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With the popularization of smart devices and the growing demand for mental health monitoring, speech 

emotion recognition (SER) is becoming increasingly important in intelligent interaction. The study 

proposes the FLA-SER model, a hybrid architecture for robust SER. The proposed architecture consists 

of three components: an FCN backbone for spectral-spatial feature extraction, a Bi-LSTM for modeling 

temporal dependencies, and a Transformer enhanced by a dynamic memory pool to capture global 

dependencies. Adaptive fusion of spatio-temporal features is realized by a hierarchical attention 

framework. The experimental results on the RAVDESS dataset revealed that the model achieved 95.3% 

accuracy for 'anger' emotion recognition, representing a 15% improvement over the traditional LSTM 

model. On the CMU-MOSI cross-lingual dataset, the average accuracy was 94.2%. The FLA-SER 

model is a robust solution for SER applications across languages and noisy environments. It 

demonstrates significant practical value in mental health monitoring and intelligent interaction 

scenarios. 

Povzetek: Model s hierarhično pozornostjo robustno prepoznava čustva iz govora ter doseže 95,3 % pri 

“jezi” na RAVDESS in 94,2 % na CMU-MOSI, tudi v večjezičnih in šumnih okoljih. 

 

1  Introduction 
With the increasing popularity of smart devices and 

the continuous surge of mental health needs, the 

application of speech emotion recognition (SER) in the 

field of intelligent interaction is becoming more and more 

important [1]. SER can enhance the naturalness of 

human-computer communication and help provide 

personalized services. Meanwhile, in mental health 

monitoring scenarios, it can realize early screening and 

remote warning of emotional abnormalities, which is of 

great practical significance [2]. However, traditional 

single utterance models only model single sentence 

features in isolation. It is difficult to capture the temporal 

dependence and dynamic association of contextual 

emotions in speech sequences, leading to insufficient 

modeling of emotional coherence and limited mining of 

long-distance dependent features [3]. In this context, 

Falahzadeh et al. proposed to transform speech signals 

into 3D image representations for the input compatibility 

problem of SER deep convolutional neural networks 

(CNNs). Moreover, a pre-trained visual geometric group 

network was used for migration learning, while the model 

parameters were optimized by combining with the gray 

wolf optimization algorithm. Experimental results 

indicated that the research model performed well on 

relevant datasets and could significantly improve the  

 

performance of SER applications [4]. Albadr et al.  

addressed the problem that most automatic SER ignored 

the classification link and evaluated a single scenario, and  

extracted the features by using Mel frequency cepstrum 

coefficients. The optimization genetic algorithm-extreme 

learning machine was also used to optimize the 

classification process. Experimental results demonstrated 

that the optimization method significantly improved its 

performance in several test scenarios, with a maximum 

accuracy of 100%, and was able to recognize emotions 

efficiently [5]. To address the issue of poor storage and 

processing efficiency in standard machine learning for 

processing high dimensional speech emotion features, 

Chattopadhyay S et al. suggested a hybrid wrapped 

feature selection technique. It also incorporated linear 

predictive coding with linear predictive cepstrum 

coefficients for feature dimensionality reduction. The 

outcomes revealed that the model achieved a recognition 

accuracy of up to 98.72% on four benchmark datasets, 

which significantly outperformed the existing algorithms 

[6]. 

Fully convolutional network (FCN) is a CNN that 

removes the fully connected layers (FCLs) and has a 

powerful spatio-temporal feature extraction capability. 

Kapoor S et al. proposed a CNN method that fuses 

artificially designed features with deep learning features 

in order to fulfill the need for early automated monitoring 
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of stress and anger. Experimental data showed that the 

method achieved up to 97.5% classification accuracy in 

multiple datasets and up to 96.7% accuracy in the 

validation set, with a significant reduction in loss [7]. As a 

special kind of recurrent neural network, long short-term 

memory ((LSTM) network has a unique advantage in time 

series modeling with its gating mechanism. Time series 

analysis, natural language processing, and other domains 

have made extensive use of it [8]. Gupta et al. proposed an 

acoustic feature blending method that fuses 

Mel-frequency cepstral coefficient features with visual 

bag-of-words to address the problem of limited accuracy 

of single model in SER. Moreover, an integrated 

multilayer perceptron classifier was used. The 

experimental results indicated that LSTM with multilayer 

perceptron classifier based on Mel frequency cepstrum 

coefficients performed the best. Moreover, the 

classification accuracy of all six categories of emotions 

was significantly improved [9]. Tejaswini et al. proposed a 

hybrid model of fast text CNN and LSTM to address the 

difficulty of early detection of depression and the lack of 

accuracy of existing text detection models. Experimental 

results indicated that the detection accuracy of this model 

on real datasets was better than that of existing methods, 

and it could provide an effective solution for the early 

identification of depression [10]. Yang et al. focused on 

the difficulty of acquiring reservoir information triggered 

by the lack of logging data, and proposed a method of 

fusing convolutional layers and LSTM. The study 

constructed a model containing an attention mechanism 

(AM), a cycle skipping mechanism and an autoregressive 

component to estimate the missing logs. The outcomes 

based on multiple well data indicated that the stability and 

robustness of the optimized model were better than that of 

benchmark models such as recurrent neural networks. 

