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This paper addresses the problems of obstacle avoidance and route planning in the autonomous inspection 

of distribution network drones and proposes an intelligent control algorithm based on deep reinforcement 

learning. By integrating the velocity obstacle method and the LSTM - DDPG framework, dynamic obstacle 

avoidance decisions in complex environments are achieved. Simulation experiments on the Gazebo 

platform show that, compared with the traditional DWA and VOM algorithms, this solution reduces the 

average obstacle avoidance time to 0.13s and the path length by 8.2% and 2.0%, respectively, while 

achieving an obstacle avoidance success rate of 98.2%. Field tests verify the practicality and robustness 

of the algorithm in the complex environment of distribution networks. 

Povzetek:  

 

1 Introduction 
With the rapid advancement of smart grid 

construction, the power inspection technology of 

unmanned aerial vehicles (UAVs) has become an 

important means to improve the operation and 

maintenance efficiency of the power grid. In the field of 

power transmission, UAV inspections have been applied 

on a large scale, forming a relatively mature technical 

system. However, in the distribution scenario, 

autonomous UAV inspections still face many technical 

bottlenecks [1, 2]. Firstly, the environment of distribution 

lines is complex and changeable, with obstacles such as 

power lines, towers, and trees distributed in a criss-cross 

pattern. In particular, thin power lines are one of the most 

difficult obstacles to detect due to their inconspicuous 

visual features [3]. Secondly, the traditional route 

planning method based on laser point clouds is costly and 

time-consuming, and it is difficult to adapt to the 

characteristics of wide distribution of distribution network 

lines and a large number of towers [4]. In addition, most 

of the existing obstacle avoidance technologies rely on 

sensors such as ultrasonic and infrared [5], which have 

defects such as short detection distance and weak anti-

interference ability, and cannot meet the real-time obstacle 

avoidance requirements in complex environments. 

In response to the above challenges, deep 

reinforcement learning (DRL) provides a new solution for 

distribution UAV inspections [6, 7]. Unlike classical 

model-based control approaches designed to handle 

uncertainties and nonlinearities, such as those developed 

for chaotic synchronization [8], DRL optimizes decision-

making strategies through autonomous interaction with 

the environment, and is particularly suitable for obstacle  

 

avoidance decision-making problems in dynamic 

environments. The lightweight model technology 

effectively solves the problem of algorithm deployment on 

edge devices [9]. In recent years, significant progress has 

been made in related research: in terms of obstacle 

avoidance algorithms, it has developed from early 

geometric modeling methods (such as the velocity 

obstacle method) [10] to the current deep reinforcement 

learning framework; in terms of hardware 

implementation, it has evolved from relying on high-

performance servers to being able to run in real-time on 

edge computing chips [11]. 

The development of current research methods is 

mainly reflected in three dimensions: Firstly, there is 

progress in perception technology. Object detection 

algorithms based on deep learning (such as YOLO [12] 

and Faster R-CNN [13]) have greatly improved the 

accuracy of obstacle recognition. Multi-sensor fusion 

schemes such as binocular vision and lidar have further 

enhanced the environmental perception ability. Secondly, 

there is optimization of decision-making algorithms. DRL 

algorithms such as Deep Deterministic Policy Gradient 

(DDPG) [14] and Proximal Policy Optimization (PPO) 

[15] have shown superior performance in continuous 

control tasks. Combining with the sequential modeling 

ability of the Long Short-Term Memory network (LSTM), 

UAVs can predict the movement trends of dynamic 

obstacles. Finally, there is innovation in deployment 

solutions. Lightweight technologies such as model 

pruning, quantization compression, and knowledge 

distillation [16] enable complex algorithms to run 

efficiently on edge computing platforms such as Jetson. 

