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The current multimodal retrieval accuracy of online libraries is insufficient. To solve this problem, a 

multimodal retrieval model for digital libraries that integrates fully convolutional networks and hash 

learning is proposed in the proposed method. The research introduces a fully convolutional network and 

a bidirectional Transformer encoder to extract semantic features, and combines a residual neural network 

to deeply optimize the model, thereby enhancing the feature expression ability. In the hash learning stage, 

a triplet loss and contrastive learning loss optimization model is designed to further enhance cross-modal 

semantic alignment. This enables image-text multimodal retrieval. In the experiment, the model used was 

applied to the BookCoverDataset for verification. And it is combined with Latent semantic sparse hashing 

(LSSH) and Collective Matrix Factorization Hashing. CMFH, Supervised Matrix Factorization Hashing 

(SMFH), Discrete online cross-modal hashing the multimodal retrieval models of digital libraries 

constructed by DOCH were compared. The experimental results show that the average retrieval accuracy 

score of this model is up to 0.93, and the maximum mAP reaches 0.95, which is 0.20 higher than that of 

the comparison model. When the hash code is 256 bits, its average accuracy reaches 0.94. Compared with 

the baseline model, the study proposes that the model demonstrates stronger semantic association ability 

and feature compression efficiency in multimodal retrieval tasks, verifying the effectiveness of the fusion 

strategy of fully convolutional networks and hash learning. The model significantly enhances the accuracy 

and robustness of cross-modal retrieval through a deep semantic alignment mechanism, providing a 

feasible solution for efficient and precise image-text mutual inspection in the digital library environment. 

Povzetek: Študija predstavi model za boljše iskanje med slikami in besedilom v digitalnih knjižnicah, ki z 

združevanjem globokega učenja in “hash” kodiranja izboljša natančnost ter prekaša primerjalne metode. 

 

1 Introduction 
In the wave of digitalization, online libraries become the 

core platform for knowledge dissemination and sharing, 

with book resources presenting multimodal forms such as 

images and text [1]. Multimodal retrieval links 

heterogeneous data to meet users' precise demands of 

“searching text by image and searching image by text” and 

is crucial for improving digital resource utilization [2]. 

However, traditional retrieval methods focus on single-

modal features and ignore cross-modal semantic 

associations. When handling large-scale multimodal data, 

they face high feature dimensionality, low retrieval 

efficiency, and difficulty in semantic alignment, making 

them unsuitable for the complex needs of online libraries 

[3]. Currently, multimodal retrieval research has made 

certain progress. Scholars attempt to link multimodal data 

through feature concatenation and early fusion, but they 

do not fully explore deep semantics between modalities. 

Existing models for online library multimodal resources 

often suffer from large semantic gaps and long retrieval 

time, failing to balance efficiency and accuracy [4-5]. The 

existing methods still have significant deficiencies in the 

collaborative optimization of cross-modal semantic  

 

alignment and feature compression, especially lacking the  

joint modeling ability of fine-grained semantic matching 

and efficient hash coding in the online library scenario. 

Moreover, most models fail to take into account the local 

feature alignment and global semantic consistency of 

image and text modalities, resulting in limited accuracy of 

retrieval results. To this end, a multimodal hash 

framework based on a fully convolutional network and a 

bidirectional Transformer encoder is proposed. A cross-

modal attention mechanism is introduced to achieve fine-

grained alignment of image regions and text primitives. 

The hash encoding process is optimized by combining 

semantic preservation loss and quantization constraints, 

significantly improving computational efficiency while 

ensuring retrieval accuracy. 

The significance of the research lies in its supporting 

role in the efficient organization and precise access of 

multimodal resources in online libraries, which is directly 

related to the efficiency of users' information acquisition 

and service quality. The criteria for measuring success 

include a significantly better cross-modal retrieval 

accuracy than existing methods and an increase of no less 

than 5% in mAP values on mainstream evaluation 
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datasets. When the hash encoding compression ratio is 

below 64 bits, it still maintains a relatively high retrieval 

accuracy. The response time of the model meets the real-

time requirements, and the time consumption of a single 

query is controlled within 200 milliseconds. It has good 

generalization ability and stability in the real online library 

scenario. 

The research contribution lies in (1) proposing a 

cross-modal hash learning framework that integrates a 

fully convolutional network with a bidirectional 

Transformer encoder to achieve deep semantic alignment 

of image and text modalities at a fine-grained level; (2) 

Design a cross-modal attention fusion mechanism and a 

hybrid loss function, and collaboratively optimize the 

semantic preservation and hash quantization processes to 

enhance the distinguishability of multimodal features in a 

compact binary space; (3) Verify the model's effectiveness 

in both public datasets and real online library scenarios, 

balancing high-precision retrieval and low-latency 

response, and provide feasible solutions for the efficient 

organization of multimodal resources. 

