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This study proposes a Hybrid RTLSTM–TCN deep learning architecture for forecasting seasonal 

income in rural tourism using integrated macroeconomic and tourism indicators. The RTLSTM 

component captures long-term sequential dependencies, while the TCN block models short-term 

temporal variations through dilated causal convolutions. The model was evaluated against benchmark 

approaches including ARIMA, KELM, MSS-KELM, B-SAKE, RNN, BiLSTM-TN, and SAE-LSTM. 

Empirical results on multi-year tourism datasets demonstrate that the proposed RTLSTM–TCN 

achieves the lowest RMSE (0.18) and MAE (0.09) with the highest R² (0.85), outperforming existing 

machine learning and deep learning baselines. This approach improves forecasting robustness under 

seasonal and macroeconomic volatility, offering a decision-support tool for tourism policy planning 

and economic sustainability. 

Povzetek:   

 

 

1 Introduction 
Tourism is increasingly recognized as a key driver of rural 

economic development, contributing not only to local 

employment and income generation but also to the 

preservation of cultural heritage and the promotion of 

community-based entrepreneurship. Rural tourism, 

however, presents unique challenges due to its high 

seasonality, uneven demand distribution, and 

susceptibility to external shocks such as pandemics, 

natural disasters, or economic fluctuations. Accurate 

forecasting of tourism demand in these contexts is 

therefore critical for effective resource allocation, 

infrastructure planning, and sustainable development. 

Traditional statistical models often fail to capture the 

complex, non-linear patterns inherent in rural tourism 

demand, prompting the exploration of hybrid deep 

learning approaches that integrate multiple neural 

network architectures to improve predictive performance 

[1]. 

Long Short-Term Memory (LSTM) networks have 

emerged as a robust tool for modeling sequential and 

time-dependent data. Unlike conventional statistical 

methods, LSTM networks can capture long-term 

dependencies in tourist arrival sequences, allowing for 

improved prediction accuracy even when datasets are 

incomplete or partially sparse. For instance, recent studies 

have demonstrated that LSTM-based models can 

effectively forecast tourist inflows in contexts with 

seasonal fluctuations and post pandemic recovery 

periods, accommodating irregularities that traditional 

autoregressive or exponential smoothing models often fail 

to address [2][3]. These models also allow for the 

integration of exogenous factors, including local events, 

socio-economic conditions, and transportation 

accessibility, which are particularly influential in rural 

tourism scenarios [4]. 

While LSTM models excel at capturing temporal 

dependencies, they are limited in representing spatial 

relationships or hierarchical structures that exist across 

different rural destinations. To address this limitation, 

hybrid architectures combining LSTM with 

Convolutional Neural Networks (CNNs) or Temporal 

Convolutional Networks (TCNs) have been increasingly 

adopted. CNN-LSTM hybrids, for example, leverage 

CNN layers to extract spatial features such as the 

geographic distribution of attractions or demographic 

characteristics of visitors while LSTM layers capture the 

temporal evolution of tourist arrivals. Such integration 

enables models to simultaneously account for spatial 

heterogeneity and temporal variability, thereby enhancing 

forecasting robustness and precision [8][9]. 

Empirical applications of these hybrid architectures 

underscore their effectiveness. A study implementing a 

hybrid CNN-LSTM framework for rural tourism demand 

forecasting found that the model outperformed both 

single LSTM and conventional statistical models in 

predicting tourist inflows, particularly during high 

variability periods affected by COVID-19 disruptions [9]. 

Similarly, a hybrid deep learning framework that 

combined multiple network layers for feature extraction 

and sequence modeling demonstrated high accuracy in 

capturing seasonal patterns and sudden demand shifts in 
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tourism datasets [1][8]. These approaches not only 

improve the reliability of predictions but also provide 

actionable insights for resource planning, marketing 

strategies, and policy interventions. 

Beyond forecasting tourist volumes, hybrid deep learning 

models are increasingly applied to understand visitor 

behavior and engagement. By incorporating multi-

dimensional inputs such as social media sentiment, 

transaction data, and visitor reviews, CNN-LSTM models 

can identify latent patterns in tourist preferences and 

predict future engagement with rural tourism destinations 

[10]. Such analyses are particularly valuable in regions 

where tourism flows are highly variable and sensitive to 

local conditions, allowing managers to implement 

targeted strategies for enhancing visitor satisfaction and 

optimizing service delivery. 

In addition, hybrid architectures demonstrate significant 

resilience to irregularities and disruptions in data. 

Tourism demand is highly susceptible to external shocks, 

which can abruptly alter patterns and render traditional 

forecasts inaccurate. By combining LSTM’s ability to 

model sequential dependencies with CNN or TCN layers 

that capture structural patterns in input features, hybrid 

models can adapt to these disruptions and maintain 

predictive reliability [2][6]. This capability is critical for 

rural tourism, where unexpected events such as extreme 

weather, public health crises, or socio-economic changes 

can rapidly influence tourist arrivals and spending 

patterns. 

The effectiveness of hybrid models is further supported 

by the availability of diverse, multimodal datasets in 

contemporary tourism research. Quantitative data such as 

arrival counts, accommodation occupancy rates, and 

transportation usage can be combined with qualitative 

information, including cultural activity participation, 

visitor sentiment, and social media engagement. Hybrid 

CNN-LSTM and LSTM-TCN architectures are 

particularly well-suited to processing these heterogeneous 

datasets, extracting meaningful patterns across temporal, 

spatial, and behavioral dimensions to generate accurate 

and actionable forecasts [8][10]. This aligns with the 

broader trend toward smart tourism, in which data driven 

approaches enable more responsive, adaptive, and 

sustainable rural tourism management. 

In summary, rural tourism forecasting requires 

approaches that can capture non-linear temporal patterns, 

spatial heterogeneity, and visitor behavior dynamics. 

Traditional statistical and timeseries models are often 

insufficient for this purpose, especially under conditions 

of seasonal variability or external disruptions. Hybrid 

deep learning architectures, such as CNN-LSTM and 

LSTM-TCN models, have demonstrated substantial 

promise in addressing these challenges. By integrating 

temporal sequence modeling with spatial and feature 

extraction capabilities, these models improve forecasting 

accuracy, enable nuanced visitor behavior analysis, and 

support evidence-based management and policy 

decisions. Empirical evidence indicates that hybrid deep 

learning models consistently achieve higher accuracy 

than single model architectures or traditional forecasting 

methods in predicting tourist arrivals and understanding 

visitor behavior. By effectively integrating spatial, 

temporal, and feature based information, these models 

enhance both operational efficiency and strategic decision 

making in rural tourism contexts. Therefore, hybrid deep 

learning approaches are increasingly recognized as 

essential tools for promoting sustainable, resilient, and 

data-informed management of rural tourism systems. 

2   Contributions 
The primary contribution of this study lies in the design 

of a hybrid RTLSTM-TCN model that effectively 

integrates the sequential learning capabilities of LSTM 

with the parallel temporal pattern extraction of TCN, 

ensuring robustness in handling complex tourism data. 

Unlike conventional methods such as ARIMA and 

KELM, or hybrid optimization approaches like B-SAKE 

and MSS-KELM, the proposed model captures both long-

term dependencies and short-term fluctuations 

simultaneously, thereby enhancing predictive accuracy. 

Furthermore, the study provides a systematic comparative 

evaluation of eight models across diverse categories—

statistical, machine learning, deep learning, and hybrid—

which offers comprehensive insights into their relative 

performance. The inclusion of macroeconomic and 

tourism-specific indicators further strengthens the 

forecasting framework, ensuring broader applicability in 

real-world scenarios. In addition, by presenting visually 

intuitive performance comparisons through diverse plots, 

the study enhances interpretability for stakeholders. 

Collectively, this work establishes RTLSTM-TCN as a 

state-of-the-art forecasting model and contributes a 

practical decision-support tool for policymakers and 

planners in rural tourism development. 

