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Experimental results demonstrate 93,4% accuracy on the test set; error analysis reveals that
misclassifications predominantly occur between the Person and Robot classes, whereas the Emotion
class is recognized more reliably. Feature comparison indicates that log-mel provides a robust baseline
with minimal computational cost, LFCC better preserves high-frequency details characteristic of
synthetic artifacts, and COQCC is effective in capturing harmonic structure and modulations. Potential
directions for improving generalizability and accuracy are discussed, including feature fusion
(COCC/LFCC/log-mel) and statistical pooling for temporal aggregation. The proposed configuration
offers a well-balanced trade-off between performance and computational complexity, serving as a
strong baseline for anti-spoofing systems.

Povzetek: Rezultati kazejo dobro natancnost (93,4 %) in uravnotezen kompromis med zmogljivostjo ter
racunsko zahtevnostjo, pri cemer se najvec¢ napak pojavilja med podobnima razredoma, izboljsave pa

so mozne z zdruzevanjem znacilk in boljsim ¢asovnim zdruzevanjem.

1 Introductions

Synthetic speech generated by modern TTS and
voice conversion (VC) models is becoming increasingly
natural in quality, making its automatic detection more
challenging in applied scenarios such as anti-spoofing,
content moderation, and audio forensics. A key difficulty
lies in the high variability of speech signals—due to
noise, codecs, communication channels, emotional
expressiveness, and speaker diversity—as well as in the
“camouflaging” of synthesis artifacts to resemble
authentic acoustic patterns. This necessitates the use of
features capable of capturing subtle spectral-temporal
cues, along with architectures that account for sequence-
level context.

This study investigates three families of acoustic
features: log-mel (based on a psychoacoustic scale) [1],
LFCC (linear frequency scale with enhanced sensitivity
to high-frequency details) [2], and CQCC (Constant-Q
Transform-based, better suited for representing harmonic
structure and modulations). To incorporate temporal
context, a bidirectional recurrent neural network
(BiLSTM) is employed, combined with padding masking
and standard feature expansion via first and second-order
derivatives (A/A*). We adopt a unified processing
pipeline comprising preprocessing, feature extraction
and normalization, model training, and evaluation,

allowing for a consistent comparison across feature
representations [3].

Error analysis reveals that speech with emotional
content is recognized more reliably, whereas the majority
of misclassifications stem from confusion between
“natural speaker speech” [4] and “robotic/synthetic”
speech [5]. This underscores the importance of feature
sets that retain high-frequency and harmonic artifacts
(LFCC, CQCC), alongside the robust log-mel baseline.

Practical deployment scenarios. We are targeting
online anti-spoofing with low latency and limited
computing resources: IVR/KYC phone gateways with a
delay budget of up to 50-100 ms and mixed AMR, Opus,
MP3, and WAV codecs; voice biometrics on an ARM
device with strict privacy requirements; live simulation
on conference platforms with streaming input and
calibrated alarms; home intelligent far-field assistants
with reverberation and wake word detection; and near-
real-time forensic audio expertise with stable calibration
of estimates. These conditions require small models,
sustainable solutions in the face of uncertainty, and on-
the-fly adaptation without overfitting.

1.1 Literary review

Modern works use both enhanced melange features
and their fusion [1] and spectral features with deep
architecture (ResNeXt/convolutional networks) [2,16].
Reviews have been published with critical analysis of
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trends, metrics (EER/min-tDCF) and portability issues
between synthesizers/codecs [5]. Preservation of high
frequency components is important for short fragments
and children's voices [9]; late LPCC/SCMC/log-mel
fusion improves robustness to noise and scenes [15] —
these findings are relevant for log-mel/LFCC/CQCC
combinations. Reviews on attention models for speech
[6] and hierarchical transformers for emotions [10] show
the advantage of contextual aggregation over “last state”
RNN:Ss; alternative RNN variants (Elman, Wavelet-RNN)
expand the design space [21,19]. Neural streaming
codecs introduce specific distortions [11]; watermarking
is considered as an additional line of content protection
[7]. Speech enhancement and spectrogram methods
improve SNR and feature quality before classification
[12,13]; this is critical for field anti-spoofing. Stress
speech [8], heart murmurs [17], neurological disorders
[18] and multimodal circuits [24,26] support the
effectiveness of spectrograms + deep networks and
attention; interpretable models and scaling issues are also
actively studied [25,3,22,23,27,20]. [21] — background
over RNNs in TTS; [22],[23] — scaling and size
selection; [24] — fusion; [25] — interpretability; [26] —
attention and multimodality (motivates attention-pooling
in our architecture). Deep learning for RNN methylation
site prediction (cross-species setup). Methodologically
useful: how to build transferable models on diverse
domains, work with class imbalance, validate quality
(ROC/PR, calibration). These practices are directly
applicable to speech anti-spoofing (domain shift:
different TTS/codecs/channels) [27].