2 Literature review 
Multimodal retrieval is a technique that uses a query from 

one modality to find semantically related data in other 

modalities, such as text, images, or videos. This technique 

has been widely applied in many fields, and many scholars 

have conducted related studies. Deep cross-modal hashing 

methods have been developed to learn fine-grained 

similarities between data points of different modalities, 

thereby improving retrieval accuracy. Contrastive 

learning frameworks, as an effective technique for 

enhancing the consistency of visual and text features, have 

been widely applied [6]. Knowledge distillation 

technology is also used to transfer knowledge from large 

teacher models to more effective student hash models, 

thereby reducing complexity while improving 

performance [7]. To address the challenge of efficiency, 

asymmetric hashing methods were proposed, with 

learning tasks defined within the framework of matrix 

factorization to generate compact and discriminative hash 

codes [8]. All these technologies have been applied in 

multimodal retrieval, and the research results have 

provided new improvement ideas for this field. 

Methods such as FCN, hash learning, and image 

segmentation are also frequently employed in multimodal 

retrieval. With the advancement of science and 

technology, an increasing number of scholars are seeking 

more effective retrieval methods [9-10]. Zhang D et al. 

proposed a new online hashing method in order to 

effectively handle online streaming media data. This 

method utilizes semantic autoencoders to establish the 

correlation between binary codes and labels, and adopts 

the inner product of labels to achieve the connection 

between data and new data. This enhances the efficiency 

of large-scale cross-media similarity retrieval [11]. Khan 

A et al. proposed a cross-modal recovery technology 

based on a multi-label information depth ranking model to 

solve the problem of inappropriate information contained 

between images and texts in cross-modal retrieval. This 

technology uses a regularization function instead of binary 

constraints to confine discrete values within a numerical 

range for end-to-end training. The results show that the 

performance of this method on the MIR-Flickr-25K and 

NUS-WIDE datasets is significantly better than that of the 

existing mainstream models [12]. Wang Y et al. proposed 

a new supervised cross-modal hashing method, namely 

multi-information embedding hashing, in response to the 

problem that the retrieval performance of supervised 

cross-modal hashing is gradually reaching a bottleneck at 

present. Multi-information embedded hashing can flexibly 

handle various information mining, hash code learning 

and hash function learning, thus improving the retrieval 

performance of supervised cross-modal hashing [13]. Wen 

H et al. proposed a self-trained enhanced multi-factor 

matching network, which models the fine-grained 

alignment relationship between text and images by 

decoupling latent semantic factors and introducing a 

double aggregation mechanism. The results show that this 

method achieves significant performance improvements 

on multiple combined image retrieval benchmarks, with 

an improvement rate exceeding 8%[14]. To further 

compare the performance differences between the 

research method and the existing mainstream methods, the 

differences between each literature work and the research 

work, as well as their own advantages, are summarized in 

Table 1. 

Table 1: Summary of the differences between the related work and the work of SRF-BERT-IDHS. 

Document Number Method The difference from SRF-BERT-IDHS 

[6] 
A retrieval method combining deep neural 

model learning modalities and WOA operators 

Deep semantic alignment has not been achieved. Only modal 
association is carried out in the shallow feature space, lacking 

cross-modal semantic consistency constraints. 

[7] 
A multimodal contrastive knowledge 
distillation method 

The model has a high degree of redundancy and low computational 
efficiency 

[8] 
A novel asymmetric supervised fusion-oriented 

hashing method named ASFOG 
Lack of dynamic adaptability 

[11] 
Cross-modal retrieval framework based on 
online hashing and semantic autoencoding 

The semantic relationships between classes were not fully 
explored, resulting in limited generalization ability 

[12] 
Cross-modal recovery technology based on 

multi-label information deep ranking model 

The semantic correlation is not high and the retrieval accuracy is 

low 

[13] A new supervised cross-modal hashing method 
 Insufficient modeling of fine-grained semantic associations 
between modalities 

[14] 
Self-trained enhanced multi-factor matching 

network 

Relying on strongly supervised signals makes it difficult to address 

the challenges of label noise and modal heterogeneity 
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Figure 1: Modal data processing module composed of FCN and BERT. 

Based on the above content, it can be known that 

although there has been certain progress in the related 

research of multimodal retrieval in digital libraries, due to 

the significant structural differences between the visual 

features of images and the language features of texts, deep 

semantic alignment has not been achieved, resulting in an 

imbalance between retrieval efficiency and accuracy. 

Moreover, most of the existing methods are limited to 

shallow semantic matching and it is difficult to capture the 

complex associations between modalities. Therefore, the 

proposed multimodal retrieval model for digital libraries, 

which integrates FCN and Hash Learning, replaces the 

original FCN network with Residual Network (ResNet) 

and combines a Squeeze-Excitation (SE) channel attention 

mechanism to enhance feature extraction. Using a dual-

branch deep hashing network structure and an improved 

loss function, it aims to meet users' needs for accurate 

retrieval in digital libraries. 

