
https://doi.org/10.31449/inf.v50i5.10573 Informatica 50 (2026) 1–18 1 

 

AMulti-layer Deep Learning Framework for Real-Time Fault 

Detection and RUL Prediction in Avionics Systems 
 

 

Qiao Xue ¹*, Xudong Zhao ¹, Yaqiong Wang ¹, Xiangxiang Zhu ¹, Bin Dong², Zuhong Zhang³ 

¹Aviation Engineering Institute, Jiangsu Aviation Technical College, Zhenjiang, Jiangsu, 212134, China 

²Jiangsu Helist Smart Technology Co., Ltd, Zhenjiang, Jiangsu, 212009, China 

³China Southern Airlines Company Limited, Guangzhou, Guangdong, 510405, China 

E-mail: xueqiao@jatc.edu.cn, atecorgcn@foxmail.com, yaqiong_w@126.com, queqiao2024@163.com, saga-

it@foxmail.com, it0511@foxmail.com, xueqiao@jatc.edu.cn 

Corresponding author 

 

Keywords: avionics, machine learning, failure data analysis, predictive maintenance , remaining life prediction 

 

Received: September 25, 2025 

To address the challenge of real-time fault detection in avionics equipment, we proposed a 

comprehensive framework consisting of data , model, and decision layers. Data is collected in real time 

from multiple IoT sensors and processed based on a standardized framework. The data model layer 

utilizes three models for electronic equipment anomaly detection, multi-category fault identification, and 

remaining equipment life prediction . The model layer contains three core modules: (1) an unsupervised 

anomaly detection model based on stacked denoising autoencoders (SDAEs) to identify early latent faults 

using reconstruction errors; (2) a long short-term memory network (LSTM-Attention) with an attention 

mechanism for accurate classification of multi-class faults; and (3) a Wiener degradation process model 

based on Bayesian updates to achieve probabilistic prediction of RUL. Experiments were conducted 

based on the NASA C-MAPSS dataset and real flight data provided by partner airlines. The results 

showed that the framework achieved an F1 score of 0.969 in the anomaly detection task, an average 

accuracy of 97.2% for multi-class fault classification, and a RUL prediction interval coverage of 91.3%. 

After quantization and compression, the model inference latency was only 18.3 milliseconds, meeting the 

stringent requirements of airborne equipment for lightweight and real-time performance. This method 

not only improves the economy and safety of aviation maintenance but also provides an interpretable, 

low-latency end-to-end solution for intelligent health management. 

Povzetek: Predlagan je večplastni pristop za sprotno zaznavanje in napovedovanje okvar avionike iz 

podatkov senzorjev, ki z nizko zakasnitvijo izboljša varnost in učinkovitost vzdrževanja.  

 

1  Introduction 

The development of the aviation industry is not only 

related to the well-being of the people, but also to national 

security. Therefore, a large number of studies have 

focused on improving the stability and efficiency of 

avionics equipment [1] . Nowadays, the integration and 

integration of avionics equipment are constantly 

improving, which has promoted the transformation from 

traditional flight mode to intelligent flight mode. 

However, this has led to the problem of complexity, with 

a significant increase in the frequency of failures, the 

diversity of failures, and the difficulty of diagnosis. In the 

traditional maintenance mode, avionics equipment is 

often inspected and repaired regularly. However, in the 

highly integrated avionics equipment system, this method 

has become ineffective today because any failure of any 

electronic equipment may cause a serious aviation crisis 

and cause huge economic losses. Therefore, in this 

context, how to monitor and diagnose avionics equipment 

in real time has become a new trend in the development of 

the avionics field [2] . 

During flight, avionics equipment must maintain high-

intensity operation and avoid failures. However, during these 

intense and prolonged flights, avionics equipment is prone to 

hidden failures and performance degradation, which 

traditional maintenance methods are unable to identify. 

