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With the popularization of smart devices and the growing demand for mental health monitoring, speech
emotion recognition (SER) is becoming increasingly important in intelligent interaction. The study
proposes the FLA-SER model, a hybrid architecture for robust SER. The proposed architecture consists
of three components: an FCN backbone for spectral-spatial feature extraction, a Bi-LSTM for modeling
temporal dependencies, and a Transformer enhanced by a dynamic memory pool to capture global
dependencies. Adaptive fusion of spatio-temporal features is realized by a hierarchical attention
framework. The experimental results on the RAVDESS dataset revealed that the model achieved 95.3%
accuracy for 'anger' emotion recognition, representing a 15% improvement over the traditional LSTM
model. On the CMU-MOSI cross-lingual dataset, the average accuracy was 94.2%. The FLA-SER
model is a robust solution for SER applications across languages and noisy environments. It
demonstrates significant practical value in mental health monitoring and intelligent interaction
scenarios.

Povzetek: Model s hierarhicno pozornostjo robustno prepoznava custva iz govora ter doseze 95,3 % pri

“jezi” na RAVDESS in 94,2 % na CMU-MOSI, tudi v vecjezicnih in Sumnih okoljih.

1 Introduction

With the increasing popularity of smart devices and
the continuous surge of mental health needs, the
application of speech emotion recognition (SER) in the
field of intelligent interaction is becoming more and more
important [1]. SER can enhance the naturalness of
human-computer communication and help provide
personalized services. Meanwhile, in mental health
monitoring scenarios, it can realize early screening and
remote warning of emotional abnormalities, which is of
great practical significance [2]. However, traditional
single utterance models only model single sentence
features in isolation. It is difficult to capture the temporal
dependence and dynamic association of contextual
emotions in speech sequences, leading to insufficient
modeling of emotional coherence and limited mining of
long-distance dependent features [3]. In this context,
Falahzadeh et al. proposed to transform speech signals
into 3D image representations for the input compatibility
problem of SER deep convolutional neural networks
(CNNs). Moreover, a pre-trained visual geometric group
network was used for migration learning, while the model
parameters were optimized by combining with the gray
wolf optimization algorithm. Experimental results
indicated that the research model performed well on
relevant datasets and could significantly improve the

performance of SER applications [4]. Albadr et al.
addressed the problem that most automatic SER ignored
the classification link and evaluated a single scenario, and
extracted the features by using Mel frequency cepstrum
coefficients. The optimization genetic algorithm-extreme
learning machine was also used to optimize the
classification process. Experimental results demonstrated
that the optimization method significantly improved its
performance in several test scenarios, with a maximum
accuracy of 100%, and was able to recognize emotions
efficiently [5]. To address the issue of poor storage and
processing efficiency in standard machine learning for
processing high dimensional speech emotion features,
Chattopadhyay S et al. suggested a hybrid wrapped
feature selection technique. It also incorporated linear
predictive coding with linear predictive cepstrum
coefficients for feature dimensionality reduction. The
outcomes revealed that the model achieved a recognition
accuracy of up to 98.72% on four benchmark datasets,
which significantly outperformed the existing algorithms
[6].

Fully convolutional network (FCN) is a CNN that
removes the fully connected layers (FCLs) and has a
powerful spatio-temporal feature extraction capability.
Kapoor S et al. proposed a CNN method that fuses
artificially designed features with deep learning features
in order to fulfill the need for early automated monitoring
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of stress and anger. Experimental data showed that the
method achieved up to 97.5% classification accuracy in
multiple datasets and up to 96.7% accuracy in the
validation set, with a significant reduction in loss [7]. As a
special kind of recurrent neural network, long short-term
memory ((LSTM) network has a unique advantage in time
series modeling with its gating mechanism. Time series
analysis, natural language processing, and other domains
have made extensive use of it [8]. Gupta et al. proposed an
acoustic  feature blending method that fuses
Mel-frequency cepstral coefficient features with visual
bag-of-words to address the problem of limited accuracy
of single model in SER. Moreover, an integrated
multilayer perceptron classifier was used. The
experimental results indicated that LSTM with multilayer
perceptron classifier based on Mel frequency cepstrum
coefficients performed the best. Moreover, the
classification accuracy of all six categories of emotions
was significantly improved [9]. Tejaswini et al. proposed a
hybrid model of fast text CNN and LSTM to address the
difficulty of early detection of depression and the lack of
accuracy of existing text detection models. Experimental
results indicated that the detection accuracy of this model
on real datasets was better than that of existing methods,
and it could provide an effective solution for the early
identification of depression [10]. Yang et al. focused on
the difficulty of acquiring reservoir information triggered
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by the lack of logging data, and proposed a method of
fusing convolutional layers and LSTM. The study
constructed a model containing an attention mechanism
(AM), a cycle skipping mechanism and an autoregressive
component to estimate the missing logs. The outcomes
based on multiple well data indicated that the stability and
robustness of the optimized model were better than that of
benchmark models such as recurrent neural networks.
Moreover, it was able to accurately generate missing
logging curves such as acoustic waves [11].