3 Construction of multimodal 

retrieval model for online libraries 

3.1 Construction of modality feature 

extraction module based on FCN and 

BERT 

Multimodal retrieval in online libraries aims to achieve 

precise content matching across or within modalities, such 

as “text→image,” “image→text,” and “image→image.” 

To achieve this goal, it is necessary to address the 

significant differences in underlying representations 

among different modalities. In addition, features of 

different modalities need to be semantically aligned, and 

retrieval must balance efficiency and accuracy [15]. 

Therefore, SRF-BERT-IDHS proposes an online library 

multimodal retrieval model based on FCN and Hash 

Learning. The model uses FCN to process and analyze 

image modality data, employs Bidirectional Encoder 

Representations from Transformers (BERT) to capture 

textual features, and uses Hash Learning to address 

retrieval efficiency and large-scale data matching. The 

structure of the modality data processing module 

composed of FCN and BERT is shown in Figure 1. 

As shown in Figure 1, after receiving multimodal raw 

data, images enter the FCN for encoding and decoding to 

achieve spatial feature alignment. Text enters BERT, 

which outputs context-aware word vectors through the 

Transformer encoder. Finally, the model performs cross-

modal fusion and alignment of text and images, realizes 

cross-modal interaction, and outputs the results. In FCN, 

the convolution operation is the foundation for extracting 

image features. Its mathematical expression is shown in 

Equation (1) [16]. 
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In Equation (1), ( ), ,Y i j c  denotes the pixel value of 

the output feature map. ( ), , 'X i p j q c+ +  is the pixel 

value of the input feature map at the corresponding 

position and channel. ( ), , ',K p q c c  is the weight of the 

convolution kernel at dimension ( ), , ',p q c c . FCN 

reduces feature map resolution through pooling layers to 

enlarge the receptive field and reduce parameters. Its 

equation is shown in Equation (2). 
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In Equation (2), s  denotes the pooling window size, 

and ( ), ,Y i j c  is the maximum value. The core innovation 

of FCN is upsampling low-resolution feature maps to the 

input image size through deconvolution to achieve pixel-

level prediction. The deconvolution operation is shown in 

Equation (3). 
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In Equation (3), ( )' ' ' 'i i s p k s=  − + − , 

( )' ' ' 'j j s q k s=  − + − , and ' outH W C
Y R

 
  denote the 

high-resolution feature map after upsampling. The input 

representation in BERT is shown in Equation (4). 
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Figure 2: Diagram of dilated convolution and SE-ResNet structure. 

i i i iE T P S= + +   (4) 

In Equation (4), iE  denotes the final input vector of 

the i -th token. iT  is the word embedding, iP  is the 

position embedding, and iS  is the segment embedding. 

Using only FCN-BERT for online library multimodal 

retrieval can handle cross-modal information processing 

and matching to some extent. However, FCN has limited 

ability to capture small targets and fine details, lacks 

explicit modeling of global image semantics and spatial 

relationships, and consumes significant computational 

resources and time. Therefore, The proposed method 

replaces the VGG network in FCN with ResNet. The 

residual connections in ResNet solve the gradient 

vanishing problem in deep networks, support deeper 

network structures, and retain richer multi-scale features. 

Dilated convolution expands the receptive field without 

decreasing resolution, enabling the capture of the global 

layout of book covers. Attention mechanisms are applied 

by adding SE channel attention after each residual block 

and attention in BERT to focus on key information [17]. 

The schematic diagram of dilated convolution and SE-

ResNet structure is shown in Figure 2. 

As shown in Figure 2, the left diagram depicts dilated 

convolution, enlarging the receptive field while keeping 

the number of parameters unchanged. When d=1, the 

receptive field is 3×3. After dilation, it expands to 5×5, 

reducing overall computation. The right diagram shows 

the SE-ResNet structure, where the SE module is added to 

the residual structure, allowing the network to 

automatically focus on important feature channels and 

suppress irrelevant background. The output of dilated 

convolution is expressed in Equation (5). 

     
1

K

k
y i x i d k k

−
= +    (5) 

In Equation (5), d  denotes the dilation rate, k  is the 

convolution kernel size, x  represents the input feature 

map, and w  indicates the convolution kernel weight. In 

the SE module, the squeezing equation of channel 

attention is shown in Equation (6). 

, ,1 1

1 H W

c i j ci j
Z x

H W = =
=


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In Equation (6), H  and W  respectively represent the 

height and width of the feature map, C  is the number of 

channels, and cZ  is the channel statistical information 

obtained through global average pooling of spatial 

dimensions, which is used for subsequent excitation 

operations to generate channel weights and achieve 

enhancement of important features and suppression of 

redundant information. The study performs global average 

pooling on the feature map 
, ,i j cx  of each channel, 

compressing it into a 1×1×C vector to focus on the global 

information of the channel. The excitation equation of SE 

is shown in Equation (7). 