Moreover, it was able to accurately generate missing 

logging curves such as acoustic waves [11]. 

Table 1 provides a comparative summary of key 

related works, detailing the datasets, features, models, and 

performance metrics used in recent SER research. 

Although significant progress has been achieved, 

persistent limitations remain in traditional models, 

specifically: 1) the difficulty in capturing the temporal 

dependency and dynamic association of contextual 

emotions in speech sequences, 2) the insufficient mining 

ability for long-distance dependent features, and 3) the 

limited focus on robust, cross-domain performance tied to 

computational efficiency. The development of the 

spatio-temporal feature modeling approach utilizing a 

fully convolutional network-long short-term memory 

network (FCN-LSTM) and the proposed AM to integrate 

contextual features is motivated by these specific gaps. 

The goal is to solve the aforementioned issues. 

 

Table 1: Comparative summary of recent speech emotion recognition studies 

 

Study Model/Architecture Key feature(s) Datasets used 
Metric 

(UAR/WA) 

Representative 

performance 

Falahzadeh 

et al. 
GWO-CNN 

2D spectrogram, 

GWO 

Optimization 

RAVDESS, 

SAVEE 
WA (%) 88.5%∼90.1% 

Albadr et al. GA-ELM 
MFCC, GA 

optimization 

EMO-DB, 

RAVDESS 
WA (%) 82.3%∼85.0% 

Chen et al. Vesper (Transformer) 

Pre-training, 

Speaker/Emotion 

separation 

RAVDESS, 

IEMOCAP 
WA (%) 91.5%∼93.8% 

Gupta et al. LSTM-MLP 

MFCC, visual 

bag-of-words 

fusion 

RAVDESS, 

SAVEE 
WA (%) 78.0%∼82.5% 

Proposed 

study 

FLA-SER 

(FCN-LSTM-Trans-Attn) 

Spatiotemporal 

fusion, 

hierarchical 

attention 

RAVDESS, 

CMU-MOSI 
WA (%) 94.2%∼95.3% 

 

Table 1 illustrates the prevailing trend toward deep 

learning and optimization in SER. However, it also 

highlights a lack of focus on integrated spatio-temporal 

modeling and demonstrated robustness. This justifies the 

current research direction. 

Motivated by the persisting gaps in the literature, this 

study addresses the following research questions: (1) Can 

integrating the FCN backbone, Bi-LSTM temporal 

modeling, and Transformer-based AMs effectively 

enhance SER performance across languages and noisy 

environments? (2) Can the proposed hybrid architecture 

minimize inference time to maximize cross-domain 

generalization capability (measured by single-sample 

time and domain adaptability score)? (3) Can the 

architecture's inherent robustness, similar to principles in 

adaptive control theory, be leveraged to maintain 

performance under noisy conditions? 

The study proposes a novel spatiotemporal feature 

modeling approach, named the FLA-SER model, to solve 

the aforementioned issues. The innovation of the study is 

twofold: First, it constructs a hybrid architecture by using 

FCN to capture spectral spatial features (SFs) and LSTM 

to model temporal dependencies. Second, a hierarchical 

attention framework and a Transformer enhanced by a 

dynamic memory pool are introduced to enable the 

adaptive fusion of contextual features and solve the 
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long-distance dependency problem. The project aims to 

increase the model's accuracy and computational 

efficiency for human SER, as well as explore further 

possible uses of SER in intelligent interaction, mental 

health monitoring, and other domains. 

2 Methods and materials 

2.1 Framework for time-frequency feature 

extraction and preprocessing of speech 

signals 

Time-frequency feature extraction of human speech 

signals is the modeling basis of the human SER model. 

The raw speech signal needs to be preprocessed to 

improve the signal quality and transformed into a form 

that adapts to the network input. The specific processing 

flow is shown in Figure 1 [12]. 
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Figure 1: Schematic diagram of the time-frequency feature extraction and preprocessing framework of the original 

speech signal 
 

In Figure 1, the original speech high frequency 

energy is attenuated, so it is first pre-emphasized. 

Meanwhile, the emotion-related spectral features are 

enhanced [13]. Equation (1) displays the pre-emphasis 

formula. 
1( ) 1 0.9375H z z −= − =，  (1) 

In Equation (1), ( )H z  is the transfer function of the 

first-order high-pass filter for boosting the high-frequency 

energy of speech.   is the pre-emphasis coefficient to 

satisfy the enhancement of high frequency emotion 

sensitive region in SER. 1z−  is the unit delay operator. 