Table 1 provides a comparative summary of key
related works, detailing the datasets, features, models, and
performance metrics used in recent SER research.
Although significant progress has been achieved,
persistent limitations remain in traditional models,
specifically: 1) the difficulty in capturing the temporal
dependency and dynamic association of contextual
emotions in speech sequences, 2) the insufficient mining
ability for long-distance dependent features, and 3) the
limited focus on robust, cross-domain performance tied to
computational efficiency. The development of the
spatio-temporal feature modeling approach utilizing a
fully convolutional network-long short-term memory
network (FCN-LSTM) and the proposed AM to integrate
contextual features is motivated by these specific gaps.
The goal is to solve the aforementioned issues.

Table 1: Comparative summary of recent speech emotion recognition studies

. Metric Representative
Study Model/Architecture Key feature(s) Datasets used (UAR/WA) performance
2D spectrogram,
Falahzadeh GWO-CNN GWO RAVDESS.  wa@)  88.5%~90.1%
et al. o SAVEE
Optimization
) MFCC, GA EMO-DB, 0 0 0
Albadr et al. GA-ELM optimization RAVDESS WA (%) 82.3%~85.0%
Pre-training,
Chen et al. Vesper (Transformer) Speaker/Emotion RAVDESS, WA (%) 91.5%~93.8%
. IEMOCAP
separation
MFCC, visual
Gupta et al. LSTM-MLP bag-of-words RAVDESS, WA (%) 78.0%~82.5%
. SAVEE
fusion
Spatiotemporal
Proposed FLA-SER fusion, RAVDESS, 0 0 0
study ~ (FCN-LSTM-Trans-Attn)  hierarchical ~ CMU-mosi WA (%) 94.2%~95.3%
attention

Table 1 illustrates the prevailing trend toward deep
learning and optimization in SER. However, it also
highlights a lack of focus on integrated spatio-temporal
modeling and demonstrated robustness. This justifies the
current research direction.

Motivated by the persisting gaps in the literature, this
study addresses the following research questions: (1) Can
integrating the FCN backbone, Bi-LSTM temporal
modeling, and Transformer-based AMs effectively
enhance SER performance across languages and noisy
environments? (2) Can the proposed hybrid architecture
minimize inference time to maximize cross-domain
generalization capability (measured by single-sample

time and domain adaptability score)? (3) Can the
architecture's inherent robustness, similar to principles in
adaptive control theory, be leveraged to maintain
performance under noisy conditions?

The study proposes a novel spatiotemporal feature
modeling approach, named the FLA-SER model, to solve
the aforementioned issues. The innovation of the study is
twofold: First, it constructs a hybrid architecture by using
FCN to capture spectral spatial features (SFs) and LSTM
to model temporal dependencies. Second, a hierarchical
attention framework and a Transformer enhanced by a
dynamic memory pool are introduced to enable the
adaptive fusion of contextual features and solve the
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long-distance dependency problem. The project aims to
increase the model's accuracy and computational
efficiency for human SER, as well as explore further
possible uses of SER in intelligent interaction, mental
health monitoring, and other domains.
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2 Methods and materials

2.1 Framework for time-frequency feature
extraction and preprocessing of speech
signals

Time-frequency feature extraction of human speech
signals is the modeling basis of the human SER model.
The raw speech signal needs to be preprocessed to
improve the signal quality and transformed into a form
that adapts to the network input. The specific processing
flow is shown in Figure 1 [12].
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Figure 1: Schematic diagram of the time-frequency feature extraction and preprocessing framework of the original
speech signal

In Figure 1, the original speech high frequency
energy is attenuated, so it is first pre-emphasized.
Meanwhile, the emotion-related spectral features are
enhanced [13]. Equation (1) displays the pre-emphasis
formula.

H(z) =1-uz % ©=0.9375 (1)

In Equation (1), H(z) is the transfer function of the
first-order high-pass filter for boosting the high-frequency
energy of speech. # is the pre-emphasis coefficient to
satisfy the enhancement of high frequency emotion
sensitive region in SER. 771 is the unit delay operator.
The speech signal possesses short-time smooth
characteristics, and its spectral characteristics are stable in
a short time period, so it can be processed in frames. The
frame length of each frame is taken as tens of milliseconds,
and overlapping frame splitting is used to maintain
continuity. The spectral leakage is suppressed by
weighting the window function, and the Hamming
window function is used for adding the window function,
as shown in Equation (2) [14].

