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Since urban rail transit has developed rapidly, train scheduling and traffic flow optimization is a 

challenging task for improving operational efficiency and service quality in complex networks. We 

overcome the limitations of traditional centralized methods in massive-scale, high-density settings using 

multi-agent reinforcement learning (MARL) in network-based train dispatching. This builds a 

decentralized decision space where trains are treated as smart agents to optimize dispatching 

cooperatively through interaction with the environment. The proposed MARL framework integrates a 

dual-loop hierarchical control structure, dynamic conflict graphs, and robust predictive control using 

Hankel matrices. This paradigm improves traffic throughput, reduces computational complexity, and 

enhances real-time disruption adaptability, achieving impacts like reduced train delays and better energy 

efficiency. Experimental results indicate that the suggested MARL solution reduces average train delay 

(ATD) by up to 59% compared to FIFO during heavy-traffic scenarios, improves throughput (TP) to 148 

trains/hour, lowers energy consumption (EC) by 11%, and lowers stability index (SI) by 43% while 

maintaining near-real-time computation time (CT) of less than 1.5 seconds. The experimental results 

provide effective suggestions for intelligent rail transit dispatching and propose new directions for 

constructing intelligent transportation systems. 

Povzetek: Predlagan pristop uporablja večagentsko okrepljeno učenje za decentralizirano, sodelovalno 

vodenje vlakov v kompleksnih železniških omrežjih, kar v primerjavi s klasičnimi metodami zmanjša 

zamude, poveča pretočnost ter izboljša energijsko učinkovitost in odzivnost v realnem času. 

 

1 Introduction 
The continuous expansion of city residents has led to 

a greater reliance on mass transport, and city rail transport 

networks provide the backbone of modern city transport. 

As the extent and intricacy of the networks expand even 

further, keeping them operating efficiently, on time, and 

safely is an increasingly important task [1]. The core of 

this problem is train scheduling and traffic flow control, 

i.e., managing the movement of a large number of trains 

along a network of tracks, stations, and crossings. The 

traditional methods of solving the problem have typically 

relied on mathematical programming and heuristics. 

Though adequate under deterministic or static conditions, 

they do not real-time adapt to the stochastic and dynamic 

character of live rail operation, which are normally 

occasions susceptible to unplanned disturbance, 

fluctuating loads of passengers, and delay propagation [2]. 

Due to the deficiencies of conventional approaches, 

scholars have increasingly become interested in using 

data-hungry methods based on machine learning and 

artificial intelligence. One of the principal fields of 

innovation has been predicting passenger flow, with deep 

networks like Graph Convolutional Networks (GCNs) and 

Long Short-Term Memory (LSTM) networks revealing  

 

unparalleled accuracy [3-5]. As Ma demonstrated, one can 

achieve high 95% real-time traffic flow prediction and  

base more reasonable line planning on that [6]. These 

types of models are better suited to prediction, though, and 

lag in their ability to take predictive proficiency and turn 

it into optimized, real-time dispatch decisions. 

Reinforcement learning (RL) is a robust paradigm for 

sequential decision and control and thus is a natural fit for 

traffic management issues. Early work explored the 

application of RL to optimize traffic flow by learning 

policies that would regulate driving speed or signal timing 

[7]. However, single-controller RL models, where one 

controller manages the entire network, are challenged with 

being highly scalable because the state and action spaces 

increase exponentially. This "curse of dimensionality" 

makes centralized control computationally expensive for 

vast rail networks. Consequently, therefore, the machine 

learning community has turned its attention to multi-agent 

reinforcement learning (MARL), a decentralized 

framework where a number of intelligent agents learn to 

cooperate towards a common goal [8-12]. The effective 

implementation of MARL in the same application area of 

urban traffic signal control, as demonstrated by Arel et al. 
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and numerous subsequent works, has made it accessible to 

applications in rail transit systems [13-16]. 

MARL recently became state-of-the-art railway 

management method. Its efficacy in a variety of activities, 

from optimized train timetabling [17] and traffic 

management for complex freight networks [18, 19] to real-

time rescheduling in the event of service disruptions, has 

been shown through research. Multi-objective 

optimization has also attracted researchers such as Ning et 

al., who applied MARL to trade off energy efficiency 

against passenger service quality [20, 21]. Furthermore, 

Schneider et al. demonstrated that a MARL solution is a 

very viable candidate for Germany's forthcoming 

Capacity & Traffic Management System (CTMS) because 

of its capability for huge-scale, automated railway systems 

[1]. Nevertheless, the adaptation of MARL to network-

wide train dispatching with specific emphasis on 

decentralized traffic flow optimization remains a field 

waiting to be exploited. 

This paper presents a novel traffic flow optimization 

method for rail transit by formulating it as a multi-agent 

reinforcement learning framework for train dispatching in 

a network-based setting. Our primary contribution is to 

model each train as an independent, intelligent agent that 

learns a cooperative dispatching policy by directly 

interacting with the rail environment. This decentralized 

approach inherently addresses the scalability challenge for 

centralized systems. By equipping each agent with the 

ability to make local decisions based on its observations, 

the system dynamically adapts to real-time conditions and 

perturbations without global recalculation. We created a 

MARL algorithm tailored to the rail setting, which 

optimizes a reward function that balances critical 

operation metrics like punctuality, energy consumption, 

and waiting times for passengers. This paper aims to close 

the loop between predictive analytics and actionable 

control, providing a solid and scalable solution for 

intelligent rail traffic management. The research goals are 

framed as concrete, testable objectives: (1) to test real-

time responsiveness by measuring CT under varying 

loads; (2) to evaluate stability under disruptions by 

assessing SI in extreme scenarios like signal failures; and 

(3) to define success via metrics. 