The speech signal possesses short-time smooth 

characteristics, and its spectral characteristics are stable in 

a short time period, so it can be processed in frames. The 

frame length of each frame is taken as tens of milliseconds, 

and overlapping frame splitting is used to maintain 

continuity. The spectral leakage is suppressed by 

weighting the window function, and the Hamming 

window function is used for adding the window function, 

as shown in Equation (2) [14]. 

2
( ) 0.54 0.46cos 0,1, , 1

1

n
w n n N

N

 
= − =  − 

− 
，  (2) 

In Equation (2), ( )w n  is the n th sample value of 

the Hamming window to reduce spectral leakage. N  is 

the quantity of sample points corresponding to the frame 

length. n  is the sample index in the window. Among 

them, the frame length and frame shift are shown in 

Equation (3). 

1

2

30

10

a ms

a ms

=


=
 (3) 

In Equation (3), 1a  is the frame length, which 

ensures short-time smoothness. 2a  is the frame shift, 

which balances the temporal resolution and feature 

continuity. Speech data endpoint detection is the key 

technology to accurately recognize the start and end 

positions of valid speech segments from speech signals. 

The double threshold method is used to discriminate the 

features such as short-time energy (STE) and over-zero 

rate extracted from the previous frames by setting high 

and low thresholds. The formula for STE is shown in 

Equation (4) [15]. 
1

2

0
( ) ( ) ( )

N

i
E n x i w i

−

=
=    (4) 

In Equation (4), ( )E n  is the STE of the n th frame, 

reflecting the speech intensity. ( )x i  is the value of the 

i th sampling point. ( )w i  is the Hamming window 

function. The formula for the short-time over-zero rate is 

shown in Equation (5). 
1

1
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( ) | sgn( ( )) sgn( ( 1)) |

2
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−
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In Equation (5), ( )Z n  is the short-time over-zero 

rate of the n th frame, reflecting the spectral complexity. 

The dual threshold judgment formula is shown in 

Equation (6). 
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In Equation (6), nS  is the judgment result of the 

n th frame. 1 is a speech frame and 0 is a non-speech 

frame used to mark the valid speech segment boundary. 

HT  is the set high threshold. LT  is the set low threshold 
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for determining the non-voice segment start. 1nS −  is the 

judgment result of the 1n−  frame, which maintains the 

judgment state continuity to avoid misjudgment. Silent 

segments, such as ambient noise, vocal stops, etc., can be 

eliminated by the double threshold method. Then the 

split-frame signal is fast Fourier transformed to obtain the 

spectrum. The linear frequency domain is converted to the 

Mel frequency domain perceived by the human ear by 

means of a Mel filter bank. The Mel spectrum generation 

formula is shown in Equation (7) [16]. 

10Mel( ) 2595 log 1
700

f
f

 
=  + 

 
 (7) 

In Equation (7), f  is the linear frequency (Hz). 

Mel( )f  is its corresponding Mel frequency. Among them, 

the formula for calculating the output of the Mel filter 

bank is shown in Equation (8). 
1

2

0
( ) ( ) ( ), 0,1, , 1

K

m
k

S m X k H k m M
−

=
=   =  −  (8) 

In Equation (8), ( )X k  is the frequency domain 

signal after short-time Fourier transform. k  is the 

frequency index. ( )mH k  is the frequency response of the 

m th Mel filter, and the number of filters should cover 

emotionally sensitive frequency bands, such as the angry 

high frequency region. K  is the quantity of fast Fourier 

transform points to ensure the balance between frequency 

resolution and computational efficiency. Finally, 

independent normalization is performed by session to 

eliminate acoustic differences between different speakers 

and recording environments. The cross-speaker feature 

normalization method formula is shown in Equation (9) 

[17]. 

8
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In Equation (9), x  is the original Mel spectral 

eigenvalue. s  and s  are the eigenmean and variance 

of the s th session, respectively. ò  is the smoothing term 

to prevent the denominator from being zero. 

2.2 Spatio-temporal feature modeling based on 

FCN-LSTM 

In the SER, the FCN module refines speech 

spectral-SFs layer by layer using multi-layer convolutions. 

It enhances emotion-sensitive band weights and extracts 

emotional state-space patterns. This provides a basis for 

subsequent joint modeling of spatio-temporal features 

using the FCN-LSTM. Its specific structure for extracting 

speech spectral SFs is shown in Figure 2 [18]. 
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Figure 2: Flow diagram of FCN spatial feature extraction module 

 

In Figure 2, the raw speech signal will enter the FCN 

module after preprocessing. FCN SF extraction adopts a 

3-layer convolution-pooling structure. Conv-1 captures 

the underlying frequency patterns, Conv-2 extracts the 

more complex spectral structure, and Conv-3 focuses on 

high-dimensional abstract features. The convolutional 

layer feature extraction formula is shown in Equation 

(10). 

, , , , , ,

1 1

0 0
i j k m n k i m j n l k

M N
Y W X b

m n
 + +

− − 
=  + 

= = 
 

 (10) 

In Equation (10), , ,i m j n lX + +  is the speech spectrum 

value of coordinates ( ),i m j n+ + , channel l  in the 

input feature map (FM), corresponding to the 

preprocessed Mayer spectrum time-frequency matrix. 

