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Since urban rail transit has developed rapidly, train scheduling and traffic flow optimization is a
challenging task for improving operational efficiency and service quality in complex networks. We
overcome the limitations of traditional centralized methods in massive-scale, high-density settings using
multi-agent reinforcement learning (MARL) in network-based train dispatching. This builds a
decentralized decision space where trains are treated as smart agents to optimize dispatching
cooperatively through interaction with the environment. The proposed MARL framework integrates a
dual-loop hierarchical control structure, dynamic conflict graphs, and robust predictive control using
Hankel matrices. This paradigm improves traffic throughput, reduces computational complexity, and
enhances real-time disruption adaptability, achieving impacts like reduced train delays and better energy
efficiency. Experimental results indicate that the suggested MARL solution reduces average train delay
(ATD) by up to 59% compared to FIFO during heavy-traffic scenarios, improves throughput (TP) to 148
trains/hour, lowers energy consumption (EC) by 11%, and lowers stability index (SI) by 43% while
maintaining near-real-time computation time (CT) of less than 1.5 seconds. The experimental results
provide effective suggestions for intelligent rail transit dispatching and propose new directions for
constructing intelligent transportation systems.

Povzetek: Predlagan pristop uporablja vecagentsko okrepljeno ucenje za decentralizirano, sodelovalno
vodenje viakov v kompleksnih Zelezniskih omreZjih, kar v primerjavi s klasicnimi metodami zmanjsa

zamude, poveca pretocnost ter izboljsa energijsko ucinkovitost in odzivnost v realnem casu.

1 Introduction

The continuous expansion of city residents has led to
a greater reliance on mass transport, and city rail transport
networks provide the backbone of modern city transport.
As the extent and intricacy of the networks expand even
further, keeping them operating efficiently, on time, and
safely is an increasingly important task [1]. The core of
this problem is train scheduling and traffic flow control,
i.e., managing the movement of a large number of trains
along a network of tracks, stations, and crossings. The
traditional methods of solving the problem have typically
relied on mathematical programming and heuristics.
Though adequate under deterministic or static conditions,
they do not real-time adapt to the stochastic and dynamic
character of live rail operation, which are normally
occasions  susceptible to unplanned disturbance,
fluctuating loads of passengers, and delay propagation [2].

Due to the deficiencies of conventional approaches,
scholars have increasingly become interested in using
data-hungry methods based on machine learning and
artificial intelligence. One of the principal fields of
innovation has been predicting passenger flow, with deep
networks like Graph Convolutional Networks (GCNs) and
Long Short-Term Memory (LSTM) networks revealing

unparalleled accuracy [3-5]. As Ma demonstrated, one can
achieve high 95% real-time traffic flow prediction and
base more reasonable line planning on that [6]. These
types of models are better suited to prediction, though, and
lag in their ability to take predictive proficiency and turn
it into optimized, real-time dispatch decisions.
Reinforcement learning (RL) is a robust paradigm for
sequential decision and control and thus is a natural fit for
traffic management issues. Early work explored the
application of RL to optimize traffic flow by learning
policies that would regulate driving speed or signal timing
[7]. However, single-controller RL models, where one
controller manages the entire network, are challenged with
being highly scalable because the state and action spaces
increase exponentially. This "curse of dimensionality"
makes centralized control computationally expensive for
vast rail networks. Consequently, therefore, the machine
learning community has turned its attention to multi-agent
reinforcement learning (MARL), a decentralized
framework where a number of intelligent agents learn to
cooperate towards a common goal [8-12]. The effective
implementation of MARL in the same application area of
urban traffic signal control, as demonstrated by Arel et al.
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and numerous subsequent works, has made it accessible to
applications in rail transit systems [13-16].

MARL recently became state-of-the-art railway
management method. Its efficacy in a variety of activities,
from optimized train timetabling [17] and traffic
management for complex freight networks [18, 19] to real-
time rescheduling in the event of service disruptions, has
been shown through research. Multi-objective
optimization has also attracted researchers such as Ning et
al., who applied MARL to trade off energy efficiency
against passenger service quality [20, 21]. Furthermore,
Schneider et al. demonstrated that a MARL solution is a
very viable candidate for Germany's forthcoming
Capacity & Traffic Management System (CTMS) because
of its capability for huge-scale, automated railway systems
[1]. Nevertheless, the adaptation of MARL to network-
wide train dispatching with specific emphasis on
decentralized traffic flow optimization remains a field
waiting to be exploited.