The rest of this paper is structured as below. Section 

2 provides a review of the current literature in train 

scheduling, traffic flow optimization, and applying 

reinforcement learning to transportation systems. Section 

3 describes the overall methodology of our proposed 

multi-agent reinforcement learning solution. Section 4 

describes the experimental setting and reports simulation 

results. Section 5 discusses the results in the context of 

state-of-the-art (SOTA) literature. Finally, Section 6 

concludes the paper and outlines future research directions. 

 

2 Related works 

2.1 Train scheduling and traffic flow 

optimization 

Train scheduling and traffic pattern regulation are 

fundamental functions in railway transit operations. 

Operations research techniques like mixed-integer linear 

programming and heuristic search algorithms have been 

employed in the past to address the issues. These 

techniques aim to find optimum solutions for timetabling, 

routing, and resource allocation from a specified model of 

the system. Their computational complexity and need for 

static models limit their effectiveness in dynamic real-

world environments where conditions keep fluctuating. 

With the existence of big data and intense 

computation, deep learning has been a highly effective 

means for modeling and forecasting aspects of traffic 

systems. For short-term passenger flow forecasting in rail 

transit in cities, Zhang et al. proposed a model combining 

graph convolutional networks (GCN) and 3D 

convolutional neural networks (CNN) to determine spatio-

temporal correlations to make accurate forecasting [3]. 

Similarly, Xiong et al. demonstrated that LSTM and CNN 

models could forecast passenger flow time series with 

high performance, outperforming traditional linear models 

like ARIMA [4]. Multi-task learning networks and time 

series decomposition algorithms have also been 

successfully employed in other deep learning models to 

further improve prediction accuracy [22, 23]. These 

forecasting capabilities provide valuable inputs to the 

operation planning but do not necessarily solve the control 

problem of how to change train movements based on these 

forecasts. 

 

2.2 Reinforcement learning in 

transportation systems 

Reinforcement learning (RL) is also one of the key 

data-driven techniques to address control issues in 

intelligent transportation systems [24]. While supervised 

learning does not allow an agent to learn an optimal policy 

by trial and error, RL is most suitable for dynamic systems 

whose system models are difficult to acquire or do not 

exist. Traffic light control in cities like train dispatching in 

all but a few respects has been a primary domain of 

application for RL, e.g., coordination between multiple 

decision points (stations or intersections). 

The transition from single-agent to multi-agent 

reinforcement learning (MARL) was a turning point to 

address large-scale transportation networks. As 

highlighted in surveys by Gronauer & Diepold and others, 

MARL solves the non-stationarity and scalability 

problems that arise in the situation of learning by 

numerous agents at once [8, 9, 25].  
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An early work was posed by Arel et al. where they 

proposed a MARL framework for obtaining an efficient 

traffic signal control policy with optimal delays and 

alleviation of congestion [13]. Work was achieved in this 

direction in subsequent work. Chu et al. introduced a 

scalable and decentralized MARL algorithm with the aid 

of the advantage actor-critic (A2C) agent and evaluated its 

performance on a large real-world traffic network [26]. To 

facilitate better coordination, scientists employed graph 

neural networks to learn intersection spatial interaction 

[27-29] and built hierarchical systems for combining 

multi-granularity of information [30]. The problem of 

effective communication between the agents has also been 

solved, with models like by Bokade et al. allowing 

selective communication between the agents to improve 

performance without causing noise [31]. All these 

enhancements are displaying a definite trend towards 

more advanced, collaborative, and scalable MARL 

methods for complex traffic management and providing 

an excellent benchmark for applying it in railway systems. 
Recent works have further advanced MARL for traffic 

signal control, including multi-objective coordination [33], 

curriculum transfer for large-scale systems [34, 36], and 

integration with traffic flow data [35]. All these 

enhancements are demonstrating a trend towards more 

advanced, collaborative, and scalable MARL methods for 

complex traffic management and providing an excellent 

benchmark for applying it in railway systems. 

 

2.3 Multi-agent reinforcement learning for 

rail transit management 

With success of urban traffic control as a premise, 

MARL has been used by researchers to the particular case 

of rail transit management. The formulation involves hard 

safety constraints, complex network topology (single 

tracks forming part of the case), and the need to regulate 

train movement as well as customer satisfaction. Bretas et 

al.'s first solution used MARL to perform better than 

classical dispatching rules such as first-in-first-out (FIFO) 

in overloaded situations [19]. 

More advanced and complex problems in railway 

operation have been tackled in recent studies. Li & Ni built 

a general learning environment to show that MARL can 

effectively solve train timetabling problems for double-

track and single-track railways [17]. MARL's real-time 

disruption management ability has been of prime concern. 

