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This paper addresses the problems of obstacle avoidance and route planning in the autonomous inspection
of distribution network drones and proposes an intelligent control algorithm based on deep reinforcement
learning. By integrating the velocity obstacle method and the LSTM - DDPG framework, dynamic obstacle
avoidance decisions in complex environments are achieved. Simulation experiments on the Gazebo
platform show that, compared with the traditional DWA and VOM algorithms, this solution reduces the
average obstacle avoidance time to 0.13s and the path length by 8.2% and 2.0%, respectively, while
achieving an obstacle avoidance success rate of 98.2%. Field tests verify the practicality and robustness
of the algorithm in the complex environment of distribution networks.

Povzetek:

1 Introduction

With the rapid advancement of smart grid
construction, the power inspection technology of
unmanned aerial vehicles (UAVs) has become an
important means to improve the operation and
maintenance efficiency of the power grid. In the field of
power transmission, UAV inspections have been applied
on a large scale, forming a relatively mature technical
system. However, in the distribution scenario,
autonomous UAV inspections still face many technical
bottlenecks [1, 2]. Firstly, the environment of distribution
lines is complex and changeable, with obstacles such as
power lines, towers, and trees distributed in a criss-cross
pattern. In particular, thin power lines are one of the most
difficult obstacles to detect due to their inconspicuous
visual features [3]. Secondly, the traditional route
planning method based on laser point clouds is costly and
time-consuming, and it is difficult to adapt to the
characteristics of wide distribution of distribution network
lines and a large number of towers [4]. In addition, most
of the existing obstacle avoidance technologies rely on
sensors such as ultrasonic and infrared [5], which have
defects such as short detection distance and weak anti-
interference ability, and cannot meet the real-time obstacle
avoidance requirements in complex environments.

In response to the above challenges, deep
reinforcement learning (DRL) provides a new solution for
distribution UAV inspections [6, 7]. Unlike classical
model-based control approaches designed to handle
uncertainties and nonlinearities, such as those developed
for chaotic synchronization [8], DRL optimizes decision-
making strategies through autonomous interaction with
the environment, and is particularly suitable for obstacle

avoidance decision-making problems in dynamic
environments. The lightweight model technology
effectively solves the problem of algorithm deployment on
edge devices [9]. In recent years, significant progress has
been made in related research: in terms of obstacle
avoidance algorithms, it has developed from early
geometric modeling methods (such as the velocity
obstacle method) [10] to the current deep reinforcement
learning  framework; in  terms of hardware
implementation, it has evolved from relying on high-
performance servers to being able to run in real-time on
edge computing chips [11].

The development of current research methods is
mainly reflected in three dimensions: Firstly, there is
progress in perception technology. Object detection
algorithms based on deep learning (such as YOLO [12]
and Faster R-CNN [13]) have greatly improved the
accuracy of obstacle recognition. Multi-sensor fusion
schemes such as binocular vision and lidar have further
enhanced the environmental perception ability. Secondly,
there is optimization of decision-making algorithms. DRL
algorithms such as Deep Deterministic Policy Gradient
(DDPG) [14] and Proximal Policy Optimization (PPO)
[15] have shown superior performance in continuous
control tasks. Combining with the sequential modeling
ability of the Long Short-Term Memory network (LSTM),
UAVs can predict the movement trends of dynamic
obstacles. Finally, there is innovation in deployment
solutions. Lightweight technologies such as model
pruning, quantization compression, and knowledge
distillation [16] enable complex algorithms to run
efficiently on edge computing platforms such as Jetson.