Based on the actual needs of distribution network 

inspection, this paper proposes an autonomous UAV 
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obstacle avoidance algorithm that combines the improved 

velocity obstacle method and LSTM-DDPG. This 

algorithm innovates in three aspects: in terms of dynamic 

environment modeling, it expands the threat area 

representation of the traditional velocity obstacle method 

and introduces an adaptive obstacle circle radius 

adjustment mechanism; in terms of decision optimization, 

it designs a composite reward function that combines 

immediate rewards and long-term benefits, and uses the 

LSTM network to capture sequential dependencies; in 

terms of engineering implementation, a depth-separable 

volume accumulation and grouped LSTM structure is 

adopted to reduce computational complexity.. Through 

tests on the Gazebo simulation platform and field flight 

verification, this solution shows significant advantages in 

terms of obstacle avoidance success rate, path 

optimization degree, and real-time performance. The 

automatic flight path generation and online update 

technology developed in this research can better adapt to 

the short-cycle environmental changes around the 

distribution network. 

2 Related work 
This section reviews key technologies in UAV 

obstacle avoidance, including traditional geometric 

methods, classical adaptive control strategies, and modern 

Deep Reinforcement Learning approaches. A summary 

comparison is provided in Table 1. 

 

Table 1: Performance comparison of different 

control methods for UAV obstacle avoidance 

 

Method Adaptabil

ity 

Nonlinearit

y Handling 

Real-time 

Performan

ce 

Adaptive 

Fuzzy 

Control 

Medium Strong High 

Backsteppin

g Control 

Weak Medium High 

Neural 

Adaptive 

Control 

Strong Strong Medium 

LSTM-

DDPG 

Strong Strong High 

 

Compared to classical adaptive control methods (e.g., 

fuzzy logic [17,18], backstepping [19], neural adaptive 

control [20]) which often rely on precise system modeling 

and expert knowledge to handle uncertainties and 

nonlinearities, Deep Reinforcement Learning learns 

optimal policies through autonomous interaction with the 

environment. This grants DRL superior capability in 

handling highly nonlinear and uncertain dynamic systems 

without explicit model derivation. While classical 

methods offer stability guarantees, DRL provides greater 

flexibility and long-term optimization potential. Future 

work could explore hybrid architectures, for instance, 

incorporating fuzzy logic into the reward shaping process 

of DRL to enhance interpretability and robustness further 

[21]. 

3 Method introduction 

3.1 UAVs for distribution network 

inspection 

Power inspection of distribution poles generally 

consists of inspection of transmission lines and inspection 

of distribution poles. During the inspection of distribution 

poles, the drone needs to hover near the distribution poles 

and take photos of the tower body for appearance damage 

inspection. The inspection task requires the drone to 

traverse all distribution poles with inspection decisions. 

When conducting transmission line inspections, drones 

can combine latitude, longitude coordinates and altitude 

information to analyze the location of fault points. 

 

 
Figure 1: Inspection space near distribution poles 

 

Before designing the entire inspection route for the 

drone, the staff needs to clarify the inspection 

requirements of different poles in the area to be inspected 

and set key sampling points. In the distribution line, the 

single - circuit strain tower is indeed a common type of 

distribution pole, which is mainly used to bear the tension 

of the conductors and prevent the expansion of line 

breakage or tower collapse accidents. Taking the single - 

circuit strain tower as an example, the key inspection 

points are shown in Table 2. These key points include the 

overall view of the distribution pole, the left and right 

phase insulator strings, and the jumper strings of each 

phase, which comprehensively cover the main detection 

parts of the pole and provide clear target guidance for 

drone inspections. The definition of the inspection space 

is shown in Figure 1. Taking the coordinates of the tower 

top as the origin, the forward direction of the line is the X 

- axis, and the vertically upward direction is the Z - axis. 

 

Table 2: Key points for refined inspection of 

overhead distribution network lines 

 

No. Key Inspection Points 

1 Overall view of the tower 

2 Left-phase consumable insulator string 

3 Left-phase jumper string 

4 Left-phase large-size insulator string 
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5 Middle-phase small-size insulator string 

6 Middle-phase jumper string 

7 Middle-phase large-size insulator string 

8 Right-phase small-size insulator string 

9 Right-phase large-size insulator string 

 

The drone flies to each pole and designated photo - 

taking points in sequence according to the pre - planned 

route to perform inspection tasks. During the flight, the 

environmental perception system composed of a 

millimeter - wave radar and a multi - eye depth camera 

carried by the drone continuously scans the surrounding 

environment. The millimeter - wave radar is responsible 

for detecting large - scale obstacles at medium and long 

distances, while the multi - eye depth camera accurately 

identifies fine obstacles at close range. Since most power 

equipment has strong interference and is densely 

distributed, effective obstacle avoidance cannot be 

achieved in application; thus, AI - based autonomous 

obstacle avoidance technology has emerged. For example, 

when the drone identifies a relatively high obstacle ahead 

during flight, it actively adjusts its flight altitude to avoid 

the obstacle. Therefore, this study proposes an obstacle 

avoidance algorithm based on LSTM - DDPG to enable 

the drone to complete intelligent inspection tasks in the 

distribution scenario. 