Ying et al. used a MARL solution to residually schedule 

short-turning services adaptively to recover from 

disruptions and performed better than conventional 

approaches. Bretas et al. also successfully utilized MARL 

to resolve deadlocks for very big and complex freight rail 

networks [18]. Multi-objective optimization is another 

extremely key research area applied not just in rail but also 

other public transport modes like buses, in order to prevent 

bunching [38, 39]. Wen et al. and Zhang et al. have 

proposed MARL models that optima-parallelise waiting 

time and energy consumption of passengers, ushering in 

revolutionary reductions in the two measures [21, 32]. It 

has been attempted to optimise dwelling time and 

passenger inflows [40]. Most comprehensively critical, 

Schneider et al. have outlined a MARL solution in the 

middle of a next-generation Capacity & Traffic 

Management System: it has proven to be scalable to 

solving planning and rescheduling issues at scale. There is 

such literature mounting, solutions improving the impact 

of MARL on complex railway systems [37], as MARL 

quickly becomes the new frontier in the evolution of 

intelligent, adaptive, and efficient rail transit management 

systems. 

 

Table 1: Related works summary 

No

. 

Model 

Used Metrics Datasets Results 

[1

7] 

MAR

L with 

general 

learning 

env. 

Delay, 

Throughput 

Synth

etic rail 

networks 

Impro

ved 

timetabling 

for 

double/sing

le tracks 

[1

8] 

MAR
L for 

deadlock 

resolution 

Resolu

tion time 

Comp

lex freight 

networks 

Resol

ved 
deadlocks 

in large 

networks 

[1

9] 

MAR

L vs. FIFO 

Delay 

in overload 

MOD

SIM 

simulation 

Better 

than FIFO 

in 

overloaded 

scenarios 

[2

0] 

Multi

-objective 

MARL 

Energ

y, Service 

quality 

Urban 

rail network 

Balan

ced energy 
and 

passenger 

satisfaction 

[2

1] 

Soft 

Actor-

Critic 

Timet

able 

optimization 

Large

-scale URT 

Energ

y-saving 

under 

dynamic 

demand 

[2

6] 

A2C 

MARL 

Delay, 

Congestion 

Real-

world 

traffic 

Scala

ble signal 

control 

[3

3] 

Netw

ork-wide 

MARL 

Multi-

objective 

(delay, flow) 

Traffi

c networks 

Redu
ced delays 

via 

coordinatio

n 

 

3 Methodology 
Our proposed framework for traffic flow optimization 

in rail transit systems is based on a multi-agent 

reinforcement learning (MARL) approach tailored for 

network-based train dispatching. The central thesis of our 

method is to address the limitations of traditional 

centralized dispatching systems by modeling each train as 

an intelligent agent that interacts with the rail environment 
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in a decentralized manner. This enables adaptive decision-

making under dynamic conditions, such as varying 

passenger flows, disruptions, and network congestion. To 

achieve this, we draw inspiration from analogous systems 

in highway traffic management, adapting concepts like 

heterogeneous vehicle platoons to the rail domain. Our 

proposed framework leverages a MARL architecture to 

optimize traffic flow in rail transit systems, drawing 

parallels from heterogeneous vehicle control in highway 

scenarios. The schematic provides a high-level overview 

where the top section denotes the core methodology for 

network-based train dispatching, the middle highlights 

agent collaboration akin to supervisory guidance in 

complex systems, and the bottom emphasizes temporal 

dynamics essential for real-time adaptations under varying 

conditions such as passenger flows or disruptions. 

MARL handles uncertainties and sudden disruptions 

by allowing agents to learn adaptive policies through trial-

and-error interactions, similar to guarantees in adaptive 

fuzzy control [41] or neural adaptive control [42, 43], 

where controllers adjust to uncertainties. For instance, 

agents incorporate noise in state observations and rewards, 

ensuring robustness akin to backstepping controllers [44, 

45, 46]. 

3.1 Dual-loop hierarchical control 

framework 

The initial stage of our framework establishes a dual-

loop hierarchical control structure to handle the 

complexities of rail transit networks, which often involve 

intricate topologies with multiple lines, stations, and 

junctions. Unlike conventional methods that rely on static 

timetables or heuristic rules, our approach integrates an 

outer loop for global cooperative decision-making and an 

inner loop for local robust control, allowing for real-time 

adaptation to stochastic events like signal failures or 

sudden passenger surges. 

To model the system comprehensively, we define the 

collective dynamics of heterogeneous train groups under 

the rail cloud-control system. Let 𝒯 = {𝑇1, 𝑇2, … , 𝑇𝑛} 

represent the set of trains, where each train 𝑇𝑖  is an agent 

with state 𝑠𝑖 = [𝑝𝑖 , 𝑣𝑖 , 𝑎𝑖 , 𝑒𝑖]
𝑇 , denoting position along the 

track, velocity, acceleration, and energy consumption rate. 

The rail network is modeled as a directed graph 𝐺 = 

( 𝑉, 𝐸  ), with vertices 𝑉  representing stations and 

junctions, and edges 𝐸 as track segments with attributes 

like length, speed limits, and capacity. 

The outer loop focuses on broad-area cooperative 

decisions, optimizing the sequencing and trajectories of 

train groups to minimize conflicts at critical points such as 

merging junctions (analogous to highway ramps). This 

loop operates at a lower frequency, say every 30 − 60 

seconds, to compute global plans. The inner loop, in 

contrast, ensures high-frequency robust tracking of these 

decisions, updating at 1 − 10 Hz  to handle local 

uncertainties like track friction variations or minor delays 

in door operations. 

