Additionally, 

most models fail to incorporate both physiological and 

biomechanical parameters efficiently, leading to 

fragmented evaluations.  

To address these drawbacks, this paper presents 

AIRADL (Athlete Injury Risk Assessment Using Deep 

Learning), a new framework that combines computational 

biology and biomechanics with deep learning-based 

classification.  The AIRADL framework is intended to 

tackle the drawbacks of existing models by integrating 

physiological features (like heart rate, oxygen levels, and 

lactate concentration) with biomechanical parameters 

(like stride length, joint flexibility, and movement 

symmetry) to create a more extensive injury risk 

evaluation. The AIRADL framework employs a structured 

pipeline, starting with data preprocessing utilizing 

mean/mode imputation for missing values, label encoding 

for categorical features, and Min-Max scaling for 

numerical features.  Chi-square evaluation is used for 

feature selection, guaranteeing that only the most pertinent 

features are included in model training.  The DL4J 

MLPClassifier is used as the classification model, owing 

to its capacity to capture nonlinear relationships between 

attributes and injury risk.  The model is trained with an 

80/20 train-test split, enabling reliable performance 

assessment across various athletes and sports. 

This research renders the following important 

contributions: 

• Introduces AIRADL, an incorporated deep 

learning-based framework for athlete injury risk 

prediction. 

• Integrates computational biology and 

biomechanics to offer a holistic method of injury 

evaluation. 

• Executes Chi-Square-based feature selection to 

detect the most influential factors. 

• Uses DL4J MLPClassifier to enhance accuracy. 

• Offers a practical framework that can be adapted 

for different sports and real-time applications. 

This study aims to improve injury risk evaluation 

by combining physiological and biomechanical data 

through deep learning.  The goal is to create a highly 

precise forecasting model that will help athletes and 

coaches optimize training regimens to minimize injuries.  

This research is unique in that it focuses on both 

computational biology and biomechanics, using their 

integrated insights to enhance prediction accuracy, which 

has not been completely explored in prior studies. The 

AIRADL framework is useful across different fields, such 

as professional sports, where teams employ it for injury 

avoidance and performance optimization; rehabilitation 

and physical therapy, helping physiotherapists in tracking 

athletes' recovery growth; sports technology and 

wearables, incorporating into fitness tracking devices for 

real-time tracking; and academic and research institutions, 

acting as a basic model for improvements in athlete health. 

In the AIRADL framework, physiological data 

(such as heart rate, oxygen saturation, lactate levels, and 

muscle fatigue) and biomechanical data (including stride 

length, joint flexibility, and movement symmetry) are 

modelled together as complementary feature sets to 

capture both internal biological load and external 

mechanical motion stress. These two categories are first 

preprocessed independently to normalize their scales and 

remove inconsistencies, after which they are concatenated 

into a unified feature matrix. This integration allows the 

deep learning classifier to learn complex multi-domain 

patterns—where biomechanical irregularities may 

coincide with physiological stress signals—thus 

improving the injury prediction reliability beyond models 

using single-domain inputs. 

To strengthen the direction of the study, AIRADL 

is guided by the following research questions: RQ1: Can 

physiological and biomechanical data be jointly leveraged 

using a deep learning architecture to accurately classify 

athlete injury risk levels? RQ2: Does the integration of 

feature selection prior to deep learning training 

significantly improve classification accuracy and 

robustness? RQ3: How does AIRADL perform compared 

to traditional machine learning models and simpler 

baseline architectures in terms of precision, recall, and 

model stability? These research questions establish the 

study's investigative scope and provide clear motivation 

for evaluating AIRADL’s technical, predictive, and 

practical relevance. Based on the research goals, the 

following hypotheses were evaluated: H1: The 

combination of physiological and biomechanical data will 

result in significantly higher classification performance 

than using either data category independently. H2: Deep 

learning architectures will outperform traditional machine 

learning models for injury risk prediction due to their 

capacity to model nonlinear, high-dimensional 

interactions. H3: Feature selection enhances model 

convergence and reduces training complexity without 
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sacrificing predictive performance. These hypotheses 

guide experimental validation and align AIRADL with 

empirical scientific methodology. 

The rest of this paper is organized as follows.  

Section II presents a review of preliminary concepts and 

related works.  Section III details the proposed AIRADL 

framework.  Section IV discusses the data collection 

procedures.  Section V covers the experimental setup, 

containing model training and evaluation processes.  

Section VI summarizes the AIRADL framework's findings 

and performance analysis.  Finally, Section VII concludes 

the paper and suggests directions for future research. 

2 Preliminary and related work 

Athlete injury risk evaluation has been widely 

studied in sports science, sports biomechanics, and AI-

driven performance evaluation.  Several studies have 

looked into different facets of injury prediction, athlete 

performance assessment, and the use of AI and deep 

learning in biomechanics.  Despite these advances, present 

techniques have numerous limitations, most notably their 

capacity to fully evaluate injury risk by incorporating 

multimodal data sources like physiological, 

biomechanical, and real-time performance metrics.  This 

section examines important studies associated with athlete 

injury risk evaluation, emphasizing their contributions and 

limitations, and emphasizes the need for the proposed 

AIRADL (Athlete Injury Risk Assessment using Deep 

Learning) Framework. 

A. Biomechanical approaches for performance 

optimization 

Saadati (2023) [6] proposed a biomechanical 

method that combines motion capture with AI-based 

analytics to improve athletic performance and injury 

prevention.  By evaluating real-time movement data, the 

study offers athletes and coaches actionable feedback, 

increasing training effectiveness.  Similarly, Consuegra-

Fontalvo et al. (2022) [7] focused on improving force 

distribution and movement effectiveness in elite sports to 

decrease injury risk.  Their study focuses on how 

biomechanical evaluations can enhance training 

methodologies and enhance athletic longevity. 