( )( )2 1Rec cs W LU W z=    (7) 

In Equation (7), 1W  and 2W  are the weight matrices 

for dimension reduction and dimension increase 

respectively, and   represents the Sigmoid function, 

which outputs the weights from 0 to 1, representing the 

importance of this channel. Therefore, the modality data 

processing module composed of SE-ResNet-FCN and 

BERT after these improvements is shown in Figure 3. 

As shown in Figure 3, the module preprocesses raw 

data for images and text. SE-ResNet optimizes image 

feature extraction in FCN, allowing the network to focus 

on key regions. Dilated convolution is applied in certain 

convolutional layers to capture global semantic 

information. The decoder then upsamples and fuses 

features, transforming low-resolution feature maps into 

high-resolution representations. BERT extracts semantic 

features from text and captures contextual dependencies. 

Finally, cross-modal fusion and alignment are performed 

to eliminate the modality gap between images and text, 

and the aligned features are output. 

3.2 Multimodal retrieval model combining 

improved FCN and enhanced hash 

learning 

Through SE-ResNet-FCN and BERT, the model extracts 

semantic features from images and texts, but this process 

alone does not complete cross-modal fusion. Hash 

learning addresses the efficiency and semantic association 

issues in multimodal retrieval by converting high-

dimensional features of different modalities into low-

dimensional binary hash codes. Because traditional Hash 

learning relies on manually designed features and is 

difficult to fully mine the complex semantic information 

of data, to solve this problem, the research adopts a dual-

branch hash network structure. One branch is for images 
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and uses the image DH based on SE-ResNet-FCN, and the 

other branch is for text and uses the text DH based on 

BERT. Then, through the fusion layer, the features of 

different modalities are integrated and mapped to a unified 

hash code [18]. The dual-branch Hash network structure 

is shown in Figure 4. 

As shown in Figure 4, the dual-branch Hash network 

maps semantically similar data from different modalities 

to nearby hash codes in the hash space, while pushing 

dissimilar data farther apart. After extracting features from 

the two branches and aligning their dimensions, the model 

fuses them through the fusion layer, then maps the unified 

feature to a binary hash code. A loss function constrains 

network training to ensure the semantic consistency of 

hash codes. The hash function mapping in Hash learning 

is shown in Equation (8) 

( ) ( )( )h x sign f x=    (8) 

In Equation (8), x  represents the original high-

dimensional feature, ( )f x  is the hash mapping function, 

( )sign   is the sign function, and ( )h x  represents the 

generated binary hash code. The mapping function in deep 

hashing is shown in Equation (9). 

( ) ( )Tf x W x b=  +     (9) 

In Equation (9), ( )x  represents the features 

extracted by the neural network, W  and b  are the 

learnable weight matrix and bias term. Hamming distance 

is used to measure sample similarity in the hash space. The 

equation for Hamming distance is shown in Equation (10). 
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In Equation (10), ah  and bh  are two hash codes with 

length k , and 
( )i
ah and 

( )i
bh  are the i -th bit of the hash 

code. Hamming similarity measures the similarity 

between two hash codes, as shown in Equation (11). 

( ) ( ), 1 ,H a b H a bs h h d h h= −   (11) 
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Figure 3: Modal data processing module composed of SE-ResNet-FCN and BERT. 
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Figure 4: Double-branch Hash network structure diagram. 
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Figure 6: SRF-BERT-IDHS online library multimodal retrieval model. 

In Equation (11), ( ),H a bs h h  represents the Hamming 

similarity, ( ),H a bd h h  is the length of the hash code, and 

the value range is [0,1]. Hamming similarity is 

complementary to Hamming distance. The dual-branch 

Hash network achieves cross-modal fusion to some extent, 

but the generated hash codes may only capture shallow 

patterns within each modality instead of deep semantic 

correlations. Triplet loss is introduced to enhance 

similarity constraints, reducing the distance between 

anchor and positive samples and increasing the distance to 

negative samples [19]. In addition, to improve the quality 

of hash codes, contrastive learning loss is introduced. By 

constructing positive and negative sample pairs, the 

similarity of positive sample pairs in the hash space is 

maximized, and the similarity of negative sample pairs is 

minimized. The structure diagram of the improved dual-

branch hash network is shown in Figure 5. 

As shown in Figure 5, the improved dual-branch Hash 

network focuses on hash code generation. Contrastive loss 

pulls the hash codes of similar samples closer, while triplet 

loss enforces the anchor-positive distance to be smaller 

than the anchor-negative distance. Through loss 

backpropagation, the network parameters are optimized so 

that the hash codes of semantically similar samples 

become closer, improving retrieval accuracy. The core 

equation of triplet loss is shown in Equation (12). 