The optimization model for train merging and 

diverging is formulated as a multi-objective problem: 

min ∑  𝑛
𝑖=1 (𝑤1 ⋅ 𝐷𝑖 + 𝑤2 ⋅ 𝐸𝑖 + 𝑤3 ⋅ 𝑇𝑖 + 𝑤4 ⋅ 𝐶𝑖), (1) 

subject to safety constraints: 

|𝑥𝑖 − 𝑥𝑗| ≥ ℎmin + 𝛿𝑖𝑗 , ∀𝑖 ≠ 𝑗 ∈ 𝒯, (2) 

velocity bounds: 

𝑣min ≤ 𝑣𝑖 ≤ 𝑣max , (3) 

and energy efficiency limits: 

𝐸𝑖 ≤ 𝐸max, (4) 

where 𝑑𝑖  is the delay for train 𝑖, 𝑒𝑖  is energy 

consumption, 𝑡𝑖 is travel time, 𝑐𝑖 is a comfort metric (e.g., 

acceleration jerk), ℎmin  is the minimum headway, 𝛿𝑖𝑗 is a 

dynamic buffer based on relative speeds, and 

𝑤1, 𝑤2, 𝑤3, 𝑤4 are tunable weights reflecting priorities like 

punctuality versus sustainability. 

This dual-loop decouples the problem effectively: the 

outer loop solves the global optimization using 

approximate methods to generate reference trajectories, 

while the inner loop refines them locally. To further 

enhance stability, we incorporate a feedback mechanism: 

𝑠𝑖,𝑡+1 = 𝑠𝑖,𝑡 + Δ𝑡 ⋅ 𝑓(𝑠𝑖,𝑡 , 𝑢𝑖,𝑡) + 𝜂𝑡 , (5) 

where 𝑓 is the dynamics function, 𝑢𝑖,𝑡 is the control 

input (e.g., throttle), and 𝜂𝑡  represents noise. The 

framework's hierarchical nature reduces computational 

load, as the outer loop handles combinatorial aspects while 

the inner loop focuses on continuous control. 

In practice, this structure allows for seamless 

integration with cloud-based systems, where edge 

computing nodes at stations provide real-time data fusion, 

and central clouds perform MARL training. We also 

define a convergence criterion for the loops: 

‖𝑠𝑟𝑒𝑓 − 𝑠𝑎𝑐𝑡𝑢𝑎𝑙‖ < 𝜖 (6) 

ensuring synchronization between planning and 

execution. Table 2 summarizes the key parameters and 

their roles in the dual-loop framework, highlighting the 

balance between global cooperation and local robustness. 

 

Table 2: Key Parameters in the Dual-Loop Hierarchical Control Framework 

Parameter Description Value/Range Role in Framework 

𝑇𝑜 Outer loop update frequency 30 s Global MARL policy coordination 

𝑇𝑖  Inner loop update frequency 1 s Local trajectory tracking 

ℎmin  Minimum headway 2 min Safety enforcement 

𝑤1 − 𝑤4 Objective weights [0.1, 0.4] Multi-objective trade-offs 

𝛿 Convergence threshold 0.05 m/s Loop synchronization 

𝑣max  Maximum velocity 80 km/h Network capacity limits 
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The overall deep-loop hierarchical control order is shown 

in Figure 1. 

 
Figure 1: The deep-loop hierarchical control order. 

3.2 Real-time cooperative decision-making 

based on dynamic conflict graphs 

To achieve comprehensive optimization of train 

sequencing and trajectories while balancing efficiency and 

safety, we propose a real-time cooperative decision-

making method using dynamic conflict graphs. This 

method reconstructs the cooperative decision problem as 

a graph optimization task, ensuring efficient resolution 

under multiple coupled constraints such as track 

occupancy, signaling rules, and passenger transfer times. 

Define the dynamic conflict graph 𝐺𝑐 = (𝑁, 𝐸𝑐) , 

where nodes 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑚}  represent train groups 

or individual trains, and edges 𝐸𝑐  indicate potential 

conflicts at junctions, shared tracks, or stations. An edge 

exists between 𝑛𝑖  and 𝑛𝑗  if their projected trajectories 

overlap within a safety buffer, quantified as: 

overlap𝑖𝑗 = ∫  
𝑇

𝑡=0
𝕀(|𝑝𝑖(𝑡) − 𝑝𝑗(𝑡)| < ℎmin)𝑑𝑡 > 0 (7) 

where 𝕀 is the indicator function and 𝑇 is the planning 

horizon. The problem is reformulated as minimizing the 

total cost over the graph: 

min ∑  (𝑖,𝑗)∈𝐸𝑐
𝑐𝑖𝑗 ⋅ 𝑥𝑖𝑗 + ∑  𝑖 𝑔𝑖 , (8) 

where 𝑥𝑖𝑗 = 1 if train 𝑖 precedes 𝑗, 𝑐𝑖𝑗  is the conflict 

cost (e.g., induced delay or energy penalty), and 𝑔𝑖 is the 

individual trajectory cost. 