3  Related work 
Recent research in rural tourism forecasting has 

increasingly emphasized the use of hybrid deep learning 

approaches that integrate multiple neural network 

architectures to capture both temporal and spatial 

dynamics. Studies have explored the combination of 

autoregressive models with LSTM networks to enhance 

predictive performance under complex, seasonally 

varying, and post-disruption scenarios [11]. These hybrid 

frameworks have proven effective in capturing non-linear 

relationships in tourism data while incorporating 

exogenous variables such as climate change effects, local 

events, and socio-economic indicators. By integrating 

statistical methods with deep learning, these approaches 

not only improve forecasting accuracy but also provide 
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interpretable insights that inform decision-making in rural 

tourism planning [11]. 

Several studies have focused on the spatial distribution 

and resource allocation of rural tourism destinations, 

leveraging LSTM-based deep learning methods to 

identify patterns in tourist flow and demand. For instance, 

the distribution characteristics and development layout of 

rural tourism resources have been examined using in-

depth LSTM learning, highlighting the influence of 

accessibility, local culture, and resource density on tourist 

arrivals [12]. These findings emphasize the importance of 

incorporating geographical heterogeneity and spatial 

dependencies in predictive models to better inform 

infrastructure development, marketing strategies, and 

investment priorities in rural regions. 

Beyond conventional LSTM applications, neuro-inspired 

hybrid architectures have emerged as a novel approach for 

tourism planning and innovation. The development of 

xLSTM models, which integrate neuro-inspired 

processing mechanisms with traditional LSTM 

architectures, has enabled the simultaneous modeling of 

multiple complex dimensions in rural tourism, including 

seasonal variability, visitor behavior patterns, and 

resource utilization [13]. Empirical results from such 

studies suggest that these models provide superior 

predictive performance compared to singlel ayer LSTM 

networks, particularly when handling large, multi-

dimensional datasets that combine temporal and spatial 

information. 

Hybrid deep learning frameworks have also been applied 

to predict tourist traffic attraction and flow, combining 

machine learning techniques with LSTM or TCN layers 

to capture the underlying dynamics of rural tourism 

demand [14]. By leveraging multiple layers of feature 

extraction and temporal sequence modeling, these 

frameworks can accommodate irregularities in data 

caused by sudden disruptions or seasonal fluctuations. 

The integration of machine learning and deep learning 

thus offers a flexible and scalable solution for rural 

tourism forecasting, particularly in areas where 

conventional statistical methods fail to capture complex 

interactions between factors such as travel behavior, local 

attractions, and external shocks [14]. 

Visitor behavior analysis has gained prominence in rural 

tourism studies, as understanding tourists’ preferences 

and engagement patterns is critical for designing effective 

management strategies. Deep learning-based approaches 

have been employed to predict visitor behavior on 

intelligent tourism platforms, integrating multi-

dimensional sentiment analysis, social media interactions, 

and transaction data [19]. By combining graph 

convolutional networks with recurrent neural networks, 

these models capture both spatial relationships among 

locations and temporal patterns in visitor activity. Such 

approaches allow tourism managers to anticipate demand 

trends, optimize resource allocation, and develop targeted 

marketing strategies, thereby enhancing the overall 

efficiency and sustainability of rural tourism operations 

[19]. 

Forecasting the resilience of rural tourism systems has 

also been a focus of recent studies. Simulation research 

using LSTM networks has demonstrated their utility in 

modeling system resilience, particularly in well-known 

tourist villages where the interplay between local 

infrastructure, cultural assets, and visitor inflow is 

complex [18]. These studies highlight the capacity of 

LSTM-based models to inform contingency planning, 

resource management, and infrastructure investment, 

ensuring that rural tourism systems can withstand shocks 

while maintaining service quality and visitor satisfaction. 

In addition, studies have explored the integration of CNN 

and LSTM layers to capture spatial temporal dynamics in 

rural tourism demand. Hybrid CNN-LSTM models have 

been used to forecast tourism demand with high accuracy 

by extracting spatial features from geographic or 

demographic distributions and temporal trends from 

historical arrival data [16]. The spatial temporal hybrid 

design allows the model to account for variations in 

tourist flows across different regions and seasons, thereby 

improving predictive reliability for planning and 

marketing purposes. Such architectures have been shown 

to outperform single model approaches, particularly when 

applied to regions with heterogeneous characteristics and 

fluctuating tourism demand. 

Comparative studies have also investigated the relative 

performance of LSTM and TCN models in domains 

related to tourism, such as customer behavior prediction 

and service usage [17]. These analyses provide valuable 

insights into model selection, highlighting the strengths of 

TCN in capturing long-term dependencies with fewer 

parameters and lower computational complexity, while 

LSTM networks excel in modeling sequential patterns 

with high temporal granularity. The findings inform the 

design of hybrid architectures for rural tourism 

forecasting, suggesting that a combination of LSTM and 

TCN layers may provide both efficiency and accuracy 

advantages. 

Furthermore, research on hybrid deep learning 

frameworks has addressed the challenge of integrating 

multiple data sources, including visitor sentiment, social 

media activity, and behavioral patterns. By combining 

CNN, LSTM, and other neural network components, 

these models can learn complex interactions between 

heterogeneous features, enabling more comprehensive 

predictions of tourist arrivals and engagement levels 

[8][19]. Such integrative approaches are particularly 

valuable for rural tourism contexts, where data sparsity, 

regional heterogeneity, and seasonal fluctuations 

complicate forecasting efforts. 

Finally, studies on rural tourism suitability and system 

optimization have leveraged multi-dimensional 

evaluation models alongside deep learning techniques to 
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guide policy and management decisions [20]. These 

models assess tourism suitability based on environmental, 

socio-economic, and cultural indicators, offering 

actionable insights for destination planning, infrastructure 

development, and marketing strategies. By integrating 

predictive analytics with evaluation frameworks, 

researchers have demonstrated that data-driven 

approaches can support sustainable and resilient rural 

tourism development, particularly in regions with diverse 

geographic and demographic profiles [20]. 

In summary, recent literature emphasizes the growing role 

of hybrid deep learning architectures in rural tourism 

forecasting. From combining statistical models with 

LSTM for enhanced interpretability [11] to integrating 

CNN-LSTM and xLSTM networks for capturing spatial 

temporal dynamics [13][16][19], these approaches have 

demonstrated superior performance over conventional 

methods. They address challenges such as seasonal 

variability, visitor behavior heterogeneity, data sparsity 

and system resilience, offering both predictive accuracy 

and actionable insights. Multi-dimensional evaluation 

frameworks further enhance the applicability of these 

models, supporting informed decision making and 

sustainable management in rural tourism contexts 

[12][14][18][20]. Collectively, these studies highlight the 

potential of hybrid deep learning models to transform 

rural tourism forecasting, planning, and operational 

management. 

 

 

Table 1: Summary of related work with quantitative comparison 

Refere

nce 

Objective Models Dataset Key Findings Research Gaps 

[1]  Forecast tourism demand 

using a hybrid deep learning 

approach 

Hybrid deep 

learning (CNN + 

LSTM) 

Historical tourist 

arrivals (2000–2019) 

 

Improved forecasting 

accuracy (RMSE ≈ 0.23) 

over traditional models 

 

Limited 

interpretability; 

regional application 

only 

[2]  Long-term tourism demand 

forecasting 

LSTM National tourism 

statistics(annual) 

 

Captures long-term 

temporal dependencies 

effectively 

Does not incorporate 

spatial heterogeneity 

[3]  Forecast tourist arrivals with 

partial time-series data 

LSTM Incomplete tourist-

arrival datasets 

 

Handles missing data 

effectively 

 

Focused only on short-

term predictions 

[4]  Forecast Indian tourism 

industry demand 

Statistical + deep 

learning modeling 

National tourism 

statistics(India 2010-

2023) 
    

  

Hybrid model 

outperforms ARIMA 

(RMSE ≈ 0.30) 

 

Limited external 

variable inclusion 

[5]  Adaptive tourism forecasting 

for Xi’an 

Hybrid AI (ANN + 

optimization) 

International arrivals 

(Xi’an region) 

 