 

3.2 Obstacle avoidance algorithm based on 

LSTM-DDPG 

 
 

Figure 2: Schematic Diagram of the LSTM-DDPG 

Algorithm Training Framework 

 

In this research, by integrating the velocity obstacle 

method and the LSTM-DDPG framework, dynamic 

obstacle-avoidance decision-making in distribution 

network scenario is achieved. The UAV interacts with the 

uncertain environment. The LSTM algorithm perceives 

the state changes of obstacles within the detection range 

and, combined with its own state information, attempts to 

adjust the change of the heading angle. It obtains the 

reward value as an evaluation for adjusting the heading 

decision and repeatedly tries and makes corrections to 

obtain a higher reward value, thereby realizing the optimal 

heading strategy decision-making. The implementation 

framework is shown in Figure 2. 

In addition, for the UAV platform with limited 

computing resources, in order to make the LSTM-DDPG 

obstacle-avoidance algorithm lightweight, we introduce 

an optimization strategy to achieve efficient compression 

and acceleration of the model. At the model architecture 

level, we use depth-separable convolutions to replace 

traditional fully-connected layers. Combined with the 

design of grouped LSTM units, we split the 256-

dimensional hidden layer into 4 groups of 64-dimensional 

parallel processing modules, reducing the number of 

floating-point operations (FLOPs) and the number of 

parameters. During the training process, we introduce 

knowledge distillation technology to achieve strategy 

transfer through the teacher-student network framework. 

At the same time, we use 8-bit integer quantization to 

compress the model size to 14% of the original size. After 

the lightweight compression of the model, due to the 

reduction of the number of parameters and the amount of 

calculation, the detection efficiency can reach real-time or 

near-real-time, thus achieving target tracking in 

continuous images or video streams through real-time and 

rapid obstacle-avoidance detection. 

 

3.2.1 Velocity obstacle method 

The basic principle of the velocity obstacle method is 

shown in Figure 2 [22]. In the dynamic obstacle avoidance 

problem, if the encountered obstacles are regular, the 

obstacles can be modeled as obstacle circles through 

geometric simplification methods. To simplify the 

interaction model between the agent and the obstacles, the 

radius of the obstacle circle can be extended to 

t s or r r= +
. At this time, the UAV can be regarded as a 

particle, and the threat area of the obstacle is extended to 

a circular area with a radius of tr  (as shown in Figure 3). 

 
 

Figure 3: Basic principle of the velocity obstacle method 

 

Based on the real-time position and velocity 

information of the UAV and the obstacles, a threat 

assessment model for dynamic obstacle avoidance can be 

constructed through relative motion analysis. The position 

and velocity of the UAV are denoted as ( , )u u uP x y  and 

( , )u ux uyv v v , and the position and velocity of the obstacle 

are denoted as ( , )oi oi oiP x y  and ( , )oi oix oiyv v v . First, 

calculate the relative velocity vector uoiv  between the 

UAV and the obstacle. By solving the included angle i  
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between these two vectors and comparing it with the semi-

apex angle of the obstacle threat cone, it can be determined 

whether there is a collision risk. The relevant calculation 

formulas are as follows: 

cos cos( ( , )) uoi u oi
i uoi u oi

uoi u oi

v P P
v P P

v P P
 =  =

 (1) 

uoi u oiv v v= −
 (2) 

i uo u u ov P x P P x = −
   (3) 

 

3.2.2 Deep deterministic policy gradient algorithm 

In policy-based reinforcement learning methods, the 

policy is usually approximated by a parameterized 

function. This approach is called the Policy Gradient 

method [23]. The policy of selecting an action a  in a state 
s  can be represented as a probability distribution 

determined by the parameter  . 