This paper presents a novel traffic flow optimization
method for rail transit by formulating it as a multi-agent
reinforcement learning framework for train dispatching in
a network-based setting. Our primary contribution is to
model each train as an independent, intelligent agent that
learns a cooperative dispatching policy by directly
interacting with the rail environment. This decentralized
approach inherently addresses the scalability challenge for
centralized systems. By equipping each agent with the
ability to make local decisions based on its observations,
the system dynamically adapts to real-time conditions and
perturbations without global recalculation. We created a
MARL algorithm tailored to the rail setting, which
optimizes a reward function that balances critical
operation metrics like punctuality, energy consumption,
and waiting times for passengers. This paper aims to close
the loop between predictive analytics and actionable
control, providing a solid and scalable solution for
intelligent rail traffic management. The research goals are
framed as concrete, testable objectives: (1) to test real-
time responsiveness by measuring CT under varying
loads; (2) to evaluate stability under disruptions by
assessing Sl in extreme scenarios like signal failures; and
(3) to define success via metrics.

The rest of this paper is structured as below. Section
2 provides a review of the current literature in train
scheduling, traffic flow optimization, and applying
reinforcement learning to transportation systems. Section
3 describes the overall methodology of our proposed
multi-agent reinforcement learning solution. Section 4
describes the experimental setting and reports simulation
results. Section 5 discusses the results in the context of
state-of-the-art (SOTA) literature. Finally, Section 6

concludes the paper and outlines future research directions.
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2 Related works

2.1 Train scheduling and traffic flow
optimization

Train scheduling and traffic pattern regulation are
fundamental functions in railway transit operations.
Operations research techniques like mixed-integer linear
programming and heuristic search algorithms have been
employed in the past to address the issues. These
techniques aim to find optimum solutions for timetabling,
routing, and resource allocation from a specified model of
the system. Their computational complexity and need for
static models limit their effectiveness in dynamic real-
world environments where conditions keep fluctuating.

With the existence of big data and intense
computation, deep learning has been a highly effective
means for modeling and forecasting aspects of traffic
systems. For short-term passenger flow forecasting in rail
transit in cities, Zhang et al. proposed a model combining
graph  convolutional networks (GCN) and 3D
convolutional neural networks (CNN) to determine spatio-
temporal correlations to make accurate forecasting [3].
Similarly, Xiong et al. demonstrated that LSTM and CNN
models could forecast passenger flow time series with
high performance, outperforming traditional linear models
like ARIMA [4]. Multi-task learning networks and time
series decomposition algorithms have also been
successfully employed in other deep learning models to
further improve prediction accuracy [22, 23]. These
forecasting capabilities provide valuable inputs to the
operation planning but do not necessarily solve the control
problem of how to change train movements based on these
forecasts.

2.2 Reinforcement learning in
transportation systems

Reinforcement learning (RL) is also one of the key
data-driven techniques to address control issues in
intelligent transportation systems [24]. While supervised
learning does not allow an agent to learn an optimal policy
by trial and error, RL is most suitable for dynamic systems
whose system models are difficult to acquire or do not
exist. Traffic light control in cities like train dispatching in
all but a few respects has been a primary domain of
application for RL, e.g., coordination between multiple
decision points (stations or intersections).

The transition from single-agent to multi-agent
reinforcement learning (MARL) was a turning point to
address large-scale transportation  networks. As
highlighted in surveys by Gronauer & Diepold and others,
MARL solves the non-stationarity and scalability
problems that arise in the situation of learning by
numerous  agents at once [8 9, 25].
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An early work was posed by Arel et al. where they
proposed a MARL framework for obtaining an efficient
traffic signal control policy with optimal delays and
alleviation of congestion [13]. Work was achieved in this
direction in subsequent work. Chu et al. introduced a
scalable and decentralized MARL algorithm with the aid
of the advantage actor-critic (A2C) agent and evaluated its
performance on a large real-world traffic network [26]. To
facilitate better coordination, scientists employed graph
neural networks to learn intersection spatial interaction
[27-29] and built hierarchical systems for combining
multi-granularity of information [30]. The problem of
effective communication between the agents has also been
solved, with models like by Bokade et al. allowing
selective communication between the agents to improve
performance without causing noise [31]. All these
enhancements are displaying a definite trend towards
more advanced, collaborative, and scalable MARL
methods for complex traffic management and providing
an excellent benchmark for applying it in railway systems.
Recent works have further advanced MARL for traffic
signal control, including multi-objective coordination [33],
curriculum transfer for large-scale systems [34, 36], and
integration with traffic flow data [35]. All these
enhancements are demonstrating a trend towards more
advanced, collaborative, and scalable MARL methods for
complex traffic management and providing an excellent
benchmark for applying it in railway systems.

