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Experimental results demonstrate 93,4% accuracy on the test set; error analysis reveals that 

misclassifications predominantly occur between the Person and Robot classes, whereas the Emotion 

class is recognized more reliably. Feature comparison indicates that log-mel provides a robust baseline 

with minimal computational cost, LFCC better preserves high-frequency details characteristic of 

synthetic artifacts, and CQCC is effective in capturing harmonic structure and modulations. Potential 

directions for improving generalizability and accuracy are discussed, including feature fusion 

(CQCC/LFCC/log-mel) and statistical pooling for temporal aggregation. The proposed configuration 

offers a well-balanced trade-off between performance and computational complexity, serving as a 

strong baseline for anti-spoofing systems. 

Povzetek: Rezultati kažejo dobro natančnost (93,4 %) in uravnotežen kompromis med zmogljivostjo ter 

računsko zahtevnostjo, pri čemer se največ napak pojavlja med podobnima razredoma, izboljšave pa 

so možne z združevanjem značilk in boljšim časovnim združevanjem. 

 

 

1 Introductions  
Synthetic speech generated by modern TTS and 

voice conversion (VC) models is becoming increasingly 

natural in quality, making its automatic detection more 

challenging in applied scenarios such as anti-spoofing, 

content moderation, and audio forensics. A key difficulty 

lies in the high variability of speech signals—due to 

noise, codecs, communication channels, emotional 

expressiveness, and speaker diversity—as well as in the 

“camouflaging” of synthesis artifacts to resemble 

authentic acoustic patterns. This necessitates the use of 

features capable of capturing subtle spectral-temporal 

cues, along with architectures that account for sequence-

level context. 

This study investigates three families of acoustic 

features: log-mel (based on a psychoacoustic scale) [1], 

LFCC (linear frequency scale with enhanced sensitivity 

to high-frequency details) [2], and CQCC (Constant-Q 

Transform-based, better suited for representing harmonic 

structure and modulations). To incorporate temporal 

context, a bidirectional recurrent neural network 

(BiLSTM) is employed, combined with padding masking 

and standard feature expansion via first and second-order 

derivatives (Δ/Δ²). We adopt a unified processing 

pipeline comprising preprocessing, feature extraction 

and normalization, model training, and evaluation, 

allowing for a consistent comparison across feature 

representations [3]. 

Error analysis reveals that speech with emotional 

content is recognized more reliably, whereas the majority 

of misclassifications stem from confusion between 

“natural speaker speech” [4] and “robotic/synthetic” 

speech [5]. This underscores the importance of feature 

sets that retain high-frequency and harmonic artifacts 

(LFCC, CQCC), alongside the robust log-mel baseline. 

Practical deployment scenarios. We are targeting 

online anti-spoofing with low latency and limited 

computing resources: IVR/KYC phone gateways with a 

delay budget of up to 50-100 ms and mixed AMR, Opus, 

MP3, and WAV codecs; voice biometrics on an ARM 

device with strict privacy requirements; live simulation 

on conference platforms with streaming input and 

calibrated alarms; home intelligent far-field assistants 

with reverberation and wake word detection; and near-

real-time forensic audio expertise with stable calibration 

of estimates. These conditions require small models, 

sustainable solutions in the face of uncertainty, and on-

the-fly adaptation without overfitting. 

 

1.1  Literary review 
Modern works use both enhanced melange features 

and their fusion [1] and spectral features with deep 

architecture (ResNeXt/convolutional networks) [2,16]. 

Reviews have been published with critical analysis of 
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trends, metrics (EER/min-tDCF) and portability issues 

between synthesizers/codecs [5]. Preservation of high 

frequency components is important for short fragments 

and children's voices [9]; late LPCC/SCMC/log-mel 

fusion improves robustness to noise and scenes [15] — 

these findings are relevant for log-mel/LFCC/CQCC 

combinations. Reviews on attention models for speech 

[6] and hierarchical transformers for emotions [10] show 

the advantage of contextual aggregation over “last state” 

RNNs; alternative RNN variants (Elman, Wavelet-RNN) 

expand the design space [21,19]. Neural streaming 

codecs introduce specific distortions [11]; watermarking 

is considered as an additional line of content protection 

[7]. Speech enhancement and spectrogram methods 

improve SNR and feature quality before classification 

[12,13]; this is critical for field anti-spoofing. Stress 

speech [8], heart murmurs [17], neurological disorders 

[18] and multimodal circuits [24,26] support the 

effectiveness of spectrograms + deep networks and 

attention; interpretable models and scaling issues are also 

actively studied [25,3,22,23,27,20]. [21] — background 

over RNNs in TTS; [22],[23] — scaling and size 

selection; [24] — fusion; [25] — interpretability; [26] — 

attention and multimodality (motivates attention-pooling 

in our architecture). Deep learning for RNN methylation 

site prediction (cross-species setup). Methodologically 

useful: how to build transferable models on diverse 

domains, work with class imbalance, validate quality 

(ROC/PR, calibration). These practices are directly 

applicable to speech anti-spoofing (domain shift: 

different TTS/codecs/channels) [27]. 

Problem Statement. 

The aim of the work is to compare three spectral-

cepstral representations—log-mel, LFCC, and CQCC—

within the framework of the unified BiLSTM 

architecture for the task of detecting synthetic speech; 

evaluate the impact of Δ and Δ² increments, as well as 

simple early and late merging, on the EER and min-tDCF 

calibration under domain shift (noise, codecs, invisible 

TTS/VC); and to quantify the latency-computation 

tradeoff under streaming deployment. It is hypothesized 

that LFCC and CQCC will outperform log-mel on 

invisible spoofers due to better capture of high-frequency 

artifacts, that late fusion improves min-tDCF with 

negligible overhead, and that BiLSTM provides a 

compact low-latency baseline. 

