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The current multimodal retrieval accuracy of online libraries is insufficient. To solve this problem, a
multimodal retrieval model for digital libraries that integrates fully convolutional networks and hash
learning is proposed in the proposed method. The research introduces a fully convolutional network and
abidirectional Transformer encoder to extract semantic features, and combines a residual neural network
to deeply optimize the model, thereby enhancing the feature expression ability. In the hash learning stage,
a triplet loss and contrastive learning loss optimization model is designed to further enhance cross-modal
semantic alignment. This enables image-text multimodal retrieval. In the experiment, the model used was
applied to the BookCoverDataset for verification. And it is combined with Latent semantic sparse hashing
(LSSH) and Collective Matrix Factorization Hashing. CMFH, Supervised Matrix Factorization Hashing
(SMFH), Discrete online cross-modal hashing the multimodal retrieval models of digital libraries
constructed by DOCH were compared. The experimental results show that the average retrieval accuracy
score of this model is up to 0.93, and the maximum mAP reaches 0.95, which is 0.20 higher than that of
the comparison model. When the hash code is 256 bits, its average accuracy reaches 0.94. Compared with
the baseline model, the study proposes that the model demonstrates stronger semantic association ability
and feature compression efficiency in multimodal retrieval tasks, verifying the effectiveness of the fusion
strategy of fully convolutional networks and hash learning. The model significantly enhances the accuracy
and robustness of cross-modal retrieval through a deep semantic alignment mechanism, providing a
feasible solution for efficient and precise image-text mutual inspection in the digital library environment.

Povzetek: Studija predstavi model za boljse iskanje med slikami in besedilom v digitalnih knjiznicah, ki z
zdruzevanjem globokega ucenja in “hash” kodiranja izboljSa natancnost ter prekasa primerjalne metode.

1 Introduction

In the wave of digitalization, online libraries become the
core platform for knowledge dissemination and sharing,
with book resources presenting multimodal forms such as
images and text [1]. Multimodal retrieval links
heterogeneous data to meet users' precise demands of
“searching text by image and searching image by text” and
is crucial for improving digital resource utilization [2].
However, traditional retrieval methods focus on single-
modal features and ignore cross-modal semantic
associations. When handling large-scale multimodal data,
they face high feature dimensionality, low retrieval
efficiency, and difficulty in semantic alignment, making
them unsuitable for the complex needs of online libraries
[3]. Currently, multimodal retrieval research has made
certain progress. Scholars attempt to link multimodal data
through feature concatenation and early fusion, but they
do not fully explore deep semantics between modalities.
Existing models for online library multimodal resources
often suffer from large semantic gaps and long retrieval
time, failing to balance efficiency and accuracy [4-5]. The
existing methods still have significant deficiencies in the
collaborative optimization of cross-modal semantic

alignment and feature compression, especially lacking the
joint modeling ability of fine-grained semantic matching
and efficient hash coding in the online library scenario.
Moreover, most models fail to take into account the local
feature alignment and global semantic consistency of
image and text modalities, resulting in limited accuracy of
retrieval results. To this end, a multimodal hash
framework based on a fully convolutional network and a
bidirectional Transformer encoder is proposed. A cross-
modal attention mechanism is introduced to achieve fine-
grained alignment of image regions and text primitives.
The hash encoding process is optimized by combining
semantic preservation loss and quantization constraints,
significantly improving computational efficiency while
ensuring retrieval accuracy.

The significance of the research lies in its supporting
role in the efficient organization and precise access of
multimodal resources in online libraries, which is directly
related to the efficiency of users' information acquisition
and service quality. The criteria for measuring success
include a significantly better cross-modal retrieval
accuracy than existing methods and an increase of no less
than 5% in mAP values on mainstream evaluation
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datasets. When the hash encoding compression ratio is
below 64 bits, it still maintains a relatively high retrieval
accuracy. The response time of the model meets the real-
time requirements, and the time consumption of a single
query is controlled within 200 milliseconds. It has good
generalization ability and stability in the real online library
scenario.

The research contribution lies in (1) proposing a
cross-modal hash learning framework that integrates a
fully convolutional network with a bidirectional
Transformer encoder to achieve deep semantic alignment
of image and text modalities at a fine-grained level; (2)
Design a cross-modal attention fusion mechanism and a
hybrid loss function, and collaboratively optimize the
semantic preservation and hash quantization processes to
enhance the distinguishability of multimodal features in a
compact binary space; (3) Verify the model's effectiveness
in both public datasets and real online library scenarios,
balancing high-precision retrieval and low-latency
response, and provide feasible solutions for the efficient
organization of multimodal resources.