, ,m n kW  is the convolution kernel (CK) weight of size 

M N L   ( M , N  is the CK size. L  is the 

quantity of input channels for extracting spectral space 

features. kb  is the bias term (BT) for the k th output 

channel to enhance model fitting.   is the activation 

function (AF) to highlight emotion-sensitive frequency 

band features. , ,i j kY  is the spatial eigenvalue of 

coordinate ( ),i j  and channel k  in the output FM, 

which corresponds to the emotion-sensitive pattern after 

layer-by-layer refinement. Each convolution layer is 

connected to a maximum pooling layer. This layer uses a 

sliding window to identify the maximum value of local 

area features, achieving local dimensionality reduction 

while retaining the strongest response features. Global 

average pooling (GAP) is introduced at the end layer of 

FCN module. A global averaging operation is done on all 

spatial dimensions of the FM to compress the 3D FM into 

one-dimensional vectors, leaving only the global 

statistical properties of the channel dimensions. 

Ultimately, the spatial feature vectors (FVs) are output for 
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subsequent temporal feature splicing with LSTM. Aiming 

at the temporal dependence problem of speech sequences, 

the study introduces the LSTM module. Through the 

bidirectional structure and self-AM, it captures the 

long-distance emotion dynamic association and 

adaptively focuses on the key emotion frames. Its specific 

process of temporal feature modeling combined with FCN 

is shown in Figure 3 [19]. 

In Figure 3, the preprocessed serialized speech 

features are fed into the LSTM module. It is first 

processed by the Bi-LSTM layer, which controls the 

retention and forgetting of information through a gating 

mechanism. Meanwhile, the LSTM module constructs a 

bi-directional network. The forward LSTM parses the 

sequence along the temporal direction, and the backward 

LSTM backtracks the information in the reverse temporal 

direction to collaboratively capture the bidirectional 

temporal dependence of the speech signal. The formula 

for the forgetting gate (FG) mechanism is shown in 

Equation (11). 

( )1[ , ]t f t t ff W h x b −=  +  (11) 

In Equation (11), 1tf =  denotes complete 

retention. 0tf =  denotes completely forgotten. tx  is 

the input FV of the current moment t , i.e., the subframe 

Mel spectrum. 1th −  is the hidden state of the previous 

moment 1t − , which stores the historical timing 

dependency information. 1[ , ]t th x−  is the vector that 

splices the historical hidden state with the current input. 

fW  is the weight matrix of the FG, which calculates the 

importance weight of the input information. fb  is the BT 

of the FG, which regulates the gating activation threshold. 
  is the sigmoid AF, which outputs a weight value 

between 0 and 1. Subsequently, the feature splicing layer 

maps the 256-dimensional temporal features of the LSTM 

with the 256-dimensional SFs generated by the FCN 

module and fuses them into a 480-dimensional vector. 

Finally, the output layer outputs the spatio-temporal FV of 

this speech signal, which provides the core input for the 

subsequent emotion classification task. 

For full reproducibility, the complete architectural 

hyperparameter details for the FCN backbone and the 

DMP-Transformer module are summarized in Table 2. 
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Spatiotemporal 
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Figure 3: Flow diagram of LSTM timing feature extraction module 

 

Table 2: Architectural hyperparameter details of the FLA-SER model 

 

Component Layer 
Kernel 

size/Head 
Stride Filters/Dim. Activation Notes 

FCN Backbone 

Conv-1 3×3 1 64 ReLU 

Captures 

underlying 

frequency patterns 

Conv-2 5×5 1 128 ReLU 
Extracts complex 

spectral structure 

Conv-3 3×3 1 256 ReLU 
High-dimensional 

abstract features 

Max pooling 2×2 2 / / 
Dimensionality 

reduction 

DMP-Transformer 

Multi-head 

attention 
8 Heads / 

Query/Key: 

64 
Softmax 

Global 

dependency 

modeling 

Position-wise 

FFN 
/ / 

Hidden: 

1024 
ReLU / 

Positional 

encoding 
/ / / / 

Positional 

encodings are used 

 

Table 2 provides the details necessary for model replication. The configuration is carefully tuned to 
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balance feature extraction capacity and computational 

load, particularly the use of 3×3 and 5×5 kernels in the 

FCN and eight attention heads in the DMP-Transformer. 

2.3 Contextual feature fusion optimization 

based on AM 

The constructed FCN-LSTM model has realized the 

preliminary fusion of spatio-temporal features. However, 

it still has the problem of gradient vanishing in long-time 

sequence dependency modeling, and the multimodal 

feature alignment lacks dynamic adjustment mechanism. 