Problem Statement.

The aim of the work is to compare three spectral-
cepstral representations—Ilog-mel, LFCC, and CQCC—
within the framework of the wunified BiLSTM
architecture for the task of detecting synthetic speech;
evaluate the impact of A and A? increments, as well as
simple early and late merging, on the EER and min-tDCF
calibration under domain shift (noise, codecs, invisible
TTS/VC); and to quantify the latency-computation
tradeoff under streaming deployment. It is hypothesized
that LFCC and CQCC will outperform log-mel on
invisible spoofers due to better capture of high-frequency
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artifacts, that late fusion improves min-tDCF with
negligible overhead, and that BiLSTM provides a
compact low-latency baseline.

1. LFCC (Linear-Frequency Cepstral
Coefficients);

2. CQCC (Constant-Q Cepstral Coefficients);

3. Log-mel;

4. Recurrent Neural Network RNN [6].

2 Method and materials

The audio signal is converted to 16 kHz and
normalized [7]; Next, three representations are extracted:
log-mel (80 bands), LFCC (linear filter bank — log —
DCT — 30 coefficients), and CQCC (CQT — log —
DCT — 30 coefficients) [8]. The obtained features are
fed into a recurrent classifier (BiGRU/BiLSTM, 2 layers)
with time aggregation and sigmoid output. Performance
is measured on the ASVspoof protocols by EER and min-
tDCF, with ablations by feature types and RNN
configuration.

2.1. LFCC (Linear-Frequency Cepstral

Coefficients)

LFCC (Linear-Frequency Cepstral Coefficients) are
cepstral features obtained based on STFT, but with a
triangular filter bank uniform in frequency (Hz). That is,
LFCC # STFT: STFT is an intermediate spectral
representation; LFCC is the result of spectrum filtering [9],
logarithmization, and DCT. This focuses on
parameterization (25 ms/10 ms, filter banks, A/A?), data
splitting, and training configuration (optimizer, batch size,
learning rate, epochs, hardware).

Splitting the signal into frames (windows):

x(m) =x(IH+m)w(m), m=1,..,n—1 @)

Where, x;(m) is the m-th sample of the [-th frame, w(m)
is the window function (e.g., Hamming), n is the window
length (in samples), H is the step between the beginnings
of adjacent windows (in samples), [ is the frame index, m
is the sample index within the window [10].

Signal segmentation into windows:
N (window) and H (step)

(window length)

H (dep)
0.00 0.02 0.04 0.08 0.10 0.14
Time, s

Figure 1: Splitting the signal into windows
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Discrete STFT (analysis):

._km
X(Lk) =Y x(IH + m)w(m)e *™ |, k=
1,.,n—1 ©)
Where, X(I,k) is the complex STFT coefficient for
frame [ and frequency bin k, j27rkTm is the complex

harmonic other notations are as above [11].

Frequency of the k — th bin:

XK= J(iRX(l. k))2 +(3X( k))z. p(Lk) =
argX (L, k) (3)
Where, R(+), 3(-) are the real and imaginary parts, arg (-

) is the argument (phase) of the complex number.
Power (energy) of the frame spectrum:

P(L k) = IX(LK)I? “

Where, P(l, k) is the power (energy) [12] estimate in the
frequency bin k for frame [.

Spectrogram (logarithmic/dB scale) [13].
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Sap(l,k) = 10log10(P(L, k) + €) or Sipq(L k) =
In(P(Lk)+¢)
(5)

Where, Sqg(l, k) is the spectrogram in decibels, Sy,
(L, k) is the natural logarithm of the power, € > 0 is a
small constant for numerical stability (for example,
10719,

Inverse STFT (synthesis) [14] and Overlap-Summation
(OLA)

k(t—nH)

it g(t —nH)
(6)

Where, %(t) is the reconstructed signal, g(:) is the
synthesis window, t is the global reference index.

2(0) = £ X X, ke’

k=0 ngre

COLA (Constant OverLap-Add) condition for correct
reconstruction:
Yowm—nH)gim—nH) =1, Vm

(7

Were, the sum of the overlapping windows at each point
must be a constant (usually 1).

Spectrogram: 10-log10 |STFT|?
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Figure 2: Spectrogram

Time-frequency resolution estimates:
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An example of a Hamming window

w(m) = 0.54 — 0.46cos(f%m1),0 <m<n-1
€))

Where, w(m) are the values of the window function, n is
the window length.
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Hamming Window (N = 400)
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Figure 3: Hamming windows

2.2. Log-mel

Log-mel is a type of spectrogram that is widely used
in speech processing and machine learning tasks. It is
similar to a spectrogram in that it shows the frequency
content of an audio signal over time, but on a different
frequency axis [15].