2 Literature review

Multimodal retrieval is a technique that uses a query from
one modality to find semantically related data in other
modalities, such as text, images, or videos. This technique
has been widely applied in many fields, and many scholars
have conducted related studies. Deep cross-modal hashing
methods have been developed to learn fine-grained
similarities between data points of different modalities,
thereby improving retrieval accuracy. Contrastive
learning frameworks, as an effective technique for
enhancing the consistency of visual and text features, have
been widely applied [6]. Knowledge distillation
technology is also used to transfer knowledge from large
teacher models to more effective student hash models,
thereby  reducing complexity  while improving
performance [7]. To address the challenge of efficiency,
asymmetric hashing methods were proposed, with
learning tasks defined within the framework of matrix
factorization to generate compact and discriminative hash
codes [8]. All these technologies have been applied in
multimodal retrieval, and the research results have
provided new improvement ideas for this field.
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Methods such as FCN, hash learning, and image
segmentation are also frequently employed in multimodal
retrieval. With the advancement of science and
technology, an increasing number of scholars are seeking
more effective retrieval methods [9-10]. Zhang D et al.
proposed a new online hashing method in order to
effectively handle online streaming media data. This
method utilizes semantic autoencoders to establish the
correlation between binary codes and labels, and adopts
the inner product of labels to achieve the connection
between data and new data. This enhances the efficiency
of large-scale cross-media similarity retrieval [11]. Khan
A et al. proposed a cross-modal recovery technology
based on a multi-label information depth ranking model to
solve the problem of inappropriate information contained
between images and texts in cross-modal retrieval. This
technology uses a regularization function instead of binary
constraints to confine discrete values within a numerical
range for end-to-end training. The results show that the
performance of this method on the MIR-Flickr-25K and
NUS-WIDE datasets is significantly better than that of the
existing mainstream models [12]. Wang Y et al. proposed
a new supervised cross-modal hashing method, namely
multi-information embedding hashing, in response to the
problem that the retrieval performance of supervised
cross-modal hashing is gradually reaching a bottleneck at
present. Multi-information embedded hashing can flexibly
handle various information mining, hash code learning
and hash function learning, thus improving the retrieval
performance of supervised cross-modal hashing [13]. Wen
H et al. proposed a self-trained enhanced multi-factor
matching network, which models the fine-grained
alignment relationship between text and images by
decoupling latent semantic factors and introducing a
double aggregation mechanism. The results show that this
method achieves significant performance improvements
on multiple combined image retrieval benchmarks, with
an improvement rate exceeding 8%[14]. To further
compare the performance differences between the
research method and the existing mainstream methods, the
differences between each literature work and the research
work, as well as their own advantages, are summarized in
Table 1.

Table 1: Summary of the differences between the related work and the work of SRF-BERT-IDHS.

Document Number Method

The difference from SRF-BERT-IDHS

(6]

A retrieval method combining deep neural
model learning modalities and WOA operators

Deep semantic alignment has not been achieved. Only modal
association is carried out in the shallow feature space, lacking
cross-modal semantic consistency constraints.

7] A multimodal  contrastive  knowledge | The model has a high degree of redundancy and low computational
distillation method efficiency
A novel asymmetric supervised fusion-oriented . -

(8] hashing method named ASFOG Lack of dynamic adaptability

Cross-modal retrieval framework based on

The semantic relationships between classes were not fully

network

(1] online hashing and semantic autoencoding explored, resulting in limited generalization ability
[12] Cross-modal recovery technology based on | The semantic correlation is not high and the retrieval accuracy is
multi-label information deep ranking model low
[13] A new supervised cross-modal hashing method bInsufﬁcient mo_deling of fine-grained semantic associations
etween modalities
[14] Self-trained enhanced multi-factor matching | Relying on strongly supervised signals makes it difficult to address

the challenges of label noise and modal heterogeneity
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Figure 1: Modal data processing module composed of FCN and BERT.

Based on the above content, it can be known that
although there has been certain progress in the related
research of multimodal retrieval in digital libraries, due to
the significant structural differences between the visual
features of images and the language features of texts, deep
semantic alignment has not been achieved, resulting in an
imbalance between retrieval efficiency and accuracy.
Moreover, most of the existing methods are limited to
shallow semantic matching and it is difficult to capture the
complex associations between modalities. Therefore, the
proposed multimodal retrieval model for digital libraries,
which integrates FCN and Hash Learning, replaces the
original FCN network with Residual Network (ResNet)
and combines a Squeeze-Excitation (SE) channel attention
mechanism to enhance feature extraction. Using a dual-
branch deep hashing network structure and an improved
loss function, it aims to meet users' needs for accurate
retrieval in digital libraries.

