
https://doi.org/10.31449/inf.v49i36.12204 Informatica 49 (2025) 217–232 217

Comparative Metaheuristic Approaches to Tourist Itinerary

Optimization in Low-Infrastructure Urban Contexts: A Case Study

of Tirana

Alketa Hyso*, Dezdemona Gjylapi

Department of Computer Science, Faculty of Technical and Natural Sciences, University “Ismail Qemali”, Albania

E-mail: alketa.hyso@univlora.edu.al, dezdemona.gjylapi@univlora.edu.al
*Corresponding author

Keywords: tourist itinerary planning, route optimization, Tirana, genetic algorithm, simulated annealing, brute force,

hybrid Greedy–SA algorithm

Received: September 29, 2025

Tourist itinerary planning is a central component of smart tourism, yet it remains challenging in

developing cities where computational resources and digital infrastructure are limited. This study

examines Tirana, Albania, as a representative case for urban pedestrian-based tourist itinerary

optimization. The analysis is carried out using both exact and heuristic optimization techniques, including

Brute Force, Genetic Algorithm (GA), Simulated Annealing (SA), and a Hybrid Greedy + SA approach

that integrates deterministic initialization with stochastic refinement. Distances between attractions were

derived from OpenStreetMap, enabling fully reproducible experiments conducted on multiple datasets

representing different sets of attractions with increasing size and under varying conditions, including

ideal, noisy, and incomplete information. The results show that while exact computation rapidly becomes

impractical as the instance size grows, metaheuristic methods, particularly SA and the hybrid variant

consistently deliver high-quality and stable solutions. To evaluate real-world applicability under digital

and computational constraints, the hybrid algorithm was implemented as a mobile-ready Progressive Web

App and executed entirely on a resource-constrained device, demonstrating near-instantaneous

optimization and confirming its feasibility for fully on-device use without reliance on backend servers.

Overall, the study shows that lightweight metaheuristics, especially the Hybrid Greedy + SA method, offer

a robust, scalable, and mobile-ready approach to urban tourism itinerary planning, suitable for

deployment in environments with limited computational and infrastructural resources.

Povzetek: Študija pokaže, da so lahki hevristični algoritmi primerni za hitro načrtovanje turističnih poti

tudi tam, kjer so računalniški viri in digitalna infrastruktura omejeni.

1 Introduction
Urban tourism functions as a major driver for city

development because visitors seek to experience as much

as possible during their brief urban visits. Tourism

depends on digital services to let customers reserve

accommodations and arrange their travel schedules [1],

and Industry 4.0 technologies (AI, IoT, blockchain) create

better visitor experiences [2]. However, this digital

transformation has not been evenly distributed. In Tirana,

the capital of Albania and one of the country’s most

rapidly developing tourist destinations, the growing

number of visitors faces persistent difficulties due to the

city’s limited digital infrastructure. The city lacks the

technological resources needed to support visitors in

organizing and optimizing their travel plans [3]. The

country of Albania does not have a unified national

tourism portal which provides standardized information

and booking capabilities and customized travel

recommendations. The current promotional apps “Visit

Tirana” [4], “Albania Tourist Guide” [5] fail to provide

optimized routes and personalized itineraries and direct

access to actual transportation services and do not have an

e-ticketing system for public attractions.

The majority of visitors must rely on static maps and

general platforms because of this gap which produces

suboptimal routes and inconsistent travel experiences. The

solution needs to use light-weight computational methods

that operate within local boundaries and work within

municipal or regional systems.

The research investigates three main questions about

the trade-offs between solution quality and execution time

when using exact and metaheuristic methods for day-trip

itinerary planning. (Q1) How do exact and metaheuristic

approaches trade off solution quality versus execution

time for day-trip itineraries? Q2) How does performance

scale with the instance size - the number of attractions

(N)? Q3) Can lightweight metaheuristics be effectively

implemented on resource-constrained mobile devices,

enabling practical itinerary optimization without backend

infrastructure?

We cast one-day tourist itinerary planning as a

Travelling Salesperson Problem (TSP) and compare an

exhaustive search Brute Force (BF) baseline with two

mailto:alketa.hyso@univlora.edu.al
mailto:dezdemona.gjylapi@univlora.edu.al

218 Informatica 49 (2025) 217–232 A. Hyso et al.

metaheuristics—Genetic Algorithm (GA) and Simulated

Annealing (SA) implemented in Python and evaluated on

real inter-attraction distances for Tirana derived from

OpenStreetMap. We report tour length (m), runtime (s),

and success rate across multiple values of N, in Section 3.

The success rate counts only runs whose tour length

exactly matches the best-known solution.

This study makes three principal contributions: (i) a

deployable evaluation framework for optimizing urban

tourist routes using open map data in resource-constrained

environments; (ii) realistic benchmarks that quantify the

speed–accuracy trade-off on standard hardware; and (iii)

an implementation pathway that enables cities with

limited digital infrastructure to adopt the solution. The

remainder of the paper is organized as follows: Section 2

reviews related work; Section 3 describes the the

experimental setup, and the optimization methods,

including BF, GA, SA, and the proposed Hybrid Greedy

+ SA. It also details the robustness experiments under

noisy and incomplete distance data, the validation of

straight-line distances against OpenRouteService walking

routes, and the mobile execution experiment on mobile

hardware. Section 4 presents the empirical results across

different problem sizes, robustness scenarios, and routing

models, as well as the comparative performance of the

hybrid approach on clean and perturbed data. Section 5

discusses the main design trade-offs between Haversine

and network-based routing, generalization to larger

instances, and the implications for smart-tourism

applications in low-infrastructure cities. Finally, the

concluding section summarizes the key findings,

highlights the practical relevance of lightweight

metaheuristics for mobile itinerary planning.

2 Related work
The field of urban itinerary optimization exists in two

main forms which include the Tourist Trip Design

Problem (TTDP) that handles preferences and time and

budget constraints and opening hours [6] or as adaptations

of the Travelling Salesperson Problem (TSP) for tourism

applications, which focus primarily on shortest paths. The

main distinction between TTDP variants and TSP-style

research emerges from their distinct methods for

evaluating user satisfaction under various constraints

because TTDP variants handle multiple restrictions yet

TSP-style studies focus on efficient solutions with basic

assumptions.

Beyond this distinction, recent work has examined

several directions. Sylejmani et al. (2024) use Iterated

Local Search to personalize tours under thematic (e.g.

visiting a museum before a restaurant and cultural sites

before natural sites), temporal, and financial constraints

[6], while Zhang et al. (2008) incorporate perceptual

dimensions by blending path optimization with visual

experience, mining web data to approximate the

“visibility” or scenic value of attractions [7]. Adamo et al.

(2022) explore multimodality, combining walking and

driving routes to create more realistic itineraries [8]. Tang

et al. (2024 demonstrates how large language models

(LLMs) can transform unstructured user requests into

optimized travel plans [9]. Souffriau et al. (2008) further

show that guided local search can efficiently solve

orienteering-based TTDPs directly on mobile devices,

highlighting the viability of lightweight metaheuristics for

on-device itinerary generation [10]. While exact methods

offer optimality guarantees, they are often limited by

scalability. Androutsopoulos & Zografos (2008) address

multimodal itinerary planning with strict sequencing and

time window constraints using an exact dynamic

programming approach based on problem decomposition

[11]. In contrast, the integration of hybrid algorithms with

metaheuristics has proven effective in addressing complex

optimization problems. Mangini et al. (2021) use graph

theory, Integer Linear Programming (ILP), and a multi-

algorithm strategy to generate one-day tourist routes that

minimize travel time while reflecting user preferences

[12]. Several studies show that combining SA with A* can

generate fast and efficient tours [13]; Li et al. (2022) apply

a knowledge-based hybrid Ant Colony Optimization

algorithm enhanced with bacterial foraging to address

group-based tourist satisfaction under capacity and

preference constraints, with a focus on efficient tourist

route planning [14]; GAs achieve improved results with

faster convergence in tourist route optimization, while K-

means clustering followed by GA optimization supports

the creation of personalized tourist sequences [15].

Context-aware TTDP applies fuzzy-logic-enhanced

metaheuristics to model contextual constraints [16]; fuzzy

systems further support uncertainty management in

attraction planning, resource evaluation, and decision-

making [17, 18].

To synthesize these trends, we provide a structured

comparison, Table 1, showing how prior work varies

across problem formulations, algorithmic strategies,

constraints, and data scales. While prior studies often

assume rich mobility datasets, multimodal transport

layers, or server-side computational capabilities, they

collectively establish that metaheuristics are well-suited

for real-time itinerary planning.