Based on the actual needs of distribution network
inspection, this paper proposes an autonomous UAV
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obstacle avoidance algorithm that combines the improved
velocity obstacle method and LSTM-DDPG. This
algorithm innovates in three aspects: in terms of dynamic
environment modeling, it expands the threat area
representation of the traditional velocity obstacle method
and introduces an adaptive obstacle circle radius
adjustment mechanism; in terms of decision optimization,
it designs a composite reward function that combines
immediate rewards and long-term benefits, and uses the
LSTM network to capture sequential dependencies; in
terms of engineering implementation, a depth-separable
volume accumulation and grouped LSTM structure is
adopted to reduce computational complexity.. Through
tests on the Gazebo simulation platform and field flight
verification, this solution shows significant advantages in
terms of obstacle avoidance success rate, path
optimization degree, and real-time performance. The
automatic flight path generation and online update
technology developed in this research can better adapt to
the short-cycle environmental changes around the
distribution network.

2 Related work

This section reviews key technologies in UAV
obstacle avoidance, including traditional geometric
methods, classical adaptive control strategies, and modern
Deep Reinforcement Learning approaches. A summary
comparison is provided in Table 1.

Table 1: Performance comparison of different
control methods for UAV obstacle avoidance

Method Adaptabil  Nonlinearit Real-time

ity y Handling  Performan
ce

Adaptive Medium Strong High

Fuzzy

Control

Backsteppin ~ Weak Medium High

g Control

Neural Strong Strong Medium

Adaptive

Control

LSTM- Strong Strong High

DDPG

Compared to classical adaptive control methods (e.g.,
fuzzy logic [17,18], backstepping [19], neural adaptive
control [20]) which often rely on precise system modeling
and expert knowledge to handle uncertainties and
nonlinearities, Deep Reinforcement Learning learns
optimal policies through autonomous interaction with the
environment. This grants DRL superior capability in
handling highly nonlinear and uncertain dynamic systems
without explicit model derivation. While classical
methods offer stability guarantees, DRL provides greater
flexibility and long-term optimization potential. Future
work could explore hybrid architectures, for instance,
incorporating fuzzy logic into the reward shaping process
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of DRL to enhance interpretability and robustness further
[21].

3 Method introduction

3.1 UAVs for distribution network
inspection

Power inspection of distribution poles generally
consists of inspection of transmission lines and inspection
of distribution poles. During the inspection of distribution
poles, the drone needs to hover near the distribution poles
and take photos of the tower body for appearance damage
inspection. The inspection task requires the drone to
traverse all distribution poles with inspection decisions.
When conducting transmission line inspections, drones
can combine latitude, longitude coordinates and altitude
information to analyze the location of fault points.

Inspection point

Power overhead lines

Power Distribution
Tower Yy

Figure 1: Inspection space near distribution poles

Before designing the entire inspection route for the
drone, the staff needs to clarify the inspection
requirements of different poles in the area to be inspected
and set key sampling points. In the distribution line, the
single - circuit strain tower is indeed a common type of
distribution pole, which is mainly used to bear the tension
of the conductors and prevent the expansion of line
breakage or tower collapse accidents. Taking the single -
circuit strain tower as an example, the key inspection
points are shown in Table 2. These key points include the
overall view of the distribution pole, the left and right
phase insulator strings, and the jumper strings of each
phase, which comprehensively cover the main detection
parts of the pole and provide clear target guidance for
drone inspections. The definition of the inspection space
is shown in Figure 1. Taking the coordinates of the tower
top as the origin, the forward direction of the line is the X
- axis, and the vertically upward direction is the Z - axis.

Table 2: Key points for refined inspection of
overhead distribution network lines

No. Key Inspection Points

1 Overall view of the tower

2 Left-phase consumable insulator string
3 Left-phase jumper string

4 Left-phase large-size insulator string
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Middle-phase small-size insulator string
Middle-phase jumper string
Middle-phase large-size insulator string
Right-phase small-size insulator string