As the core technology of current sequence modeling, the 

AM can dynamically assign weights, effectively model 

global dependencies, and effectively improve the 

accuracy and flexibility of feature fusion. Aiming at the 

problem of long-sequence information decay in 

FCN-LSTM, the study introduces a hybrid architecture of 

dynamic memory pool (DMP) and Transformer. The 

specific optimization architecture is shown in Figure 4 

[20]. 

In Figure 4, the input layer receives the timing FVs 

output from the Bi-LSTM. The DMP module processes 

them through a gated filtering mechanism. The 

mechanism uses a sigmoid AF to calculate the importance 

weight of each timing frame. The module enables the 

filtering of redundant information, and the filtered key 

memory units enter the Transformer timing modeling 

module. Three mappings are performed first and then with 

the help of multi-head self-AM. The dot product attention 

formula is scaled to determine the cross-frame emotional 

connection weights. Finally, the module stitches the 

output into 256-dimensional global dependency features. 

The study designs a hierarchical attention fusion 

framework around the heterogeneity problem of FCN SFs 

and LSTM temporal features, as shown in Figure 5. 
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Figure 4: Schematic diagram of DMP-Transformer fusion mechanism architecture 
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Figure 5: Schematic diagram of the hierarchical attention fusion framework 
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Figure 6: Structure of the AM in different branches  

 

In Figure 5, the overall framework is divided into 

two levels. At the intra-modal attention level, the FCN 

branch introduces the channel AM, which is targeted to 

strengthen the emotion-sensitive frequency bands in the 

spectral energy distribution. The LSTM branch adopts a 

differentiable AM to effectively suppress irrelevant 

information interference such as silent frames. A 

dual-tower attention network structure is built at the 

cross-modal alignment level, and the temporal and SF 

similarity matrices are calculated independently. The 

cross-modal weight matrix is generated by Softmax 

function to realize the dynamic coupling and weight 

allocation of the two types of features. The FCN branch of 

the channel AM module and the LSTM branch of the 

differentiable AM module. The specific structure of the 

two is shown in Figure 6. 

In Figure 6, the input SFs in the left FCN branch 

channel attention module are first pooled by GAP. The 

spatial information of each channel is compressed into a 

global statistic, and then a channel weight vector is 

generated via the FCL. This vector is multiplied with the 

original features after Sigmoid activation to realize the 

reinforcement of emotionally sensitive spectral energy 

distribution such as anger high frequency band. The right 

LSTM branch differentiates the AM and computes the 

weight coefficients at each time step for the input 

temporal feature sequence. The weights are generated by 

the dot product of the query vector and the features of each 

time step via Softmax. It can dynamically adjust the 

emotional contribution of different frames and effectively 

suppress the interference of irrelevant information such as 

mute frames. Analysis of the attention weights reveals that 

the highest weights are consistently assigned to frames 

that coincided with vocal bursts, rapid pitch changes, or 

areas of high emotional intensity. This finding validates 

the differentiable attention module's focus on critical time 

steps and provides interpretability. In summary, the study 

first preprocesses the speech signal to obtain the Mel 

spectrum. Then FCN is utilized to extract SFs and LSTM 

is employed to capture timing dependencies. Finally, the 

new SER optimization model, named the FLA-SER 

model (FCN-LSTM network with AM for human SER 

model), is constructed by fusing features through the 

DMP-Transformer hybrid architecture and the 

hierarchical attention framework. The FLA-SER name is 

used consistently throughout the remaining sections. 

3 Results 

3.1 Performance testing of the FLA-SER 

model 

To verify the actual performance of the FLA-SER 

model, it is compared with the traditional LSTM, pure 

FCN, and 3D-VGG SER models. All comparison models 

are trained and evaluated under the exact same conditions 

and hyperparameters to ensure a fair comparison. The 

experiments are implemented based on Python's sklearn 

and a deep learning framework. All experiments are 

conducted using five independent runs to ensure the 

stability and statistical significance of the results. The 

average standard deviation across all reported metrics in 

Figures 7–10 is less than ±1.0%, confirming the 

robustness of the presented data. 

The experimental setup details are critical for 

replication. The datasets are divided into training, 

validation, and testing sets using a speaker-independent 

protocol (80% for training, 10% for validation, and 10% 

for testing). This ensures that there is no overlap between 

the training and testing partitions of speakers, which is 

crucial for evaluating SER generalization. Five-fold 

cross-validation is performed on the training and 

validation sets to stabilize model performance. To address 

data scarcity and mitigate overfitting, data augmentation 

techniques are applied to the training set. Augmentation 

includes noise injection (using ambient noise from the 

ESC-50 dataset at SNR levels between 10dB and 20dB) 

and pitch shifting (±2 semitones). This strategy effectively 

increases the training data volume by a factor of four, 

significantly improving the model’s generalization 

capability and robustness against real-world variations. 