Therefore, to advance modern avionics systems with high 

safety and availability, we must build a more intelligent, real-

time, and accurate fault analysis and detection system. 

In this research context, intelligent maintenance and 

inspection based on data-driven methods using a large 

amount of collected avionics equipment information has 

become a new research trend [3] . Traditional fault analysis 

often relies on expert experience and fault detection analysis, 

or through aviation failure mode and effect analysis. These 

methods have obvious shortcomings compared to data-

driven methods. They often require human participation and 

cannot achieve real-time monitoring. Data-driven methods 

can obtain certain patterns from the operating data of massive 
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equipment, thereby performing real-time monitoring 

during the operation of the equipment. Relying on sensor 

monitoring data obtained from the database, historical 

maintenance records, and records of the aviation health 

management system to infer possible fault causes and 

provide timely feedback to engineers can greatly reduce 

the workload of engineers and improve the stability of 

aviation operations [4] . 

On the other hand, with the rapid development of 5G 

communication, edge computing and digital twin 

technology, the operation of avionics systems is evolving 

in the direction of implementation. However, this trend 

runs counter to the lag of fault detection. With the real-

time nature of avionics systems, fault detection always 

relies on manual analysis and judgment, which is a lag and 

cannot support the real-time operation of avionics 

systems. Regarding the analysis of avionics equipment 

fault data, research at home and abroad has made certain 

progress. For example, flight data recording systems have 

been deployed and operated in most airlines. Such 

systems can quickly read data from flight process 

recorders and combine them with real-time data 

transmitted by the status monitoring system to realize the 

collection of key module data during aircraft operation [5] 

. On the other hand, a large number of studies use big data 

analysis technology to collect and manage avionics 

equipment fault data. However, the existing research 

system still has many deficiencies. The first is the data 

island problem, because the data of different airlines are 

isolated and exist in different departments and different 

flight systems. Some studies often use traditional 

suppression-based methods for analysis and judgment 

based on large amounts of data. This approach does not 

take advantage of the advantages brought by big data. On 

the other hand, the generalization ability of this method is 

also insufficient. It is difficult to switch and transfer 

between different data sources [6] . 

To address the challenges of the aforementioned 

research, this paper, based on a machine learning 

approach and a data-driven approach, constructs an 

optimized framework for avionics equipment fault data 

analysis and predictive maintenance. This framework 

employs a three-layer architecture. The first layer is the 

data layer, which collects and processes data from 

numerous IoT sensors and avionics systems. The second 

layer is the model layer. We incorporate deep learning 

models to build a real-time analysis system and enhance 

the model's efficiency through the use of edge devices. 

The third layer is the decision layer. The model layer's 

predictions are presented to users through visualization, 

allowing them to independently decide whether to accept 

the fault. 

Despite the progress made by deep learning in 

equipment health management, existing methods still 

have significant shortcomings in multi-task collaborative 

modeling, cross-domain generalization capabilities, and 

real-time deployment feasibility. Therefore, this paper 

proposes the following core research question: 

"Can a unified multi-layer deep learning architecture 

be constructed to achieve high-precision fault detection, 

fault type classification, and remaining useful life (RUL) 

prediction while ensuring low latency, and maintain robust 

performance on various avionics system datasets?" 

To address this question, this paper designs a novel 

multi-task temporal network and verifies its effectiveness 

and practicality through systematic experiments on C-

MAPSS, XJTU-SY, and a self-built real flight dataset. 

The model constructed in this paper can significantly 

improve of avionics equipment, improving the timeliness of 

fault detection. This shifts from a traditional experience-

based approach to a data-based one. From a safety 

perspective, this method can effectively provide early 

warning of avionics equipment failures, reducing the 

incidence of in-flight failures. From an economic 

perspective, it can shorten maintenance cycles. 