2mn

w(n):0.54—0.46cos[N j n=01..,N-1 (2

In Equation (2), w(n) is the Nth sample value of
the Hamming window to reduce spectral leakage. N is
the quantity of sample points corresponding to the frame
length. N is the sample index in the window. Among
them, the frame length and frame shift are shown in
Equation (3).

®)

In Equation (3), & is the frame length, which

a, =30ms
a, =10ms

ensures short-time smoothness. a, is the frame shift,

which balances the temporal resolution and feature
continuity. Speech data endpoint detection is the key
technology to accurately recognize the start and end
positions of valid speech segments from speech signals.
The double threshold method is used to discriminate the
features such as short-time energy (STE) and over-zero
rate extracted from the previous frames by setting high
and low thresholds. The formula for STE is shown in
Equation (4) [15].

N1 12
E(n):i§)|x(|)~w(|)| 4

In Equation (4), E(n) isthe STE of the Nnth frame,
reflecting the speech intensity. X(i) is the value of the
i th sampling point. W(i) is the Hamming window
function. The formula for the short-time over-zero rate is
shown in Equation (5).

1N-L . .
Z(n) =3 2 [sgn(x(i) —sgn(x(i 1) (5)

In Equation (5), Z(n) is the short-time over-zero
rate of the Nth frame, reflecting the spectral complexity.
The dual threshold judgment formula is shown in
Equation (6).

L(E, >Ty)A(Z,>Ty)
0,(E, <T)A(Z,<T) (8
S,_1,0therwise

S, =

In Equation (6), S, is the judgment result of the

Nth frame. 1 is a speech frame and O is a non-speech
frame used to mark the valid speech segment boundary.

Ty s the set high threshold. T, is the set low threshold
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for determining the non-voice segment start. S,_; is the
judgment result of the n—1 frame, which maintains the
judgment state continuity to avoid misjudgment. Silent
segments, such as ambient noise, vocal stops, etc., can be
eliminated by the double threshold method. Then the
split-frame signal is fast Fourier transformed to obtain the
spectrum. The linear frequency domain is converted to the
Mel frequency domain perceived by the human ear by
means of a Mel filter bank. The Mel spectrum generation
formula is shown in Equation (7) [16].

f
Mel(f) =2595-1 1+—
el(f) 0910( +700j )

In Equation (7), f is the linear frequency (Hz).

Mel(f) isits corresponding Mel frequency. Among them,

the formula for calculating the output of the Mel filter
bank is shown in Equation (8).

S(m) = :§j|><(k)|2 ‘Hy(K)m=01...,M -1 (8)

In Equation (8), X(k) is the frequency domain
signal after short-time Fourier transform. k is the
frequency index. H,, (k) is the frequency response of the

mth Mel filter, and the number of filters should cover
emotionally sensitive frequency bands, such as the angry
high frequency region. K is the quantity of fast Fourier
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transform points to ensure the balance between frequency
resolution and computational efficiency. Finally,
independent normalization is performed by session to
eliminate acoustic differences between different speakers
and recording environments. The cross-speaker feature
normalization method formula is shown in Equation (9)
[17].

X— . .
Xnorm :—#S"O =10°° 9)

o, +0

In Equation (9), X is the original Mel spectral
eigenvalue. u; and oy are the eigenmean and variance
of the Sth session, respectively. o isthe smoothing term
to prevent the denominator from being zero.

2.2 Spatio-temporal feature modeling based on
FCN-LSTM

In the SER, the FCN module refines speech
spectral-SFs layer by layer using multi-layer convolutions.
It enhances emotion-sensitive band weights and extracts
emotional state-space patterns. This provides a basis for
subsequent joint modeling of spatio-temporal features
using the FCN-LSTM. Its specific structure for extracting
speech spectral SFs is shown in Figure 2 [18].

FCN spatial feature extraction

Conv-3

L1

Max Pooling Global Average
Layer Pooling Layer

Figure 2: Flow diagram of FCN spatial feature extraction module

In Figure 2, the raw speech signal will enter the FCN
module after preprocessing. FCN SF extraction adopts a
3-layer convolution-pooling structure. Conv-1 captures
the underlying frequency patterns, Conv-2 extracts the
more complex spectral structure, and Conv-3 focuses on
high-dimensional abstract features. The convolutional
layer feature extraction formula is shown in Equation
(10).