Based on the Pontryagin Minimum Principle (PMP), 

we construct an optimal terminal state phase diagram for 

the leading train's trajectory planning. The Hamiltonian 

for a single train's optimal control is: 

𝐻 = 𝜆𝑝 ⋅ 𝑣 + 𝜆𝑣 ⋅ 𝑎 +
1

2
𝑎2 + 𝜇(𝑣 − 𝑣max) (9) 

leading to the optimal control: 

𝑎∗ = −𝜆𝑣 −
𝜕𝜇

𝜕𝑣
 (10) 

with adjoint equations: 

𝜆𝑝̇ = 0, 𝜆𝑣̇ = −𝜆𝑝 (11) 

The phase diagram plots feasible terminal states 

( 𝑝𝑓 , 𝑣𝑓  ), enabling quick trajectory generation via 

interpolation: 

𝑝𝑓 = 𝑝0 + ∫  
𝑡𝑓

0
𝑣(𝑡)𝑑𝑡, 𝑣𝑓 = 𝑣0 + ∫  

𝑡𝑓

0
𝑎(𝑡)𝑑𝑡 (12) 

We introduce a decoupling strategy for the conflict 

graph and a depth-first heuristic search for sequencing 

trees. The graph is decoupled into subgraphs for parallel 

processing: 

𝐺𝑐 = ⋃  𝑘 𝐺𝑐,𝑘, (13) 

where each 𝐺𝑐,𝑘  is solved independently using a 

subgraph optimizer: 

min
𝑥𝑘

 ∑  (𝑖,𝑗)∈𝐸𝑐,𝑘
𝑐𝑖𝑗 ⋅ 𝑥𝑖𝑗,𝑘, (14) 

then merged with consistency constraints: 

𝑥𝑖𝑗 = 𝑥𝑖𝑗,𝑘 ∀(𝑖, 𝑗) ∈ 𝜕𝐺𝑐,𝑘 . (15) 

The heuristic search prunes the sequencing tree by 

prioritizing low-cost branches, reducing computational 

complexity from 𝑂(𝑛!)  to 𝑂(𝑛log 𝑛)  in average cases, 

with a cost heuristic: 

ℎ( node ) = ∑  𝑢𝑛𝑠𝑒𝑞 min𝑐𝑖𝑗 . (16) 

 
Figure 2: Illustrative decomposition strategy for rail 

network zones in conflict resolution. 

 

Figure 2 presents a decomposed view of the rail 

network into functional regions, essential for resolving 

conflicts in our MARL-based approach, where zones like 

merging junctions and stations are optimized for efficient 

train sequencing. And the Hierarchical Sequencing 

Module is shown in Table 3. 

 

 

Table 3: Summary of the hierarchical sequencing module 

Module Input Features Output Conditioning Conflict Modulation 

Merging Sequencer Track states, velocities Sequence order - Indirect (via graph) 

Diverging Sequencer Merging outputs 
Adjusted 

trajectories 
Merging Sequence Indirect (via graph) 

Station Sequencer Diverging outputs 
Dwell times, 

headways 
Diverging Motion Direct (Heuristic) 

Track Sequencer Station outputs Final velocities Station Times Direct (Heuristic) 

The sequencing is generated sequentially, starting 

with merging: 
𝑜𝑚 = 𝑓𝑚(𝑠) = arg min ∑  𝑐𝑚𝑒𝑟𝑔𝑒 , (17) 

followed by diverging: 
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𝑜𝑑 = 𝑓𝑑(𝑠, 𝑜𝑚) = 𝑜𝑚 + Δ𝑑 , (18) 
where Δ𝑑 is the adjustment vector. For high-conflict 

scenarios, modulation gates amplify priorities: 

 gate = 𝜎(𝑤 ⋅  conflict 𝑝𝑟𝑜𝑏), (19) 

where 𝜎 is the sigmoid function, dynamically scaling 

movements: 

𝑜upper =  base +  gate ⊙  amp . (20) 

This method ensures that the decision-making process 

is not only efficient but also scalable to networks with 

hundreds of trains, by leveraging graph theory and optimal 

control principles. 

 

3.3 Robust predictive control using hankel 

feature matrices 

To address the robustness issues in model predictive 

control (MPC) under vehicle-cloud collaboration, 

particularly in the presence of nonlinear dynamics and 

external disturbances, we propose a robust predictive 

control method for heterogeneous train groups based on 

Hankel feature matrices. This data-driven, non-parametric 

approach captures complex nonlinear dynamics without 

requiring explicit parametric modeling, making it ideal for 

rail systems with varying train types. 

Historical trajectories are collected to build the 

Hankel matrix for each train group, providing a behavioral 

representation: 

𝐻𝑦 = [

𝑦1 𝑦2 … 𝑦𝑁−𝐿+1

𝑦2 𝑦3 … 𝑦𝑁−𝐿+2

⋮ ⋮ ⋱ ⋮
𝑦𝐿 𝑦𝐿+1 … 𝑦𝑁

], 

 

𝐻𝑢 = [

𝑢1 𝑢2 … 𝑢𝑁−𝐿+1

𝑢2 𝑢3 … 𝑢𝑁−𝐿+2

⋮ ⋮ ⋱ ⋮
𝑢𝐿 𝑢𝐿+1 … 𝑢𝑁

] (21) 

 

where 𝑦𝑡 = [𝑝𝑡 , 𝑣𝑡]𝑇  are output states (position, 

velocity), 𝑢𝑡 are inputs (acceleration commands), 𝐿 is the 

lag order, and 𝑁 is the data length. 

State prediction and optimization are integrated into a 

single problem using the Hankel matrices: 

min
𝛽

 ‖𝐻𝑦𝛽 − 𝑦𝑟𝑒𝑓‖
𝑄

2
+ ‖𝐻𝑢𝛽 − 𝑢𝑝𝑟𝑒𝑣‖

𝑅

2
+ 𝜆‖𝛽‖1, (22) 

subject to: 
∑  𝛽𝑖 = 1, 𝛽 ≥ 0, (23) 

where 𝑄, 𝑅  are weighting matrices, 𝑦ref  is the 

reference trajectory, and 𝜆  promotes sparsity for noise 

rejection. 

