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Tourist itinerary planning is a central component of smart tourism, yet it remains challenging in
developing cities where computational resources and digital infrastructure are limited. This study
examines Tirana, Albania, as a representative case for urban pedestrian-based tourist itinerary
optimization. The analysis is carried out using both exact and heuristic optimization techniques, including
Brute Force, Genetic Algorithm (GA), Simulated Annealing (SA), and a Hybrid Greedy + SA approach
that integrates deterministic initialization with stochastic refinement. Distances between attractions were
derived from OpenStreetMap, enabling fully reproducible experiments conducted on multiple datasets
representing different sets of attractions with increasing size and under varying conditions, including
ideal, noisy, and incomplete information. The results show that while exact computation rapidly becomes
impractical as the instance size grows, metaheuristic methods, particularly SA and the hybrid variant
consistently deliver high-quality and stable solutions. To evaluate real-world applicability under digital
and computational constraints, the hybrid algorithm was implemented as a mobile-ready Progressive Web
App and executed entirely on a resource-constrained device, demonstrating near-instantaneous
optimization and confirming its feasibility for fully on-device use without reliance on backend servers.
Overall, the study shows that lightweight metaheuristics, especially the Hybrid Greedy + SA method, offer
a robust, scalable, and mobile-ready approach to urban tourism itinerary planning, suitable for
deployment in environments with limited computational and infrastructural resources.

Povzetek: Studija pokaze, da so lahki hevristicni algoritmi primerni za hitro nacrtovanje turisticnih poti

tudi tam, kjer so racunalniski viri in digitalna infrastruktura omejeni.

1 Introduction

Urban tourism functions as a major driver for city
development because visitors seek to experience as much
as possible during their brief urban visits. Tourism
depends on digital services to let customers reserve
accommodations and arrange their travel schedules [1],
and Industry 4.0 technologies (Al, 10T, blockchain) create
better visitor experiences [2]. However, this digital
transformation has not been evenly distributed. In Tirana,
the capital of Albania and one of the country’s most
rapidly developing tourist destinations, the growing
number of visitors faces persistent difficulties due to the
city’s limited digital infrastructure. The city lacks the
technological resources needed to support visitors in
organizing and optimizing their travel plans [3]. The
country of Albania does not have a unified national
tourism portal which provides standardized information
and booking capabilities and customized travel
recommendations. The current promotional apps “Visit
Tirana” [4], “Albania Tourist Guide” [5] fail to provide
optimized routes and personalized itineraries and direct

access to actual transportation services and do not have an
e-ticketing system for public attractions.

The majority of visitors must rely on static maps and
general platforms because of this gap which produces
suboptimal routes and inconsistent travel experiences. The
solution needs to use light-weight computational methods
that operate within local boundaries and work within
municipal or regional systems.

The research investigates three main questions about
the trade-offs between solution quality and execution time
when using exact and metaheuristic methods for day-trip
itinerary planning. (Q1) How do exact and metaheuristic
approaches trade off solution quality versus execution
time for day-trip itineraries? Q2) How does performance
scale with the instance size - the number of attractions
(N)? Q3) Can lightweight metaheuristics be effectively
implemented on resource-constrained mobile devices,
enabling practical itinerary optimization without backend
infrastructure?

We cast one-day tourist itinerary planning as a
Travelling Salesperson Problem (TSP) and compare an
exhaustive search Brute Force (BF) baseline with two
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metaheuristics—Genetic Algorithm (GA) and Simulated
Annealing (SA) implemented in Python and evaluated on
real inter-attraction distances for Tirana derived from
OpensStreetMap. We report tour length (m), runtime (s),
and success rate across multiple values of N, in Section 3.
The success rate counts only runs whose tour length
exactly matches the best-known solution.

This study makes three principal contributions: (i) a
deployable evaluation framework for optimizing urban
tourist routes using open map data in resource-constrained
environments; (ii) realistic benchmarks that quantify the
speed-accuracy trade-off on standard hardware; and (iii)
an implementation pathway that enables cities with
limited digital infrastructure to adopt the solution. The
remainder of the paper is organized as follows: Section 2
reviews related work; Section 3 describes the the
experimental setup, and the optimization methods,
including BF, GA, SA, and the proposed Hybrid Greedy
+ SA. It also details the robustness experiments under
noisy and incomplete distance data, the validation of
straight-line distances against OpenRouteService walking
routes, and the mobile execution experiment on mobile
hardware. Section 4 presents the empirical results across
different problem sizes, robustness scenarios, and routing
models, as well as the comparative performance of the
hybrid approach on clean and perturbed data. Section 5
discusses the main design trade-offs between Haversine
and network-based routing, generalization to larger
instances, and the implications for smart-tourism
applications in low-infrastructure cities. Finally, the
concluding section summarizes the key findings,
highlights the practical relevance of lightweight
metaheuristics for mobile itinerary planning.

2 Related work

The field of urban itinerary optimization exists in two
main forms which include the Tourist Trip Design
Problem (TTDP) that handles preferences and time and
budget constraints and opening hours [6] or as adaptations
of the Travelling Salesperson Problem (TSP) for tourism
applications, which focus primarily on shortest paths. The
main distinction between TTDP variants and TSP-style
research emerges from their distinct methods for
evaluating user satisfaction under various constraints
because TTDP variants handle multiple restrictions yet
TSP-style studies focus on efficient solutions with basic
assumptions.

Beyond this distinction, recent work has examined
several directions. Sylejmani et al. (2024) use Iterated
Local Search to personalize tours under thematic (e.g.
visiting a museum before a restaurant and cultural sites
before natural sites), temporal, and financial constraints
[6], while Zhang et al. (2008) incorporate perceptual
dimensions by blending path optimization with visual
experience, mining web data to approximate the
“visibility” or scenic value of attractions [7]. Adamo et al.
(2022) explore multimodality, combining walking and
driving routes to create more realistic itineraries [8]. Tang
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et al. (2024 demonstrates how large language models
(LLMs) can transform unstructured user requests into
optimized travel plans [9]. Souffriau et al. (2008) further
show that guided local search can efficiently solve
orienteering-based TTDPs directly on mobile devices,
highlighting the viability of lightweight metaheuristics for
on-device itinerary generation [10]. While exact methods
offer optimality guarantees, they are often limited by
scalability. Androutsopoulos & Zografos (2008) address
multimodal itinerary planning with strict sequencing and
time window constraints using an exact dynamic
programming approach based on problem decomposition
[11]. In contrast, the integration of hybrid algorithms with
metaheuristics has proven effective in addressing complex
optimization problems. Mangini et al. (2021) use graph
theory, Integer Linear Programming (ILP), and a multi-
algorithm strategy to generate one-day tourist routes that
minimize travel time while reflecting user preferences
[12]. Several studies show that combining SA with A* can
generate fast and efficient tours [13]; Li et al. (2022) apply
a knowledge-based hybrid Ant Colony Optimization
algorithm enhanced with bacterial foraging to address
group-based tourist satisfaction under capacity and
preference constraints, with a focus on efficient tourist
route planning [14]; GAs achieve improved results with
faster convergence in tourist route optimization, while K-
means clustering followed by GA optimization supports
the creation of personalized tourist sequences [15].
Context-aware TTDP applies fuzzy-logic-enhanced
metaheuristics to model contextual constraints [16]; fuzzy
systems further support uncertainty management in
attraction planning, resource evaluation, and decision-
making [17, 18].

To synthesize these trends, we provide a structured
comparison, Table 1, showing how prior work varies
across problem formulations, algorithmic strategies,
constraints, and data scales. While prior studies often
assume rich mobility datasets, multimodal transport
layers, or server-side computational capabilities, they
collectively establish that metaheuristics are well-suited
for real-time itinerary planning.