AI hybrid adapts to 

changing patterns; 

improved precision 

Limited 

generalizability to 

other regions 

[6]  Evaluate hybrid CNN-TCN-

LSTM for traffic flow 

CNN-TCN-LSTM Traffic-flow datasets 

(public 

Hybrid model captures 

temporal patterns 

effectively 

Not directly applied to 

tourism; 

transferability 

untested 

 
[7]  Sustainable tourism demand 

forecasting 

Hybrid temporal 

neural network 

National tourism 

datasets(2010-2023) 
    

 

Integrates multiple 

temporal features for 

accurate forecasting 

Limited behavioral or 

spatial feature 

integration 

[8]  Forecast tourist arrivals CNN + LSTM 

hybrid 

Historical arrival data Improved predictive 

accuracy; handles 

seasonal variation 

Sparse data issues not 

fully addressed 

[9]  Tourism demand prediction 

post-COVID-19 

CNN-LSTM Provincial tourism 

statistics (Vietnam, 

2015–2023) 

 

Captures post-pandemic 

recovery patterns 

Focused on one 

country; may not 

generalize 

[10]  Analyze rural tourism culture 

advertising 

LSTM-CNN Social media and 

cultural content 

Identifies patterns in 

visitor engagement 

Limited to advertising 

data; predictive power 

not tested 
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[11]  Intelligent tourism 

forecasting under climate 

change 

ARDL + LSTM Climate + tourism 

datasets (2000–2022) 

 

Incorporates climate 

effects; improves 

forecasts (MAE ≈ 0.17) 

 

Requires high-quality 

climate data; limited 

scalability 

[12]  Distribution and development 

layout of rural tourism 

resources 

LSTM Rural tourism resource 

databases 

Identifies spatial-

temporal patterns in 

resource utilization 

Limited real-time 

adaptability 

[13]  Rural tourism planning and 

innovation 

Neuro-inspired 

xLSTM 

Multi-dimensional 

tourism datasets 

Captures complex 

spatial-temporal 

patterns; high prediction 

accuracy 

Complex architecture; 

high computational 

cost 

[14]  Predict tourist traffic 

attraction 

Machine learning 

hybrid 

Tourism flow data Hybrid models capture 

irregular patterns 

Limited integration of 

behavioral data 

[15]  Tourism demand forecasting 

using LSTM 

LSTM and variants Tourist-arrival data 

(2005–2020) 

 

LSTM models 

outperform traditional 

time-series models 

Focuses on temporal 

patterns only 

[16]  Enhance tourism demand 

forecasting 

CNN-LSTM 

spatial-temporal 

hybrid 

Regional tourism 

datasets 

Accounts for spatial 

heterogeneity; RMSE ≈ 

0.22 

 

Regional focus; 

requires extensive data 

preprocessing 

[17]  Compare LSTM and TCN for 

customer churn 

LSTM, TCN Sentiment and 

transaction data 

TCN efficient for long-

term dependencies; 

LSTM better for 

sequential granularity 

Not directly applied to 

tourism; potential 

adaptation needed 

[18]  Optimize rural tourism 

system resilience 

LSTM Well-known tourist 

villages 

Models’ resilience of 

tourism systems under 

variable conditions 

Limited to selected 

villages; 

generalizability 

uncertain 

[19]  Visitor behavior analysis and 

prediction 

Deep learning-

based hybrid 

Multi-modal rural 

tourism datasets 

Predicts visitor 

engagement and patterns 

accurately 

Data sparsity and 

interpretability remain 

challenges 

[20]  Predict rural tourism 

suitability 

Multi-dimensional 

evaluation + ML 

Environmental, socio-

economic, cultural 

datasets 

Guides planning and 

investment decisions 

Limited real-time 

adaptability; lacks 

behavioral prediction 

  

4 Research gap 
Despite the growing body of research on tourism 

forecasting, significant gaps remain in applying advanced 

machine learning and hybrid deep learning methods 

specifically to rural tourism contexts. Traditional 

statistical approaches such as ARIMA and basic 

econometric models have been widely used, but they 

often fail to capture nonlinear patterns and complex 

seasonal variations inherent in tourism income data. 

Similarly, machine learning techniques like KELM and 

ensemble approaches such as B-SAKE provide some 

improvements, yet they lack the ability to effectively learn 

both long-term dependencies and short-term fluctuations 

simultaneously. Recent deep learning models including 

RNNs, LSTMs, and BiLSTM-based networks have 

shown promise in urban and international tourism studies, 

but their application to rural tourism forecasting remains 

limited. Moreover, many prior works focus narrowly on 

tourist arrivals or receipts, overlooking the integration of 

broader macroeconomic variables such as GDP, inflation, 

and unemployment, which play a critical role in shaping 

rural tourism income. Hybrid models like MSS-KELM 

and SAE-LSTM attempt to address some of these 

challenges but often struggle with scalability, robustness, 

and interpretability for decision-makers. Importantly, 

there is a lack of comparative evaluations across diverse 

modeling paradigms that can provide holistic insights for 

policymakers. This study bridges these gaps by 

introducing and rigorously evaluating a novel RTLSTM-

TCN hybrid model, which captures both sequential 

dependencies and localized temporal structures, thereby 

offering a more accurate and practical framework for 

seasonal income forecasting in rural tourism. 

Despite numerous studies on tourism forecasting, very 

few focus specifically on rural tourism income prediction 

integrating micro- and macro-economic indicators. Most 

prior works analyze tourist arrivals or demand volumes, 

overlooking the direct estimation of seasonal income 

patterns that affect rural livelihoods. Moreover, existing 

models often ignore how inflation, unemployment, and 

GDP interact with local tourism dynamics. This research 
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addresses these limitations by introducing a Hybrid 

RTLSTM–TCN model that jointly learns temporal 

dependencies and short-term variations in rural tourism 

income influenced by both economic and tourism-specific 

factors. Few prior approaches jointly considered tourism 

receipts with macroeconomic factors for rural-tourism 

income prediction, a limitation addressed in this study. 

the TCN approach was initially developed to examine 

long-range patterns using a hierarchy of temporal convo- 

lutional filters (Lea et al. 2017). The key characteristics of 

TCNs are: (1) it involves convolutions, which are causal 

and (2) like in RNN, the network can take a sequence of 

any length and map it to an output sequence of the same 

length. The proposed architecture is informed by recent 

generic convolutional architectures for sequential data 

(Bai 

et al. 2018; Lea et al. 2017). The architecture is simple 

(e.g., no skip connections across layers, conditioning, 

context stacking, or gated activations), uses 

autoregressive 

prediction and a very long memory. Moreover, it allows 

for 

both very deep networks and very long effective history 

and is achieved through dilated convolutions that enable 

an 

exponentially large receptive field 

5  Materials and methods 

Dataset and Preprocessing 

The dataset employed in this study was compiled from 

global tourism and macroeconomic indicators spanning 

the years 1999 to 2023, covering multiple countries. It 

consists of 6,650 records with 11 variables, including 

tourism-specific attributes—tourism receipts, tourist 

arrivals, tourism exports, departures, and expenditures—

along with macroeconomic indicators such as gross 

domestic product (GDP), inflation, and unemployment. 

These features were selected to provide both direct 

tourism demand drivers and external economic influences 

relevant to rural tourism income forecasting. 

The target variable in this study is Seasonal Tourism 

Income, derived from the original tourism receipts data. 

Tourism receipts represent the total revenue earned from 

international and domestic tourists. To capture 

seasonality, these receipts were decomposed into seasonal 

components using quarterly aggregation and 

normalization relative to each country’s GDP. This 

transformation allows the model to forecast income 

patterns that vary seasonally rather than annual totals, 

making the predictions more relevant for rural economic 

planning. 

Prior to model development, several preprocessing steps 

were carried out to ensure data quality and model 

stability. Missing values were addressed using a 

combination of linear interpolation (for time-dependent 

series such as receipts, arrivals, and GDP) and mean or 

median imputation (for variables with less than 50% 

missingness). Outliers were detected and treated using the 

Interquartile Range (IQR) method, with extreme values 

capped at calculated thresholds to prevent distortion 

during training. To handle heterogeneity across scales, 

numerical variables were normalized using Min-Max 

scaling, ensuring all features were mapped into the range 

[0,1]. Categorical variables such as country and country 

code were transformed into numerical representations 

through label encoding. For temporal modeling, the 

dataset was arranged in chronological order, and a time-

series split was adopted to separate training (2002–2018) 

and testing (2019–2023) subsets, preserving the natural 

temporal structure of the data. A sliding window approach 

was used to generate input sequences of five consecutive 

years to predict the subsequent year’s seasonal income. 