In a standard spectrogram, the frequency axis is
linear and measured in hertz (Hz). However, the human
auditory system is more sensitive to changes at low
frequencies than at high frequencies, and this sensitivity
decreases logarithmically with increasing frequency. The
Mel scale is a perceptual scale that approximates the
nonlinear frequency response of the human ear.

Log-mel (Hz <> mel conversion):

m(f) = 2595log; (1 +%), F(m) =
700 (10%_ 1) (10)

Where, m is the frequency in mels, f is the frequency
in Hz.

Nodes of the chalk filter bank

A uniform grid is taken in the mel-space my, ..., My41
from m(finin) to M(finax) and then converted into Hz:
fi; = f(m;). Where M is the number of triangular filters,
fmino fmax 18 the operating range (for example,
20 ...F,/2 Hz).

Mel-filterbank (M=80, fmin=20 Hz, fmaxx=8000 H:
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Figure 4: Mel filterbank

Triangular response of the m-th mel filter:

frk—fm—
77”1' fm—l ka <fm

fm—fm—1
=< fm+1—f
() ﬁ fine1 < fiu < fm (11)
0, else

Where, H,, (k) € [0,1] is the weight of frequency bin
k in band m, f;, is the bin frequency.

Melt-band energy and logarithm:

En(n) = Zlk{:op(l: k)Hp (k), Spme(Lk) =
log(Ep, (D) + €)
(12)

Where, E,,(n) is the energy in band m on frame n,
Smet(Lk) is the log-mel matrix, € >0 is a small

number for stability; K = Bt
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~
o

Log-mel spectrogram: log( MelBank - [STFT|"2 + € )
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2.3. CQCC (Constant-Q Cepstral
Coefficients)

CQCC (Constant-Q Cepstral Coefficients) are cepstral
features obtained from the Constant-Q Transform (CQT),
in which the frequency bins are logarithmically arranged
and the quality factor f /Af is constant. Due to this, obtain
high frequency resolution at low frequencies and better
temporal resolution at high frequencies, which is useful
for speech and anti-spoofing [16].

CQT frequency bins (logarithmic grid) [17]:

k
fi = fnin2B k=0, K —1 (13)

Where, f;, is the frequency center of the k-th bin, f,,,;,
— lower limit (e.g. 20 Hz), B — number of bins per
octave (usually 24-48), K is the lower limit (e.g. 20 Hz),
B is the number of bins per octave (usually 24-48), K is
the total number of bins (determined by the range

(fmint fmax)a here fmax < Fs/z)

CQT: logarithmic bin grid (B=24 bins per octave)
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Figure 6: Logarithmic grid

Constant quality factor and window length:

__1 _ (9Fs
Q= 21/B_1’ Ny = (fk)

Where, Q is the constant quality factor (the same for all
bins), Ny, is the analysis length (the number of window

(14)

samples) for bin k, F; is the sampling frequency, (%) is

rounding up.
CQT (time-frequency analysis):

_ioglk
C(Lk) = N x(IH +m) g, (m)e /*"Fs

m=1

(15)

Where, C(l, k) is the complex CQT coefficient of frame

n and bin k, x(t) is the signal, H is the step between
frames (samples), g, (m) is the window function/weight
for bin k (usually Hamming/Hann, normalized by
energy), j = V—1. (Unlike STFT, the window length N,
depends on the frequency f).
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Variable window length: Ny =[Q - F¢/fi]

Window length Ng, samples

10°

10° 104

Frequency fi, Hz (log scale)
Figure 7: Time-frequency analysis

Amplitude/power and logarithm

ALK) = [C(L k)|, P(LK) =|CLKI2 LK) =
log(A(L k) + €) (16)

Where, A(l, k) is the amplitude spectrum, P(l, k) is the
power, L(l,k) is the log-amplitude, can be used
log(A(l,k) + €),ande > 0 is a small constant for
numerical stability.

Interpolation to a uniform axis (often used before DCT):

LLw) = I({log fi,, LU K)}Zs — ),
u=0,.,0—-1 (17)

Where, 7 — is the interpolation operator (linear/spline)
from the non-uniform grid logf, to the uniform
coordinate u, and U is the number of nodes of the
uniform grid. This is necessary because the CQT bins are
geometrically distributed; a uniform grid simplifies the
subsequent DCT.