2.3 Multi-agent reinforcement learning for
rail transit management

With success of urban traffic control as a premise,
MARL has been used by researchers to the particular case
of rail transit management. The formulation involves hard
safety constraints, complex network topology (single
tracks forming part of the case), and the need to regulate
train movement as well as customer satisfaction. Bretas et
al.'s first solution used MARL to perform better than
classical dispatching rules such as first-in-first-out (FIFO)
in overloaded situations [19].

More advanced and complex problems in railway
operation have been tackled in recent studies. Li & Ni built
a general learning environment to show that MARL can
effectively solve train timetabling problems for double-
track and single-track railways [17]. MARL's real-time
disruption management ability has been of prime concern.
Ying et al. used a MARL solution to residually schedule
short-turning services adaptively to recover from
disruptions and performed better than conventional
approaches. Bretas et al. also successfully utilized MARL
to resolve deadlocks for very big and complex freight rail
networks [18]. Multi-objective optimization is another
extremely key research area applied not just in rail but also
other public transport modes like buses, in order to prevent
bunching [38, 39]. Wen et al. and Zhang et al. have
proposed MARL models that optima-parallelise waiting
time and energy consumption of passengers, ushering in
revolutionary reductions in the two measures [21, 32]. It
has been attempted to optimise dwelling time and
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passenger inflows [40]. Most comprehensively critical,
Schneider et al. have outlined a MARL solution in the
middle of a next-generation Capacity & Traffic
Management System: it has proven to be scalable to
solving planning and rescheduling issues at scale. There is
such literature mounting, solutions improving the impact
of MARL on complex railway systems [37], as MARL
quickly becomes the new frontier in the evolution of
intelligent, adaptive, and efficient rail transit management
systems.

Table 1: Related works summary
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3 Methodology

Our proposed framework for traffic flow optimization
in rail transit systems is based on a multi-agent
reinforcement learning (MARL) approach tailored for
network-based train dispatching. The central thesis of our
method is to address the limitations of traditional
centralized dispatching systems by modeling each train as
an intelligent agent that interacts with the rail environment
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in a decentralized manner. This enables adaptive decision-
making under dynamic conditions, such as varying
passenger flows, disruptions, and network congestion. To
achieve this, we draw inspiration from analogous systems
in highway traffic management, adapting concepts like
heterogeneous vehicle platoons to the rail domain. Our
proposed framework leverages a MARL architecture to
optimize traffic flow in rail transit systems, drawing
parallels from heterogeneous vehicle control in highway
scenarios. The schematic provides a high-level overview
where the top section denotes the core methodology for
network-based train dispatching, the middle highlights
agent collaboration akin to supervisory guidance in
complex systems, and the bottom emphasizes temporal
dynamics essential for real-time adaptations under varying
conditions such as passenger flows or disruptions.

MARL handles uncertainties and sudden disruptions
by allowing agents to learn adaptive policies through trial-
and-error interactions, similar to guarantees in adaptive
fuzzy control [41] or neural adaptive control [42, 43],
where controllers adjust to uncertainties. For instance,
agents incorporate noise in state observations and rewards,
ensuring robustness akin to backstepping controllers [44,
45, 46].

3.1 Dual-loop hierarchical control
framework

The initial stage of our framework establishes a dual-
loop hierarchical control structure to handle the
complexities of rail transit networks, which often involve
intricate topologies with multiple lines, stations, and
junctions. Unlike conventional methods that rely on static
timetables or heuristic rules, our approach integrates an
outer loop for global cooperative decision-making and an
inner loop for local robust control, allowing for real-time
adaptation to stochastic events like signal failures or
sudden passenger surges.

To model the system comprehensively, we define the
collective dynamics of heterogeneous train groups under
the rail cloud-control system. Let T = {T,T,, ..., T,,}
represent the set of trains, where each train T; is an agent
with state s; = [p;, v;, a;, ¢;]7, denoting position along the
track, velocity, acceleration, and energy consumption rate.
The rail network is modeled as a directed graph G =
( V,E ), with vertices V representing stations and
junctions, and edges E as track segments with attributes
like length, speed limits, and capacity.
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The outer loop focuses on broad-area cooperative
decisions, optimizing the sequencing and trajectories of
train groups to minimize conflicts at critical points such as
merging junctions (analogous to highway ramps). This
loop operates at a lower frequency, say every 30 — 60
seconds, to compute global plans. The inner loop, in
contrast, ensures high-frequency robust tracking of these
decisions, updating at 1—10Hz to handle local
uncertainties like track friction variations or minor delays
in door operations.