M-1_.N-1
Yiik= O_[Zm _ Ozn _ OWm,n,k “Kiom jani +ka
(10)
In Equation (10), Xj.m,jni is the speech spectrum
value of coordinates (i +m, j +n), channel | in the
input feature map (FM), corresponding to the

preprocessed Mayer spectrum time-frequency matrix.
Wm'n,k is the convolution kernel (CK) weight of size

MxNxL (M, N is the CK size. L

is the

quantity of input channels for extracting spectral space
features. bk is the bias term (BT) for the K th output

channel to enhance model fitting. O is the activation
function (AF) to highlight emotion-sensitive frequency

band features. Yi,j,k is the spatial eigenvalue of

coordinate (i, j) and channel Kk in the output FM,

which corresponds to the emotion-sensitive pattern after
layer-by-layer refinement. Each convolution layer is
connected to a maximum pooling layer. This layer uses a
sliding window to identify the maximum value of local
area features, achieving local dimensionality reduction
while retaining the strongest response features. Global
average pooling (GAP) is introduced at the end layer of
FCN module. A global averaging operation is done on all
spatial dimensions of the FM to compress the 3D FM into
one-dimensional vectors, leaving only the global
statistical properties of the channel dimensions.
Ultimately, the spatial feature vectors (FVs) are output for
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subsequent temporal feature splicing with LSTM. Aiming
at the temporal dependence problem of speech sequences,
the study introduces the LSTM module. Through the
bidirectional structure and self-AM, it captures the
long-distance emotion dynamic association and
adaptively focuses on the key emotion frames. Its specific
process of temporal feature modeling combined with FCN
is shown in Figure 3 [19].

In Figure 3, the preprocessed serialized speech
features are fed into the LSTM module. It is first
processed by the Bi-LSTM layer, which controls the
retention and forgetting of information through a gating
mechanism. Meanwhile, the LSTM module constructs a
bi-directional network. The forward LSTM parses the
sequence along the temporal direction, and the backward
LSTM backtracks the information in the reverse temporal
direction to collaboratively capture the bidirectional
temporal dependence of the speech signal. The formula
for the forgetting gate (FG) mechanism is shown in
Equation (11).

fi :G(Wf '[ht—11xt]+bf) (11)
(11),

retention. ft =0 denotes completely forgotten. X, s

In  Equation ftzl denotes complete
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the input FV of the current moment t, i.e., the subframe
Mel spectrum. h,_, is the hidden state of the previous
moment t—1 , which stores the historical timing
dependency information. [h, _,,X] is the vector that
splices the historical hidden state with the current input.
W, is the weight matrix of the FG, which calculates the

importance weight of the input information. D, isthe BT

of the FG, which regulates the gating activation threshold.
o is the sigmoid AF, which outputs a weight value
between 0 and 1. Subsequently, the feature splicing layer
maps the 256-dimensional temporal features of the LSTM
with the 256-dimensional SFs generated by the FCN
module and fuses them into a 480-dimensional vector.
Finally, the output layer outputs the spatio-temporal FV of
this speech signal, which provides the core input for the
subsequent emotion classification task.

For full reproducibility, the complete architectural
hyperparameter details for the FCN backbone and the
DMP-Transformer module are summarized in Table 2.
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Figure 3: Flow diagram of LSTM timing feature extraction module
Table 2: Architectural hyperparameter details of the FLA-SER model
Kernel . . . A
Component Layer size/Head Stride Filters/Dim.  Activation Notes
Captures
Conv-1 3x3 1 64 RelLU underlying
frequency patterns
Extracts complex
FCN Backbone Conv-2 55 1 128 Rel.U spectral structure
Conv-3 3x3 1 256 ReLy  High-dimensional
abstract features
Max pooling 2%2 2 / / Dlmen5|o_nallty
reduction
. ) Global
Maltjtl(;[r'{t?gﬁd 8 Heads / QuergzllKey. Softmax dependency
modeling
DMP-Transformer  Position-wise Hidden:
FEN / / 1024 ReLU /
Positional / / / / Positional
encoding encodings are used

Table 2 provides the details necessary for model

replication. The configuration is carefully tuned to
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balance feature extraction capacity and computational
load, particularly the use of 3x3 and 5x5 kernels in the
FCN and eight attention heads in the DMP-Transformer.

2.3 Contextual feature fusion optimization
based on AM

The constructed FCN-LSTM model has realized the
preliminary fusion of spatio-temporal features. However,
it still has the problem of gradient vanishing in long-time
sequence dependency modeling, and the multimodal
feature alignment lacks dynamic adjustment mechanism.
As the core technology of current sequence modeling, the
AM can dynamically assign weights, effectively model
global dependencies, and effectively improve the
accuracy and flexibility of feature fusion. Aiming at the
problem of long-sequence information decay in
FCN-LSTM, the study introduces a hybrid architecture of
dynamic memory pool (DMP) and Transformer. The
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specific optimization architecture is shown in Figure 4
[20].