The present study extends prior work by addressing a
gap not sufficiently explored: itinerary optimization in
resource-constrained environments with limited digital
infrastructure. In contrast to models that depend on
transport schedules, multimodal networks, or complex
personalization layers, our approach uses only geometric
distances from OpenStreetMap, ensuring a lightweight
and reproducible formulation. We adopt a deployment-
oriented perspective by evaluating three solvers (Brute
Force, GA, SA) across multiple data regimes and by
implementing a Hybrid Greedy + SA solver as a mobile-
ready Progressive Web App. Computing optimized
itineraries entirely on-device, without backend support
and with near-instantaneous runtime, highlights the
practicality and scalability of the proposed approach for
cities with constrained computational resources, limited
connectivity, or incomplete digital maps.
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Table 1: Summary of representative tourist itinerary planning approaches

Ref Problem / Model Main Algorithm Constraints Scale / Data

[10] | TTDP modelled as Guided local search Time budget, POI scores, Real data, city of
orienteering problem metaheuristic personalization on mobile Ghent
(OP) for mobile guides

[6] | Extended TTDP as multi- | Local search / Iterated Time, budget, multi- 146 instances, city-
constraint team local search (ILS)-based | knapsack; POI category scale test set
orienteering problem with | metaheuristics patterns
time windows
(MCTOPTW) with
patterns.

[8] | Multi-modal TTDP (road | Ad-hoc ILS Time windows, visit Up to 3 643 POls,
+ pedestrian) duration, multimodal 7-day horizon

car+walking

[9] | Open-domain urban LLM + cluster-aware Natural-language requests; | 4 Chinese cities,
itineraries (OUIP) spatial optimization dynamic POIs; citywalk 1200+ itineraries

[16] | Context-aware TTDP MGA + fuzzy logic a- Contextual constraints (e.g. | Case study,

posteriori evaluation accessibility, safety). Granada (mobility-
impaired)

[13] | TTDP with GIS-grounded | Hybrid SA + A* GIS/OSM paths, POI Fez Medina, 15
multimodal routing (metaheuristic + distances, real pedestrian POIs, 9400 paths

heuristic) network, personalization

[14] | Tourism route planning Knowledge-based Tourist satisfaction model, | 1000 tourists; 300-
(TRP) Hybrid Ant Colony + clustering, capacity limits 1300 paths

Bacterial Foraging

[11] | Multi-criteria time- Dynamic Programming Ordered multimodal Test network with
dependent itinerary after problem routing with strict time 900 nodes, 930
planning with mandatory | decomposition into windows at origin, service links,
intermediate stops in a elementary sub-problems | destination, and 12,000 interchange
multimodal fixed- intermediate stops. links, 100 services;
schedule network

[12] | One-day TTDP-style Multi-level heuristic Single-day itinerary Case study: Bari
round trip with combining ILP-based planning with Pol (Italy) Pol network,
outward/return itineraries | symmetric TSP with priorities, visit durations, realistic travel-time
on an urban Pol graph graph-based Pol mode-dependent travel matrix; cruise-

exchange/add/delete times (walk/transit), and tourist one-day
procedures interactive user scenario
customization.

[7] | Tourist route planning Web-based POI Personalized POI selection; | Prototype system;
with scenic-visibility extraction + GIS routing | scenic-visibility Japan (multiple
scoring + 3D visibility optimization; road-network | scenic sites; DEM

computation routing 50m grid)

[15] | Tourism path GA-enhanced k-means Multi-objective (12 internal | Survey (600
recommendation from for clustering + GA for & external tourism criteria); | visitors) +
survey & social-media optimal tour TripAdvisor data
objectives (cluster + TSP) for 6 POIs in Port

Sudan, Red Sea
State (Sudan)

3 Methods and materials

3.1 Experimental setup
All algorithms were implemented in Python and executed Each method — including GA, SA, and the Hybrid

under the same computational environment to ensure a fair
comparison. Experiments were conducted on a Windows
10 Pro (64-bit) system equipped with an Intel Core i7-
7500U 2.70 GHz processor and 12 GB of RAM. All runs
were performed in Python 3.12.2 using JupyterLab 4.1.2

as the development interface. Core libraries and package
versions are listed in the project’s requirements.txt, and
the complete code and environment specifications are
available in the project’s GitHub repository [17].

Greedy + SA variant — was independently executed 30
times. To ensure reproducibility, each run used a
deterministic seed. This repeated-run protocol guarantees
statistical robustness, allowing the computation mean for
all main performance metrics: tour distance, execution
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time, solution gap, and success rate. The reported values
in all tables therefore represent the average performance
across these 30 independent executions per scenario
(clean, noisy, or incomplete). Brute Force was attempted
in all cases, but when the 90-second limit was exceeded,
its result was not included. In such cases, the best solution
among GA and SA was adopted as the baseline.

Solution Gap quantifies the relative deviation of an
algorithm’s tour distance from the best-known solution.
For each algorithm A, the Gap_mean was computed as:

Distanceeqn — Best_known
GaPmean = Best_known *100

where Distance_mean is the average tour distance
obtained by algorithm A over 30 runs, and Best known
represents the best-known tour length for the same
scenario. When BF method successfully returned the
optimal solution (for small N), its result was used as
Best known. For larger instances where BF exceeded the
90-second time limit, Best known was set to the shortest
tour obtained among GA, SA, or Hybrid Greedy + SA.
Thus, the Gap mean values allow a normalized
comparison of solution quality across algorithms and
scenarios, regardless of the absolute tour length.

To measure how often each algorithm reaches the
best-known solution, a success rate metric was used. A run
is considered successful if the route distance it produces is
within a small tolerance ¢ of the Best known distance. In
this study, € was set to 0.0 meters, meaning that only runs
matching the optimal distance exactly are counted as
successful. This strict criterion ensures fair and
reproducible comparison between algorithms.

For GA, parameter values were selected based on a
preliminary sensitivity analysis on the dataset (N = 31).
Population size was varied across 30, 50, and 100
individuals while keeping the number of generations 50
and mutation rate 0.02 fixed. The results of this analysis,
presented in Section 3.3.3 and Table 2, showed that a
population of 50 provides a balanced compromise
between runtime efficiency and search quality, with
negligible performance differences for larger populations.
Consequently, all subsequent GA experiments were
performed using population = 50, generations = 50, and
mutation_rate = 0.02 to ensure comparability across
algorithms.

3.2 Study context and data

This study adopts Tirana, Albania, as a case study, a
developing capital experiencing growing tourist flows but
lacking adequate digital systems for tourism management.
A selection of cultural sites and historical landmarks and
recreational activities was made to create authentic travel
plans. The geographic coordinates of these attractions
were extracted from OpenStreetMap (OSM). Distances
between every pair of locations were computed using the
Haversine formula, which calculates great-circle distances
from latitude and longitude. The values were merged into
a complete NxN distance matrix that used meters to
measure distances and served as the foundation for all
optimization techniques. The tour cost was defined as the
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total distance of a closed itinerary visiting each attraction
exactly once

3.3 Optimization algorithms
3.3.1 Brute force

The BF method was used as an exact baseline. It generates
all possible permutations of attractions, starting and
ending at the same location, computes the total distance of
each tour, and returns the shortest one. The search tree
grows to its complete depth of N—1 levels where N shows
the total number of attractions. The time complexity is
factorial, O(N!). The method becomes impractical for use
with large instances because of this. In our
implementation, we imposed a 90-second time limit; if
exceeded, the solver was skipped and excluded from
evaluation. When successful, BF serves as an exact
optimal baseline for comparison with heuristic methods.