3 Construction of multimodal
retrieval model for online libraries

3.1 Construction of modality feature
extraction module based on FCN and
BERT

Multimodal retrieval in online libraries aims to achieve
precise content matching across or within modalities, such
as “text—image,” “image—text,” and “image—image.”
To achieve this goal, it is necessary to address the
significant differences in underlying representations
among different modalities. In addition, features of
different modalities need to be semantically aligned, and
retrieval must balance efficiency and accuracy [15].
Therefore, SRF-BERT-IDHS proposes an online library
multimodal retrieval model based on FCN and Hash
Learning. The model uses FCN to process and analyze
image modality data, employs Bidirectional Encoder
Representations from Transformers (BERT) to capture
textual features, and uses Hash Learning to address
retrieval efficiency and large-scale data matching. The
structure of the modality data processing module
composed of FCN and BERT is shown in Figure 1.

As shown in Figure 1, after receiving multimodal raw
data, images enter the FCN for encoding and decoding to
achieve spatial feature alignment. Text enters BERT,
which outputs context-aware word vectors through the
Transformer encoder. Finally, the model performs cross-
modal fusion and alignment of text and images, realizes
cross-modal interaction, and outputs the results. In FCN,
the convolution operation is the foundation for extracting
image features. Its mathematical expression is shown in
Equation (1) [16].

Y (i, j,c)=
k-1 k-1 Cip-1 . . ' 1

prqufch'—o X (|+ p.J+a.c ) K(p,q,c 'C)

+b(c)
1)

In Equation (1), Y (i, j,c) denotes the pixel value of
the output feature map. X(i+ p,j+q,c’) is the pixel
value of the input feature map at the corresponding
position and channel. K(p,q,c’,c) is the weight of the
FCN

reduces feature map resolution through pooling layers to
enlarge the receptive field and reduce parameters. Its
equation is shown in Equation (2).
Y (i, j.c)=max; y max; "y X (i-s+p, j-s+0,c)(2)
In Equation (2), s denotes the pooling window size,
and Y (i, j,c) is the maximum value. The core innovation

convolution kernel at dimension (p,g,c'.c) .

of FCN is upsampling low-resolution feature maps to the
input image size through deconvolution to achieve pixel-
level prediction. The deconvolution operation is shown in
Equation (3).

Y'(i, j.c)=

Y > X (i ) K (p.g,e.c)i(3)
+b'(c)

In Equation (3), i:i'-s'—p+(k'—s') ,

j=ij"s'—g+(k'=s") , and Y'eR™"% denote the

high-resolution feature map after upsampling. The input
representation in BERT is shown in Equation (4).
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Figure 2: Diagram of dilated convolution and SE-ResNet structure.

E =T +R+S 4)
In Equation (4), E; denotes the final input vector of
the i -th token. T. is the word embedding, P

position embedding, and S, is the segment embedding.

Using only FCN-BERT for online library multimodal
retrieval can handle cross-modal information processing
and matching to some extent. However, FCN has limited
ability to capture small targets and fine details, lacks
explicit modeling of global image semantics and spatial
relationships, and consumes significant computational
resources and time. Therefore, The proposed method
replaces the VGG network in FCN with ResNet. The
residual connections in ResNet solve the gradient
vanishing problem in deep networks, support deeper
network structures, and retain richer multi-scale features.
Dilated convolution expands the receptive field without
decreasing resolution, enabling the capture of the global
layout of book covers. Attention mechanisms are applied
by adding SE channel attention after each residual block
and attention in BERT to focus on key information [17].
The schematic diagram of dilated convolution and SE-
ResNet structure is shown in Figure 2.

As shown in Figure 2, the left diagram depicts dilated
convolution, enlarging the receptive field while keeping
the number of parameters unchanged. When d=1, the
receptive field is 3x3. After dilation, it expands to 5x5,
reducing overall computation. The right diagram shows
the SE-ResNet structure, where the SE module is added to
the residual structure, allowing the network to
automatically focus on important feature channels and
suppress irrelevant background. The output of dilated
convolution is expressed in Equation (5).

y[i]=Y." x[i+d k] o[K] (5)

In Equation (5), d denotes the dilation rate, k is the
convolution Kkernel size, x represents the input feature
map, and w indicates the convolution kernel weight. In
the SE module, the squeezing equation of channel
attention is shown in Equation (6).