In Figure 4, the input layer receives the timing FVs
output from the Bi-LSTM. The DMP module processes
them through a gated filtering mechanism. The
mechanism uses a sigmoid AF to calculate the importance
weight of each timing frame. The module enables the
filtering of redundant information, and the filtered key
memory units enter the Transformer timing modeling
module. Three mappings are performed first and then with
the help of multi-head self-AM. The dot product attention
formula is scaled to determine the cross-frame emotional
connection weights. Finally, the module stitches the
output into 256-dimensional global dependency features.
The study designs a hierarchical attention fusion
framework around the heterogeneity problem of FCN SFs
and LSTM temporal features, as shown in Figure 5.
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Figure 5: Schematic diagram of the hierarchical attention fusion framework
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Figure 6: Structure of the AM in different branches

In Figure 5, the overall framework is divided into
two levels. At the intra-modal attention level, the FCN
branch introduces the channel AM, which is targeted to
strengthen the emotion-sensitive frequency bands in the
spectral energy distribution. The LSTM branch adopts a
differentiable AM to effectively suppress irrelevant
information interference such as silent frames. A
dual-tower attention network structure is built at the
cross-modal alignment level, and the temporal and SF
similarity matrices are calculated independently. The
cross-modal weight matrix is generated by Softmax
function to realize the dynamic coupling and weight
allocation of the two types of features. The FCN branch of
the channel AM module and the LSTM branch of the
differentiable AM module. The specific structure of the
two is shown in Figure 6.

In Figure 6, the input SFs in the left FCN branch
channel attention module are first pooled by GAP. The
spatial information of each channel is compressed into a
global statistic, and then a channel weight vector is
generated via the FCL. This vector is multiplied with the
original features after Sigmoid activation to realize the
reinforcement of emotionally sensitive spectral energy
distribution such as anger high frequency band. The right
LSTM branch differentiates the AM and computes the
weight coefficients at each time step for the input
temporal feature sequence. The weights are generated by
the dot product of the query vector and the features of each
time step via Softmax. It can dynamically adjust the
emotional contribution of different frames and effectively
suppress the interference of irrelevant information such as
mute frames. Analysis of the attention weights reveals that
the highest weights are consistently assigned to frames
that coincided with vocal bursts, rapid pitch changes, or
areas of high emotional intensity. This finding validates
the differentiable attention module’s focus on critical time
steps and provides interpretability. In summary, the study
first preprocesses the speech signal to obtain the Mel
spectrum. Then FCN is utilized to extract SFs and LSTM
is employed to capture timing dependencies. Finally, the
new SER optimization model, named the FLA-SER
model (FCN-LSTM network with AM for human SER

model), is constructed by fusing features through the
DMP-Transformer  hybrid  architecture and the
hierarchical attention framework. The FLA-SER name is
used consistently throughout the remaining sections.

3 Results

3.1 Performance testing of the FLA-SER
model

To verify the actual performance of the FLA-SER
model, it is compared with the traditional LSTM, pure
FCN, and 3D-VGG SER models. All comparison models
are trained and evaluated under the exact same conditions
and hyperparameters to ensure a fair comparison. The
experiments are implemented based on Python's sklearn
and a deep learning framework. All experiments are
conducted using five independent runs to ensure the
stability and statistical significance of the results. The
average standard deviation across all reported metrics in
Figures 7-10 is less than +1.0%, confirming the
robustness of the presented data.

The experimental setup details are critical for
replication. The datasets are divided into training,
validation, and testing sets using a speaker-independent
protocol (80% for training, 10% for validation, and 10%
for testing). This ensures that there is no overlap between
the training and testing partitions of speakers, which is
crucial for evaluating SER generalization. Five-fold
cross-validation is performed on the training and
validation sets to stabilize model performance. To address
data scarcity and mitigate overfitting, data augmentation
techniques are applied to the training set. Augmentation
includes noise injection (using ambient noise from the
ESC-50 dataset at SNR levels between 10dB and 20dB)
and pitch shifting (2 semitones). This strategy effectively
increases the training data volume by a factor of four,
significantly improving the model’s generalization
capability and robustness against real-world variations.