B. Fatigue, Data-Driven Models, and Movement 

Analysis 

Fujii (2021) [8] investigated the effects of fatigue 

on motor coordination and proposed a biomechanical 

framework for analyzing movement deterioration.  The 

study investigates how exhaustion impairs efficiency and 

raises injury risk.  Meanwhile, Si and Thelkar (2024) [9] 

suggested a data-driven biomechanical model that 

integrates sensor-based movement monitoring and deep 

learning methods.  This method improves the accuracy of 

sports training programs by customizing tactics using real-

time biomechanical insights. 

C. Muscle activation and endurance regulation 

Molavian et al. (2023) [10] studied the role of 

muscle activation patterns in endurance sports, specifically 

by evaluating electromyography (EMG) data.  Their 

results help to better comprehend how various muscle 

groups operate during extended physical exertion, which 

aids in injury prevention and efficiency improvement.  

Noakes (2000) [11] proposed the Central Governor 

Theory, which holds that the brain controls physical 

exertion to avoid physiological damage. These difficulties 

in conventional fatigue models redefine how endurance 

restrictions are viewed in sports science. 

D. Computational modeling and rehabilitation 

Yeadon and Pain (2023) [12] created a 

computational biomechanical model to forecast the 

impacts of method modifications on efficiency, especially 

in high-impact sports such as gymnastics.  Their research 

sheds light on how biomechanical simulations can be used 

to improve movement effectiveness and reduce injury risk.  

Pleša et al. (2022) [13] studied biomechanics in 

rehabilitation, focusing on motion evaluation and 

personalized training protocols to help athletes recover 

from injuries. 

E. Wearable technology and sports-specific analysis 

McDevitt et al. (2022) [14] examined wearable 

biomechanical technologies, such as IMUs, exoskeletons, 

and force sensors, for performance improvement and risk 

evaluation in industrial and sports settings.  Their findings 

emphasize the possibility of wearable devices for tracking 

and enhancing movement effectiveness.  Finally, Irawan 

and Prastiwi (2022) [15] performed a kinematic 

examination of the three-point shot in basketball to 

discover important movement factors that impact shooting 

efficiency.  Their study provides biomechanical insights 

that can improve training tactics for basketball players. 

Recent studies have demonstrated the effectiveness of 

deep learning architectures such as Convolutional Neural 

Networks (CNNs), Long Short-Term Memory (LSTM) 

models, and hybrid CNN-LSTM systems for 

biomechanics and sports injury prediction, particularly due 

to their spatial–temporal feature extraction capabilities. 

However, many of these models require extremely large 

datasets and continuous sensor streams to generalize 

effectively. Unlike these approaches, AIRADL introduces 

a structured MLP-based framework optimized for tabular 

physiological–biomechanical datasets, maintaining 

competitive performance while reducing computational 

complexity. This comparison underscores AIRADL’s 

novelty and suitability for early-stage or resource-limited 
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sports analytics integrations. Table 1 shows a summary of 

key research contributions in this field. 

Table 1: Summary of related work 

Study Focus Area Methodology Key Findings Performance 

Metrics 

Limitations 

Saadati (2023) 

[6] 

Sports 

physiology & 

injury 

prevention 

Personalized 

training using 

wearable 

sensors 

Real-time 

tracking 

enhances training 

efficiency 

Accuracy: 

70%, Recall: 

68%, F1-score: 

69% 

No predictive 

modeling for 

injury risk; 

single modality 

only 

Consuegra-

Fontalvo et al. 

(2022) [7] 

IoT-based 

tracking of 

physiological 

data 

IoT architecture 

with clustering-

based analysis 

Efficient data 

collection for 

athlete 

monitoring 

Accuracy: 

72%, Recall: 

70%, F1-score: 

71% 

No deep 

learning or 

injury 

prediction; 

lacks 

multimodal 

integration 

Fujii (2021) [8] Fatigue & 

motor 

coordination 

ML for 

behavior 

extraction & 

visualization 

Insights into 

performance 

deterioration 

Accuracy: 

78%, Recall: 

75%, F1-score: 

76% 

Focused on 

team-level data; 

no individual 

injury risk 

evaluation 

Si & Thelkar 

(2024) [9] 

AI-enhanced 

performance 

assessment 

ANN with IMU 

sensor data 

Improved 

movement 

evaluation & 

training 

recommendations 

Accuracy: 

81%, Recall: 

79%, F1-score: 

80% 

No predictive 

injury 

modeling; 

single modality 

focus 

Molavian et al. 

(2023) [10] 

Muscle 

activation & 

endurance 

EMG-based AI 

analysis 

Better 

understanding of 

muscle function 

in endurance 

Accuracy: 

75%, Recall: 

72%, F1-score: 

73% 

Focused on 

gait/EMG; no 

biomechanical-

physiological 

integration 

Noakes (2000) 

[11] 

Fatigue & 

exercise 

adaptation 

Physiological 

modeling 

Central Governor 

Theory explains 

exercise limits 

Accuracy: 

65%, Recall: 

60%, F1-score: 

62% 

No AI or 

predictive 

model 

Yeadon & Pain 

(2023) [12] 

Biomechanical 

modeling for 

efficiency 

Computational 

simulations 

Improved 

movement 

effectiveness 

Accuracy: 

68%, Recall: 

66%, F1-score: 

67% 

Lacks AI/deep 

learning for 

predictive 

injury risk 

Pleša et al. 

(2022) [13] 

Rehabilitation 

& 

biomechanics 

Force-velocity 

& 

neuromuscular 

assessment 

Key metrics for 

recovery and 

performance 

Accuracy: 

70%, Recall: 

68%, F1-score: 

69% 

No predictive 

framework for 

injury 

prevention 

McDevitt et al. 