©O© 0O N o O

Right-phase large-size insulator string

The drone flies to each pole and designated photo -
taking points in sequence according to the pre - planned
route to perform inspection tasks. During the flight, the
environmental perception system composed of a
millimeter - wave radar and a multi - eye depth camera
carried by the drone continuously scans the surrounding
environment. The millimeter - wave radar is responsible
for detecting large - scale obstacles at medium and long
distances, while the multi - eye depth camera accurately
identifies fine obstacles at close range. Since most power
equipment has strong interference and is densely
distributed, effective obstacle avoidance cannot be
achieved in application; thus, Al - based autonomous
obstacle avoidance technology has emerged. For example,
when the drone identifies a relatively high obstacle ahead
during flight, it actively adjusts its flight altitude to avoid
the obstacle. Therefore, this study proposes an obstacle
avoidance algorithm based on LSTM - DDPG to enable
the drone to complete intelligent inspection tasks in the
distribution scenario.

3.2 Obstacle avoidance algorithm based on
LSTM-DDPG
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Figure 2: Schematic Diagram of the LSTM-DDPG
Algorithm Training Framework

In this research, by integrating the velocity obstacle
method and the LSTM-DDPG framework, dynamic
obstacle-avoidance decision-making in distribution
network scenario is achieved. The UAV interacts with the
uncertain environment. The LSTM algorithm perceives
the state changes of obstacles within the detection range
and, combined with its own state information, attempts to
adjust the change of the heading angle. It obtains the
reward value as an evaluation for adjusting the heading
decision and repeatedly tries and makes corrections to
obtain a higher reward value, thereby realizing the optimal
heading strategy decision-making. The implementation
framework is shown in Figure 2.
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In addition, for the UAV platform with limited
computing resources, in order to make the LSTM-DDPG
obstacle-avoidance algorithm lightweight, we introduce
an optimization strategy to achieve efficient compression
and acceleration of the model. At the model architecture
level, we use depth-separable convolutions to replace
traditional fully-connected layers. Combined with the
design of grouped LSTM units, we split the 256-
dimensional hidden layer into 4 groups of 64-dimensional
parallel processing modules, reducing the number of
floating-point operations (FLOPs) and the number of
parameters. During the training process, we introduce
knowledge distillation technology to achieve strategy
transfer through the teacher-student network framework.
At the same time, we use 8-bit integer quantization to
compress the model size to 14% of the original size. After
the lightweight compression of the model, due to the
reduction of the number of parameters and the amount of
calculation, the detection efficiency can reach real-time or
near-real-time, thus achieving target tracking in
continuous images or video streams through real-time and
rapid obstacle-avoidance detection.

3.2.1 Velocity obstacle method

The basic principle of the velocity obstacle method is
shown in Figure 2 [22]. In the dynamic obstacle avoidance
problem, if the encountered obstacles are regular, the
obstacles can be modeled as obstacle circles through
geometric simplification methods. To simplify the
interaction model between the agent and the obstacles, the
radius of the obstacle circle can be extended to
=l+h . At this time, the UAV can be regarded as a
particle, and the threat area of the obstacle is extended to

. . . I -
a circular area with a radius of 't (as shown in Figure 3).
y

Velocity Obstacle

Obstacle Threat Zone

Figure 3: Basic principle of the velocity obstacle method

Based on the real-time position and velocity
information of the UAV and the obstacles, a threat
assessment model for dynamic obstacle avoidance can be
constructed through relative motion analysis. The position

and velocity of the UAV are denoted as P, (X,,Y,) and
Vy, (Vi Vuy) , and the position and velocity of the obstacle
are denoted as P, (X, ) and Vg (Vi Vo) . First,
calculate the relative velocity vector V. between the

UAYV and the obstacle. By solving the included angle «;
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between these two vectors and comparing it with the semi-
apex angle of the obstacle threat cone, it can be determined
whether there is a collision risk. The relevant calculation
formulas are as follows:

PP,
Cos ai = COS(A(VUOH Rj Poi )) = || VUO|I|||P ||
uoi (1)
Vioi =V —Voi (2)

of :ZVUOPUX_APUPOX (3)

3.2.2 Deep deterministic policy gradient algorithm

In policy-based reinforcement learning methods, the
policy is usually approximated by a parameterized
function. This approach is called the Policy Gradient
method [23]. The policy of selecting an action @ in astate
S can be represented as a probability distribution
determined by the parameter 4.