The experimental data for the study are derived from
RAVDESS, IEMOCAP, and EMO-DB databases, which
generally cover a wide range of emotion categories and
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acoustic scenarios. First, the study preprocesses the raw
speech signals from the RAVDESS dataset to obtain Mel
spectra of two categories of intense emotions as model
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inputs. The result of recognition precision for each
emotion category after 50 rounds of training for the four
models is shown in Figure 7.
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Figure 7: Recognition precision of emotion categories for different recognition models

In Figure 7(a), the recognition precision of the four
models for the emotion “anger” increases with the number
of training generations. The FLA-SER recognition model
has the fastest precision increase, with a final precision of
95.3%. The traditional LSTM recognition model and the
pure FCN model do not have much difference in precision,
but both of them are lower than the research model. The
3D-VGG recognition model has the lowest improvement
and final precision. Figure 7(b) shows the recognition
precision of each model for the emotion “happy”.
Although the four models have similar upward trends in
recognition precision for the “happy” emotion, the
FLA-SER recognition model achieves a high precision of
75.4% after 10 training sessions. Moreover, it is higher
than the other three comparison models throughout the
training. This reflects the superiority of the research
model's classification accuracy under multiple sentiment
categories. The study uses IEMOCAP conversational
speech input as a split-frame Mel spectral sequence. The
sequence length is minimized to 50 frames to verify the
models' ability to capture long-distance emaotion
dependencies in dialog scenes. The test results are shown
in Figure 8.

Figure 8(a) shows a comparison of the convergence
rates of the four models. The mean squared error (MSE) of
the traditional LSTM model decreases faster at the

beginning of training, but the MSE decreasing trend tends
to level off after 30 generations. The MSE of the pure
FCN model decreases slowly and eventually stabilizes
above 0.5, and the loss fluctuation is obvious under
long-sequences. The 3D-VGG model always has an MSE
above 0.6 and converges the slowest. The MSE of the
study model drops rapidly to below 0.3 after the 20th
generation and stabilizes at around 0.15 by the 50th
generation. It is the best model for gradient stability under
long-sequences. Figure 8(b) shows the comparison of the
long-sequence segmentation accuracy of each model. The
accuracy of the first 3 segments of the LSTM model is
about 75.3%, but it decreases in the later stages due to the
decay of timing information. The accuracy of each
segment of the FCN model fluctuates slightly, and the full
segmentation accuracy of the 3D-VGG model are all
below 65.0%. In contrast, the FCN-LSTM model has
excellent accuracy for each long-sequence segmentation,
which is over 85.0%. The accuracy of the 5th segment (the
end of the long-sequence) is as high as 92.1%. To further
validate the cross-linguistic generalization ability of the
research models, cross-speaker tests are selected using the
RAVDESS (English) dataset and the EMO-DB (German)
dataset with inputs of Mayer spectra. The experimental
results of each model are shown in Figure 9.
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Figure 9: Comparison of cross-language generalization ability of different recognition models

In Figure 9(a), the FCN-LSTM model fluctuates
<5% for each speaker, and the accuracy of emoticon
recognition is above 90.0% for all of them. The LSTM
model and the 3D-VGG model fluctuate more in accuracy,
while the FCN model is still lower than the study model,
although the accuracy is higher throughout. In Figure 9(b),
the average accuracy of FCN-LSTM model is not much
different from that of the English group and still
significantly higher than the other models. The
recognition accuracy of the 3D-VGG model is
significantly lower compared to the English group, and
significant recognition problems occur due to individual
speaker pronunciation differences. In summary, the
cross-linguistic generalization ability of the research
model is excellent. The fluctuation of motion recognition
accuracy is small in the same language cross-speaker
recognition. 1000 speech samples from the RAVDESS
database are randomly selected as model inputs. The
time-consuming results of emotion recognition for the
four models are shown in Figure 10.

In Figure 10, the 3D-VGG model shows a significant
increase in emotion recognition time with increasing
sample size. Its recognition time is up to 32.7 seconds for
high sample sizes. The LSTM and FCN models show
significant fluctuations in recognition time when
recognizing sample sizes from 500 to 1,000, increasing to
more than 20 seconds. The overall recognition time of the
FCN-LSTM model is significantly reduced compared to
the first three models. At high sample sizes, the
recognition time is only 14.2 seconds. This demonstrates
the filtering effect of the AM on the redundant features
and avoids the “sample size-time” linear growth problem
of the traditional models.