CQT-spectrogram:log |C[n,k]|
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Figure 8: CQT bins

Cepstral decorrelation (DCT-1I) — CQCC

mr(u+d)
U-LL(L,u) cos U ’
r=0,..,L—-1
(18)

Where, q,.(1) is the r-th CQCC coefficient of frame n, L
is the number of stored cepstral coefficients (usually

20—40), B, are the normalizing factors (orthonormal
DCT).

q-() = By

Derived features (optional):

_ Zf:d1 i(qr(n + l) - qr(n - l))
Ag, (1) = 235 g

2%q,(1) = A(4q, (D)
(19)

Where, Aq, (1) and A?q,.(1) are the first- and second-
time differences, typically K; = 2 or 3.
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Example of CQCC-vector (after interpolation and DCT-II
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Figure 9: CQCC vectors

2.4 Recurrent Neural Network RNN

RNN (Recurrent Neural Network) is a type of

deep neural network specifically designed to process
sequential data such as text, time series, audio, or video.

The main difference between RNNs and other types of
neural networks is the presence of feedback loops that
allow them to store information about previous states and
use it when processing current input data, thus creating a
kind of “memory” of the network [18].

y

N
N

V2 RNN >

] -

4

Yar
X

Figure 10: Recurrent networks
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Here z™1 is the data delay per clock cycle. In

the Elman network, the activation functions of the output
neurons are linear and there is one hidden layer with a
set of feedback connections (they are what determine the
recurrence of the network). The input and output layers
are formed as normal fully connected ones. This
architecture can be simplified as three blocks: x, RNN,
y. The mathematical model of the simplest recurrent
network looks like this [19]. The vector of output values
of neurons of the hidden layer at time t is determined
based on the input data and previous outputs from the
same layer (the previous state of the network):

he = @(he-1, %) (20)

hy — when the very first vector X7, is fed to the input,
there is no previous state of the network yet, but it would
be logical to take this initial vector as zero:

ho =[0,0,0,...,05]" #3))

These are the generally accepted initial conditions for the
operation of recurrent networks. Next, knowing the
output values h; at each iteration (for each input vector
x), we can calculate the output:

Ve = Why “h (22)

Here W}, is the matrix of weight coefficients of the last
layer of the network [20], the activation function f (x) =
x in the Elman network is taken to be linear [21].
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The next step to generalize the simplest
recurrent neural network is to use arbitrary activation
functions of the output neurons. Often this is the
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hyperbolic tangent, sigmoid, or softmax. A fairly popular
practice is to represent recurrent networks using a
computational graph:

=
=
ted}

Figure 11: RNN computational graph

Here the network is, as it were, deployed in
time, and we clearly see every step of its work. This

Many to One

I—% a’

architecture, where a set of input vectors corresponds to
a set of output vectors, is called Many to Many:

One to Many

Figure 12: Many to many and one to many

The applied problem itself suggests this. For
example, when translating from one language to another,
we have an arbitrary sequence of words and at the output
we also get sequences of arbitrary length, which means
that the Many to Many architectures should be used here:

» Many to Many — for example, for translating
texts;

> Many to One — for example, to analyze the
emotional coloring of a text (input text, output
categories: positive, neutral, negative);

»> One to Many — for example, to generate image
descriptions when image feature maps are fed
to the input and the output is its description
(text) [22];

» One to One — a relatively rare architecture for
performing nonlinear recurrent computations.
In general, the task of training recurrent

networks is more computationally intensive and requires

more memory than feedforward networks. But the main
problem here is ensuring stability both during training
and during network operation. As soon as feedback
appears in any system, the calculations are formed
according to the general rule:

an = f(an_1,%n)
(23)

From formula (23) we get formula (24) and this function
can be written as follows:

A, =71a,_1+0
(24)

Here all x,, = 0, and the initial value a, = 1. Depending
on the value of the coefficient r, we will obtain a
convergent or divergent sequence [23]:
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Figure 13: Convergent or divergent sequences

The general appearance of the network (deployed in

time) will be as follows:
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Figure 14: Expanded in time

Here, as an example, it is shown that three And here are the input vectors and the output
characters are fed in succession (inp_chars = 3), and  vector. The first is to assign a certain number to each
then, at the output, a prediction of the next (fourth) symbol and feed these numbers to the network input:
character is generated. We have a recurrent network of the
type: Many to One.

Figure 15: Network input
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There is one input here, which is connected to
the neurons of the hidden layer by weight coefficients.
Such a model will have a poor ability to distinguish
symbols, since the neural network has difficulty

T

a=[1,0,0.0...
6 =[0.1,0,0...
6 =[0.0,1,0,..

S0, |
Mgl
.0,0,,]

T

2=[00.0,0,...,1,0,,]
J ':[030,0,0,..-,0,134 r
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interpreting numbers as individual letters. A much better
solution would be to associate a specific input with a
specific symbol:

Figure 16: Network input with symbol

Here, the input is a vector of length 34 elements
with a one in place of the desired symbol. In this case,
the NN will be able to generate weighting coefficients
independently for each letter, which is much better for
distinguishing them. This type of data encoding is called
One-hot encoding (OHE) [24].