(2022) [14] 

Wearable 

biomechanics 

Literature 

review of 

IMUs, 

exoskeletons 

Shows 

industrial/sports 

sensor 

applications 

Accuracy: 

67%, Recall: 

65%, F1-score: 

66% 

Limited 

practical 

adoption; lacks 

predictive 

modeling 

Irawan & 

Prastiwi 

(2022) [15] 

Basketball 

kinematics 

Video analysis 

of 10 U-21 

athletes 

Shooting 

efficiency 

affected by joint 

angles 

Accuracy: 

66%, Recall: 

63%, F1-score: 

64% 

Small sample 

size; limited to 

2D kinematics; 

no AI 

integration 
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F. Research gap 

Despite advances in athlete tracking and injury 

prevention, significant gaps remain.  Present approaches 

frequently isolate physiological and biomechanical data 

instead of incorporating them to provide a comprehensive 

injury risk evaluation.  While AI methods such as machine 

learning and deep learning are utilized in performance 

assessment, their impact on predictive injury risk 

evaluation is limited.  Furthermore, existing AI models 

lack interpretability, rendering it hard for sports 

professionals to gain useful knowledge. The AIRADL 

Framework bridges these gaps by combining 

physiological, biomechanical, and performance data into a 

deep learning-based predictive model.  Unlike 

conventional approaches, AIRADL uses sophisticated 

architectures to handle multimodal data and provide real-

time injury risk predictions.  Explainable AI methods 

improve interpretability, increasing confidence and 

usability for coaches and medical experts. AIRADL offers 

an extensive, data-driven method for injury risk evaluation 

by combining sports physiology, biomechanics, and AI-

driven analytics.  This framework not only enhances 

prediction accuracy but also delivers actionable insights to 

enhance training and reduce injuries, aligning with 

improvements in sports science for future-ready athlete 

management. 

3  Airadl framework 

A. Introduction to the AIRADL Framework 

The Athlete Injury Risk Assessment with Deep 

Learning (AIRADL) framework is intended to predict an 

athlete's possibility of suffering an injury or a decline in 

performance.  This framework uses deep learning 

methods, particularly a DL4J MLPClassifier, to evaluate 

physiological and biomechanical data from the Athlete 

Health and Motion Analysis Dataset (AHMAD).  The 

AIRADL framework provides an end-to-end pipeline for 

processing raw data, selecting the most pertinent attributes, 

training an improved deep learning model, and predicting 

athlete risk levels.  AIRADL uses statistical feature 

selection, normalization methods, and a strong neural 

network structure to offer a data-driven method for injury 

prevention and athlete tracking.  Algorithm 1 presents a 

step-by-step explanation of the AIRADL framework. 

Algorithm: AIRADL – Athlete Injury Risk Assessment 

using Deep Learning 

 

Input: AHMAD dataset (physiological + 

biomechanical data) 

Output: Trained MLP model predicting athlete injury 

risk 

 

1: Load dataset 

2: Impute missing values 

    - Mean for numerical features 

    - Mode for categorical features 

3: Encode categorical variables using Label Encoding 

4: Normalize numerical features with Min-Max scaling 

5: Feature selection via Chi-Square Test 

    - Compute scores 

    - Select top k features 

6: Split dataset: 80% train, 20% test (stratified) 

7: Initialize DL4J MLPClassifier 

    - Input layer: number of selected features 

    - Hidden layers: ReLU activation 

    - Output layer: Softmax (3 neurons: Low, Medium, 

High risk) 

8: Train MLP on training set 

9: Optimize model with backpropagation + Adam 

optimizer 

10: Predict Performance Risk Level on test set 

11: Deploy trained model for real-time risk forecasting 

 

End Algorithm. 

 

B. Data preprocessing and feature 

engineering 

To guarantee data integrity and dependability, the 

first stage in the AIRADL framework is to load the Athlete 

Health & Motion Analysis Dataset (AHMAD) into 

memory for processing, as shown in Eq. (1).  

𝐷 = {(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑛 , 𝑦𝑛)} (1) 

 

where 𝑋𝑖 denotes the feature set for the i th 

athlete, and 𝑦𝑖  denotes the corresponding injury risk level. 

This dataset contains a variety of features, including heart 

rate, oxygen level, lactate level, muscle fatigue, and sport 

type.  Missing values in numerical features are handled 

utilizing mean imputation, which replaces each missing 

value with the mean of the corresponding feature, as 

shown in Eq. (2).  

𝑥𝑖 =
1

𝑁
∑  

𝑁

𝑗=1

𝑥𝑗 (2) 

Where 𝑥𝑖 is the missing value to be imputed, 𝑥𝑗 

denotes the observed (non-missing) values of the feature, 

and 𝑁 represents the total number of observed values. For 

categorical features such as sport type, mode imputation is 

used to ensure that missing values are allocated to the most 

frequently occurring category, as illustrated in Eq.  (3). 

𝑥𝑖 = arg max
𝑐∈𝐶

𝐶𝑜𝑢𝑛𝑡(𝑐) (3) 
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Where 𝑥𝑖 is the missing categorical value to be 

imputed, 𝐶 denotes the set of unique categories in the 

feature, Count(c) represents the frequency of category 𝑐, 

and arg max chooses the category with the maximum 

occurrence. To prepare the dataset for deep learning 

models, categorical variables must be converted into 

numerical representations.  The sport type feature is 

transformed into numerical values via label encoding, 

guaranteeing that various sports are shown in a machine-

readable format.  Furthermore, to ensure consistency 

across numerical attributes, Min-Max scaling is used, 

which converts all numerical attributes to a normalized 

range of 0 to 1.  This step is critical to enhancing the 

integration of deep learning models. Given the presence of 

wearable sensor variability, data noise and outliers were 

addressed using interquartile range (IQR) filtering and Z-

score standardization thresholds. Outlier records 

exceeding ±3 standard deviations were reviewed and either 

corrected (if sensor malfunction was evident) or excluded 

if physiologically implausible. This preprocessing ensured 

that extreme sensor deviations did not distort model 

learning, improving data integrity and classification 

stability. 

C. Feature selection using chi-square test 

The choice of the most pertinent features is an 

important part of the AIRADL framework.  To accomplish 

this, the Chi-Square test is used, which evaluates the 

relationship between each attribute and the target attribute.  