1. LFCC (Linear-Frequency Cepstral 

Coefficients); 

2. CQCC (Constant-Q Cepstral Coefficients); 

3. Log-mel; 

4. Recurrent Neural Network RNN [6]. 

 

2 Method and materials 

The audio signal is converted to 16 kHz and 

normalized [7]; Next, three representations are extracted: 

log-mel (80 bands), LFCC (linear filter bank → log → 

DCT → 30 coefficients), and CQCC (CQT → log → 

DCT → 30 coefficients) [8]. The obtained features are 

fed into a recurrent classifier (BiGRU/BiLSTM, 2 layers) 

with time aggregation and sigmoid output. Performance 

is measured on the ASVspoof protocols by EER and min-

tDCF, with ablations by feature types and RNN 

configuration. 

 

2.1. LFCC (Linear-Frequency Cepstral 

Coefficients) 
LFCC (Linear-Frequency Cepstral Coefficients) are 

cepstral features obtained based on STFT, but with a 

triangular filter bank uniform in frequency (Hz). That is, 

LFCC ≠ STFT: STFT is an intermediate spectral 

representation; LFCC is the result of spectrum filtering [9], 

logarithmization, and DCT. This focuses on 

parameterization (25 ms/10 ms, filter banks, Δ/Δ²), data 

splitting, and training configuration (optimizer, batch size, 

learning rate, epochs, hardware).  

Splitting the signal into frames (windows): 

𝑥𝑙(𝑚) = 𝑥(𝑙𝐻 + 𝑚)𝑤(𝑚), 𝑚 = 1,… , 𝑛 − 1             (1) 

Where, 𝑥𝑙(𝑚) is the m-th sample of the 𝑙-th frame, 𝑤(𝑚) 
is the window function (e.g., Hamming), 𝑛 is the window 

length (in samples), 𝐻 is the step between the beginnings 

of adjacent windows (in samples), 𝑙 is the frame index, 𝑚 

is the sample index within the window [10]. 

 

Figure 1: Splitting the signal into windows 
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Discrete STFT (analysis): 

𝑋(𝑙, 𝑘) = ∑ 𝑥(𝑙𝐻 + 𝑚)𝑤(𝑚)𝑒−𝑗2𝜋
𝑘𝑚

𝑛𝑛−1
𝑚=0 ,   𝑘 =

1,… , 𝑛 − 1                (2) 

Where, 𝑋(𝑙, 𝑘) is the complex STFT coefficient for 

frame 𝑙 and frequency bin 𝑘, 𝑗2𝜋
𝑘𝑚

𝑛
 is the complex 

harmonic other notations are as above [11]. 

Frequency of the 𝑘 − 𝑡ℎ bin: 

|𝑋(𝑙, 𝑘)| = √(ℜ𝑋(𝑙, 𝑘))
2
+ (ℑ𝑋(𝑙, 𝑘))

2
,   𝜑(𝑙, 𝑘) =

𝑎𝑟𝑔𝑋(𝑙, 𝑘)   (3) 

Where, ℜ(⋅), ℑ(⋅) are the real and imaginary parts, 𝑎𝑟𝑔(⋅
) is the argument (phase) of the complex number. 

Power (energy) of the frame spectrum: 

𝑃(𝑙, 𝑘) = |𝑋(𝑙, 𝑘)|2   (4) 

Where, 𝑃(𝑙, 𝑘) is the power (energy) [12] estimate in the 

frequency bin 𝑘 for frame 𝑙. 

Spectrogram (logarithmic/dB scale) [13]. 

𝑆𝑑𝐵(𝑙, 𝑘) = 10𝑙𝑜𝑔10(𝑃(𝑙, 𝑘) + 𝜀) 𝑜𝑟 𝑆𝑙𝑜𝑔(𝑙, 𝑘) =

𝑙𝑛(𝑃(𝑙, 𝑘) + 𝜀)                                

     (5) 

Where, 𝑆𝑑𝐵(𝑙, 𝑘) is the spectrogram in decibels,  𝑆𝑙𝑜𝑔
(𝑙, 𝑘) is the natural logarithm of the power, 𝜀 > 0 is a 

small constant for numerical stability (for example, 

10−10). 

Inverse STFT (synthesis) [14] and Overlap-Summation 

(OLA) 

𝑥̂(𝑡) = ∑ ∑
1

𝑛𝑓𝑓𝑡
𝑋(𝑗, 𝑘)𝑒

𝑗2𝜋
𝑘(𝑡−𝑛𝐻)

𝑛𝑓𝑓𝑡 𝑔(𝑡 − 𝑛𝐻)
𝑛𝑓𝑓𝑡
𝑘=0𝑛        

     (6) 

Where, 𝑥̂(𝑡) is the reconstructed signal, 𝑔(⋅) is the 

synthesis window, 𝑡 is the global reference index. 

COLA (Constant OverLap-Add) condition for correct 

reconstruction: 

∑ 𝑤(𝑚 − 𝑛𝐻)𝑔(𝑚 − 𝑛𝐻) = 1𝑛 ,   ∀𝑚               

     (7) 

Were, the sum of the overlapping windows at each point 

must be a constant (usually 1). 

 

Figure 2: Spectrogram 

 

Time-frequency resolution estimates: 

∆𝑓 ≈
𝐹𝑠

𝑛𝑓𝑓𝑡
, ∆𝑡 ≈

𝐻

𝐹𝑓𝑓𝑡
   (8) 

An example of a Hamming window 

𝑤(𝑚) = 0.54 − 0.46 cos (
2𝜋𝑚

𝑛−1
) , 0 ≤ 𝑚 ≤ 𝑛 − 1        

     (9) 

Where, 𝑤(𝑚) are the values of the window function, 𝑛 is 

the window length. 
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Figure 3: Hamming windows 

2.2. Log-mel  

Log-mel is a type of spectrogram that is widely used 

in speech processing and machine learning tasks. It is 

similar to a spectrogram in that it shows the frequency 

content of an audio signal over time, but on a different 

frequency axis [15]. 

