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Tourist itinerary planning is a central component of smart tourism, yet it remains challenging in 

developing cities where computational resources and digital infrastructure are limited. This study 

examines Tirana, Albania, as a representative case for urban pedestrian-based tourist itinerary 

optimization. The analysis is carried out using both exact and heuristic optimization techniques, including 

Brute Force, Genetic Algorithm (GA), Simulated Annealing (SA), and a Hybrid Greedy + SA approach 

that integrates deterministic initialization with stochastic refinement. Distances between attractions were 

derived from OpenStreetMap, enabling fully reproducible experiments conducted on multiple datasets 

representing different sets of attractions with increasing size and under varying conditions, including 

ideal, noisy, and incomplete information. The results show that while exact computation rapidly becomes 

impractical as the instance size grows, metaheuristic methods, particularly SA and the hybrid variant 

consistently deliver high-quality and stable solutions. To evaluate real-world applicability under digital 

and computational constraints, the hybrid algorithm was implemented as a mobile-ready Progressive Web 

App and executed entirely on a resource-constrained device, demonstrating near-instantaneous 

optimization and confirming its feasibility for fully on-device use without reliance on backend servers. 

Overall, the study shows that lightweight metaheuristics, especially the Hybrid Greedy + SA method, offer 

a robust, scalable, and mobile-ready approach to urban tourism itinerary planning, suitable for 

deployment in environments with limited computational and infrastructural resources. 

Povzetek: Študija pokaže, da so lahki hevristični algoritmi primerni za hitro načrtovanje turističnih poti 

tudi tam, kjer so računalniški viri in digitalna infrastruktura omejeni. 

1 Introduction 
Urban tourism functions as a major driver for city 

development because visitors seek to experience as much 

as possible during their brief urban visits. Tourism 

depends on digital services to let customers reserve 

accommodations and arrange their travel schedules [1], 

and Industry 4.0 technologies (AI, IoT, blockchain) create 

better visitor experiences [2]. However, this digital 

transformation has not been evenly distributed. In Tirana, 

the capital of Albania and one of the country’s most 

rapidly developing tourist destinations, the growing 

number of visitors faces persistent difficulties due to the 

city’s limited digital infrastructure. The city lacks the 

technological resources needed to support visitors in 

organizing and optimizing their travel plans [3]. The 

country of Albania does not have a unified national 

tourism portal which provides standardized information 

and booking capabilities and customized travel 

recommendations. The current promotional apps “Visit 

Tirana” [4], “Albania Tourist Guide” [5] fail to provide 

optimized routes and personalized itineraries and direct  

 

access to actual transportation services and do not have an 

e-ticketing system for public attractions.  

The majority of visitors must rely on static maps and 

general platforms because of this gap which produces 

suboptimal routes and inconsistent travel experiences. The 

solution needs to use light-weight computational methods 

that operate within local boundaries and work within 

municipal or regional systems.  

The research investigates three main questions about 

the trade-offs between solution quality and execution time 

when using exact and metaheuristic methods for day-trip 

itinerary planning. (Q1) How do exact and metaheuristic 

approaches trade off solution quality versus execution 

time for day-trip itineraries? Q2) How does performance 

scale with the instance size - the number of attractions 

(N)? Q3) Can lightweight metaheuristics be effectively 

implemented on resource-constrained mobile devices, 

enabling practical itinerary optimization without backend 

infrastructure? 

We cast one-day tourist itinerary planning as a 

Travelling Salesperson Problem (TSP) and compare an 

exhaustive search Brute Force (BF) baseline with two 
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metaheuristics—Genetic Algorithm (GA) and Simulated 

Annealing (SA) implemented in Python and evaluated on 

real inter-attraction distances for Tirana derived from 

OpenStreetMap. We report tour length (m), runtime (s), 

and success rate across multiple values of N, in Section 3. 

The success rate counts only runs whose tour length 

exactly matches the best-known solution.  

This study makes three principal contributions: (i) a 

deployable evaluation framework for optimizing urban 

tourist routes using open map data in resource-constrained 

environments; (ii) realistic benchmarks that quantify the 

speed–accuracy trade-off on standard hardware; and (iii) 

an implementation pathway that enables cities with 

limited digital infrastructure to adopt the solution. The 

remainder of the paper is organized as follows: Section 2 

reviews related work; Section 3 describes the the 

experimental setup, and the optimization methods, 

including BF, GA, SA, and the proposed Hybrid Greedy 

+ SA. It also details the robustness experiments under 

noisy and incomplete distance data, the validation of 

straight-line distances against OpenRouteService walking 

routes, and the mobile execution experiment on mobile 

hardware. Section 4 presents the empirical results across 

different problem sizes, robustness scenarios, and routing 

models, as well as the comparative performance of the 

hybrid approach on clean and perturbed data. Section 5 

discusses the main design trade-offs between Haversine 

and network-based routing, generalization to larger 

instances, and the implications for smart-tourism 

applications in low-infrastructure cities. Finally, the 

concluding section summarizes the key findings, 

highlights the practical relevance of lightweight 

metaheuristics for mobile itinerary planning. 

2 Related work 
The field of urban itinerary optimization exists in two 

main forms which include the Tourist Trip Design 

Problem (TTDP) that handles preferences and time and 

budget constraints and opening hours [6] or as adaptations 

of the Travelling Salesperson Problem (TSP) for tourism 

applications, which focus primarily on shortest paths. The 

main distinction between TTDP variants and TSP-style 

research emerges from their distinct methods for 

evaluating user satisfaction under various constraints 

because TTDP variants handle multiple restrictions yet 

TSP-style studies focus on efficient solutions with basic 

assumptions. 

Beyond this distinction, recent work has examined 

several directions. Sylejmani et al. (2024) use Iterated 

Local Search to personalize tours under thematic (e.g. 

visiting a museum before a restaurant and cultural sites 

before natural sites), temporal, and financial constraints 

[6], while Zhang et al. (2008) incorporate perceptual 

dimensions by blending path optimization with visual 

experience, mining web data to approximate the 

“visibility” or scenic value of attractions [7]. Adamo et al. 

(2022) explore multimodality, combining walking and 

driving routes to create more realistic itineraries [8]. Tang 

et al. (2024 demonstrates how large language models 

(LLMs) can transform unstructured user requests into 

optimized travel plans [9]. Souffriau et al. (2008) further 

show that guided local search can efficiently solve 

orienteering-based TTDPs directly on mobile devices, 

highlighting the viability of lightweight metaheuristics for 

on-device itinerary generation [10]. While exact methods 

offer optimality guarantees, they are often limited by 

scalability. Androutsopoulos & Zografos (2008) address 

multimodal itinerary planning with strict sequencing and 

time window constraints using an exact dynamic 

programming approach based on problem decomposition 

[11]. In contrast, the integration of hybrid algorithms with 

metaheuristics has proven effective in addressing complex 

optimization problems. Mangini et al. (2021) use graph 

theory, Integer Linear Programming (ILP), and a multi-

algorithm strategy to generate one-day tourist routes that 

minimize travel time while reflecting user preferences 

[12]. Several studies show that combining SA with A* can 

generate fast and efficient tours [13]; Li et al. (2022) apply 

a knowledge-based hybrid Ant Colony Optimization 

algorithm enhanced with bacterial foraging to address 

group-based tourist satisfaction under capacity and 

preference constraints, with a focus on efficient tourist 

route planning [14]; GAs achieve improved results with 

faster convergence in tourist route optimization, while K-

means clustering followed by GA optimization supports 

the creation of personalized tourist sequences [15]. 

Context-aware TTDP applies fuzzy-logic-enhanced 

metaheuristics to model contextual constraints [16]; fuzzy 

systems further support uncertainty management in 

attraction planning, resource evaluation, and decision-

making [17, 18]. 

To synthesize these trends, we provide a structured 

comparison, Table 1, showing how prior work varies 

across problem formulations, algorithmic strategies, 

constraints, and data scales. While prior studies often 

assume rich mobility datasets, multimodal transport 

layers, or server-side computational capabilities, they 

collectively establish that metaheuristics are well-suited 

for real-time itinerary planning. 