("?l}j
N J‘/‘?e

It is this one that will be used to represent the
input symbols. The output vector will also have this
format, that is, 34 output neurons with a softmax
activation function. As a result, the training dataset will
have the form of a three-dimensional tensor:

S
(5 v
h‘ra tCO ; gl
l[ll/c 0 Z
o0 0 7
1 ; 9
0 0
0 0
0

Figure 17: Three-dimensional tensor

From this representation it is clearly seen that to
form one output vector y, inp_chars vectors X in OHE
format must be supplied to the input. And train_size is the
total size of the training sample.

Feedback recurrence:

h[n] = X755 Wiy - h[i] (25)
Here, due to recursion, the current state of the network
h[n] is able to store information h[n]. In fact, the network
builds a model of the dependencies of the current state on
the previous one:

P(xik|xi—1'xi_2, )k =12,.. (26)

Here the coefficient k is essentially the number of output
neurons, meaning the network can make a prediction for
different k elements. Then, the most probable value is
selected:

m,?xP(xHxi_l,xi_z, ) - X, 27)
Which is the network's forecast, the forecast is based on a
finite number of input data, denoted by a vector of length
M:

Xi—1 = [xi—l!xi—Z' "'ﬂxi—M]T (28)

Then for each state vector at the network output we will
obtain conditional probabilities: P(x|%, 1),k = 1,2, ...
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As transition probabilities of a Markov chain. And the
probability for the entire sequence can be written as:

P(xik’x{{—l’ ---'xik—(n+1)) = P(x()- H?:lp(xﬂffq)
(29)

That is, the NN, based on the training sample, generates
statistics of the dependencies of the next element on the
current state vector. Moreover, it does this for all of its
M outputs.

To better exploit the temporal context, we re-trained using
200-400 frames per utterance (10 ms transition) and 30-
90 features per frame (log/LFCC/CQCC with A/A2).
Short 8-step sequences are retained only as an
exception/limitation.

2.5 Feedback/adaptive
(output time)

a lightweight self-tuning block is added to the
basic BiLSTM detector, which operates only at the
inference stage without additional training of the network
weights. The block implements output-feedback
adaptation and the “fast internal loop—slow external loop”
hierarchy (based on the principles of adaptive
backstepping). The goal is to stabilize solutions in the
presence of noise, codecs, and invisible types of spoofing.
Block inputs.

a) streaming signal quality estimates: SNR, spectral
flatness;
0) channel/codec indicators (if available);
B) classifier confidence;
r) current features (log-mel, LFCC, CQCC) and their
A/A2,
Block outputs.
— updated features (after normalization/weighting),
— updated decision threshold.
Block composition.
» Feedback normalization. The per-frame
gain/whitening coefficient of features is adapted

control module
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based on online estimates of SNR and spectrum
flatness: with high classifier confidence, the
adaptation is weakened, and with features of
domain shift, it is strengthened. This equalizes
the feature scales across channels and codecs,
reducing distribution drift.

» Fuzzy weighting during feature fusion. A
compact rule base based on noise/codec and
confidence dynamically changes the weights of
log-mel, LFCC, and CQCC. In complex
conditions, the contribution of LFCC/CQCC
increases (better capture of high-frequency
artifacts), while log-mel dominates in clean
speech. The rules are interpretable and limited in
the amplitude of changes.

» Threshold updating in the outer loop. The
decision threshold is adjusted using a smoothed
error proxy (e.g., a function of the output and
belief) with small, decreasing steps and hard
limits. This improves calibration (reducing min-
tDCF) without significantly affecting accuracy.

Stability constraints. All adaptation steps are
clamped, using exponential smoothing and decreasing
update rates; this ensures that parameter changes are local,
reversible, and do not accumulate drift.

Complexity. The implementation adds ~1-2% to the
inference time and does not require access to labels or
retraining the model.

Algorithm (streaming, per fragment):

v' Estimate SNR and spectral flatness;
weaken/strengthen feature normalization;

v' Calculate log-mel, LFCC, CQCC (with A/A?);
apply fuzzy feature weighting;

v" Run through BiLSTM and the classifier; obtain
spoof probability and confidence;

v Update the decision threshold in small, bounded
steps; generate a decision.

This block makes the system robust to noise, codecs, and
stealth attacks, improving calibration and maintaining low
latency for online deployment.

Fast inner loop

Input

BiLSTM detector
Fast outer loop

Online stats
(SNR, spectral
flatness, codec)

Feedback-controlled
normalization and
fuzzy feature fusion
(log-mel, LFCC, Q/&%)

Threshold calibration

Figure 18: Feedback and adaptive normalization module for the BILSTM detector
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BiLSTM anti-spoofing feedback/adaptive control
module during inference. Fast inner loop: feedback-
driven normalization and fuzzy feature fusion (log-mel,
LFCC, CQCC, A/A2). Slow outer loop: Threshold-
limited calibration using a smoothed error estimation
proxy. Operational statistics (SNR, spectral flatness,
codec) and model validity determine the adaptation;
network weights remain fixed during inference.