The optimization model for train merging and
diverging is formulated as a multi-objective problem:
min2?=1 (Wl . Di + wy - Ei + Ws3 Ti + Wy * Ci)' (1)

subject to safety constraints:

|xi —X]| = hmin + SL]IVl ?5] [S T, (2)
velocity bounds:
Vmin < Ui < Vmax’ (3)

and energy efficiency limits:

Ei = Emax: (4)

where d; is the delay for train i,e; is energy
consumption, t; is travel time, c; is a comfort metric (e.g.,
acceleration jerk), hy,, is the minimum headway, §;; is a
dynamic buffer based on relative speeds, and
wy, w,, Wy, W, are tunable weights reflecting priorities like
punctuality versus sustainability.

This dual-loop decouples the problem effectively: the
outer loop solves the global optimization using
approximate methods to generate reference trajectories,
while the inner loop refines them locally. To further
enhance stability, we incorporate a feedback mechanism:

Sier1 = Sie + At f (S0 uie) + 16, (5)

where f is the dynamics function, u; . is the control
input (e.g., throttle), and 7, represents noise. The
framework's hierarchical nature reduces computational
load, as the outer loop handles combinatorial aspects while
the inner loop focuses on continuous control.

In practice, this structure allows for seamless
integration with cloud-based systems, where edge
computing nodes at stations provide real-time data fusion,
and central clouds perform MARL training. We also
define a convergence criterion for the loops:

”Sref - sactual” <e€ (6)

ensuring synchronization between planning and
execution. Table 2 summarizes the key parameters and
their roles in the dual-loop framework, highlighting the
balance between global cooperation and local robustness.

Table 2: Key Parameters in the Dual-Loop Hierarchical Control Framework

Parameter Description Value/Range Role in Framework

T, Outer loop update frequency 30s Global MARL policy coordination
T; Inner loop update frequency 1s Local trajectory tracking

Rmin Minimum headway 2 min Safety enforcement

w; —w,  Objective weights [0.1,0.4] Multi-objective trade-offs

é Convergence threshold 0.05m/s Loop synchronization

Vinax Maximum velocity 80 km/h Network capacity limits
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The overall deep-loop hierarchical control order is shown
in Figure 1.
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Figure 1: The deep-loop hierarchical control order.

3.2 Real-time cooperative decision-making
based on dynamic conflict graphs

To achieve comprehensive optimization of train
sequencing and trajectories while balancing efficiency and
safety, we propose a real-time cooperative decision-
making method using dynamic conflict graphs. This
method reconstructs the cooperative decision problem as
a graph optimization task, ensuring efficient resolution
under multiple coupled constraints such as track
occupancy, signaling rules, and passenger transfer times.

Define the dynamic conflict graph G. = (N,E.),
where nodes N = {ny,n,, ..., n,,} represent train groups
or individual trains, and edges E. indicate potential
conflicts at junctions, shared tracks, or stations. An edge
exists between n; and n; if their projected trajectories
overlap within a safety buffer, quantified as:

overlap;; = [ 1(|pi(t) = p;(®)] < hmin)dt >0 (7)
where I is the indicator function and T is the planning
horizon. The problem is reformulated as minimizing the
total cost over the graph:
min X jyeg, Cij * Xij + Li G (8)

where x;; = 1 if train i precedes j, ¢;; is the conflict
cost (e.g., induced delay or energy penalty), and g; is the
individual trajectory cost.

Based on the Pontryagin Minimum Principle (PMP),
we construct an optimal terminal state phase diagram for
the leading train's trajectory planning. The Hamiltonian
for a single train's optimal control is:

H=2y v+ a+:a+p®—vpa) (9)
leading to the optimal control:
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a=-2,-2 (10
with adjoint equations:
X, =0,4, = -4, (1D

The phase diagram plots feasible terminal states
( prvp ), enabling quick trajectory generation via
interpolation:

Pr=Do+ fotf v(t)dt, vy = vy + fotf a(t)dt (12)

We introduce a decoupling strategy for the conflict
graph and a depth-first heuristic search for sequencing
trees. The graph is decoupled into subgraphs for parallel
processing:

Ge = Uy Gc,k' (13)

where each G, is solved independently using a
subgraph optimizer:

H;in Y(ij)eEek Cij * Xijer  (14)
then merged with consistency constraints:
Xij = Xijp V(i,j) € 0G k. (15)

The heuristic search prunes the sequencing tree by
prioritizing low-cost branches, reducing computational
complexity from O(n!) to O(nlog n) in average cases,
with a cost heuristic:

h(node ) = ¥ nseq Ming;. (16)
M2 ng n, ny rooty;
* &
M1 ooty
u o ——
ms my ms\ m, [ m
RO
©
3 rz T

Figure 2: Illustrative decomposition strategy for rail
network zones in conflict resolution.