The present study extends prior work by addressing a 

gap not sufficiently explored: itinerary optimization in 

resource-constrained environments with limited digital 

infrastructure. In contrast to models that depend on 

transport schedules, multimodal networks, or complex 

personalization layers, our approach uses only geometric 

distances from OpenStreetMap, ensuring a lightweight 

and reproducible formulation. We adopt a deployment-

oriented perspective by evaluating three solvers (Brute 

Force, GA, SA) across multiple data regimes and by 

implementing a Hybrid Greedy + SA solver as a mobile-

ready Progressive Web App. Computing optimized 

itineraries entirely on-device, without backend support 

and with near-instantaneous runtime, highlights the 

practicality and scalability of the proposed approach for 

cities with constrained computational resources, limited 

connectivity, or incomplete digital maps. 
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Table 1: Summary of representative tourist itinerary planning approaches 

Ref Problem / Model Main Algorithm Constraints Scale / Data 

[10]  TTDP modelled as 

orienteering problem 

(OP) for mobile guides 

Guided local search 

metaheuristic 

Time budget, POI scores, 

personalization on mobile        

Real data, city of 

Ghent              

[6] Extended TTDP as multi-

constraint team 

orienteering problem with 

time windows 

(MCTOPTW) with 

patterns.     

Local search / Iterated 

local search (ILS)-based 

metaheuristics 

Time, budget, multi-

knapsack; POI category 

patterns 

146 instances, city-

scale test set    

[8]                        Multi-modal TTDP (road 

+ pedestrian) 

Ad-hoc ILS Time windows, visit 

duration, multimodal 

car+walking      

Up to 3 643 POIs, 

7-day horizon       

[9]     Open-domain urban 

itineraries (OUIP) 

LLM + cluster-aware 

spatial optimization  

Natural-language requests; 

dynamic POIs; citywalk         

4 Chinese cities, 

1200+ itineraries   

[16]                 Context-aware TTDP                          MGA + fuzzy logic a-

posteriori evaluation 

Contextual constraints (e.g. 

accessibility, safety). 

Case study, 

Granada (mobility-

impaired) 

[13] TTDP with GIS-grounded 

multimodal routing 

Hybrid SA + A* 

(metaheuristic + 

heuristic) 

GIS/OSM paths, POI 

distances, real pedestrian 

network, personalization 

Fez Medina, 15 

POIs, 9400 paths 

[14] Tourism route planning 

(TRP) 

Knowledge-based 

Hybrid Ant Colony + 

Bacterial Foraging 

Tourist satisfaction model, 

clustering, capacity limits        

1000 tourists; 300-

1300 paths  

[11] Multi-criteria time-

dependent itinerary 

planning with mandatory 

intermediate stops in a 

multimodal fixed-

schedule network 

Dynamic Programming 

after problem 

decomposition into 

elementary sub-problems 

Ordered multimodal 

routing with strict time 

windows at origin, 

destination, and 

intermediate stops. 

Test network with 

900 nodes, 930 

service links, 

12,000 interchange 

links, 100 services; 

[12] One-day TTDP-style 

round trip with 

outward/return itineraries 

on an urban PoI graph 

Multi-level heuristic 

combining ILP-based 

symmetric TSP with 

graph-based PoI 

exchange/add/delete 

procedures 

Single-day itinerary 

planning with PoI 

priorities, visit durations, 

mode-dependent travel 

times (walk/transit), and 

interactive user 

customization. 

Case study: Bari 

(Italy) PoI network, 

realistic travel-time 

matrix; cruise-

tourist one-day 

scenario 

[7] Tourist route planning 

with scenic-visibility 

scoring 

Web-based POI 

extraction + GIS routing 

+ 3D visibility 

computation 

Personalized POI selection; 

scenic-visibility 

optimization; road-network 

routing 

Prototype system; 

Japan (multiple 

scenic sites; DEM 

50m grid) 

[15] Tourism path 

recommendation from 

survey & social-media 

objectives (cluster + TSP) 

GA-enhanced k-means 

for clustering + GA for 

optimal tour 

Multi-objective (12 internal 

& external tourism criteria); 

Survey (600 

visitors) + 

TripAdvisor data 

for 6 POIs in Port 

Sudan, Red Sea 

State (Sudan) 

3 Methods and materials  

3.1 Experimental setup 

All algorithms were implemented in Python and executed 

under the same computational environment to ensure a fair 

comparison. Experiments were conducted on a Windows 

10 Pro (64-bit) system equipped with an Intel Core i7-

7500U 2.70 GHz processor and 12 GB of RAM. All runs 

were performed in Python 3.12.2 using JupyterLab 4.1.2 

as the development interface. Core libraries and package 

versions are listed in the project’s requirements.txt, and 

the complete code and environment specifications are 

available in the project’s GitHub repository [17]. 

Each method — including GA, SA, and the Hybrid 

Greedy + SA variant — was independently executed 30 

times. To ensure reproducibility, each run used a 

deterministic seed. This repeated-run protocol guarantees 

statistical robustness, allowing the computation mean for 

all main performance metrics: tour distance, execution 
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time, solution gap, and success rate. The reported values 

in all tables therefore represent the average performance 

across these 30 independent executions per scenario 

(clean, noisy, or incomplete). Brute Force was attempted 

in all cases, but when the 90-second limit was exceeded, 

its result was not included. In such cases, the best solution 

among GA and SA was adopted as the baseline. 

Solution Gap quantifies the relative deviation of an 

algorithm’s tour distance from the best-known solution. 

For each algorithm A, the Gap_mean was computed as: 

𝐺𝑎𝑝𝑚𝑒𝑎𝑛 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑒𝑎𝑛 − 𝐵𝑒𝑠𝑡_𝑘𝑛𝑜𝑤𝑛

𝐵𝑒𝑠𝑡_𝑘𝑛𝑜𝑤𝑛
∗ 100 

where Distance_mean is the average tour distance 

obtained by algorithm A over 30 runs, and Best_known 

represents the best-known tour length for the same 

scenario. When BF method successfully returned the 

optimal solution (for small N), its result was used as 

Best_known. For larger instances where BF exceeded the 

90-second time limit, Best_known was set to the shortest 

tour obtained among GA, SA, or Hybrid Greedy + SA. 

Thus, the Gap_mean values allow a normalized 

comparison of solution quality across algorithms and 

scenarios, regardless of the absolute tour length. 

To measure how often each algorithm reaches the 

best-known solution, a success rate metric was used. A run 

is considered successful if the route distance it produces is 

within a small tolerance ε of the Best_known distance. In 

this study, ε was set to 0.0 meters, meaning that only runs 

matching the optimal distance exactly are counted as 

successful. This strict criterion ensures fair and 

reproducible comparison between algorithms. 

For GA, parameter values were selected based on a 

preliminary sensitivity analysis on the dataset (N = 31). 

Population size was varied across 30, 50, and 100 

individuals while keeping the number of generations 50 

and mutation rate 0.02 fixed. The results of this analysis, 

presented in Section 3.3.3 and Table 2, showed that a 

population of 50 provides a balanced compromise 

between runtime efficiency and search quality, with 

negligible performance differences for larger populations. 

Consequently, all subsequent GA experiments were 

performed using population = 50, generations = 50, and 

mutation_rate = 0.02 to ensure comparability across 

algorithms. 

3.2 Study context and data  

This study adopts Tirana, Albania, as a case study, a 

developing capital experiencing growing tourist flows but 

lacking adequate digital systems for tourism management. 

A selection of cultural sites and historical landmarks and 

recreational activities was made to create authentic travel 

plans. The geographic coordinates of these attractions 

were extracted from OpenStreetMap (OSM). Distances 

between every pair of locations were computed using the 

Haversine formula, which calculates great-circle distances 

from latitude and longitude. The values were merged into 

a complete N×N distance matrix that used meters to 

measure distances and served as the foundation for all 

optimization techniques. The tour cost was defined as the 

total distance of a closed itinerary visiting each attraction 

exactly once 

3.3 Optimization algorithms 

3.3.1 Brute force 

The BF method was used as an exact baseline. It generates 

all possible permutations of attractions, starting and 

ending at the same location, computes the total distance of 

each tour, and returns the shortest one. The search tree 

grows to its complete depth of N−1 levels where N shows 

the total number of attractions. The time complexity is 

factorial, O(N!). The method becomes impractical for use 

with large instances because of this. In our 

implementation, we imposed a 90-second time limit; if 

exceeded, the solver was skipped and excluded from 

evaluation. When successful, BF serves as an exact 

optimal baseline for comparison with heuristic methods. 