The present study extends prior work by addressing a

gap not sufficiently explored: itinerary optimization in

resource-constrained environments with limited digital

infrastructure. In contrast to models that depend on

transport schedules, multimodal networks, or complex

personalization layers, our approach uses only geometric

distances from OpenStreetMap, ensuring a lightweight

and reproducible formulation. We adopt a deployment-

oriented perspective by evaluating three solvers (Brute

Force, GA, SA) across multiple data regimes and by

implementing a Hybrid Greedy + SA solver as a mobile-

ready Progressive Web App. Computing optimized

itineraries entirely on-device, without backend support

and with near-instantaneous runtime, highlights the

practicality and scalability of the proposed approach for

cities with constrained computational resources, limited

connectivity, or incomplete digital maps.

Comparative Metaheuristic Approaches to Tourist Itinerary… Informatica 49 (2025) 217–232 219

Table 1: Summary of representative tourist itinerary planning approaches

Ref Problem / Model Main Algorithm Constraints Scale / Data

[10] TTDP modelled as

orienteering problem

(OP) for mobile guides

Guided local search

metaheuristic

Time budget, POI scores,

personalization on mobile

Real data, city of

Ghent

[6] Extended TTDP as multi-

constraint team

orienteering problem with

time windows

(MCTOPTW) with

patterns.

Local search / Iterated

local search (ILS)-based

metaheuristics

Time, budget, multi-

knapsack; POI category

patterns

146 instances, city-

scale test set

[8] Multi-modal TTDP (road

+ pedestrian)

Ad-hoc ILS Time windows, visit

duration, multimodal

car+walking

Up to 3 643 POIs,

7-day horizon

[9] Open-domain urban

itineraries (OUIP)

LLM + cluster-aware

spatial optimization

Natural-language requests;

dynamic POIs; citywalk

4 Chinese cities,

1200+ itineraries

[16] Context-aware TTDP MGA + fuzzy logic a-

posteriori evaluation

Contextual constraints (e.g.

accessibility, safety).

Case study,

Granada (mobility-

impaired)

[13] TTDP with GIS-grounded

multimodal routing

Hybrid SA + A*

(metaheuristic +

heuristic)

GIS/OSM paths, POI

distances, real pedestrian

network, personalization

Fez Medina, 15

POIs, 9400 paths

[14] Tourism route planning

(TRP)

Knowledge-based

Hybrid Ant Colony +

Bacterial Foraging

Tourist satisfaction model,

clustering, capacity limits

1000 tourists; 300-

1300 paths

[11] Multi-criteria time-

dependent itinerary

planning with mandatory

intermediate stops in a

multimodal fixed-

schedule network

Dynamic Programming

after problem

decomposition into

elementary sub-problems

Ordered multimodal

routing with strict time

windows at origin,

destination, and

intermediate stops.

Test network with

900 nodes, 930

service links,

12,000 interchange

links, 100 services;

[12] One-day TTDP-style

round trip with

outward/return itineraries

on an urban PoI graph

Multi-level heuristic

combining ILP-based

symmetric TSP with

graph-based PoI

exchange/add/delete

procedures

Single-day itinerary

planning with PoI

priorities, visit durations,

mode-dependent travel

times (walk/transit), and

interactive user

customization.

Case study: Bari

(Italy) PoI network,

realistic travel-time

matrix; cruise-

tourist one-day

scenario

[7] Tourist route planning

with scenic-visibility

scoring

Web-based POI

extraction + GIS routing

+ 3D visibility

computation

Personalized POI selection;

scenic-visibility

optimization; road-network

routing

Prototype system;

Japan (multiple

scenic sites; DEM

50m grid)

[15] Tourism path

recommendation from

survey & social-media

objectives (cluster + TSP)

GA-enhanced k-means

for clustering + GA for

optimal tour

Multi-objective (12 internal

& external tourism criteria);

Survey (600

visitors) +

TripAdvisor data

for 6 POIs in Port

Sudan, Red Sea

State (Sudan)

3 Methods and materials

3.1 Experimental setup

All algorithms were implemented in Python and executed

under the same computational environment to ensure a fair

comparison. Experiments were conducted on a Windows

10 Pro (64-bit) system equipped with an Intel Core i7-

7500U 2.70 GHz processor and 12 GB of RAM. All runs

were performed in Python 3.12.2 using JupyterLab 4.1.2

as the development interface. Core libraries and package

versions are listed in the project’s requirements.txt, and

the complete code and environment specifications are

available in the project’s GitHub repository [17].

Each method — including GA, SA, and the Hybrid

Greedy + SA variant — was independently executed 30

times. To ensure reproducibility, each run used a

deterministic seed. This repeated-run protocol guarantees

statistical robustness, allowing the computation mean for

all main performance metrics: tour distance, execution

220 Informatica 49 (2025) 217–232 A. Hyso et al.

time, solution gap, and success rate. The reported values

in all tables therefore represent the average performance

across these 30 independent executions per scenario

(clean, noisy, or incomplete). Brute Force was attempted

in all cases, but when the 90-second limit was exceeded,

its result was not included. In such cases, the best solution

among GA and SA was adopted as the baseline.

Solution Gap quantifies the relative deviation of an

algorithm’s tour distance from the best-known solution.

For each algorithm A, the Gap_mean was computed as:

𝐺𝑎𝑝𝑚𝑒𝑎𝑛 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑒𝑎𝑛 − 𝐵𝑒𝑠𝑡_𝑘𝑛𝑜𝑤𝑛

𝐵𝑒𝑠𝑡_𝑘𝑛𝑜𝑤𝑛
∗ 100

where Distance_mean is the average tour distance

obtained by algorithm A over 30 runs, and Best_known

represents the best-known tour length for the same

scenario. When BF method successfully returned the

optimal solution (for small N), its result was used as

Best_known. For larger instances where BF exceeded the

90-second time limit, Best_known was set to the shortest

tour obtained among GA, SA, or Hybrid Greedy + SA.

Thus, the Gap_mean values allow a normalized

comparison of solution quality across algorithms and

scenarios, regardless of the absolute tour length.

To measure how often each algorithm reaches the

best-known solution, a success rate metric was used. A run

is considered successful if the route distance it produces is

within a small tolerance ε of the Best_known distance. In

this study, ε was set to 0.0 meters, meaning that only runs

matching the optimal distance exactly are counted as

successful. This strict criterion ensures fair and

reproducible comparison between algorithms.

For GA, parameter values were selected based on a

preliminary sensitivity analysis on the dataset (N = 31).

Population size was varied across 30, 50, and 100

individuals while keeping the number of generations 50

and mutation rate 0.02 fixed. The results of this analysis,

presented in Section 3.3.3 and Table 2, showed that a

population of 50 provides a balanced compromise

between runtime efficiency and search quality, with

negligible performance differences for larger populations.

Consequently, all subsequent GA experiments were

performed using population = 50, generations = 50, and

mutation_rate = 0.02 to ensure comparability across

algorithms.

3.2 Study context and data

This study adopts Tirana, Albania, as a case study, a

developing capital experiencing growing tourist flows but

lacking adequate digital systems for tourism management.

A selection of cultural sites and historical landmarks and

recreational activities was made to create authentic travel

plans. The geographic coordinates of these attractions

were extracted from OpenStreetMap (OSM). Distances

between every pair of locations were computed using the

Haversine formula, which calculates great-circle distances

from latitude and longitude. The values were merged into

a complete N×N distance matrix that used meters to

measure distances and served as the foundation for all

optimization techniques. The tour cost was defined as the

total distance of a closed itinerary visiting each attraction

exactly once

3.3 Optimization algorithms

3.3.1 Brute force

The BF method was used as an exact baseline. It generates

all possible permutations of attractions, starting and

ending at the same location, computes the total distance of

each tour, and returns the shortest one. The search tree

grows to its complete depth of N−1 levels where N shows

the total number of attractions. The time complexity is

factorial, O(N!). The method becomes impractical for use

with large instances because of this. In our

implementation, we imposed a 90-second time limit; if

exceeded, the solver was skipped and excluded from

evaluation. When successful, BF serves as an exact

optimal baseline for comparison with heuristic methods.

3.3.2 Genetic algorithm

The GA operates as a population-based metaheuristic

which draws its inspiration from natural evolutionary

processes. Each candidate solution (individual) was

represented as a permutation of attractions. The algorithm

followed this sequence of operations:

Population initialization - Generate an initial

population of random tours. Each individual in the

population represents one complete itinerary; a

permutation of all tourist points, ensuring that every

attraction appears exactly once within a tour. Population

initialization is performed by randomly generating

pop_size permutations.