7,(als)=p(als; ) @

Deep Deterministic Policy Gradient (DDPG) is an
algorithm that combines Policy Gradient (PG) and Q-
learning (DQN), and is specifically designed for
continuous action spaces. It is an extension of the Actor-
Critic architecture. It outputs continuous actions through a
deterministic policy and uses experience replay and target
networks to enhance stability.

Different from stochastic policies, the policy network
of DDPG directly outputs deterministic actions. The state-
action value function evaluated by the Critic network is
denoted as Q“(s,a) . This deterministic policy is
optimized through the policy gradient theorem.

a=p,(s) ®)
DDPG further optimizes the training process through
the Replay Buffer and Target Network. In each step of

interaction, the action @, generated by the Actor will

have exploration noise 77, added to it to enhance the
exploration ability.
a = () + 72 (6)
The update of the Critic network is based on

minimizing the temporal difference error, and its target Q-
value is calculated through the target network:

Yi =6+ 7Qu (Sias 9 (1)) (D)
Here, @' and @' are the parameters of the target

networks of the Critic and Actor respectively. The loss
function of the Critic is the mean-squared error & :

g:%_z(yi_%(si'ai))z ®)

The update of the Actor is achieved by maximizing
the Q-value evaluated by the Critic, and its gradient is:

1
V,J(0) = WZVa% S8, ) Vora(s)
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The parameters of the target network are slowly
synchronized with those of the online network through
soft update. The update formula is:

0'«—0+(1-7)0" (10
¢ «—1p+0Q-7)¢ (11)

where, 7[] 1 controls the update speed. This
mechanism effectively stabilizes the training process and
avoids drastic fluctuations in Q-value estimation.

The principle of the DDPG algorithm based on the
velocity obstacle method is shown in Figure 4.
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Figure 4: Implementation framework of the UAV
obstacle-avoidance method based on DDPG

In the dynamic obstacle avoidance system of
distribution network inspection drones, we combine the
velocity obstacle principle with deep reinforcement
learning to achieve intelligent and efficient obstacle
avoidance control. This algorithm first uses sensors such
as lidar to obtain real - time position and velocity
information of distribution network facilities (such as
conductors and poles), and then establishes an extended
obstacle model. In the DDPG framework, the Actor
network outputs the optimal control commands based on
the current state (including UAV pose, obstacle
information, etc.), while the Critic network evaluates the
action value. In particular, the algorithm transforms the
geometric constraints of the velocity obstacle (VO) into a
key penalty term of the reward function to guide the policy
network to learn obstacle avoidance actions that comply
with the VO principle. The training process is stabilized
through the target network and experience replay
mechanism. Ultimately, the UAV can not only efficiently
complete distribution network inspection tasks (maintain
the shooting distance and cover the planned route) in a
complex power environment but also avoid dynamic
obstacles (such as birds and moving equipment) in real -
time, significantly enhancing the safety and reliability of
distribution network inspections.

In the autonomous obstacle-avoidance system of
unmanned aerial vehicles (UAVS), the design of the UAV
state space mainly considers the UAV's own state and the
state of the target point. The design of the action space
mainly considers the change in the heading angle, denoted

as A { @i O | -

S:(ux,uyavuv ' X’t ) (12)
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Here, (U,,U,) and V, represent the real-time
position and velocity of the UAV respectively; @ and @
are the heading angle and angular velocity; (tx,ty)

represents the position of the target point.

The reward function evaluates the UAV's action
decisions. To avoid sparse rewards, reward values are
assigned to the action decisions of the UAV under
different flight states. The reward function R is a
weighted sum of three key components: a goal-reaching
reward goal, an obstacle avoidance penalty based on VO
constraints, and a shaping reward other for smooth flight.