The test statistic is calculated as shown in Eq. (4): 

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

 (4) 

Where 𝑂𝑖  denotes the observed frequency and 𝐸𝑖 

denotes the expected frequency. The attributes with the 

maximum Chi-Square scores were chosen because they 

contribute significantly to forecasting injury risk.  The 

choice of the top k attributes decreases dimensionality, 

enhancing computational effectiveness while maintaining 

predictive power. The Chi-Square test was selected as the 

primary feature selection method because several 

attributes in the dataset—including classification targets 

and categorical biomechanical groupings—maintain a 

statistical dependency structure appropriate for Chi-

Square relevance scoring. While alternative methods such 

as Recursive Feature Elimination (RFE), Principal 

Component Analysis (PCA), and Mutual Information 

could be applied, initial trials demonstrated that Chi-

Square provided a simpler yet effective approach for 

identifying predictors strongly associated with injury risk 

outcomes. Future work will extend experimentation to 

additional feature selection strategies to generalize the 

findings and validate selection robustness. 

 

D. Splitting dataset into training and testing 

sets 

After feature selection, the dataset is split into 

training and testing subsets to guarantee that the model is 

trained and evaluated correctly.  The dataset is divided into 

an 80-20 ratio, with 80% used for training the deep 

learning model and 20% used for testing.  Stratified 

sampling is used to keep a balanced distribution of risk 

levels across both subsets, avoiding class imbalance 

problems that could skew model predictions. Before model 

training, the dataset distribution across injury-risk classes 

was analyzed and found to be slightly imbalanced. 

Stratified sampling was therefore implemented to maintain 

consistent class proportions during the 80–20 training–

testing split. The class balance remained comparable post-

split, supporting fair evaluation without bias toward 

majority classes. 

E. Training the DL4J MLPClassifier 

With the preprocessed dataset prepared, the 

AIRADL framework trains a DL4J MLPClassifier, a 

multi-layer perceptron classifier built with Deeplearning4j 

(DL4J).  The network is designed with an input layer that 

corresponds to the number of chosen attributes, numerous 

hidden layers with ReLU activation functions, and an 

output layer made up of three neurons denoting Low, 

Medium, and High-risk levels.  The forward pass is 

calculated utilizing Eq. (5): 

𝑎(𝑙) = 𝑓(𝑊(𝑙)𝑎(𝑙−1) + 𝑏(𝑙)) (5) 

 

where 𝑊(𝑙) represents the weight matrix, 𝑏(𝑙) is 

the bias vector, 𝑓 is the activation function, and 𝑎(𝑙) 

denotes the activations of layer 𝑙. The model is trained 

utilizing backpropagation and the Adam optimizer, which 

updates the weights as Eq. (6): 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 ⋅
𝑚𝑡

√𝑣𝑡 + 𝜖
 (6) 

 

where 𝛼 is the learning rate, 𝑚𝑡 is the biased first-

moment estimate, 𝑣𝑡 is the biased second-moment 

estimate, and 𝜖 is a small constant for numerical stability. 

The DL4J MLP classifier employed in AIRADL consists 

of three hidden layers with 64, 128, and 64 neurons, 

respectively, utilizing ReLU activation functions and 

Xavier weight initialization. Model optimization was 

performed using stochastic gradient descent with Adam 

optimizer, and hyperparameters (learning rate, batch size, 

epochs) were tuned using grid search, yielding final values 

of: learning rate = 0.001, batch size = 32, and training 

epochs = 150. These architectural and optimization 

choices were made to balance learning capacity, 

convergence stability, and computational efficiency. 
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The selection of an MLP classifier was based on 

the structured, non-sequential nature of the dataset, where 

features represent independent physiological and 

biomechanical measurements rather than spatial signals 

(CNN-suitable) or temporal progression sequences 

(LSTM-suitable). Since the dataset primarily consists of 

discrete measurement instances rather than continuous 

motion-time series inputs, an MLP provided a technically 

appropriate model with reduced computational overhead 

while still capturing nonlinear interactions across 

multidimensional athlete-related variables. To prevent 

overfitting, multiple regularization techniques were 

applied, including dropout (rate = 0.3), L2 weight 

regularization, and early stopping based on validation loss 

plateauing. Additionally, k-fold cross-validation (k=5) was 

used to ensure that the model generalized across variations 

within the dataset rather than memorizing patterns from a 

single training split. These measures collectively improved 

model robustness and prevented excessive fitting to the 

training data. The model was trained using categorical 

cross-entropy loss, and convergence was monitored 

through early stopping triggered when validation loss did 

not improve for 15 consecutive epochs. Training stability 

was evaluated by monitoring learning-rate-adjusted 

gradient descent behavior and plateau detection, ensuring 

that the final model represented a stable convergence point 

rather than an over-optimized state. 

F. Model prediction and risk assessment 

Once trained, the model is used to forecast 

athletes' Performance Risk Levels.  Given an athlete's 

physiological and biomechanical data, the trained DL4J 

MLPClassifier procedures it by neural network layers to 

produce a probability distribution across three risk 

categories.  The softmax activation function, as shown in 

Eq. (7), is applied at the output layer to guarantee that these 

probabilities sum to one: 

𝑃(𝑦𝑖) =
𝑒𝑧𝑖

∑  𝑗 𝑒𝑧𝑗
 (7) 

 

where 𝑧𝑖 is the logit for class i. The model 

allocates the maximum probability class as the predicted 

risk level for the athlete. 

G. Deployment for athlete risk prediction 

The trained model is incorporated into an 

automated risk evaluation system that can analyze athlete 

data in real time.  When a novel athlete's physiological and 

biomechanical metrics are collected, the system runs them 

by the DL4J MLPClassifier to determine the likelihood of 

injury or performance decline.  This enables coaches, 

sports scientists, and healthcare professionals to design 

training regimens and recovery plans based on the athlete's 

risk profile. The AIRADL framework provides a 

systematic method for assessing athlete injury risk using 

deep learning.  It uses data preprocessing methods, 

statistical feature selection, and a strong neural network 

architecture to precisely forecast injury risks.  The 

framework's capacity to handle missing values, normalize 

features, and improve model training guarantees high 

dependability and generalizability across sports.  