Fitness evaluation - Compute the total distance of

each tour, where shorter routes indicate higher fitness. In

principle, an individual becomes infeasible if any pair of

consecutive points in its route is not connected by a valid

edge. In our formulation, such missing connections are

assigned an infinite, or equivalently, prohibitively large

cost. Consequently, these individuals obtain extremely

poor fitness scores and are automatically removed during

the selection phase, without requiring an explicit

feasibility check.

Selection - Choose the fittest individuals (those with

the shortest tours) to form the mating pool. Selection is

applied to retain only the fittest half of the individuals;

those with the lowest total distance. This eliminates poorly

performing solutions, including those containing

infeasible edges.

Crossover - Create new offspring by combining

segments of parent tours while ensuring that each

attraction is visited exactly once. We employ Order

Crossover (OX), a widely used method for permutation-

based optimization:

1. Two cut points (a, b) are chosen at random.

2. The segment between a and b is copied directly

from parent p1 to the child.

3. The remaining positions are filled with the elements

of parent p2 in order, skipping elements already present in

the copied segment.

Comparative Metaheuristic Approaches to Tourist Itinerary… Informatica 49 (2025) 217–232 221

This operator preserves relative ordering from both

parents and prevents duplication of nodes, producing a

feasible offspring tour.

Mutation - Introduce diversity by occasionally

swapping two positions in a tour, reducing the risk of

premature convergence. In our implementation, mutation

swaps two randomly chosen positions in the tour with a

small probability (rate). This operator creates slight

perturbations in routes, helping the search explore new

regions of the solution space and avoid stagnation in local

minima.

Replacement - Substitute the parent population with

the newly generated offspring.

Termination - Repeat the process for a fixed number

of generations while tracking the best-so-far distance.

3.3.3 Sensitivity of GA parameter setting

To verify the robustness of the selected GA parameters, a

small sensitivity analysis was conducted on the clean

dataset (N = 31). The population size was varied across

three settings: 30, 50, and 100, while keeping the number

of generations 50 and mutation rate 0.02, fixed. As shown

in Table 2, the mean tour distance and gap exhibit only

modest variations (Gap_mean ranging from 62.8% to

70.0%), while the success rate remains constant at 0%.

Increasing the population size leads to slightly longer

runtimes (from 0.08 s to 0.26 s) but does not substantially

improve solution quality.

Table 2: Sensitivity of GA performance to population

size (N = 31, clean data, 30 runs)

GA generations=50, mutation_rate=0.02

Pop_size Dist_mean T_mean Succ Gap_mean

30 10592.014 0.083 0 69.995

50 10143.115 0.141 0 62.791

100 10258.633 0.263 0 64.645

Therefore, a population size of 50 was selected for all

subsequent experiments, as it provides a balanced trade-

off between runtime efficiency and search quality,

ensuring fair comparison with the SA and Hybrid

algorithms.

3.3.4 Simulated annealing

SA was implemented as a single-solution metaheuristic

with stochastic acceptance of worse solutions. The steps

of the algorithm are as follows:

Random Initialization - The algorithm begins from a

randomly generated tour obtained by shuffling all points,

which serves as the initial feasible solution.

Distance Evaluation - The optimization requires

repeated tour-length evaluations based on pairwise

distances between locations. To obtain accurate

geographic measurements, all distances are computed

using the Haversine formula, which estimates great-circle

distances on the Earth’s surface. For a given permutation

of points, the total distance is evaluated as:

𝐷(𝜋) = ∑ 𝑑 𝜋𝑖,𝜋(𝑖+1)𝑚𝑜𝑑 𝑛

𝑛−1

𝑖=0

The tour length D(π) is computed as the sum of the

distances between every pair of consecutive locations in

the tour. In this formulation, π represents a permutation of

all points, and πi denotes the point visited at position i in

the tour. The term 𝑑 𝜋𝑖,𝜋(𝑖+1)𝑚𝑜𝑑 𝑛 corresponds to the

distance between the current point πi and the next point in

the sequence. The modulo operator ensures that when the

index reaches the last point, the route closes by connecting

back to the first point, forming a complete loop.

Neighborhood Exploration - During the search, the

algorithm iteratively explores neighboring solutions using

a 2-opt segment reversal operator. The operator works by

selecting two random indices i and j along the current tour

and reversing the entire subsequence between them. This

creates a new tour in which a segment of the route is

traversed in the opposite direction. The intuition behind 2-

opt is that many inefficient tours contain crossing edges,

and reversing the segment between two points often

eliminates these crossings, leading to a shorter overall

path. Because of its ability to systematically remove such

geometric inefficiencies, 2-opt is widely adopted in local

search and metaheuristic optimization methods to produce

substantial improvements in route quality with minimal

computational overhead.

Acceptance Mechanism - At each iteration, the

candidate solution is evaluated by comparing its tour

length to that of the current solution. If the new solution

yields a shorter tour, that is if: 𝐷𝑛𝑒𝑤 < 𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , then it is

accepted deterministically. Otherwise, the new solution

may still be accepted with a probability defined by the

classical Metropolis criterion:

𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑒
𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐷𝑛𝑒𝑤

𝑇

This probabilistic acceptance allows the algorithm to

escape local optima by admitting occasional uphill moves.

Temperature Schedule - The temperature was

initialized at a high value (10,000), enabling broad

exploration in early iterations. A cooling factor 0.995 is

applied at each step.

𝑇𝑘+1 = 0.995 ∗ 𝑇𝑘

As the temperature decreases, the probability of

accepting inferior solutions diminishes, encouraging

convergence toward an optimal or near-optimal tour.

Convergence Tracking - The best distance found so

far is logged periodically throughout the search, producing

a convergence history curve. This allows for a detailed

comparison of SA’s performance relative GA.

For the standalone SA implementation, the following

parameters were used:

initial temperature T0=10000

cooling rate α=0.995

stopping condition T>1

neighborhood: 2-opt segment reversal

acceptance rule: Metropolis criterion

logging interval: 100 iterations

To account for stochastic variability, 30 independent

runs were performed using run-level random seeds:

222 Informatica 49 (2025) 217–232 A. Hyso et al.

seed=4242+r with both random and numpy.random

initialized per run to ensure full reproducibility.

3.3.5 Additional experiments: robustness

under noisy and incomplete data

To further evaluate the robustness of the proposed

metaheuristics (GA and SA), we conducted a set of

supplementary experiments where the distance data were

intentionally perturbed to simulate real-world

imperfections.

These imperfections represent measurement noise

(GPS inaccuracies), and incomplete connectivity

(unavailable or missing links between points of interest).

(a) Perturbation model

Starting from the original distance matrix D, a

perturbed version D′ was generated using the function:

𝐷𝑖𝑗
′ = 𝐷𝑖𝑗 ∗ (1 + 𝜖𝑖,𝑗), 𝜖𝑖,𝑗 ∈ [−𝜌, +𝜌]

where 𝜌 ∈ {0.1, 0.2} denotes the amplitude of the

multiplicative noise (±10–20%). Additionally, a random

fraction 𝑟 ∈ {0.1, 0.2} of the entries were replaced with

+∞ indicating missing edges (no direct connection

between those nodes). This setup generated five test

scenarios:

- noisy10 (±10% noise)

- noisy20 (±20% noise)

- miss10 (10% missing edges)

- miss20 (20% missing edges)

- noisy15_miss15 (±15% noise, 15% missing

edges combined)

Each perturbed matrix was stored for reproducibility

and used as input for both GA and SA with identical

hyperparameters.

(b) On-the-fly repair strategy

In the presence of missing edges, direct distance

evaluation would normally fail. To overcome this, we

introduced an on-the-fly repair algorithm, a simple yet

effective mechanism that restores connectivity

dynamically during route evaluation. For any pair of

consecutive nodes (𝑢, 𝑣) where𝐷′[𝑢, 𝑣] = ∞, the repair

procedure searches for an intermediate node k that

minimizes the detour cost:

𝐷𝑟𝑒𝑝𝑎𝑖𝑟(𝑢, 𝑣) = 𝑚𝑖𝑛(𝐷′[𝑢, 𝑘] + 𝐷′[𝑘, 𝑣]) where 𝑘 ≠

𝑢, 𝑣

If such a node exists, the route temporarily diverts

through k; otherwise, a large penalty value is assigned, so

that the optimizer avoids this segment.

This mechanism ensures that the optimization process

remains feasible and continuous even in degraded or

incomplete graphs, emulating real-time adaptive behavior.

3.3.6 Hybrid Greedy + SA

Following the analysis of the standard GA and SA

heuristics, we introduced a third variant — Hybrid Greedy

+ SA (Algorithm 3), to enhance anytime performance and

robustness under incomplete or noisy distance data.