3.3.2 Genetic algorithm

The GA operates as a population-based metaheuristic
which draws its inspiration from natural evolutionary
processes. Each candidate solution (individual) was
represented as a permutation of attractions. The algorithm
followed this sequence of operations:

Population initialization - Generate an initial
population of random tours. Each individual in the
population represents one complete itinerary; a
permutation of all tourist points, ensuring that every
attraction appears exactly once within a tour. Population
initialization is performed by randomly generating
pop_size permutations.

Fitness evaluation - Compute the total distance of
each tour, where shorter routes indicate higher fitness. In
principle, an individual becomes infeasible if any pair of
consecutive points in its route is not connected by a valid
edge. In our formulation, such missing connections are
assigned an infinite, or equivalently, prohibitively large
cost. Consequently, these individuals obtain extremely
poor fitness scores and are automatically removed during
the selection phase, without requiring an explicit
feasibility check.

Selection - Choose the fittest individuals (those with
the shortest tours) to form the mating pool. Selection is
applied to retain only the fittest half of the individuals;
those with the lowest total distance. This eliminates poorly
performing solutions, including those containing
infeasible edges.

Crossover - Create new offspring by combining
segments of parent tours while ensuring that each
attraction is visited exactly once. We employ Order
Crossover (OX), a widely used method for permutation-
based optimization:

1. Two cut points (a, b) are chosen at random.

2. The segment between a and b is copied directly
from parent p1 to the child.

3. The remaining positions are filled with the elements
of parent p2 in order, skipping elements already present in
the copied segment.
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This operator preserves relative ordering from both
parents and prevents duplication of nodes, producing a
feasible offspring tour.

Mutation - Introduce diversity by occasionally
swapping two positions in a tour, reducing the risk of
premature convergence. In our implementation, mutation
swaps two randomly chosen positions in the tour with a
small probability (rate). This operator creates slight
perturbations in routes, helping the search explore new
regions of the solution space and avoid stagnation in local
minima.

Replacement - Substitute the parent population with
the newly generated offspring.

Termination - Repeat the process for a fixed number
of generations while tracking the best-so-far distance.

3.3.3  Sensitivity of GA parameter setting

To verify the robustness of the selected GA parameters, a
small sensitivity analysis was conducted on the clean
dataset (N = 31). The population size was varied across
three settings: 30, 50, and 100, while keeping the number
of generations 50 and mutation rate 0.02, fixed. As shown
in Table 2, the mean tour distance and gap exhibit only
modest variations (Gap_mean ranging from 62.8% to
70.0%), while the success rate remains constant at 0%.
Increasing the population size leads to slightly longer
runtimes (from 0.08 s to 0.26 s) but does not substantially
improve solution quality.

Table 2: Sensitivity of GA performance to population
size (N = 31, clean data, 30 runs)

GA generations=50, mutation_rate=0.02
Pop_size |Dist mean |T mean | Succ |Gap_mean
30 10592.014 | 0.083 |0 69.995
50 10143.115 1 0.141 |0 62.791
100 10258.633 | 0.263 | 0 64.645

Therefore, a population size of 50 was selected for all
subsequent experiments, as it provides a balanced trade-
off between runtime efficiency and search quality,
ensuring fair comparison with the SA and Hybrid
algorithms.

3.3.4 Simulated annealing

SA was implemented as a single-solution metaheuristic
with stochastic acceptance of worse solutions. The steps
of the algorithm are as follows:

Random Initialization - The algorithm begins from a
randomly generated tour obtained by shuffling all points,
which serves as the initial feasible solution.

Distance Evaluation - The optimization requires
repeated tour-length evaluations based on pairwise
distances between locations. To obtain accurate
geographic measurements, all distances are computed
using the Haversine formula, which estimates great-circle
distances on the Earth’s surface. For a given permutation
of points, the total distance is evaluated as:
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n-1

D(T[) = Z d mm(i+1)mod n
i=0

The tour length D(m) is computed as the sum of the
distances between every pair of consecutive locations in
the tour. In this formulation, & represents a permutation of
all points, and mj denotes the point visited at position i in
the tour. The term d 7, i+ 1)mod n corresponds to the

distance between the current point z; and the next point in
the sequence. The modulo operator ensures that when the
index reaches the last point, the route closes by connecting
back to the first point, forming a complete loop.

Neighborhood Exploration - During the search, the
algorithm iteratively explores neighboring solutions using
a 2-opt segment reversal operator. The operator works by
selecting two random indices i and j along the current tour
and reversing the entire subsequence between them. This
creates a new tour in which a segment of the route is
traversed in the opposite direction. The intuition behind 2-
opt is that many inefficient tours contain crossing edges,
and reversing the segment between two points often
eliminates these crossings, leading to a shorter overall
path. Because of its ability to systematically remove such
geometric inefficiencies, 2-opt is widely adopted in local
search and metaheuristic optimization methods to produce
substantial improvements in route quality with minimal
computational overhead.

Acceptance Mechanism - At each iteration, the
candidate solution is evaluated by comparing its tour
length to that of the current solution. If the new solution
yields a shorter tour, that is if: D,,.,, < Doyrrent, thenitis
accepted deterministically. Otherwise, the new solution
may still be accepted with a probability defined by the
classical Metropolis criterion:

Dcurrent_Dnew

P(accept) =e T

This probabilistic acceptance allows the algorithm to
escape local optima by admitting occasional uphill moves.

Temperature Schedule - The temperature was
initialized at a high value (10,000), enabling broad
exploration in early iterations. A cooling factor 0.995 is
applied at each step.

Tk+1 =0.995 =« Tk

As the temperature decreases, the probability of
accepting inferior solutions diminishes, encouraging
convergence toward an optimal or near-optimal tour.

Convergence Tracking - The best distance found so
far is logged periodically throughout the search, producing
a convergence history curve. This allows for a detailed
comparison of SA’s performance relative GA.

For the standalone SA implementation, the following
parameters were used:

initial temperature T0=10000

cooling rate a=0.995

stopping condition T>1

neighborhood: 2-opt segment reversal

acceptance rule: Metropolis criterion

logging interval: 100 iterations

To account for stochastic variability, 30 independent
runs were performed using run-level random seeds:
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seed=4242+r with both random and numpy.random
initialized per run to ensure full reproducibility.

3.3.5 Additional experiments: robustness
under noisy and incomplete data

To further evaluate the robustness of the proposed
metaheuristics (GA and SA), we conducted a set of
supplementary experiments where the distance data were
intentionally  perturbed to  simulate  real-world
imperfections.

These imperfections represent measurement noise
(GPS inaccuracies), and incomplete connectivity
(unavailable or missing links between points of interest).

(a) Perturbation model

Starting from the original distance matrix D, a
perturbed version D’ was generated using the function:

Dj; = D;; * (1 + ei,j)' €;,j € [—p, +p]

where p € {0.1,0.2} denotes the amplitude of the
multiplicative noise (£10-20%). Additionally, a random
fraction r € {0.1,0.2} of the entries were replaced with
+oo indicating missing edges (no direct connection
between those nodes). This setup generated five test
scenarios:

- noisy10 (£10% noise)

- noisy20 (£20% noise)

- miss10 (10% missing edges)

- miss20 (20% missing edges)

- noisyl5 missl5 (£15% noise, 15% missing

edges combined)

Each perturbed matrix was stored for reproducibility
and used as input for both GA and SA with identical
hyperparameters.

(b) On-the-fly repair strategy

In the presence of missing edges, direct distance
evaluation would normally fail. To overcome this, we
introduced an on-the-fly repair algorithm, a simple yet
effective  mechanism that restores connectivity
dynamically during route evaluation. For any pair of
consecutive nodes (u,v) whereD'[u, v] = oo, the repair
procedure searches for an intermediate node k that
minimizes the detour cost:

Drepair(u,v) = min(D'[u, k] + D'[k,v]) where
u,v

If such a node exists, the route temporarily diverts
through k; otherwise, a large penalty value is assigned, so
that the optimizer avoids this segment.

