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This study proposes a Hybrid RTLSTM-TCN deep learning architecture for forecasting seasonal
income in rural tourism using integrated macroeconomic and tourism indicators. The RTLSTM
component captures long-term sequential dependencies, while the TCN block models short-term
temporal variations through dilated causal convolutions. The model was evaluated against benchmark
approaches including ARIMA, KELM, MSS-KELM, B-SAKE, RNN, BiLSTM-TN, and SAE-LSTM.
Empirical results on multi-year tourism datasets demonstrate that the proposed RTLSTM-TCN
achieves the lowest RMSE (0.18) and MAE (0.09) with the highest R2 (0.85), outperforming existing
machine learning and deep learning baselines. This approach improves forecasting robustness under
seasonal and macroeconomic volatility, offering a decision-support tool for tourism policy planning

and economic sustainability.
Povzetek:

1 Introduction

Tourism is increasingly recognized as a key driver of rural
economic development, contributing not only to local
employment and income generation but also to the
preservation of cultural heritage and the promotion of
community-based entrepreneurship. Rural tourism,
however, presents unique challenges due to its high
seasonality, uneven demand distribution, and
susceptibility to external shocks such as pandemics,
natural disasters, or economic fluctuations. Accurate
forecasting of tourism demand in these contexts is
therefore critical for effective resource allocation,
infrastructure planning, and sustainable development.
Traditional statistical models often fail to capture the
complex, non-linear patterns inherent in rural tourism
demand, prompting the exploration of hybrid deep
learning approaches that integrate multiple neural
network architectures to improve predictive performance
[1].

Long Short-Term Memory (LSTM) networks have
emerged as a robust tool for modeling sequential and
time-dependent data. Unlike conventional statistical
methods, LSTM networks can capture long-term
dependencies in tourist arrival sequences, allowing for
improved prediction accuracy even when datasets are
incomplete or partially sparse. For instance, recent studies
have demonstrated that LSTM-based models can
effectively forecast tourist inflows in contexts with
seasonal fluctuations and post pandemic recovery
periods, accommodating irregularities that traditional
autoregressive or exponential smoothing models often fail

to address [2][3]. These models also allow for the
integration of exogenous factors, including local events,
socio-economic  conditions, and  transportation
accessibility, which are particularly influential in rural
tourism scenarios [4].

While LSTM models excel at capturing temporal
dependencies, they are limited in representing spatial
relationships or hierarchical structures that exist across
different rural destinations. To address this limitation,
hybrid  architectures  combining LSTM  with
Convolutional Neural Networks (CNNs) or Temporal
Convolutional Networks (TCNs) have been increasingly
adopted. CNN-LSTM hybrids, for example, leverage
CNN layers to extract spatial features such as the
geographic distribution of attractions or demographic
characteristics of visitors while LSTM layers capture the
temporal evolution of tourist arrivals. Such integration
enables models to simultaneously account for spatial
heterogeneity and temporal variability, thereby enhancing
forecasting robustness and precision [8][9].

Empirical applications of these hybrid architectures
underscore their effectiveness. A study implementing a
hybrid CNN-LSTM framework for rural tourism demand
forecasting found that the model outperformed both
single LSTM and conventional statistical models in
predicting tourist inflows, particularly during high
variability periods affected by COVID-19 disruptions [9].
Similarly, a hybrid deep learning framework that
combined multiple network layers for feature extraction
and sequence modeling demonstrated high accuracy in
capturing seasonal patterns and sudden demand shifts in
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tourism datasets [1][8]. These approaches not only
improve the reliability of predictions but also provide
actionable insights for resource planning, marketing
strategies, and policy interventions.

Beyond forecasting tourist volumes, hybrid deep learning
models are increasingly applied to understand visitor
behavior and engagement. By incorporating multi-
dimensional inputs such as social media sentiment,
transaction data, and visitor reviews, CNN-LSTM models
can identify latent patterns in tourist preferences and
predict future engagement with rural tourism destinations
[10]. Such analyses are particularly valuable in regions
where tourism flows are highly variable and sensitive to
local conditions, allowing managers to implement
targeted strategies for enhancing visitor satisfaction and
optimizing service delivery.

In addition, hybrid architectures demonstrate significant
resilience to irregularities and disruptions in data.
Tourism demand is highly susceptible to external shocks,
which can abruptly alter patterns and render traditional
forecasts inaccurate. By combining LSTM’s ability to
model sequential dependencies with CNN or TCN layers
that capture structural patterns in input features, hybrid
models can adapt to these disruptions and maintain
predictive reliability [2][6]. This capability is critical for
rural tourism, where unexpected events such as extreme
weather, public health crises, or socio-economic changes
can rapidly influence tourist arrivals and spending
patterns.

The effectiveness of hybrid models is further supported
by the availability of diverse, multimodal datasets in
contemporary tourism research. Quantitative data such as
arrival counts, accommodation occupancy rates, and
transportation usage can be combined with qualitative
information, including cultural activity participation,
visitor sentiment, and social media engagement. Hybrid
CNN-LSTM and LSTM-TCN architectures are
particularly well-suited to processing these heterogeneous
datasets, extracting meaningful patterns across temporal,
spatial, and behavioral dimensions to generate accurate
and actionable forecasts [8][10]. This aligns with the
broader trend toward smart tourism, in which data driven
approaches enable more responsive, adaptive, and
sustainable rural tourism management.

In summary, rural tourism forecasting requires
approaches that can capture non-linear temporal patterns,
spatial heterogeneity, and visitor behavior dynamics.
Traditional statistical and timeseries models are often
insufficient for this purpose, especially under conditions
of seasonal variability or external disruptions. Hybrid
deep learning architectures, such as CNN-LSTM and
LSTM-TCN models, have demonstrated substantial
promise in addressing these challenges. By integrating
temporal sequence modeling with spatial and feature
extraction capabilities, these models improve forecasting
accuracy, enable nuanced visitor behavior analysis, and
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support  evidence-based management and policy
decisions. Empirical evidence indicates that hybrid deep
learning models consistently achieve higher accuracy
than single model architectures or traditional forecasting
methods in predicting tourist arrivals and understanding
visitor behavior. By effectively integrating spatial,
temporal, and feature based information, these models
enhance both operational efficiency and strategic decision
making in rural tourism contexts. Therefore, hybrid deep
learning approaches are increasingly recognized as
essential tools for promoting sustainable, resilient, and
data-informed management of rural tourism systems.

2 Contributions

The primary contribution of this study lies in the design
of a hybrid RTLSTM-TCN model that effectively
integrates the sequential learning capabilities of LSTM
with the parallel temporal pattern extraction of TCN,
ensuring robustness in handling complex tourism data.
Unlike conventional methods such as ARIMA and
KELM, or hybrid optimization approaches like B-SAKE
and MSS-KELM, the proposed model captures both long-
term  dependencies and short-term  fluctuations
simultaneously, thereby enhancing predictive accuracy.
Furthermore, the study provides a systematic comparative
evaluation of eight models across diverse categories—
statistical, machine learning, deep learning, and hybrid—
which offers comprehensive insights into their relative
performance. The inclusion of macroeconomic and
tourism-specific indicators further strengthens the
forecasting framework, ensuring broader applicability in
real-world scenarios. In addition, by presenting visually
intuitive performance comparisons through diverse plots,
the study enhances interpretability for stakeholders.
Collectively, this work establishes RTLSTM-TCN as a
state-of-the-art forecasting model and contributes a
practical decision-support tool for policymakers and
planners in rural tourism development.