The hybrid algorithm begins with a Greedy

initialization, which quickly constructs a valid tour by

iteratively selecting the nearest unvisited node. This step

provides a feasible and near-optimal starting solution.

After obtaining this initial tour, the algorithm enters the

Simulated Annealing refinement phase, where it applies 2-

opt neighborhood moves to progressively improve the

tour. At each iteration, a new candidate route is generated

by reversing a random segment, and the change is

accepted either if it improves the total distance or

probabilistically if it is slightly worse, to avoid premature

convergence. This two-stage design combines the speed

and feasibility of Greedy construction with the exploratory

power of Simulated Annealing, resulting in a fast yet

robust method capable of maintaining good solution

quality under noisy or incomplete data.

Because the Hybrid algorithm starts from a high-

quality Greedy tour, it does not require the high initial

temperature (T₀ = 10000) and slow cooling (α = 0.995)

used in standalone SA to escape poor initial states. This

allows the Hybrid configuration to allocate more

computation to focused improvement rather than broad

exploration, accelerating convergence without sacrificing

robustness. The Hybrid Greedy + SA algorithm was

executed with the following parameters:

- initial temperature T0=5000

- cooling rate α=0.996

- stopping temperature T>1

- neighborhood: 2-opt segment reversal

- acceptance rule: Metropolis criterion

- logging interval: 100 iterations

- 30 independent runs with different random seeds

- 2-hop repair and large penalty (1e12) for missing

edges

For perturbed data, 10–20% noise and missing edges

were introduced, and the Hybrid Greedy + SA used 2-hop

repair with a large penalty (1e12), while keeping the same

annealing parameters (T0=5000, α=0.996, 30 runs).

The experimental results in Section 4.5 directly assess

its effectiveness under both clean and perturbed data

conditions. The two-stage design—Greedy initialization

followed by SA refinement—was specifically intended to

accelerate convergence and enhance robustness when

distance information is incomplete or noisy. The results

presented in the section 4.5, validate this expectation: on

clean data, the hybrid approach substantially reduces the

optimality gap while maintaining competitive runtimes,

and under noisy or incomplete distance matrices it

preserves solution quality and feasibility more effectively

than standalone GA or SA. Thus, the performance analysis

confirms the practical benefits of the proposed hybrid

strategy anticipated in the methodology, demonstrating its

ability to deliver reliable and efficient itineraries across

varying data scenarios.

3.4 Realistic distance validation using

openrouteservice

To evaluate how geometric distance approximations differ

from real-world travel distances within the urban

environment of Tirana, we conducted an additional

experiment that integrates route optimization with real

street-network routing.

Experimental Setup

Comparative Metaheuristic Approaches to Tourist Itinerary… Informatica 49 (2025) 217–232 223

The analysis was performed using:

-Python 3.10+, OpenStreetMap (OSM) as the source

of geographic coordinates for 31 tourist attractions in

Tirana.

-The Hybrid Greedy + SA metaheuristic implemented

in Python to obtain an optimized visiting order based on

Haversine (straight-line) distances.

-OpenRouteService (ORS) API, which computes real

walking distances using the actual street network derived

from OSM.

The workflow consisted of three major steps:

-Build a full Haversine distance matrix for all 31

points using their OSM lat/long coordinates.

-Run the Hybrid Greedy + SA algorithm.

-Evaluate the optimized tour using OpenRouteService

to compute true, network-based walking distances

between consecutive attractions.

3.4.1 Visualization-based structural analysis of

haversine and ORS routing models

In addition to the primary optimization framework based

on Haversine great-circle distances, we conducted a

complementary routing experiment aimed at assessing

how the choice of distance metric influences the structure

of the optimized tour. The same set of 31 tourist locations

was evaluated using two alternative distance models: (i)

geometric Haversine distances, which provide a fast, API-

independent approximation of spatial proximity, and (ii)

real walking distances obtained through the

OpenRouteService (ORS) Matrix API. For the second

model, the Hybrid Greedy + SA algorithm was executed

directly on ORS-derived network distances to obtain a

fully realistic, walkability-constrained shortest tour. This

dual-routing setup enables a controlled methodological

comparison between geometric and network-based

optimization, ensuring that differences observed in the

results can be attributed solely to the underlying distance

model. The inclusion of both models strengthens the

reliability of the experimental design and provides a

foundation for understanding the impact of routing realism

on itinerary planning.

3.5 Mobile execution and deployability

evaluation

Since tourist route optimization is expected to run directly

on users’ smartphones during real-world use, testing

solely on desktop hardware does not reflect practical

performance. The mobile execution experiment was

therefore included to measure responsiveness under

realistic computational constraints.

To evaluate the real-world performance of the Hybrid

Greedy + SA algorithm, we conducted an additional

execution-time assessment on a mobile device. A

lightweight web application (HTML/JavaScript/Leaflet)

containing the full algorithm was deployed on GitHub

Pages and installed on an iPhone as a Progressive Web

App (PWA) using Safari’s “Add to Home Screen” feature.

When launched, the application runs in standalone mode

and executes all computations locally on the device’s

JavaScript engine.

To guarantee cross-platform reproducibility, we used

the same deterministic seed schedule in both desktop

(Python) and mobile (JavaScript) implementations.

Specifically, each run was initialized with seed = 2025 +

r, where r is the run index. This ensures that the stochastic

trajectory of SA remains consistent across environments,

enabling a fair comparison of results. Tests were

performed on Samsung Galaxy A10 running Android 11

using the GitHub Pages web-app. Execution time was

measured using performance.now(), which provides high-

resolution, device-level timing.

3.6 Output and visualization

All results were recorded at both run and summary levels.

The experimental framework saved distance and runtime

data along with success indicators in CSV format at the

run level. The summary statistics displayed the average

values and standard deviations for all recorded metrics.

The analysis included two types of visualizations which

showed distance and runtime distributions through

boxplots and displayed GA and SA convergence patterns

through median and interquartile range curves. All visual

content was generated at 600 dpi resolution to ensure high

image quality. In addition, two map visualization was

developed to demonstrate how the generated itineraries

would perform in the actual geography of Tirana.

4 Results and fiscussion

4.1 Performance on small instance (N=7)

Table 3 shows the results of BF and GA and SA when the

number of attractions is seven. Reported metrics include

mean and standard deviation of tour distance and runtime,

success rate (percentage of runs achieving the best-known

solution).

Table 3: Comparative results of BF, GA, and SA for N=7

attractions.

 Dist_mean Dist_std T_mean T_std Succ

BF 3886.4775 0 0.0069 0 100

GA 3886.4775 1.39e-12 0.0890 0.0220 100

SA 3886.6375 0.876156 0.0373 0.0180 96.66

Taken together, the results demonstrate that for small

problem sizes (N=7), all three methods reach or

approximate the optimal solution, but their runtime

characteristics differ. BF is the fastest in absolute terms for

this small instance. GA guarantees optimality but incurs

higher runtime overhead due to its population-based

operations. SA trades a small loss in accuracy for

significantly faster and more consistent runtimes then GA.

Figures 1 and 2 (N = 7) show that both GA and SA

consistently attain the BF-optimal tour length: the distance

distributions are essentially indistinguishable, with

identical medians (orange lines) and nearly identical

means (triangles). In contrast, the runtime boxplots reveal

a clear separation: SA runs faster on average and exhibits

224 Informatica 49 (2025) 217–232 A. Hyso et al.

lower variability, while GA shows higher median/mean

times.

Figure 1: Performance evaluation for N = 7, showing the

distance distribution across 30 independent runs of GA

and SA. Means (triangles) and medians (orange lines).

Figure 2: Performance evaluation for N = 7, showing the

runtime distribution across 30 independent runs of GA

and SA. Means (triangles) and medians (orange lines).

4.2 Results on the 10-attraction instance

Table 4 compares the performance of BF, GA, and SA for

itineraries with ten attractions. Reported metrics include

mean and standard deviation of tour distance and runtime,

success rate (percentage of runs achieving the best-known

solution).

Table 4: Comparative results of BF, GA, and SA for

N=10 attractions.

 Dist_mean Dist_std T_mean T_std Succ

BF 4379.82 0 4.2005 0 100

GA 4385.80 7.070 0.1063 0.0177 43.3

SA 4383.69 5.231 0.0625 0.0108 43.3

For N=10, BF produced the exact optimum in 4.20 s,

which remains tractable at this scale but already illustrates

the rapid increase in computational cost. Both GA and SA

found near-optimal tours, yet their success rates dropped

to 43.3%. Between the heuristics, SA achieved slightly

shorter tours on average and faster runtimes, offering a

more favorable balance of accuracy and efficiency than

GA.