This mechanism ensures that the optimization process
remains feasible and continuous even in degraded or
incomplete graphs, emulating real-time adaptive behavior.

k #

3.3.6 Hybrid Greedy + SA

Following the analysis of the standard GA and SA
heuristics, we introduced a third variant — Hybrid Greedy
+ SA (Algorithm 3), to enhance anytime performance and
robustness under incomplete or noisy distance data.

The hybrid algorithm begins with a Greedy
initialization, which quickly constructs a valid tour by
iteratively selecting the nearest unvisited node. This step
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provides a feasible and near-optimal starting solution.
After obtaining this initial tour, the algorithm enters the
Simulated Annealing refinement phase, where it applies 2-
opt neighborhood moves to progressively improve the
tour. At each iteration, a new candidate route is generated
by reversing a random segment, and the change is
accepted either if it improves the total distance or
probabilistically if it is slightly worse, to avoid premature
convergence. This two-stage design combines the speed
and feasibility of Greedy construction with the exploratory
power of Simulated Annealing, resulting in a fast yet
robust method capable of maintaining good solution
quality under noisy or incomplete data.

Because the Hybrid algorithm starts from a high-
quality Greedy tour, it does not require the high initial
temperature (To = 10000) and slow cooling (o0 = 0.995)
used in standalone SA to escape poor initial states. This
allows the Hybrid configuration to allocate more
computation to focused improvement rather than broad
exploration, accelerating convergence without sacrificing
robustness. The Hybrid Greedy + SA algorithm was
executed with the following parameters:

- initial temperature TO=5000

- cooling rate a=0.996

- stopping temperature T>1

- neighborhood: 2-opt segment reversal

- acceptance rule: Metropolis criterion

- logging interval: 100 iterations

- 30 independent runs with different random seeds

- 2-hop repair and large penalty (1e12) for missing
edges

For perturbed data, 10-20% noise and missing edges
were introduced, and the Hybrid Greedy + SA used 2-hop
repair with a large penalty (1e12), while keeping the same
annealing parameters (T0=5000, 0=0.996, 30 runs).

The experimental results in Section 4.5 directly assess
its effectiveness under both clean and perturbed data
conditions. The two-stage design—Greedy initialization
followed by SA refinement—was specifically intended to
accelerate convergence and enhance robustness when
distance information is incomplete or noisy. The results
presented in the section 4.5, validate this expectation: on
clean data, the hybrid approach substantially reduces the
optimality gap while maintaining competitive runtimes,
and under noisy or incomplete distance matrices it
preserves solution quality and feasibility more effectively
than standalone GA or SA. Thus, the performance analysis
confirms the practical benefits of the proposed hybrid
strategy anticipated in the methodology, demonstrating its
ability to deliver reliable and efficient itineraries across
varying data scenarios.

3.4 Realistic distance validation using
openrouteservice

To evaluate how geometric distance approximations differ
from real-world travel distances within the urban
environment of Tirana, we conducted an additional
experiment that integrates route optimization with real
street-network routing.

Experimental Setup
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The analysis was performed using:

-Python 3.10+, OpenStreetMap (OSM) as the source
of geographic coordinates for 31 tourist attractions in
Tirana.

-The Hybrid Greedy + SA metaheuristic implemented
in Python to obtain an optimized visiting order based on
Haversine (straight-line) distances.

-OpenRouteService (ORS) API, which computes real
walking distances using the actual street network derived
from OSM.

The workflow consisted of three major steps:

-Build a full Haversine distance matrix for all 31
points using their OSM lat/long coordinates.

-Run the Hybrid Greedy + SA algorithm.

-Evaluate the optimized tour using OpenRouteService
to compute true, network-based walking distances
between consecutive attractions.

3.4.1 Visualization-based structural analysis of
haversine and ORS routing models

In addition to the primary optimization framework based
on Haversine great-circle distances, we conducted a
complementary routing experiment aimed at assessing
how the choice of distance metric influences the structure
of the optimized tour. The same set of 31 tourist locations
was evaluated using two alternative distance models: (i)
geometric Haversine distances, which provide a fast, API-
independent approximation of spatial proximity, and (ii)
real walking distances obtained through the
OpenRouteService (ORS) Matrix API. For the second
model, the Hybrid Greedy + SA algorithm was executed
directly on ORS-derived network distances to obtain a
fully realistic, walkability-constrained shortest tour. This
dual-routing setup enables a controlled methodological
comparison between geometric and network-based
optimization, ensuring that differences observed in the
results can be attributed solely to the underlying distance
model. The inclusion of both models strengthens the
reliability of the experimental design and provides a
foundation for understanding the impact of routing realism
on itinerary planning.

3.5 Mobile execution and deployability
evaluation

Since tourist route optimization is expected to run directly
on users’ smartphones during real-world use, testing
solely on desktop hardware does not reflect practical
performance. The mobile execution experiment was
therefore included to measure responsiveness under
realistic computational constraints.

To evaluate the real-world performance of the Hybrid
Greedy + SA algorithm, we conducted an additional
execution-time assessment on a mobile device. A
lightweight web application (HTML/JavaScript/Leaflet)
containing the full algorithm was deployed on GitHub
Pages and installed on an iPhone as a Progressive Web
App (PWA) using Safari’s “Add to Home Screen” feature.
When launched, the application runs in standalone mode

Informatica 49 (2025) 217-232 223

and executes all computations locally on the device’s
JavaScript engine.

To guarantee cross-platform reproducibility, we used
the same deterministic seed schedule in both desktop
(Python) and mobile (JavaScript) implementations.
Specifically, each run was initialized with seed = 2025 +
r, where r is the run index. This ensures that the stochastic
trajectory of SA remains consistent across environments,
enabling a fair comparison of results. Tests were
performed on Samsung Galaxy A10 running Android 11
using the GitHub Pages web-app. Execution time was
measured using performance.now(), which provides high-
resolution, device-level timing.

3.6 Output and visualization

All results were recorded at both run and summary levels.
The experimental framework saved distance and runtime
data along with success indicators in CSV format at the
run level. The summary statistics displayed the average
values and standard deviations for all recorded metrics.
The analysis included two types of visualizations which
showed distance and runtime distributions through
boxplots and displayed GA and SA convergence patterns
through median and interquartile range curves. All visual
content was generated at 600 dpi resolution to ensure high
image quality. In addition, two map visualization was
developed to demonstrate how the generated itineraries
would perform in the actual geography of Tirana.

4 Results and fiscussion

4.1 Performance on small instance (N=7)

Table 3 shows the results of BF and GA and SA when the
number of attractions is seven. Reported metrics include
mean and standard deviation of tour distance and runtime,
success rate (percentage of runs achieving the best-known
solution).

Table 3: Comparative results of BF, GA, and SA for N=7
attractions.

Dist mean | Dist std |T mean | T std |Succ
BF | 3886.4775 | 0 0.0069 | 0 100
GA | 3886.4775 | 1.3%-12 | 0.0890 | 0.0220 {100
SA | 3886.6375 | 0.876156 | 0.0373 | 0.0180 |96.66

Taken together, the results demonstrate that for small
problem sizes (N=7), all three methods reach or
approximate the optimal solution, but their runtime
characteristics differ. BF is the fastest in absolute terms for
this small instance. GA guarantees optimality but incurs
higher runtime overhead due to its population-based
operations. SA trades a small loss in accuracy for
significantly faster and more consistent runtimes then GA.
Figures 1 and 2 (N = 7) show that both GA and SA
consistently attain the BF-optimal tour length: the distance
distributions are essentially indistinguishable, with
identical medians (orange lines) and nearly identical
means (triangles). In contrast, the runtime boxplots reveal
a clear separation: SA runs faster on average and exhibits



224 Informatica 49 (2025) 217-232

lower variability, while GA shows higher median/mean
times.