( ) ( ; )a s p a s =
  (4) 

Deep Deterministic Policy Gradient (DDPG) is an 

algorithm that combines Policy Gradient (PG) and Q-

learning (DQN), and is specifically designed for 

continuous action spaces. It is an extension of the Actor-

Critic architecture. It outputs continuous actions through a 

deterministic policy and uses experience replay and target 

networks to enhance stability. 

Different from stochastic policies, the policy network 

of DDPG directly outputs deterministic actions. The state-

action value function evaluated by the Critic network is 

denoted as ( , )Q s a
. This deterministic policy is 

optimized through the policy gradient theorem. 

( )a s=    (5) 

DDPG further optimizes the training process through 

the Replay Buffer and Target Network. In each step of 

interaction, the action ta  generated by the Actor will 

have exploration noise t  added to it to enhance the 

exploration ability. 

( )t t ta s = +   (6) 

The update of the Critic network is based on 

minimizing the temporal difference error, and its target Q-

value is calculated through the target network: 

1 1( , ( ))i i i iy r Q s s   + += +  (7) 

Here,   and    are the parameters of the target 

networks of the Critic and Actor respectively. The loss 

function of the Critic is the mean-squared error  : 

21
( ( , ))i i i

i

y Q s a
N

 = −  (8) 

The update of the Actor is achieved by maximizing 

the Q-value evaluated by the Critic, and its gradient is: 

( )

1
( ) ( , ) ( )

i
a i ia s

i

J Q s a s
N 

   
 

=
     (9) 

The parameters of the target network are slowly 

synchronized with those of the online network through 

soft update. The update formula is: 

(1 )     + −  (10) 

(1 )     + −  (11) 

where, 1  controls the update speed. This 

mechanism effectively stabilizes the training process and 

avoids drastic fluctuations in Q-value estimation. 

The principle of the DDPG algorithm based on the 

velocity obstacle method is shown in Figure 4. 

 

 
 

Figure 4: Implementation framework of the UAV 

obstacle-avoidance method based on DDPG 

 

In the dynamic obstacle avoidance system of 

distribution network inspection drones, we combine the 

velocity obstacle principle with deep reinforcement 

learning to achieve intelligent and efficient obstacle 

avoidance control. This algorithm first uses sensors such 

as lidar to obtain real - time position and velocity 

information of distribution network facilities (such as 

conductors and poles), and then establishes an extended 

obstacle model. In the DDPG framework, the Actor 

network outputs the optimal control commands based on 

the current state (including UAV pose, obstacle 

information, etc.), while the Critic network evaluates the 

action value. In particular, the algorithm transforms the 

geometric constraints of the velocity obstacle (VO) into a 

key penalty term of the reward function to guide the policy 

network to learn obstacle avoidance actions that comply 

with the VO principle. The training process is stabilized 

through the target network and experience replay 

mechanism. Ultimately, the UAV can not only efficiently 

complete distribution network inspection tasks (maintain 

the shooting distance and cover the planned route) in a 

complex power environment but also avoid dynamic 

obstacles (such as birds and moving equipment) in real - 

time, significantly enhancing the safety and reliability of 

distribution network inspections. 

In the autonomous obstacle-avoidance system of 

unmanned aerial vehicles (UAVs), the design of the UAV 

state space mainly considers the UAV's own state and the 

state of the target point. The design of the action space 

mainly considers the change in the heading angle, denoted 

as  min max: ,A   . 

( , , , , , )x y u x ys u u v t t=   (12) 
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Here, ( , )x yu u  and uv  represent the real-time 

position and velocity of the UAV respectively;   and   

are the heading angle and angular velocity; ( , )x yt t  

represents the position of the target point. 