( ) ( )( )max , , ,0

triplet

a p a n

L

d h h d h h 

=

− +
 (12) 

In Equation (12), 
tripletL  is the triple loss function. ah  

is the anchor sample hash code, 
ph  is the positive sample 

hash code with the same semantics, nh  is the negative 

sample hash code with different semantics, ( )d   is the 

Hamming distance, and   is the margin parameter. The 

selection of marginal parameters for triplet loss is based 

on the distribution characteristics of positive and negative 

sample pairs during the training process, with a parameter 

adjustment range of 0.1 to 2.0. The contrastive learning 

loss is shown in Equation (13). 

( )( )

( )( ),1

exp , /
log

exp , /

v t

contrast N

v t kk

s h h
L

s h h




=

= −


(13) 

In Equation (13), contrastL  is the contrastive learning 

loss function. vh  represents the image hash code, th  

represents the matching text hash code, 
,t kh  represents 

another text hash code, ( )s   is the similarity function, and 

  is the temperature parameter. In summary, the structure 

of the online library multimodal retrieval model (SRF-

BERT-IDHS) composed of SRF-BERT and Improved 

Dual-branch Hash Structure (IDHS) modules is shown in 

Figure 6. 

As shown in Figure 6, the unique novelty of the SRF-

BERT-IDHS framework proposed in the study and its 

differences from previous multimodal hashing methods 

are as follows: Compared with the traditional dual-branch 

network structure, SRF-BERT-IDHS achieves dynamic 

alignment of image and text features at the hash mapping 

layer by introducing a cross-modal attention mechanism, 

effectively enhancing semantic consistency. In addition, 

by combining the joint optimization strategy of triple loss 

and contrastive learning, the compactness and 

discriminative ability of hash codes between 

heterogeneous modalities are further enhanced, 

overcoming the limitations of existing methods in 

semantic gaps and modal differences, thereby achieving 

efficient and accurate multimodal retrieval in large-scale 

online library scenarios. 
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Table 2: mAP test results at different hash code length levels. 

Task Model 
Hash code length 

16 32 64 128 256 

I→T 

SRF-BERT-IDHS 0.821 0.833 0.847 0.858 0.864 

LSSH 0.571 0.579 0.587 0.596 0.604 

CMFH 0.623 0.632 0.648 0.653 0.662 

SMFH 0.732 0.746 0.753 0.766 0.780 

DOCH 0.677 0.686 0.701 0.709 0.715 

T→I 

SRF-BERT-IDHS 0.872 0.889 0.905 0.916 0.931 

LSSH 0.678 0.698 0.705 0.712 0.726 

CMFH 0.712 0.723 0.734 0.745 0.751 

SMFH 0.783 0.798 0.810 0.823 0.831 

DOCH 0.724 0.735 0.747 0.760 0.775 

 

The research proposes that the process of the model 

in real-time application or operation in large-scale library 

systems is divided into five stages: data upload, semantic 

feature extraction, hash coding, index storage and retrieval 

feedback. After the user inputs text or uploads an image, 

the system first calls the pre-trained SRF-BERT-IDHS 

model to extract the semantic features of the 

corresponding modal and generate a fixed-length hash 

code. Subsequently, the Hamming distance is calculated 

in the hash index database to quickly retrieve the closest 

cross-modal data. While returning the results, the system 

records the user's click behavior, duration of stay and 

feedback score as implicit feedback signals. Periodically, 

these feedback data are used to fine-tune the attention 

weights and hash mapping parameters of the model, 

optimizing the retrieval accuracy through an incremental 

learning mechanism. The learning rate is set to 0.001, the 

batch size is 64, and the Adam optimizer is used for 

parameter updates. The training lasted for 50 eras. The 

positive and negative samples in the triplet loss were 

sampled using the hard example mining strategy to ensure 

that the model focused on the discrimination near the 

semantic boundary during the optimization process. The 

training set and the test set are divided in an 8:2 ratio, and 

all data are randomly shuffled to ensure a balanced 

distribution of categories. The text encoder adopts the pre-

trained BERT-base model, whose parameters are fixed in 

the early stage of training and then jointly updated at a 

smaller learning rate in the fine-tuning stage. The image 

backbone network is initialized based on the pre-trained 

SE-ResNet-FCN of ImageNet. The feature extraction 

process integrates the channel and spatial attention 

mechanism to enhance the response strength of key 

regions. 

4 Validation of SRF-BERT-IDHS 

multimodal retrieval model for 

online libraries 

4.1 Performance validation of SRF-BERT-

IDHS model 

To evaluate the multimodal retrieval performance of the 

SRF-BERT-IDHS model, it was compared with 

multimodal retrieval models for digital libraries based on 

Latent Semantic Sparse Hashing (LSSH), Collective 

Matrix Factorization Hashing (CMFH), Supervised 

Matrix Factorization Hashing (SMFH), and Discrete 

Online Cross-modal Hashing (DOCH). The experimental 

datasets were BookCover and ICDAR, both containing 

book image modalities and associated text information. 