R=r+r, +r,

(13)
; {+100, Arrive
t = .
—100, Not arrive (14)
-100, a<a,,
I, =4+50, O<a-a,,<5
-10, a-a,, > 5 (15)

r, =-1(16)
Here, I, I, and I, are the rewards when the UAV
reaches the target point, avoids obstacles, and is in other
flight states respectively; «,, is the heading angle that

needs to be adjusted after the calculation by the velocity
obstacle method.

3.2.3 LSTM-DDPG

The LSTM network plays a central role in
environmental understanding and decision - making
memory in this obstacle avoidance system, enabling the
drone to have the ability of spatio - temporal modeling of
complex environments such as distribution networks.
Through its unique gating mechanism, the LSTM is
capable of selectively filtering and dynamically
integrating time-series sensor data by learning temporal
dependencies. The forget gate dynamically adjusts the
retention level of historical information, the input gate
precisely captures the key features of the current
environment, and the output gate controls the intensity of
information transfer [24]. The network architecture of the
LSTM is shown in Figure 5.

Forget gate h, A

x; Input gate

Figure 5: Schematic diagram of the basic principle of
LSTM
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In the drone obstacle avoidance scenario, this
mechanism allows the LSTM to accurately capture the
time - series features of the obstacle's movement trajectory.
For example, it can accurately predict the periodic swing
of distribution lines or the flight trends of bird flocks. This
provides the DDPG with an environmental representation
with a time dimension. The forget gate determines the
retention ratio of historical information and generates a
forgetting coefficient between 0 and 1 through the sigmoid
function.

fo=oW; -[h4,x]+b;)

Here, f, isthe state of the forget gate at time t; h, ,

(17)

represents the hidden state at the previous time; W, and
bf are the weight and bias term of the forget gate

respectively; X, represents the current input.

The input gate synchronously regulates the writing of
new information, including the information screening
coefficient and the candidate memory content. The two

work together to update the cell state Ct .

i =o(W-[h,x]+b) (18)
C, =tanh(W, -[h_,,x,]+b,) (19
C, =f ®C -1+i ®C, (20)
In the formula, it represents the state of the input

gate; ét represents the candidate state.

The output gate controls the intensity of the final
output information. The state of the output gate O, is
calculated as follows:

0, =o(W, -[h_,x]+b,) (21)

The mechanism of how LSTM processes obstacle
state information is shown in Figure 6. In the UAV
dynamic obstacle-avoidance system, the system conducts
real-time threat assessment on the detected dynamic
obstacles through the Velocity Obstacle (VO) method.
Subsequently, the system integrates the motion states and
obstacle-avoidance directions of each obstacle into a joint
state vector and inputs it into the LSTM network in
chronological order. The LSTM processes these
sequential data frame by frame through its gating
mechanism and finally outputs the compressed encoding
of all obstacles. This encoding contains spatio-temporal
features of the environment and serves as the input for the
Actor network of the Deep Deterministic Policy Gradient
(DDPG) to generate smooth and forward-looking
obstacle-avoidance actions.
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Figure 6: LSTM for processing obstacle state information

For the UAV platform with limited computing
resources, in order to make the LSTM-DDPG obstacle-
avoidance algorithm lightweight, we introduce an
optimization strategy to achieve efficient compression and
acceleration of the model. At the model architecture level,
we use depth-separable convolutions to replace traditional
fully-connected layers. Combined with the design of
grouped LSTM units, we split the 256-dimensional hidden
layer into 4 groups of 64-dimensional parallel processing
modules, reducing the number of floating-point operations
(FLOPs) and the number of parameters. The baseline full-
precision model size was 158 MB. After 8-bit quantization,
the model size was reduced to 22.1 MB. Inference time
was measured on the Jetson AGX Xavier using TensorRT.
During the training process, we introduce knowledge
distillation technology to achieve strategy transfer through
the teacher-student network framework.