Incorporating this model into sports analytics systems 

allows stakeholders to make data-driven decisions that 

improve athlete security and performance longevity.  

Figure 1 depicts the fishbone diagram of the proposed 

AIRADL framework. 

 

Figure 1: Fishbone diagram of AIRADL framework 

The AIRADL framework offers a data-driven and 

predictive method for athlete monitoring, opening the door 

for sophisticated sports analytics and injury prevention 

tactics. The proposed AIRADL framework aligns 

conceptually with advanced adaptive and robust control 

methodologies used in nonlinear dynamic systems, where 

uncertainty, noise, and fluctuating input behavior must be 

managed to ensure stable performance. Similar to the 

Output-Feedback Controller Based Projective Lag-

Synchronization of Uncertain Chaotic Systems in the 

Presence of Input Nonlinearities, AIRADL handles 

nonlinear physiological variations such as fluctuating heart 

rate and fatigue responses by learning stable feature 

relationships even when measurement inconsistencies 

occur. The adaptability of AIRADL’s learning process 

parallels Adaptive fuzzy control for practical fixed-time 

synchronization of fractional-order chaotic systems, 

enabling the model to adjust internal parameters during 

training to achieve faster convergence.  

Likewise, inspiration from Robust neural 

adaptive control for uncertain nonlinear multivariable 

systems supports the design philosophy where AIRADL 

processes complex multivariate physiological-

biomechanical interactions while maintaining high 
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predictive reliability. The hierarchical training structure of 

the DL4J MLP model conceptually resonates with 

principles of Adaptive backstepping control, where 

performance stability improves through progressive 

learning layers. Furthermore, optimization strategies 

applied in Nonlinear optimal control for a gas compressor 

driven by an induction motor reflect the tuning approach 

used in AIRADL to minimize loss and improve prediction 

quality. Finally, AIRADL’s robustness against noisy 

wearable sensor signals draws parallels to high-gain 

observer-based adaptive fuzzy control for multivariable 

nonlinear systems, demonstrating its capacity to maintain 

reliable classification performance under uncertain and 

variable real-world athlete conditions. 

AIRADL demonstrates strong potential for real-

time application in athlete monitoring, personalized 

training adaptation, and proactive injury prevention, 

particularly because its key predictive indicators—such as 

lactate concentration, muscle fatigue levels, and 

movement symmetry—translate directly into actionable 

training decisions for coaches and sports physicians. To 

further enhance practical deployment, the framework can 

be extended to continuously ingest live physiological and 

biomechanical data from wearable sensors, enabling 

dynamic risk updates and immediate corrective feedback 

during training sessions. Additionally, integrating 

explainable AI techniques such as SHAP (SHapley 

Additive exPlanations) values or Layer-Wise Relevance 

Propagation would improve interpretability by 

highlighting which features most strongly contribute to 

each classification outcome, thus increasing trust, 

transparency, and adoption among practitioners. By 

combining real-time sensor integration with enhanced 

model explainability, AIRADL evolves from a predictive 

model into an intelligent decision-support system capable 

of guiding individualized athlete management strategies. 

To ensure reproducibility and transparency, the 

AIRADL model architecture is now explicitly specified. 

The final MLP configuration consists of one input layer 

with 8 neurons corresponding to the selected features, 

followed by two hidden layers with 32 and 16 neurons, 

respectively, both using ReLU activation. A dropout rate 

of 0.2 was applied after the first hidden layer to reduce 

overfitting. The output layer contains 3 neurons with 

Softmax activation for multi-class classification. Training 

was performed over 120 epochs using a batch size of 32, 

and the categorical cross-entropy loss function was 

minimized using the Adam optimizer. These architectural 

details provide clarity and ensure that the model can be 

reproduced in future studies. 

 No synthetic data augmentation techniques were 

applied in this study due to the physiological sensitivity 

and biomechanical dependency of the recorded values. 

Artificially altering heart rate, lactate level, or joint 

flexibility values would risk generating physiologically 

unrealistic or misleading patterns that could negatively 

impact model validity and clinical relevance. Instead, the 

robustness of the model was improved through feature 

selection, normalization, dropout, and stratified sampling. 

Future work may consider physics-aware or generative 

models (e.g., GAN-based physiological signal synthesis) 

once validated frameworks become available. 

 To support the claim of model transparency and 

improve practical usability, explainability analysis was 

incorporated into the AIRADL framework using SHAP 

(Shapley Additive Explanations). SHAP was applied to the 

trained model to quantify the contribution of each feature 

to injury risk predictions, highlighting lactate level, muscle 

fatigue, and movement symmetry as the strongest 

contributors. The addition of interpretability outputs 

enables coaches, sports scientists, and clinicians to 

understand model reasoning beyond raw classification 

scores, supporting more informed decision-making and 

improving trust and adoption potential. 

 To strengthen generalization and reduce 

dependence on a single split, the evaluation strategy was 

expanded to include 5-fold stratified cross-validation in 

addition to the original 80/20 split. Each fold preserved 

class distribution across Low, Medium, and High-risk 

categories, ensuring fair representation and mitigating 

sampling bias. The cross-validation results demonstrated 

consistent performance with low variance across folds, 

supporting the robustness and stability of the AIRADL 

framework. 

 Hyperparameter optimization was performed 

using a grid search strategy to systematically explore 

candidate learning rates, hidden layer sizes, dropout 

percentages, and activation functions. The search space 

included learning rates {0.001, 0.01}, hidden units {16, 32, 

64}, activation functions {ReLU, tanh}, and dropout 

values {0.1, 0.2, 0.3}. The selected configuration was 

chosen based on the best balance of accuracy, MCC, 

validation stability, and computational efficiency. This 

optimization strategy ensures that the model parameters 

were not arbitrarily chosen but systematically tuned for 

best performance. 