Furthermore, for multi-agent coordination, we 

incorporate a consensus term: 

min ∑  𝑖 ‖𝑠𝑖 − 𝑠𝑟𝑒𝑓,𝑖‖ + 𝛾 ∑  𝑖,𝑗 ‖𝑠𝑖 − 𝑠𝑗‖, (24) 

ensuring platoon-like stability in rail convoys. This 

robust control outperforms traditional MPC by reducing 

sensitivity to model mismatches, as validated in 

simulations where error variance is halved under noisy 

conditions. The optimal control phase portrait is shown in 

Figure 3. 

 
Figure 3: The optimal phase portrait figure. 

 

In summary, the Hankel-based approach provides a 

flexible, data-centric alternative to parametric models, 

enabling the framework to scale to diverse rail scenarios 

while maintaining high performance. 

 

4 Experiments and results 
To verify the effectiveness of our proposed MARL-

based traffic flow optimization method for rail transit, we 

conducted large-scale simulation experiments with a real-

world urban rail system. The experiments were conducted 

to evaluate critical performance indicators like traffic flow 

efficiency, train delay reduction, energy saving, and 

system robustness under various operational conditions. 

We compared our MARL approach to baseline 

conventional techniques, such as First-In-First-Out (FIFO) 

dispatching and centralized optimization techniques like 

Mixed-Integer Linear Programming (MILP). All 

simulations were performed over a custom rail transit 

simulation platform developed using Python 3.8, utilizing 

the following libraries: Gym for RL environments, 

PyTorch for MARL implementation, and NetworkX for 

graph modeling of the rail network. 

4.1 Experimental setup 

The simulation environment was set up to model a 

typical urban rail network consisting of 20 stations, 5 lines, 

and multiple junctions, approximating a medium-to-large-

sized system similar to those in major cities like Beijing 

or London. Trains were each an agent in the MARL 

system, with state observations including current position, 

speed, headway from the preceding train, station dwell 

time, and passenger load. Actions for each agent include 

acceleration/deceleration events, dwell time extensions, 

and routing decisions at intersections. We trained the 

MARL model using the Independent Proximal Policy 

Optimization (IPPO) algorithm, which is a variant of PPO 

for multi-agent settings. Training consisted of 10,000 

episodes, with each episode simulating a 2-hour peak-

period operation. Hyperparameters included a learning 

rate of 0.001, discount factor γ= 0.99, and entropy 

coefficient of 0.01 for encouraging exploration. Passenger 

demand is simulated using a Poisson distribution for 

arrivals at stations, with loads distributed based on time-
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of-day peaks (e.g., 200-500 passengers/train during rush 

hour). SARL as centralized RL. Hardware: Simulations on 

Intel i7-10700 CPU, 32GB RAM, no GPU for baselines; 

parallelization via PyTorch multi-threading. Stochastic 

disruptions, such as signal failures and passenger surges, 

were introduced to the network. Baseline methods were: 

FIFO: A rule-based dispatching where trains operate 

in arrival order with no optimization. 

MILP: A centralized optimizer solving timetables 

offline, with the Gurobi optimizer and a 30-second 

timeout per iteration. 

Single-Agent RL (SARL): A centralized RL baseline 

where a single agent controls the entire network, 

illustrating the scalability limitation of non-MARL 

approaches. 

Test cases comprised low traffic (50 trains/hour), 

medium traffic (100 trains/hour), high traffic (150 

trains/hour), and disruption-rich environments (with 20% 

additional variability in dwell times). 

We evaluated the methods on the following 

performance metrics: Average Train Delay (ATD): Mean 

delay per train in minutes. Throughput (TP): Trains 

finishing routes hourly. Energy Consumption (EC): Total 

energy consumed (kWh). Stability Index (SI): Variance in 

headways, with smaller values more stable. Computation 

Time (CT): Mean time per decision cycle in seconds. 

Results were averaged over 50 independent runs, with 95% 

confidence intervals given. The simulation environment 

was set up to model a typical urban rail network consisting 

of 20 stations, 5 lines, and multiple junctions, 

approximating a medium-to-large-sized system similar to 

those in major cities like Beijing or London. Trains were 

each an agent in the MARL system, with state 

observations including current position, speed, headway 

from the preceding train, station dwell time, and passenger 

load.  

Test cases comprised low traffic (50 trains/hour), 

medium traffic (100 trains/hour), high traffic (150 

trains/hour), and disruption-rich environments (with 20% 

additional variability in dwell times). 

4.2 Traffic flow efficiency under varying 

loads 

Table 4 provides a detailed performance comparison 

across three traffic load scenarios: low (50 trains/hour), 

medium (100 trains/hour), and high (150 trains/hour). The 

MARL method consistently outperformed the baseline 

methods across all evaluated metrics, with particularly 

notable improvements in high-traffic scenarios where 

decentralized decision-making effectively mitigated 

bottlenecks at junctions and critical merging points. 

Extreme scenarios tested include signal failures (causing 

full stops) and emergency stops (random 10% trains halt 

for 2-10 min), showing MARL reduces ATD by 45% vs. 

baselines.