3.3.2 Genetic algorithm 

The GA operates as a population-based metaheuristic 

which draws its inspiration from natural evolutionary 

processes. Each candidate solution (individual) was 

represented as a permutation of attractions. The algorithm 

followed this sequence of operations:  

Population initialization - Generate an initial 

population of random tours. Each individual in the 

population represents one complete itinerary; a 

permutation of all tourist points, ensuring that every 

attraction appears exactly once within a tour. Population 

initialization is performed by randomly generating 

pop_size permutations. 

Fitness evaluation - Compute the total distance of 

each tour, where shorter routes indicate higher fitness. In 

principle, an individual becomes infeasible if any pair of 

consecutive points in its route is not connected by a valid 

edge. In our formulation, such missing connections are 

assigned an infinite, or equivalently, prohibitively large 

cost. Consequently, these individuals obtain extremely 

poor fitness scores and are automatically removed during 

the selection phase, without requiring an explicit 

feasibility check. 

Selection - Choose the fittest individuals (those with 

the shortest tours) to form the mating pool. Selection is 

applied to retain only the fittest half of the individuals; 

those with the lowest total distance. This eliminates poorly 

performing solutions, including those containing 

infeasible edges. 

Crossover - Create new offspring by combining 

segments of parent tours while ensuring that each 

attraction is visited exactly once. We employ Order 

Crossover (OX), a widely used method for permutation-

based optimization: 

1. Two cut points (a, b) are chosen at random. 

2. The segment between a and b is copied directly 

from parent p1 to the child. 

3. The remaining positions are filled with the elements 

of parent p2 in order, skipping elements already present in 

the copied segment. 



Comparative Metaheuristic Approaches to Tourist Itinerary… Informatica 49 (2025) 217–232 221 

 

This operator preserves relative ordering from both 

parents and prevents duplication of nodes, producing a 

feasible offspring tour. 

Mutation - Introduce diversity by occasionally 

swapping two positions in a tour, reducing the risk of 

premature convergence. In our implementation, mutation 

swaps two randomly chosen positions in the tour with a 

small probability (rate). This operator creates slight 

perturbations in routes, helping the search explore new 

regions of the solution space and avoid stagnation in local 

minima. 

Replacement - Substitute the parent population with 

the newly generated offspring. 

Termination - Repeat the process for a fixed number 

of generations while tracking the best-so-far distance. 

3.3.3 Sensitivity of GA parameter setting 

To verify the robustness of the selected GA parameters, a 

small sensitivity analysis was conducted on the clean 

dataset (N = 31). The population size was varied across 

three settings: 30, 50, and 100, while keeping the number 

of generations 50 and mutation rate 0.02, fixed. As shown 

in Table 2, the mean tour distance and gap exhibit only 

modest variations (Gap_mean ranging from 62.8% to 

70.0%), while the success rate remains constant at 0%. 

Increasing the population size leads to slightly longer 

runtimes (from 0.08 s to 0.26 s) but does not substantially 

improve solution quality.  

Table 2: Sensitivity of GA performance to population 

size (N = 31, clean data, 30 runs) 

GA generations=50, mutation_rate=0.02 

Pop_size Dist_mean T_mean Succ Gap_mean 

30 10592.014 0.083 0 69.995 

50 10143.115 0.141 0 62.791 

100 10258.633 0.263 0 64.645 

 

Therefore, a population size of 50 was selected for all 

subsequent experiments, as it provides a balanced trade-

off between runtime efficiency and search quality, 

ensuring fair comparison with the SA and Hybrid 

algorithms. 

3.3.4 Simulated annealing 

SA was implemented as a single-solution metaheuristic 

with stochastic acceptance of worse solutions. The steps 

of the algorithm are as follows: 

Random Initialization - The algorithm begins from a 

randomly generated tour obtained by shuffling all points, 

which serves as the initial feasible solution.  

Distance Evaluation - The optimization requires 

repeated tour-length evaluations based on pairwise 

distances between locations. To obtain accurate 

geographic measurements, all distances are computed 

using the Haversine formula, which estimates great-circle 

distances on the Earth’s surface. For a given permutation 

of points, the total distance is evaluated as: 

𝐷(𝜋) = ∑ 𝑑 𝜋𝑖,𝜋(𝑖+1)𝑚𝑜𝑑 𝑛

𝑛−1

𝑖=0

 

The tour length D(π) is computed as the sum of the 

distances between every pair of consecutive locations in 

the tour. In this formulation, π represents a permutation of 

all points, and πi denotes the point visited at position i in 

the tour. The term 𝑑 𝜋𝑖,𝜋(𝑖+1)𝑚𝑜𝑑 𝑛 corresponds to the 

distance between the current point πi and the next point in 

the sequence. The modulo operator ensures that when the 

index reaches the last point, the route closes by connecting 

back to the first point, forming a complete loop.  

Neighborhood Exploration - During the search, the 

algorithm iteratively explores neighboring solutions using 

a 2-opt segment reversal operator.  The operator works by 

selecting two random indices i and j along the current tour 

and reversing the entire subsequence between them. This 

creates a new tour in which a segment of the route is 

traversed in the opposite direction. The intuition behind 2-

opt is that many inefficient tours contain crossing edges, 

and reversing the segment between two points often 

eliminates these crossings, leading to a shorter overall 

path. Because of its ability to systematically remove such 

geometric inefficiencies, 2-opt is widely adopted in local 

search and metaheuristic optimization methods to produce 

substantial improvements in route quality with minimal 

computational overhead. 

Acceptance Mechanism - At each iteration, the 

candidate solution is evaluated by comparing its tour 

length to that of the current solution.  If the new solution 

yields a shorter tour, that is if:  𝐷𝑛𝑒𝑤 < 𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , then it is 

accepted deterministically. Otherwise, the new solution 

may still be accepted with a probability defined by the 

classical Metropolis criterion: 

𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑒
𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐷𝑛𝑒𝑤

𝑇  

This probabilistic acceptance allows the algorithm to 

escape local optima by admitting occasional uphill moves. 

Temperature Schedule - The temperature was 

initialized at a high value (10,000), enabling broad 

exploration in early iterations. A cooling factor 0.995 is 

applied at each step. 

𝑇𝑘+1 = 0.995 ∗ 𝑇𝑘 

As the temperature decreases, the probability of 

accepting inferior solutions diminishes, encouraging 

convergence toward an optimal or near-optimal tour. 

Convergence Tracking - The best distance found so 

far is logged periodically throughout the search, producing 

a convergence history curve. This allows for a detailed 

comparison of SA’s performance relative GA. 

For the standalone SA implementation, the following 

parameters were used: 

initial temperature T0=10000 

cooling rate α=0.995 

stopping condition T>1 

neighborhood: 2-opt segment reversal 

acceptance rule: Metropolis criterion 

logging interval: 100 iterations 

To account for stochastic variability, 30 independent 

runs were performed using run-level random seeds: 
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seed=4242+r with both random and numpy.random 

initialized per run to ensure full reproducibility. 

3.3.5 Additional experiments: robustness 

under noisy and incomplete data 

To further evaluate the robustness of the proposed 

metaheuristics (GA and SA), we conducted a set of 

supplementary experiments where the distance data were 

intentionally perturbed to simulate real-world 

imperfections. 

These imperfections represent measurement noise 

(GPS inaccuracies), and incomplete connectivity 

(unavailable or missing links between points of interest). 