Distance distribution over runs (N=7)

o
3891 1

3890 1

w
o0
0
o

Distance (m)

A. Hyso et al.

more favorable balance of accuracy and efficiency than
GA.

To assess whether these differences are statistically
significant, we complemented the descriptive results with
bootstrap confidence intervals and Mann-Whitney U
tests, as reported in Table 5.

Table 5: Statistical comparison of GA and SA using
bootstrap Cls (95%) and Mann—-Whitney U tests (30

runs).
3888 1
95%
3887 Alg. | Mean Bootstrap | U p-value
e A Cl
GA SA GA [4383.43,
Figure 1: Performance evaluation for N = 7, showing the D 4385.80 4388.38] 536.5 [1.953e-01
distance distribution across 30 independent runs of GA SA [4381.99,
and SA. Means (triangles) and medians (orange lines). 4383.69 43?‘253]
T | GA | 0.1202 E)i126 ’ 891.0 [7.39%e-11
Runtime distribution over runs (N=7) [0 058;
[s] . )
0.14 SA | 0.0614 0.0663]

GA A

Figure 2: Performance evaluation for N = 7, showing the
runtime distribution across 30 independent runs of GA
and SA. Means (triangles) and medians (orange lines).

4.2 Results on the 10-attraction instance

Table 4 compares the performance of BF, GA, and SA for
itineraries with ten attractions. Reported metrics include
mean and standard deviation of tour distance and runtime,
success rate (percentage of runs achieving the best-known
solution).

Table 4: Comparative results of BF, GA, and SA for
N=10 attractions.

For tour distance (D), GA and SA have very similar
mean values, and their 95% bootstrap confidence intervals
overlap extensively. The Mann-Whitney test yields U =
536.5, p = 1.953e-01, indicating no statistically significant
difference in tour length between the two algorithms at
this scale.

For runtime (T), the difference is substantial. GA is
nearly twice as slow as SA, and the confidence intervals
do not overlap. The Mann-Whitney test gives U = 891.0,
p = 7.39e-11, showing a highly significant advantage of
SA in terms of execution time.

Overall, the results show that both algorithms achieve
comparable tour lengths, but SA is far faster and more
computationally efficient.

4.3 Large-scale performance (N=31)

Under the latency constraint (<90 s), Brute Force cannot
be executed for N = 31 and is therefore excluded from the
comparison. Tables 6 and 7 summarize the empirical and
statistical results obtained from 30 independent runs of
GA and SA.

Table 6: Empirical performance of GA and SA for N =
31 attractions (30 runs). BF timed out and is omitted

Dist mean | Dist std | T mean| T std | Succ
BF [4379.82 0 42005 |0 100
GA [4385.80 7.070 0.1063 | 0.0177 | 43.3
SA 4383.69 5.231 0.0625 | 0.0108 | 43.3

For N=10, BF produced the exact optimum in 4.20 s,
which remains tractable at this scale but already illustrates
the rapid increase in computational cost. Both GA and SA
found near-optimal tours, yet their success rates dropped
to 43.3%. Between the heuristics, SA achieved slightly
shorter tours on average and faster runtimes, offering a

Dist mean | Dist std | T mean | T std |Succ
G
A 110143.11 | 91595 | 0.12 0.0138 |0
SA | 6782.44 461.25 | 0.06 0.0082 |3.33

The statistical analysis in Table 6, confirms that SA
strongly outperforms GA at N = 31 attractions spots. SA
produces significantly shorter tours (mean = 6782.44 m)
compared to GA (mean = 10143.11 m) and exhibits much
lower variability (SD = 461.25 m vs 915.95 m). Runtime
performance is similarly favorable to SA, which achieves
0.06 s on average nearly twice as fast as GA, and with
lower dispersion across runs.
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Table 7: Statistical comparison of GA and SA using
bootstrap Cls (95%) and Mann-Whitney U tests (30
runs).

95%
Bootstrap | U
Cl

[9815.20,
10449.87]
[6629.76,
6947.91]
[0.1153,
0.1250]
[0.0584,
0.0642]

Success rates are low for both algorithms at this
problem size (SA: 3.3%, GA: 0%). However, only SA is
able to reach the best-known tour at least once (1/30 runs).

The Mann-Whitney U tests for both distance and
runtime yield U =900 and p = 3 x 10!, indicating highly
statistically significant differences between GA and SA
across all evaluated metrics.

Overall, SA offers the best accuracy—efficiency trade-
off under real-time constraints, while GA becomes slower,
less stable, and substantially less accurate as N increases.

While Tables 6 and 7 summarize the final
performance outcomes of both algorithms, Figures 3 and
4 provide complementary insight by illustrating the
optimization  trajectory across iterations. These
convergence plots show the median best-so-far tour length
over 30 independent runs for N = 31, accompanied by the
corresponding interquartile range (IQR) at each iteration.

Alg. | Mean p-value

GA | 10143.11

900 B.02e-11

SA | 6782.44

GA | 0.1202

900 B.02e-11

SA | 0.0614

GA convergence {median & IQR) — N=31

V.I) lb 26 3‘0 4‘0 5‘0
Iteration
Figure 3: Convergence for N=31 over 30 runs of GA.
Curve shows the median best-so-far tour length at each
iteration; shaded band indicates the interquartile range

(IQR)

A quantitative estimation of convergence speed was
also derived from the median curves. For GA, the 95% of-
final-value threshold (~10,500 m) is reached at
approximately iteration 27—30. In contrast, SA reaches its
95% threshold (~7,140 m) at iteration 9-10. This indicates
that SA converges roughly three times faster than GA,
supporting the observed efficiency gap in the empirical
results.
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SA cenvergence (median & IQR) — N=31
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Figure 4: Convergence for N=31 over 30 runs of SA.
Curve shows the median best-so-far tour length at each
iteration; shaded band indicates the interquartile range

(IQR)

4.4 Robustness of the algorithms under
noisy and incomplete data

Tables 8-11 present the experimental results for both SA
and GA under clean, noisy, and incomplete distance-
matrix scenarios. The experiments were performed on a
fixed instance consisting of 31 tourist attractions in Tirana.

The ADistance, ATime, and AGap indicators quantify
the deviation from the clean baseline, while the
Success_rate column reflects the algorithm’s consistency
in recovering near-optimal tours under uncertainty.
Dist_mean denotes the mean tour length (in meters) across
30 runs, while ADistance (%) expresses the relative
change in tour length compared to the clean baseline.
T_mean (s) reports the average runtime, and ATime (%)
quantifies the relative runtime increase under perturbation.
Gap_mean (%) measures the deviation from the best-
known solution, and AGap (percentage points (pp) ) Shows
how this gap changes relative to the clean case.
Success_rate (%) indicates the percentage of runs that
exactly matched the best-known tour (g = 0).

To provide a clearer algorithm-specific interpretation
of robustness under uncertainty, the following subsections
analyze in detail the behavior of SA and GA separately,
with respect to solution quality, runtime stability, and
convergence reliability under noisy and incomplete
distance-matrix conditions.

4.4.1 SA robustness analysis

This subsection examines the robustness of SA algorithm
under progressively degraded data conditions, including
missing distances and random noise. The analysis focuses
on how perturbations affect tour length, solution
optimality gap, success rate, and computational time, in
comparison with the clean baseline scenario. Tables 8 and
9 summarize the resulting performance metrics across all
test cases.

For SA, both the solution gap and success rate remain
almost unchanged across all perturbation types,
confirming the strong resilience of the method.

Despite large relative increases in execution time
(ATime% up to +2100%), the absolute runtimes remain
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below 1.5 seconds, making SA highly practical even when
the data are incomplete or noisy.