The reward function evaluates the UAV's action 

decisions. To avoid sparse rewards, reward values are 

assigned to the action decisions of the UAV under 

different flight states. The reward function R  is a 

weighted sum of three key components: a goal-reaching 

reward goal, an obstacle avoidance penalty based on VO 

constraints, and a shaping reward other for smooth flight. 

t a eR r r r= + +
   (13) 

100,  Arrive

100,  Not arrive
tr

+
= 

−  (14) 

100,  <

50,  0< - <5

-10, - 5

vo

t vo

vo

r

 

 

 

−


= +
   (15) 

1er = −  (16) 

Here, ,t ar r  and er  are the rewards when the UAV 

reaches the target point, avoids obstacles, and is in other 

flight states respectively; vo  is the heading angle that 

needs to be adjusted after the calculation by the velocity 

obstacle method. 

 

3.2.3 LSTM-DDPG 

The LSTM network plays a central role in 

environmental understanding and decision - making 

memory in this obstacle avoidance system, enabling the 

drone to have the ability of spatio - temporal modeling of 

complex environments such as distribution networks. 

Through its unique gating mechanism, the LSTM is 

capable of selectively filtering and dynamically 

integrating time-series sensor data by learning temporal 

dependencies. The forget gate dynamically adjusts the 

retention level of historical information, the input gate 

precisely captures the key features of the current 

environment, and the output gate controls the intensity of 

information transfer [24]. The network architecture of the 

LSTM is shown in Figure 5. 

 

 
 

Figure 5: Schematic diagram of the basic principle of 

LSTM 

 

In the drone obstacle avoidance scenario, this 

mechanism allows the LSTM to accurately capture the 

time - series features of the obstacle's movement trajectory. 

For example, it can accurately predict the periodic swing 

of distribution lines or the flight trends of bird flocks. This 

provides the DDPG with an environmental representation 

with a time dimension. The forget gate determines the 

retention ratio of historical information and generates a 

forgetting coefficient between 0 and 1 through the sigmoid 

function. 

1( [ , ] )t t ftff W h x b −=  +  (17) 

Here, tf  is the state of the forget gate at time t ; 
1th −
 

represents the hidden state at the previous time; fW  and 

fb  are the weight and bias term of the forget gate 

respectively; tx  represents the current input. 

The input gate synchronously regulates the writing of 

new information, including the information screening 

coefficient and the candidate memory content. The two 

work together to update the cell state tC . 

1( [ , ] )t i t t ii W h x b −=  +  (18) 

1tanh( [ , ] )t c ct tC W h x b−=  +  (19) 

1t t t t tC f C i C=  − +   (20) 

In the formula, ti  represents the state of the input 

gate; 
tC  represents the candidate state. 

The output gate controls the intensity of the final 

output information. The state of the output gate to  is 

calculated as follows: 

1( [ , ] )t o t t oo W h x b −=  +  (21) 

The mechanism of how LSTM processes obstacle 

state information is shown in Figure 6. In the UAV 

dynamic obstacle-avoidance system, the system conducts 

real-time threat assessment on the detected dynamic 

obstacles through the Velocity Obstacle (VO) method. 

Subsequently, the system integrates the motion states and 

obstacle-avoidance directions of each obstacle into a joint 

state vector and inputs it into the LSTM network in 

chronological order. The LSTM processes these 

sequential data frame by frame through its gating 

mechanism and finally outputs the compressed encoding 

of all obstacles. This encoding contains spatio-temporal 

features of the environment and serves as the input for the 

Actor network of the Deep Deterministic Policy Gradient 

(DDPG) to generate smooth and forward-looking 

obstacle-avoidance actions. 
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Figure 6: LSTM for processing obstacle state information 

 

For the UAV platform with limited computing 

resources, in order to make the LSTM-DDPG obstacle-

avoidance algorithm lightweight, we introduce an 

optimization strategy to achieve efficient compression and 

acceleration of the model. At the model architecture level, 

we use depth-separable convolutions to replace traditional 

fully-connected layers. Combined with the design of 

grouped LSTM units, we split the 256-dimensional hidden 

layer into 4 groups of 64-dimensional parallel processing 

modules, reducing the number of floating-point operations 

(FLOPs) and the number of parameters. The baseline full-

precision model size was 158 MB. After 8-bit quantization, 

the model size was reduced to 22.1 MB. Inference time 

was measured on the Jetson AGX Xavier using TensorRT. 

During the training process, we introduce knowledge 

distillation technology to achieve strategy transfer through 

the teacher-student network framework. 