(a) Perturbation model 

Starting from the original distance matrix D, a 

perturbed version D′ was generated using the function: 

𝐷𝑖𝑗
′ = 𝐷𝑖𝑗  ∗ (1 +  𝜖𝑖,𝑗),        𝜖𝑖,𝑗 ∈ [−𝜌, +𝜌] 

where 𝜌 ∈ {0.1, 0.2} denotes the amplitude of the 

multiplicative noise (±10–20%). Additionally, a random 

fraction 𝑟 ∈ {0.1, 0.2} of the entries were replaced with 

+∞ indicating missing edges (no direct connection 

between those nodes). This setup generated five test 

scenarios: 

- noisy10 (±10% noise) 

- noisy20 (±20% noise) 

- miss10 (10% missing edges) 

- miss20 (20% missing edges) 

- noisy15_miss15 (±15% noise, 15% missing 

edges combined) 

Each perturbed matrix was stored for reproducibility 

and used as input for both GA and SA with identical 

hyperparameters. 

(b) On-the-fly repair strategy 

In the presence of missing edges, direct distance 

evaluation would normally fail. To overcome this, we 

introduced an on-the-fly repair algorithm, a simple yet 

effective mechanism that restores connectivity 

dynamically during route evaluation. For any pair of 

consecutive nodes (𝑢, 𝑣) where𝐷′[𝑢, 𝑣] =  ∞, the repair 

procedure searches for an intermediate node k that 

minimizes the detour cost: 

𝐷𝑟𝑒𝑝𝑎𝑖𝑟(𝑢, 𝑣) = 𝑚𝑖𝑛(𝐷′[𝑢, 𝑘] + 𝐷′[𝑘, 𝑣]) where 𝑘 ≠

𝑢, 𝑣  

If such a node exists, the route temporarily diverts 

through k; otherwise, a large penalty value is assigned, so 

that the optimizer avoids this segment. 

This mechanism ensures that the optimization process 

remains feasible and continuous even in degraded or 

incomplete graphs, emulating real-time adaptive behavior. 

3.3.6 Hybrid Greedy + SA 

Following the analysis of the standard GA and SA 

heuristics, we introduced a third variant — Hybrid Greedy 

+ SA (Algorithm 3), to enhance anytime performance and 

robustness under incomplete or noisy distance data.  

The hybrid algorithm begins with a Greedy 

initialization, which quickly constructs a valid tour by 

iteratively selecting the nearest unvisited node. This step 

provides a feasible and near-optimal starting solution. 

After obtaining this initial tour, the algorithm enters the 

Simulated Annealing refinement phase, where it applies 2-

opt neighborhood moves to progressively improve the 

tour. At each iteration, a new candidate route is generated 

by reversing a random segment, and the change is 

accepted either if it improves the total distance or 

probabilistically if it is slightly worse, to avoid premature 

convergence. This two-stage design combines the speed 

and feasibility of Greedy construction with the exploratory 

power of Simulated Annealing, resulting in a fast yet 

robust method capable of maintaining good solution 

quality under noisy or incomplete data. 

Because the Hybrid algorithm starts from a high-

quality Greedy tour, it does not require the high initial 

temperature (T₀ = 10000) and slow cooling (α = 0.995) 

used in standalone SA to escape poor initial states. This 

allows the Hybrid configuration to allocate more 

computation to focused improvement rather than broad 

exploration, accelerating convergence without sacrificing 

robustness. The Hybrid Greedy + SA algorithm was 

executed with the following parameters: 

- initial temperature T0=5000 

- cooling rate α=0.996 

- stopping temperature T>1 

- neighborhood: 2-opt segment reversal 

- acceptance rule: Metropolis criterion 

- logging interval: 100 iterations 

- 30 independent runs with different random seeds 

- 2-hop repair and large penalty (1e12) for missing 

edges 

For perturbed data, 10–20% noise and missing edges 

were introduced, and the Hybrid Greedy + SA used 2-hop 

repair with a large penalty (1e12), while keeping the same 

annealing parameters (T0=5000, α=0.996, 30 runs). 

The experimental results in Section 4.5 directly assess 

its effectiveness under both clean and perturbed data 

conditions. The two-stage design—Greedy initialization 

followed by SA refinement—was specifically intended to 

accelerate convergence and enhance robustness when 

distance information is incomplete or noisy. The results 

presented in the section 4.5, validate this expectation: on 

clean data, the hybrid approach substantially reduces the 

optimality gap while maintaining competitive runtimes, 

and under noisy or incomplete distance matrices it 

preserves solution quality and feasibility more effectively 

than standalone GA or SA. Thus, the performance analysis 

confirms the practical benefits of the proposed hybrid 

strategy anticipated in the methodology, demonstrating its 

ability to deliver reliable and efficient itineraries across 

varying data scenarios. 

3.4 Realistic distance validation using 

openrouteservice 

To evaluate how geometric distance approximations differ 

from real-world travel distances within the urban 

environment of Tirana, we conducted an additional 

experiment that integrates route optimization with real 

street-network routing. 

Experimental Setup 
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The analysis was performed using: 

-Python 3.10+, OpenStreetMap (OSM) as the source 

of geographic coordinates for 31 tourist attractions in 

Tirana. 

-The Hybrid Greedy + SA metaheuristic implemented 

in Python to obtain an optimized visiting order based on 

Haversine (straight-line) distances. 

-OpenRouteService (ORS) API, which computes real 

walking distances using the actual street network derived 

from OSM. 

The workflow consisted of three major steps: 

-Build a full Haversine distance matrix for all 31 

points using their OSM lat/long coordinates. 

-Run the Hybrid Greedy + SA algorithm. 

-Evaluate the optimized tour using OpenRouteService 

to compute true, network-based walking distances 

between consecutive attractions. 

3.4.1 Visualization-based structural analysis of 

haversine and ORS routing models 

In addition to the primary optimization framework based 

on Haversine great-circle distances, we conducted a 

complementary routing experiment aimed at assessing 

how the choice of distance metric influences the structure 

of the optimized tour. The same set of 31 tourist locations 

was evaluated using two alternative distance models: (i) 

geometric Haversine distances, which provide a fast, API-

independent approximation of spatial proximity, and (ii) 

real walking distances obtained through the 

OpenRouteService (ORS) Matrix API. For the second 

model, the Hybrid Greedy + SA algorithm was executed 

directly on ORS-derived network distances to obtain a 

fully realistic, walkability-constrained shortest tour. This 

dual-routing setup enables a controlled methodological 

comparison between geometric and network-based 

optimization, ensuring that differences observed in the 

results can be attributed solely to the underlying distance 

model. The inclusion of both models strengthens the 

reliability of the experimental design and provides a 

foundation for understanding the impact of routing realism 

on itinerary planning. 

3.5 Mobile execution and deployability 

evaluation 

Since tourist route optimization is expected to run directly 

on users’ smartphones during real-world use, testing 

solely on desktop hardware does not reflect practical 

performance. The mobile execution experiment was 

therefore included to measure responsiveness under 

realistic computational constraints. 

To evaluate the real-world performance of the Hybrid 

Greedy + SA algorithm, we conducted an additional 

execution-time assessment on a mobile device. A 

lightweight web application (HTML/JavaScript/Leaflet) 

containing the full algorithm was deployed on GitHub 

Pages and installed on an iPhone as a Progressive Web 

App (PWA) using Safari’s “Add to Home Screen” feature. 

When launched, the application runs in standalone mode 

and executes all computations locally on the device’s 

JavaScript engine. 

To guarantee cross-platform reproducibility, we used 

the same deterministic seed schedule in both desktop 

(Python) and mobile (JavaScript) implementations. 

Specifically, each run was initialized with seed = 2025 + 

r, where r is the run index. This ensures that the stochastic 

trajectory of SA remains consistent across environments, 

enabling a fair comparison of results. Tests were 

performed on Samsung Galaxy A10 running Android 11 

using the GitHub Pages web-app. Execution time was 

measured using performance.now(), which provides high-

resolution, device-level timing. 

3.6 Output and visualization 

All results were recorded at both run and summary levels. 

The experimental framework saved distance and runtime 

data along with success indicators in CSV format at the 

run level. The summary statistics displayed the average 

values and standard deviations for all recorded metrics. 

The analysis included two types of visualizations which 

showed distance and runtime distributions through 

boxplots and displayed GA and SA convergence patterns 

through median and interquartile range curves. All visual 

content was generated at 600 dpi resolution to ensure high 

image quality. In addition, two map visualization was 

developed to demonstrate how the generated itineraries 

would perform in the actual geography of Tirana. 