3 Related work

Recent research in rural tourism forecasting has
increasingly emphasized the use of hybrid deep learning
approaches that integrate multiple neural network
architectures to capture both temporal and spatial
dynamics. Studies have explored the combination of
autoregressive models with LSTM networks to enhance
predictive performance under complex, seasonally
varying, and post-disruption scenarios [11]. These hybrid
frameworks have proven effective in capturing non-linear
relationships in tourism data while incorporating
exogenous variables such as climate change effects, local
events, and socio-economic indicators. By integrating
statistical methods with deep learning, these approaches
not only improve forecasting accuracy but also provide
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interpretable insights that inform decision-making in rural
tourism planning [11].

Several studies have focused on the spatial distribution
and resource allocation of rural tourism destinations,
leveraging LSTM-based deep learning methods to
identify patterns in tourist flow and demand. For instance,
the distribution characteristics and development layout of
rural tourism resources have been examined using in-
depth LSTM learning, highlighting the influence of
accessibility, local culture, and resource density on tourist
arrivals [12]. These findings emphasize the importance of
incorporating geographical heterogeneity and spatial
dependencies in predictive models to better inform
infrastructure development, marketing strategies, and
investment priorities in rural regions.

Beyond conventional LSTM applications, neuro-inspired
hybrid architectures have emerged as a novel approach for
tourism planning and innovation. The development of
XLSTM models, which integrate neuro-inspired
processing mechanisms with traditional LSTM
architectures, has enabled the simultaneous modeling of
multiple complex dimensions in rural tourism, including
seasonal variability, visitor behavior patterns, and
resource utilization [13]. Empirical results from such
studies suggest that these models provide superior
predictive performance compared to singlel ayer LSTM
networks, particularly when handling large, multi-
dimensional datasets that combine temporal and spatial
information.

Hybrid deep learning frameworks have also been applied
to predict tourist traffic attraction and flow, combining
machine learning techniques with LSTM or TCN layers
to capture the underlying dynamics of rural tourism
demand [14]. By leveraging multiple layers of feature
extraction and temporal sequence modeling, these
frameworks can accommodate irregularities in data
caused by sudden disruptions or seasonal fluctuations.
The integration of machine learning and deep learning
thus offers a flexible and scalable solution for rural
tourism forecasting, particularly in areas where
conventional statistical methods fail to capture complex
interactions between factors such as travel behavior, local
attractions, and external shocks [14].

Visitor behavior analysis has gained prominence in rural
tourism studies, as understanding tourists’ preferences
and engagement patterns is critical for designing effective
management strategies. Deep learning-based approaches
have been employed to predict visitor behavior on
intelligent  tourism  platforms, integrating multi-
dimensional sentiment analysis, social media interactions,
and transaction data [19]. By combining graph
convolutional networks with recurrent neural networks,
these models capture both spatial relationships among
locations and temporal patterns in visitor activity. Such
approaches allow tourism managers to anticipate demand
trends, optimize resource allocation, and develop targeted
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marketing strategies, thereby enhancing the overall
efficiency and sustainability of rural tourism operations
[19].

Forecasting the resilience of rural tourism systems has
also been a focus of recent studies. Simulation research
using LSTM networks has demonstrated their utility in
modeling system resilience, particularly in well-known
tourist villages where the interplay between local
infrastructure, cultural assets, and visitor inflow is
complex [18]. These studies highlight the capacity of
LSTM-based models to inform contingency planning,
resource management, and infrastructure investment,
ensuring that rural tourism systems can withstand shocks
while maintaining service quality and visitor satisfaction.
In addition, studies have explored the integration of CNN
and LSTM layers to capture spatial temporal dynamics in
rural tourism demand. Hybrid CNN-LSTM models have
been used to forecast tourism demand with high accuracy
by extracting spatial features from geographic or
demographic distributions and temporal trends from
historical arrival data [16]. The spatial temporal hybrid
design allows the model to account for variations in
tourist flows across different regions and seasons, thereby
improving predictive reliability for planning and
marketing purposes. Such architectures have been shown
to outperform single model approaches, particularly when
applied to regions with heterogeneous characteristics and
fluctuating tourism demand.

Comparative studies have also investigated the relative
performance of LSTM and TCN models in domains
related to tourism, such as customer behavior prediction
and service usage [17]. These analyses provide valuable
insights into model selection, highlighting the strengths of
TCN in capturing long-term dependencies with fewer
parameters and lower computational complexity, while
LSTM networks excel in modeling sequential patterns
with high temporal granularity. The findings inform the
design of hybrid architectures for rural tourism
forecasting, suggesting that a combination of LSTM and
TCN layers may provide both efficiency and accuracy
advantages.

Furthermore, research on hybrid deep learning
frameworks has addressed the challenge of integrating
multiple data sources, including visitor sentiment, social
media activity, and behavioral patterns. By combining
CNN, LSTM, and other neural network components,
these models can learn complex interactions between
heterogeneous features, enabling more comprehensive
predictions of tourist arrivals and engagement levels
[8][19]. Such integrative approaches are particularly
valuable for rural tourism contexts, where data sparsity,
regional heterogeneity, and seasonal fluctuations
complicate forecasting efforts.

Finally, studies on rural tourism suitability and system
optimization  have leveraged  multi-dimensional
evaluation models alongside deep learning techniques to
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guide policy and management decisions [20]. These
models assess tourism suitability based on environmental,
socio-economic, and cultural indicators, offering
actionable insights for destination planning, infrastructure
development, and marketing strategies. By integrating
predictive analytics with evaluation frameworks,
researchers have demonstrated that data-driven
approaches can support sustainable and resilient rural
tourism development, particularly in regions with diverse
geographic and demographic profiles [20].

In summary, recent literature emphasizes the growing role
of hybrid deep learning architectures in rural tourism
forecasting. From combining statistical models with
LSTM for enhanced interpretability [11] to integrating
CNN-LSTM and xLSTM networks for capturing spatial
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temporal dynamics [13][16][19], these approaches have
demonstrated superior performance over conventional
methods. They address challenges such as seasonal
variability, visitor behavior heterogeneity, data sparsity
and system resilience, offering both predictive accuracy
and actionable insights. Multi-dimensional evaluation
frameworks further enhance the applicability of these
models, supporting informed decision making and
sustainable management in rural tourism contexts
[12][14][18][20]. Collectively, these studies highlight the
potential of hybrid deep learning models to transform
rural tourism forecasting, planning, and operational
management.