This formulation allowed the models to capture both 

short-term fluctuations and long-term dependencies in 

tourism dynamics. Collectively, these preprocessing steps 

ensured that the dataset was robust, balanced, and well-

suited for comparative evaluation across classical, 

machine learning, and deep learning models. 

This study aims to address the following research 

questions: 

(1) Can a hybrid deep-learning model integrating 

recurrent (LSTM) and convolutional (TCN) layers 

improve seasonal-income forecasting accuracy compared 

with traditional baselines? 

(2) How do macroeconomic indicators—such as GDP, 

inflation, and unemployment—enhance predictive power 

when combined with tourism variables? 

(3) To what extent do long-term versus short-term 

temporal dependencies affect forecast stability in rural-

tourism income prediction? 

The resulting variable, Seasonal Tourism Income (STI), 

thus represents normalized quarterly tourism receipts per 

GDP unit, serving as a proxy for seasonal financial 

performance in rural economies. 

The CNN architecture, though widely used for spatial 

feature extraction, is less effective for purely temporal 

sequences. In contrast, the Temporal Convolutional 

Network (TCN) preserves sequence order through causal 

convolutions and models long-range dependencies using 

dilated filters. This makes TCN more suitable for tourism-

time-series data where historical continuity and multi-

scale seasonality are critical. Hence, the hybrid 

RTLSTM–TCN was selected to combine LSTM’s 

strength in sequential learning with TCN’s efficiency in 

capturing localized fluctuations. 

Data granularity and seasonal definition 
Although the raw dataset includes annual-level tourism 

and macroeconomic indicators from 1999–2023, this 

study defines seasonal income as a quarterly-level 

decomposition of annual tourism receipts. Using time-
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series decomposition, each year’s receipts were divided 

into four quarters (Q1–Q4) based on official tourism 

seasonality indices and normalized relative to GDP. This 

approach preserves intra-annual fluctuations (e.g., high 

and low tourist seasons) while retaining consistent time 

intervals for deep-learning models. Consequently, the 

input to each model represents five consecutive quarters 

of data used to predict the next quarter’s seasonal tourism 

income, thereby aligning the temporal structure with the 

“seasonal forecasting” objective. 

Baseline Model Tuning and Parameter Search 

Each baseline model was tuned carefully to ensure fair 

comparison with the proposed RTLSTM–TCN 

framework. 

ARIMA: Optimal (p, d, q) parameters were selected 

using the Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) on the training 

data, tested over p, q ∈ [0, 5], d ∈ [0, 2]. 

MSS-KELM: Kernel type (RBF or polynomial), kernel 

width (σ ∈ [0.1, 2]), and regularization coefficient (C ∈ 

[0.1, 100]) were optimized using a grid search with 5-fold 

time-based cross-validation. 

B-SAKE: Swarm size (N = 20–50), inertia weight (w ∈ 

[0.5, 0.9]), and cognitive/social coefficients (c₁, c₂ ∈ [1.0, 

2.5]) were tuned empirically to minimize RMSE on the 

validation set. 

All deep-learning baselines (RNN, SAE-LSTM, 

BiLSTM-TN) were trained with identical early-stopping, 

dropout, and learning-rate schedules for fair evaluation. 

Although the dataset integrates tourism and 

macroeconomic indicators from multiple countries, 

model training was conducted primarily on aggregated 

regional data, with China serving as a representative case 

study for evaluation and visualization (see Figure 6). This 

approach ensures model stability and interpretability in 

regions with rich historical data. In future work, transfer 

learning techniques can be applied to adapt the framework 

for cross-country generalization, allowing more robust 

forecasts in regions with limited data availability. 

 

The proposed framework in figure 1 shows the how the 

model integrates tourism and macroeconomic indicators 

as inputs, which are first preprocessed through missing 

value imputation, normalization, encoding, and sliding 

window techniques to ensure data consistency. The 

processed data is then fed into a Rural Tourism LSTM 

(RTLSTM) block that captures long-term sequential 

dependencies across seasonal and yearly tourism patterns. 

In parallel, a Temporal Convolutional Network (TCN) 

block extracts short-term localized temporal features that 

traditional LSTM models may overlook. 

 

Proposed framework 

 

Figure 1: Proposed RTLSTM-TCN framework for rural 

tourism forecasting 

The outputs from both blocks are fused in a feature 

concatenation layer, combining global and local temporal 

information. A fully connected dense layer further 

transforms these features into a compact representation, 

which is passed to the output layer for forecasting rural 

tourism seasonal income. By combining the strengths of 

RTLSTM and TCN, the framework achieves improved 

predictive accuracy compared to traditional statistical, 

machine learning, and standalone deep learning 

approaches.The architecture includes two LSTM layers 

(128 and 64 units, dropout = 0.3, activation = tanh) 

followed by a three-layer TCN block (kernel = 3, dilation 

rates = [1, 2, 4], ReLU activation, residual connections). 

The fused output vector (256 dimensions) passes through 

a dense linear layer to predict Seasonal Tourism Income. 

RTLSTM - Temporal Convolutional Network 

(TCN) 

Rural Tourism Long Short-Term Memory 

The Rural Tourism Long Short-Term Memory 

(RTLSTM) network is a modified LSTM variant 

customized for seasonal income forecasting. It enhances 

the model’s ability to detect long-term temporal 

dependencies in tourism data influenced by economic and 

seasonal variations. The RTLSTM gates (input, forget, 

cell, and output) regulate how historical tourism and 

macroeconomic information contribute to forecasting 
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future income trends. The equations (1–6) follow standard 

LSTM formulations, where the input gate integrates 

current economic indicators with prior tourism trends, the 

forget gate filters out irrelevant or outdated information, 

and the output gate updates the hidden state to generate 

the final seasonal income forecast. This modification 

enables the model to learn how both tourism activity and 

macroeconomic context jointly shape income dynamics 

over time 

 

Input Gate Layer: The input gate modifies the cell state 

with appropriate data by processing current structural 

inputs and past hidden states in equations (1) and (2). 

 

𝑗𝑠 = 𝜎(𝑋𝑗 × [𝐷𝑠−1,𝑔𝑠−1,𝑊𝑠] +  𝑎𝑗)   

   (1)  

𝐷̃𝑠 = tanh (𝑋𝑑 × [𝐷𝑠−1,𝑔𝑠−1,𝑊𝑠] + 𝑎𝑑  

                                 (2) 

The weight matrix by 𝑋𝑗, the prior hidden state by 𝐷𝑠−1,, 

the prior state of the cell by 𝑔𝑠−1,, the present structural 

input by 𝑊𝑠, and the bias by 𝑎𝑗. tanh is the function of 

hyperbolic tangent activation that is utilised for scaling, 

𝑋𝑑is the weight matrix, and 𝑎𝑑 is the corresponding bias. 

Forget Gate Layer: The forget gate's output uses a 

computation algorithm that is like the input gate. With 

various weights and biases in the equation (3). 

 

𝑒𝑠 = 𝜎(𝑋𝑒 × [𝐷𝑠−1, +𝑔𝑠−1, 𝑊𝑠] + 𝑎𝑔)  

                   (3) 

To eliminate redundant structural information, the forget 

gate's output 𝑒𝑠 employs the current input 𝑊𝑠, Although 

the input gate's weights 𝑋𝑒and bias 𝑎𝑔differ, the forget 

gate's output. 

Cell States Update: Structural developments are 

maintained for precise prediction by updating the cell 

state from its prior value to the current value in equation 

(4). 

 

𝐷𝑠 = 𝑒𝑠 × 𝐷𝑠−1 + 𝑗𝑠 × 𝐷̃𝑠    

     (4) 

It is an update step that occurs between the present cell 

state 𝐷̃𝑠 and the prior cell state 𝐷𝑠−1. 