4 Results and fiscussion 

4.1 Performance on small instance (N=7) 

Table 3 shows the results of BF and GA and SA when the 

number of attractions is seven. Reported metrics include 

mean and standard deviation of tour distance and runtime, 

success rate (percentage of runs achieving the best-known 

solution). 

Table 3: Comparative results of BF, GA, and SA for N=7 

attractions.  

 Dist_mean Dist_std T_mean T_std Succ 

BF 3886.4775 0 0.0069 0 100 

GA 3886.4775 1.39e-12 0.0890 0.0220 100 

SA 3886.6375 0.876156 0.0373 0.0180 96.66 

Taken together, the results demonstrate that for small 

problem sizes (N=7), all three methods reach or 

approximate the optimal solution, but their runtime 

characteristics differ. BF is the fastest in absolute terms for 

this small instance. GA guarantees optimality but incurs 

higher runtime overhead due to its population-based 

operations. SA trades a small loss in accuracy for 

significantly faster and more consistent runtimes then GA. 

Figures 1 and 2 (N = 7) show that both GA and SA 

consistently attain the BF-optimal tour length: the distance 

distributions are essentially indistinguishable, with 

identical medians (orange lines) and nearly identical 

means (triangles). In contrast, the runtime boxplots reveal 

a clear separation: SA runs faster on average and exhibits 
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lower variability, while GA shows higher median/mean 

times.  

 

Figure 1: Performance evaluation for N = 7, showing the 

distance distribution across 30 independent runs of GA 

and SA. Means (triangles) and medians (orange lines). 

 

Figure 2: Performance evaluation for N = 7, showing the 

runtime distribution across 30 independent runs of GA 

and SA. Means (triangles) and medians (orange lines). 

4.2 Results on the 10-attraction instance 

Table 4 compares the performance of BF, GA, and SA for 

itineraries with ten attractions. Reported metrics include 

mean and standard deviation of tour distance and runtime, 

success rate (percentage of runs achieving the best-known 

solution). 

Table 4: Comparative results of BF, GA, and SA for 

N=10 attractions.  

 Dist_mean Dist_std T_mean T_std Succ 

BF 4379.82 0 4.2005 0 100 

GA 4385.80 7.070 0.1063 0.0177 43.3 

SA 4383.69 5.231 0.0625 0.0108 43.3 

For N=10, BF produced the exact optimum in 4.20 s, 

which remains tractable at this scale but already illustrates 

the rapid increase in computational cost. Both GA and SA 

found near-optimal tours, yet their success rates dropped 

to 43.3%. Between the heuristics, SA achieved slightly 

shorter tours on average and faster runtimes, offering a 

more favorable balance of accuracy and efficiency than 

GA.  

To assess whether these differences are statistically 

significant, we complemented the descriptive results with 

bootstrap confidence intervals and Mann–Whitney U 

tests, as reported in Table 5. 

Table 5: Statistical comparison of GA and SA using 

bootstrap CIs (95%) and Mann–Whitney U tests (30 

runs). 

 Alg. Mean 

95% 

Bootstrap 

CI 

U  p-value 

D 

GA 
4385.80 

[4383.43, 

4388.38] 
536.5 1.953e-01  

SA 
4383.69 

[4381.99, 

4385.69] 

T GA 0.1202 
[0.1001, 

0.1126] 
891.0 7.39e-11 

 SA 0.0614 
[0.0587, 

0.0663] 
  

For tour distance (D), GA and SA have very similar 

mean values, and their 95% bootstrap confidence intervals 

overlap extensively. The Mann–Whitney test yields U = 

536.5, p = 1.953e-01, indicating no statistically significant 

difference in tour length between the two algorithms at 

this scale. 

For runtime (T), the difference is substantial. GA is 

nearly twice as slow as SA, and the confidence intervals 

do not overlap. The Mann–Whitney test gives U = 891.0, 

p = 7.39e-11, showing a highly significant advantage of 

SA in terms of execution time. 

Overall, the results show that both algorithms achieve 

comparable tour lengths, but SA is far faster and more 

computationally efficient. 

4.3 Large-scale performance (N=31) 

Under the latency constraint (≤90 s), Brute Force cannot 

be executed for N = 31 and is therefore excluded from the 

comparison. Tables 6 and 7 summarize the empirical and 

statistical results obtained from 30 independent runs of 

GA and SA. 

Table 6: Empirical performance of GA and SA for N = 

31 attractions (30 runs). BF timed out and is omitted 

 Dist_mean Dist_std T_mean T_std Succ 

G

A 10143.11 915.95 0.12 0.0138 0 

SA 6782.44 461.25     0.06 0.0082 3.33 

The statistical analysis in Table 6, confirms that SA 

strongly outperforms GA at N = 31 attractions spots. SA 

produces significantly shorter tours (mean = 6782.44 m) 

compared to GA (mean = 10143.11 m) and exhibits much 

lower variability (SD = 461.25 m vs 915.95 m). Runtime 

performance is similarly favorable to SA, which achieves 

0.06 s on average nearly twice as fast as GA, and with 

lower dispersion across runs. 
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Table 7: Statistical comparison of GA and SA using 

bootstrap CIs (95%) and Mann–Whitney U tests (30 

runs). 

 Alg. Mean 

95% 

Bootstrap 

CI 

U  p-value 

D 

GA 10143.11 
[9815.20, 

10449.87] 
900 3.02e-11 

SA 6782.44 
[6629.76, 

6947.91] 

T 

GA 0.1202 
[0.1153, 

0.1250] 
900 3.02e-11 

SA 0.0614 
[0.0584, 

0.0642] 

Success rates are low for both algorithms at this 

problem size (SA: 3.3%, GA: 0%). However, only SA is 

able to reach the best-known tour at least once (1/30 runs). 

The Mann–Whitney U tests for both distance and 

runtime yield U = 900 and p ≈ 3 × 10⁻¹¹, indicating highly 

statistically significant differences between GA and SA 

across all evaluated metrics. 

Overall, SA offers the best accuracy–efficiency trade-

off under real-time constraints, while GA becomes slower, 

less stable, and substantially less accurate as N increases. 

While Tables 6 and 7 summarize the final 

performance outcomes of both algorithms, Figures 3 and 

4 provide complementary insight by illustrating the 

optimization trajectory across iterations. These 

convergence plots show the median best-so-far tour length 

over 30 independent runs for N = 31, accompanied by the 

corresponding interquartile range (IQR) at each iteration. 

 

 

Figure 3: Convergence for N=31 over 30 runs of GA. 

Curve shows the median best-so-far tour length at each 

iteration; shaded band indicates the interquartile range 

(IQR) 

A quantitative estimation of convergence speed was 

also derived from the median curves. For GA, the 95% of-

final-value threshold (~10,500 m) is reached at 

approximately iteration 27–30. In contrast, SA reaches its 

95% threshold (~7,140 m) at iteration 9–10. This indicates 

that SA converges roughly three times faster than GA, 

supporting the observed efficiency gap in the empirical 

results. 

 

Figure 4: Convergence for N=31 over 30 runs of SA. 

Curve shows the median best-so-far tour length at each 

iteration; shaded band indicates the interquartile range 

(IQR) 

4.4 Robustness of the algorithms under 

noisy and incomplete data 

Tables 8-11 present the experimental results for both SA 

and GA under clean, noisy, and incomplete distance-

matrix scenarios. The experiments were performed on a 

fixed instance consisting of 31 tourist attractions in Tirana. 

The ΔDistance, ΔTime, and ΔGap indicators quantify 

the deviation from the clean baseline, while the 

Success_rate column reflects the algorithm’s consistency 

in recovering near-optimal tours under uncertainty. 

Dist_mean denotes the mean tour length (in meters) across 

30 runs, while ΔDistance (%) expresses the relative 

change in tour length compared to the clean baseline. 

T_mean (s) reports the average runtime, and ΔTime (%) 

quantifies the relative runtime increase under perturbation. 

Gap_mean (%) measures the deviation from the best-

known solution, and ΔGap (percentage points (pp) ) shows 

how this gap changes relative to the clean case. 

Success_rate (%) indicates the percentage of runs that 

exactly matched the best-known tour (ε = 0). 