Table 1: Summary of related work with quantitative comparison
Refere | Objective Models Dataset Key Findings Research Gaps
nce
[1] Forecast tourism demand | Hybrid deep | Historical tourist | Improved  forecasting | Limited
using a hybrid deep learning | learning (CNN + | arrivals (2000-2019) accuracy (RMSE = 0.23) | interpretability;
approach LSTM) over traditional models regional  application
only
[2] Long-term tourism demand | LSTM National tourism | Captures long-term | Does not incorporate
forecasting statistics(annual) temporal dependencies | spatial heterogeneity
effectively
[3] Forecast tourist arrivals with | LSTM Incomplete tourist- | Handles missing data | Focused only on short-
partial time-series data arrival datasets effectively term predictions
[4] Forecast Indian  tourism | Statistical + deep | National tourism | Hybrid model | Limited external
industry demand learning modeling statistics(India  2010- | outperforms ~ ARIMA | variable inclusion
2023) (RMSE = 0.30)
[5] Adaptive tourism forecasting | Hybrid Al (ANN + | International arrivals | Al hybrid adapts to | Limited
for Xi’an optimization) (Xi’an region) changing patterns; | generalizability to
improved precision other regions
[6] Evaluate hybrid CNN-TCN- | CNN-TCN-LSTM Traffic-flow  datasets | Hybrid model captures | Not directly applied to
LSTM for traffic flow (public temporal patterns | tourism;
effectively transferability
untested
[7] Sustainable tourism demand | Hybrid  temporal | National tourism | Integrates multiple | Limited behavioral or
forecasting neural network datasets(2010-2023) temporal features for | spatial feature
accurate forecasting integration
[8] Forecast tourist arrivals CNN + LSTM | Historical arrival data Improved predictive | Sparse data issues not
hybrid accuracy; handles | fully addressed
seasonal variation
[9] Tourism demand prediction | CNN-LSTM Provincial tourism | Captures post-pandemic | Focused on  one
post-COVID-19 statistics (Vietnam, | recovery patterns country; may not
2015-2023) generalize
[10] Analyze rural tourism culture | LSTM-CNN Social media and | Identifies patterns in | Limited to advertising
advertising cultural content visitor engagement data; predictive power
not tested
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[11] Intelligent tourism | ARDL + LSTM Climate + tourism | Incorporates climate | Requires high-quality
forecasting under climate datasets (2000-2022) effects; improves | climate data; limited
change forecasts (MAE = 0.17) | scalability

[12] Distribution and development | LSTM Rural tourism resource | Identifies spatial- | Limited real-time
layout of rural tourism databases temporal patterns in | adaptability
resources resource utilization

[13] Rural tourism planning and | Neuro-inspired Multi-dimensional Captures complex | Complex architecture;
innovation XLSTM tourism datasets spatial-temporal high  computational

patterns; high prediction | cost
accuracy

[14] Predict tourist traffic | Machine learning | Tourism flow data Hybrid models capture | Limited integration of
attraction hybrid irregular patterns behavioral data

[15] Tourism demand forecasting | LSTM and variants | Tourist-arrival data | LSTM models | Focuses on temporal
using LSTM (2005-2020) outperform  traditional | patterns only

time-series models

[16] Enhance tourism demand | CNN-LSTM Regional tourism | Accounts for spatial | Regional focus;
forecasting spatial-temporal datasets heterogeneity; RMSE = | requires extensive data

hybrid 0.22 preprocessing

[17] Compare LSTM and TCN for | LSTM, TCN Sentiment and | TCN efficient for long- | Not directly applied to
customer churn transaction data term dependencies; | tourism; potential

LSTM better for | adaptation needed
sequential granularity

[18] Optimize  rural ~ tourism | LSTM Well-known tourist | Models’ resilience of | Limited to selected
system resilience villages tourism systems under | villages;

variable conditions generalizability
uncertain

[19] Visitor behavior analysis and | Deep learning- | Multi-modal rural | Predicts visitor | Data sparsity and
prediction based hybrid tourism datasets engagement and patterns | interpretability remain

accurately challenges

[20] Predict rural tourism | Multi-dimensional Environmental, socio- | Guides planning and | Limited real-time
suitability evaluation + ML economic, cultural | investment decisions adaptability; lacks

datasets behavioral prediction

4 Research gap

Despite the growing body of research on tourism
forecasting, significant gaps remain in applying advanced
machine learning and hybrid deep learning methods
specifically to rural tourism contexts. Traditional
statistical approaches such as ARIMA and basic
econometric models have been widely used, but they
often fail to capture nonlinear patterns and complex
seasonal variations inherent in tourism income data.
Similarly, machine learning techniques like KELM and
ensemble approaches such as B-SAKE provide some
improvements, yet they lack the ability to effectively learn
both long-term dependencies and short-term fluctuations
simultaneously. Recent deep learning models including
RNNs, LSTMs, and BIiLSTM-based networks have
shown promise in urban and international tourism studies,
but their application to rural tourism forecasting remains
limited. Moreover, many prior works focus narrowly on
tourist arrivals or receipts, overlooking the integration of
broader macroeconomic variables such as GDP, inflation,

and unemployment, which play a critical role in shaping
rural tourism income. Hybrid models like MSS-KELM
and SAE-LSTM attempt to address some of these
challenges but often struggle with scalability, robustness,
and interpretability for decision-makers. Importantly,
there is a lack of comparative evaluations across diverse
modeling paradigms that can provide holistic insights for
policymakers. This study bridges these gaps by
introducing and rigorously evaluating a novel RTLSTM-
TCN hybrid model, which captures both sequential
dependencies and localized temporal structures, thereby
offering a more accurate and practical framework for
seasonal income forecasting in rural tourism.

Despite numerous studies on tourism forecasting, very
few focus specifically on rural tourism income prediction
integrating micro- and macro-economic indicators. Most
prior works analyze tourist arrivals or demand volumes,
overlooking the direct estimation of seasonal income
patterns that affect rural livelihoods. Moreover, existing
models often ignore how inflation, unemployment, and
GDP interact with local tourism dynamics. This research
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addresses these limitations by introducing a Hybrid
RTLSTM-TCN model that jointly learns temporal
dependencies and short-term variations in rural tourism
income influenced by both economic and tourism-specific
factors. Few prior approaches jointly considered tourism
receipts with macroeconomic factors for rural-tourism
income prediction, a limitation addressed in this study.
the TCN approach was initially developed to examine
long-range patterns using a hierarchy of temporal convo-
lutional filters (Lea et al. 2017). The key characteristics of
TCNs are: (1) it involves convolutions, which are causal
and (2) like in RNN, the network can take a sequence of
any length and map it to an output sequence of the same
length. The proposed architecture is informed by recent
generic convolutional architectures for sequential data
(Bai

et al. 2018; Lea et al. 2017). The architecture is simple
(e.g., no skip connections across layers, conditioning,
context stacking, or gated activations), uses
autoregressive

prediction and a very long memory. Moreover, it allows
for

both very deep networks and very long effective history
and is achieved through dilated convolutions that enable
an

exponentially large receptive field

5 Materials and methods

Dataset and Preprocessing

The dataset employed in this study was compiled from
global tourism and macroeconomic indicators spanning
the years 1999 to 2023, covering multiple countries. It
consists of 6,650 records with 11 variables, including
tourism-specific  attributes—tourism receipts, tourist
arrivals, tourism exports, departures, and expenditures—
along with macroeconomic indicators such as gross
domestic product (GDP), inflation, and unemployment.
These features were selected to provide both direct
tourism demand drivers and external economic influences
relevant to rural tourism income forecasting.

The target variable in this study is Seasonal Tourism
Income, derived from the original tourism receipts data.
Tourism receipts represent the total revenue earned from
international and domestic tourists. To capture
seasonality, these receipts were decomposed into seasonal
components  using  quarterly  aggregation  and
normalization relative to each country’s GDP. This
transformation allows the model to forecast income
patterns that vary seasonally rather than annual totals,
making the predictions more relevant for rural economic
planning.