4 Experiment and analysis

4.1 Scenario simulation and model training

In this study, a distribution network inspection
scenario containing static obstacles such as power
distribution poles and conductors, as well as dynamic
obstacles such as flying birds, was constructed on the
Gazebo simulation platform to train the drone autonomous
obstacle avoidance algorithm based on LSTM - DDPG.
The training process adopts the Actor - Critic framework,
and the specific settings are shown in Table 3. The same
set of training parameters listed in Table 3 were used for
all baseline DRL models (DDPG, LSTM-DDPG) to
ensure a fair comparison. Hyperparameters were selected
via a grid search focusing on stability and final
performance.

Table 3: Parameter settings for model training

Parameter Value
Learning rate of Actor network  0.0001
Learning rate of Critic network  0.001
Number of iterations 10000
Batch learning size 500
Safety radius from obstacles 15m

S. Song

During the specific training implementation phase,
the drone collects data through environmental exploration
and uses the experience replay mechanism to update the
network parameters. Meanwhile, the LSTM network is
used to process the time - series information of obstacles
in 10 consecutive frames, and a carefully designed
composite reward function is used to optimize the obstacle
avoidance decision - making behavior. The training
process continues until the obstacle avoidance success rate
stabilizes above 95%. Finally, the performance of the
algorithm is verified on an independent test set. The test
set consisted of entirely unseen environments and obstacle
configurations not encountered during training. Dynamic
obstacles in testing included novel motion patterns not
present in the training scenarios.

In the comparative experiment, the traditional DWA,
VOM, and basic DDPG algorithms were selected as
benchmarks, and a quantitative evaluation was carried out
from three dimensions: obstacle avoidance success rate,
obstacle avoidance distance, and real-time response. The
experimental data were collected from the collaborative
monitoring system of the UAV airborne sensors and the
ground control station to ensure that the test results truly
reflect the applicability of the algorithm in the actual
power distribution environment.

4.2 Simulation results and comparative

experiments
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The UAV obstacle avoidance model based on LSTM
- DDPG proposed in this paper achieves an obstacle
avoidance success rate of 98.2% in the simulation. Figure
7 shows the obstacle avoidance effects and flight
trajectories of the UAV in two scenarios. In both scenarios,
the staggered conductors peculiar to the distribution
network and dynamic obstacles such as flying birds are set
up. Figure 7 intuitively demonstrates the performance
advantages of the LSTM - DDPG algorithm by comparing
the UAV flight trajectories in two typical obstacle
scenarios. In the simple obstacle scenario, the flight
trajectory generated by the algorithm features a smooth
arc. It maintains a safe distance of over 15 meters
throughout the flight, and the path length is 12.3% shorter
than that of the traditional DWA algorithm, fully meeting
the strict requirements of power inspection for flight
stability.

In the complex obstacle scenario, the algorithm shows
excellent dynamic adjustment ability. It successfully
passes through the obstacle - dense area through three
heading fine - adjustments with an average amplitude of
9.2°. This performance verifies the significant effect of the
LSTM network in optimizing sequential decision - making.

Table 4: Obstacle avoidance indexes of different
model tests (Mean + Standard Deviation)

LSTM-

Index DWA VOM DDPG

Average minimum 1474+ 12,68+ 1150z
distance (m) 1.05 1.20 0.82

Average path length 566.3+ 530.2+ 519.7+
(m) 25.4 18.7 15.2

Mean obstacle 1590+ 1164+ 0.13 +
avoidance time (s) 2.31 1.89 0.04

The 15 m safety radius defined in Table 4 is a design
threshold for triggering the obstacle avoidance reward
penalty. The reported 'average minimum distance' of 11.5
m for LSTM-DDPG represents the actual measured
distance during successful avoidance maneuvers, which is
dynamically optimized and can be lower than the design
threshold while still ensuring safety. Statistical
significance tested via t-test (LSTM-DDPG vs. each
baseline) vyielded p-values<0.01 for all metrics,
confirming the superiority of our method.