Output Gate Layer: The output of the previous hidden 

layer, the current input, and the previous memory all 

affect the updated unit state in equations (5) and (6). 

𝑃𝑠 = 𝜎(𝑋𝑝 × [𝐷𝑠 , 𝑔𝑠−1, 𝑊𝑠] + 𝑎𝑝)   

  (5) 

𝑔𝑠 = 𝑃𝑠 × tanh (𝐷𝑠)    

  (6) 

The output gate by 𝑃𝑠, 𝑔𝑠, and 𝑎𝑝. The current hidden 

layer and bias are denoted by 𝑃𝑠. 

 

 

 

Here, the input gate controls how new tourism-economic 

information enters the model, the forget gate determines 

which past income patterns to discard, and the output gate 

generates updated hidden representations that reflect 

seasonal tourism behaviour. This ensures the RTLSTM 

captures both persistent and fluctuating income patterns 

relevant to rural tourism. 

TCN 

The TCN module complements the RTLSTM by 

capturing localized temporal patterns through a hierarchy 

of dilated causal convolutions. The key characteristics of 

TCNs are: (1) it involves convolutions, which are causal 

and (2) like in RNN, the network can take a sequence of 

any length and map it to an output sequence of the same 

length. The proposed architecture is informed by recent 

generic convolutional architectures for sequential data. 

The architecture in figure 2 is simple (e.g., no skip 

connections across layers, conditioning, context stacking, 

or gated activations), uses autoregressive prediction and a 

very long memory. Moreover, it allows for both very deep 

networks and very long effective history and is achieved 

through dilated convolutions that enable an exponentially 

large receptive field. For example, for a 1-D sequence of 

a given weather parameter 𝑃1, i.e., 𝑝 = (𝑃0
1 − ⋯ , 𝑃1

1) and 

a filter 𝑓 ∶  {0, … . 𝑘 − 1} , the dilation convolution 

operation F on element 𝑠 = 𝑝
𝑡
^
′  (where 𝑡

^
=0,…t) of the 

sequence is defined as: 

 

𝐹(𝑠) = (𝑝 ∗ 𝑑 𝑓)(𝑠) = ∑ 𝑓(𝑖). 𝑝𝑠
𝑘=1
𝑖=0 − 𝑑. 𝑖                   (7) 

 

where 𝑑 is the dilation factor, 𝑘 refers to the filter size, 

and 𝑠 − 𝑑. 𝑖 accounts for the direction of the past. Stacked 

units of one-dimensional convolution with activation 

functions are used to build the TCN. Figure 2 depicts the 

architectural elements in a TCN with configurations 

dilation factors d = 1; 2; and 4: The dilation introduces a 

fixed step between every adjacent filter taps. Larger 

dilations and larger filter sizes k enable effectively 

expanding the receptive filed. In these convolutions, the 

increment of d exponentially commonly increases the 

depth of the network. This guarantees that there is some 

filter that hits each input within the effective history. We 

use Keras as a tool to implement both deep learning 

LSTM and TCN. Model hyperparameters were optimized 

via grid search across learning rates (0.0005–0.005), 

batch sizes (16, 32, 64), and dropout levels (0.2–0.4). The 

Adam optimizer with learning rate = 0.001 and early-

stopping patience = 10 epochs yielded the lowest 

validation RMSE. Training employed 150 epochs with 

batch = 32 on an NVIDIA RTX 3080 GPU (32 GB RAM) 

and TensorFlow 2.12 backend. 



Hybrid LSTM–TCN Architecture for Seasonal Income… Informatica 49 (2025) 307–324 315 

 

 

Figure 2: Architecture of TCN Layer with dilated causal 

convolutions. 

Mathematical Foundations and Notations 

Residual layers are added to maintain gradient flow, and 

the overall transformation can be described by: 

 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥                                              (8) 

 

Where 𝐻(𝑥) is the output, 𝐹(𝑥) is the function learned by 

the convolution layers, and x is the input that gets passed 

through via the residual connection. 

Receptive Field Calculation 

Calculating the receptive field of a TCN is critical 

because it tells you how much of the input the network. 

The receptive field RRR is determined by the depth 𝑑 of 

the network, the kernel size 𝑘, and the dilation factor f: 

 

𝑅 = 1 + (𝑘 − 1). ∑ 𝑓(𝑖)𝑑−1
𝑖=0                                (9) 

 

This equation shows TCNs grow their receptive field 

exponentially by increasing the dilation factor, giving the 

network the ability to model long-range dependencies. 

Loss Functions for TCNs 
When it comes to training TCNs, the loss function you 

choose depends on the task. For regression tasks, Mean 

Squared Error (MSE) is commonly used: 

 

𝑀𝑆𝐸 = 1/𝑛 ∑ (𝑦𝑖 − 𝑦
^

𝑖)
𝑛
𝑖=1                                      (10) 

 

For classification tasks, you’d typically use Cross-

Entropy Loss: 

 

𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 =  − ∑ 𝑦𝑖  𝑙𝑜𝑔 (𝑛
𝑖−1 𝑦

^

𝑖) (11) 

 

these loss functions in the context of TCNs are that they 

are computed over the entire sequence at once, thanks to 

the parallel nature of convolutions. This makes TCNs 

efficient and scalable, even for long sequences. 

 

Model architecture and hyperparameters 

The proposed hybrid comprises two parallel branches 

followed by feature fusion. 

RTLSTM branch (long-range dependencies). 

 

Two stacked LSTM layers with 128 and 64 units, 

respectively; dropout = 0.30 after each LSTM; activation 

= tanh; recurrent activation = sigmoid. A dense(64, 

activation = ReLU) projects the LSTM output to the 

fusion space. 

TCN branch (localized/dilated temporal features). 

A Temporal Convolutional Network with kernel size = 3, 

dilation rates = [1, 2, 4] per stack, 2 stacks, and 32 filters 

per layer. Each temporal block is causal, uses ReLU 

activation, residual connections, and layer normalization; 

dropout = 0.20 inside blocks. 

Fusion and output. 

Outputs from both branches are concatenated into a 256-

dimensional feature vector (LSTM path 128 → 64 → 128 

proj; TCN path 3×32 filters with projection to 128), then 

passed to a dense(64, ReLU) and a final dense(1, linear) 

for seasonal-income regression. 

Training objective and optimization. 

Primary loss: Mean Squared Error (MSE); we also 

monitor MAE during validation (no explicit loss 

weighting). Optimizer: Adam (lr = 0.001, β₁ = 0.9, β₂ = 

0.999) with early stopping (patience = 10) and 

ReduceLROnPlateau (factor = 0.5, patience = 5). 

Batch size = 32, epochs = 150 (stopped early). 

Implementation: TensorFlow/Keras 2.x. 

Bagging-based Stacked Autoencoders Kernel Extreme 

Learning (B-SAKE): 

 

B-SAKE is a hybrid approach that integrates stacked 

autoencoders (SAE) with kernel-based extreme learning 

machines (KELM) under a bagging ensemble framework. 

The stacked autoencoders reduce noise and extract 

hierarchical features, while KELM provides fast and 

efficient non-linear classification or regression. By 

employing bagging, multiple KELM models are trained 

on resampled subsets, and their predictions are 

aggregated, improving stability and reducing variance. 

 

This combination enhances generalization performance, 

making B-SAKE effective in high-dimensional and 

heterogeneous datasets such as tourism income 

forecasting. However, the method can be sensitive to 

kernel parameter selection and may require careful 

tuning. 

BiLSTM–Temporal Network (BiLSTM-TN): 

The BiLSTM-TN model extends the LSTM architecture 

by introducing bidirectional processing. Instead of 

learning only from past observations, BiLSTM learns 
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from both past (backward) and future (forward) contexts 

within a sequence. This ability helps the model capture 

contextual dependencies that may span across multiple 

seasons or years in tourism datasets. The temporal 

network design integrates these dual signals to produce 

richer representations of temporal dependencies. While 

BiLSTM improves accuracy over unidirectional LSTMs, 

it is computationally more expensive and may overfit 

when training data is limited. 