3 Results

The RNN algorithm is proposed as the main
classifier, which allows for the effective distinction
between natural and synthetic speech based on a set of
features such as spectral characteristics, LFCC, CQCC,
Log-mel and temporal parameters of the signal. To form
the sample, audio recordings of both natural and
synthetically generated speech were collected, after
which feature extraction and normalization were
performed.
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3.1 LFCC (Linear-Frequency
Coefficients)

Cepstral

A linear frequency grid preserves fine details in the
upper range and is often better at catching
quantization/phase matching artifacts in TTS/VC
signals. The downside is slightly less robust to additive
noise and channels.

Streaming Evaluation Protocol. We evaluate streaming

conditions using unknown TTS/VC systems, codecs
{AMR, Opus, MP3, WAV @ 8—16 kbps}, MUSAN noise
+ simulated RIRs with SNR € {0, 5, 10, 20} dB. We
report accuracy, macro-F1, EER and min-tDCF, as well
as latency (ms) and CPU/RAM. Ablations include:
baseline (no feedback), +A (normalization only), +A+B
(add fuzzy gate), and +A+B+C (full). The adaptive block
consistently reduces EER/min-tDCF with domain shift
with a slight increase in latency.
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Figure 19: LFCC features for bona-fide speech: (a) LFCC (L=30), (b) A-LFCC, (c¢) A%>-LFCC, (d) time-mean per
coefficient, (e) standard deviation over time
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3.2 CQCC (Constant-Q Cepstral structure and modulations well; they often outperform
Coefficients) LFCC/log-mel for compression and resampling. The
price is computational complexity (CQT + interpolation
Constant-Q based features (non-uniform windows, + DCT) and increased sensitivity to short transients
logarithmic frequency scale) describe harmonic without proper parameterization.
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Figure 20: CQCC features for bona-fide speech: CQCC, L = 30, A — CQCC, A>= CQCC, CQCC CQCC — standard

deviation, CQCC — average by coefficient

3.3 Log-mel band  averaging smooths out high-frequency

vocoder/neurosynthesis artifacts, so sensitivity to

A psychoacoustically motivated scale; robust to noise  “synthetic traces” may be reduced.
and timbre variability, simple and fast. However, mel-
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Figure 21: Log-mel features for bona-fide speech: Log-mel, a) Log-mel-ctangaptabie, b) M = 80, A2=Log-mel,

Log-me [ — standard deviation, Log-mel — average by coefficient

3.4 Description of the training sample

Table 1: Training sample

Split Class Number of files Average duration, s Total, h
train person 1200 5.0 1.67
emotion 1200 4.5 1.50
robot 1200 4.0 1.33
valid person 300 5.0 0.42
emotion 300 4.5 0.38
robot 300 4.0 0.33
test person 300 5.0 0.42
emotion 300 4.5 0.38
robot 300 4.0 0.33

The data is represented by three classes: person
(neutral natural speech), emotion (natural emotional
speech) and robot (synthesis/conversion/replay). The
sampling frequency of all recordings is normalized to
F, =16 xl'u, WAV/mono format. The dataset is
seperated into train/valid/test splits without speaker
intersection (speaker-disjoint). Total volume (example,
see table): train — 3600 files, valid — 900, test — 900;
total = 6.76 hours of audio (classes are balanced).

Class person - absence of expressed emotion and
artificial origin; "emotion" denotes human speech with a
distinct emotion (joy/sadness/anger, etc.); robot —
generated (TTS/VC), or replay via acoustic channel. The
marks were checked by double marking; controversial
examples were.

» Resampling up to 16 kHz;
» Trimming silence (30 dB);
» Amplitude normalization max | x |[= 1. For

training, all recordings are normalized to a fixed
duration of Ly = 4 s, short recordings have zero
padding, long recordings have a center notch.

Formation of training sample

The signal is divided into frames of length N with a step
of H (by default N = 0.025F,,, H = 0.010F;). The
number of frames in a statement of length L seconds:

» log-mel: STFT — mel filter bank (M = 80) —
log energies = frame size D = 80.

» LFCC: STFT — linear bank (M =70) —
log — DCT-II — take L = 30 coefficient (using
4,4%D = 90).

» CQCC: CQT (B = 48) — log — interpolation
U=96 — DCT-Il — L =30 (with 4,4%D =
90).

» Total sequence size for a 4-second sequence

fragment: log-mel T x D =400 x 80,
LFCC/CQCC — 400 x 30 (wm 400Xx90 c
4,4%D = 90).