To assess whether these differences are statistically

significant, we complemented the descriptive results with

bootstrap confidence intervals and Mann–Whitney U

tests, as reported in Table 5.

Table 5: Statistical comparison of GA and SA using

bootstrap CIs (95%) and Mann–Whitney U tests (30

runs).

 Alg. Mean

95%

Bootstrap

CI

U p-value

D

GA
4385.80

[4383.43,

4388.38]
536.5 1.953e-01

SA
4383.69

[4381.99,

4385.69]

T GA 0.1202
[0.1001,

0.1126]
891.0 7.39e-11

 SA 0.0614
[0.0587,

0.0663]

For tour distance (D), GA and SA have very similar

mean values, and their 95% bootstrap confidence intervals

overlap extensively. The Mann–Whitney test yields U =

536.5, p = 1.953e-01, indicating no statistically significant

difference in tour length between the two algorithms at

this scale.

For runtime (T), the difference is substantial. GA is

nearly twice as slow as SA, and the confidence intervals

do not overlap. The Mann–Whitney test gives U = 891.0,

p = 7.39e-11, showing a highly significant advantage of

SA in terms of execution time.

Overall, the results show that both algorithms achieve

comparable tour lengths, but SA is far faster and more

computationally efficient.

4.3 Large-scale performance (N=31)

Under the latency constraint (≤90 s), Brute Force cannot

be executed for N = 31 and is therefore excluded from the

comparison. Tables 6 and 7 summarize the empirical and

statistical results obtained from 30 independent runs of

GA and SA.

Table 6: Empirical performance of GA and SA for N =

31 attractions (30 runs). BF timed out and is omitted

 Dist_mean Dist_std T_mean T_std Succ

G

A 10143.11 915.95 0.12 0.0138 0

SA 6782.44 461.25 0.06 0.0082 3.33

The statistical analysis in Table 6, confirms that SA

strongly outperforms GA at N = 31 attractions spots. SA

produces significantly shorter tours (mean = 6782.44 m)

compared to GA (mean = 10143.11 m) and exhibits much

lower variability (SD = 461.25 m vs 915.95 m). Runtime

performance is similarly favorable to SA, which achieves

0.06 s on average nearly twice as fast as GA, and with

lower dispersion across runs.

Comparative Metaheuristic Approaches to Tourist Itinerary… Informatica 49 (2025) 217–232 225

Table 7: Statistical comparison of GA and SA using

bootstrap CIs (95%) and Mann–Whitney U tests (30

runs).

 Alg. Mean

95%

Bootstrap

CI

U p-value

D

GA 10143.11
[9815.20,

10449.87]
900 3.02e-11

SA 6782.44
[6629.76,

6947.91]

T

GA 0.1202
[0.1153,

0.1250]
900 3.02e-11

SA 0.0614
[0.0584,

0.0642]

Success rates are low for both algorithms at this

problem size (SA: 3.3%, GA: 0%). However, only SA is

able to reach the best-known tour at least once (1/30 runs).

The Mann–Whitney U tests for both distance and

runtime yield U = 900 and p ≈ 3 × 10⁻¹¹, indicating highly

statistically significant differences between GA and SA

across all evaluated metrics.

Overall, SA offers the best accuracy–efficiency trade-

off under real-time constraints, while GA becomes slower,

less stable, and substantially less accurate as N increases.

While Tables 6 and 7 summarize the final

performance outcomes of both algorithms, Figures 3 and

4 provide complementary insight by illustrating the

optimization trajectory across iterations. These

convergence plots show the median best-so-far tour length

over 30 independent runs for N = 31, accompanied by the

corresponding interquartile range (IQR) at each iteration.

Figure 3: Convergence for N=31 over 30 runs of GA.

Curve shows the median best-so-far tour length at each

iteration; shaded band indicates the interquartile range

(IQR)

A quantitative estimation of convergence speed was

also derived from the median curves. For GA, the 95% of-

final-value threshold (~10,500 m) is reached at

approximately iteration 27–30. In contrast, SA reaches its

95% threshold (~7,140 m) at iteration 9–10. This indicates

that SA converges roughly three times faster than GA,

supporting the observed efficiency gap in the empirical

results.

Figure 4: Convergence for N=31 over 30 runs of SA.

Curve shows the median best-so-far tour length at each

iteration; shaded band indicates the interquartile range

(IQR)

4.4 Robustness of the algorithms under

noisy and incomplete data

Tables 8-11 present the experimental results for both SA

and GA under clean, noisy, and incomplete distance-

matrix scenarios. The experiments were performed on a

fixed instance consisting of 31 tourist attractions in Tirana.

The ΔDistance, ΔTime, and ΔGap indicators quantify

the deviation from the clean baseline, while the

Success_rate column reflects the algorithm’s consistency

in recovering near-optimal tours under uncertainty.

Dist_mean denotes the mean tour length (in meters) across

30 runs, while ΔDistance (%) expresses the relative

change in tour length compared to the clean baseline.

T_mean (s) reports the average runtime, and ΔTime (%)

quantifies the relative runtime increase under perturbation.

Gap_mean (%) measures the deviation from the best-

known solution, and ΔGap (percentage points (pp)) shows

how this gap changes relative to the clean case.

Success_rate (%) indicates the percentage of runs that

exactly matched the best-known tour (ε = 0).

To provide a clearer algorithm-specific interpretation

of robustness under uncertainty, the following subsections

analyze in detail the behavior of SA and GA separately,

with respect to solution quality, runtime stability, and

convergence reliability under noisy and incomplete

distance-matrix conditions.

4.4.1 SA robustness analysis

This subsection examines the robustness of SA algorithm

under progressively degraded data conditions, including

missing distances and random noise. The analysis focuses

on how perturbations affect tour length, solution

optimality gap, success rate, and computational time, in

comparison with the clean baseline scenario. Tables 8 and

9 summarize the resulting performance metrics across all

test cases.

For SA, both the solution gap and success rate remain

almost unchanged across all perturbation types,

confirming the strong resilience of the method.

Despite large relative increases in execution time

(ΔTime% up to +2100%), the absolute runtimes remain

226 Informatica 49 (2025) 217–232 A. Hyso et al.

below 1.5 seconds, making SA highly practical even when

the data are incomplete or noisy.

Table 8: Comparative performance of SA algorithm

under noisy and incomplete distance-matrix conditions,

across all test scenarios.

Scenario
Dist_

mean
ΔDist.

Gap_

mean
ΔGap

Succ

rate

clean 6782.44 0 8.854 0 3.3

miss10 7245.51 6.83 9.152 0.298 3.3

miss20 7388.59 8.94 6.254 -2.6 3.3

noisy10 6988.99 3.05 11.975 3.121 3.3

noisy15_

miss15
6778.24 -0.06 7.904 -0.95 3.3

noisy20 6559.38 -3.29 8.838 -0.01 3.3

Table 9: Runtime analysis of the SA algorithm under

clean, noisy, and incomplete distance-matrix conditions,

reporting mean execution time and its relative deviation

from the clean scenario

Scenario T_mean ΔTime

clean 0.0653 0

miss10 0.8435 1192.07

miss20 1.439 2104.24

noisy10 0.2362 261.84

noisy15_miss15 1.0523 1511.93

noisy20 0.2178 233.59

The mean tour distance increases moderately under

missing-edge scenarios (+6–9%), reflecting the expected

effect of reduced connectivity, while under noisy

conditions the distances fluctuate only slightly (±3%).

Importantly, the solution gap remains within ±3

percentage points of the clean baseline (from 8.85% to a

maximum of 11.98%), showing that SA can adapt

efficiently to both random noise and incomplete

information. The success rate is fully stable (3.3%) across

all tests, indicating deterministic convergence toward

near-optimal tours.

Overall, these findings demonstrate that SA degrades

gracefully: its runtime scales with problem irregularity,

but its solution quality and convergence behavior remain

robust. This makes SA a reliable choice for real-world

deployment, particularly in applications (e.g., mobile

routing, tour recommendation) where the input data may

be imperfect or partially missing.

4.4.2 GA robustness analysis

This subsection analyzes the robustness of GA under the

same noisy and incomplete distance-matrix scenarios. The

evaluation emphasizes variations in solution quality,

optimality gap, feasibility preservation, and runtime

overhead relative to the clean baseline. Tables 10 and 11

report the corresponding performance indicators.

Tables 10 and 11 demonstrate that, for GA, both the

solution gap (ΔGap) and the runtime overhead (ΔTime)

increase noticeably under missing and noisy distance

conditions, indicating a high sensitivity to data

degradation. Although GA consistently produces feasible

tours across all scenarios, these tables clearly show that its

solution quality varies substantially more than that of SA.