1 H W

Z = H xW Zi:lzl':lxi,i,c (6)

In Equation (6), H and W respectively represent the
height and width of the feature map, C is the number of
channels, and Z_ is the channel statistical information

is the

obtained through global average pooling of spatial
dimensions, which is used for subsequent excitation
operations to generate channel weights and achieve
enhancement of important features and suppression of
redundant information. The study performs global average
pooling on the feature map x of each channel,

i,j.Cc
compressing it into a 1x1xC vector to focus on the global
information of the channel. The excitation equation of SE
is shown in Equation (7).

s. =o(W,-ReLU (W, -z,)) )

In Equation (7), W, and W, are the weight matrices

for dimension reduction and dimension increase
respectively, and o represents the Sigmoid function,
which outputs the weights from 0 to 1, representing the
importance of this channel. Therefore, the modality data
processing module composed of SE-ResNet-FCN and
BERT after these improvements is shown in Figure 3.

As shown in Figure 3, the module preprocesses raw
data for images and text. SE-ResNet optimizes image
feature extraction in FCN, allowing the network to focus
on key regions. Dilated convolution is applied in certain
convolutional layers to capture global semantic
information. The decoder then upsamples and fuses
features, transforming low-resolution feature maps into
high-resolution representations. BERT extracts semantic
features from text and captures contextual dependencies.
Finally, cross-modal fusion and alignment are performed
to eliminate the modality gap between images and text,
and the aligned features are output.

3.2 Multimodal retrieval model combining
improved FCN and enhanced hash
learning

Through SE-ResNet-FCN and BERT, the model extracts
semantic features from images and texts, but this process
alone does not complete cross-modal fusion. Hash
learning addresses the efficiency and semantic association
issues in multimodal retrieval by converting high-
dimensional features of different modalities into low-
dimensional binary hash codes. Because traditional Hash
learning relies on manually designed features and is
difficult to fully mine the complex semantic information
of data, to solve this problem, the research adopts a dual-
branch hash network structure. One branch is for images
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and uses the image DH based on SE-ResNet-FCN, and the
other branch is for text and uses the text DH based on
BERT. Then, through the fusion layer, the features of
different modalities are integrated and mapped to a unified
hash code [18]. The dual-branch Hash network structure
is shown in Figure 4.

As shown in Figure 4, the dual-branch Hash network
maps semantically similar data from different modalities
to nearby hash codes in the hash space, while pushing
dissimilar data farther apart. After extracting features from
the two branches and aligning their dimensions, the model
fuses them through the fusion layer, then maps the unified
feature to a binary hash code. A loss function constrains
network training to ensure the semantic consistency of
hash codes. The hash function mapping in Hash learning
is shown in Equation (8)

h(x) =sign( f (x)) (8)
In Equation (8), x represents the original high-
dimensional feature, f(x) is the hash mapping function,
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sign(+) is the sign function, and h(x) represents the
generated binary hash code. The mapping function in deep
hashing is shown in Equation (9).

f(x)=W"-g(x)+b 9)

In Equation (9), ¢(x) represents the features

extracted by the neural network, W and b are the
learnable weight matrix and bias term. Hamming distance
is used to measure sample similarity in the hash space. The
equation for Hamming distance is shown in Equation (10).
1Sk |0 _p
1o Li=1 h' = ‘

dH(ha,hb):kf

In Equation (10), h, and h, are two hash codes with
length k , and h’and h") are the i -th bit of the hash

code. Hamming similarity measures the similarity
between two hash codes, as shown in Equation (11).

sy (1) =1-d, (h,,h,) (11)

(10)
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Figure 3: Modal data processing module composed of SE-ResNet-FCN and BERT.
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Figure 6: SRF-BERT-IDHS online library multimodal retrieval model.

In Equation (11), s,, (h,,h,) represents the Hamming

d,, (h,.h,) is the length of the hash code, and

the value range is [0,1]. Hamming similarity is
complementary to Hamming distance. The dual-branch
Hash network achieves cross-modal fusion to some extent,
but the generated hash codes may only capture shallow
patterns within each modality instead of deep semantic
correlations. Triplet loss is introduced to enhance
similarity constraints, reducing the distance between
anchor and positive samples and increasing the distance to
negative samples [19]. In addition, to improve the quality
of hash codes, contrastive learning loss is introduced. By
constructing positive and negative sample pairs, the
similarity of positive sample pairs in the hash space is
maximized, and the similarity of negative sample pairs is
minimized. The structure diagram of the improved dual-
branch hash network is shown in Figure 5.

As shown in Figure 5, the improved dual-branch Hash
network focuses on hash code generation. Contrastive loss
pulls the hash codes of similar samples closer, while triplet
loss enforces the anchor-positive distance to be smaller
than the anchor-negative distance. Through loss
backpropagation, the network parameters are optimized so
that the hash codes of semantically similar samples
become closer, improving retrieval accuracy. The core
equation of triplet loss is shown in Equation (12).