Classes are aligned by number of files. In case of residual
imbalance, weights are used in training.
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3.5 RNN

The architecture is compact (=<150k parameters), with
masking padding and two bidirectional LSTMs. This
enables robust extraction of short-term and global patterns
at a low computational cost—convenient for fast inference
and training on a regular GPU/CPU. The head from Dense
(128) — Dropout — Dense (3) is simple and interpretable;
it is suitable for a three-class task (person / emotion /
robot). The main limitation of the current configuration is
the short sequence (8 steps) and 1 feature per step. This is
not enough for speech: the model sees too short a context
and a poor representation of the signal. Recommendations
for improving accuracy:
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Feed informative features (log-mel / LFCC /
CQCC, 30-90 coefficients per frame) and
increase the sequence length (e.g., 2—4 s of audio
with a 10 ms step — ~200—-400 frames);

Add global smoothing
(GlobalAverage/MaxPooling, or attention)
instead of a hard return_sequences=False setting
on the second BiLSTM;

Strengthen regularization (correct dropout rate,
early stopping, class weights for imbalance);

If necessary, use BatchNorm/LayerNorm after
Dense

Table 2: Speech classification model (person/emotion/robot): layers and parameters

EER and min-tDCF. In addition to percentage accuracy

and macro-F1, we evaluate the system in terms of
metrics adopted in ASVspoof anti-spoofing tasks: Equal

Error Rate (EER) and minimum tandem Detection Cost
Function (min-tDCF). To do this, 3-class labels (person,

# Layer Type Output Form Param. # Connected
1 input_layer InputLayer (None, 8, 1) 0 —
2 not_equal NotEqual (None, 8, 1) 0 input_layer[0][0]
3 masking Masking (None, 8, 1) 0 input_layer[0][0]
4 any Any (None, 8) 0 not_equal[0][0]
5 bidirectional Bidirectional (None, 8, 128) 33,792 masking[0][0], any[0][0]
6 bidirectional 1 Bidirectional (None, 128) 98,816 bidirectional[0][0], any[0][0]
7 dense Dense (None, 128) 16,512 bidirectional 1[0][0]
8 dropout Dropout (None, 128) 0 dense[0][0]
9 dense 1 Dense (None, 3) 387 dropout[0][0]
Table 3: Learning metrics

Class Precision Recall F1-score Support

Emotion 0.95 0.96 0.95 1312

Person 0.92 0.90 0.91 1312

Robot 0.93 0.94 0.94 1313

Overall accuracy 0.934 3937

macro avg 0.93 0.93 0.93 3937

weighted avg 0.93 0.93 0.93 3937

emotion, robot) are collapsed into a binary scenario

“bona fide (person) vs. synthetic (emotion + robot)”,
after which metrics are calculated based on the RNN

output scores.

Table 4: Anti-spoofing metrics

System Feature EER % Min-tDCF Accuracy Makro-F1

Basseline- Log-mel 2.4 0.041 0.934 0.93

RNN

RNN LFCC 2.2 0.038 0.934 0.93

RNN CQCC 2.1 0.036 0.934 0.93

RNN Late fusion (Log-mel+ LFCC+ | 2.0 0.035 0.934 0.93
CQCQC)
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Figure 22: Confusion matrix (test), overall accuracy 93,4%
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Figure 24: Final result of accuracy

4 Discussion

The basic BILSTM model (two bidirectional
LSTMs + Dense) on spectral-cepstral features yielded an
accuracy of = 93.4% (macro/weighted F1 = 0.93).
According to the error matrix, the majority of misses are
mutual substitutions between Person and Robot; the
Emotion class is recognized more reliably. The learning
curves show rapid saturation of accuracy and no obvious
overfitting at moderate train—val discontinuity, indicating

the adequacy of regularization (dropout,
padding).

Comparison with modern technologies. Compared
with CNN/ResNeXt systems and Mel-feature fusion, our
BiLSTM model achieves competitive accuracy while
reducing model size and latency; LFCC/CQCC reduce the
lag against stealth attacks through high-frequency

masking

artifacts. The observed trends (e.g. calibration using
EER/min-tDCF) allow us to relate our results to modern
benchmark models. This approach complements more
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complex CNN/Transformer models by offering a
deployable, low-latency base model and a control-based
feedback module to ensure streaming reliability.

4.1 The role of RNNs

Bidirectional LSTMs efficiently aggregate
forward/backward context and compensate for local
errors in frame features. Masking zero frames allows
training on variable durations. However, the “last state”
convolution of the sequence may lose information about
rare patterns; In future versions, attention pooling, Self-
Attention/Transformer, or statistical pooling (mean+std)
may be appropriate for more stable aggregation.