To verify the superiority of the deep reinforcement
learning algorithm proposed in this paper for UAV
obstacle avoidance, this study compared the obstacle
avoidance effects of three models, as shown in Table 4.
The experimental data in Table 4 systematically presents
the performance comparison results of the three obstacle
avoidance algorithms.

In terms of obstacle avoidance safety, the LSTM-
DDPG algorithm performed best with an average
minimum distance of 11.50 m, which was 22% and 9.3%
higher than those of DWA and VOM respectively. The
standard deviation of 0.82 m indicates that it can stably
maintain a safe distance in different scenarios, fully
meeting the 15-m safety radius requirement for power
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distribution inspection. In terms of path planning
efficiency, the average path length of this algorithm was
519.7 m, which was 8.2% and 2.0% shorter than those of
DWA and VOM respectively. This optimization is mainly
due to the sequential modeling ability of the LSTM
network.

Considering the three indicators comprehensively, the
proposed algorithm achieves the best balance among
safety, economy, and real-time performance. Especially in
the typical scenario of dense power poles in the
distribution network, it can still maintain stable
performance, fully verifying its engineering practical
value.

Analysis of failure cases revealed that most failures
occurred under extreme conditions, such as the
simultaneous appearance of multiple dynamic obstacles
from blind spots, exceeding the sensor detection range and
reaction time. Furthermore, performance slightly
degraded in scenarios with very high wind gusts,
indicating a potential area for improvement by
incorporating environmental disturbance models into the
training process.

4.3 Energy computational and ablation
study

To assess the practical feasibility of deployment, the
algorithm's energy consumption and computational load
were evaluated on a Jetson TX2 platform. The results
indicate an inference time of 2.7 ms and a power
consumption of approximately 12 W during continuous
operation, meeting the real-time requirements for UAV
onboard computation. Utilizing 8-bit integer quantization,
the model size was compressed to 14% of the original,
demonstrating significant potential for edge deployment.

To isolate the contributions of key architectural
decisions, an ablation study was conducted. Removing the
LSTM component led to a 5.7% decrease in success rate
and a 45% increase in average avoidance time,
highlighting its critical role in sequential decision-making.
Removing depth-wise separable convolutions and
grouped LSTM structures increased model size by 86%
and FLOPs by 120%, confirming their effectiveness in
reducing computational complexity. Disabling
quantization resulted in a model size of 158 MB and
increased inference time to 18.5 ms, underscoring the
importance of quantization for real-time edge deployment.

4.4 Field test in distribution network
scenarios

To test the practicality of the method proposed in this
paper, we selected a section of the distribution network
line for actual measurement. Here, the flight altitude was
set to be 5 meters above the ground wire of the
transmission line, and the flight speed was 5 m/s. In a
single flight test, the length of the line surveyed was 1.9
kilometers, and there was a total of 26 distribution poles.
In this study, an actual test of UAV obstacle avoidance
was carried out in this scenario.



72 Informatica 49 (2025) 65-74

Field tests were conducted using a DJI Matrice 300
RTK platform, equipped with an onboard Jetson AGX
Xavier computer (32 GB RAM), a Livox Mid-70 LiDAR,
and a stereo depth camera. The precise GPS coordinates
and structure of the 1.9 km test route are available upon
request.

Drone image

Obstacle
Avoidance

Flight Path

Figure 8: Inspection flight path of the distribution-
network UAV

The autonomous flight path of the UAV is shown in
Figure 8. The green trajectory line at the top of the figure
represents the flight path of the inspection UAV. It can be
seen that the height difference and the route of the UAV
are consistent with those of the distribution line, and the
UAYV can actively avoid obstacles. The figure also shows
an aerial photo taken by the UAV of the entire power
tower located on the mountaintop during this process.
According to Table 3, a detailed inspection was carried out
at the key inspection points of this single - circuit strain
tower. During the test, the UAV completed the optimal
inspection path planning in sequence and avoided
obstacles such as power lines and cross - arms in real -
time.