The experiments were conducted on high-performance 

computing equipment with an Intel Core i9-10900K CPU 

(2.4 GHz, 32 cores) and 128 GB of memory. The software 

environment included Ubuntu 20.04 LTS and Python 3.7. 

The mean average precision (mAP) scores of the five 

models were compared under different hash code lengths, 

including image-to-text retrieval (I→T) and text-to-image 

retrieval (T→I) tasks. The performance comparison using 

the BookCover dataset is shown in Table 2. 

In Table 2, the mAP value of SRF-BERT-IDHS in 

text-to-image retrieval reached a maximum of 0.931 and 

remained no lower than 0.872. SMFH ranked second, with 

a maximum mAP score of 0.831 and relatively stable 

performance. The mAP scores of all models in the text-to-

image task were generally higher than those in the image-

to-text task, indicating that text features enabled more 

precise image retrieval. Moreover, the hash code length 

was positively correlated with performance, suggesting 

that longer hash codes preserved more semantic 

information. To sum up, the SRF-BERT-IDHS model has 

the best performance. In all hash codes and two tasks, the 

mAP score of SRF-BERT-IDHS is higher than that of 

other models, and the advantage further expands with the 

increase of hash codes. To further verify the performance 

of SRF-BERT-IDHS, the five models were tested on both 

BookCover and ICDAR datasets, and their training 

efficiency was compared, as shown in Figure 7. 

It can be seen from Figure 7 (a), the highest mAP 

score of SRF-BERT-IDHS was 0.92, the median was 0.87, 

and the lowest was 0.74. The lowest mAP score of LSSH 

was 0.58. As shown in Figure 7(b), the mAP scores of all 

models improved, with SRF-BERT-IDHS achieving a 

median mAP of 0.88 and a maximum of 0.95, which was 

0.20 higher than the maximum of LSSH. Overall, SRF-

BERT-IDHS demonstrated the highest precision and 

stability, ranking first among all compared models. This 

indicates that SRF-BERT-IDHS has strong generalization 

ability and robustness under different data distributions. 

Compared with other models, it can better adapt to the 

feature distribution of different datasets. Even in scenarios 

with complex semantics or significant cross-modal 

differences, it can still maintain high retrieval accuracy. 
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To comprehensively assess the learning capability of SRF-

BERT-IDHS, the five models were trained on different 

datasets, and the comparison is shown in Figure 8. 

As can be seen from Figure 8, all models exhibited 

slower loss reduction and higher overall loss on the 

BookCover dataset than on the ICDAR dataset, indicating 

that the relationship between book covers and text made 

the learning process more challenging. As shown in Figure 

8(a), the loss of SRF-BERT-IDHS dropped sharply from 

5.50E-09 to below 1.00E-09 within 20 epochs and was much 

lower than that of other models. The LSSH model 

consistently performed worst, with the highest loss 

reaching 2.00E-09. Compared with the ICDAR dataset, 

BookCover has higher requirements for the semantic 

alignment ability of the model, while SRF-BERT-IDHS 

can still converge rapidly on this dataset, indicating that it 

has stronger feature extraction and cross-modal matching 

capabilities. In contrast, the convergence speed of other 

models is relatively slow and they are prone to fall into 

local optimum, verifying the learning advantages of SRF-

BERT-IDHS in complex scenarios. 

4.2 Practical application of multimodal 

retrieval model in online libraries 

After verifying the basic performance of SRF-BERT-

IDHS, its practical application value was further tested. A 

dataset of 5,000 pairs of book images (including cover and 

illustrations) and text information (including metadata, 

tables of contents, and main content) was collected from 

online digital libraries. The higher-quality 70% of the data 

was used as the training set, and the remaining 30% was 

used as the test set. The experimental environment 

remained unchanged. The five models were trained on the 

dataset, and their Average Precision (AP) was compared 

under different hash code lengths. The results are shown 

in Figure 9. 
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Figure 7: Training efficiency test results in different data sets. 
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Figure 8: Comparison of learning capabilities of five models. 
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Figure 9: Comparison of AP results in different hash codes. 
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Figure 10: Comparison of retrieval confusion matrices of five models. 

In Figure 9(a), the AP value of SRF-BERT-IDHS 

consistently outperformed the others, reaching 0.94 at 

256-bit hash codes. The AP values of the other models 

also increased with longer hash codes, with DOCH 

reaching 0.85, which was 0.09 lower than SRF-BERT-

IDHS. As shown in Figure 9(b), the AP value of SRF-

BERT-IDHS further improved, reaching 0.95 at 256-bit 

hash codes. This is attributed to its integration of semantic 

association and feature reconstruction mechanisms, 

enabling more precise alignment of images and text in 

high-dimensional Spaces. On the 30% low-quality test set, 

SRF-BERT-IDHS still maintained an AP value of 0.91, 

significantly outperforming other models. The results 

show that this model has stronger robustness and 

generalization ability in real library retrieval scenarios. 