Prior to model development, several preprocessing steps
were carried out to ensure data quality and model
stability. Missing values were addressed using a
combination of linear interpolation (for time-dependent
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series such as receipts, arrivals, and GDP) and mean or
median imputation (for variables with less than 50%
missingness). Outliers were detected and treated using the
Interquartile Range (IQR) method, with extreme values
capped at calculated thresholds to prevent distortion
during training. To handle heterogeneity across scales,
numerical variables were normalized using Min-Max
scaling, ensuring all features were mapped into the range
[0,1]. Categorical variables such as country and country
code were transformed into numerical representations
through label encoding. For temporal modeling, the
dataset was arranged in chronological order, and a time-
series split was adopted to separate training (2002—2018)
and testing (2019-2023) subsets, preserving the natural
temporal structure of the data. A sliding window approach
was used to generate input sequences of five consecutive
years to predict the subsequent year’s seasonal income.
This formulation allowed the models to capture both
short-term fluctuations and long-term dependencies in
tourism dynamics. Collectively, these preprocessing steps
ensured that the dataset was robust, balanced, and well-
suited for comparative evaluation across classical,
machine learning, and deep learning models.

This study aims to address the following research
questions:

(1) Can a hybrid deep-learning model integrating
recurrent (LSTM) and convolutional (TCN) layers
improve seasonal-income forecasting accuracy compared
with traditional baselines?

(2) How do macroeconomic indicators—such as GDP,
inflation, and unemployment—enhance predictive power
when combined with tourism variables?

(3) To what extent do long-term versus short-term
temporal dependencies affect forecast stability in rural-
tourism income prediction?

The resulting variable, Seasonal Tourism Income (STI),
thus represents normalized quarterly tourism receipts per
GDP unit, serving as a proxy for seasonal financial
performance in rural economies.

The CNN architecture, though widely used for spatial
feature extraction, is less effective for purely temporal
sequences. In contrast, the Temporal Convolutional
Network (TCN) preserves sequence order through causal
convolutions and models long-range dependencies using
dilated filters. This makes TCN more suitable for tourism-
time-series data where historical continuity and multi-
scale seasonality are critical. Hence, the hybrid
RTLSTM-TCN was selected to combine LSTM’s
strength in sequential learning with TCN’s efficiency in
capturing localized fluctuations.

Data granularity and seasonal definition

Although the raw dataset includes annual-level tourism
and macroeconomic indicators from 1999-2023, this
study defines seasonal income as a quarterly-level
decomposition of annual tourism receipts. Using time-
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series decomposition, each year’s receipts were divided
into four quarters (Q1-Q4) based on official tourism
seasonality indices and normalized relative to GDP. This
approach preserves intra-annual fluctuations (e.g., high
and low tourist seasons) while retaining consistent time
intervals for deep-learning models. Consequently, the
input to each model represents five consecutive quarters
of data used to predict the next quarter’s seasonal tourism
income, thereby aligning the temporal structure with the
“seasonal forecasting” objective.

Baseline Model Tuning and Parameter Search

Each baseline model was tuned carefully to ensure fair
comparison  with the proposed RTLSTM-TCN
framework.

ARIMA: Optimal (p, d, q) parameters were selected
using the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) on the training
data, tested over p, q € [0, 5],d € [0, 2].

MSS-KELM: Kernel type (RBF or polynomial), kernel
width (¢ € [0.1, 2]), and regularization coefficient (C €
[0.1, 100]) were optimized using a grid search with 5-fold
time-based cross-validation.

B-SAKE: Swarm size (N = 20-50), inertia weight (w €
[0.5, 0.9]), and cognitive/social coefficients (c1, c2 € [1.0,
2.5]) were tuned empirically to minimize RMSE on the
validation set.

All  deep-learning baselines (RNN, SAE-LSTM,
BiLSTM-TN) were trained with identical early-stopping,
dropout, and learning-rate schedules for fair evaluation.
Although the dataset integrates tourism and
macroeconomic indicators from multiple countries,
model training was conducted primarily on aggregated
regional data, with China serving as a representative case
study for evaluation and visualization (see Figure 6). This
approach ensures model stability and interpretability in
regions with rich historical data. In future work, transfer
learning techniques can be applied to adapt the framework
for cross-country generalization, allowing more robust
forecasts in regions with limited data availability.

The proposed framework in figure 1 shows the how the
model integrates tourism and macroeconomic indicators
as inputs, which are first preprocessed through missing
value imputation, normalization, encoding, and sliding
window techniques to ensure data consistency. The
processed data is then fed into a Rural Tourism LSTM
(RTLSTM) block that captures long-term sequential
dependencies across seasonal and yearly tourism patterns.
In parallel, a Temporal Convolutional Network (TCN)
block extracts short-term localized temporal features that
traditional LSTM models may overlook.
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Proposed framework

Tourism & Macroeconomic Indicators

Preprocessing: Missing Value Handling, Scaling, Encoding, Sliding Window

RTLSTM Block (Long-term Dependencies)

TCN Block (Short-term Local Patterns)

Feature Fusion / Concatenation

Dense Layer (Fully Connected)

Output: Seasonal Income Forecast

Figure 1: Proposed RTLSTM-TCN framework for rural
tourism forecasting

The outputs from both blocks are fused in a feature
concatenation layer, combining global and local temporal
information. A fully connected dense layer further
transforms these features into a compact representation,
which is passed to the output layer for forecasting rural
tourism seasonal income. By combining the strengths of
RTLSTM and TCN, the framework achieves improved
predictive accuracy compared to traditional statistical,
machine learning, and standalone deep learning
approaches.The architecture includes two LSTM layers
(128 and 64 units, dropout = 0.3, activation = tanh)
followed by a three-layer TCN block (kernel = 3, dilation
rates = [1, 2, 4], ReLU activation, residual connections).
The fused output vector (256 dimensions) passes through
a dense linear layer to predict Seasonal Tourism Income.

RTLSTM - Temporal Convolutional Network
(TCN)

Rural Tourism Long Short-Term Memory

The Rural Tourism Long Short-Term Memory
(RTLSTM) network is a modified LSTM variant
customized for seasonal income forecasting. It enhances
the model’s ability to detect long-term temporal
dependencies in tourism data influenced by economic and
seasonal variations. The RTLSTM gates (input, forget,
cell, and output) regulate how historical tourism and
macroeconomic information contribute to forecasting
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future income trends. The equations (1-6) follow standard
LSTM formulations, where the input gate integrates
current economic indicators with prior tourism trends, the
forget gate filters out irrelevant or outdated information,
and the output gate updates the hidden state to generate
the final seasonal income forecast. This modification
enables the model to learn how both tourism activity and
macroeconomic context jointly shape income dynamics
over time

Input Gate Layer: The input gate madifies the cell state
with appropriate data by processing current structural
inputs and past hidden states in equations (1) and (2).

Js = U(Xj X [Ds—l,gs—l,vvs] + aj)

1)
Es = tanh (Xd X [Ds—l,gs—l,vvs] taq

)

The weight matrix by X;, the prior hidden state by D_; ,
the prior state of the cell by gs_;, the present structural
input by W, and the bias by a;. tanh is the function of
hyperbolic tangent activation that is utilised for scaling,
X 4is the weight matrix, and a, is the corresponding bias.
Forget Gate Layer: The forget gate's output uses a
computation algorithm that is like the input gate. With
various weights and biases in the equation (3).

€s = U(Xe X [Ds—l' +gs—1: VVS] + ag)
@)

To eliminate redundant structural information, the forget
gate's output e; employs the current input W, Although
the input gate's weights X.and bias agdiffer, the forget
gate's output.

Cell States Update: Structural developments are
maintained for precise prediction by updating the cell
state from its prior value to the current value in equation

(4).