Figure 2 presents a decomposed view of the rail
network into functional regions, essential for resolving
conflicts in our MARL-based approach, where zones like
merging junctions and stations are optimized for efficient
train sequencing. And the Hierarchical Sequencing
Module is shown in Table 3.

Table 3: Summary of the hierarchical sequencing module

Module Input Features Output Conditioning Conflict Modulation
Merging Sequencer  Track states, velocities  Sequence order - Indirect (via graph)
. . . Adjusted . . .
Diverging Sequencer Merging outputs trajectories Merging Sequence Indirect (via graph)
. . . Dwell times, . . . . -
Station Sequencer Diverging outputs headways Diverging Motion Direct (Heuristic)

Track Sequencer Station outputs

Final velocities

Station Times Direct (Heuristic)

The sequencing is generated sequentially, starting
with merging:

Oy = frm(s) = arg min}, Cmerge» 17)
followed by diverging:
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0a = fa(s,0m) = 0m + Ay, (18)

where A is the adjustment vector. For high-conflict

scenarios, modulation gates amplify priorities:
gate = a(w . conﬂictprob), (19)

where ¢ is the sigmoid function, dynamically scaling
movements:

Oypper = base + gate O amp. (20)

This method ensures that the decision-making process
is not only efficient but also scalable to networks with
hundreds of trains, by leveraging graph theory and optimal
control principles.

3.3 Robust predictive control using hankel
feature matrices

To address the robustness issues in model predictive
control (MPC) under vehicle-cloud collaboration,
particularly in the presence of nonlinear dynamics and
external disturbances, we propose a robust predictive
control method for heterogeneous train groups based on
Hankel feature matrices. This data-driven, non-parametric
approach captures complex nonlinear dynamics without
requiring explicit parametric modeling, making it ideal for
rail systems with varying train types.

Historical trajectories are collected to build the
Hankel matrix for each train group, providing a behavioral
representation:

yi Y2 YN-L+1
Y2 V3 o YN-L+2
Hy =1: : . : ’
Yo Vi1 - YN
u U UN-L+1
U Us UN-L+2
uL uL+1 s uN

where y, = [p,, v,]T are output states (position,
velocity), u, are inputs (acceleration commands), L is the
lag order, and N is the data length.

State prediction and optimization are integrated into a
single problem using the Hankel matrices:
min|[Hy 8 = yrerlly + 1B = upresl,, + 211811, (22)

subject to:

Z ﬁi = 11.8 = 0'(23)

where Q,R are weighting matrices, y.r is the
reference trajectory, and A promotes sparsity for noise
rejection.

Furthermore, for multi-agent
incorporate a consensus term:

min };; ||5i - Sref,i” +vZij ||5i - sj”' (24)

ensuring platoon-like stability in rail convoys. This
robust control outperforms traditional MPC by reducing
sensitivity to model mismatches, as validated in
simulations where error variance is halved under noisy
conditions. The optimal control phase portrait is shown in
Figure 3.

coordination, we
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Figure 3: The optimal phase portrait figure.

In summary, the Hankel-based approach provides a
flexible, data-centric alternative to parametric models,
enabling the framework to scale to diverse rail scenarios
while maintaining high performance.

4 Experiments and results

To verify the effectiveness of our proposed MARL-
based traffic flow optimization method for rail transit, we
conducted large-scale simulation experiments with a real-
world urban rail system. The experiments were conducted
to evaluate critical performance indicators like traffic flow
efficiency, train delay reduction, energy saving, and
system robustness under various operational conditions.
We compared our MARL approach to baseline
conventional techniques, such as First-In-First-Out (FIFO)
dispatching and centralized optimization techniques like
Mixed-Integer Linear Programming (MILP). All
simulations were performed over a custom rail transit
simulation platform developed using Python 3.8, utilizing
the following libraries: Gym for RL environments,
PyTorch for MARL implementation, and NetworkX for
graph modeling of the rail network.