In a standard spectrogram, the frequency axis is 

linear and measured in hertz (Hz). However, the human 

auditory system is more sensitive to changes at low 

frequencies than at high frequencies, and this sensitivity 

decreases logarithmically with increasing frequency. The 

Mel scale is a perceptual scale that approximates the 

nonlinear frequency response of the human ear. 

 

Log-mel (Hz ↔ mel conversion): 

𝑚(𝑓) = 2595 log10 (1 +
𝑓

700
) , 𝑓(𝑚) =

700 (10
𝑚

2595 − 1)            (10) 

Where, 𝑚 is the frequency in mels, 𝑓 is the frequency 

in Hz. 

Nodes of the chalk filter bank 

A uniform grid is taken in the mel-space 𝑚0, … ,𝑚𝑀+1 

from 𝑚(𝑓𝑚𝑖𝑛) to 𝑚(𝑓𝑚𝑎𝑥)  and then converted into Hz: 

𝑓𝑖 = 𝑓(𝑚𝑖). Where 𝑀 is the number of triangular filters, 

𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥 is the operating range (for example, 

20…𝐹𝑠/2 Hz). 

 

Figure 4: Mel filterbank 

Triangular response of the 𝑚-th mel filter: 

𝐻𝑚(𝑘) =

{
 

 
𝑓𝑘−𝑓𝑚−1

𝑓𝑚−𝑓𝑚−1
,    𝑓𝑚−1 ≤ 𝑓𝑘 < 𝑓𝑚

𝑓𝑚+1−𝑓𝑘

𝑓𝑚+1−𝑓𝑚
,     𝑓𝑚−1 ≤ 𝑓𝑘 < 𝑓𝑚

0,                       𝑒𝑙𝑠𝑒

          (11) 

Where, 𝐻𝑚(𝑘) ∈ [0,1] is the weight of frequency bin 

𝑘 in band 𝑚, 𝑓𝑘 is the bin frequency. 

Melt-band energy and logarithm: 

𝐸𝑚(𝑛) = ∑ 𝑃(𝑙, 𝑘)𝐻𝑚(𝑘),   𝑆𝑚𝑒𝑙(𝑙, 𝑘) =
𝐾
𝑘=0

log(𝐸𝑚(𝑙) + ɛ)               

     (12) 

Where, 𝐸𝑚(𝑛) is the energy in band m on frame 𝑛, 

𝑆𝑚𝑒𝑙(𝑙, 𝑘) is the log-mel matrix, 𝜀 > 0 is a small 

number for stability; 𝐾 =
𝑛𝑓𝑓𝑡

2
. 
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Figure 5: Logarithmic Mel-filter bank 

2.3. CQCC (Constant-Q Cepstral 

Coefficients)  

CQCC (Constant-Q Cepstral Coefficients) are cepstral 

features obtained from the Constant-Q Transform (CQT), 

in which the frequency bins are logarithmically arranged 

and the quality factor 𝑓/∆𝑓 is constant. Due to this, obtain 

high frequency resolution at low frequencies and better 

temporal resolution at high frequencies, which is useful 

for speech and anti-spoofing [16]. 

CQT frequency bins (logarithmic grid) [17]: 

𝑓𝑘 = 𝑓𝑚𝑖𝑛2
𝑘

𝐵, 𝑘 = 0,… , 𝐾 − 1  (13) 

Where, 𝑓𝑘  is the frequency center of the 𝑘-th bin,  𝑓𝑚𝑖𝑛 

— lower limit (e.g. 20 Hz), 𝐵 — number of bins per 

octave (usually 24-48), 𝐾 is the lower limit (e.g. 20 Hz), 

B is the number of bins per octave (usually 24-48), K is 

the total number of bins (determined by the range 

(𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥), here 𝑓𝑚𝑎𝑥 ≤ 𝐹𝑠/2). 

 

 

Figure 6: Logarithmic grid 

Constant quality factor and window length: 

𝑄 =
1

21/𝐵−1
, 𝑁𝑘 = (

𝑄𝐹𝑠

𝑓𝑘
)                 (14) 

Where, 𝑄 is the constant quality factor (the same for all 

bins), 𝑁𝑘 is the analysis length (the number of window 

samples) for bin 𝑘, 𝐹𝑠 is the sampling frequency, (
𝑄𝐹𝑠

𝑓𝑘
) is 

rounding up. 

CQT (time-frequency analysis): 

𝐶(𝑙, 𝑘) = ∑ 𝑥(𝑙𝐻 + 𝑚)𝑔𝑘(𝑚)𝑒
−𝑗2𝜋

𝑓𝑘
𝐹𝑠

𝑁𝑘−1
𝑚=1              (15) 

 Where, 𝐶(𝑙, 𝑘) is the complex CQT coefficient of frame 

n and bin 𝑘, 𝑥(𝑡) is the signal, 𝐻 is the step between 

frames (samples), 𝑔𝑘(𝑚) is the window function/weight 

for bin 𝑘 (usually Hamming/Hann, normalized by 

energy), 𝑗 = √−1. (Unlike STFT, the window length 𝑁𝑘 

depends on the frequency 𝑓𝑘). 
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Figure 7: Time-frequency analysis 

Amplitude/power and logarithm 

𝐴(𝑙, 𝑘) = |𝐶(𝑙, 𝑘)|, 𝑃(𝑙, 𝑘) = |𝐶(𝑙, 𝑘)|2,   𝐿(𝑙, 𝑘) =
log(𝐴(𝑙, 𝑘) + ɛ)  (16) 

Where, 𝐴(𝑙, 𝑘) is the amplitude spectrum, 𝑃(𝑙, 𝑘) is the 

power, 𝐿(𝑙, 𝑘) is the log-amplitude, can be used 

log(𝐴(𝑙, 𝑘) + ɛ), and 𝜀 > 0 is a small constant for 

numerical stability.  