Ds = eg X Dy_q + js X Dy
4)

It is an update step that occurs between the present cell
state D, and the prior cell state D,_;.
Output Gate Layer: The output of the previous hidden
layer, the current input, and the previous memory all
affect the updated unit state in equations (5) and (6).
Py =0(X, X [Ds, gs-1, We] + ap)

(®)
gs = P; X tanh (Dy)

(6)
The output gate by P, g5, and a,. The current hidden
layer and bias are denoted by F;.
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Here, the input gate controls how new tourism-economic
information enters the model, the forget gate determines
which past income patterns to discard, and the output gate
generates updated hidden representations that reflect
seasonal tourism behaviour. This ensures the RTLSTM
captures both persistent and fluctuating income patterns
relevant to rural tourism.

TCN

The TCN module complements the RTLSTM by
capturing localized temporal patterns through a hierarchy
of dilated causal convolutions. The key characteristics of
TCNs are: (1) it involves convolutions, which are causal
and (2) like in RNN, the network can take a sequence of
any length and map it to an output sequence of the same
length. The proposed architecture is informed by recent
generic convolutional architectures for sequential data.
The architecture in figure 2 is simple (e.g., no skip
connections across layers, conditioning, context stacking,
or gated activations), uses autoregressive prediction and a
very long memory. Moreover, it allows for both very deep
networks and very long effective history and is achieved
through dilated convolutions that enable an exponentially
large receptive field. For example, for a 1-D sequence of
a given weather parameter P1,i.e.,p = (P3 —---,P{) and
a filter f: {0,...k—1} , the dilation convolution

operation F on element s = p» (where t=0,...t) of the
t

sequence is defined as:

F(s) = (p*d f)(s) = 5 f(D).ps — d.i U]

where d is the dilation factor, k refers to the filter size,
and s — d. i accounts for the direction of the past. Stacked
units of one-dimensional convolution with activation
functions are used to build the TCN. Figure 2 depicts the
architectural elements in a TCN with configurations
dilation factors d = 1; 2; and 4: The dilation introduces a
fixed step between every adjacent filter taps. Larger
dilations and larger filter sizes k enable effectively
expanding the receptive filed. In these convolutions, the
increment of d exponentially commonly increases the
depth of the network. This guarantees that there is some
filter that hits each input within the effective history. We
use Keras as a tool to implement both deep learning
LSTM and TCN. Model hyperparameters were optimized
via grid search across learning rates (0.0005-0.005),
batch sizes (16, 32, 64), and dropout levels (0.2-0.4). The
Adam optimizer with learning rate = 0.001 and early-
stopping patience = 10 epochs yielded the lowest
validation RMSE. Training employed 150 epochs with
batch =32 on an NVIDIA RTX 3080 GPU (32 GB RAM)
and TensorFlow 2.12 backend.
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Figure 2: Architecture of TCN Layer with dilated causal
convolutions.

Mathematical Foundations and Notations
Residual layers are added to maintain gradient flow, and
the overall transformation can be described by:

H(x) = F(x) + x ®)

Where H (x) is the output, F (x) is the function learned by
the convolution layers, and x is the input that gets passed
through via the residual connection.

Receptive Field Calculation

Calculating the receptive field of a TCN is critical
because it tells you how much of the input the network.
The receptive field RRR is determined by the depth d of
the network, the kernel size k, and the dilation factor f:

R=1+(k-1).35 D 9

This equation shows TCNs grow their receptive field
exponentially by increasing the dilation factor, giving the
network the ability to model long-range dependencies.

Loss Functions for TCNs

When it comes to training TCNs, the loss function you
choose depends on the task. For regression tasks, Mean
Squared Error (MSE) is commonly used:

MSE = 1/n 311 (v; — y;) (10)

For classification tasks, you’d typically use Cross-
Entropy Loss:

Cross — Entropy Loss = — Y1, y; log (y;) (11)

these loss functions in the context of TCNs are that they
are computed over the entire sequence at once, thanks to
the parallel nature of convolutions. This makes TCNs
efficient and scalable, even for long sequences.
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Model architecture and hyperparameters

The proposed hybrid comprises two parallel branches
followed by feature fusion.

RTLSTM branch (long-range dependencies).

Two stacked LSTM layers with 128 and 64 units,
respectively; dropout = 0.30 after each LSTM; activation
= tanh; recurrent activation = sigmoid. A dense(64,
activation = ReLU) projects the LSTM output to the
fusion space.

TCN branch (localized/dilated temporal features).

A Temporal Convolutional Network with kernel size = 3,
dilation rates = [1, 2, 4] per stack, 2 stacks, and 32 filters
per layer. Each temporal block is causal, uses ReLU
activation, residual connections, and layer normalization;
dropout = 0.20 inside blocks.

Fusion and output.

Outputs from both branches are concatenated into a 256-
dimensional feature vector (LSTM path 128 — 64 — 128
proj; TCN path 3x32 filters with projection to 128), then
passed to a dense(64, ReLLU) and a final dense(1, linear)
for seasonal-income regression.

Training objective and optimization.

Primary loss: Mean Squared Error (MSE); we also
monitor MAE during validation (no explicit loss
weighting). Optimizer: Adam (Ir = 0.001, B: = 0.9, B =
0.999) with early stopping (patience = 10) and
ReduceLROnPIlateau (factor = 0.5, patience = 5).

Batch size = 32, epochs = 150 (stopped early).
Implementation: TensorFlow/Keras 2.x.

Bagging-based Stacked Autoencoders Kernel Extreme
Learning (B-SAKE):

B-SAKE is a hybrid approach that integrates stacked
autoencoders (SAE) with kernel-based extreme learning
machines (KELM) under a bagging ensemble framework.
The stacked autoencoders reduce noise and extract
hierarchical features, while KELM provides fast and
efficient non-linear classification or regression. By
employing bagging, multiple KELM models are trained
on resampled subsets, and their predictions are
aggregated, improving stability and reducing variance.

This combination enhances generalization performance,
making B-SAKE effective in high-dimensional and
heterogeneous datasets such as tourism income
forecasting. However, the method can be sensitive to
kernel parameter selection and may require careful
tuning.

BiLSTM-Temporal Network (BiLSTM-TN):
The BiLSTM-TN model extends the LSTM architecture
by introducing bidirectional processing. Instead of
learning only from past observations, BiLSTM learns
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from both past (backward) and future (forward) contexts
within a sequence. This ability helps the model capture
contextual dependencies that may span across multiple
seasons or years in tourism datasets. The temporal
network design integrates these dual signals to produce
richer representations of temporal dependencies. While
BiLSTM improves accuracy over unidirectional LSTMs,
it is computationally more expensive and may overfit
when training data is limited.

Kernel Extreme Learning Machine (KELM):
KELM is an advanced form of Extreme Learning
Machine (ELM) that incorporates kernel functions to
enhance non-linear mapping capabilities. Unlike
conventional neural networks, KELM assigns hidden
layer parameters randomly and determines output weights
analytically, leading to extremely fast training.
Kernelization allows KELM to approximate non-linear
relationships in tourism data without explicitly increasing
model complexity. This makes it efficient for medium-
scale forecasting tasks, though it may lack robustness in
handling highly dynamic or sequential dependencies.
Autoregressive Integrated Moving Average (ARIMA):
ARIMA is one of the most widely used traditional
statistical models for time-series forecasting. It combines
three components: autoregressive (AR), differencing (1),
and moving average (MA). AR captures dependencies on
past values, | ensure stationarity through differencing, and
MA models residual errors. ARIMA is interpretable and
performs well on stationary, linear datasets. However, it
struggles with non-linear and high-variance datasets,
making it less effective for tourism income forecasting,
where patterns are influenced by multiple complex and
external economic factors.