4.1 Experimental setup

The simulation environment was set up to model a
typical urban rail network consisting of 20 stations, 5 lines,
and multiple junctions, approximating a medium-to-large-
sized system similar to those in major cities like Beijing
or London. Trains were each an agent in the MARL
system, with state observations including current position,
speed, headway from the preceding train, station dwell
time, and passenger load. Actions for each agent include
acceleration/deceleration events, dwell time extensions,
and routing decisions at intersections. We trained the
MARL model using the Independent Proximal Policy
Optimization (IPPO) algorithm, which is a variant of PPO
for multi-agent settings. Training consisted of 10,000
episodes, with each episode simulating a 2-hour peak-
period operation. Hyperparameters included a learning
rate of 0.001, discount factor y= 0.99, and entropy
coefficient of 0.01 for encouraging exploration. Passenger
demand is simulated using a Poisson distribution for
arrivals at stations, with loads distributed based on time-
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of-day peaks (e.g., 200-500 passengers/train during rush
hour). SARL as centralized RL. Hardware: Simulations on
Intel i7-10700 CPU, 32GB RAM, no GPU for baselines;
parallelization via PyTorch multi-threading. Stochastic
disruptions, such as signal failures and passenger surges,
were introduced to the network. Baseline methods were:

FIFO: A rule-based dispatching where trains operate
in arrival order with no optimization.

MILP: A centralized optimizer solving timetables
offline, with the Gurobi optimizer and a 30-second
timeout per iteration.

Single-Agent RL (SARL): A centralized RL baseline
where a single agent controls the entire network,
illustrating the scalability limitation of non-MARL
approaches.

Test cases comprised low traffic (50 trains/hour),
medium traffic (100 trains/hour), high traffic (150
trains/hour), and disruption-rich environments (with 20%
additional variability in dwell times).

We evaluated the methods on the following
performance metrics: Average Train Delay (ATD): Mean
delay per train in minutes. Throughput (TP): Trains
finishing routes hourly. Energy Consumption (EC): Total
energy consumed (kKWh). Stability Index (SI): Variance in
headways, with smaller values more stable. Computation
Time (CT): Mean time per decision cycle in seconds.
Results were averaged over 50 independent runs, with 95%
confidence intervals given. The simulation environment
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was set up to model a typical urban rail network consisting
of 20 stations, 5 lines, and multiple junctions,
approximating a medium-to-large-sized system similar to
those in major cities like Beijing or London. Trains were
each an agent in the MARL system, with state
observations including current position, speed, headway
from the preceding train, station dwell time, and passenger
load.

Test cases comprised low traffic (50 trains/hour),
medium traffic (100 trains/hour), high traffic (150
trains/hour), and disruption-rich environments (with 20%
additional variability in dwell times).

4.2 Traffic flow efficiency under varying
loads

Table 4 provides a detailed performance comparison
across three traffic load scenarios: low (50 trains/hour),
medium (100 trains/hour), and high (150 trains/hour). The
MARL method consistently outperformed the baseline
methods across all evaluated metrics, with particularly
notable improvements in high-traffic scenarios where
decentralized decision-making effectively mitigated
bottlenecks at junctions and critical merging points.
Extreme scenarios tested include signal failures (causing
full stops) and emergency stops (random 10% trains halt
for 2-10 min), showing MARL reduces ATD by 45% vs.
baselines.

Table 4: Performance comparison across traffic loads

Traffic Load Method  ATD (min) TP (trains/h) EC (kwh) Si CT (s)
Low (50 trains/h) FIFO 25+0.3 48 +2 1200+ 50 0.15+0.02 0.1 +0.01
MILP 1.8+0.2 49+1 1150+ 40 0.12+0.01 52+05
SARL 16+0.2 49+1 1120+ 30 0.11+0.01 1.5+0.2
MARL (Ours) 1.2+0.1 50+1 1080 +£20 0.08+0.01 0.8+0.1
Medium (100 trains/h) FIFO 42+05 95+3 2400+ 1000.25+0.03 0.1 +£0.01
MILP 30+04 98 +2 2300+80 0.20+0.02 85+1.0
SARL 2.8+0.3 9712 2250+70 0.18+0.02 2.0+0.3
MARL (Ours) 2.0+0.2 99+1 2150 +50 0.14+0.01 1.0+0.1
High (150 trains/h) FIFO 6.8+0.7 140+5 3600+ 150 0.35+0.04 0.1 £0.01
MILP 45+05 145+3 3450+1200.28+0.0312.0+15
SARL 40+04 144+3 3400+ 1100.25+0.03 35+04
MARL (Ours) 2.8+0.3 148+2  3200+80 0.20+0.02 1.2+0.2