Interpolation to a uniform axis (often used before DCT): 

𝐿̃(𝑙, 𝑢) = ℐ({log 𝑓𝑘 , 𝐿(𝑙, 𝑘)}𝑘=0
𝐾−1 → 𝑢),   

𝑢 = 0,… , 𝑈 − 1            (17) 

Where, ℐ — is the interpolation operator (linear/spline) 

from the non-uniform grid log 𝑓𝑘 to the uniform 

coordinate 𝑢, and 𝑈 is the number of nodes of the 

uniform grid. This is necessary because the CQT bins are 

geometrically distributed; a uniform grid simplifies the 

subsequent DCT. 

Figure 8: CQT bins 

Cepstral decorrelation (DCT-II) → CQCC 

𝑞𝑟(𝑙) = 𝛽𝑟 ∑ 𝐿̃(𝑙, 𝑢) cos
(
𝜋𝑟(𝑢+

1

2
)

𝑈
) ,

 𝑟 = 0,… , 𝐿 − 1

𝑈−1
𝑢=0           

     (18) 

Where, 𝑞𝑟(𝑙) is the 𝑟-th CQCC coefficient of frame 𝑛, 𝐿 

is the number of stored cepstral coefficients (usually 

20−40), 𝛽𝑟 are the normalizing factors (orthonormal 

DCT). 

Derived features (optional): 

 

∆𝑞𝑟(𝑙) =
∑ 𝑖(𝑞𝑟(𝑛 + 𝑖) − 𝑞𝑟(𝑛 − 𝑖))
𝐾𝑑
𝑖=1

2∑ 𝑖2
𝐾𝑑
𝑖=1

,  

  ∆2𝑞𝑟(𝑙) = ∆(∆𝑞𝑟(𝑙))                                               

     (19) 

 Where,   ∆𝑞𝑟(𝑙) and ∆
2𝑞𝑟(𝑙) are the first- and second-

time differences, typically 𝐾𝑑 = 2 or 3. 
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Figure 9: CQCC vectors 

2.4 Recurrent Neural Network RNN 

RNN (Recurrent Neural Network) is a type of 

deep neural network specifically designed to process 

sequential data such as text, time series, audio, or video. 

The main difference between RNNs and other types of 

neural networks is the presence of feedback loops that 

allow them to store information about previous states and 

use it when processing current input data, thus creating a 

kind of “memory” of the network [18].

 

 

Figure 10: Recurrent networks 

 

Here 𝑧−1 is the data delay per clock cycle. In 

the Elman network, the activation functions of the output 

neurons are linear and there is one hidden layer with a 

set of feedback connections (they are what determine the 

recurrence of the network). The input and output layers 

are formed as normal fully connected ones. This 

architecture can be simplified as three blocks: 𝑥, RNN, 

𝑦. The mathematical model of the simplest recurrent 

network looks like this [19]. The vector of output values 

of neurons of the hidden layer at time 𝑡 is determined 

based on the input data and previous outputs from the 

same layer (the previous state of the network): 

ℎ𝑡̅ = 𝜑(ℎ𝑡−1̅̅ ̅̅ ̅̅ , 𝑥𝑡̅)    (20) 

ℎ0̅̅ ̅ – when the very first vector 𝑥1̅̅̅, is fed to the input, 

there is no previous state of the network yet, but it would 

be logical to take this initial vector as zero: 

ℎ0̅̅ ̅ = [0,0,0, … , 0𝑁]
𝑇   (21) 

These are the generally accepted initial conditions for the 

operation of recurrent networks. Next, knowing the 

output values ℎ𝑡 at each iteration (for each input vector 

𝑥), we can calculate the output: 

𝑦𝑡̅ = 𝑊ℎ𝑦 ℎ𝑡̅    (22) 

Here 𝑊ℎ𝑦 is the matrix of weight coefficients of the last 

layer of the network [20], the activation function 𝑓(𝑥) =
𝑥 in the Elman network is taken to be linear [21]. 
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The next step to generalize the simplest 

recurrent neural network is to use arbitrary activation 

functions of the output neurons. Often this is the 

hyperbolic tangent, sigmoid, or softmax. A fairly popular 

practice is to represent recurrent networks using a 

computational graph: 

 

 
Figure 11: RNN computational graph 

 

Here the network is, as it were, deployed in 

time, and we clearly see every step of its work. This 

architecture, where a set of input vectors corresponds to 

a set of output vectors, is called Many to Many:

Figure 12: Many to many and one to many 

 

The applied problem itself suggests this. For 

example, when translating from one language to another, 

we have an arbitrary sequence of words and at the output 

we also get sequences of arbitrary length, which means 

that the Many to Many architectures should be used here: 

➢ Many to Many – for example, for translating 

texts; 

➢ Many to One – for example, to analyze the 

emotional coloring of a text (input text, output 

categories: positive, neutral, negative); 

➢ One to Many – for example, to generate image 

descriptions when image feature maps are fed 

to the input and the output is its description 

(text) [22]; 

➢ One to One – a relatively rare architecture for 

performing nonlinear recurrent computations. 