L[riplet =

max(d( d(h,.h)+a 0)
In Equation (12), L, is the triple loss function. h,

similarity,

h,.h,)- (12)

al’'p
is the anchor sample hash code, h, is the positive sample
hash code with the same semantics, h, is the negative

sample hash code with different semantics, d(-) is the

Hamming distance, and « is the margin parameter. The
selection of marginal parameters for triplet loss is based
on the distribution characteristics of positive and negative
sample pairs during the training process, with a parameter
adjustment range of 0.1 to 2.0. The contrastive learning
loss is shown in Equation (13).
exp(s(h,,h)/7)
=-log — (13)
ZkzleXp(S(Wht,k)/T)

In Equation (13), L,,.q IS the contrastive learning

loss function. h, represents the image hash code, h
represents the matching text hash code, h, represents

L

contrast

another text hash code, s(-) is the similarity function, and

7 isthe temperature parameter. In summary, the structure
of the online library multimodal retrieval model (SRF-
BERT-IDHS) composed of SRF-BERT and Improved
Dual-branch Hash Structure (IDHS) modules is shown in
Figure 6.

As shown in Figure 6, the unique novelty of the SRF-
BERT-IDHS framework proposed in the study and its
differences from previous multimodal hashing methods
are as follows: Compared with the traditional dual-branch
network structure, SRF-BERT-IDHS achieves dynamic
alignment of image and text features at the hash mapping
layer by introducing a cross-modal attention mechanism,
effectively enhancing semantic consistency. In addition,
by combining the joint optimization strategy of triple loss

and contrastive learning, the compactness and
discriminative  ability of hash codes between
heterogeneous  modalities are  further enhanced,

overcoming the limitations of existing methods in
semantic gaps and modal differences, thereby achieving
efficient and accurate multimodal retrieval in large-scale
online library scenarios.
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Table 2: mAP test results at different hash code length levels.

Hash code length

Task Model 16 32 64 128 256
SRF-BERT-IDHS 0.821 0.833 0.847 0.858 0.864
LSSH 0571 0579 0.587 0596 0.604

[>T CMFH 0.623 0.632 0.648 0.653 0.662
SMFH 0732 0.746 0.753 0.766 0.780
DOCH 0.677 0.686 0.701 0.709 0.715
SRF-BERT-IDHS 0.872 0.889 0.905 0.916 0.931
LSSH 0.678 0.698 0.705 0.712 0.726

Tl CMFH 0.712 0.723 0.734 0.745 0.751
SMFH 0.783 0.798 0.810 0.823 0.831
DOCH 0.724 0.735 0.747 0.760 0.775

The research proposes that the process of the model
in real-time application or operation in large-scale library
systems is divided into five stages: data upload, semantic
feature extraction, hash coding, index storage and retrieval
feedback. After the user inputs text or uploads an image,
the system first calls the pre-trained SRF-BERT-IDHS
model to extract the semantic features of the
corresponding modal and generate a fixed-length hash
code. Subsequently, the Hamming distance is calculated
in the hash index database to quickly retrieve the closest
cross-modal data. While returning the results, the system
records the user's click behavior, duration of stay and
feedback score as implicit feedback signals. Periodically,
these feedback data are used to fine-tune the attention
weights and hash mapping parameters of the model,
optimizing the retrieval accuracy through an incremental
learning mechanism. The learning rate is set to 0.001, the
batch size is 64, and the Adam optimizer is used for
parameter updates. The training lasted for 50 eras. The
positive and negative samples in the triplet loss were
sampled using the hard example mining strategy to ensure
that the model focused on the discrimination near the
semantic boundary during the optimization process. The
training set and the test set are divided in an 8:2 ratio, and
all data are randomly shuffled to ensure a balanced
distribution of categories. The text encoder adopts the pre-
trained BERT-base model, whose parameters are fixed in
the early stage of training and then jointly updated at a
smaller learning rate in the fine-tuning stage. The image
backbone network is initialized based on the pre-trained
SE-ResNet-FCN of ImageNet. The feature extraction
process integrates the channel and spatial attention
mechanism to enhance the response strength of key
regions.