To provide a clearer algorithm-specific interpretation 

of robustness under uncertainty, the following subsections 

analyze in detail the behavior of SA and GA separately, 

with respect to solution quality, runtime stability, and 

convergence reliability under noisy and incomplete 

distance-matrix conditions. 

4.4.1 SA robustness analysis 

This subsection examines the robustness of SA algorithm 

under progressively degraded data conditions, including 

missing distances and random noise. The analysis focuses 

on how perturbations affect tour length, solution 

optimality gap, success rate, and computational time, in 

comparison with the clean baseline scenario. Tables 8 and 

9 summarize the resulting performance metrics across all 

test cases. 

For SA, both the solution gap and success rate remain 

almost unchanged across all perturbation types, 

confirming the strong resilience of the method. 

Despite large relative increases in execution time 

(ΔTime% up to +2100%), the absolute runtimes remain 
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below 1.5 seconds, making SA highly practical even when 

the data are incomplete or noisy. 

Table 8: Comparative performance of SA algorithm 

under noisy and incomplete distance-matrix conditions, 

across all test scenarios. 

Scenario 
Dist_ 

mean 
ΔDist. 

Gap_ 

mean 
ΔGap 

Succ 

rate 

clean 6782.44 0 8.854 0 3.3 

miss10 7245.51 6.83 9.152 0.298 3.3 

miss20 7388.59 8.94 6.254 -2.6 3.3 

noisy10 6988.99 3.05 11.975 3.121 3.3 

noisy15_ 

miss15 
6778.24 -0.06 7.904 -0.95 3.3 

noisy20 6559.38 -3.29 8.838 -0.01 3.3 

Table 9: Runtime analysis of the SA algorithm under 

clean, noisy, and incomplete distance-matrix conditions, 

reporting mean execution time and its relative deviation 

from the clean scenario 

Scenario T_mean ΔTime 

clean 0.0653 0 

miss10 0.8435 1192.07 

miss20 1.439 2104.24 

noisy10 0.2362 261.84 

noisy15_miss15 1.0523 1511.93 

noisy20 0.2178 233.59 

 

The mean tour distance increases moderately under 

missing-edge scenarios (+6–9%), reflecting the expected 

effect of reduced connectivity, while under noisy 

conditions the distances fluctuate only slightly (±3%). 

Importantly, the solution gap remains within ±3 

percentage points of the clean baseline (from 8.85% to a 

maximum of 11.98%), showing that SA can adapt 

efficiently to both random noise and incomplete 

information. The success rate is fully stable (3.3%) across 

all tests, indicating deterministic convergence toward 

near-optimal tours. 

Overall, these findings demonstrate that SA degrades 

gracefully: its runtime scales with problem irregularity, 

but its solution quality and convergence behavior remain 

robust. This makes SA a reliable choice for real-world 

deployment, particularly in applications (e.g., mobile 

routing, tour recommendation) where the input data may 

be imperfect or partially missing. 

4.4.2 GA robustness analysis 

This subsection analyzes the robustness of GA under the 

same noisy and incomplete distance-matrix scenarios. The 

evaluation emphasizes variations in solution quality, 

optimality gap, feasibility preservation, and runtime 

overhead relative to the clean baseline. Tables 10 and 11 

report the corresponding performance indicators. 

Tables 10 and 11 demonstrate that, for GA, both the 

solution gap (ΔGap) and the runtime overhead (ΔTime) 

increase noticeably under missing and noisy distance 

conditions, indicating a high sensitivity to data 

degradation. Although GA consistently produces feasible 

tours across all scenarios, these tables clearly show that its 

solution quality varies substantially more than that of SA. 

Table 10: Comparative performance of GA algorithm 

under noisy and incomplete distance-matrix conditions, 

across all test scenarios 

Scenario 
Dist_ 

mean 
ΔDist 

Gap_ 

mean 
ΔGap 

Succ 

rate 

clean 10143.11 0 62.791 0 0 

miss10 10186.23 0.43 53.454 -9.34 0 

miss20 10568.79 4.2 51.988 -10.80 0 

noisy10 10085.95 -0.56 61.594 -1.19 0 

noisy15 

miss15 
10452.92 3.05 66.403 3.61 0 

noisy20 10185.24 0.42 69.001 6.21 0 

Table 11: Runtime analysis of the GA algorithm under 

clean, noisy, and incomplete distance-matrix conditions, 

reporting mean execution time and its relative deviation 

from the clean scenario 

Scenario T_mean ΔTime 

clean 0.1403 0 

miss10 1.6976 1109.78 

miss20 2.4688 1659.35 

noisy10 0.3219 129.41 

noisy15_miss15 1.7458 1144.17 

noisy20 0.3576 154.86 

 

Under missing-edge perturbations (miss10–miss20), 

the gap decreased slightly (≈ −9 to −11 pp) due to the on-

the-fly repair mechanism that bypassed broken links, but 

this came at a significant computational cost, with runtime 

increases exceeding +1100–1600%. Similarly, when 

random noise was applied (±10–20%), GA exhibited 

relatively stable distances (ΔDistance < 1%) but still 

required additional iterations, leading to +130–150% 

longer runtimes. In the combined case (noisy15 + miss15), 

GA’s mean gap reached ≈66%, showing that its 

population-based search is more sensitive to irregular 

graph structures compared with SA’s single-solution 

adaptive exploration.  

Across all experimental scenarios, the GA algorithm 

consistently produced complete and connected tours, 

confirming that the proposed on-the-fly link-repair 

mechanism effectively preserves route connectivity even 

when distance information is missing or corrupted. 

Overall, GA shows strong reliability in maintaining 

feasible tours under data degradation, but its efficiency is 

notably weaker: although it remains capable of 

constructing complete routes, its performance deteriorates 

much more rapidly than SA with respect to runtime and 

solution optimality. 

Figure 5 complements Tables 8–11 by illustrating the 

anytime trade-off between solution quality (Gap %) and 
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runtime (s) for both algorithms (SA and GA) under the 

same set of perturbation scenarios. Each point corresponds 

to the mean performance of a given scenario (clean, noisy, 

or incomplete), allowing a direct visual comparison of 

robustness and efficiency. 

 

Figure 5: Anytime trade-off between solution quality 

(Gap %) and execution time (s) for GA and SA across 

clean, noisy, and incomplete data scenarios. 

Each point corresponds to the mean performance of a 

given scenario (clean, noisy, or incomplete), allowing a 

direct visual comparison of robustness and efficiency. The 

plot clearly shows that SA (orange triangles) consistently 

achieves lower gaps with sub-second runtimes, while GA 

(blue circles) requires longer execution times and exhibits 

larger variability in solution quality, especially under 

missing-edge conditions. These visual trends confirm the 

tabular findings, that SA degrades smoothly and maintains 

stability under noisy and incomplete data, whereas GA’s 

performance is more sensitive to data imperfections 

4.5 Performance of the Hybrid Greedy + 

SA (Algorithm 3) 

4.5.1 Performance on clean data 

The Hybrid Greedy + SA algorithm was first evaluated on 

the clean dataset (no missing or noisy distances) to 

establish a baseline for performance comparison against 

the standalone GA and SA methods. The experiment 

contained 31 tourist attractions. As shown in Table 12, the 

hybrid approach achieved a significantly lower mean gap 

(≈ 1.86%) compared to SA (8.85%) and GA (62.79%), 

while maintaining a moderate runtime (≈ 0.25 s) and the 

highest success rate (10%). These results demonstrate that 

initializing SA with a Greedy heuristic drastically 

improves both convergence speed and solution quality, 

providing near-optimal tours at minimal computational 

cost. 

 

 

 

 

Table 12: Baseline results for GA, SA, and Hybrid 

Greedy + SA on clean data. 

Alg. Dist_ 

mean T_mean Succ 

Gap_ 

mean 

Hybrid 
6342.551 0.2499 10% 1.860 

SA 
6782.44 0.0653 3.3% 8.854 

GA 
10143.11 0.1403 0% 62.791 

The results show that the Hybrid method consistently 

outperforms SA in terms of tour quality: its mean distance 

is substantially lower, and its confidence interval is 

considerably narrower, indicating both better performance 

and reduced variability. For execution time, SA is 

significantly faster, as expected from its simpler stochastic 

refinement process. The Hybrid method incurs a higher 

computational cost due to the deterministic greedy 

initialization and more intensive local search.  