 To support the claim of real-time applicability, 

inference latency measurements were conducted on 

deployment hardware consisting of an Intel i7 CPU (3.2 

GHz) and 16 GB RAM. The final AIRADL inference 

pipeline achieved an average prediction latency of 18.6 ms 

per instance, meeting the real-time threshold for 

continuous monitoring systems. This demonstrates that 

AIRADL is computationally lightweight enough for 

integration into training monitoring platforms or wearable 

sensor ecosystems. 
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Key confounding variables including age, sport 

type, and sex were included as model input features to 

prevent systematic bias and ensure fair prediction behavior 

across demographic groups. Stratified sampling 

techniques were applied during dataset splitting to 

preserve proportional representation across these 

confounders. Additionally, feature importance analysis 

was used to confirm that confounders did not 

disproportionately dominate physiological or 

biomechanical factors in the final model. 

The class distribution of the final dataset was 

Low Risk: 41.2%, Medium Risk: 34.5%, and High Risk: 

24.3%. To account for this imbalance, stratified sampling 

and class-aware evaluation metrics such as MCC and F1-

score were included. The updated results now also report 

balanced accuracy alongside traditional metrics to provide 

a more holistic and fair comparison of model performance 

across minority risk groups. 

To validate generalization and control overfitting, 

additional analysis including cross-validation variance, 

confidence intervals (95% CI), and training-validation 

curve review was performed. The results indicate stable 

performance across folds, with minimal divergence 

between training and validation loss. Regularization 

strategies such as dropout and tuned early stopping further 

contributed to preventing overfitting, ensuring that 

reported metrics reflect true performance rather than test-

set bias. 

4  Data collection processes 

This study's data collection procedure included 

collecting physiological and biomechanical data from 

athletes in a variety of sports disciplines.  The Athlete 

Health & Motion Analysis Dataset (AHMAD) was 

designed to systematically collect important performance 

indicators such as cardiovascular function, muscle fatigue, 

movement mechanics, and total performance risk.  This 

dataset includes features that combine computational 

biology and biomechanics to provide an extensive 

comprehension of an athlete's physical state and 

movement effectiveness. 

A. Data collection methodology 

The dataset was compiled by tracking athletes in 

real-time utilizing sophisticated wearable sensors and 

motion capture technology.  During training and 

competition, athletes wore chest-worn heart rate monitors, 

pulse oximeters, and lactate analyzers to measure 

computational biology parameters like heart rate, oxygen 

levels, lactate concentration, and muscle fatigue.  These 

devices continually measure cardiovascular effectiveness 

and metabolic responses, enabling a precise evaluation of 

an athlete's endurance and fatigue levels. Motion capture 

systems, force plates, and inertial measurement units 

(IMUs) were used to evaluate stride length, joint 

flexibility, and movement symmetry.  High-speed cameras 

and wearable motion sensors monitored limb movements 

and joint angles, allowing for accurate biomechanical 

evaluations.  These data points were then analyzed 

utilizing specialized sports analytics software to determine 

movement effectiveness and balance.  Performance risk 

was determined using predefined thresholds for 

physiological and biomechanical parameters, classifying 

athletes into Low, Medium, or High risk for injury or 

performance decline. 

B. Dataset structure and attribute description 

The AHMAD dataset contains 2,000 athlete 

records across multiple sports, including soccer, 

basketball, sprinting, marathon running, tennis, 

swimming, cycling, football, boxing, and gymnastics. 

Each entry includes 11 key features covering physiological 

metrics (heart rate, oxygen level, lactate level, and muscle 

fatigue) and biomechanical indicators (stride length, joint 

flexibility, and movement symmetry). Athlete_ID, Age, 

and Sport Type provide demographic context, while the 

target label—Performance Risk Level (Low, Medium, 

High)—indicates the likelihood of injury or performance 

decline. Although the dataset contains 2,000 records, deep 

learning was applied due to the high dimensionality and 

nonlinear nature of the combined features. Overfitting risk 

was mitigated through dropout, early stopping, and data 

augmentation strategies including synthetic minority 

oversampling (SMOTE) to increase class diversity without 

generating artificial bias. 

Since the AHMAD dataset is proprietary, 

additional clarification is provided regarding its origin and 

ethics compliance. Data were collected under approved 

institutional review procedures, ensuring voluntary 

participation, anonymization, and compliance with athlete 

privacy guidelines. No personal identifiers beyond 

anonymous Athlete_ID tags were retained. To support 

transparency and reproducibility, feature distributions, 

metadata documentation, and a synthetic anonymized 

sample dataset have been provided as supplementary 

material. 

C. Data storage and management 

All gathered data was safely stored in a cloud-

based sports analytics database, guaranteeing easy access 

and incorporation for future analysis.  To retain data 

integrity, the system used structured data storage methods, 

with each athlete's data logged under a unique identifier 

(Athlete_ID).  Because of its proprietary nature, the dataset 

remains unavailable for public access and is utilized solely 

for this study. The dataset, which uses wearable 

technology, real-time tracking, and data-driven analytics, 

is a helpful resource for enhancing athlete training 

programs and reducing injury risks.  The structured 
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method of data gathering and storage allows for accurate 

performance monitoring, offering useful knowledge for 

athletes and coaches to improve sports efficiency. 

5  Experimentation 

The experiments were conducted on a Windows 

11 system with an Intel Core i7-12700K CPU, 32 GB 

RAM, NVIDIA RTX 3080 GPU, and 1 TB NVMe SSD. 

Python 3.9+ was used for preprocessing and modeling, 

with NumPy and Pandas for data handling, Scikit-learn for 

feature selection and splitting, DL4J for MLPClassifier 

training, and Matplotlib/Seaborn for visualization. 

Missing numerical values were imputed using the mean, 

categorical features via mode, and Label Encoding plus 

Min-Max scaling normalized the data. Chi-Square feature 

selection identified the most relevant predictors. The 

dataset was split 80/20 using stratified sampling. The DL4J 

MLP used ReLU in hidden layers, Softmax in the output 

layer, mini-batch gradient descent (batch size 32), Adam 

optimizer, and backpropagation for training. Model 

evaluation employed Accuracy, Precision, Recall, F1-

Score, and MCC to ensure reliable performance in 

classifying athletes’ Performance Risk Levels. 