 

Table 4: Performance comparison across traffic loads 

Traffic Load Method ATD (min) TP (trains/h) EC (kWh) SI CT (s) 

Low (50 trains/h) FIFO 2.5 ± 0.3 48 ± 2 1200 ± 50 0.15 ± 0.02 0.1 ± 0.01 
 MILP 1.8 ± 0.2 49 ± 1 1150 ± 40 0.12 ± 0.01 5.2 ± 0.5 
 SARL 1.6 ± 0.2 49 ± 1 1120 ± 30 0.11 ± 0.01 1.5 ± 0.2 
 MARL (Ours) 1.2 ± 0.1 50 ± 1 1080 ± 20 0.08 ± 0.01 0.8 ± 0.1 

Medium (100 trains/h) FIFO 4.2 ± 0.5 95 ± 3 2400 ± 100 0.25 ± 0.03 0.1 ± 0.01 
 MILP 3.0 ± 0.4 98 ± 2 2300 ± 80 0.20 ± 0.02 8.5 ± 1.0 
 SARL 2.8 ± 0.3 97 ± 2 2250 ± 70 0.18 ± 0.02 2.0 ± 0.3 
 MARL (Ours) 2.0 ± 0.2 99 ± 1 2150 ± 50 0.14 ± 0.01 1.0 ± 0.1 

High (150 trains/h) FIFO 6.8 ± 0.7 140 ± 5 3600 ± 150 0.35 ± 0.04 0.1 ± 0.01 
 MILP 4.5 ± 0.5 145 ± 3 3450 ± 120 0.28 ± 0.03 12.0 ± 1.5 
 SARL 4.0 ± 0.4 144 ± 3 3400 ± 110 0.25 ± 0.03 3.5 ± 0.4 
 MARL (Ours) 2.8 ± 0.3 148 ± 2 3200 ± 80 0.20 ± 0.02 1.2 ± 0.2 

The data in Table 3 reveals several key insights into 

the performance of the MARL approach. In the low-traffic 

scenario, MARL reduced the ATD by approximately 52% 

compared to FIFO, demonstrating its ability to optimize 

scheduling even under minimal congestion. This 

improvement is attributed to the agents' ability to 

dynamically adjust dwell times and headways, ensuring 

smoother traffic flow with a si of 0.08, the lowest among 

all methods, indicating enhanced consistency in train 

spacing. Energy Consumption (EC) also saw a reduction 

of 10% compared to FIFO, reflecting the multi-objective 

reward function's effectiveness in balancing punctuality 

and energy efficiency. 

In the medium-traffic scenario, the MARL method's 

advantage became more pronounced, reducing ATD by 52% 

and tp to 99 trains/hour, nearly achieving the theoretical 

maximum capacity. This performance is particularly 

significant at junction points, where decentralized agents 

collaboratively resolved conflicts, reducing SI by 44% 

compared to FIFO. The Computation Time remained 

below 1.5 seconds, making it suitable for real-time 

applications, whereas MILP's CT of 8.5 seconds 
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highlights its scalability limitations in dynamic 

environments. 

Under high-traffic conditions, MARL achieved a 

remarkable 59% reduction in ATD (from 6.8 minutes to 

2.8 minutes) and boosted TP to 148 trains/hour, surpassing 

MILP and SARL by 2-3 trains/hour. The SI dropped to 

0.20, a 43% improvement over FIFO, indicating robust 

stability despite increased network complexity. The EC 

reduction of 11% further underscores the method's energy-

efficient dispatching, driven by the agents' ability to 

optimize acceleration profiles and minimize unnecessary 

stops. The near-real-time CT of 1.2 seconds contrasts 

sharply with MILP's 12 seconds, affirming MARL's 

practical viability for large-scale rail networks. 

In disruption scenarios, we introduced random delays 

(uniformly distributed between 1-5 minutes) at 10% of 

stations. Table 5 highlights resilience.  

 

Table 5: Performance under disruptions (medium traffic load) 

Method ATD (min) TP (trains/h) EC (kWh) SI Recovery Time (min) 

FIFO 5.5 ± 0.6 90 ± 4 2600 ± 120 0.30 ± 0.04 15 ± 2 

MILP 4.0 ± 0.5 92 ± 3 2500 ± 100 0.25 ± 0.03 12 ± 1.5 

SARL 3.5 ± 0.4 93 ± 3 2450 ± 90 0.22 ± 0.02 10 ± 1 

MARL (Ours) 2.5 ± 0.3 96 ± 2 2300 ± 70 0.18 ± 0.02 7 ± 0.8 

 

4.3 Ablation studies 

To assess component contributions, Table 6 shows 

ablation results for medium traffic. We performed 

ablations: 

1.Without Graph Modeling: Removed graph-based 

state representation, leading to 25% higher ATD. 

2.Without Multi-Objective Rewards: Used delay-

only rewards, increasing EC by 15%. 

3.Reduced Agent Count: Centralized subsets of 

agents, degrading TP by 10% in high loads. 

The ablation results provide deep insights into the 

architectural strengths of the MARL framework. 

Removing the graph-based state representation increased 

ATD by 25% and TP dropped by 3%, highlighting the 

critical role of the dynamic conflict graph in capturing 

spatial relationships and optimizing junction traversals. 

The SI rose to 0.18, a 29% increase, indicating reduced 

stability due to the loss of topological awareness, which 

led to a 4.7% higher EC as agents struggled to coordinate 

efficiently without graph-informed decisions. 

Partial centralization, where subsets of agents were 

controlled by a single entity, increased ATD by 15% and 

reduced TP by 2%, reflecting the scalability limitations of 

centralized approaches. The SI rose to 0.17, a 21% 

increase, and EC increased by 2.3%, indicating that 

centralized control struggles to adapt to local variations, 

leading to inefficiencies in high-density networks. These 

findings validate the decentralized nature of MARL, 

where individual agent autonomy enhances adaptability 

and performance across varying traffic loads and 

disruption scenarios. 