Table 13 provides a statistical comparison between 

SA and the Hybrid Greedy+SA algorithm using 95% 

confidence intervals and Mann–Whitney U tests over 30 

independent runs.  

Table 13: Statistical comparison of SA and Hybrid 

Greedy+SA using 95% CIs and Mann–Whitney U tests 

(30 runs). 

  Alg. Mean 95% CI U p-value 

D 

SA 6782.4 

[6626.47, 

6946.74] 

824 2e-08 

Hybrid  6342.6 

[6319.59, 

6364.00] 

T 

SA 0.067 

[0.06363, 

0.07070] 

0 3.02e-

11 

Hybrid  0.249 

[0.24373, 

0.25625] 

The Mann–Whitney U tests confirm that both distance 

and time differences between the two algorithms are 

statistically significant, with p-values far below the 

standard 0.05 threshold. This validates that the observed 

improvements in solution quality—and the corresponding 

increase in runtime—are not due to random variation but 

reflect systematic differences in algorithmic behavior. 

Overall, the statistical evidence demonstrates that 

Hybrid Greedy+SA achieves the best accuracy among the 

compared methods, while SA offers superior speed, 

reflecting a clear trade-off between solution quality and 

runtime. 
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Figure 6: Comparison of GA, SA, and Hybrid Greedy + 

SA on clean data, showing the trade-off between runtime 

and optimality gap.  

Figure 6, visualizes the clean baseline comparison of 

the three algorithms. The Hybrid Greedy+SA achieves a 

much smaller gap than both GA and SA while maintaining 

a sub-second runtime, confirming its strong potential for 

real-time applications in urban itinerary optimization.  

4.5.2 Robustness under noisy and incomplete 

data 

This section presents the comparative performance of the 

three algorithms: GA, SA, and the proposed Hybrid 

Greedy + SA, when evaluated under a combined 

perturbation scenario (noisy15_miss10). In this 

configuration, 15% of the pairwise distances were 

randomly perturbed with Gaussian noise, while 10% of the 

graph edges were removed to simulate missing or 

unreliable connectivity data. This setting reflects realistic 

conditions for low-infrastructure urban contexts, where 

digital maps or open data repositories often contain 

incomplete or imprecise geospatial information. 

As shown in Table 14 and Figure 7, both GA and SA 

experience a degradation in performance when the data 

become noisy or incomplete, whereas the Hybrid Greedy 

+ SA maintains lower gap values and stable success rates. 

Table 14: Comparative performance of Genetic 

Algorithm (GA), Simulated Annealing (SA), and Hybrid 

Greedy + SA under the combined perturbation scenario 

(noisy15_miss10). 

Scenario: noisy15_miss10 

Alg. Dist_mean 

T_ 

mean Succ. 

Gap_ 

mean 

Hybrid  7303.99 0.942 3.3% 7.421 

SA 7365.73 0.767 0% 8.329 

GA 10732.95 1.407 0% 57.852 

This demonstrates that initializing SA with a Greedy 

heuristic seed improves the anytime performance and 

robustness of the algorithm, even when link failures or 

measurement errors occur. While GA suffers from a 

substantial increase in gap (≈ 58%) and runtime, the 

hybrid method preserves feasibility and remains 

computationally efficient, maintaining sub-second 

runtimes (≈ 0.94 s) and a mean gap of 7.4%. 

 

Figure 7: Performance comparison of GA, SA, and 

Hybrid Greedy + SA under the noisy15_miss10 scenario 

Overall, the results confirm that the Hybrid Greedy + 

SA algorithm achieves a superior balance between 

robustness and efficiency, sustaining near-optimal 

solution quality even when data imperfections degrade the 

performance of traditional metaheuristics. 

4.6 Comparison between straight-line and 

real route distances 

To evaluate how the optimized itinerary behaves under 

real-world travel conditions, we compared the total 

straight-line distance produced by the Hybrid Greedy + 

SA algorithm with the actual routed distance obtained 

through the OpenRouteService (ORS) API. The optimized 

tour was first generated using Haversine distances 

computed from OpenStreetMap-based coordinates of 31 

tourist attractions in Tirana. This straight-line model 

provides a simplified and computationally efficient 

geometric approximation commonly used in TSP and 

metaheuristic optimization research. 

After the best tour was obtained, each consecutive 

pair of points was re-evaluated through ORS using the 

pedestrian routing profile. ORS calculates the true 

walking distance by following the real street network 

extracted from OpenStreetMap, thereby incorporating the 

constraints of urban geometry, pedestrian paths, 

intersections, and block structures. 

The comparison revealed the following quantitative 

results: 

• Total distance, Haversine: 6.193 km 

• Total distance, ORS (real path): 10.165 km 

• Deviation ratio (ORS / Haversine): 1.641 

This shows that the true walkable distance across the 

full itinerary is approximately 64.1% longer than the 

geometric estimate. Such a deviation is expected in 

compact urban areas where direct point-to-point 

movement is constrained by building blocks, curved or 

discontinuous pedestrian paths, irregular street patterns, 

and one-way routing segments. The observed ratio of 

≈1.64 reflects the natural divergence between idealized 

great-circle distances and actual walkable routes in dense 

city environments. 
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Importantly, although real-world distances differ, the 

relative spatial structure is preserved: closer points remain 

proportionally close, and distant points remain 

proportionally distant. This confirms that Haversine-based 

optimization provides a valid and computationally 

efficient foundation for comparing algorithmic 

performance. The post-evaluation using ORS reinforces 

the robustness of the optimized route and highlights the 

practical relevance of the proposed method. 

4.6.1 Impact of routing method on the 

optimized itinerary 

To further understand how the routing model affects not 

only the measured distance but also the structure of the 

optimized path, we performed a second experiment using 

the same set of 31 tourist locations. The Hybrid Greedy + 

SA algorithm was executed directly on ORS-derived real 

walking distances, rather than on Haversine distances. In 

this configuration, the algorithm produced an optimized 

tour of 9.355 km, which is shorter than the 10.165 km 

obtained when the Haversine-optimized itinerary was 

evaluated using ORS. This confirms that the true optimal 

tour under realistic routing constraints is indeed different 

from the one derived using geometric distances. 

To illustrate these differences more clearly, Figure 8 

and Figure 9 present the visualized itineraries generated 

by the two methods. 

 

Figure 8: Optimized itinerary generated using the Hybrid 

Greedy + SA algorithm with Haversine great-circle 

distances. 

 

Figure 9: Optimized itinerary produced by applying the 

Hybrid Greedy + SA algorithm directly on real walking 

distances obtained through OpenRouteService (ORS). 

The first map depicts the Haversine-based optimized 

tour, while the second shows the route obtained when the 

algorithm operates directly on real network distances. 

Although the total walking length differs substantially, 

due to pedestrian detours, street geometry, and one-way 

routing rules, the overall spatial layout of the itinerary 

remains similar. Clusters of nearby attractions, the 

direction of traversal across the city, and local segment 

orderings are largely preserved. 

These visual comparisons demonstrate that the 

Haversine model successfully captures the geometric 

structure of the underlying optimization problem, while 

ORS primarily adjusts for real-world walkability 

constraints. Consequently, the maps strengthen the 

conclusion that Haversine-based optimization is suitable 

for fast, offline, and resource-efficient computation, 

whereas ORS is best used for post-validation and final 

distance refinement. By combining the optimization 

outcomes with their spatial context, the resulting 

visualizations offer an interpretable and actionable view 

of each tour, reinforcing the algorithm’s suitability for 

applications in urban tourism planning, smart-city route 

recommendation, and pedestrian navigation support. 

4.7 Mobile execution results 

To assess performance on low-end hardware, the Hybrid 

Greedy + SA algorithm was executed on a Samsung 

Galaxy A10 running Android 11 (One UI 3.1). Using the 

same JavaScript implementation via the mobile browser, 

the full 31-point itinerary was optimized in approximately 

0.24 seconds, confirming real-time capability even under 

constrained processing resources. The mobile run 

produced the same tour ordering as the desktop 

implementation, with only minor numerical differences in 

distance caused by standard floating-point variations 

between Python and JavaScript. These results demonstrate 

that the method remains practical and responsive on 

budget mobile phones, strengthening its suitability for 

deployment in real-world mobile tourism applications. 