Table 10: Comparative performance of GA algorithm

under noisy and incomplete distance-matrix conditions,

across all test scenarios

Scenario
Dist_

mean
ΔDist

Gap_

mean
ΔGap

Succ

rate

clean 10143.11 0 62.791 0 0

miss10 10186.23 0.43 53.454 -9.34 0

miss20 10568.79 4.2 51.988 -10.80 0

noisy10 10085.95 -0.56 61.594 -1.19 0

noisy15

miss15
10452.92 3.05 66.403 3.61 0

noisy20 10185.24 0.42 69.001 6.21 0

Table 11: Runtime analysis of the GA algorithm under

clean, noisy, and incomplete distance-matrix conditions,

reporting mean execution time and its relative deviation

from the clean scenario

Scenario T_mean ΔTime

clean 0.1403 0

miss10 1.6976 1109.78

miss20 2.4688 1659.35

noisy10 0.3219 129.41

noisy15_miss15 1.7458 1144.17

noisy20 0.3576 154.86

Under missing-edge perturbations (miss10–miss20),

the gap decreased slightly (≈ −9 to −11 pp) due to the on-

the-fly repair mechanism that bypassed broken links, but

this came at a significant computational cost, with runtime

increases exceeding +1100–1600%. Similarly, when

random noise was applied (±10–20%), GA exhibited

relatively stable distances (ΔDistance < 1%) but still

required additional iterations, leading to +130–150%

longer runtimes. In the combined case (noisy15 + miss15),

GA’s mean gap reached ≈66%, showing that its

population-based search is more sensitive to irregular

graph structures compared with SA’s single-solution

adaptive exploration.

Across all experimental scenarios, the GA algorithm

consistently produced complete and connected tours,

confirming that the proposed on-the-fly link-repair

mechanism effectively preserves route connectivity even

when distance information is missing or corrupted.

Overall, GA shows strong reliability in maintaining

feasible tours under data degradation, but its efficiency is

notably weaker: although it remains capable of

constructing complete routes, its performance deteriorates

much more rapidly than SA with respect to runtime and

solution optimality.

Figure 5 complements Tables 8–11 by illustrating the

anytime trade-off between solution quality (Gap %) and

Comparative Metaheuristic Approaches to Tourist Itinerary… Informatica 49 (2025) 217–232 227

runtime (s) for both algorithms (SA and GA) under the

same set of perturbation scenarios. Each point corresponds

to the mean performance of a given scenario (clean, noisy,

or incomplete), allowing a direct visual comparison of

robustness and efficiency.

Figure 5: Anytime trade-off between solution quality

(Gap %) and execution time (s) for GA and SA across

clean, noisy, and incomplete data scenarios.

Each point corresponds to the mean performance of a

given scenario (clean, noisy, or incomplete), allowing a

direct visual comparison of robustness and efficiency. The

plot clearly shows that SA (orange triangles) consistently

achieves lower gaps with sub-second runtimes, while GA

(blue circles) requires longer execution times and exhibits

larger variability in solution quality, especially under

missing-edge conditions. These visual trends confirm the

tabular findings, that SA degrades smoothly and maintains

stability under noisy and incomplete data, whereas GA’s

performance is more sensitive to data imperfections

4.5 Performance of the Hybrid Greedy +

SA (Algorithm 3)

4.5.1 Performance on clean data

The Hybrid Greedy + SA algorithm was first evaluated on

the clean dataset (no missing or noisy distances) to

establish a baseline for performance comparison against

the standalone GA and SA methods. The experiment

contained 31 tourist attractions. As shown in Table 12, the

hybrid approach achieved a significantly lower mean gap

(≈ 1.86%) compared to SA (8.85%) and GA (62.79%),

while maintaining a moderate runtime (≈ 0.25 s) and the

highest success rate (10%). These results demonstrate that

initializing SA with a Greedy heuristic drastically

improves both convergence speed and solution quality,

providing near-optimal tours at minimal computational

cost.

Table 12: Baseline results for GA, SA, and Hybrid

Greedy + SA on clean data.

Alg. Dist_

mean T_mean Succ

Gap_

mean

Hybrid
6342.551 0.2499 10% 1.860

SA
6782.44 0.0653 3.3% 8.854

GA
10143.11 0.1403 0% 62.791

The results show that the Hybrid method consistently

outperforms SA in terms of tour quality: its mean distance

is substantially lower, and its confidence interval is

considerably narrower, indicating both better performance

and reduced variability. For execution time, SA is

significantly faster, as expected from its simpler stochastic

refinement process. The Hybrid method incurs a higher

computational cost due to the deterministic greedy

initialization and more intensive local search.

Table 13 provides a statistical comparison between

SA and the Hybrid Greedy+SA algorithm using 95%

confidence intervals and Mann–Whitney U tests over 30

independent runs.

Table 13: Statistical comparison of SA and Hybrid

Greedy+SA using 95% CIs and Mann–Whitney U tests

(30 runs).

 Alg. Mean 95% CI U p-value

D

SA 6782.4

[6626.47,

6946.74]

824 2e-08

Hybrid 6342.6

[6319.59,

6364.00]

T

SA 0.067

[0.06363,

0.07070]

0 3.02e-

11

Hybrid 0.249

[0.24373,

0.25625]

The Mann–Whitney U tests confirm that both distance

and time differences between the two algorithms are

statistically significant, with p-values far below the

standard 0.05 threshold. This validates that the observed

improvements in solution quality—and the corresponding

increase in runtime—are not due to random variation but

reflect systematic differences in algorithmic behavior.

Overall, the statistical evidence demonstrates that

Hybrid Greedy+SA achieves the best accuracy among the

compared methods, while SA offers superior speed,

reflecting a clear trade-off between solution quality and

runtime.

228 Informatica 49 (2025) 217–232 A. Hyso et al.

Figure 6: Comparison of GA, SA, and Hybrid Greedy +

SA on clean data, showing the trade-off between runtime

and optimality gap.

Figure 6, visualizes the clean baseline comparison of

the three algorithms. The Hybrid Greedy+SA achieves a

much smaller gap than both GA and SA while maintaining

a sub-second runtime, confirming its strong potential for

real-time applications in urban itinerary optimization.

4.5.2 Robustness under noisy and incomplete

data

This section presents the comparative performance of the

three algorithms: GA, SA, and the proposed Hybrid

Greedy + SA, when evaluated under a combined

perturbation scenario (noisy15_miss10). In this

configuration, 15% of the pairwise distances were

randomly perturbed with Gaussian noise, while 10% of the

graph edges were removed to simulate missing or

unreliable connectivity data. This setting reflects realistic

conditions for low-infrastructure urban contexts, where

digital maps or open data repositories often contain

incomplete or imprecise geospatial information.

As shown in Table 14 and Figure 7, both GA and SA

experience a degradation in performance when the data

become noisy or incomplete, whereas the Hybrid Greedy

+ SA maintains lower gap values and stable success rates.

Table 14: Comparative performance of Genetic

Algorithm (GA), Simulated Annealing (SA), and Hybrid

Greedy + SA under the combined perturbation scenario

(noisy15_miss10).

Scenario: noisy15_miss10

Alg. Dist_mean

T_

mean Succ.

Gap_

mean

Hybrid 7303.99 0.942 3.3% 7.421

SA 7365.73 0.767 0% 8.329

GA 10732.95 1.407 0% 57.852

This demonstrates that initializing SA with a Greedy

heuristic seed improves the anytime performance and

robustness of the algorithm, even when link failures or

measurement errors occur. While GA suffers from a

substantial increase in gap (≈ 58%) and runtime, the

hybrid method preserves feasibility and remains

computationally efficient, maintaining sub-second

runtimes (≈ 0.94 s) and a mean gap of 7.4%.

Figure 7: Performance comparison of GA, SA, and

Hybrid Greedy + SA under the noisy15_miss10 scenario

Overall, the results confirm that the Hybrid Greedy +

SA algorithm achieves a superior balance between

robustness and efficiency, sustaining near-optimal

solution quality even when data imperfections degrade the

performance of traditional metaheuristics.

4.6 Comparison between straight-line and

real route distances

To evaluate how the optimized itinerary behaves under

real-world travel conditions, we compared the total

straight-line distance produced by the Hybrid Greedy +

SA algorithm with the actual routed distance obtained

through the OpenRouteService (ORS) API. The optimized

tour was first generated using Haversine distances

computed from OpenStreetMap-based coordinates of 31

tourist attractions in Tirana. This straight-line model

provides a simplified and computationally efficient

geometric approximation commonly used in TSP and

metaheuristic optimization research.