Stacked Autoencoders—LSTM (SAE-LSTM):
The SAE-LSTM model integrates stacked autoencoders
for deep feature learning with LSTM for sequential
prediction. Stacked autoencoders compress input features
into lower-dimensional latent representations while
filtering noise, making the dataset more manageable and
structured. The LSTM component captures sequential and
temporal patterns, ensuring that historical seasonal effects
are retained in the forecasting process. This hybrid model
improves prediction accuracy in non-linear and multi-
dimensional tourism datasets. However, due to its deep
structure, it requires large-scale data and significant
computational power, making training time-intensive.
Modified Sparrow Search Algorithm—KELM (MSS-
KELM):

MSS-KELM combines the strength of the Modified
Sparrow Search Algorithm (MSSA) with KELM for
improved parameter optimization. MSSA, inspired by the
foraging behaviour of sparrows, is used to search for the
best hyperparameters of the KELM model, such as kernel
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parameters and regularization coefficients.  This
optimization improves accuracy, convergence speed, and
robustness against local minima. When applied to tourism
income forecasting, MSS-KELM helps manage complex
non-linear interactions and uncertain seasonal variations.
Nonetheless, as with most metaheuristic-based models, it
can be computationally expensive.

Recurrent Neural Network (RNN):
RNNs are neural networks specifically designed for
sequential data. They maintain hidden states that carry
information across time steps, making them suitable for
modeling temporal dependencies in tourism income data.
By learning from previous inputs, RNNs attempt to
capture seasonality and temporal correlations. However,
traditional RNNs are prone to vanishing and exploding
gradient problems, which hinder their ability to capture
long-term dependencies effectively. This limitation often
results in reduced accuracy compared to more advanced
recurrent models like LSTM and BiLSTM. Despite this,
RNNSs remain a baseline for deep learning approaches in
time-series forecasting.

6 Experimental setup

The rural tourism dataset was preprocessed through
missing value imputation, outlier treatment, label
encoding for categorical features, and Min—Max scaling
for numerical variables. A sliding window approach with
a sequence length of five years was applied to generate
temporal input-output pairs. The dataset was split into
80% training (2002-2018) and 20% testing (2019-2023),
ensuring temporal order was preserved for realistic
forecasting.

All experiments were implemented in Python (3.11) using
Scikit-learn for preprocessing, evaluation metrics, and
baseline models, and TensorFlow/Keras for deep learning
model development. Pandas and NumPy supported data
handling, while Matplotlib and Seaborn were used for
visualization and exploratory analysis.

Eight models were compared: Bagging-based Stacked
Autoencoders with Kernel Extreme Learning (B-SAKE),
BiLSTM-Temporal Network (BiLSTM-TN), Kernel
Extreme Learning Machine (KELM), Autoregressive
Integrated Moving Average (ARIMA), Stacked
Autoencoders-LSTM (SAE-LSTM), Modified Sparrow
Search Algorithm—KELM (MSS-KELM), Recurrent
Neural Network (RNN), and the proposed RTLSTM—
TCN.

For all deep learning models, training was performed
using the Adam optimizer with a learning rate of 0.001,
batch size 32, and early stopping to prevent overfitting.
The evaluation metrics included Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), Symmetric Mean
Absolute Percentage Error (SMAPE), Root Mean
Squared Logarithmic Error (RMSLE), and Coefficient of



Hybrid LSTM-TCN Architecture for Seasonal Income...

Determination (R2). These metrics were computed on the
held-out test set to provide a comprehensive performance
comparison across models.

Evaluation protocol and statistical robustness

To ensure reproducibility and unbiased assessment, the
following experimental design was adopted:

(a) Temporal hold-out (unseen test).

Data were split chronologically with 2002-2018 for
training/validation and 2019-2023 as a completely
unseen test set, preventing look-ahead bias.

(b) Rolling forecast origin validation.

A walk-forward scheme was applied using a sliding input
window of five years to predict the next year. At each
origin, models were re-fit on all data up to that year and
evaluated on the subsequent period; metrics were
averaged across origins.

(c) Repeated runs and confidence intervals.

Each experiment was repeated five times with different
random seeds (weight initialization and batch ordering).
We report the mean + standard deviation for all metrics
(RMSE, MAE, MAPE, SMAPE, RMSLE, R?) on the test
horizon, and provide 95 % confidence intervals using the
Student-t estimate over the five runs.

(d) Baselines and tuning parity.

All classical and ML baselines (ARIMA, KELM, MSS-
KELM, B-SAKE, RNN, BIiLSTM-TN, SAE-LSTM)
were tuned under comparable validation protocols:

— ARIMA orders selected via AIC/BIC grid search.

—  KELM/MSS-KELM  kernel and regularization
optimized via grid search.

— Deep baselines tuned over units (64/128), dropout (0.2—
0.4), and learning rate (5e-4 — 5e-3).

The same temporal splits and walk-forward evaluation
were maintained for all models.

(e) Hardware configuration.

Experiments were executed on a workstation equipped
with NVIDIA RTX 3080 (10 GB) GPU and 32 GB RAM.
A complete RTLSTM-TCN training run required
approximately 1.8 hours.
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Table 2; Experimental configuration summary

Component Specification / Configuration

Software
Environment

Python 3.11; TensorFlow/Keras; Scikit-learn;
Pandas; NumPy

Optimizer Adam (learning rate = 0.001)

Batch Size 32

Validation Strategy 5-fold rolling forecast origin validation

Evaluation Metrics RMSE, MAE, MAPE, SMAPE, RMSLE, R?

NVIDIA RTX 3080 GPU (10 GB), 32 GB
Hardware RAM

Training Time

(RTLSTM-TCN) = 1.8 hours per full run

Repetitions for

Robustness 5 random-seed runs (mean + std reported)

7 Results and discussion

Exploratory Data Analysis (EDA)

Relationship between tourism arrivals and tourism
receipts

A scatter plot with a fitted regression line (Figure 3)
reveals a strong positive correlation between international
tourist arrivals and tourism receipts. As arrivals increase,
receipts also rise, confirming that visitor volume directly
drives tourism income. The shaded 95 % confidence band
around the line indicates the statistical reliability of this
relationship and highlights variability caused by regional
and seasonal differences. The trend remains consistent
across most years, although the 20202022 period shows
visible downward deviations corresponding to pandemic-
related travel restrictions.
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Figure 3: Relationship between tourist arrivals and
tourism.

Relationship between GDP and tourism receipts
Tourism receipts display a clear positive linear
association with national GDP (Figure 4), indicating that
higher economic output correlates strongly with increased
tourism revenue. The red regression line demonstrates the
general upward trend, while the shaded 95 % confidence
band illustrates the reliability of this relationship across
different years. Economies with stronger GDP levels
consistently achieve higher tourism receipts, suggesting
that macro-economic growth acts as a reinforcing driver
for tourism expansion. Minor deviations from the line
correspond to temporary shocks or country-specific
fluctuations.
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Figure 4: GDP vs tourism receipts scatterplot.