The contribution of each component within the
FLA-SER model is systematically validated through an
ablation study. Table 3 summarizes the incremental
accuracy improvements on the RAVDESS dataset and
demonstrates that the integrated hybrid architecture
significantly improves overall performance. The ablation
study is performed stepwise, building upon the Bi-LSTM
base module.
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Figure 10: Comparison of sentiment discrimination speed of different recognition models

Table 3: Ablation study of FLA-SER components on RAVDESS (Weighted accuracy %)

+ Hierarchical

Model Architecture Bi-LSTM Base + FCN Backbone + DMP Module Attention
Accuracy (%) 80.2+1.5 85.5+1.2 90.1+0.9 95.3+0.8
Improvement (%) Base +5.3 +4.6 +5.2

Table 3 clearly demonstrates the incremental value of
each proposed module. The FCN backbone provided the
largest improvement, confirming the strength of SF
modeling. The combination of DMP and hierarchical
attention is essential for achieving a final performance of
95.3%.

3.2 Effectiveness of the practical application
of the FLA-SER model

The open-source cross-language datasets
CMU-MOSI (English), SEMAINE (English, French,
German) and EMOVO (ltalian) are selected for the study
to validate the recognition ability of the FLA-SER model
under different languages and emotion types. Table 4
displays the test results.

In Table 5, the FLA-SER model has an average
accuracy of 94.2% in the English CMU-MOSI dataset,
with an accuracy of more than 92% in the 5th segment of

the long-sequence. The F1 wvalues for ‘“angry” and
“happy” emotions are 95.6% and 91.4%, respectively. In
the face of the multilingual SEMAINE dataset, the model
demonstrates its ability to capture multilingual emotion
signals with a 90.1% depression F1 value and a 3.5
cross-lingual generalization index. The Italian EMOVO
dataset has 89.3% and 86.7% anger and happiness F1
values, respectively. The long-sequence dependency
modeling accuracy is over 87%. To further validate the
recognition performance of the research model in
multi-domain application scenarios, the study uses the
MELD dataset, the CSD Chinese customer service dataset,
and the DriveTalk dataset as the test data. This is used to
simulate the model's EMOTION RECOGNITION ability
in mental health monitoring, intelligent customer service
and in-vehicle voice interaction scenarios, respectively.
Table 5 displays the test results.
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Table 4: Recognition ability of the model in different languages and emotion types

Result parameter CMU-MOSI SEMAINE EMOVO
Language English English/French/German Italian
Emotional category 7 categories Depression 6 categories
Average accuracy (%) 94.2 90.5 90.9
Single sample time 14.5 16.2 15.8
Accuracy of 5th seg(ror/Le)nt in long-sequence 923 897 876
F1 value for anger (%) 95.6 / 89.3
F1 value for happiness (%) 91.4 / 86.7
F1 value for depression (%) / 90.1 /
Cross-lingual generalization index 2.1 3.5 4.2
Table 5: Recognition performance of the model in multi-domain application scenarios
Result parameter MELD CsD DriveTalk
Application domain Menta}l he_:alth Intelligent customer service In-_vehlcle_v0|ce
monitoring interaction

Early screening of

Key task depressive emotions

Average accuracy (%) 90.7
Single sample time (ms) 17.8
Accuracy of 5th segment in 89.3
long-sequence (%) '
Accuracy at 10dB 86.4
signal-to-noise ratio (%) '
Accuracy at 0dB 78.5
signal-to-noise ratio (%) '
Domain adaptability score 45

(1-5)

Classification of customer

Real-time recognition of

emotional satisfaction driving emotions

91.5 88.3
15.6 19.2
90.2 83.5
89.7 83.7
81.2 75.4
4.8 4.2

In Table 5, the FLA-SER model has an average
accuracy of 90.7% for early screening of depressive mood
in the field of mental health monitoring. The accuracy of
the 5th segment of the long-sequence reaches 89.3%. In a
noisy environment (0 dB signal-to-noise ratio), it still
maintains an accuracy of 78.5%. It is specified that the
noise injected for the 0dB SNR tests consisted of Gaussian
white noise and background chatter at the signal level,
simulating common real-world deployment conditions. In
the intelligent customer service scenario, the research
model performs customer emotional satisfaction
classification. The average accuracy rate reaches 91.5%,
and the combination of Chinese tone features makes the
domain adaptability score as high as 4.8. In the field of
in-vehicle voice interaction, the model's average accuracy
rate performs well in the face of a noisy environment.
Although the accuracy decreases with the reduction of
signal-to-noise ratio, it still reaches 75.4% at 0dB. This
reflects its good robustness in noisy environments.

Table 6: Computational complexity and efficiency

3.3 Computational complexity analysis

The efficiency of the FLA-SER model is
substantiated by its low latency (14.2ms/sample). For
reproducibility, all inference timings are conducted on an
NVIDIA GeForce RTX 4090 GPU with 24GB of memory
and an Intel Core i9-13900K CPU. Table 6 provides a
comparative analysis of computational complexity and
confirms that the proposed architecture achieves a
superior balance between recognition accuracy and
efficiency.