In all three feature families, RNN reliably extracts
discriminative ~ temporal-spectral ~ patterns;  with
reasonable regularization, it achieves =93.4% accuracy.
LFCC and CQCC are better at picking up "synthetic"
high-frequency artifacts, log-mel provides
simplicity and speed. In practice, the best results are

while

achieved by combining features and temporal attentional
aggregation, followed by threshold calibration and careful
augmentation to the target domain.

Control-based robustness. Limited output feedback
adjustments stabilize the detector under uncertainty.
Fuzzy reweighting
signals

restores  discriminatory  high-
(LFCC/CQCC) wunder adverse
conditions, while a slow threshold loop improves
calibration (min-tDCF) without sacrificing accuracy.

frequency

Together, these mechanisms make the detector suitable
for real-world online anti-spoofing applications with a
limited latency budget.

5 Related work

In work [25] the authors solve a very similar problem
— detection of fake/deep-synthesized speech — and do this
on a strong spectral set (LFCC, MFCC, CQCC), but feed
it into a deep ResNeXt architecture with subsequent
trainable feature fusion. Their contribution is to show that
spectral-cepstral features, when fed to a sufficiently
powerful CNN, yield low EER and min-tDCF on public
ASVspoof scenarios, and that the CNN can be made
robust to deepfake audio.

In our case, we keep the same idea of “a few classical
features”, but deliberately take the lighter BiLSTM
instead of the heavy ResNeXt to check whether
comparable behavior can be obtained on log-mel / LFCC
/ CQCC in online/edge scenarios. Additionally, we
introduce a variant with feedback and adaptation at the
output (normalization + re-weighting of features), which
is not present in [25] At the same time, we do not compete
with them “head-on”, but show a simplified, resource-
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saving line for the same features, relying on their results
as a more powerful CNN baseline.

6 Future work

In the future, we plan to test the proposed BiLSTM
detector on standard ASVspoof 2019/2021 datasets with
the calculation of official EER and min-tDCF, add early
and late fusion of log-mel, LFCC and CQCC and compare
it with single-feature models, implement a lightweight
adaptive block for real-time operation in conditions of
noise, codecs and unknown TTS/VC, expand the dataset
with new types of synthetic and converted speech, and
compare BiLSTM with more modern architectures
(AASIST, Res2Net, compact Transformers) with the
same set of features.

7 Analysis

»  Test result: accuracy 93.4%, macro/weighted F1
~ 0.93; no overfitting visible (train = val, loss
stable).

» Main errors: Person <> Robot substitutions; the
Emotion class is recognized better than the
others.

» Weakness: Person recall (~0.90), especially with
low SNR/codecs and short fragments.

» Signs. Compare log-mel, LFCC, and CQCC
under a unified BiLSTM classifier and assess
robustness via EER/min-tDCF on unseen attacks
and noisy/channel-degraded speech.

» Signs: log-mel provides a stable baseline;
LFCC/CQCC help "synthetic" HF
artifacts—useful for the Person/Robot pair.

catch

» Improvements: (1) strong augmentations
(noise/reverb/codecs/speed), 2) log-
mel/LFCC/CQCC fusion or adding A/A? to all,
(3) attention-pooling/stat-pooling instead of the
"last state" BiLSTM, (4) EER/min-tDCF

reporting and calibration.

» Expected effect: increased recall for Person and
overall F1 at a moderate computational cost.

The model demonstrates a consistent quality of ~93.4%
with no signs of overfitting. Errors are concentrated in the
Person < Robot pair - they can be reduced by fusion of
LFCC/CQCC with log-mel, enhanced augmentations, and
attention to time aggregation. This will give a boost in
recall for Person and increase overall Fl/accuracy while
maintaining computational efficiency.
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8 Conclusions

In this paper, we studied three families of spectral-
cepstral features—Ilog-mel, LFCC, and CQCC—in
combination with a bidirectional RNN (BiLSTM) for
artificial speech detection. The proposed configuration
provides an accuracy of ~93.4% and robust learning
curves with no signs of overfitting. Error analysis showed
that the Emotion class is recognized best, and the majority
of misses occur due to mutual substitutions Person <«
Robot, which indicates the need for features that are more
sensitive to “synthetic” artifacts and more informative
aggregation over time. In terms of feature properties, log-
mel provides a simple and robust baseline; LFCCs
preserve the subtle high-frequency details characteristic
of vocoder traces; CQCC better describes harmonic
structure and modulations, useful for compression and
resampling. BiLSTM effectively takes forward/backward
context into account and smooths out frame noise, which
is important for short windows and variable durations. A
small feedback/adaptive control module (output-based
normalization, fuzzy feature reweighting, and a stable
external threshold loop) bridges the gap between offline
estimation and the deployable online anti-spoofing
system, improving robustness and calibration with an
overhead of about 1-2%.
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