Table 8: Comparative performance of SA algorithm
under noisy and incomplete distance-matrix conditions,
across all test scenarios.

A. Hyso et al.

conditions, indicating a high sensitivity to data
degradation. Although GA consistently produces feasible
tours across all scenarios, these tables clearly show that its
solution quality varies substantially more than that of SA.

Table 10: Comparative performance of GA algorithm
under noisy and incomplete distance-matrix conditions,

Scenario Dist_ ADist. Gap_ AGap Suce across all test scenarios

mean mean rate
cI«::-an 6782.44 | 0 8854 |0 3.3 Scenario Dist_ ADist Gap_ AGap Succ
miss10 724551 | 6.83 9.152 | 0.298 | 3.3 mean mean rate
miss20 7388.59 | 8.94 6.254 | -2.6 3.3 clean 10143.11 |0 62.791 (O 0
noisyl0 | 6988.99 | 3.05 | 11.975 |3.121 | 3.3 miss10 | 10186.23 [0.43 | 53.454 [-9.34 |0
”molfsss%f’— 6778.24 | -0.06 | 7.904 | -0.95 | 3.3 miss20 | 10568.79 [4.2 | 51.988 |-10.80 | 0

noisy15

Table 9: Runtime analysis of the SA algorithm under miss{S 10452.92 (3.05 | 66.403 |3.61 0
clean, noisy, and incomplete distance-matrix conditions, -
reporting mean execution time and its relative deviation noisy20 | 10185.24 {0.42 | 69.001 |6.21 [ O

from the clean scenario

Scenario T mean | ATime
clean 0.0653 0
miss10 0.8435 1192.07
miss20 1.439 2104.24
noisy10 0.2362 261.84
noisyl5_miss15 | 1.0523 1511.93
noisy20 0.2178 233.59

The mean tour distance increases moderately under
missing-edge scenarios (+6-9%), reflecting the expected
effect of reduced connectivity, while under noisy
conditions the distances fluctuate only slightly (£3%).
Importantly, the solution gap remains within %3
percentage points of the clean baseline (from 8.85% to a
maximum of 11.98%), showing that SA can adapt
efficiently to both random noise and incomplete
information. The success rate is fully stable (3.3%) across
all tests, indicating deterministic convergence toward
near-optimal tours.

Overall, these findings demonstrate that SA degrades
gracefully: its runtime scales with problem irregularity,
but its solution quality and convergence behavior remain
robust. This makes SA a reliable choice for real-world
deployment, particularly in applications (e.g., mobile
routing, tour recommendation) where the input data may
be imperfect or partially missing.

4.4.2 GA robustness analysis

This subsection analyzes the robustness of GA under the
same noisy and incomplete distance-matrix scenarios. The
evaluation emphasizes variations in solution quality,
optimality gap, feasibility preservation, and runtime
overhead relative to the clean baseline. Tables 10 and 11
report the corresponding performance indicators.

Tables 10 and 11 demonstrate that, for GA, both the
solution gap (AGap) and the runtime overhead (ATime)
increase noticeably under missing and noisy distance

Table 11: Runtime analysis of the GA algorithm under

clean, noisy, and incomplete distance-matrix conditions,

reporting mean execution time and its relative deviation
from the clean scenario

Scenario T mean | ATime
clean 0.1403 0
miss10 1.6976 1109.78
miss20 2.4688 1659.35
noisy10 0.3219 129.41
noisyl5 miss15 | 1.7458 1144.17
noisy20 0.3576 154.86

Under missing-edge perturbations (miss10—-miss20),
the gap decreased slightly (= —9 to —11 pp) due to the on-
the-fly repair mechanism that bypassed broken links, but
this came at a significant computational cost, with runtime
increases exceeding +1100-1600%. Similarly, when
random noise was applied (£10-20%), GA exhibited
relatively stable distances (ADistance < 1%) but still
required additional iterations, leading to +130-150%
longer runtimes. In the combined case (hoisy15 + miss15),
GA’s mean gap reached =66%, showing that its
population-based search is more sensitive to irregular
graph structures compared with SA’s single-solution
adaptive exploration.

Across all experimental scenarios, the GA algorithm
consistently produced complete and connected tours,
confirming that the proposed on-the-fly link-repair
mechanism effectively preserves route connectivity even
when distance information is missing or corrupted.
Overall, GA shows strong reliability in maintaining
feasible tours under data degradation, but its efficiency is
notably weaker: although it remains capable of
constructing complete routes, its performance deteriorates
much more rapidly than SA with respect to runtime and
solution optimality.

Figure 5 complements Tables 8-11 by illustrating the
anytime trade-off between solution quality (Gap %) and
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runtime (s) for both algorithms (SA and GA) under the
same set of perturbation scenarios. Each point corresponds
to the mean performance of a given scenario (clean, noisy,
or incomplete), allowing a direct visual comparison of

robustness and efficiency.
Anytime Trade-off: Gap (%) vs Time (s)

704 g2

clean

@ gnoisy10
60

noisy10

10 4 clead hoisy20 £TSTD et migets
A il

Algorithm
5520 @ Genetic Algorithm
A Simulated Annealing

0.0 0.5 1.0 15 2.0 2.5
Time (s)

Figure 5: Anytime trade-off between solution quality
(Gap %) and execution time (s) for GA and SA across
clean, noisy, and incomplete data scenarios.

Each point corresponds to the mean performance of a
given scenario (clean, noisy, or incomplete), allowing a
direct visual comparison of robustness and efficiency. The
plot clearly shows that SA (orange triangles) consistently
achieves lower gaps with sub-second runtimes, while GA
(blue circles) requires longer execution times and exhibits
larger variability in solution quality, especially under
missing-edge conditions. These visual trends confirm the
tabular findings, that SA degrades smoothly and maintains
stability under noisy and incomplete data, whereas GA’s
performance is more sensitive to data imperfections

4.5 Performance of the Hybrid Greedy +
SA (Algorithm 3)

451 Performance on clean data

The Hybrid Greedy + SA algorithm was first evaluated on
the clean dataset (no missing or noisy distances) to
establish a baseline for performance comparison against
the standalone GA and SA methods. The experiment
contained 31 tourist attractions. As shown in Table 12, the
hybrid approach achieved a significantly lower mean gap
(= 1.86%) compared to SA (8.85%) and GA (62.79%),
while maintaining a moderate runtime (= 0.25 s) and the
highest success rate (10%). These results demonstrate that
initializing SA with a Greedy heuristic drastically
improves both convergence speed and solution quality,
providing near-optimal tours at minimal computational
cost.
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Table 12: Baseline results for GA, SA, and Hybrid
Greedy + SA on clean data.

Alg. Dist_ Gap_
mean T _mean Succ mean
Hybrid 6342.551 0.2499 10% | 1.860
SA 6782.44 0.0653 33% | 8.854
CGA 10143.11 0.1403 0% 62.791

The results show that the Hybrid method consistently
outperforms SA in terms of tour quality: its mean distance
is substantially lower, and its confidence interval is
considerably narrower, indicating both better performance
and reduced variability. For execution time, SA is
significantly faster, as expected from its simpler stochastic
refinement process. The Hybrid method incurs a higher
computational cost due to the deterministic greedy
initialization and more intensive local search.

Table 13 provides a statistical comparison between
SA and the Hybrid Greedy+SA algorithm using 95%
confidence intervals and Mann—-Whitney U tests over 30
independent runs.