In general, the task of training recurrent 

networks is more computationally intensive and requires 

more memory than feedforward networks. But the main 

problem here is ensuring stability both during training 

and during network operation. As soon as feedback 

appears in any system, the calculations are formed 

according to the general rule: 

𝑎𝑛 = 𝑓(𝑎𝑛−1, 𝑥𝑛)    

 (23) 

From formula (23) we get formula (24) and this function 

can be written as follows: 

𝑎𝑛 = 𝑟 𝑎𝑛−1 + 0    

 (24) 

Here all 𝑥𝑛 = 0, and the initial value 𝑎0 = 1. Depending 

on the value of the coefficient 𝑟, we will obtain a 

convergent or divergent sequence [23]: 
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Figure 13: Convergent or divergent sequences 

 

The general appearance of the network (deployed in 

time) will be as follows:

 

Figure 14: Expanded in time 

 

Here, as an example, it is shown that three 

characters are fed in succession (𝑖𝑛𝑝_𝑐ℎ𝑎𝑟𝑠 =  3), and 

then, at the output, a prediction of the next (fourth) 

character is generated. We have a recurrent network of the 

type: Many to One. 

 And here are the input vectors and the output 

vector. The first is to assign a certain number to each 

symbol and feed these numbers to the network input: 

Figure 15: Network input 

 



242   Informatica 49 (2025) 233–252                                                                                                                     F. Rakhmatov et al. 

 

There is one input here, which is connected to 

the neurons of the hidden layer by weight coefficients. 

Such a model will have a poor ability to distinguish 

symbols, since the neural network has difficulty 

interpreting numbers as individual letters. A much better 

solution would be to associate a specific input with a 

specific symbol: 

 

 Figure 16: Network input with symbol 

Here, the input is a vector of length 34 elements 

with a one in place of the desired symbol. In this case, 

the NN will be able to generate weighting coefficients 

independently for each letter, which is much better for 

distinguishing them. This type of data encoding is called 

One-hot encoding (OHE) [24]. 

It is this one that will be used to represent the 

input symbols. The output vector will also have this 

format, that is, 34 output neurons with a softmax 

activation function. As a result, the training dataset will 

have the form of a three-dimensional tensor: 

Figure 17: Three-dimensional tensor 

From this representation it is clearly seen that to 

form one output vector 𝑦̅, inp_chars vectors 𝑥̅ in OHE 

format must be supplied to the input. And train_size is the 

total size of the training sample. 

Feedback recurrence: 

ℎ[𝑛] = ∑ 𝑊ℎℎ ℎ[𝑖]
𝑛−1
𝑖=0    (25) 

Here, due to recursion, the current state of the network 

ℎ[𝑛] is able to store information ℎ[𝑛]. In fact, the network 

builds a model of the dependencies of the current state on 

the previous one: 

𝑃(𝑥𝑖
𝑘|𝑥𝑖−1, 𝑥𝑖−2, … ), 𝑘 = 1,2, …  (26) 

Here the coefficient 𝑘 is essentially the number of output 

neurons, meaning the network can make a prediction for 

different k elements. Then, the most probable value is 

selected: 

max
𝑘
𝑃(𝑥𝑖

𝑘|𝑥𝑖−1, 𝑥𝑖−2, … ) → 𝑥𝑖̂  (27) 

Which is the network's forecast, the forecast is based on a 

finite number of input data, denoted by a vector of length 

𝑀: 

𝑥𝑖−1̅̅ ̅̅ ̅ = [𝑥𝑖−1, 𝑥𝑖−2, … , 𝑥𝑖−𝑀]
𝑇  (28) 

Then for each state vector at the network output we will 

obtain conditional probabilities: 𝑃(𝑥𝑖
𝑘|𝑥𝑖−1̅̅ ̅̅ ̅), 𝑘 = 1,2, … . 



Detection of Synthetic Speech Using Spectral-Cepstral… Informatica 49 (2025) 233–252 243 

 

As transition probabilities of a Markov chain. And the 

probability for the entire sequence can be written as: 

𝑃(𝑥𝑖
𝑘 , 𝑥𝑖−1

𝑘 , … , 𝑥𝑖−(𝑛+1)
𝑘 ) = 𝑃(𝑥0

𝑘) ∏ 𝑃(𝑥𝑖
𝑘|𝑥̅𝑖−1

𝑘 )𝑛
𝑖=1  

 (29) 

That is, the NN, based on the training sample, generates 

statistics of the dependencies of the next element on the 

current state vector. Moreover, it does this for all of its 

𝑀 outputs. 

To better exploit the temporal context, we re-trained using 

200-400 frames per utterance (10 ms transition) and 30-

90 features per frame (log/LFCC/CQCC with Δ/Δ2). 

Short 8-step sequences are retained only as an 

exception/limitation. 

 

2.5 Feedback/adaptive control module 

(output time) 
a lightweight self-tuning block is added to the 

basic BiLSTM detector, which operates only at the 

inference stage without additional training of the network 

weights. The block implements output-feedback 

adaptation and the “fast internal loop–slow external loop” 

hierarchy (based on the principles of adaptive 

backstepping). The goal is to stabilize solutions in the 

presence of noise, codecs, and invisible types of spoofing. 

Block inputs. 

а) streaming signal quality estimates: SNR, spectral 

flatness; 

б) channel/codec indicators (if available); 

в) classifier confidence; 

г) current features (log-mel, LFCC, CQCC) and their 

Δ/Δ². 

Block outputs. 

— updated features (after normalization/weighting), 

— updated decision threshold. 

Block composition. 

➢ Feedback normalization. The per-frame 

gain/whitening coefficient of features is adapted 

based on online estimates of SNR and spectrum 

flatness: with high classifier confidence, the 

adaptation is weakened, and with features of 

domain shift, it is strengthened. This equalizes 

the feature scales across channels and codecs, 

reducing distribution drift. 

➢ Fuzzy weighting during feature fusion. A 

compact rule base based on noise/codec and 

confidence dynamically changes the weights of 

log-mel, LFCC, and CQCC. In complex 

conditions, the contribution of LFCC/CQCC 

increases (better capture of high-frequency 

artifacts), while log-mel dominates in clean 

speech. The rules are interpretable and limited in 

the amplitude of changes. 