 

Kernel Extreme Learning Machine (KELM): 

KELM is an advanced form of Extreme Learning 

Machine (ELM) that incorporates kernel functions to 

enhance non-linear mapping capabilities. Unlike 

conventional neural networks, KELM assigns hidden 

layer parameters randomly and determines output weights 

analytically, leading to extremely fast training. 

Kernelization allows KELM to approximate non-linear 

relationships in tourism data without explicitly increasing 

model complexity. This makes it efficient for medium-

scale forecasting tasks, though it may lack robustness in 

handling highly dynamic or sequential dependencies. 

Autoregressive Integrated Moving Average (ARIMA): 

ARIMA is one of the most widely used traditional 

statistical models for time-series forecasting. It combines 

three components: autoregressive (AR), differencing (I), 

and moving average (MA). AR captures dependencies on 

past values, I ensure stationarity through differencing, and 

MA models residual errors. ARIMA is interpretable and 

performs well on stationary, linear datasets. However, it 

struggles with non-linear and high-variance datasets, 

making it less effective for tourism income forecasting, 

where patterns are influenced by multiple complex and 

external economic factors. 

 

Stacked Autoencoders–LSTM (SAE-LSTM): 

The SAE-LSTM model integrates stacked autoencoders 

for deep feature learning with LSTM for sequential 

prediction. Stacked autoencoders compress input features 

into lower-dimensional latent representations while 

filtering noise, making the dataset more manageable and 

structured. The LSTM component captures sequential and 

temporal patterns, ensuring that historical seasonal effects 

are retained in the forecasting process. This hybrid model 

improves prediction accuracy in non-linear and multi-

dimensional tourism datasets. However, due to its deep 

structure, it requires large-scale data and significant 

computational power, making training time-intensive. 

Modified Sparrow Search Algorithm–KELM (MSS-

KELM): 

 

MSS-KELM combines the strength of the Modified 

Sparrow Search Algorithm (MSSA) with KELM for 

improved parameter optimization. MSSA, inspired by the 

foraging behaviour of sparrows, is used to search for the 

best hyperparameters of the KELM model, such as kernel 

parameters and regularization coefficients. This 

optimization improves accuracy, convergence speed, and 

robustness against local minima. When applied to tourism 

income forecasting, MSS-KELM helps manage complex 

non-linear interactions and uncertain seasonal variations. 

Nonetheless, as with most metaheuristic-based models, it 

can be computationally expensive. 

Recurrent Neural Network (RNN): 

RNNs are neural networks specifically designed for 

sequential data. They maintain hidden states that carry 

information across time steps, making them suitable for 

modeling temporal dependencies in tourism income data. 

By learning from previous inputs, RNNs attempt to 

capture seasonality and temporal correlations. However, 

traditional RNNs are prone to vanishing and exploding 

gradient problems, which hinder their ability to capture 

long-term dependencies effectively. This limitation often 

results in reduced accuracy compared to more advanced 

recurrent models like LSTM and BiLSTM. Despite this, 

RNNs remain a baseline for deep learning approaches in 

time-series forecasting. 

6  Experimental setup 
The rural tourism dataset was preprocessed through 

missing value imputation, outlier treatment, label 

encoding for categorical features, and Min–Max scaling 

for numerical variables. A sliding window approach with 

a sequence length of five years was applied to generate 

temporal input–output pairs. The dataset was split into 

80% training (2002–2018) and 20% testing (2019–2023), 

ensuring temporal order was preserved for realistic 

forecasting. 

All experiments were implemented in Python (3.11) using 

Scikit-learn for preprocessing, evaluation metrics, and 

baseline models, and TensorFlow/Keras for deep learning 

model development. Pandas and NumPy supported data 

handling, while Matplotlib and Seaborn were used for 

visualization and exploratory analysis. 

Eight models were compared: Bagging-based Stacked 

Autoencoders with Kernel Extreme Learning (B-SAKE), 

BiLSTM–Temporal Network (BiLSTM-TN), Kernel 

Extreme Learning Machine (KELM), Autoregressive 

Integrated Moving Average (ARIMA), Stacked 

Autoencoders–LSTM (SAE-LSTM), Modified Sparrow 

Search Algorithm–KELM (MSS-KELM), Recurrent 

Neural Network (RNN), and the proposed RTLSTM–

TCN. 

 

For all deep learning models, training was performed 

using the Adam optimizer with a learning rate of 0.001, 

batch size 32, and early stopping to prevent overfitting. 

The evaluation metrics included Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), Symmetric Mean 

Absolute Percentage Error (SMAPE), Root Mean 

Squared Logarithmic Error (RMSLE), and Coefficient of 
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Determination (R²). These metrics were computed on the 

held-out test set to provide a comprehensive performance 

comparison across models. 

Evaluation protocol and statistical robustness 

To ensure reproducibility and unbiased assessment, the 

following experimental design was adopted: 

(a) Temporal hold-out (unseen test). 

Data were split chronologically with 2002–2018 for 

training/validation and 2019–2023 as a completely 

unseen test set, preventing look-ahead bias. 

(b) Rolling forecast origin validation. 

A walk-forward scheme was applied using a sliding input 

window of five years to predict the next year. At each 

origin, models were re-fit on all data up to that year and 

evaluated on the subsequent period; metrics were 

averaged across origins. 

(c) Repeated runs and confidence intervals. 

Each experiment was repeated five times with different 

random seeds (weight initialization and batch ordering). 

We report the mean ± standard deviation for all metrics 

(RMSE, MAE, MAPE, SMAPE, RMSLE, R²) on the test 

horizon, and provide 95 % confidence intervals using the 

Student-t estimate over the five runs. 

(d) Baselines and tuning parity. 

All classical and ML baselines (ARIMA, KELM, MSS-

KELM, B-SAKE, RNN, BiLSTM-TN, SAE-LSTM) 

were tuned under comparable validation protocols: 

– ARIMA orders selected via AIC/BIC grid search. 

– KELM/MSS-KELM kernel and regularization 

optimized via grid search. 

– Deep baselines tuned over units (64/128), dropout (0.2–

0.4), and learning rate (5e-4 – 5e-3). 

The same temporal splits and walk-forward evaluation 

were maintained for all models. 

(e) Hardware configuration. 

Experiments were executed on a workstation equipped 

with NVIDIA RTX 3080 (10 GB) GPU and 32 GB RAM. 

A complete RTLSTM–TCN training run required 

approximately 1.8 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Experimental configuration summary 

 

Component Specification / Configuration 

Software 

Environment 

Python 3.11; TensorFlow/Keras; Scikit-learn; 

Pandas; NumPy 

Optimizer Adam (learning rate = 0.001) 

Batch Size 32 

Validation Strategy 5-fold rolling forecast origin validation 

Evaluation Metrics RMSE, MAE, MAPE, SMAPE, RMSLE, R² 

Hardware 

NVIDIA RTX 3080 GPU (10 GB), 32 GB 

RAM 

Training Time 

(RTLSTM–TCN) ≈ 1.8 hours per full run 

Repetitions for 

Robustness 5 random-seed runs (mean ± std reported) 

 

7  Results and discussion 

Exploratory Data Analysis (EDA) 

Relationship between tourism arrivals and tourism 

receipts 

A scatter plot with a fitted regression line (Figure 3) 

reveals a strong positive correlation between international 

tourist arrivals and tourism receipts. As arrivals increase, 

receipts also rise, confirming that visitor volume directly 

drives tourism income. The shaded 95 % confidence band 

around the line indicates the statistical reliability of this 

relationship and highlights variability caused by regional 

and seasonal differences. The trend remains consistent 

across most years, although the 2020–2022 period shows 

visible downward deviations corresponding to pandemic-

related travel restrictions. 
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Figure 3: Relationship between tourist arrivals and 

tourism. 

Relationship between GDP and tourism receipts 

Tourism receipts display a clear positive linear 

association with national GDP (Figure 4), indicating that 

higher economic output correlates strongly with increased 

tourism revenue. The red regression line demonstrates the 

general upward trend, while the shaded 95 % confidence 

band illustrates the reliability of this relationship across 

different years. Economies with stronger GDP levels 

consistently achieve higher tourism receipts, suggesting 

that macro-economic growth acts as a reinforcing driver 

for tourism expansion. Minor deviations from the line 

correspond to temporary shocks or country-specific 

fluctuations. 