2  Related works 

2.1 Avionics equipment fault detection 
technology 

The evolution of avionics fault detection technology from 

traditional experience-based to intelligent has gone through 

a long period of time. In the early days, it mainly relied on 

basic fault detectors and the experience of maintenance 

personnel, and performed fault detection through manual 

observation, signal detection, and replacement methods. 

This method has the characteristics of low timeliness [7] . 

Poor accuracy and high reliance on experience. Therefore, 

with the rapid development of information technology in 

China, this method has been eliminated. Currently, it mainly 

relies on intelligent methods. Scholars have tried to build a 

systematic detection method. For example, Kabashkin I et 

al. [8] explored the construction of an expert system in their 

research. To conduct systematic fault detection, thereby 

avoiding the high cost and time waste brought by traditional 

exhaustive and pseudo-exhaustive methods. Other studies 

pointed out that avionics systems have highly integrated 

circuits. The vector generation during testing is complex 

and costly, so the construction of such an expert system 

requires the construction of a strong expert system. Ali N, 

Hussain M et al. [9] proposed automatic test equipment in 

their research, which can be used for offline testing of 

avionics. Magliano E et al. [10] pointed out in their research 

that this type of offline electronic equipment can be 

combined with standard test procedures to efficiently 

complete the power-on self-test of electronic equipment, 

and the signal excitation and response data collection 

process provides a feasible method to a certain extent. 

However, this type of intelligent algorithm often constructs 

a correspondence between equipment failure and equipment 

symptoms based on data, and cannot dynamically perceive 

problems during the operation of the equipment. In recent 

years, Zeng ZY et al. [11] proposed a full-process 

monitoring system for electronic equipment, promoting the 

transformation of avionics equipment from post-detection 

to in-operation monitoring, and promoting the development 

of early warning of avionics equipment failures. Das O et 

al. [12] showed in their research that this full-process real-

time monitoring fault monitoring system has extremely high 

sensitivity for analyzing equipment failures, sudden 

equipment aging, and sudden accidents. 
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2.2 Data-driven 

At present, the data-driven approach to avionics fault 

detection has become a new trend. This method avoids 

relying on precise physical models and achieves real-time 

prediction and early warning of faults by mining the 

potential patterns and laws in historical data. In terms of 

data collection, a large number of aircraft are now 

equipped with a variety of sensors, which provides a basis 

for the feasibility of research. Wu ZJ et al. [13] pointed 

out in their study that more than 50% of aircraft have 

achieved automatic collection of equipment status 

information and maintenance information on the fuselage 

through the Internet of Things and automatic 

identification technology. In terms of data processing, 

Ranasinghe K et al. [14] provided a method system for 

aviation information data processing and a set of feature 

extraction methods for aviation data. In the process of 

analysis and processing, Hapka R et al. [15] proposed 

using knowledge vector sets to improve the classification 

of radar received faults. Compared with the traditional 

experience-based method, it achieved a better accuracy. 

BOULKROUNE A et al. [16] used the random forest 

algorithm and then analyzed the simple feature 

importance method to assist in finding the fault 

experiment when a multivariate fault occurred in the 

communication module. The results showed that this 

feature importance-based method achieved an 

improvement in accuracy compared with the traditional 

experience-based and rule-based method. f used a long-

term short-term neural network to analyze continuous 

aviation failure data and identified potential failure points 

through anomaly detection. These failure points were 

confirmed to exist in practice, demonstrating the 

effectiveness of time series data analysis in aviation data 

processing. Although data processing-based methods are 

highly feasible, they suffer from poor data interpretability 

and difficulty in data collection. 

2.3 Predictive maintenance strategy 

Currently, predictive maintenance strategy has become the 

core method of sample inspection in modern aviation 

systems, which can timely identify equipment maintenance 

needs through equipment monitoring and prediction. 