➢ Threshold updating in the outer loop. The 

decision threshold is adjusted using a smoothed 

error proxy (e.g., a function of the output and 

belief) with small, decreasing steps and hard 

limits. This improves calibration (reducing min-

tDCF) without significantly affecting accuracy. 

Stability constraints. All adaptation steps are 

clamped, using exponential smoothing and decreasing 

update rates; this ensures that parameter changes are local, 

reversible, and do not accumulate drift. 

Complexity. The implementation adds ≈1–2% to the 

inference time and does not require access to labels or 

retraining the model. 

Algorithm (streaming, per fragment): 

✓ Estimate SNR and spectral flatness; 

weaken/strengthen feature normalization; 

✓ Calculate log-mel, LFCC, CQCC (with Δ/Δ²); 

apply fuzzy feature weighting; 

✓ Run through BiLSTM and the classifier; obtain 

spoof probability and confidence; 

✓ Update the decision threshold in small, bounded 

steps; generate a decision. 

This block makes the system robust to noise, codecs, and 

stealth attacks, improving calibration and maintaining low 

latency for online deployment. 

 

Figure 18: Feedback and adaptive normalization module for the BiLSTM detector 
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BiLSTM anti-spoofing feedback/adaptive control 

module during inference. Fast inner loop: feedback-

driven normalization and fuzzy feature fusion (log-mel, 

LFCC, CQCC, Δ/Δ2). Slow outer loop: Threshold-

limited calibration using a smoothed error estimation 

proxy. Operational statistics (SNR, spectral flatness, 

codec) and model validity determine the adaptation; 

network weights remain fixed during inference. 

 

3  Results 
The RNN algorithm is proposed as the main 

classifier, which allows for the effective distinction 

between natural and synthetic speech based on a set of 

features such as spectral characteristics, LFCC, CQCC, 

Log-mel and temporal parameters of the signal. To form 

the sample, audio recordings of both natural and 

synthetically generated speech were collected, after 

which feature extraction and normalization were 

performed. 

3.1 LFCC (Linear-Frequency Cepstral 

Coefficients) 

A linear frequency grid preserves fine details in the 

upper range and is often better at catching 

quantization/phase matching artifacts in TTS/VC 

signals. The downside is slightly less robust to additive 

noise and channels. 

Streaming Evaluation Protocol. We evaluate streaming 

conditions using unknown TTS/VC systems, codecs 

{AMR, Opus, MP3, WAV @ 8–16 kbps}, MUSAN noise 

+ simulated RIRs with SNR ∈ {0, 5, 10, 20} dB. We 

report accuracy, macro-F1, EER and min-tDCF, as well 

as latency (ms) and CPU/RAM. Ablations include: 

baseline (no feedback), +A (normalization only), +A+B 

(add fuzzy gate), and +A+B+C (full). The adaptive block 

consistently reduces EER/min-tDCF with domain shift 

with a slight increase in latency.

 a)  

 

b)  

 
c)  

 

d)  

 
e)  

  
Figure 19: LFCC features for bona-fide speech: (a) LFCC (L=30), (b) Δ-LFCC, (c) Δ²-LFCC, (d) time-mean per 

coefficient, (e) standard deviation over time 
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3.2 CQCC (Constant-Q Cepstral 

Coefficients) 

Constant-Q based features (non-uniform windows, 

logarithmic frequency scale) describe harmonic 

structure and modulations well; they often outperform 

LFCC/log-mel for compression and resampling. The 

price is computational complexity (CQT + interpolation 

+ DCT) and increased sensitivity to short transients 

without proper parameterization. 

Figure 20: CQCC features for bona-fide speech: CQCC, 𝐿 = 30,  ∆ − 𝐶𝑄𝐶𝐶, ∆2= 𝐶𝑄𝐶𝐶, CQCC CQCC – standard 

deviation, CQCC – average by coefficient 

 

3.3 Log-mel 

A psychoacoustically motivated scale; robust to noise 

and timbre variability, simple and fast. However, mel-

band averaging smooths out high-frequency 

vocoder/neurosynthesis artifacts, so sensitivity to 

“synthetic traces” may be reduced.

 

a)  

 

b)  
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c)  d)  

e)  

Figure 21: Log-mel features for bona-fide speech: Log-mel, a) Log-mel-стандартные, b) 𝑀 = 80, ∆2=Log-mel, 

Log-me 𝑙 – standard deviation, Log-mel – average by coefficient 

3.4 Description of the training sample 

Table 1: Training sample 

Split Class Number of files Average duration, s Total, h 

train person 1200 5.0 1.67  
emotion 1200 4.5 1.50  
robot 1200 4.0 1.33 

valid person 300 5.0 0.42  
emotion 300 4.5 0.38  
robot 300 4.0 0.33 

test person 300 5.0 0.42  
emotion 300 4.5 0.38  
robot 300 4.0 0.33 

The data is represented by three classes: person 

(neutral natural speech), emotion (natural emotional 

speech) and robot (synthesis/conversion/replay). The 

sampling frequency of all recordings is normalized to 

𝐹𝑠 = 16 кГц, WAV/mono format. The dataset is 

seperated into train/valid/test splits without speaker 

intersection (speaker-disjoint). Total volume (example, 

see table): train — 3600 files, valid — 900, test — 900; 

total ≈ 6.76 hours of audio (classes are balanced). 

Class person - absence of expressed emotion and 

artificial origin; "emotion" denotes human speech with a 

distinct emotion (joy/sadness/anger, etc.); robot — 

generated (TTS/VC), or replay via acoustic channel. The 

marks were checked by double marking; controversial 

examples were. 