 

 

Figure 4: GDP vs tourism receipts scatterplot. 

 

Relationship between Inflation and Tourism Receipts 

The plot in Figure 5 illustrates how quarterly GDP growth 

relates to tourism receipts. A strong positive correlation 

indicates that increases in national output translate into 

higher tourism income. The fitted regression line 

highlights this upward tendency, while the 95 % 

confidence band captures variations in income sensitivity 

during different quarters. Broader confidence regions 

during volatile years show greater uncertainty, reflecting 

periods of economic disturbance or recovery. 

 

Figure 5: Effect of inflation on tourism receipts. 

Tourism receipts trend in China (2000–2023) 

The time-series plot in Figure 6 depicts the trajectory of 

China’s tourism receipts over two decades. A steady 

upward trend from 2000 to 2019 is followed by a sharp 

collapse during the COVID-19 pandemic, reflecting the 

severe yet temporary disruption to the tourism economy. 

Subsequent quarters show stabilization at a lower level, 

emphasizing the long-term impact of the pandemic. This 

pattern demonstrates the importance of forecasting 

frameworks capable of adapting to abrupt structural 

breaks. The proposed RTLSTM–TCN model, combining 

LSTM’s capacity for long-term dependency learning with 

TCN’s ability to detect short-term fluctuations, shows 

strong resilience to such anomalies by rapidly 

recalibrating predictions under sudden demand shocks. 

 

 

Figure 6: Tourism receipts trend in China. 

GDP vs Arrivals with Bubble Size (Receipts) and Color 

(Inflation) 

The multivariate bubble chart in Figure 7 integrates 

several indicators—GDP, tourist arrivals, inflation rate 

(color), and tourism receipts (bubble size). It reveals that 

countries with higher GDP and larger arrival volumes 

generally achieve greater tourism receipts. The inflation 

gradient indicates that moderate inflation supports 

tourism stability, whereas very high or negative inflation 

correlates with reduced income potential. This visual 

underscore how economic growth, price stability, and 
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visitor demand jointly shape tourism revenue generation 

and provide a comprehensive macro-economic 

perspective for model feature selection. 

 

 

Figure 7: Bubble plot of GDP vs arrivals. 

Model comparison: 

Performance of different models 

    

Table 3: Comparison of all models. 

Model 

RM

SE 

M

AE 

MAP

E% 

SMA

PE 

RMS

LE R² 

B-

SAKE 0.32 

0.1

9 27 115 0.22 

0.

38 

BiLST

M-TN 0.26 

0.1

3 15 90 0.16 

0.

62 

KELM 0.29 

0.1

6 21 100 0.2 

0.

5 

ARIM

A 0.31 

0.1

8 24 108 0.21 

0.

44 

SAE-

LSTM 0.24 

0.1

2 14 85 0.15 

0.

66 

MSS-

KELM 0.28 

0.1

5 19 98 0.18 

0.

54 

RNN 0.27 

0.1

5 18 95 0.18 

0.

56 

RTLS

TM–

TCN 

(Propo

sed) 0.18 

0.0

9 8 65 0.1 

0.

85 

 

Table 2 presents the comparative performance of eight 

models across multiple evaluation metrics (RMSE, MAE, 

MAPE, SMAPE, RMSLE, and R²). The results show that 

traditional models such as ARIMA and KELM perform 

moderately, with ARIMA yielding RMSE = 0.31 and R² 

= 0.44, and KELM achieving RMSE = 0.29 and R² = 0.50. 

While these methods capture linear patterns effectively, 

they struggle with the complex non-linear dynamics 

inherent in tourism income forecasting. Similarly, B-

SAKE shows improvements due to bagging and stacked 

autoencoders, but it remains less accurate (R² = 0.38) 

compared to more advanced deep learning models. 

Among the deep learning baselines, SAE-

LSTM demonstrates strong predictive power, achieving 

RMSE = 0.24, MAE = 0.12, and R² = 0.66. This highlights 

the advantage of combining autoencoders for feature 

extraction with LSTMs for sequential 

modeling. BiLSTM-TN also performs well (RMSE = 

0.26, R² = 0.62), reflecting the value of bidirectional 

learning in capturing forward and backward 

dependencies. The RNN model, while better than 

classical statistical approaches, lags behind more 

sophisticated architectures with R² = 0.56. 

 

The proposed RTLSTM–TCN model clearly outperforms 

all baselines, with the lowest error values (RMSE = 0.18, 

MAE = 0.09, MAPE = 8, SMAPE = 65, RMSLE = 0.10) 

and the highest explanatory power (R² = 0.85). The 

MAPE values have been recalculated using the standard 

percentage formula. The proposed RTLSTM–TCN model 

achieves a MAPE of 8%, indicating that its forecast error 

averages only 8 percent of the actual income values, 

confirming its superior accuracy compared with baseline 

models such as ARIMA (24%) and KELM (21%). 

This demonstrates the strength of integrating RTLSTM, 

which captures long-term sequential dependencies, with 

TCN, which effectively models local temporal patterns. 

By leveraging both global and local features, the hybrid 

architecture provides superior accuracy and robustness 

compared to standalone recurrent or convolutional 

models. 

In summary, while models like SAE-LSTM and 

BiLSTM-TN provide competitive performance, 

the RTLSTM–TCN framework achieves the best results 

across all evaluation metrics, validating its suitability for 

seasonal income forecasting in rural tourism. The results 

also underscore the importance of hybrid architectures in 

handling the complex interplay of economic and tourism 

indicators. 

RMSE Comparison  

 

Figure 8: RMSE Comparison of forecasting models. 
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The comparison (Figure 8) demonstrates RMSE values 

across all models. B-SAKE (0.32) and ARIMA (0.31) 

produce the highest errors, while KELM (0.29) and RNN 

(0.27) offer moderate improvement. Advanced deep 

learning models such as BiLSTM-TN (0.26) and SAE-

LSTM (0.24) reduce RMSE further. However, 

the proposed RTLSTM–TCN achieves the lowest RMSE 

(0.18), confirming its ability to minimize forecast 

deviations more effectively than all baselines. 

MAE Comparison  

 

Figure 9: MAE Comparison across models. 

As illustrated in Figure 9, Mean Absolute Error (MAE) 

values highlight similar performance trends. B-SAKE 

(0.19) and ARIMA (0.18) record the largest deviations, 

whereas KELM (0.16) and RNN (0.15) perform 

moderately. BiLSTM-TN (0.13) and SAE-LSTM (0.12) 

achieve further improvement due to their capacity to learn 

sequential dependencies. The RTLSTM–TCN model 

attains the lowest MAE (0.09), demonstrating exceptional 

robustness in capturing actual seasonal-income variations 

with minimal absolute deviation. 

MAPE Comparison  

 
Figure 10: MAPE Comparison showing percentage-error 

differences among models. 

The radar plot in Figure 10 visualizes comparative MAPE 

distributions. B-SAKE (27 %) and ARIMA (24 %) 

exhibit the highest percentage errors, indicating weaker 

adaptation to non-linear and seasonal fluctuations. KELM 

(21 %) and MSS-KELM (19 %) provide moderate 

accuracy. Deep-learning-based models, particularly SAE-

LSTM (14 %) and BiLSTM-TN (15 %), significantly 

lower relative forecast errors. The RTLSTM–TCN 

achieves the lowest MAPE (8 %), confirming its superior 

stability, accuracy, and capability to model complex 

macro-economic interactions. 

SMAPE Comparison  

 

Figure 11: SMAPE Comparison emphasizing prediction 

stability across income ranges. 

As shown in Figure 11, the Symmetric Mean Absolute 

Percentage Error demonstrates that B-SAKE (115), 

ARIMA (108), and KELM (100) perform less effectively. 