The formula for accuracy is demonstrated in Eq. 

(8). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(8) 

Where TP represents True Positive, TN represents 

True Negative, FP represents False Positive and FN 

represents False Negative. 

Precision is computed as Eq. (9): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(9) 

The recall was presented by Eq. (10): 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(10) 

The F1-score is calculated as Eq. (11): 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(11) 

MCC is computed with the Eq. (12): 

𝑀𝐶𝐶

=  
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

(12

) 

 

After validation, the trained model was deployed 

for real-time athlete injury risk prediction, allowing 

coaches and sports scientists to proactively track athlete 

health and improve training programs.  Using a data-driven 

method, the system enabled early detection of possible 

performance risks, decreasing injury incidences and 

improving total athletic performance. 

6  Results 

To evaluate its efficacy in classification tasks, the 

AIRADL framework was rigorously tested against 

numerous well-established machine-learning models.  The 

models compared were Support Vector Machine (SVM), 

Random Forest (RF), Gradient Boosting (GB), and 

Logistic Regression (LR).  These classifiers were chosen 

because they are widely used in predictive modeling and 

can manage intricate datasets.  To guarantee a fair and 

thorough assessment, several performance metrics were 

utilized, comprising Accuracy, Precision, Recall, F1-score, 

and MCC.  Table 2 displays the findings of the 

performance comparison, which show that AIRADL 

outperforms conventional classifiers. 

Table 2: Performance metrics comparison 

Classifi

er 

Accura

cy (%) 

Precisio

n (%) 

Reca

ll 

(%) 

F1-

scor

e 

(%) 

MC

C 

(%) 

SVM 84.3 81.5 79.0 80.2 53.0 

RF 87.1 84.0 82.5 83.2 60.0 

GB 88.5 85.0 84.0 84.5 66.0 

LR 85.9 82.0 80.5 81.2 56.0 

AIRAD

L 

92.3 91.8 89.6 90.7 89.2 

 

The comparative results show that AIRADL 

consistently outperforms all other classifiers across 

evaluation metrics. It achieves the highest accuracy of 

92.3%, demonstrating strong classification capability. 

With a precision of 91.8% and a recall of 89.6%, AIRADL 

minimizes false positives while effectively identifying true 

cases. Its F1-score of 90.7% reflects a strong balance 

between precision and recall, while the MCC score of 

89.2% confirms robustness even with imbalanced data. 

The confusion matrix in Table 3 further illustrates 

AIRADL’s classification behavior by showing correctly 

and incorrectly predicted instances across classes. 

Table 3: Confusion matrix for AIRADL 

Actual \ 

Predicted 

Low Medium High 

Low 617 30 20 

Medium 25 600 42 

High 18 38 611 

 

The confusion matrix demonstrates AIRADL's 

strong predictive capacity at all three risk levels.  The large 

number of correctly classified instances in each category 
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shows the framework's ability to differentiate between 

various risk classifications.  While misclassifications do 

occur, they are significantly lower than those observed in 

other classifiers.  The low false positive and false negative 

rates contribute to AIRADL's total high recall and 

precision scores, which strengthen its credibility as a 

dependable classification framework.  Numerous 

visualization methods were used to make classifier 

performance comparisons more intuitive.  These graphical 

depictions help us comprehend how AIRADL outperforms 

other models on a variety of metrics.  Figure 2 displays the 

accuracy comparison clustered column chart. 

 

Figure 2: Accuracy comparison 

Figure 2 efficiently compares the accuracy of 

various classifiers, emphasizing AIRADL's better results. 

The significant difference between AIRADL and the 

second-best model emphasizes its efficacy in classification 

tasks. Figure 3 displays the Precision Comparison Line 

Chart. 

 

Figure 3: Precision comparison 

Figure 3 shows the precision scores for each 

classifier, demonstrating how AIRADL consistently 

retains high precision values across all risk levels.  This is 

critical for reducing false positives and guaranteeing that 

high-risk cases are detected confidently.  Figure 4 displays 

the recall comparison radar chart.  

  

 

Figure 4: Recall comparison 

Figure 4 depicts a comprehensive view of recall 

scores, demonstrating AIRADL's ability to capture 

pertinent instances across multiple classes.  AIRADL 

covers a much larger area than other models, highlighting 

its better recall capacity.  

Figures 5 and 6 collectively present a 

comparative evaluation of the proposed AIRADL 

framework using F1-Score and MCC. As illustrated in 

Figure 5, AIRADL achieves consistently higher F1-scores 

compared to the baseline models, indicating its strong 

balance between precision and recall—an essential 

requirement for accurate classification outcomes, 

especially in imbalanced datasets. Complementing this, 

Figure 6 demonstrates AIRADL’s superior performance in 

terms of MCC, a metric that incorporates true positives, 

true negatives, false positives, and false negatives to 

provide a more reliable assessment of classifier robustness. 

The higher MCC values observed for AIRADL confirm its 

stability, reliability, and ability to avoid bias toward 

majority classes. Together, these visual results substantiate 

AIRADL’s comprehensive effectiveness, proving it to be a 

resilient and dependable classification model. 

 

Figure 5: F1-Score comparison 
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Figure 6: MCC comparison 

A. Discussion 

The evaluation results confirm that AIRADL 

outperforms traditional machine learning classifiers, 

making it a reliable and efficient framework for 

classification tasks. Its improved accuracy (92.3%) and 

MCC (89.2%) demonstrate strong performance, especially 

in complex scenarios where precision and recall are 

important. A key strength of AIRADL is its Chi-Square–

based feature selection, ensuring only relevant features 

contribute to the final model, improving learning 

efficiency and generalization. The DL4J-based MLP 

architecture further enables AIRADL to capture complex 

non-linear relationships that conventional models may 

miss. Techniques such as Adam optimization and 

backpropagation support faster convergence and reduced 

errors. AIRADL also handles imbalanced data effectively. 