The experimental data for the study are derived from 

RAVDESS, IEMOCAP, and EMO-DB databases, which 

generally cover a wide range of emotion categories and 
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acoustic scenarios. First, the study preprocesses the raw 

speech signals from the RAVDESS dataset to obtain Mel 

spectra of two categories of intense emotions as model 

inputs. The result of recognition precision for each 

emotion category after 50 rounds of training for the four 

models is shown in Figure 7. 
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Figure 7: Recognition precision of emotion categories for different recognition models 

 

In Figure 7(a), the recognition precision of the four 

models for the emotion “anger” increases with the number 

of training generations. The FLA-SER recognition model 

has the fastest precision increase, with a final precision of 

95.3%. The traditional LSTM recognition model and the 

pure FCN model do not have much difference in precision, 

but both of them are lower than the research model. The 

3D-VGG recognition model has the lowest improvement 

and final precision. Figure 7(b) shows the recognition 

precision of each model for the emotion “happy”. 

Although the four models have similar upward trends in 

recognition precision for the “happy” emotion, the 

FLA-SER recognition model achieves a high precision of 

75.4% after 10 training sessions. Moreover, it is higher 

than the other three comparison models throughout the 

training. This reflects the superiority of the research 

model's classification accuracy under multiple sentiment 

categories. The study uses IEMOCAP conversational 

speech input as a split-frame Mel spectral sequence. The 

sequence length is minimized to 50 frames to verify the 

models' ability to capture long-distance emotion 

dependencies in dialog scenes. The test results are shown 

in Figure 8. 

Figure 8(a) shows a comparison of the convergence 

rates of the four models. The mean squared error (MSE) of 

the traditional LSTM model decreases faster at the 

beginning of training, but the MSE decreasing trend tends 

to level off after 30 generations. The MSE of the pure 

FCN model decreases slowly and eventually stabilizes 

above 0.5, and the loss fluctuation is obvious under 

long-sequences. The 3D-VGG model always has an MSE 

above 0.6 and converges the slowest. The MSE of the 

study model drops rapidly to below 0.3 after the 20th 

generation and stabilizes at around 0.15 by the 50th 

generation. It is the best model for gradient stability under 

long-sequences. Figure 8(b) shows the comparison of the 

long-sequence segmentation accuracy of each model. The 

accuracy of the first 3 segments of the LSTM model is 

about 75.3%, but it decreases in the later stages due to the 

decay of timing information. The accuracy of each 

segment of the FCN model fluctuates slightly, and the full 

segmentation accuracy of the 3D-VGG model are all 

below 65.0%. In contrast, the FCN-LSTM model has 

excellent accuracy for each long-sequence segmentation, 

which is over 85.0%. The accuracy of the 5th segment (the 

end of the long-sequence) is as high as 92.1%. To further 

validate the cross-linguistic generalization ability of the 

research models, cross-speaker tests are selected using the 

RAVDESS (English) dataset and the EMO-DB (German) 

dataset with inputs of Mayer spectra. The experimental 

results of each model are shown in Figure 9. 
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(a) Comparison of convergence rates 

among models

(b) Comparison of long-sequence 
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Figure 8: Comparison of long time-series dependency modeling capabilities of different recognition models 
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(b) Cross-speaker accuracy of German 
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Figure 9: Comparison of cross-language generalization ability of different recognition models 

 

In Figure 9(a), the FCN-LSTM model fluctuates 

≤5% for each speaker, and the accuracy of emoticon 

recognition is above 90.0% for all of them. The LSTM 

model and the 3D-VGG model fluctuate more in accuracy, 

while the FCN model is still lower than the study model, 

although the accuracy is higher throughout. In Figure 9(b), 

the average accuracy of FCN-LSTM model is not much 

different from that of the English group and still 

significantly higher than the other models. The 

recognition accuracy of the 3D-VGG model is 

significantly lower compared to the English group, and 

significant recognition problems occur due to individual 

speaker pronunciation differences. In summary, the 

cross-linguistic generalization ability of the research 

model is excellent. The fluctuation of motion recognition 

accuracy is small in the same language cross-speaker 

recognition. 1000 speech samples from the RAVDESS 

database are randomly selected as model inputs. The 

time-consuming results of emotion recognition for the 

four models are shown in Figure 10. 

 

In Figure 10, the 3D-VGG model shows a significant 

increase in emotion recognition time with increasing 

sample size. Its recognition time is up to 32.7 seconds for 

high sample sizes. The LSTM and FCN models show 

significant fluctuations in recognition time when 

recognizing sample sizes from 500 to 1,000, increasing to 

more than 20 seconds. The overall recognition time of the 

FCN-LSTM model is significantly reduced compared to 

the first three models. At high sample sizes, the 

recognition time is only 14.2 seconds. This demonstrates 

the filtering effect of the AM on the redundant features 

and avoids the “sample size-time” linear growth problem 

of the traditional models. 