BiLSTM-TN (90) and SAE-LSTM (85) achieve 

improved predictive balance, while RTLSTM–TCN 

attains the lowest SMAPE (65). These results verify that 

the proposed hybrid model maintains consistent accuracy 

across diverse income scales, minimizing both under- and 

over-estimation bias. 

RMSLE Comparison  

 

 

Figure 12: RMSLE Comparison of all models for rural-

tourism income forecasting 

The strip plot in Figure 12 summarizes RMSLE, which is 

crucial for evaluating skewed or log-scaled data. 

Traditional methods B-SAKE (0.22) and ARIMA (0.21) 

rank lowest, while KELM (0.20) and RNN (0.18) provide 

moderate performance. Advanced deep models BiLSTM-

TN (0.16) and SAE-LSTM (0.15) reduce errors further. 

The RTLSTM–TCN achieves the best RMSLE (0.10), 
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indicating strong resilience to asymmetric data 

distributions and superior precision in non-linear 

contexts. 

R² Score Comparison  

 

Figure 13: R² Score Comparison proving RTLSTM-

TCN’s superior explanatory power. 

The R² analysis in Figure 13 reveals that traditional 

models B-SAKE (0.38), ARIMA (0.44), and KELM 

(0.50) offer limited explanatory strength. Deep 

architectures—BiLSTM-TN (0.62), SAE-LSTM (0.66), 

and RNN (0.56)—demonstrate better variance capture. 

The proposed RTLSTM–TCN achieves the highest R² 

(0.85), reflecting its ability to model both structural 

dependencies and residual variability, thereby delivering 

the most accurate and interpretable forecasts. 

All model results were reviewed to ensure metric 

consistency. The previously high MAPE values (e.g., 

2700 for B-SAKE and 800 for RTLSTM–TCN) were 

found to originate from unscaled percentage 

representation. After normalization and conversion to 

percentage form, MAPE values range between 8 % – 27 

%, aligning with accepted accuracy thresholds in 

tourism-demand forecasting. 

 

While MAPE provides an intuitive measure of average 

prediction error, it is highly sensitive to very small 

denominators (i.e., low-income periods). Therefore, 

SMAPE and RMSLE are emphasized as more reliable 

indicators of relative error and proportional deviation. 

SMAPE, being symmetric, penalizes over- and under-

estimation equally, while RMSLE dampens the influence 

of large outliers by operating in logarithmic space. 

The combination of these three metrics (MAPE, SMAPE, 

RMSLE) provides a comprehensive evaluation: MAPE 

indicates general accuracy, SMAPE measures forecast 

balance, and RMSLE assesses stability under data 

skewness. Collectively, these confirm that the 

RTLSTM–TCN achieves the most consistent and robust 

performance among all compared models 

Discussion 
Across all six-evaluation metrics, the results clearly show 

that classical models such as ARIMA, KELM, and B-

SAKE fail to capture the non-linear and seasonal 

dependencies present in tourism income data. Although 

deep-learning baselines like BiLSTM-TN and SAE-

LSTM perform better, the proposed RTLSTM–TCN 

consistently outperforms all benchmarks with the lowest 

error rates (RMSE = 0.18, MAE = 0.09, MAPE = 800, 

SMAPE = 65, RMSLE = 0.10) and the highest 

explanatory power (R² = 0.85). 

The superior performance arises from the complementary 

learning mechanism of RTLSTM–TCN. The LSTM 

component captures long-term sequential patterns—

reflecting macroeconomic trends and multi-seasonal 

dependencies—while the TCN component captures short-

term variations using dilated convolutions that efficiently 

extract localized temporal features. This joint design 

enables the framework to model both gradual policy-

driven income trends and rapid event-driven fluctuations 

such as festivals, market shocks, or pandemic-related 

downturns. The TCN’s convolutional design also 

enhances computational efficiency, achieving faster 

training and stable gradients compared with traditional 

RNNs. 

When compared with earlier hybrid frameworks like 

CNN–LSTM [1, 8, 9] and ARDL–LSTM [11], the 

RTLSTM–TCN demonstrates stronger adaptability to 

volatile periods, particularly during disruptions such as 

COVID-19 (Figure 6). Its residual and skip connections 

preserve information across temporal scales, leading to 

better generalization and reduced overfitting even with 

limited training data. 

From a practical standpoint, the model maintains a good 

balance between accuracy and computational cost. 

Training the RTLSTM–TCN on a standard GPU 

(NVIDIA RTX 3080) required approximately 1.8 

hours—moderately higher than ARIMA but substantially 

lower than more complex ensemble frameworks such as 

B-SAKE. Nevertheless, the gain in accuracy justifies the 

additional computational time for real-world policy 

applications. 

Despite its strong predictive capacity, interpretability 

remains an ongoing challenge. Future work should 

incorporate explainable-AI methods such as SHAP or 

attention-based visualization to highlight how 

macroeconomic and tourism variables influence 

predictions. Moreover, because the dataset spans multiple 

countries but exhibits region-specific trends (notably 

China), generalizability across contexts can be improved 

through transfer-learning strategies and domain 

adaptation. 

In summary, the expanded discussion confirms that the 

proposed RTLSTM–TCN effectively unites long-range 

sequence modeling and short-term convolutional 

dynamics to outperform prior models, remain 

computationally practical, and provide a robust analytical 

foundation for seasonal income forecasting in rural 

tourism. 
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8  Limitations 
While the RTLSTM–TCN framework achieves strong 

predictive accuracy, several limitations remain. 

(1) Generalizability: The model was evaluated primarily 

using aggregated data from major economies; results may 

not generalize equally to countries with limited tourism or 

incomplete records. 

(2) Computational cost: The hybrid deep-learning 

structure increases training time and hardware demand 

compared to classical models. 

(3) Interpretability: Although the architecture supports 

temporal feature tracing, full interpretability analysis 

(e.g., SHAP or LIME) was not implemented in this 

version. 

(4) Data bias: Differences in reporting standards and 

seasonal patterns across countries may introduce selection 

or measurement bias. 

Future extensions will incorporate explainability 

mechanisms and domain adaptation strategies to address 

these challenges. 

9  Conclusion and future work 
This study proposed a novel Hybrid RTLSTM–TCN deep 

learning framework for forecasting seasonal income in 

rural tourism, integrating the sequential memory strength 

of LSTM with the short-term pattern extraction capability 

of TCN. The model was evaluated against a 

comprehensive set of baselines—statistical (ARIMA), 

machine learning (KELM, MSS-KELM), ensemble (B-

SAKE), and deep learning (RNN, BiLSTM-TN, SAE-

LSTM)—and consistently outperformed them across all 

metrics (RMSE = 0.18, MAE = 0.09, MAPE = 8 %, 

SMAPE = 6.5 %, RMSLE = 0.10, and R² = 0.85). 

These results confirm the model’s capability to capture 

non-linear, seasonal, and macro-economic dynamics 

underlying rural-tourism income. The hybrid 

architecture’s dual learning mechanism enables robust 

forecasting even under volatile economic conditions, 

making it a reliable decision-support tool for 

policymakers, tourism boards, and regional planners. By 

accurately predicting seasonal income shifts, it assists in 

budget allocation, workforce management, and 

sustainability planning in rural economies. 

Limitations and Future Directions: Despite its strong 

performance, this study is limited by the availability and 

granularity of tourism-income data, which may not fully 

represent micro-level variations across destinations. The 

model’s interpretability also remains limited, as deep 

networks function largely as black-box predictors. 

Future work will focus on several directions: 

• Expanding the dataset to include climate, policy, and 

global-event indicators such as pandemic or disaster 

impacts. 

• Developing monthly and regional-level forecasting 

modules for fine-grained policy use. 

• Incorporating explainable-AI (XAI) techniques (e.g., 

SHAP, LIME) to improve model transparency. 

• Applying transfer learning and metaheuristic 

optimization to enhance adaptability and efficiency. 

• Deploying the model in interactive dashboards and 

early-warning systems to provide real-time insights for 

sustainable rural-tourism development. 

Overall, the RTLSTM–TCN framework establishes a 

scalable foundation for adaptive, interpretable, and 

policy-driven rural-tourism analytics, bridging the gap 

between academic modeling and practical decision-

making. 
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