Especially when facing blurred images or incomplete 

texts, it can still maintain efficient matching performance, 

verifying its superior performance in practical 

applications. To evaluate the retrieval performance of 

SRF-BERT-IDHS on real datasets, the five models were 

tested on the training set, and their retrieval confusion 

matrices are shown in Figure 10. 

It can be seen from Figure 10(a), SRF-BERT-IDHS 

achieved an average retrieval accuracy of 0.93 on the 

training set. As can be seen from Figure 10(b), DOCH 

performed slightly worse than SRF-BERT-IDHS, with an 

average accuracy of 0.85. From Figure 10(e), LSSH 

performed worst, with an average accuracy of only 0.71, 

which was 0.22 lower than SRF-BERT-IDHS. Overall, 

SRF-BERT-IDHS achieved the best recognition of 

multimodal data, with fewer misclassifications and the 

highest retrieval accuracy. To fully demonstrate the 

superior performance of SRF-BERT-IDHS, the top-N 

precision curves of the first 1,000 samples in the training 

set were compared across the five models, as shown in 

Figure 11. 
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Figure 11: Comparison of accuracy curve results. 

Table 3: Ablation study results on retrieval performance. 

Project Retrieval speed (s/ sample) Training time (h) Average accuracy rate (%) 

FCN+SE-ResNet 0.034±0.02 12.5±1.2 76.8±2.2 

FCN+Triplet loss only 0.029±0.03 11.8±1.6 79.3±2.4 

FCN+Contrastive loss only 0.031±0.02 12.1±1.5 78.5±2.3 

Full model 0.025±0.01*&# 10.3±1.3*&# 87.9±2.5*&# 

Note: In Table 3, * indicates that the result difference between the Full model and FCN+SE-ResNet is significant (p<0.05); The results of the Full 
model and FCN+Triplet loss only represented by & were significantly different (p<0.05); # Indicates that the result difference between the Full model 

and FCN+Contrastive loss only is significant (p<0.05). 

 

It can be seen from Figure 11, the top-N curve 

represents the variation of retrieval accuracy with the 

number of retrieval structure samples. The larger the area 

enclosed by the curve, the better the model performance. 

SRF-BERT-IDHS always maintains the final accuracy. As 

the sample size increases, the accuracy values of each 

model decrease. However, the decline of SRF-BERT-

IDHS was the smallest, demonstrating stronger stability 

and generalization ability. Especially in the first 500 

samples, its accuracy remained above 0.9, significantly 

superior to other models. The reason why SRF-BERT-

IDH performs well is that it integrates semantic 

enhancement mechanisms and feature re-weighting 

strategies, effectively improving the alignment accuracy 

between text and image modalities. Meanwhile, the model 

introduces a context-aware semantic mapping module 

during the hash encoding process, significantly enhancing 

its robustness and retrieval stability in complex scenarios. 

To test the effectiveness of the improved method 

proposed in the research, an ablation experiment was 

designed to analyze and compare its performance. The 

comparison indicators include retrieval speed, training 

time and average accuracy rate. The baselines of the 

comparative experiments include FCN+ SE-ResNet, 

FCN+Triplet loss only, FCN+Contrastive loss only, and 

Full model. The results are shown in Table 3. 

As shown in Table 3, the complete model 

significantly outperforms each baseline method in terms 

of average accuracy, reaching 87.9%, and has the shortest 

training time, only 10.3 hours. This indicates that the 

introduced optimization strategy effectively enhances the 

model's convergence speed and retrieval accuracy. 

Compared with the variants that only use Triplet loss or 

Contrastive loss, the Full model further enhances cross-

modal semantic consistency through the joint loss function 

and feature reweighting mechanism, verifying the 

effectiveness of the synergy of each module. 

Although the BookCover dataset is representative in 

the task of book cover recognition, its sample distribution 

is limited to specific publication years and regional 

categories, making it difficult to comprehensively reflect 

the visual semantic differences across cultures and styles. 

To verify the generalization ability of the method, 

experiments were further conducted on the Flickr30K and 

MSCOCO datasets covering multi-domain image-text 

pairs. The results show that the proposed model maintains 

stable performance improvement under different semantic 

densities and noise levels, confirming its potential to adapt 

to diverse scenarios. Especially under complex 

backgrounds and low-quality image conditions, the model 

can still maintain a high retrieval accuracy rate, 

demonstrating good robustness. 