The data in Table 3 reveals several key insights into
the performance of the MARL approach. In the low-traffic
scenario, MARL reduced the ATD by approximately 52%
compared to FIFO, demonstrating its ability to optimize
scheduling even under minimal congestion. This
improvement is attributed to the agents' ability to
dynamically adjust dwell times and headways, ensuring
smoother traffic flow with a si of 0.08, the lowest among
all methods, indicating enhanced consistency in train
spacing. Energy Consumption (EC) also saw a reduction
of 10% compared to FIFO, reflecting the multi-objective

reward function's effectiveness in balancing punctuality
and energy efficiency.

In the medium-traffic scenario, the MARL method's
advantage became more pronounced, reducing ATD by 52%
and tp to 99 trains/hour, nearly achieving the theoretical
maximum capacity. This performance is particularly
significant at junction points, where decentralized agents
collaboratively resolved conflicts, reducing SI by 44%
compared to FIFO. The Computation Time remained
below 1.5 seconds, making it suitable for real-time
applications, whereas MILP's CT of 8.5 seconds
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highlights its limitations in
environments.

Under high-traffic conditions, MARL achieved a
remarkable 59% reduction in ATD (from 6.8 minutes to
2.8 minutes) and boosted TP to 148 trains/hour, surpassing
MILP and SARL by 2-3 trains/hour. The Sl dropped to
0.20, a 43% improvement over FIFO, indicating robust
stability despite increased network complexity. The EC
reduction of 11% further underscores the method's energy-

scalability dynamic
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efficient dispatching, driven by the agents' ability to
optimize acceleration profiles and minimize unnecessary
stops. The near-real-time CT of 1.2 seconds contrasts
sharply with MILP's 12 seconds, affirming MARL's
practical viability for large-scale rail networks.

In disruption scenarios, we introduced random delays
(uniformly distributed between 1-5 minutes) at 10% of
stations. Table 5 highlights resilience.

Table 5: Performance under disruptions (medium traffic load)

Method ATD (min) TP (trains/h) EC (kwh) SI Recovery Time (min)
FIFO 55+0.6 90+4 2600 £ 120 0.30 £ 0.04 15+2

MILP 40+05 92+3 2500 = 100 0.25+£0.03 12+15

SARL 35+04 93+3 2450 £ 90 0.22 +0.02 10+1

MARL (Ours) 25+0.3 96 £ 2 2300+ 70 0.18 £ 0.02 7+0.8

4.3 Ablation studies

To assess component contributions, Table 6 shows
ablation results for medium traffic. We performed
ablations:

1.Without Graph Modeling: Removed graph-based
state representation, leading to 25% higher ATD.

2.Without Multi-Objective Rewards: Used delay-
only rewards, increasing EC by 15%.

3.Reduced Agent Count: Centralized subsets of
agents, degrading TP by 10% in high loads.

The ablation results provide deep insights into the
architectural strengths of the MARL framework.
Removing the graph-based state representation increased
ATD by 25% and TP dropped by 3%, highlighting the
critical role of the dynamic conflict graph in capturing
spatial relationships and optimizing junction traversals.
The Sl rose to 0.18, a 29% increase, indicating reduced
stability due to the loss of topological awareness, which

led to a 4.7% higher EC as agents struggled to coordinate
efficiently without graph-informed decisions.

Partial centralization, where subsets of agents were
controlled by a single entity, increased ATD by 15% and
reduced TP by 2%, reflecting the scalability limitations of
centralized approaches. The SI rose to 0.17, a 21%
increase, and EC increased by 2.3%, indicating that
centralized control struggles to adapt to local variations,
leading to inefficiencies in high-density networks. These
findings validate the decentralized nature of MARL,
where individual agent autonomy enhances adaptability
and performance across varying traffic loads and
disruption scenarios.

The comprehensive analysis of these experiments
confirms that the MARL framework's full configuration,
incorporating graph modeling, multi-objective rewards,
and decentralized agents, is essential for achieving
optimal traffic flow optimization in rail transit systems.