4 Experiment and analysis 

4.1 Scenario simulation and model training 

In this study, a distribution network inspection 

scenario containing static obstacles such as power 

distribution poles and conductors, as well as dynamic 

obstacles such as flying birds, was constructed on the 

Gazebo simulation platform to train the drone autonomous 

obstacle avoidance algorithm based on LSTM - DDPG. 

The training process adopts the Actor - Critic framework, 

and the specific settings are shown in Table 3. The same 

set of training parameters listed in Table 3 were used for 

all baseline DRL models (DDPG, LSTM-DDPG) to 

ensure a fair comparison. Hyperparameters were selected 

via a grid search focusing on stability and final 

performance. 

 

Table 3: Parameter settings for model training 

 

Parameter Value 

Learning rate of Actor network 0.0001 

Learning rate of Critic network 0.001 

Number of iterations 10000 

Batch learning size 500 

Safety radius from obstacles 15 m 

 

During the specific training implementation phase, 

the drone collects data through environmental exploration 

and uses the experience replay mechanism to update the 

network parameters. Meanwhile, the LSTM network is 

used to process the time - series information of obstacles 

in 10 consecutive frames, and a carefully designed 

composite reward function is used to optimize the obstacle 

avoidance decision - making behavior. The training 

process continues until the obstacle avoidance success rate 

stabilizes above 95%. Finally, the performance of the 

algorithm is verified on an independent test set. The test 

set consisted of entirely unseen environments and obstacle 

configurations not encountered during training. Dynamic 

obstacles in testing included novel motion patterns not 

present in the training scenarios. 

In the comparative experiment, the traditional DWA, 

VOM, and basic DDPG algorithms were selected as 

benchmarks, and a quantitative evaluation was carried out 

from three dimensions: obstacle avoidance success rate, 

obstacle avoidance distance, and real-time response. The 

experimental data were collected from the collaborative 

monitoring system of the UAV airborne sensors and the 

ground control station to ensure that the test results truly 

reflect the applicability of the algorithm in the actual 

power distribution environment. 

 

4.2 Simulation results and comparative 

experiments 

 
Figure 7: Flight trajectories of the UAV under two 

obstacle configuration scenarios 
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The UAV obstacle avoidance model based on LSTM 

- DDPG proposed in this paper achieves an obstacle 

avoidance success rate of 98.2% in the simulation. Figure 

7 shows the obstacle avoidance effects and flight 

trajectories of the UAV in two scenarios. In both scenarios, 

the staggered conductors peculiar to the distribution 

network and dynamic obstacles such as flying birds are set 

up. Figure 7 intuitively demonstrates the performance 

advantages of the LSTM - DDPG algorithm by comparing 

the UAV flight trajectories in two typical obstacle 

scenarios. In the simple obstacle scenario, the flight 

trajectory generated by the algorithm features a smooth 

arc. It maintains a safe distance of over 15 meters 

throughout the flight, and the path length is 12.3% shorter 

than that of the traditional DWA algorithm, fully meeting 

the strict requirements of power inspection for flight 

stability. 

In the complex obstacle scenario, the algorithm shows 

excellent dynamic adjustment ability. It successfully 

passes through the obstacle - dense area through three 

heading fine - adjustments with an average amplitude of 

9.2°. This performance verifies the significant effect of the 

LSTM network in optimizing sequential decision - making. 

 

Table 4: Obstacle avoidance indexes of different 

model tests (Mean ± Standard Deviation) 

 

Index DWA VOM 
LSTM-

DDPG 

Average minimum 

distance (m) 

14.74 ± 

1.05 

12.68 ± 

1.20 

11.50 ± 

0.82 

Average path length 

(m) 

566.3 ± 

25.4 

530.2 ± 

18.7 

519.7 ± 

15.2 

Mean obstacle 

avoidance time (s) 

15.90 ± 

2.31 

11.64 ± 

1.89 

0.13 ± 

0.04 

 

The 15 m safety radius defined in Table 4 is a design 

threshold for triggering the obstacle avoidance reward 

penalty. The reported 'average minimum distance' of 11.5 

m for LSTM-DDPG represents the actual measured 

distance during successful avoidance maneuvers, which is 

dynamically optimized and can be lower than the design 

threshold while still ensuring safety. Statistical 

significance tested via t-test (LSTM-DDPG vs. each 

baseline) yielded p-values<0.01 for all metrics, 

confirming the superiority of our method. 