5 Discussion

The field-test results show that the algorithm
proposed in this paper can accurately identify each key
point (with an identification accuracy of 96.4%), generate
an inspection path that meets safety requirements, and
effectively avoid obstacles on the inspection route, fully
verifying its applicability in the real distribution-network
environment. These achievements provide important
technical support for the autonomous inspection of UAVs
in complex distribution-network environments.

In terms of engineering applicability, the high
consistency between the simulation data and the field-test
scenarios in the distribution network (Figure 9) verifies
the effectiveness of the experimental design. The
algorithm successfully reproduces three typical challenges
in actual inspections: sharp-turn maneuvers in the vicinity
of towers, altitude maintenance in an environment with
criss-crossing conductors, and the response to dynamic
obstacles such as sudden appearance of birds. The field-
test data shows that the average time consumed by the
lightweight model in the trajectory-calculation stage is
only 2.7 milliseconds, which is far lower than the 10-
millisecond threshold required for real-time control of
UAVs. These results not only confirm that the algorithm
maintains the safety of traditional geometric methods
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while achieving better adaptability and intelligence
through deep reinforcement learning, but also solve the
problem of insufficient real-time performance of obstacle
avoidance caused by the complexity of the distribution-
network environment, providing a reliable technical
solution for the autonomous inspection of distribution-
network UAVS.

Visual-assisted
obstacle avoidance
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Figure 9: Vision-assisted obstacle avoidance

The superior performance of the LSTM-DDPG
algorithm, as evidenced by the results in Table 4 and the
ablation study, can be attributed to two key factors: the
temporal modeling capability of the LSTM network and
the integration of Velocity Obstacle constraints into the
reward function. The LSTM allows the agent to capture
temporal dependencies and predict obstacle trajectories,
leading to more proactive, smoother, and globally more
optimal avoidance maneuvers compared to methods that
rely solely on instantaneous observations (like DWA,
VOM, and basic DDPG). Furthermore, embedding VO
geometry into the reward signal directly guides the policy
to learn collision-free actions that adhere to kinematic
constraints, enhancing both safety and path optimality.
The LSTM-DDPG's combination of sequence modeling
and explicit safety constraint integration via VO presents
a distinct approach focused on robustness and foresight in
dynamic environments with structured obstacles, such as
power distribution networks.

6 Conclusion

The LSTM-DDPG fusion algorithm proposed in this
paper effectively solves the problem of dynamic obstacle
avoidance in the inspection of distribution-network UAVs.
By converting the geometric constraints of the velocity
obstacle method into the reward function of deep
reinforcement learning, autonomous optimization of
obstacle-avoidance behavior is achieved, with an obstacle-
avoidance success rate of 98.2% in the simulation. The
introduction of sequential modeling technology
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significantly improves the system performance. The
prediction of the obstacle's motion trajectory by the LSTM
network significantly shortens the average obstacle-
avoidance response time, which is two orders of
magnitude higher than that of traditional methods. At the
same time, it improves the efficiency of path planning.
The obstacle-avoidance model based on deep
reinforcement learning combined with real-time visual
correction successfully realizes real-time route planning
and reduces costs, laying a foundation for large-scale
promotion and application in the distribution network.

The proposed algorithm provides a reliable and
efficient solution for autonomous UAV inspection in
complex distribution network environments, potentially
reducing operational costs and risks. Future work will
focus on multi-UAV cooperative inspection strategies,
obstacle avoidance in full 3D complex scenarios involving
overhanging vegetation and urban structures, and the
integration of 5G communication for enhanced real-time
data transmission and fleet management.

Data availability: The Gazebo simulation environment,
obstacle configuration files, and the core training code
used in this study are available from the corresponding
author upon reasonable request.
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