Relationship between Inflation and Tourism Receipts
The plot in Figure 5 illustrates how quarterly GDP growth
relates to tourism receipts. A strong positive correlation
indicates that increases in national output translate into
higher tourism income. The fitted regression line
highlights this upward tendency, while the 95 %
confidence band captures variations in income sensitivity
during different quarters. Broader confidence regions
during volatile years show greater uncertainty, reflecting
periods of economic disturbance or recovery.
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Figure 5; Effect of inflation on tourism receipts.

Tourism receipts trend in China (2000-2023)

The time-series plot in Figure 6 depicts the trajectory of
China’s tourism receipts over two decades. A steady
upward trend from 2000 to 2019 is followed by a sharp
collapse during the COVID-19 pandemic, reflecting the
severe yet temporary disruption to the tourism economy.
Subsequent quarters show stabilization at a lower level,
emphasizing the long-term impact of the pandemic. This
pattern demonstrates the importance of forecasting
frameworks capable of adapting to abrupt structural
breaks. The proposed RTLSTM-TCN model, combining
LSTM’s capacity for long-term dependency learning with
TCN’s ability to detect short-term fluctuations, shows
strong resilience to such anomalies by rapidly
recalibrating predictions under sudden demand shocks.
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Figure 6: Tourism receipts trend in China.

GDP vs Arrivals with Bubble Size (Receipts) and Color
(Inflation)

The multivariate bubble chart in Figure 7 integrates
several indicators—GDP, tourist arrivals, inflation rate
(color), and tourism receipts (bubble size). It reveals that
countries with higher GDP and larger arrival volumes
generally achieve greater tourism receipts. The inflation
gradient indicates that moderate inflation supports
tourism stability, whereas very high or negative inflation
correlates with reduced income potential. This visual
underscore how economic growth, price stability, and
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visitor demand jointly shape tourism revenue generation
and provide a comprehensive macro-economic
perspective for model feature selection.
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Figure 7: Bubble plot of GDP vs arrivals.
Model comparison:
Performance of different models

Table 3: Comparison of all models.

RM | M MAP | SMA | RMS

Model | SE AE | E% PE LE R2
B- 0.1 0.
SAKE |0.32 |9 27 115 | 022 |38
BIiLST 0.1 0.
M-TN | 0.26 | 3 15 90 0.16 | 62

0.1 0.
KELM | 0.29 | 6 21 100 | 0.2 5
ARIM 0.1 0.
A 031 |8 24 108 | 0.21 | 44
SAE- 0.1 0.
LSTM | 0.24 | 2 14 85 0.15 | 66
MSS- 0.1 0.
KELM | 0.28 | 5 19 98 0.18 |54

0.1 0.
RNN 027 |5 18 95 0.18 | 56
RTLS
TM-
TCN
(Propo 0.0 0.
sed) 018 | 9 8 65 0.1 85

Table 2 presents the comparative performance of eight
models across multiple evaluation metrics (RMSE, MAE,
MAPE, SMAPE, RMSLE, and R2). The results show that
traditional models such as ARIMA and KELM perform
moderately, with ARIMA yielding RMSE = 0.31 and R?
=0.44, and KELM achieving RMSE = 0.29 and R2=0.50.
While these methods capture linear patterns effectively,
they struggle with the complex non-linear dynamics
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inherent in tourism income forecasting. Similarly, B-
SAKE shows improvements due to bagging and stacked
autoencoders, but it remains less accurate (R? = 0.38)
compared to more advanced deep learning models.

Among the  deep learning baselines, SAE-
LSTM demonstrates strong predictive power, achieving
RMSE =0.24, MAE =0.12, and R2=0.66. This highlights
the advantage of combining autoencoders for feature
extraction with LSTMs for sequential
modeling. BILSTM-TN also performs well (RMSE =
0.26, R? = 0.62), reflecting the value of bidirectional

learning in capturing forward and backward
dependencies. The RNN model, while better than
classical statistical approaches, lags behind more

sophisticated architectures with R2 = 0.56.

The proposed RTLSTM-TCN model clearly outperforms
all baselines, with the lowest error values (RMSE = 0.18,
MAE = 0.09, MAPE = 8, SMAPE = 65, RMSLE = 0.10)
and the highest explanatory power (Rz = 0.85). The
MAPE values have been recalculated using the standard
percentage formula. The proposed RTLSTM—TCN model
achieves a MAPE of 8%, indicating that its forecast error
averages only 8 percent of the actual income values,
confirming its superior accuracy compared with baseline
models such as ARIMA (24%) and KELM (21%).

This demonstrates the strength of integrating RTLSTM,
which captures long-term sequential dependencies, with
TCN, which effectively models local temporal patterns.
By leveraging both global and local features, the hybrid
architecture provides superior accuracy and robustness
compared to standalone recurrent or convolutional
models.

In summary, while models like SAE-LSTM and
BiLSTM-TN  provide competitive  performance,
the RTLSTM-TCN framework achieves the best results
across all evaluation metrics, validating its suitability for
seasonal income forecasting in rural tourism. The results
also underscore the importance of hybrid architectures in
handling the complex interplay of economic and tourism
indicators.
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Figure 8: RMSE Comparison of forecasting models.
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The comparison (Figure 8) demonstrates RMSE values
across all models. B-SAKE (0.32) and ARIMA (0.31)
produce the highest errors, while KELM (0.29) and RNN
(0.27) offer moderate improvement. Advanced deep
learning models such as BiLSTM-TN (0.26) and SAE-
LSTM  (0.24) reduce RMSE further. However,
the proposed RTLSTM-TCN achieves the lowest RMSE
(0.18), confirming its ability to minimize forecast
deviations more effectively than all baselines.

MAE Comparison
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Figure 9: MAE Comparison across models.

As illustrated in Figure 9, Mean Absolute Error (MAE)
values highlight similar performance trends. B-SAKE
(0.19) and ARIMA (0.18) record the largest deviations,
whereas KELM (0.16) and RNN (0.15) perform
moderately. BiLSTM-TN (0.13) and SAE-LSTM (0.12)
achieve further improvement due to their capacity to learn
sequential dependencies. The RTLSTM-TCN model
attains the lowest MAE (0.09), demonstrating exceptional
robustness in capturing actual seasonal-income variations
with minimal absolute deviation.

MAPE Comparison
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Figure 10: MAPE Comparison showing percentage-error
differences among models.

The radar plot in Figure 10 visualizes comparative MAPE
distributions. B-SAKE (27 %) and ARIMA (24 %)

F. Hengyang

exhibit the highest percentage errors, indicating weaker
adaptation to non-linear and seasonal fluctuations. KELM
(21 %) and MSS-KELM (19 %) provide moderate
accuracy. Deep-learning-based models, particularly SAE-
LSTM (14 %) and BILSTM-TN (15 %), significantly
lower relative forecast errors. The RTLSTM-TCN
achieves the lowest MAPE (8 %), confirming its superior
stability, accuracy, and capability to model complex
macro-economic interactions.
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Figure 11: SMAPE Comparison emphasizing prediction
stability across income ranges.

As shown in Figure 11, the Symmetric Mean Absolute
Percentage Error demonstrates that B-SAKE (115),
ARIMA (108), and KELM (100) perform less effectively.
BiLSTM-TN (90) and SAE-LSTM (85) achieve
improved predictive balance, while RTLSTM-TCN
attains the lowest SMAPE (65). These results verify that
the proposed hybrid model maintains consistent accuracy
across diverse income scales, minimizing both under- and
over-estimation bias.