To verify the superiority of the deep reinforcement 

learning algorithm proposed in this paper for UAV 

obstacle avoidance, this study compared the obstacle 

avoidance effects of three models, as shown in Table 4. 

The experimental data in Table 4 systematically presents 

the performance comparison results of the three obstacle 

avoidance algorithms. 

In terms of obstacle avoidance safety, the LSTM-

DDPG algorithm performed best with an average 

minimum distance of 11.50 m, which was 22% and 9.3% 

higher than those of DWA and VOM respectively. The 

standard deviation of 0.82 m indicates that it can stably 

maintain a safe distance in different scenarios, fully 

meeting the 15-m safety radius requirement for power 

distribution inspection. In terms of path planning 

efficiency, the average path length of this algorithm was 

519.7 m, which was 8.2% and 2.0% shorter than those of 

DWA and VOM respectively. This optimization is mainly 

due to the sequential modeling ability of the LSTM 

network. 

Considering the three indicators comprehensively, the 

proposed algorithm achieves the best balance among 

safety, economy, and real-time performance. Especially in 

the typical scenario of dense power poles in the 

distribution network, it can still maintain stable 

performance, fully verifying its engineering practical 

value. 

Analysis of failure cases revealed that most failures 

occurred under extreme conditions, such as the 

simultaneous appearance of multiple dynamic obstacles 

from blind spots, exceeding the sensor detection range and 

reaction time. Furthermore, performance slightly 

degraded in scenarios with very high wind gusts, 

indicating a potential area for improvement by 

incorporating environmental disturbance models into the 

training process. 

4.3 Energy computational and ablation 

study 

To assess the practical feasibility of deployment, the 

algorithm's energy consumption and computational load 

were evaluated on a Jetson TX2 platform. The results 

indicate an inference time of 2.7 ms and a power 

consumption of approximately 12 W during continuous 

operation, meeting the real-time requirements for UAV 

onboard computation. Utilizing 8-bit integer quantization, 

the model size was compressed to 14% of the original, 

demonstrating significant potential for edge deployment. 

To isolate the contributions of key architectural 

decisions, an ablation study was conducted. Removing the 

LSTM component led to a 5.7% decrease in success rate 

and a 45% increase in average avoidance time, 

highlighting its critical role in sequential decision-making. 

Removing depth-wise separable convolutions and 

grouped LSTM structures increased model size by 86% 

and FLOPs by 120%, confirming their effectiveness in 

reducing computational complexity. Disabling 

quantization resulted in a model size of 158 MB and 

increased inference time to 18.5 ms, underscoring the 

importance of quantization for real-time edge deployment.  

4.4 Field test in distribution network 

scenarios 

To test the practicality of the method proposed in this 

paper, we selected a section of the distribution network 

line for actual measurement. Here, the flight altitude was 

set to be 5 meters above the ground wire of the 

transmission line, and the flight speed was 5 m/s. In a 

single flight test, the length of the line surveyed was 1.9 

kilometers, and there was a total of 26 distribution poles. 

In this study, an actual test of UAV obstacle avoidance 

was carried out in this scenario. 
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Field tests were conducted using a DJI Matrice 300 

RTK platform, equipped with an onboard Jetson AGX 

Xavier computer (32 GB RAM), a Livox Mid-70 LiDAR, 

and a stereo depth camera. The precise GPS coordinates 

and structure of the 1.9 km test route are available upon 

request. 

 
 

Figure 8: Inspection flight path of the distribution-

network UAV 

 

The autonomous flight path of the UAV is shown in 

Figure 8. The green trajectory line at the top of the figure 

represents the flight path of the inspection UAV. It can be 

seen that the height difference and the route of the UAV 

are consistent with those of the distribution line, and the 

UAV can actively avoid obstacles. The figure also shows 

an aerial photo taken by the UAV of the entire power 

tower located on the mountaintop during this process. 