Raza A et al. [17] systematically explained in their 

research that the basis of maintenance prediction 

technology relies on a large number of sensor networks, big 

data platforms and machine learning technologies. The 

combination of big data and machine learning algorithms 

can realize real-time analysis of data and provide early 

warning before a failure occurs. In terms of models, 

BOULKROUNE A et al. [18] used the Micro-Merck 

distribution and degradation model to predict the life of 

electronic components. However, this study was carried out 

under strict assumptions and is difficult to implement in a 

practical environment. Dong L et al. [19] used the Markov 

process and Bayesian network to build a dynamic 

maintenance prediction system. The maintenance strategy 

is adjusted according to the real-time status of the 

equipment. However, this model can only achieve 

classification. Piumatti D et al. [20] used a comprehensive 

prediction method to combine the fault prediction model 

with the maintenance cost model and the aviation planning 

model to build a multi-objective optimization strategy. 

However, this goal focuses on achieving a comprehensive 

optimal solution and cannot achieve the freedom of aviation 

fault prediction. Gao C et al. [21] introduced digital twin 

technology into aviation fault detection for the first time. 

By building simulated equipment to simulate fault 

scenarios, faults can be predicted to a certain extent. 

However, this method also faces the problems of low 

feasibility and weak interpretability. 

Table 1 provides a systematic cross-sectional 

comparison of existing representative research methods, 

covering four key dimensions: datasets used, task scope, 

performance metrics, and method limitations.

 

Table 1: Research summary table 

Dataset Task Scope 

Key performance 

indicators (accuracy/error, 

etc.) 

limitation 

C-MAPSS RUL Prediction RMSE: 12.3 
Only applicable to single failure mode; does 

not consider multi-sensor heterogeneity. 

PHM 2008 

Challenge 

Fault Detection + 

Classification 
Accuracy: 92.5% 

Relies on manual feature engineering; has 

weak generalization ability. 

NASA Turbofan RUL Prediction MAE: 8.7 cycles 

The model is highly complex; training time 

is long; and an online update mechanism is 

not integrated. 

Self-built 

industrial bearing 

dataset 

Fault detection F1 score: 0.89 
Small dataset size; lack of public benchmark 

validation 

C-MAPSS + 

XJTU-SY 

Multitasking 

(Detection + RUL) 

RUL MAE: 9.1; Detection 

Acc: 94.2% 

Unhandled cross-domain scenarios; 

sensitive to noise 
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3  Research methods 
The model constructed in this paper aims to achieve 

dynamic perception of the operating status of avionics 

equipment. By identifying anomalies early during a 

failure and monitoring the remaining mission life of the 

electronic equipment, this paper constructs a multi-

layered, multi-model fusion framework for intelligent 

fault prediction and predictive maintenance. This 

framework is based on a data-driven philosophy and 

combines information processing technology with deep 

neural network technology. This forms a complete 

technical chain from raw data sensors to final, innovative 

decision-making. The framework model constructed in 

this paper aims to provide high-precision fault 

identification capabilities, maximize the quantification of 

uncertainty, and provide aviation maintenance personnel 

with interpretable and reliable early warning signals. 

As shown in Figure 1, this paper constructs a three-

layer framework. The first layer is the data acquisition and 

preprocessing layer, which primarily uses multi-sensor 

sensing and performs data denoising and standardization. 

Principal component analysis is also performed on the data 

to achieve dimensionality reduction for high-dimensional 

data. In the second layer, we use an intelligent diagnostic 

model. This module, based on an unsupervised learning 

anomaly detection module using autoencoders, is used to 

identify early hidden faults. This module combines an 

attention mechanism with long-short-term neural networks 

to achieve accurate multi-category classification. The third 

layer is the prediction and decision layer. We combine a 

Bayesian degradation model with monitoring data to update 

the parameter distribution, thereby achieving a probabilistic 

prediction of service life. This model implements two 

functions: fault identification and accurate classification, 

and prediction of the service life of avionics equipment.  