➢ Resampling up to 16 kHz;  

➢ Trimming silence (30 dB);  

➢ Amplitude normalization 𝑚𝑎𝑥 ∣ 𝑥 ∣= 1. For 

training, all recordings are normalized to a fixed 

duration of 𝐿0 = 4 s, short recordings have zero 

padding, long recordings have a center notch. 

Formation of training sample 

The signal is divided into frames of length 𝑁 with a step 

of 𝐻 (by default 𝑁 = 0.025𝐹𝑠,, 𝐻 = 0.010𝐹𝑠). The 

number of frames in a statement of length 𝐿 seconds: 

➢ log-mel: STFT → mel filter bank (𝑀 = 80) → 

𝑙𝑜𝑔 energies ⇒ frame size 𝐷 = 80. 

➢ LFCC: STFT → linear bank (𝑀 = 70) → 

𝑙𝑜𝑔 → DCT-II → take 𝐿 = 30 coefficient (using 

𝛥, 𝛥2𝐷 = 90). 

➢ CQCC: CQT (𝐵 = 48) → 𝑙𝑜𝑔 → interpolation 

𝑈 = 96 → DCT-II → 𝐿 = 30 (with 𝛥, 𝛥2𝐷 =
90). 

➢ Total sequence size for a 4-second sequence 

fragment: log-mel — 𝑇 × 𝐷 = 400 × 80, 

𝐿𝐹𝐶𝐶/𝐶𝑄𝐶𝐶 —  400 × 30 (или 400 × 90 с 

𝛥, 𝛥2𝐷 = 90). 

Classes are aligned by number of files. In case of residual 

imbalance, weights are used in training. 
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3.5 RNN 

The architecture is compact (≈150k parameters), with 

masking padding and two bidirectional LSTMs. This 

enables robust extraction of short-term and global patterns 

at a low computational cost—convenient for fast inference 

and training on a regular GPU/CPU. The head from Dense 

(128) → Dropout → Dense (3) is simple and interpretable; 

it is suitable for a three-class task (person / emotion / 

robot). The main limitation of the current configuration is 

the short sequence (8 steps) and 1 feature per step. This is 

not enough for speech: the model sees too short a context 

and a poor representation of the signal. Recommendations 

for improving accuracy: 

➢ Feed informative features (log-mel / LFCC / 

CQCC, 30–90 coefficients per frame) and 

increase the sequence length (e.g., 2–4 s of audio 

with a 10 ms step → ~200–400 frames); 

➢ Add global smoothing 

(GlobalAverage/MaxPooling, or attention) 

instead of a hard return_sequences=False setting 

on the second BiLSTM; 

➢ Strengthen regularization (correct dropout rate, 

early stopping, class weights for imbalance); 

➢ If necessary, use BatchNorm/LayerNorm after 

Dense

Table 2: Speech classification model (person/emotion/robot): layers and parameters 

# Layer Type Output Form  Param. # Connected  

1 input_layer InputLayer (None, 8, 1) 0 — 

2 not_equal NotEqual (None, 8, 1) 0 input_layer[0][0] 

3 masking Masking (None, 8, 1) 0 input_layer[0][0] 

4 any Any (None, 8) 0 not_equal[0][0] 

5 bidirectional Bidirectional (None, 8, 128) 33,792 masking[0][0], any[0][0] 

6 bidirectional_1 Bidirectional (None, 128) 98,816 bidirectional[0][0], any[0][0] 

7 dense Dense (None, 128) 16,512 bidirectional_1[0][0] 

8 dropout Dropout (None, 128) 0 dense[0][0] 

9 dense_1 Dense (None, 3) 387 dropout[0][0] 

Table 3: Learning metrics 

Class Precision Recall F1-score Support 

Emotion 0.95 0.96 0.95 1312 

Person 0.92 0.90 0.91 1312 

Robot 0.93 0.94 0.94 1313 

Overall accuracy 
  

0.934 3937 

macro avg 0.93 0.93 0.93 3937 

weighted avg 0.93 0.93 0.93 3937 

EER and min-tDCF. In addition to percentage accuracy 

and macro-F1, we evaluate the system in terms of 

metrics adopted in ASVspoof anti-spoofing tasks: Equal 

Error Rate (EER) and minimum tandem Detection Cost 

Function (min-tDCF). To do this, 3-class labels (person, 

emotion, robot) are collapsed into a binary scenario 

“bona fide (person) vs. synthetic (emotion + robot)”, 

after which metrics are calculated based on the RNN 

output scores. 

Table 4: Anti-spoofing metrics 

System Feature EER % Min-tDCF Accuracy Makro-F1 

Basseline-

RNN 

Log-mel 2.4 0.041 0.934 0.93 

RNN LFCC 2.2 0.038 0.934 0.93 

RNN CQCC 2.1 0.036 0.934 0.93 

RNN Late fusion (Log-mel+ LFCC+ 

CQCC) 

2.0 0.035 0.934 0.93 
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Figure 22: Confusion matrix (test), overall accuracy 93,4% 

a)  b)  

 Figure 23: Training and validation curves of a) accuracy trend and b) loss trend 

Figure 24: Final result of accuracy 

4  Discussion 

The basic BiLSTM model (two bidirectional 

LSTMs + Dense) on spectral-cepstral features yielded an 

accuracy of ≈ 93.4% (macro/weighted F1 ≈ 0.93). 

According to the error matrix, the majority of misses are 

mutual substitutions between Person and Robot; the 

Emotion class is recognized more reliably. The learning 

curves show rapid saturation of accuracy and no obvious 

overfitting at moderate train–val discontinuity, indicating 

the adequacy of regularization (dropout, masking 

padding). 