The comprehensive analysis of these experiments 

confirms that the MARL framework's full configuration, 

incorporating graph modeling, multi-objective rewards, 

and decentralized agents, is essential for achieving 

optimal traffic flow optimization in rail transit systems. 

 

Table 6: Ablation study results (medium traffic load) 

 

Variant ATD (min) TP (trains/h) EC (kWh) SI 

Full MARL 2.0 ± 0.2 99 ± 1 2150 ± 50 0.14 ± 0.01 

No Graph 2.5 ± 0.3 96 ± 2 2250 ± 60 0.18 ± 0.02 

Delay-Only Rewards 1.8 ± 0.2 98 ± 1 2500 ± 80 0.16 ± 0.02 

Partial Centralization 2.3 ± 0.3 97 ± 2 2200 ± 55 0.17 ± 0.02 

4.4 Visualization and case studies 

Figure 4 illustrates the optimal directed paths in the 

dynamic conflict subgraph  under different decoupling 

schemes for a typical highway ramp merging scenario. 

Specifically, this figure presents the first four subfigures 

(a) through (d) from the original set of eight decoupling 

schemes, highlighting how the proposed real-time 

cooperative decision-making method based on dynamic 

conflict graphs optimizes vehicle sequencing and 

trajectories. In each subfigure, nodes represent 

heterogeneous vehicle platoons, and directed edges shown 

in black arrows are annotated with numerical values 

indicating the cost of right-of-way transfer, such as delay 

penalties or energy costs associated with yielding or 

accelerating. The bold red paths denote the optimal 

directed paths that minimize the total conflict cost for each 

decoupled subgraph, computed using the depth-first 

heuristic search with pruning. For instance, in Figure 4(a), 

the optimal path prioritizes the ramp vehicle platoon 

$n_3$ yielding to mainline platoon, resulting in a minimal 
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cost of 3.2, which balances safety constraints  and 

efficiency metrics like reduced merging delays. 

 

 
Figure 4: Headway Distribution Comparison (x-axis: 

Time (min), y-axis: Headway (min), units in minutes; 

solid black arrows represent potential conflict edges with 

associated costs; bold red arrows indicate the selected 

optimal directed path; dashed lines denote infeasible 

paths due to constraint violations). 

 

Figure 5 depicts the trajectory tracking errors of the 

lead vehicle under varying vehicle mass estimation 

deviations in the robust predictive control framework 

based on Hankel feature matrices. Subfigure 5(a) shows 

the root mean square (RMS) velocity error, while 5(b) 

illustrates the RMS position error, both plotted against 

mass deviation ranging from -300 kg to +300 kg. The 

proposed Hankel-PRC method (solid blue line) exhibits 

minimal sensitivity to mass estimation errors, with RMS 

velocity errors staying below 0.5 m/s even at smaller 

deviations, compared to the traditional MPC baseline 

(dashed red line), which spikes to over 1.2 m/s due to 

model mismatches in nonlinear dynamics. Similarly, in 

5(b), position errors for Hankel-PRC remain under 2 

meters across the deviation range, halving the error 

variance observed in MPC under noisy conditions. 

 

 
Figure 5: Comparison of Hankel-PRC and MPC 

performance (x-axis: Mass Deviation (kg), y-axis: RMS 

Error (m/s for velocity, m for position); trajectory 

tracking errors defined as RMS difference between 

predicted and actual paths). 

5 Conclusion 
We presented a novel traffic flow optimization model 

for rail transit networks based on multi-agent 

reinforcement learning (MARL) tailored to network-based 

train dispatching. 

By modeling each train as a separate intelligent agent, 

we established a decentralized framework that overcomes 

the scalability bottleneck of centralized methods, enabling 

adaptive decision-making in dynamic situations like 

disruptions and stochastic passenger demands. The key 

innovations include a two-loop hierarchical control 

architecture for a trade-off between global coordination 

and local robustness, real-time cooperative decision-

making via dynamic conflict graphs for minimizing 

conflicts at junctions, and robust predictive control via 

Hankel feature matrices for coping with nonlinear 

dynamics and uncertainties. Extensive simulation tests on 

a realistic urban rail network validated the superiority of 

the framework. Detail model architectures used for 

MARL agents. Clarify random seed settings and 

environment initialization logic. 

Compared to baselines like FIFO, MILP, and SARL, 

our MARL solution achieved significant improvements: 

average train delay (ATD) reduction by up to 59%, 11% 

lower energy consumption (EC), 43% improved stability 

index (SI), and recovery times that are faster (7 minutes 

versus 15 minutes under disruptions), while ensuring real-

time computation feasibility. Ablation studies also 

validated the key contributions of graph modeling, multi-

objective rewards, and agent decentralization to these 

improvements. Visualization and case studies, such as 

minimum path solutions in conflict graphs and reduced 

tracking errors under mass deviations, demonstrated the 

method's practical potency. This work bridges predictive 

analytics and actionable control, yielding a scalable 

solution for intelligent rail management. Potential future 

work includes extending the framework to support higher-

fidelity predictive models of passenger flows, such as real-

world hardware-in-the-loop testing, or exploring hybrid 

MARL with other AI paradigms for yet greater general 

applicability in multimodal transport. Our contributions 

ultimately lead to more efficient, resilient, and sustainable 

urban rail transit systems. 
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