Similarly, tests on an iPhone 13 (iOS 17) demonstrated 

robust performance, with an average execution time of 

0.05 seconds over 30 runs. These results confirm that the 

complete optimization pipeline including initialization, 

search, and rendering can execute locally on mainstream 

mobile devices without requiring server interaction. 

Figure 10 presents the web-based interface running as a 

standalone Progressive Web App (PWA), added to the 

home screen, supporting local execution, route 

visualization over Tirana via Leaflet, and precise timing 

feedback. The application operates as a standalone 

Progressive Web App (PWA) after being added to the 

home screen. 

5 Discussion 
This work presents a reproducible, deployment-oriented 

evaluation of exact and metaheuristic solvers for urban 

tourist itineraries using open map data [15]. Although the 

experimental analysis is limited to Tirana, the 

methodology and algorithms are city-agnostic and can be 
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directly applied to other urban contexts once attraction 

coordinates are available. The choice of Tirana reflects the 

study’s focus on cities with limited digital infrastructure 

rather than dataset-specific characteristics. The findings 

support a simple operational rule: for cities with limited 

digital infrastructure, Simulated Annealing (SA) provides 

the best accuracy–efficiency trade-off under realistic 

latency constraints; Genetic Algorithm (GA) remains 

competitive at small scales but becomes less stable as the 

problem size (N) increases, while Brute Force (BF) serves 

primarily as an offline validator rather than a practical 

solver. The inclusion of the Hybrid Greedy + SA variant 

further strengthens these conclusions, showing that 

combining a deterministic initialization with stochastic 

refinement improves both convergence stability and 

resilience under uncertainty. 

 

Figure 10: Execution of the Hybrid Greedy + SA algorithm directly on an iPhone 13 browser as a Progressive Web 

App. (a) Initial input with 31 attraction coordinates. (b) Runtime output and best tour ordering with stable distances 

across 30 runs. (c) Visualization of the optimized route over Tirana using Leaflet. The full optimization completes in 

under 0.05 seconds, confirming responsiveness on mobile devices 

5.1 Design trade-offs: haversine vs. 

network routing 

The present implementation computes pairwise distances 

using the Haversine formula, which provides a fast, 

lightweight, and fully reproducible measure of separation 

between geographic coordinates. This choice deliberately 

avoids reliance on external routing APIs and heavy graph-

processing engines, making the method suitable for 

deployment in settings with limited connectivity or 

computational resources. Such characteristics are 

particularly relevant for urban environments like Tirana, 

where practical applications may need to operate offline, 

at low cost, or within platforms that cannot depend on 

persistent access to cloud-based routing services. 

However, Haversine distances do not account for the 

structure of the street network, pedestrian pathways, one-

way segments, or other real travel constraints. To quantify 

the impact of this simplification, our study conducted a 

secondary evaluation using OpenRouteService (ORS), 

which computes walking routes based on the actual 

OpenStreetMap road and pedestrian network. Applying 

ORS to the optimized Haversine-based tour showed that 

the actual routed distance is about 30.9% longer than the 

geometric estimate, a deviation expected in dense urban 

environments where movement is constrained by building 

blocks and irregular street layouts. Despite this difference, 

the experiment shows that the relative spatial structure of 

the problem is preserved: points that are close remain 

proportionally close, and the ranking of distances does not 

change substantially. Thus, the optimization landscape 

explored by the GA, SA, and Hybrid algorithms remains 

meaningful even when using Haversine. The Haversine 

model provides a stable and computationally efficient 

abstraction for algorithmic comparison, while the ORS-
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based evaluation confirms how geometric solutions 

translate into realistic walking distances. 

5.2 Generalization and scalability 

Although the experimental analysis focused primarily on 

instances with 31 locations, additional tests were 

conducted on a larger dataset containing 49 tourist points 

to assess scalability. The results confirmed the same 

performance trends: SA consistently achieved much 

shorter tours and lower optimality gaps than GA, while 

maintaining sub-second runtimes (≈ 0.08 s). In contrast, 

GA exhibited a substantial degradation in solution quality, 

with mean gaps exceeding 56% and increased variability. 

This indicates that the advantages of SA not only persist 

but become more pronounced as problem size grows, 

suggesting better scalability and robustness for larger 

urban itinerary planning scenarios. In addition, the Hybrid 

Greedy + SA algorithm maintained its performance 

advantages when the problem size increased. For the 

larger instance (N = 49), the hybrid method achieved a 

remarkably low mean optimality gap of only 2.64%, 

substantially outperforming both GA (56.31%) and SA 

(9.07%) under the same conditions. Although runtime 

increased to approximately 0.42 s, this growth remained 

moderate and well within real-time applicability 

thresholds. Notably, the hybrid approach preserved 

solution stability, as reflected by the very small variability 

across runs (Gap_std ≈ 1.17%), indicating that the Greedy 

initialization continues to provide high-quality starting 

tours even in larger search spaces, while the SA 

refinement efficiently exploits local structure. These 

results suggest that the hybrid strategy scales more 

gracefully than standalone heuristics, retaining both 

accuracy and robustness as the number of attractions 

grows. 

5.3 Future integration with dynamic and 

real-time data 

Building on the demonstrated robustness and anytime 

performance of the proposed algorithms, future extensions 

will focus on dynamic and real-time optimization. The 

current framework, which operates on a static distance 

matrix, can be enhanced with live contextual data such as 

real-time traffic flow, temporary event schedules, and user 

preference feedback. 

For instance, the Hybrid Greedy + SA model could 

dynamically re-weight edges based on live travel times, 

temporary pedestrian restrictions, or the user’s evolving 

interests (e.g., preference for cultural sites or shorter 

walking routes). Integrating such adaptive data streams 

would transform the current approach into a context-aware 

recommender system, capable of updating feasible 

itineraries on the fly. 

This direction aligns with current trends in smart 

tourism and mobility-as-a-service, where systems must 

maintain robustness under uncertainty while delivering 

personalized and real-time route adjustments for end 

users. 

6 Conclusion 
In conclusion, this study contributes both 

methodological clarity and practical relevance. By 

framing one-day tourist itinerary generation as a TSP and 

benchmarking exact and metaheuristic solvers on real-

world map data, it shows how even simple algorithms can 

inform the design of deployable systems for cities with 

limited digital infrastructure. The comparative analysis 

demonstrates that while BF provides an exact validation 

baseline, GA and especially SA deliver scalable, near-

optimal solutions under realistic constraints. The extended 

experiments under noisy and incomplete distance data 

further confirmed SA’s robustness, showing minimal 

degradation in solution quality despite input uncertainty. 

Moreover, the introduction of the Hybrid Greedy + SA 

variant significantly improved both convergence speed 

and accuracy, achieving the lowest mean gap and 

maintaining sub-second runtimes even under data 

perturbations, confirming that combining a deterministic 

greedy start with stochastic refinement enhances both 

reliability and efficiency.  

The mobile execution results demonstrate that the 

proposed Hybrid Greedy + SA method is practical for 

deployment in real tourist applications. The ability to 

compute optimized routes directly on the smartphone 

without cloud computation enhances system robustness, 

enables offline functionality, and reduces dependency on 

external APIs. The sub-second performance observed on 

the iPhone indicates that the algorithm provides an 

acceptable user experience even on mobile hardware with 

limited computational resources. From a system-design 

perspective, the successful mobile execution demonstrates 

that lightweight metaheuristics can reliably support real-

time decision-making in e-tourism scenarios, where users 

typically depend on smartphones while navigating urban 

environments. The results strengthen the external validity 

of the proposed method and confirm its suitability for 

integration into practical mobile routing tools. 

Furthermore, the demonstrated efficiency on resource-

constrained hardware positions such techniques as strong 

candidates for next-generation smart-tourism systems, 

where applications may incorporate richer contextual 

information, preference-aware routing, and multi-day 

itinerary planning. In this way, the study effectively 

bridges algorithmic research with applied urban-tourism 

needs, offering actionable insights for both academia and 

practice. 
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