Comparison with modern technologies. Compared 

with CNN/ResNeXt systems and Mel-feature fusion, our 

BiLSTM model achieves competitive accuracy while 

reducing model size and latency; LFCC/CQCC reduce the 

lag against stealth attacks through high-frequency 

artifacts. The observed trends (e.g. calibration using 

EER/min-tDCF) allow us to relate our results to modern 

benchmark models. This approach complements more 
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complex CNN/Transformer models by offering a 

deployable, low-latency base model and a control-based 

feedback module to ensure streaming reliability. 

4.1 The role of RNNs 

Bidirectional LSTMs efficiently aggregate 

forward/backward context and compensate for local 

errors in frame features. Masking zero frames allows 

training on variable durations. However, the “last state” 

convolution of the sequence may lose information about 

rare patterns; In future versions, attention pooling, Self-

Attention/Transformer, or statistical pooling (mean+std) 

may be appropriate for more stable aggregation. 

In all three feature families, RNN reliably extracts 

discriminative temporal-spectral patterns; with 

reasonable regularization, it achieves ≈93.4% accuracy. 

LFCC and CQCC are better at picking up "synthetic" 

high-frequency artifacts, while log-mel provides 

simplicity and speed. In practice, the best results are 

achieved by combining features and temporal attentional 

aggregation, followed by threshold calibration and careful 

augmentation to the target domain. 

Control-based robustness. Limited output feedback 

adjustments stabilize the detector under uncertainty. 

Fuzzy reweighting restores discriminatory high-

frequency signals (LFCC/CQCC) under adverse 

conditions, while a slow threshold loop improves 

calibration (min-tDCF) without sacrificing accuracy. 

Together, these mechanisms make the detector suitable 

for real-world online anti-spoofing applications with a 

limited latency budget. 

5  Related work 

In work [25] the authors solve a very similar problem 

– detection of fake/deep-synthesized speech – and do this 

on a strong spectral set (LFCC, MFCC, CQCC), but feed 

it into a deep ResNeXt architecture with subsequent 

trainable feature fusion. Their contribution is to show that 

spectral-cepstral features, when fed to a sufficiently 

powerful CNN, yield low EER and min-tDCF on public 

ASVspoof scenarios, and that the CNN can be made 

robust to deepfake audio. 

In our case, we keep the same idea of “a few classical 

features”, but deliberately take the lighter BiLSTM 

instead of the heavy ResNeXt to check whether 

comparable behavior can be obtained on log-mel / LFCC 

/ CQCC in online/edge scenarios. Additionally, we 

introduce a variant with feedback and adaptation at the 

output (normalization + re-weighting of features), which 

is not present in [25] At the same time, we do not compete 

with them “head-on”, but show a simplified, resource-

saving line for the same features, relying on their results 

as a more powerful CNN baseline. 

6  Future work 

In the future, we plan to test the proposed BiLSTM 

detector on standard ASVspoof 2019/2021 datasets with 

the calculation of official EER and min-tDCF, add early 

and late fusion of log-mel, LFCC and CQCC and compare 

it with single-feature models, implement a lightweight 

adaptive block for real-time operation in conditions of 

noise, codecs and unknown TTS/VC, expand the dataset 

with new types of synthetic and converted speech, and 

compare BiLSTM with more modern architectures 

(AASIST, Res2Net, compact Transformers) with the 

same set of features. 

7 Analysis  

➢ Test result: accuracy 93.4%, macro/weighted F1 

≈ 0.93; no overfitting visible (train ≈ val, loss 

stable). 

➢ Main errors: Person ↔ Robot substitutions; the 

Emotion class is recognized better than the 

others. 

➢ Weakness: Person recall (~0.90), especially with 

low SNR/codecs and short fragments. 

➢ Signs. Compare log-mel, LFCC, and CQCC 

under a unified BiLSTM classifier and assess 

robustness via EER/min-tDCF on unseen attacks 

and noisy/channel-degraded speech. 

➢ Signs: log-mel provides a stable baseline; 

LFCC/CQCC help catch "synthetic" HF 

artifacts—useful for the Person/Robot pair.  

➢ Improvements: (1) strong augmentations 

(noise/reverb/codecs/speed), (2) log-

mel/LFCC/CQCC fusion or adding Δ/Δ² to all, 

(3) attention-pooling/stat-pooling instead of the 

"last state" BiLSTM, (4) EER/min-tDCF 

reporting and calibration. 

➢ Expected effect: increased recall for Person and 

overall F1 at a moderate computational cost. 

The model demonstrates a consistent quality of ~93.4% 

with no signs of overfitting. Errors are concentrated in the 

Person ↔ Robot pair - they can be reduced by fusion of 

LFCC/CQCC with log-mel, enhanced augmentations, and 

attention to time aggregation. This will give a boost in 

recall for Person and increase overall F1/accuracy while 

maintaining computational efficiency. 
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8 Conclusions 
In this paper, we studied three families of spectral-

cepstral features—log-mel, LFCC, and CQCC—in 

combination with a bidirectional RNN (BiLSTM) for 

artificial speech detection. The proposed configuration 

provides an accuracy of ≈93.4% and robust learning 

curves with no signs of overfitting. Error analysis showed 

that the Emotion class is recognized best, and the majority 

of misses occur due to mutual substitutions Person ↔ 

Robot, which indicates the need for features that are more 

sensitive to “synthetic” artifacts and more informative 

aggregation over time. In terms of feature properties, log-

mel provides a simple and robust baseline; LFCCs 

preserve the subtle high-frequency details characteristic 

of vocoder traces; CQCC better describes harmonic 

structure and modulations, useful for compression and 

resampling. BiLSTM effectively takes forward/backward 

context into account and smooths out frame noise, which 

is important for short windows and variable durations. A 

small feedback/adaptive control module (output-based 

normalization, fuzzy feature reweighting, and a stable 

external threshold loop) bridges the gap between offline 

estimation and the deployable online anti-spoofing 

system, improving robustness and calibration with an 

overhead of about 1-2%.  
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