4 Validation of SRF-BERT-IDHS
multimodal retrieval model for
online libraries

4.1 Performance validation of SRF-BERT-
IDHS model

To evaluate the multimodal retrieval performance of the

SRF-BERT-IDHS model, it was compared with

multimodal retrieval models for digital libraries based on

Latent Semantic Sparse Hashing (LSSH), Collective

Matrix Factorization Hashing (CMFH), Supervised
Matrix Factorization Hashing (SMFH), and Discrete
Online Cross-modal Hashing (DOCH). The experimental
datasets were BookCover and ICDAR, both containing
book image modalities and associated text information.
The experiments were conducted on high-performance
computing equipment with an Intel Core i9-10900K CPU
(2.4 GHz, 32 cores) and 128 GB of memory. The software
environment included Ubuntu 20.04 LTS and Python 3.7.
The mean average precision (mAP) scores of the five
models were compared under different hash code lengths,
including image-to-text retrieval (I—T) and text-to-image
retrieval (T—1I) tasks. The performance comparison using
the BookCover dataset is shown in Table 2.

In Table 2, the mAP value of SRF-BERT-IDHS in
text-to-image retrieval reached a maximum of 0.931 and
remained no lower than 0.872. SMFH ranked second, with
a maximum mAP score of 0.831 and relatively stable
performance. The mAP scores of all models in the text-to-
image task were generally higher than those in the image-
to-text task, indicating that text features enabled more
precise image retrieval. Moreover, the hash code length
was positively correlated with performance, suggesting
that longer hash codes preserved more semantic
information. To sum up, the SRF-BERT-IDHS model has
the best performance. In all hash codes and two tasks, the
mAP score of SRF-BERT-IDHS is higher than that of
other models, and the advantage further expands with the
increase of hash codes. To further verify the performance
of SRF-BERT-IDHS, the five models were tested on both
BookCover and ICDAR datasets, and their training
efficiency was compared, as shown in Figure 7.

It can be seen from Figure 7 (a), the highest mAP
score of SRF-BERT-IDHS was 0.92, the median was 0.87,
and the lowest was 0.74. The lowest mAP score of LSSH
was 0.58. As shown in Figure 7(b), the mAP scores of all
models improved, with SRF-BERT-IDHS achieving a
median mAP of 0.88 and a maximum of 0.95, which was
0.20 higher than the maximum of LSSH. Overall, SRF-
BERT-IDHS demonstrated the highest precision and
stability, ranking first among all compared models. This
indicates that SRF-BERT-IDHS has strong generalization
ability and robustness under different data distributions.
Compared with other models, it can better adapt to the
feature distribution of different datasets. Even in scenarios
with complex semantics or significant cross-modal
differences, it can still maintain high retrieval accuracy.
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To comprehensively assess the learning capability of SRF-
BERT-IDHS, the five models were trained on different
datasets, and the comparison is shown in Figure 8.

As can be seen from Figure 8, all models exhibited
slower loss reduction and higher overall loss on the
BookCover dataset than on the ICDAR dataset, indicating
that the relationship between book covers and text made
the learning process more challenging. As shown in Figure
8(a), the loss of SRF-BERT-IDHS dropped sharply from
5.50E° to below 1.00E% within 20 epochs and was much
lower than that of other models. The LSSH model
consistently performed worst, with the highest loss
reaching 2.00E"®°., Compared with the ICDAR dataset,
BookCover has higher requirements for the semantic
alignment ability of the model, while SRF-BERT-IDHS
can still converge rapidly on this dataset, indicating that it
has stronger feature extraction and cross-modal matching
capabilities. In contrast, the convergence speed of other
models is relatively slow and they are prone to fall into

C. Qiu

local optimum, verifying the learning advantages of SRF-
BERT-IDHS in complex scenarios.

4.2 Practical application of multimodal
retrieval model in online libraries

After verifying the basic performance of SRF-BERT-
IDHS, its practical application value was further tested. A
dataset of 5,000 pairs of book images (including cover and
illustrations) and text information (including metadata,
tables of contents, and main content) was collected from
online digital libraries. The higher-quality 70% of the data
was used as the training set, and the remaining 30% was
used as the test set. The experimental environment
remained unchanged. The five models were trained on the
dataset, and their Average Precision (AP) was compared
under different hash code lengths. The results are shown
in Figure 9.
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Figure 10: Comparison of retrieval confusion matrices of five models.

In Figure 9(a), the AP value of SRF-BERT-IDHS
consistently outperformed the others, reaching 0.94 at
256-bit hash codes. The AP values of the other models
also increased with longer hash codes, with DOCH
reaching 0.85, which was 0.09 lower than SRF-BERT-
IDHS. As shown in Figure 9(b), the AP value of SRF-
BERT-IDHS further improved, reaching 0.95 at 256-bit
hash codes. This is attributed to its integration of semantic
association and feature reconstruction mechanisms,
enabling more precise alignment of images and text in
high-dimensional Spaces. On the 30% low-quality test set,
SRF-BERT-IDHS still maintained an AP value of 0.91,
significantly outperforming other models. The results
show that this model has stronger robustness and
generalization ability in real library retrieval scenarios.
Especially when facing blurred images or incomplete
texts, it can still maintain efficient matching performance,
verifying its superior performance in practical

applications. To evaluate the retrieval performance of
SRF-BERT-IDHS on real datasets, the five models were
tested on the training set, and their retrieval confusion
matrices are shown in Figure 10.