Table 6 confirms the superior efficiency of the
FLA-SER model. Although it has a moderate number of
parameters compared to 3D-VGG, the simplified FCN
backbone and efficient AM result in the shortest inference
time (14.2 ms/sample) of all the models being compared.
This provides a strong basis for real-time deployment.

ILSTM
Pure FCN 82.5 18.9 35 25
3D-VGG 75.8 32.7 12.8 45
FLA-SER 95.3 14.2 7.2 3.1

comparison
WA ! nfgrence Paramete
time FLOP
Model accurac (msfsample r count 5(G)
y (%) ) (M)
Traditiona 80.3 24.1 5.1 1.2

3.4 Comparison with state-of-the-art (SOTA)

To rigorously contextualize the model's novelty and
performance advantage, a quantitative comparison with
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other State-of-the-Art methods, such as Vesper, GWO-CNN, and GA-ELM, is presented in Table 7.
Table 7: Quantitative comparison of FLA-SER with State-of-the-Art Models (RAVDESS Dataset)
Model Year Architecture WA Accuracy  UAR Accuracy Reference
(%) (%)
GWO-CNN 2023 CNN + GWO 90.1 88.5 [4]
GA-ELM 2022 Feature + ELM + GA 85.0 82.3 [5]
Vesper 2024 Transformer-based 93.8 925 [1]
FLA-SER .
N/A FCN-LSTM-Trans-Attn 95.3 94.1 This Study
(Proposed)

Table 7 provides the quantitative evidence of the
FLA-SER model's leading performance. The FLA-SER
model surpasses all contemporary SOTA methods by
achieving a weighted accuracy of 95.3% on the
RAVDESS dataset. This level of performance justifies the
integrated design approach that combines an FCN, a
Bi-LSTM, and an advanced attention framework.

4 Discussion

The FLA-SER model outperformed established
baseline models, including traditional LSTMs, pure
FCNs, and 3D-VGGs. It achieved an 'anger' recognition
accuracy of 95.3% on RAVDESS. These results
quantitatively validated the effectiveness of the hybrid
FCN-LSTM architecture and the hierarchical attention
framework, and the incremental accuracy shown in the
ablation study (Table 3) further corroborates this
effectiveness. The model's superior performance, as
demonstrated by the SOTA comparison in Table 7, was
primarily due to its hybrid AM and deeper FCN layers.
These features effectively facilitated the fusion of
spectral, spatial, and temporal features while mitigating
the long-dependency issue. The model's robustness was
demonstrated by its ability to maintain over 75%
accuracy at 0 dB SNR across multiple domains (Table 5).
This was consistent with the principles of robust control
theory, which emphasized stability under system
uncertainty.

The design principle underlying the combination of
FCN-LSTM and hierarchical attention with the
DMP-Transformer is analogous to the concept of
adaptive and robust control in complex dynamical
systems. More specifically, the AM operates as an
adaptive gain scheduler, which is similar to the
architecture employed in robust neural adaptive control
systems for addressing uncertainties [21]. This
mechanism enables the model to dynamically prioritize
critical emotional frames, or high-value data points,
thereby enhancing robustness and adaptability when
applied to noisy or cross-domain speech signals. This is
similar to adaptive backstepping control for uncertain
nonlinear systems [22].

The model’s computational efficiency (Table 6)
partially addresses practical deployment issues, such as
performance on low-resource edge devices. Further
discussion is warranted regarding real-time adaptation to
emotional changes, especially the potential for improving
the model’s online robustness by leveraging adaptive

mechanisms inspired by control theory.

5 Conclusion

Aiming at the difficulties of long-distance temporal
dependency mining and cross-modal feature fusion in
human SER, the FLA-SER model was proposed. The
architecture leveraged FCN for SF extraction, Bi-LSTM
for temporal dependency modeling, and an AM for
optimized feature fusion. The model outperformed
comparable models, achieving 95.3% accuracy in
recognizing anger on RAVDESS and an excellent
long-sequence end segmentation accuracy of 92.1%. The
robustness and efficiency were confirmed by maintaining
over 75% accuracy at 0 dB SNR and achieving a
processing time of only 14.2 ms for a single sample.
Despite the strong performance, a limitation of the current
work is the limited coverage of Asian language datasets
and the absence of joint modeling with multimodal
features. Future work will focus on increasing the
linguistic diversity of the cross-language dataset and
developing a robust multimodal fusion framework that
incorporates facial and textual cues. This will enhance the
model's overall generalization and practical value.
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