RMSLE Comparison
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Figure 12: RMSLE Comparison of all models for rural-
tourism income forecasting

The strip plot in Figure 12 summarizes RMSLE, which is
crucial for evaluating skewed or log-scaled data.
Traditional methods B-SAKE (0.22) and ARIMA (0.21)
rank lowest, while KELM (0.20) and RNN (0.18) provide
moderate performance. Advanced deep models BiLSTM-
TN (0.16) and SAE-LSTM (0.15) reduce errors further.
The RTLSTM-TCN achieves the best RMSLE (0.10),
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indicating strong resilience to asymmetric data
distributions and superior precision in non-linear
contexts.

R2 Score Comparison
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Figure 13: R2 Score Comparison proving RTLSTM-

TCN’s superior explanatory power.

The R2 analysis in Figure 13 reveals that traditional
models B-SAKE (0.38), ARIMA (0.44), and KELM
(0.50) offer limited explanatory strength. Deep
architectures—BILSTM-TN (0.62), SAE-LSTM (0.66),
and RNN (0.56)—demonstrate better variance capture.
The proposed RTLSTM-TCN achieves the highest R2
(0.85), reflecting its ability to model both structural
dependencies and residual variability, thereby delivering
the most accurate and interpretable forecasts.

All model results were reviewed to ensure metric
consistency. The previously high MAPE values (e.g.,
2700 for B-SAKE and 800 for RTLSTM-TCN) were
found to originate from unscaled percentage
representation. After normalization and conversion to
percentage form, MAPE values range between 8 % — 27
%, aligning with accepted accuracy thresholds in
tourism-demand forecasting.

While MAPE provides an intuitive measure of average
prediction error, it is highly sensitive to very small
denominators (i.e., low-income periods). Therefore,
SMAPE and RMSLE are emphasized as more reliable
indicators of relative error and proportional deviation.
SMAPE, being symmetric, penalizes over- and under-
estimation equally, while RMSLE dampens the influence
of large outliers by operating in logarithmic space.

The combination of these three metrics (MAPE, SMAPE,
RMSLE) provides a comprehensive evaluation: MAPE
indicates general accuracy, SMAPE measures forecast
balance, and RMSLE assesses stability under data
skewness. Collectively, these confirm that the
RTLSTM-TCN achieves the most consistent and robust
performance among all compared models

Discussion

Across all six-evaluation metrics, the results clearly show
that classical models such as ARIMA, KELM, and B-
SAKE fail to capture the non-linear and seasonal
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dependencies present in tourism income data. Although
deep-learning baselines like BILSTM-TN and SAE-
LSTM perform better, the proposed RTLSTM-TCN
consistently outperforms all benchmarks with the lowest
‘tes (RMSE = 0.18, MAE = 0.09, MAPE = 800,
SMAFE = 65, RMSLE = 0.10) and the highest
explanatory power (R2 = 0.85).
The superior performance arises from the complementary
learning mechanism of RTLSTM-TCN. The LSTM
component captures long-term sequential patterns—
reflecting macroeconomic trends and multi-seasonal
dependencies—while the TCN component captures short-
term variations using dilated convolutions that efficiently
extract localized temporal features. This joint design
enables the framework to model both gradual policy-
driven income trends and rapid event-driven fluctuations
such as festivals, market shocks, or pandemic-related
downturns. The TCN’s convolutional design also
enhances computational efficiency, achieving faster
training and stable gradients compared with traditional
RNNSs.
When compared with earlier hybrid frameworks like
CNN-LSTM [1, 8, 9] and ARDL-LSTM [11], the
RTLSTM-TCN demonstrates stronger adaptability to
volatile periods, particularly during disruptions such as
COVID-19 (Figure 6). Its residual and skip connections
preserve information across temporal scales, leading to
better generalization and reduced overfitting even with
limited training data.
From a practical standpoint, the model maintains a good
balance between accuracy and computational cost.
Training the RTLSTM-TCN on a standard GPU
(NVIDIA RTX 3080) required approximately 1.8
hours—moderately higher than ARIMA but substantially
lower than more complex ensemble frameworks such as
B-SAKE. Nevertheless, the gain in accuracy justifies the
additional computational time for real-world policy
applications.
Despite its strong predictive capacity, interpretability
remains an ongoing challenge. Future work should
incorporate explainable-Al methods such as SHAP or
attention-based  visualization to  highlight how
macroeconomic and tourism variables influence
predictions. Moreover, because the dataset spans multiple
countries but exhibits region-specific trends (notably
China), generalizability across contexts can be improved
through  transfer-learning  strategies and domain
adaptation.
In summary, the expanded discussion confirms that the
proposed RTLSTM-TCN effectively unites long-range
sequence modeling and short-term convolutional
dynamics to outperform prior models, remain
computationally practical, and provide a robust analytical
foundation for seasonal income forecasting in rural
tourism.
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8 Limitations

While the RTLSTM-TCN framework achieves strong
predictive accuracy, several limitations remain.

(1) Generalizability: The model was evaluated primarily
using aggregated data from major economies; results may
not generalize equally to countries with limited tourism or
incomplete records.

(2) Computational cost: The hybrid deep-learning
structure increases training time and hardware demand
compared to classical models.

(3) Interpretability: Although the architecture supports
temporal feature tracing, full interpretability analysis
(e.g., SHAP or LIME) was not implemented in this
version.

(4) Data bias: Differences in reporting standards and
seasonal patterns across countries may introduce selection
or measurement bias.

Future extensions will incorporate explainability
mechanisms and domain adaptation strategies to address
these challenges.

9 Conclusion and future work

This study proposed a novel Hybrid RTLSTM-TCN deep
learning framework for forecasting seasonal income in
rural tourism, integrating the sequential memory strength
of LSTM with the short-term pattern extraction capability
of TCN. The model was evaluated against a
comprehensive set of baselines—statistical (ARIMA),
machine learning (KELM, MSS-KELM), ensemble (B-
SAKE), and deep learning (RNN, BIiLSTM-TN, SAE-
LSTM)—and consistently outperformed them across all
metrics (RMSE = 0.18, MAE = 0.09, MAPE = 8 %,
SMAPE = 6.5 %, RMSLE = 0.10, and R? = 0.85).

These results confirm the model’s capability to capture
non-linear, seasonal, and macro-economic dynamics
underlying  rural-tourism  income. The  hybrid
architecture’s dual learning mechanism enables robust
forecasting even under volatile economic conditions,
making it a reliable decision-support tool for
policymakers, tourism boards, and regional planners. By
accurately predicting seasonal income shifts, it assists in
budget allocation, workforce management, and
sustainability planning in rural economies.

Limitations and Future Directions: Despite its strong
performance, this study is limited by the availability and
granularity of tourism-income data, which may not fully
represent micro-level variations across destinations. The
model’s interpretability also remains limited, as deep
networks function largely as black-box predictors.

Future work will focus on several directions:

* Expanding the dataset to include climate, policy, and
global-event indicators such as pandemic or disaster
impacts.

» Developing monthly and regional-level forecasting
modules for fine-grained policy use.
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« Incorporating explainable-Al (XAIl) techniques (e.g.,
SHAP, LIME) to improve model transparency.

* Applying transfer learning and metaheuristic
optimization to enhance adaptability and efficiency.

* Deploying the model in interactive dashboards and
early-warning systems to provide real-time insights for
sustainable rural-tourism development.

Overall, the RTLSTM-TCN framework establishes a
scalable foundation for adaptive, interpretable, and
policy-driven rural-tourism analytics, bridging the gap
between academic modeling and practical decision-
making.
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