Table 6: Ablation study results (medium traffic load)

Variant ATD (min) TP (trains/h) EC (kWh) SI

Full MARL 20+02 99+1 2150+50 0.14+0.01
No Graph 25+03 962 2250+ 60 0.18 +0.02
Delay-Only Rewards 1.8 +0.2 98+1 2500+ 80 0.16 +0.02
Partial Centralization 2.3 +0.3 97 %2 2200 £55 0.17 £0.02

4.4 Visualization and case studies

Figure 4 illustrates the optimal directed paths in the
dynamic conflict subgraph under different decoupling
schemes for a typical highway ramp merging scenario.
Specifically, this figure presents the first four subfigures
(a) through (d) from the original set of eight decoupling
schemes, highlighting how the proposed real-time
cooperative decision-making method based on dynamic
conflict graphs optimizes vehicle sequencing and

trajectories. In each subfigure, nodes represent
heterogeneous vehicle platoons, and directed edges shown
in black arrows are annotated with numerical values
indicating the cost of right-of-way transfer, such as delay
penalties or energy costs associated with yielding or
accelerating. The bold red paths denote the optimal
directed paths that minimize the total conflict cost for each
decoupled subgraph, computed using the depth-first
heuristic search with pruning. For instance, in Figure 4(a),
the optimal path prioritizes the ramp vehicle platoon
$n_3$% yielding to mainline platoon, resulting in a minimal



Decentralized Train Dispatching in Urban Rail Networks Using...

cost of 3.2, which balances safety constraints and
efficiency metrics like reduced merging delays.

VAN

(b) Cpyy = {my}

S
SNV A

(d) Cpyy = {ms}

Nl

ENCa

m

N

(€) Cyy = (M)
Figure 4: Headway Distribution Comparison (x-axis:
Time (min), y-axis: Headway (min), units in minutes;
solid black arrows represent potential conflict edges with
associated costs; bold red arrows indicate the selected
optimal directed path; dashed lines denote infeasible
paths due to constraint violations).

Figure 5 depicts the trajectory tracking errors of the
lead vehicle under varying vehicle mass estimation
deviations in the robust predictive control framework
based on Hankel feature matrices. Subfigure 5(a) shows
the root mean square (RMS) velocity error, while 5(b)
illustrates the RMS position error, both plotted against
mass deviation ranging from -300 kg to +300 kg. The
proposed Hankel-PRC method (solid blue line) exhibits
minimal sensitivity to mass estimation errors, with RMS
velocity errors staying below 0.5 m/s even at smaller
deviations, compared to the traditional MPC baseline
(dashed red line), which spikes to over 1.2 m/s due to
model mismatches in nonlinear dynamics. Similarly, in
5(b), position errors for Hankel-PRC remain under 2
meters across the deviation range, halving the error
variance observed in MPC under noisy conditions.
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Figure 5: Comparison of Hankel-PRC and MPC
performance (x-axis: Mass Deviation (kg), y-axis: RMS
Error (m/s for velocity, m for position); trajectory
tracking errors defined as RMS difference between
predicted and actual paths).
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5 Conclusion

We presented a novel traffic flow optimization model
for rail transit networks based on multi-agent
reinforcement learning (MARL) tailored to network-based
train dispatching.

By modeling each train as a separate intelligent agent,
we established a decentralized framework that overcomes
the scalability bottleneck of centralized methods, enabling
adaptive decision-making in dynamic situations like
disruptions and stochastic passenger demands. The key
innovations include a two-loop hierarchical control
architecture for a trade-off between global coordination
and local robustness, real-time cooperative decision-
making via dynamic conflict graphs for minimizing
conflicts at junctions, and robust predictive control via
Hankel feature matrices for coping with nonlinear
dynamics and uncertainties. Extensive simulation tests on
a realistic urban rail network validated the superiority of
the framework. Detail model architectures used for
MARL agents. Clarify random seed settings and
environment initialization logic.

Compared to baselines like FIFO, MILP, and SARL,
our MARL solution achieved significant improvements:
average train delay (ATD) reduction by up to 59%, 11%
lower energy consumption (EC), 43% improved stability
index (SlI), and recovery times that are faster (7 minutes
versus 15 minutes under disruptions), while ensuring real-
time computation feasibility. Ablation studies also
validated the key contributions of graph modeling, multi-
objective rewards, and agent decentralization to these
improvements. Visualization and case studies, such as
minimum path solutions in conflict graphs and reduced
tracking errors under mass deviations, demonstrated the
method's practical potency. This work bridges predictive
analytics and actionable control, yielding a scalable
solution for intelligent rail management. Potential future
work includes extending the framework to support higher-
fidelity predictive models of passenger flows, such as real-
world hardware-in-the-loop testing, or exploring hybrid
MARL with other Al paradigms for yet greater general
applicability in multimodal transport. Our contributions
ultimately lead to more efficient, resilient, and sustainable
urban rail transit systems.
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