Table 13: Statistical comparison of SA and Hybrid
Greedy+SA using 95% Cls and Mann-Whitney U tests

(30 runs).
Alg. Mean | 95% CI U p-value
[6626.47, |24 | 2608

SA 6782.4 | 6946.74]

[6319.59,

D | Hybrid | 6342.6 | 6364.00]
[0.06363, | ° i.lOZe-

SA 0.067 | 0.07070]

[0.24373,

T | Hybrid | 0.249 | 0.25625]

The Mann-Whitney U tests confirm that both distance
and time differences between the two algorithms are
statistically significant, with p-values far below the
standard 0.05 threshold. This validates that the observed
improvements in solution quality—and the corresponding
increase in runtime—are not due to random variation but
reflect systematic differences in algorithmic behavior.

Overall, the statistical evidence demonstrates that
Hybrid Greedy+SA achieves the best accuracy among the
compared methods, while SA offers superior speed,
reflecting a clear trade-off between solution quality and
runtime.
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Comparison of Algorithms — GA vs SA vs Hybrid Greedy+SA
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Figure 6: Comparison of GA, SA, and Hybrid Greedy +
SA on clean data, showing the trade-off between runtime
and optimality gap.

Figure 6, visualizes the clean baseline comparison of
the three algorithms. The Hybrid Greedy+SA achieves a
much smaller gap than both GA and SA while maintaining
a sub-second runtime, confirming its strong potential for
real-time applications in urban itinerary optimization.
45.2 Robustness under noisy and incomplete
data

This section presents the comparative performance of the
three algorithms: GA, SA, and the proposed Hybrid
Greedy + SA, when evaluated under a combined
perturbation  scenario  (noisyl5_miss10). In this
configuration, 15% of the pairwise distances were
randomly perturbed with Gaussian noise, while 10% of the
graph edges were removed to simulate missing or
unreliable connectivity data. This setting reflects realistic
conditions for low-infrastructure urban contexts, where
digital maps or open data repositories often contain
incomplete or imprecise geospatial information.

As shown in Table 14 and Figure 7, both GA and SA
experience a degradation in performance when the data
become noisy or incomplete, whereas the Hybrid Greedy
+ SA maintains lower gap values and stable success rates.

Table 14: Comparative performance of Genetic
Algorithm (GA), Simulated Annealing (SA), and Hybrid
Greedy + SA under the combined perturbation scenario
(noisy15_miss10).

Scenario: noisy15_miss10
T_ Gap_
Alg. Dist_mean mean | Succ. mean
Hybrid 7303.99 0.942 | 3.3% 7.421
SA 7365.73 0.767 0% 8.329
GA 10732.95 1.407 0% 57.852

This demonstrates that initializing SA with a Greedy
heuristic seed improves the anytime performance and
robustness of the algorithm, even when link failures or
measurement errors occur. While GA suffers from a
substantial increase in gap (= 58%) and runtime, the
hybrid method preserves feasibility and remains
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computationally  efficient, maintaining sub-second

runtimes (= 0.94 s) and a mean gap of 7.4%.

Perturbed Scenario: noisyl5_miss10_n31 — GA vs SA vs Hybrid

@ Genetic Algorithm ®
A\ Simulated Annealing
B Hybrid Greedy+SA
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Figure 7: Performance comparison of GA, SA, and
Hybrid Greedy + SA under the noisyl5_miss10 scenario

Overall, the results confirm that the Hybrid Greedy +
SA algorithm achieves a superior balance between
robustness and efficiency, sustaining near-optimal
solution quality even when data imperfections degrade the
performance of traditional metaheuristics.

4.6 Comparison between straight-line and
real route distances

To evaluate how the optimized itinerary behaves under
real-world travel conditions, we compared the total
straight-line distance produced by the Hybrid Greedy +
SA algorithm with the actual routed distance obtained
through the OpenRouteService (ORS) API. The optimized
tour was first generated using Haversine distances
computed from OpenStreetMap-based coordinates of 31
tourist attractions in Tirana. This straight-line model
provides a simplified and computationally efficient
geometric approximation commonly used in TSP and
metaheuristic optimization research.

After the best tour was obtained, each consecutive
pair of points was re-evaluated through ORS using the
pedestrian routing profile. ORS calculates the true
walking distance by following the real street network
extracted from OpenStreetMap, thereby incorporating the
constraints of wurban geometry, pedestrian paths,
intersections, and block structures.

The comparison revealed the following quantitative
results:

«  Total distance, Haversine: 6.193 km

»  Total distance, ORS (real path): 10.165 km

+  Deviation ratio (ORS / Haversine): 1.641

This shows that the true walkable distance across the
full itinerary is approximately 64.1% longer than the
geometric estimate. Such a deviation is expected in
compact urban areas where direct point-to-point
movement is constrained by building blocks, curved or
discontinuous pedestrian paths, irregular street patterns,
and one-way routing segments. The observed ratio of
=1.64 reflects the natural divergence between idealized
great-circle distances and actual walkable routes in dense
city environments.



Comparative Metaheuristic Approaches to Tourist Itinerary...

Importantly, although real-world distances differ, the
relative spatial structure is preserved: closer points remain
proportionally close, and distant points remain
proportionally distant. This confirms that Haversine-based
optimization provides a valid and computationally
efficient foundation for comparing algorithmic
performance. The post-evaluation using ORS reinforces
the robustness of the optimized route and highlights the
practical relevance of the proposed method.

4.6.1 Impact of routing method on the
optimized itinerary

To further understand how the routing model affects not
only the measured distance but also the structure of the
optimized path, we performed a second experiment using
the same set of 31 tourist locations. The Hybrid Greedy +
SA algorithm was executed directly on ORS-derived real
walking distances, rather than on Haversine distances. In
this configuration, the algorithm produced an optimized
tour of 9.355 km, which is shorter than the 10.165 km
obtained when the Haversine-optimized itinerary was
evaluated using ORS. This confirms that the true optimal
tour under realistic routing constraints is indeed different
from the one derived using geometric distances.

To illustrate these differences more clearly, Figure 8
and Figure 9 present the visualized itineraries generated
by the two methods.

Optimized Route (Haversine}

aimod "=

Latitude
B

19814 19816 19.01¢ 19220 10822 19.82¢ 19826 10828 19830
Longitude

Figure 8: Optimized itinerary generated using the Hybrid
Greedy + SA algorithm with Haversine great-circle
distances.

Optimized Route (ORS, foot-walking)

Latitude

Figure 9: Optimized itinerary produced by applying the
Hybrid Greedy + SA algorithm directly on real walking
distances obtained through OpenRouteService (ORS).
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The first map depicts the Haversine-based optimized
tour, while the second shows the route obtained when the
algorithm operates directly on real network distances.
Although the total walking length differs substantially,
due to pedestrian detours, street geometry, and one-way
routing rules, the overall spatial layout of the itinerary
remains similar. Clusters of nearby attractions, the
direction of traversal across the city, and local segment
orderings are largely preserved.

These visual comparisons demonstrate that the
Haversine model successfully captures the geometric
structure of the underlying optimization problem, while
ORS primarily adjusts for real-world walkability
constraints. Consequently, the maps strengthen the
conclusion that Haversine-based optimization is suitable
for fast, offline, and resource-efficient computation,
whereas ORS is best used for post-validation and final
distance refinement. By combining the optimization
outcomes with their spatial context, the resulting
visualizations offer an interpretable and actionable view
of each tour, reinforcing the algorithm’s suitability for
applications in urban tourism planning, smart-city route
recommendation, and pedestrian navigation support.