 

Figure 1: Model framework 

 

3.1 Data collection and preprocessing 

During flight, densely deployed IoT sensors collect a 

large amount of avionics data. This data contains a wealth 

of information, including the current, voltage, and inertia 

of power modules, the speed and acceleration of test units, 

the signal strength of communication circuits, and the 

temperature of chips. These data are characterized by 

large data volumes, high dimensions, and severe noise 

interference. Therefore, we first preprocessed and 

extracted features from the data. We assume that the raw 

sensor data is X ∈ ℝN×M  , we use n to represent the 

sampling point of time, m to represent the number of 

sensor channels, and j to represent the original signal of 

the sensor channel xj(t)  , for these data, we first use 

median filtering to remove the noise in the pulse data. 

Specifically, as shown in Formula 1 [22]  

x̂j(t) = median(xj(t − k), … , xj(t), … , xj(t + k)) (1) 

In formula 1 , k is used to represent the half-width of 

the sliding window. This parameter is used to control the 

degree of smoothing. x̂j(t) It represents the filtered signal 

value after processing. We set the signal value of the jth 

sensor at time t to bexj(t) , the time window size is 2k + 1, 

x̂j(t) represents the filtered data. In addition, for the case of 

temporary loss of sensor data or data disconnection, we use 

linear interpolation to fill the gap. We standardize the 

processed data. Specifically, as shown in Formula 2 [23] 

 zj(t) =
x̂j(t)−μj

σj
,  μj =

1

N
∑ x̂j
N
t=1 (t),  σj =

√
1

N−1
∑ (x̂j(
N
t=1 t) − μj)

2 (2) 

In Formula 2 , we usezj(t) To represent the th channel 

at time t after normalization.μj ,σj They represent the mean 

and standard deviation in the time series dimension 

respectively. After standardization, the data is delimited to 
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a certain range. The difference in dimension is 

eliminated and Nrepresents the total amount of data[24]. 

After data preprocessing, we perform feature 

extraction. The features we construct mainly include 

mean, variance, skewness, kurtosis and zero-crossing 

domain. These features can describe the stability and 

dynamic changes of the signal. In terms of frequency, we 

use the Fourier transform feature, as shown in Formula 3 

[25] 

 

 STFTj(t, f) = ∫ zj
∞

−∞
(τ)w(τ − t)e−j2πfτdτ (3) 

In formula 3 we use zj(τ)  To represent the time 

domain signal of a channel.w(⋅)To express. The time 

window function is used to localize the time range to 

limit the analysis interval. Usee−j2πfτ  To represent the 

exponential basis function used to realize the frequency 

decomposition,STFTj(t, f) The representative frequency 

output represents the frequency f time-frequency 

diagram in the time range t. In addition, we also 

considered multiple frequency-related features, 

including the center of gravity of the spectrum to 

represent the frequency of concentrated energy. The drift 

of this feature indicates the wear of the mechanical 

device, and the frequency bandwidth is used to reflect the 

discrete degree of the frequency distribution. The 

spectrum sound is used to represent the degree of 

uncertainty of the signal, and the quotient is used to 

quantify the uncertainty. The increase of this indicator is 

often related to the occurrence of abnormalities. After 

feature extraction, we performed principal component 

analysis, which reduced the dimension of all extracted 

video feature vectors. The principal components with a 

cumulative contribution of more than 95% are retained, 

and the other principal components are removed. The 

final result isft′ ∈ ℝdd ≪ D$ ,These results are that low-

dimensional representation of high-dimensional features 

reduces the complexity of the data. 

3.2 Unsupervised anomaly detection based 
on stacked denoising autoencoders 

In this section, we aim to detect electronic equipment 

failures. However, in real-world data, the vast majority 

of the data space is normal, with only a very small 

number of failures. These failures are numerous and 

diverse, making it expensive to obtain labeled data. 