The contribution of each component within the 

FLA-SER model is systematically validated through an 

ablation study. Table 3 summarizes the incremental 

accuracy improvements on the RAVDESS dataset and 

demonstrates that the integrated hybrid architecture 

significantly improves overall performance. The ablation 

study is performed stepwise, building upon the Bi-LSTM 

base module. 
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Figure 10: Comparison of sentiment discrimination speed of different recognition models  

 

Table 3: Ablation study of FLA-SER components on RAVDESS (Weighted accuracy %) 

 

Model Architecture Bi-LSTM Base + FCN Backbone + DMP Module 
+ Hierarchical 

Attention 

Accuracy (%) 80.2±1.5 85.5±1.2 90.1±0.9 95.3±0.8 

Improvement (%) Base +5.3 +4.6 +5.2 

 

Table 3 clearly demonstrates the incremental value of 

each proposed module. The FCN backbone provided the 

largest improvement, confirming the strength of SF 

modeling. The combination of DMP and hierarchical 

attention is essential for achieving a final performance of 

95.3%. 

3.2 Effectiveness of the practical application 

of the FLA-SER model 

The open-source cross-language datasets 

CMU-MOSI (English), SEMAINE (English, French, 

German) and EMOVO (Italian) are selected for the study 

to validate the recognition ability of the FLA-SER model 

under different languages and emotion types. Table 4 

displays the test results. 

In Table 5, the FLA-SER model has an average 

accuracy of 94.2% in the English CMU-MOSI dataset, 

with an accuracy of more than 92% in the 5th segment of 

the long-sequence. The F1 values for “angry” and 

“happy” emotions are 95.6% and 91.4%, respectively. In 

the face of the multilingual SEMAINE dataset, the model 

demonstrates its ability to capture multilingual emotion 

signals with a 90.1% depression F1 value and a 3.5 

cross-lingual generalization index. The Italian EMOVO 

dataset has 89.3% and 86.7% anger and happiness F1 

values, respectively. The long-sequence dependency 

modeling accuracy is over 87%. To further validate the 

recognition performance of the research model in 

multi-domain application scenarios, the study uses the 

MELD dataset, the CSD Chinese customer service dataset, 

and the DriveTalk dataset as the test data. This is used to 

simulate the model's EMOTION RECOGNITION ability 

in mental health monitoring, intelligent customer service 

and in-vehicle voice interaction scenarios, respectively. 

Table 5 displays the test results. 
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Table 4: Recognition ability of the model in different languages and emotion types 

 

Result parameter CMU-MOSI SEMAINE EMOVO 

Language English English/French/German Italian 

Emotional category 7 categories Depression 6 categories 

Average accuracy (%) 94.2 90.5 90.9 

Single sample time 14.5 16.2 15.8 

Accuracy of 5th segment in long-sequence 

(%) 
92.3 89.7 87.6 

F1 value for anger (%) 95.6 / 89.3 

F1 value for happiness (%) 91.4 / 86.7 

F1 value for depression (%) / 90.1 / 

Cross-lingual generalization index 2.1 3.5 4.2 

 

 

Table 5: Recognition performance of the model in multi-domain application scenarios 

 

Result parameter MELD CSD DriveTalk 

Application domain 
Mental health 

monitoring 
Intelligent customer service 

In-vehicle voice 

interaction 

Key task 
Early screening of 

depressive emotions 

Classification of customer 

emotional satisfaction 

Real-time recognition of 

driving emotions 

Average accuracy (%) 90.7 91.5 88.3 

Single sample time (ms) 17.8 15.6 19.2 

Accuracy of 5th segment in 

long-sequence (%) 
89.3 90.2 83.5 

Accuracy at 10dB 

signal-to-noise ratio (%) 
86.4 89.7 83.7 

Accuracy at 0dB 

signal-to-noise ratio (%) 
78.5 81.2 75.4 

Domain adaptability score 

(1-5) 
4.5 4.8 4.2 

 

In Table 5, the FLA-SER model has an average 

accuracy of 90.7% for early screening of depressive mood 

in the field of mental health monitoring. The accuracy of 

the 5th segment of the long-sequence reaches 89.3%. In a 

noisy environment (0 dB signal-to-noise ratio), it still 

maintains an accuracy of 78.5%. It is specified that the 

noise injected for the 0dB SNR tests consisted of Gaussian 

white noise and background chatter at the signal level, 

simulating common real-world deployment conditions. In 

the intelligent customer service scenario, the research 

model performs customer emotional satisfaction 

classification. The average accuracy rate reaches 91.5%, 

and the combination of Chinese tone features makes the 

domain adaptability score as high as 4.8. In the field of 

in-vehicle voice interaction, the model's average accuracy 

rate performs well in the face of a noisy environment. 

Although the accuracy decreases with the reduction of 

signal-to-noise ratio, it still reaches 75.4% at 0dB. This 

reflects its good robustness in noisy environments. 

3.3 Computational complexity analysis 

The efficiency of the FLA-SER model is 

substantiated by its low latency (14.2ms/sample). For 

reproducibility, all inference timings are conducted on an 

NVIDIA GeForce RTX 4090 GPU with 24GB of memory 

and an Intel Core i9-13900K CPU. Table 6 provides a 

comparative analysis of computational complexity and 

confirms that the proposed architecture achieves a 

superior balance between recognition accuracy and 

efficiency. 