After the best tour was obtained, each consecutive

pair of points was re-evaluated through ORS using the

pedestrian routing profile. ORS calculates the true

walking distance by following the real street network

extracted from OpenStreetMap, thereby incorporating the

constraints of urban geometry, pedestrian paths,

intersections, and block structures.

The comparison revealed the following quantitative

results:

• Total distance, Haversine: 6.193 km

• Total distance, ORS (real path): 10.165 km

• Deviation ratio (ORS / Haversine): 1.641

This shows that the true walkable distance across the

full itinerary is approximately 64.1% longer than the

geometric estimate. Such a deviation is expected in

compact urban areas where direct point-to-point

movement is constrained by building blocks, curved or

discontinuous pedestrian paths, irregular street patterns,

and one-way routing segments. The observed ratio of

≈1.64 reflects the natural divergence between idealized

great-circle distances and actual walkable routes in dense

city environments.

Comparative Metaheuristic Approaches to Tourist Itinerary… Informatica 49 (2025) 217–232 229

Importantly, although real-world distances differ, the

relative spatial structure is preserved: closer points remain

proportionally close, and distant points remain

proportionally distant. This confirms that Haversine-based

optimization provides a valid and computationally

efficient foundation for comparing algorithmic

performance. The post-evaluation using ORS reinforces

the robustness of the optimized route and highlights the

practical relevance of the proposed method.

4.6.1 Impact of routing method on the

optimized itinerary

To further understand how the routing model affects not

only the measured distance but also the structure of the

optimized path, we performed a second experiment using

the same set of 31 tourist locations. The Hybrid Greedy +

SA algorithm was executed directly on ORS-derived real

walking distances, rather than on Haversine distances. In

this configuration, the algorithm produced an optimized

tour of 9.355 km, which is shorter than the 10.165 km

obtained when the Haversine-optimized itinerary was

evaluated using ORS. This confirms that the true optimal

tour under realistic routing constraints is indeed different

from the one derived using geometric distances.

To illustrate these differences more clearly, Figure 8

and Figure 9 present the visualized itineraries generated

by the two methods.

Figure 8: Optimized itinerary generated using the Hybrid

Greedy + SA algorithm with Haversine great-circle

distances.

Figure 9: Optimized itinerary produced by applying the

Hybrid Greedy + SA algorithm directly on real walking

distances obtained through OpenRouteService (ORS).

The first map depicts the Haversine-based optimized

tour, while the second shows the route obtained when the

algorithm operates directly on real network distances.

Although the total walking length differs substantially,

due to pedestrian detours, street geometry, and one-way

routing rules, the overall spatial layout of the itinerary

remains similar. Clusters of nearby attractions, the

direction of traversal across the city, and local segment

orderings are largely preserved.

These visual comparisons demonstrate that the

Haversine model successfully captures the geometric

structure of the underlying optimization problem, while

ORS primarily adjusts for real-world walkability

constraints. Consequently, the maps strengthen the

conclusion that Haversine-based optimization is suitable

for fast, offline, and resource-efficient computation,

whereas ORS is best used for post-validation and final

distance refinement. By combining the optimization

outcomes with their spatial context, the resulting

visualizations offer an interpretable and actionable view

of each tour, reinforcing the algorithm’s suitability for

applications in urban tourism planning, smart-city route

recommendation, and pedestrian navigation support.

4.7 Mobile execution results

To assess performance on low-end hardware, the Hybrid

Greedy + SA algorithm was executed on a Samsung

Galaxy A10 running Android 11 (One UI 3.1). Using the

same JavaScript implementation via the mobile browser,

the full 31-point itinerary was optimized in approximately

0.24 seconds, confirming real-time capability even under

constrained processing resources. The mobile run

produced the same tour ordering as the desktop

implementation, with only minor numerical differences in

distance caused by standard floating-point variations

between Python and JavaScript. These results demonstrate

that the method remains practical and responsive on

budget mobile phones, strengthening its suitability for

deployment in real-world mobile tourism applications.

Similarly, tests on an iPhone 13 (iOS 17) demonstrated

robust performance, with an average execution time of

0.05 seconds over 30 runs. These results confirm that the

complete optimization pipeline including initialization,

search, and rendering can execute locally on mainstream

mobile devices without requiring server interaction.

Figure 10 presents the web-based interface running as a

standalone Progressive Web App (PWA), added to the

home screen, supporting local execution, route

visualization over Tirana via Leaflet, and precise timing

feedback. The application operates as a standalone

Progressive Web App (PWA) after being added to the

home screen.

5 Discussion
This work presents a reproducible, deployment-oriented

evaluation of exact and metaheuristic solvers for urban

tourist itineraries using open map data [15]. Although the

experimental analysis is limited to Tirana, the

methodology and algorithms are city-agnostic and can be

230 Informatica 49 (2025) 217–232 A. Hyso et al.

directly applied to other urban contexts once attraction

coordinates are available. The choice of Tirana reflects the

study’s focus on cities with limited digital infrastructure

rather than dataset-specific characteristics. The findings

support a simple operational rule: for cities with limited

digital infrastructure, Simulated Annealing (SA) provides

the best accuracy–efficiency trade-off under realistic

latency constraints; Genetic Algorithm (GA) remains

competitive at small scales but becomes less stable as the

problem size (N) increases, while Brute Force (BF) serves

primarily as an offline validator rather than a practical

solver. The inclusion of the Hybrid Greedy + SA variant

further strengthens these conclusions, showing that

combining a deterministic initialization with stochastic

refinement improves both convergence stability and

resilience under uncertainty.

Figure 10: Execution of the Hybrid Greedy + SA algorithm directly on an iPhone 13 browser as a Progressive Web

App. (a) Initial input with 31 attraction coordinates. (b) Runtime output and best tour ordering with stable distances

across 30 runs. (c) Visualization of the optimized route over Tirana using Leaflet. The full optimization completes in

under 0.05 seconds, confirming responsiveness on mobile devices

5.1 Design trade-offs: haversine vs.

network routing

The present implementation computes pairwise distances

using the Haversine formula, which provides a fast,

lightweight, and fully reproducible measure of separation

between geographic coordinates. This choice deliberately

avoids reliance on external routing APIs and heavy graph-

processing engines, making the method suitable for

deployment in settings with limited connectivity or

computational resources. Such characteristics are

particularly relevant for urban environments like Tirana,

where practical applications may need to operate offline,

at low cost, or within platforms that cannot depend on

persistent access to cloud-based routing services.

However, Haversine distances do not account for the

structure of the street network, pedestrian pathways, one-

way segments, or other real travel constraints. To quantify

the impact of this simplification, our study conducted a

secondary evaluation using OpenRouteService (ORS),

which computes walking routes based on the actual

OpenStreetMap road and pedestrian network. Applying

ORS to the optimized Haversine-based tour showed that

the actual routed distance is about 30.9% longer than the

geometric estimate, a deviation expected in dense urban

environments where movement is constrained by building

blocks and irregular street layouts. Despite this difference,

the experiment shows that the relative spatial structure of

the problem is preserved: points that are close remain

proportionally close, and the ranking of distances does not

change substantially. Thus, the optimization landscape

explored by the GA, SA, and Hybrid algorithms remains

meaningful even when using Haversine. The Haversine

model provides a stable and computationally efficient

abstraction for algorithmic comparison, while the ORS-

Comparative Metaheuristic Approaches to Tourist Itinerary… Informatica 49 (2025) 217–232 231

based evaluation confirms how geometric solutions

translate into realistic walking distances.

5.2 Generalization and scalability

Although the experimental analysis focused primarily on

instances with 31 locations, additional tests were

conducted on a larger dataset containing 49 tourist points

to assess scalability. The results confirmed the same

performance trends: SA consistently achieved much

shorter tours and lower optimality gaps than GA, while

maintaining sub-second runtimes (≈ 0.08 s). In contrast,

GA exhibited a substantial degradation in solution quality,

with mean gaps exceeding 56% and increased variability.

This indicates that the advantages of SA not only persist

but become more pronounced as problem size grows,

suggesting better scalability and robustness for larger

urban itinerary planning scenarios. In addition, the Hybrid

Greedy + SA algorithm maintained its performance

advantages when the problem size increased. For the

larger instance (N = 49), the hybrid method achieved a

remarkably low mean optimality gap of only 2.64%,

substantially outperforming both GA (56.31%) and SA

(9.07%) under the same conditions. Although runtime

increased to approximately 0.42 s, this growth remained

moderate and well within real-time applicability

thresholds. Notably, the hybrid approach preserved

solution stability, as reflected by the very small variability

across runs (Gap_std ≈ 1.17%), indicating that the Greedy

initialization continues to provide high-quality starting

tours even in larger search spaces, while the SA

refinement efficiently exploits local structure. These

results suggest that the hybrid strategy scales more

gracefully than standalone heuristics, retaining both

accuracy and robustness as the number of attractions

grows.