According to Table 3, a detailed inspection was carried out 

at the key inspection points of this single - circuit strain 

tower. During the test, the UAV completed the optimal 

inspection path planning in sequence and avoided 

obstacles such as power lines and cross - arms in real - 

time. 

5 Discussion 
The field-test results show that the algorithm 

proposed in this paper can accurately identify each key 

point (with an identification accuracy of 96.4%), generate 

an inspection path that meets safety requirements, and 

effectively avoid obstacles on the inspection route, fully 

verifying its applicability in the real distribution-network 

environment. These achievements provide important 

technical support for the autonomous inspection of UAVs 

in complex distribution-network environments. 

In terms of engineering applicability, the high 

consistency between the simulation data and the field-test 

scenarios in the distribution network (Figure 9) verifies 

the effectiveness of the experimental design. The 

algorithm successfully reproduces three typical challenges 

in actual inspections: sharp-turn maneuvers in the vicinity 

of towers, altitude maintenance in an environment with 

criss-crossing conductors, and the response to dynamic 

obstacles such as sudden appearance of birds. The field-

test data shows that the average time consumed by the 

lightweight model in the trajectory-calculation stage is 

only 2.7 milliseconds, which is far lower than the 10-

millisecond threshold required for real-time control of 

UAVs. These results not only confirm that the algorithm 

maintains the safety of traditional geometric methods 

while achieving better adaptability and intelligence 

through deep reinforcement learning, but also solve the 

problem of insufficient real-time performance of obstacle 

avoidance caused by the complexity of the distribution-

network environment, providing a reliable technical 

solution for the autonomous inspection of distribution-

network UAVs. 

 
 

Figure 9: Vision-assisted obstacle avoidance 

 

The superior performance of the LSTM-DDPG 

algorithm, as evidenced by the results in Table 4 and the 

ablation study, can be attributed to two key factors: the 

temporal modeling capability of the LSTM network and 

the integration of Velocity Obstacle constraints into the 

reward function. The LSTM allows the agent to capture 

temporal dependencies and predict obstacle trajectories, 

leading to more proactive, smoother, and globally more 

optimal avoidance maneuvers compared to methods that 

rely solely on instantaneous observations (like DWA, 

VOM, and basic DDPG). Furthermore, embedding VO 

geometry into the reward signal directly guides the policy 

to learn collision-free actions that adhere to kinematic 

constraints, enhancing both safety and path optimality. 

The LSTM-DDPG's combination of sequence modeling 

and explicit safety constraint integration via VO presents 

a distinct approach focused on robustness and foresight in 

dynamic environments with structured obstacles, such as 

power distribution networks. 

6 Conclusion 
The LSTM-DDPG fusion algorithm proposed in this 

paper effectively solves the problem of dynamic obstacle 

avoidance in the inspection of distribution-network UAVs. 

By converting the geometric constraints of the velocity 

obstacle method into the reward function of deep 

reinforcement learning, autonomous optimization of 

obstacle-avoidance behavior is achieved, with an obstacle-

avoidance success rate of 98.2% in the simulation. The 

introduction of sequential modeling technology 
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significantly improves the system performance. The 

prediction of the obstacle's motion trajectory by the LSTM 

network significantly shortens the average obstacle-

avoidance response time, which is two orders of 

magnitude higher than that of traditional methods. At the 

same time, it improves the efficiency of path planning. 

The obstacle-avoidance model based on deep 

reinforcement learning combined with real-time visual 

correction successfully realizes real-time route planning 

and reduces costs, laying a foundation for large-scale 

promotion and application in the distribution network. 

The proposed algorithm provides a reliable and 

efficient solution for autonomous UAV inspection in 

complex distribution network environments, potentially 

reducing operational costs and risks. Future work will 

focus on multi-UAV cooperative inspection strategies, 

obstacle avoidance in full 3D complex scenarios involving 

overhanging vegetation and urban structures, and the 

integration of 5G communication for enhanced real-time 

data transmission and fleet management. 

 

Data availability: The Gazebo simulation environment, 

obstacle configuration files, and the core training code 

used in this study are available from the corresponding 

author upon reasonable request. 
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