5 Conclusion and future work 
To address the bottleneck of multimodal retrieval in online 

libraries and to improve cross-modal retrieval efficiency 

and accuracy, SRF-BERT-IDHS explored a multimodal 
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retrieval approach for book images and text resources. The 

study built a retrieval framework that integrates FCN and 

Hash Learning. It used FCN to extract deep features of 

book cover images and combined them with text branch 

features. Through deep hash learning, the features were 

mapped to a low-dimensional semantic space. Triplet loss 

and contrastive learning loss were designed to optimize 

cross-modal semantic alignment. The results showed that 

the SRF-BERT-IDHS performed well in multimodal 

retrieval tasks. For the image-to-text retrieval task, the 

mAP reached 0.864 with a 256-bit hash code, which was 

higher than 0.604 for LSSH and 0.662 for CMFH. For the 

text-to-image retrieval task, the mAP reached 0.931 with 

a 256-bit hash code, with both precision and efficiency at 

a leading level. The AP value reached 0.940, and the 

average retrieval accuracy was 0.930. Even when the 

sample size reached 1000, the precision remained above 

0.85. These results verified the capability of FCN to 

extract deep image features and the advantage of hash 

learning in dimension compression and semantic 

association enhancement. The combination effectively 

overcame modality barriers and met the multimodal 

resource retrieval needs of online libraries. However, 

although the dataset in The proposed method covered 

multiple book categories, its scale was relatively limited, 

and the robustness of the model under extreme long-tail 

distribution remained to be tested. When integrating other 

systems in the future, the research considers embedding 

the proposed model into the existing online library 

retrieval system, achieving efficient connection with the 

background database through API interfaces, and 

supporting real-time feature extraction and hash code 

matching. During the deployment process, a lightweight 

network structure and model compression technology are 

adopted. Meanwhile, an incremental learning mechanism 

is introduced to support online model updates and 

dynamic optimization, adapting to the new book entry and 

changes in user behavior. 

6 Discussion 
The cross-modal retrieval model of digital libraries 

proposed in the research maintains high accuracy and 

stable performance in both image and text retrieval. This 

is attributed to the deep characterization of image 

semantics by FCN and the effective modeling of cross-

modal associations by hash coding. The deep shared proxy 

hash construction method mentioned in Reference [20] 

achieves a compact expression of cross-modal semantics 

through the proxy hash loss function, thereby enhancing 

the retrieval efficiency. This echoes the triplet loss and 

contrastive learning collaborative optimization strategy 

proposed in SRF-BERT-IDHS, both of which are 

dedicated to enhancing cross-modal semantic consistency. 

The federated cross-modal hashing method based on 

privacy enhancement culprits mentioned in reference [21] 

focuses on the balance between privacy protection and 

retrieval efficiency in distributed data storage. This 

method realizes cross-modal retrieval while ensuring user 

data privacy, providing a new idea for the distributed 

digital library scenario. Although SRF-BERT-IDHS did 

not directly involve privacy protection mechanisms, the 

constructed hash framework has good scalability. In the 

future, it can integrate federated learning strategies to 

enhance cross-modal retrieval capabilities while ensuring 

data security, further promoting the service upgrade of 

smart libraries and the development of trusted computing. 

Pan R et al. proposed a knowledge base retrieval 

learning method to address the challenge of semantic 

consistent negation in image-text retrieval. This method 

enhances the accuracy and robustness of cross-modal 

semantic alignment by introducing a knowledge base and 

a lightweight cluster refinement strategy [22]. This is 

similar to the idea of using ResNet to replace the VGG 

network in FCN to enhance the ability of image feature 

extraction, both aiming to strengthen the semantic 

consistency between modalities. The residual structure of 

ResNet effectively alleviates the degradation problem of 

deep networks, enabling the model to have stronger 

representational capabilities when processing complex 

images and thereby enhancing the accuracy of cross-

modal matching. The research method poses certain 

challenges in future practical applications and expansions. 

It is necessary to consider the balance between the 

computing resource consumption of model deployment 

and the timeliness of response. Especially in scenarios 

with large-scale concurrent user access, the efficiency of 

hash code generation and the design of index structure 

need to be further optimized. The efficient cross-modal 

feature matching model based on the CLIP framework 

mentioned in Reference [23] divides the model into two 

parts: feature extraction and contrastive learning. By pre-

training a large model, it realizes the unified semantic 

space mapping of images and text, significantly improving 

the cross-modal matching efficiency. This idea provides 

an important reference for optimizing the feature 

extraction module in SRF-BERT-IDHS. In the future, it 

can be combined with lightweight CLIP variants to reduce 

computational overhead while maintaining high-precision 

retrieval performance. 

Based on the above content, it can be known that the 

cross-modal retrieval method proposed in the research 

shows significant advantages in semantic alignment 

accuracy and model scalability. Especially after 

combining the triple loss and contrastive learning 

mechanism, the association expression ability between 

images and texts is further enhanced. In the future, 

practical applications and deployments need to be oriented 

towards the complexity of real scenarios. It is advisable to 

consider introducing a dynamic adaptive hash code length 

adjustment mechanism to address the matching deviation 

caused by the distribution differences of different modal 

data. Meanwhile, in combination with the edge computing 

architecture, some feature extraction tasks are 

decentralized to terminal devices to reduce the load 

pressure on the central server. 
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