5.3 Future integration with dynamic and

real-time data

Building on the demonstrated robustness and anytime

performance of the proposed algorithms, future extensions

will focus on dynamic and real-time optimization. The

current framework, which operates on a static distance

matrix, can be enhanced with live contextual data such as

real-time traffic flow, temporary event schedules, and user

preference feedback.

For instance, the Hybrid Greedy + SA model could

dynamically re-weight edges based on live travel times,

temporary pedestrian restrictions, or the user’s evolving

interests (e.g., preference for cultural sites or shorter

walking routes). Integrating such adaptive data streams

would transform the current approach into a context-aware

recommender system, capable of updating feasible

itineraries on the fly.

This direction aligns with current trends in smart

tourism and mobility-as-a-service, where systems must

maintain robustness under uncertainty while delivering

personalized and real-time route adjustments for end

users.

6 Conclusion
In conclusion, this study contributes both

methodological clarity and practical relevance. By

framing one-day tourist itinerary generation as a TSP and

benchmarking exact and metaheuristic solvers on real-

world map data, it shows how even simple algorithms can

inform the design of deployable systems for cities with

limited digital infrastructure. The comparative analysis

demonstrates that while BF provides an exact validation

baseline, GA and especially SA deliver scalable, near-

optimal solutions under realistic constraints. The extended

experiments under noisy and incomplete distance data

further confirmed SA’s robustness, showing minimal

degradation in solution quality despite input uncertainty.

Moreover, the introduction of the Hybrid Greedy + SA

variant significantly improved both convergence speed

and accuracy, achieving the lowest mean gap and

maintaining sub-second runtimes even under data

perturbations, confirming that combining a deterministic

greedy start with stochastic refinement enhances both

reliability and efficiency.

The mobile execution results demonstrate that the

proposed Hybrid Greedy + SA method is practical for

deployment in real tourist applications. The ability to

compute optimized routes directly on the smartphone

without cloud computation enhances system robustness,

enables offline functionality, and reduces dependency on

external APIs. The sub-second performance observed on

the iPhone indicates that the algorithm provides an

acceptable user experience even on mobile hardware with

limited computational resources. From a system-design

perspective, the successful mobile execution demonstrates

that lightweight metaheuristics can reliably support real-

time decision-making in e-tourism scenarios, where users

typically depend on smartphones while navigating urban

environments. The results strengthen the external validity

of the proposed method and confirm its suitability for

integration into practical mobile routing tools.

Furthermore, the demonstrated efficiency on resource-

constrained hardware positions such techniques as strong

candidates for next-generation smart-tourism systems,

where applications may incorporate richer contextual

information, preference-aware routing, and multi-day

itinerary planning. In this way, the study effectively

bridges algorithmic research with applied urban-tourism

needs, offering actionable insights for both academia and

practice.

References

[1] Wu, W., et al. Digital Tourism and Smart

Development: State-of-the-Art Review.

Sustainability, 2024. 16, DOI: 10.3390/su162310382.

[2] Zeqiri, A., A. Ben Youssef, and T. Maherzi Zahar.

The Role of Digital Tourism Platforms in Advancing

Sustainable Development Goals in the Industry 4.0

Era. Sustainability, 2025. 17,

https://doi.org/10.3390/su17083482

232 Informatica 49 (2025) 217–232 A. Hyso et al.

[3] Instituti i, S. Statistikat e Turizmit. Industria, Tregtia

dhe Shërbimet 2025-09-14; Available from:

https://www.instat.gov.al/al/temat/industria-tregtia-

dhe-sh%C3%ABrbimet/statistikat-e-turizmit/#tab2.

[4] Visit, T. Visit Tirana. Visit Tirana 2025-09-14;

Available from: https://www.visit-tirana.com/.

[5] Albania Tourist, G. Albania Tourist Guide. Albania

Tourist Guide 2025-09-14; Available from:

https://albaniatouristguide.com/.

[6] Sylejmani, K., et al., Solving the tourist trip planning

problem with attraction patterns using meta-heuristic

techniques. Information Technology & Tourism,

2024. 26(4): p. 633-678.

https://doi.org/10.1007/s40558-024-00297-w

[7] Zhang, J., H. Kawasaki, and Y. Kawai. A Tourist

Route Search System Based on Web Information and

the Visibility of Scenic Sights. in 2008 Second

International Symposium on Universal

Communication. 2008, retrieved

https://www.cvg.ait.kyushu-

u.ac.jp/papers/2007_2009/3-1/11-ISUC2008.pdf

[8] Adamo, T., Colizzi, L., Dimauro, G., Ghiani, G., &

Guerriero, E. (2024). A multi-modal tourist trip

planner integrating road and pedestrian networks.

Expert Systems with Applications, 237(Part B),

121457. https://doi.org/10.1016/j.eswa.2023.121457

[9] Tang, Y., et al., ITINERA: Integrating Spatial

Optimization with Large Language Models for Open-

domain Urban Itinerary Planning, in arXiv. 2024.

https://doi.org/10.18653/v1/2024.emnlp-

industry.104

[10] Souffriau, W., Vansteenwegen, P., Vertommen, J.,

Berghe, G. V., & Oudheusden, D. V. (2008). A

personalized tourist trip design algorithm for mobile

tourist guides. Applied Artificial Intelligence, 22(10),

964–985.

https://doi.org/10.1080/08839510802379626

[11] Androutsopoulos, K.N. and K.G. Zografos, Solving

the multi-criteria time-dependent routing and

scheduling problem in a multimodal fixed scheduled

network. European Journal of Operational Research,

2009. 192(1): p. 18-28.

https://doi.org/10.1016/j.ejor.2007.09.004

[12] Mangini, A. M., Roccotelli, M., & Rinaldi, A. (2021).

A Novel Application Based on a Heuristic Approach

for Planning Itineraries of One-Day Tourist. Applied

Sciences, 11(19), 8989.

https://doi.org/10.3390/app11198989

[13] Benchekroun, Y., et al. Hybrid Framework: The Use

of Metaheuristics When Creating Personalized

Tourist Routes. Digital, 2025. 5,

https://doi.org/10.3390/digital5030036

[14] Li, S., Luo, T., Wang, L. et al. Tourism route

optimization based on improved knowledge ant

colony algorithm. Complex Intell. Syst. 8, 3973–3988

(2022). https://doi.org/10.1007/s40747-021-00635-z

[15] Damos, M.A., et al. Enhancing the K-Means

Algorithm through a Genetic Algorithm Based on

Survey and Social Media Tourism Objectives for

Tourism Path Recommendations. ISPRS

International Journal of Geo-Information, 2024. 13,

https://doi.org/10.3390/ijgi13020040

[16] Pérez-Cañedo, B., Novoa-Hernández, P., Porras, C.,

Pelta, D. A., & Verdegay, J. L. (2024). Contextual

analysis of solutions in a tourist trip design problem:

A fuzzy logic-based approach. Applied Soft

Computing, 154, 111351.

https://doi.org/10.1016/j.asoc.2024.111351

[17] Chrysafiadi, K., Kontogianni, A., Virvou, M., &

Alepis, E. (2025). Enhancing User Experience in

Smart Tourism via Fuzzy Logic-Based

Personalization. Mathematics, 13(5), 846.

https://doi.org/10.3390/math13050846

[18] Liu, X., & Li, Y. (2024). Analysis of immersive

virtual reality tourism resources combined with fuzzy

comprehensive evaluation algorithm. Informatica,

48, 189–210 DOI:

https://doi.org/10.31449/inf.v48i21.6057 , retrieved

from

https://www.informatica.si/index.php/informatica/art

icle/view/6057/3468

[19] Hyso, A., tour-routing-tirana-bf-ga-sa, in GitHub

repository. 2025, GitHub.

https://github.com/AlketaHyso/tour-routing-tirana-

bf-ga-sa

[20] Hyso, A., 2025,

GitHub.https://alketahyso.github.io/route_mobile_be

nchmark/

https://www.instat.gov.al/al/temat/industria-tregtia-dhe-sh%C3%ABrbimet/statistikat-e-turizmit/#tab2
https://www.instat.gov.al/al/temat/industria-tregtia-dhe-sh%C3%ABrbimet/statistikat-e-turizmit/#tab2
https://www.visit-tirana.com/
https://albaniatouristguide.com/
https://doi.org/10.1007/s40747-021-00635-z
https://doi.org/10.3390/math13050846
https://doi.org/10.31449/inf.v48i21.6057