It can be seen from Figure 10(a), SRF-BERT-IDHS
achieved an average retrieval accuracy of 0.93 on the
training set. As can be seen from Figure 10(b), DOCH
performed slightly worse than SRF-BERT-IDHS, with an
average accuracy of 0.85. From Figure 10(e), LSSH
performed worst, with an average accuracy of only 0.71,
which was 0.22 lower than SRF-BERT-IDHS. Overall,
SRF-BERT-IDHS achieved the best recognition of
multimodal data, with fewer misclassifications and the
highest retrieval accuracy. To fully demonstrate the
superior performance of SRF-BERT-IDHS, the top-N
precision curves of the first 1,000 samples in the training
set were compared across the five models, as shown in
Figure 11.
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Table 3: Ablation study results on retrieval performance.

Project Retrieval speed (s/ sample) Training time (h) Average accuracy rate (%)
FCN+SE-ResNet 0.034+0.02 12.5+1.2 76.8+2.2

FCN+Triplet loss only 0.029+0.03 11.8+1.6 79.3x24
FCN+Contrastive loss only 0.031+0.02 12.1+15 78.5+2.3

Full model 0.025+0.01*&# 10.3£1.3*&# 87.9+2.5*&#

Note: In Table 3, * indicates that the result difference between the Full model and FCN+SE-ResNet is significant (p<0.05); The results of the Full
model and FCN+Triplet loss only represented by & were significantly different (p<0.05); # Indicates that the result difference between the Full model

and FCN+Contrastive loss only is significant (p<0.05).

It can be seen from Figure 11, the top-N curve
represents the variation of retrieval accuracy with the
number of retrieval structure samples. The larger the area
enclosed by the curve, the better the model performance.
SRF-BERT-IDHS always maintains the final accuracy. As
the sample size increases, the accuracy values of each
model decrease. However, the decline of SRF-BERT-
IDHS was the smallest, demonstrating stronger stability
and generalization ability. Especially in the first 500
samples, its accuracy remained above 0.9, significantly
superior to other models. The reason why SRF-BERT-
IDH performs well is that it integrates semantic
enhancement mechanisms and feature re-weighting
strategies, effectively improving the alignment accuracy
between text and image modalities. Meanwhile, the model
introduces a context-aware Ssemantic mapping module
during the hash encoding process, significantly enhancing
its robustness and retrieval stability in complex scenarios.

To test the effectiveness of the improved method
proposed in the research, an ablation experiment was
designed to analyze and compare its performance. The
comparison indicators include retrieval speed, training
time and average accuracy rate. The baselines of the
comparative experiments include FCN+ SE-ResNet,
FCN+Triplet loss only, FCN+Contrastive loss only, and
Full model. The results are shown in Table 3.

As shown in Table 3, the complete model
significantly outperforms each baseline method in terms
of average accuracy, reaching 87.9%, and has the shortest

training time, only 10.3 hours. This indicates that the
introduced optimization strategy effectively enhances the
model's convergence speed and retrieval accuracy.
Compared with the variants that only use Triplet loss or
Contrastive loss, the Full model further enhances cross-
modal semantic consistency through the joint loss function
and feature reweighting mechanism, verifying the
effectiveness of the synergy of each module.

Although the BookCover dataset is representative in
the task of book cover recognition, its sample distribution
is limited to specific publication years and regional
categories, making it difficult to comprehensively reflect
the visual semantic differences across cultures and styles.
To verify the generalization ability of the method,
experiments were further conducted on the Flickr30K and
MSCOCO datasets covering multi-domain image-text
pairs. The results show that the proposed model maintains
stable performance improvement under different semantic
densities and noise levels, confirming its potential to adapt
to diverse scenarios. Especially under complex
backgrounds and low-quality image conditions, the model
can still maintain a high retrieval accuracy rate,
demonstrating good robustness.