4.7 Mobile execution results

To assess performance on low-end hardware, the Hybrid
Greedy + SA algorithm was executed on a Samsung
Galaxy A10 running Android 11 (One Ul 3.1). Using the
same JavaScript implementation via the mobile browser,
the full 31-point itinerary was optimized in approximately
0.24 seconds, confirming real-time capability even under
constrained processing resources. The mobile run
produced the same tour ordering as the desktop
implementation, with only minor numerical differences in
distance caused by standard floating-point variations
between Python and JavaScript. These results demonstrate
that the method remains practical and responsive on
budget mobile phones, strengthening its suitability for
deployment in real-world mobile tourism applications.
Similarly, tests on an iPhone 13 (iOS 17) demonstrated
robust performance, with an average execution time of
0.05 seconds over 30 runs. These results confirm that the
complete optimization pipeline including initialization,
search, and rendering can execute locally on mainstream
mobile devices without requiring server interaction.
Figure 10 presents the web-based interface running as a
standalone Progressive Web App (PWA), added to the
home screen, supporting local execution, route
visualization over Tirana via Leaflet, and precise timing
feedback. The application operates as a standalone
Progressive Web App (PWA) after being added to the
home screen.

5 Discussion

This work presents a reproducible, deployment-oriented
evaluation of exact and metaheuristic solvers for urban
tourist itineraries using open map data [15]. Although the
experimental analysis is limited to Tirana, the
methodology and algorithms are city-agnostic and can be
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directly applied to other urban contexts once attraction
coordinates are available. The choice of Tirana reflects the
study’s focus on cities with limited digital infrastructure
rather than dataset-specific characteristics. The findings
support a simple operational rule: for cities with limited
digital infrastructure, Simulated Annealing (SA) provides
the best accuracy—efficiency trade-off under realistic
latency constraints; Genetic Algorithm (GA) remains
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competitive at small scales but becomes less stable as the
problem size (N) increases, while Brute Force (BF) serves
primarily as an offline validator rather than a practical
solver. The inclusion of the Hybrid Greedy + SA variant
further strengthens these conclusions, showing that
combining a deterministic initialization with stochastic
refinement improves both convergence stability and
resilience under uncertainty.
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Figure 10: Execution of the Hybrid Greedy + SA algorithm directly on an iPhone 13 browser as a Progressive Web

App. (a) Initial input with 31 attraction coordinates. (b) Runtime output and best tour ordering with stable distances

across 30 runs. (c) Visualization of the optimized route over Tirana using Leaflet. The full optimization completes in
under 0.05 seconds, confirming responsiveness on mobile devices

5.1 Design trade-offs: haversine vs.
network routing

The present implementation computes pairwise distances
using the Haversine formula, which provides a fast,
lightweight, and fully reproducible measure of separation
between geographic coordinates. This choice deliberately
avoids reliance on external routing APIs and heavy graph-
processing engines, making the method suitable for
deployment in settings with limited connectivity or
computational resources. Such characteristics are
particularly relevant for urban environments like Tirana,
where practical applications may need to operate offline,
at low cost, or within platforms that cannot depend on
persistent access to cloud-based routing services.
However, Haversine distances do not account for the
structure of the street network, pedestrian pathways, one-
way segments, or other real travel constraints. To quantify

the impact of this simplification, our study conducted a
secondary evaluation using OpenRouteService (ORS),
which computes walking routes based on the actual
OpenStreetMap road and pedestrian network. Applying
ORS to the optimized Haversine-based tour showed that
the actual routed distance is about 30.9% longer than the
geometric estimate, a deviation expected in dense urban
environments where movement is constrained by building
blocks and irregular street layouts. Despite this difference,
the experiment shows that the relative spatial structure of
the problem is preserved: points that are close remain
proportionally close, and the ranking of distances does not
change substantially. Thus, the optimization landscape
explored by the GA, SA, and Hybrid algorithms remains
meaningful even when using Haversine. The Haversine
model provides a stable and computationally efficient
abstraction for algorithmic comparison, while the ORS-
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based evaluation confirms how geometric solutions
translate into realistic walking distances.

5.2 Generalization and scalability

Although the experimental analysis focused primarily on
instances with 31 locations, additional tests were
conducted on a larger dataset containing 49 tourist points
to assess scalability. The results confirmed the same
performance trends: SA consistently achieved much
shorter tours and lower optimality gaps than GA, while
maintaining sub-second runtimes (= 0.08 s). In contrast,
GA exhibited a substantial degradation in solution quality,
with mean gaps exceeding 56% and increased variability.
This indicates that the advantages of SA not only persist
but become more pronounced as problem size grows,
suggesting better scalability and robustness for larger
urban itinerary planning scenarios. In addition, the Hybrid
Greedy + SA algorithm maintained its performance
advantages when the problem size increased. For the
larger instance (N = 49), the hybrid method achieved a
remarkably low mean optimality gap of only 2.64%,
substantially outperforming both GA (56.31%) and SA
(9.07%) under the same conditions. Although runtime
increased to approximately 0.42 s, this growth remained
moderate and well within real-time applicability
thresholds. Notably, the hybrid approach preserved
solution stability, as reflected by the very small variability
across runs (Gap_std = 1.17%), indicating that the Greedy
initialization continues to provide high-quality starting
tours even in larger search spaces, while the SA
refinement efficiently exploits local structure. These
results suggest that the hybrid strategy scales more
gracefully than standalone heuristics, retaining both
accuracy and robustness as the number of attractions
grows.

5.3 Future integration with dynamic and
real-time data

Building on the demonstrated robustness and anytime
performance of the proposed algorithms, future extensions
will focus on dynamic and real-time optimization. The
current framework, which operates on a static distance
matrix, can be enhanced with live contextual data such as
real-time traffic flow, temporary event schedules, and user
preference feedback.

For instance, the Hybrid Greedy + SA model could
dynamically re-weight edges based on live travel times,
temporary pedestrian restrictions, or the user’s evolving
interests (e.g., preference for cultural sites or shorter
walking routes). Integrating such adaptive data streams
would transform the current approach into a context-aware
recommender system, capable of updating feasible
itineraries on the fly.

This direction aligns with current trends in smart
tourism and mobility-as-a-service, where systems must
maintain robustness under uncertainty while delivering
personalized and real-time route adjustments for end
users.
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6 Conclusion

In  conclusion, this study contributes both
methodological clarity and practical relevance. By
framing one-day tourist itinerary generation as a TSP and
benchmarking exact and metaheuristic solvers on real-
world map data, it shows how even simple algorithms can
inform the design of deployable systems for cities with
limited digital infrastructure. The comparative analysis
demonstrates that while BF provides an exact validation
baseline, GA and especially SA deliver scalable, near-
optimal solutions under realistic constraints. The extended
experiments under noisy and incomplete distance data
further confirmed SA’s robustness, showing minimal
degradation in solution quality despite input uncertainty.
Moreover, the introduction of the Hybrid Greedy + SA
variant significantly improved both convergence speed
and accuracy, achieving the lowest mean gap and
maintaining sub-second runtimes even under data
perturbations, confirming that combining a deterministic
greedy start with stochastic refinement enhances both
reliability and efficiency.

The mobile execution results demonstrate that the
proposed Hybrid Greedy + SA method is practical for
deployment in real tourist applications. The ability to
compute optimized routes directly on the smartphone
without cloud computation enhances system robustness,
enables offline functionality, and reduces dependency on
external APIs. The sub-second performance observed on
the iPhone indicates that the algorithm provides an
acceptable user experience even on mobile hardware with
limited computational resources. From a system-design
perspective, the successful mobile execution demonstrates
that lightweight metaheuristics can reliably support real-
time decision-making in e-tourism scenarios, where users
typically depend on smartphones while navigating urban
environments. The results strengthen the external validity
of the proposed method and confirm its suitability for
integration into practical mobile routing tools.
Furthermore, the demonstrated efficiency on resource-
constrained hardware positions such techniques as strong
candidates for next-generation smart-tourism systems,
where applications may incorporate richer contextual
information, preference-aware routing, and multi-day
itinerary planning. In this way, the study effectively
bridges algorithmic research with applied urban-tourism
needs, offering actionable insights for both academia and
practice.
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