Table 6 confirms the superior efficiency of the 

FLA-SER model. Although it has a moderate number of 

parameters compared to 3D-VGG, the simplified FCN 

backbone and efficient AM result in the shortest inference 

time (14.2 ms/sample) of all the models being compared. 

This provides a strong basis for real-time deployment. 

 

Table 6: Computational complexity and efficiency 

comparison 

Model 

WA 

accurac

y (%) 

Inference 

time 

(ms/sample

) 

Paramete

r count 

(M) 

FLOP

s (G) 

Traditiona 80.3 24.1 5.1 1.2 

l LSTM 

Pure FCN 82.5 18.9 3.5 2.5 

3D-VGG 75.8 32.7 12.8 4.5 

FLA-SER 95.3 14.2 7.2 3.1 

3.4 Comparison with state-of-the-art (SOTA) 

To rigorously contextualize the model's novelty and 

performance advantage, a quantitative comparison with 
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other State-of-the-Art methods, such as Vesper, GWO-CNN, and GA-ELM, is presented in Table 7. 

 

Table 7: Quantitative comparison of FLA-SER with State-of-the-Art Models (RAVDESS Dataset) 

 

Model Year Architecture 
WA Accuracy 

(%) 

UAR Accuracy 

(%) 
Reference 

GWO-CNN 2023 CNN + GWO 90.1 88.5 [4] 

GA-ELM 2022 Feature + ELM + GA 85.0 82.3 [5] 

Vesper 2024 Transformer-based 93.8 92.5 [1] 

FLA-SER 

(Proposed) 
N/A FCN-LSTM-Trans-Attn 95.3 94.1 This Study 

 

Table 7 provides the quantitative evidence of the 

FLA-SER model's leading performance. The FLA-SER 

model surpasses all contemporary SOTA methods by 

achieving a weighted accuracy of 95.3% on the 

RAVDESS dataset. This level of performance justifies the 

integrated design approach that combines an FCN, a 

Bi-LSTM, and an advanced attention framework. 

4 Discussion 
The FLA-SER model outperformed established 

baseline models, including traditional LSTMs, pure 

FCNs, and 3D-VGGs. It achieved an 'anger' recognition 

accuracy of 95.3% on RAVDESS. These results 

quantitatively validated the effectiveness of the hybrid 

FCN-LSTM architecture and the hierarchical attention 

framework, and the incremental accuracy shown in the 

ablation study (Table 3) further corroborates this 

effectiveness. The model's superior performance, as 

demonstrated by the SOTA comparison in Table 7, was 

primarily due to its hybrid AM and deeper FCN layers. 

These features effectively facilitated the fusion of 

spectral, spatial, and temporal features while mitigating 

the long-dependency issue. The model's robustness was 

demonstrated by its ability to maintain over 75% 

accuracy at 0 dB SNR across multiple domains (Table 5). 

This was consistent with the principles of robust control 

theory, which emphasized stability under system 

uncertainty. 

The design principle underlying the combination of 

FCN-LSTM and hierarchical attention with the 

DMP-Transformer is analogous to the concept of 

adaptive and robust control in complex dynamical 

systems. More specifically, the AM operates as an 

adaptive gain scheduler, which is similar to the 

architecture employed in robust neural adaptive control 

systems for addressing uncertainties [21]. This 

mechanism enables the model to dynamically prioritize 

critical emotional frames, or high-value data points, 

thereby enhancing robustness and adaptability when 

applied to noisy or cross-domain speech signals. This is 

similar to adaptive backstepping control for uncertain 

nonlinear systems [22]. 

The model’s computational efficiency (Table 6) 

partially addresses practical deployment issues, such as 

performance on low-resource edge devices. Further 

discussion is warranted regarding real-time adaptation to 

emotional changes, especially the potential for improving 

the model’s online robustness by leveraging adaptive 

mechanisms inspired by control theory. 

5 Conclusion 
Aiming at the difficulties of long-distance temporal 

dependency mining and cross-modal feature fusion in 

human SER, the FLA-SER model was proposed. The 

architecture leveraged FCN for SF extraction, Bi-LSTM 

for temporal dependency modeling, and an AM for 

optimized feature fusion. The model outperformed 

comparable models, achieving 95.3% accuracy in 

recognizing anger on RAVDESS and an excellent 

long-sequence end segmentation accuracy of 92.1%. The 

robustness and efficiency were confirmed by maintaining 

over 75% accuracy at 0 dB SNR and achieving a 

processing time of only 14.2 ms for a single sample. 

Despite the strong performance, a limitation of the current 

work is the limited coverage of Asian language datasets 

and the absence of joint modeling with multimodal 

features. Future work will focus on increasing the 

linguistic diversity of the cross-language dataset and 

developing a robust multimodal fusion framework that 

incorporates facial and textual cues. This will enhance the 

model's overall generalization and practical value. 
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