5 Conclusion and future work

To address the bottleneck of multimodal retrieval in online
libraries and to improve cross-modal retrieval efficiency
and accuracy, SRF-BERT-IDHS explored a multimodal
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retrieval approach for book images and text resources. The
study built a retrieval framework that integrates FCN and
Hash Learning. It used FCN to extract deep features of
book cover images and combined them with text branch
features. Through deep hash learning, the features were
mapped to a low-dimensional semantic space. Triplet loss
and contrastive learning loss were designed to optimize
cross-modal semantic alignment. The results showed that
the SRF-BERT-IDHS performed well in multimodal
retrieval tasks. For the image-to-text retrieval task, the
mAP reached 0.864 with a 256-bit hash code, which was
higher than 0.604 for LSSH and 0.662 for CMFH. For the
text-to-image retrieval task, the mAP reached 0.931 with
a 256-bit hash code, with both precision and efficiency at
a leading level. The AP value reached 0.940, and the
average retrieval accuracy was 0.930. Even when the
sample size reached 1000, the precision remained above
0.85. These results verified the capability of FCN to
extract deep image features and the advantage of hash
learning in dimension compression and semantic
association enhancement. The combination effectively
overcame modality barriers and met the multimodal
resource retrieval needs of online libraries. However,
although the dataset in The proposed method covered
multiple book categories, its scale was relatively limited,
and the robustness of the model under extreme long-tail
distribution remained to be tested. When integrating other
systems in the future, the research considers embedding
the proposed model into the existing online library
retrieval system, achieving efficient connection with the
background database through API interfaces, and
supporting real-time feature extraction and hash code
matching. During the deployment process, a lightweight
network structure and model compression technology are
adopted. Meanwhile, an incremental learning mechanism
is introduced to support online model updates and
dynamic optimization, adapting to the new book entry and
changes in user behavior.

6 Discussion

The cross-modal retrieval model of digital libraries
proposed in the research maintains high accuracy and
stable performance in both image and text retrieval. This
is attributed to the deep characterization of image
semantics by FCN and the effective modeling of cross-
modal associations by hash coding. The deep shared proxy
hash construction method mentioned in Reference [20]
achieves a compact expression of cross-modal semantics
through the proxy hash loss function, thereby enhancing
the retrieval efficiency. This echoes the triplet loss and
contrastive learning collaborative optimization strategy
proposed in SRF-BERT-IDHS, both of which are
dedicated to enhancing cross-modal semantic consistency.
The federated cross-modal hashing method based on
privacy enhancement culprits mentioned in reference [21]
focuses on the balance between privacy protection and
retrieval efficiency in distributed data storage. This
method realizes cross-modal retrieval while ensuring user
data privacy, providing a new idea for the distributed
digital library scenario. Although SRF-BERT-IDHS did
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not directly involve privacy protection mechanisms, the
constructed hash framework has good scalability. In the
future, it can integrate federated learning strategies to
enhance cross-modal retrieval capabilities while ensuring
data security, further promoting the service upgrade of
smart libraries and the development of trusted computing.

Pan R et al. proposed a knowledge base retrieval
learning method to address the challenge of semantic
consistent negation in image-text retrieval. This method
enhances the accuracy and robustness of cross-modal
semantic alignment by introducing a knowledge base and
a lightweight cluster refinement strategy [22]. This is
similar to the idea of using ResNet to replace the VGG
network in FCN to enhance the ability of image feature
extraction, both aiming to strengthen the semantic
consistency between modalities. The residual structure of
ResNet effectively alleviates the degradation problem of
deep networks, enabling the model to have stronger
representational capabilities when processing complex
images and thereby enhancing the accuracy of cross-
modal matching. The research method poses certain
challenges in future practical applications and expansions.
It is necessary to consider the balance between the
computing resource consumption of model deployment
and the timeliness of response. Especially in scenarios
with large-scale concurrent user access, the efficiency of
hash code generation and the design of index structure
need to be further optimized. The efficient cross-modal
feature matching model based on the CLIP framework
mentioned in Reference [23] divides the model into two
parts: feature extraction and contrastive learning. By pre-
training a large model, it realizes the unified semantic
space mapping of images and text, significantly improving
the cross-modal matching efficiency. This idea provides
an important reference for optimizing the feature
extraction module in SRF-BERT-IDHS. In the future, it
can be combined with lightweight CLIP variants to reduce
computational overhead while maintaining high-precision
retrieval performance.

Based on the above content, it can be known that the
cross-modal retrieval method proposed in the research
shows significant advantages in semantic alignment
accuracy and model scalability. Especially after
combining the triple loss and contrastive learning
mechanism, the association expression ability between
images and texts is further enhanced. In the future,
practical applications and deployments need to be oriented
towards the complexity of real scenarios. It is advisable to
consider introducing a dynamic adaptive hash code length
adjustment mechanism to address the matching deviation
caused by the distribution differences of different modal
data. Meanwhile, in combination with the edge computing
architecture, some feature extraction tasks are
decentralized to terminal devices to reduce the load
pressure on the central server.
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