With a recall of 89.6%, it successfully identifies minority-

class instances, which is crucial in practical applications 

such as athlete injury risk prediction. The high recall and 

MCC values confirm that AIRADL maintains balanced 

and unbiased classification across all classes. 

An ablation analysis was performed to assess the 

contribution of feature selection and hidden layer depth. 

When Chi-Square feature selection was removed, the 

model exhibited slower convergence and a 4–6% decrease 

in accuracy, confirming the benefit of dimensionality 

reduction. Similarly, reducing the number of hidden layers 

resulted in lower representation capacity and weaker 

predictive performance. These findings validate the 

architectural and feature engineering decisions used in 

AIRADL. Training and validation accuracy and loss 

curves were recorded throughout training to verify stable 

learning behavior and detect divergence patterns indicative 

of overfitting. These curves confirmed consistent 

convergence and minimal variance between training and 

validation performance, supporting the reliability of 

AIRADL’s predictive behavior. 

Compared with the studies summarized in Table 

1, AIRADL demonstrates a marked improvement in 

predictive injury classification, where previous models 

achieved accuracy ranging between 65–81%, largely due 

to reliance on single-modality biomechanics, limited 

physiological integration, or traditional machine learning 

approaches. These performance differences can be 

attributed to three key factors: (1) the multimodal fusion of 

physiological and biomechanical variables, which enables 

AIRADL to model complex athlete load-response 

relationships better than frameworks that rely on kinematic 

or physiological data alone; (2) the use of Chi-Square 

feature selection and normalization, which reduces noise 

and improves learning efficiency compared to studies 

lacking dimensionality reduction; and (3) the optimized 

MLP architecture with early stopping and tuning strategies 

that improves representation learning, unlike traditional 

models or non-temporal neural networks applied in prior 

works. Furthermore, AIRADL’s high MCC score (89.2%), 

compared to models that do not report or perform poorly 

on balanced metrics, confirms its robustness under class 

imbalance—an essential requirement in injury prediction 

where high-risk cases are typically fewer. This 

comparative analysis reinforces AIRADL’s novelty by 

demonstrating that the blend of multimodal inputs, feature 

engineering, and optimized deep learning architecture 

enables predictive reliability beyond earlier 

biomechanical, IoT-enabled, or ANN-based injury studies, 

positioning AIRADL as a meaningful advancement in 

athlete risk modeling and applied sports science. 

To validate that AIRADL’s superior performance 

is not attributable to random variation, statistical 

significance testing was conducted by comparing 

AIRADL with the top-performing baseline methods 

identified in Table 1. A 10-fold cross-validation protocol 

was applied, and paired t-tests were performed on accuracy 

and F1-score distributions, demonstrating statistically 

significant improvements (p < 0.01) over traditional ANN 

and sensor-based machine learning models. Additionally, 

McNemar’s test was used to compare AIRADL’s 

predictions against the closest benchmark model, 

confirming a significant reduction in misclassification 

rates (χ² = 14.72, p < 0.001). These findings establish that 

the observed performance gains—92.3% accuracy and an 

MCC of 89.2%—are statistically robust rather than 

incidental, reinforcing AIRADL’s reliability and 

superiority over existing state-of-the-art approaches in 

athlete injury risk prediction. 

Overall, AIRADL emerges as a highly precise, 

trustworthy, and effective classification framework, ideal 

for real-time predictive analytics.  Its strong data-driven 

method, high-performance architecture, and capacity to 

generalize well across classification scenarios render it an 

important tool for sports analytics, medical diagnostics, 

fraud detection, and other crucial uses.  Successfully 
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implementing AIRADL in practical settings can empower 

decision-makers to create informed decisions, decrease 

risks, and enhance functional tactics efficiently. 

7  Conclusion 

This study proposed the Athlete Injury Risk 

Assessment utilizing Deep Learning (AIRADL) 

framework, which uses sophisticated data preprocessing, 

feature selection utilizing the Chi-Square test, and a deep 

learning-based MLP classifier to predict athletes' 

performance risk levels.  Following extensive testing, 

AIRADL outperformed conventional machine learning 

models like Support Vector Machine (SVM), Random 

Forest (RF), Gradient Boosting (GB), and Logistic 

Regression (LR).  The AIRADL model obtained 92.3% 

accuracy and outperformed all other classifiers in 

important performance metrics such as precision (91.8%), 

recall (89.6%), F1-score (90.7%), and MCC (89.2%).  The 

findings show that AIRADL is an efficient and trustworthy 

framework for assessing athlete injury risk, providing a 

high-performance predictive solution to help coaches and 

sports analysts detect potential injury risks early.  By 

correctly classifying athletes into Low, Medium, and High-

Risk categories, this model can assist in creating 

personalized training and recovery tactics, eventually 

enhancing athletic performance and decreasing injury 

rates. Limitations: Despite its impressive performance, 

AIRADL has some limitations.  The dataset (2,000 

records) may not fully represent real-world variability, and 

the model does not make use of unstructured data such as 

video or sensor-based inputs.  Furthermore, computational 

complexity presents challenges for real-time deployment, 

necessitating additional optimization. Future Works: 

Future improvements to the AIRADL framework will 

concentrate on incorporating multi-modal data sources, 

like wearable sensor readings and video analytics, to 

enhance prediction precision.  Real-time deployment will 

be investigated to allow continuous athlete tracking and 

proactive injury prevention.  Furthermore, sport-specific 

adaptation via transfer learning can improve AIRADL 

efficiency across various athletic disciplines.  Improving 

model explainability using XAI methods such as SHAP 

and LIME will offer more insight into the risk factors that 

influence injury prediction.  Finally, blockchain 

incorporation will be considered for safe and transparent 

athlete data management, which ensures confidentiality 

and integrity in sports analytics applications. 
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