Based on this, we developed an unsupervised training 

method. Therefore, this section proposes a novel 

approach that uses stacked denoising autoencoders and 

combines them with unsupervised data for anomaly 

detection. The core of this method is to train the model 

using a large amount of positive sample data, allowing it 

to learn the underlying behavioral patterns of these 

positive samples. Once the model encounters negative 

samples, it exhibits behavior that deviates from normal 

patterns, indicating potential failures. This triggers an 

early warning. This reconstruction error-based approach 

can significantly alleviate the problems caused by 

sample imbalance. 

The autoencoder used in this paper is composed of an 

encoder that can compress high-dimensional data into a 

low-bit latent space and a decoding part that decodes the 

data line. In this model, the input feature vector can be 

expressed as ft  , in the encoding process, there are two 

hidden layers. After the first hidden layer, we get formula 4 

 

h(1) = σ(W(1)ft + b(1)) (4) 

In formula 4, we haveW(1)b(1)  Use to represent the 

weight vector and bias vector of the model, and useσ(⋅)To 

improve the nonlinear expression ability of the model. Then 

we performed the second layer encoding. As shown in 

Formula 5 , W(2)h(1), b(2) the parameters representing the 

encoding of the second layer are[26]. 

 h(2) = σ(W(2)h(1) + b(2)) (5) 

Through this structure, we can obtain a deep feature 

representation 

The encoding process includes two embeddings, the 

core purpose of which is to extract the high-dimensional 

features implicit in the data and obtain the feature 

representation implicit in the data. 

The decoding process is to use a multi-layer neural 

network to convert the deep embedding representation into 

a high-dimensional feature vector σ(W(d1)z + b(d1)). Then 

we perform the first-layer feature mapping and then use 

σ(W(d2)ĥ(1) + b(d2))  the second-layer feature mapping . 

After two layers of mapping, we get the final reconstruction 

result. 

The principle of the encoder-decoder structure is that if 

the input data is normally distributed, the feature vector 

output by the encoder and decoder process should be very 

close to the original feature. f̂trepresents the output feature, 

and W(o)ĥ(2)，b(o)represents the parameters and bias terms 

respectively. 

f̂t = σ(W(o)ĥ(2) + b(o)) (6) 

 In order to enhance the robustness of the model, we 

introduce noise into the training data and superimpose white 

noise on the original data, as shown in Formula 7. 

ϵ~𝒩(0, δ2I)，f̃t = ft + ϵ (7) 

f̃tThe features after mapping ϵare noise. The training 

goal is to reconstruct the original clean data from the 

contaminated data. This noise-based recovery training 

allows the model to not only learn a simple identity factor 

but also learn to ignore the noise components in the data and 

focus on the implicit structure and patterns in the data. This 

improves the model's robustness to noise and enhances its 

ability to observe implicit patterns in normal data. 

The goal of this part of the training is to minimize the 

reconstruction error, which is Formula 8. 

 ℒAE =
1

T
∑ ‖ft − f̂t‖

2T
t=1 + λ(∑ ‖W(l)‖F

2
l +

∑ ‖W(dl)‖F
2

l )  (8) 

In formula 8 , ℒAErepresents the loss function. The first 

term we use is the mean square error ∑ ‖ft − f̂t‖
2T

t=1 to 

measure the difference between the original input and the 

reconstructed input. We use regularization λ(∑ ‖W(l)‖F
2

l +

∑ ‖W(dl)‖F
2

l )to limit the complexity of the model and avoid 

overfitting. At the same time, we use hyperparametersλ To 
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quantify the balance between policy degree and similarity 

degree , T represents the total number of samples. 

3.3 Multi-category fault identification 

In this section, we provide an anomaly detection method 

that can determine whether avionics equipment has 

deviated from its normal state. These methods not only 

determine whether a fault has occurred, but also analyze 

the specific type of fault. For example, common fault 

causes include power module failure, overvoltage, and 

communication circuit failure. In Section 3.2, we 

implemented anomaly early warning triggering. In 

Section 3.3, we implemented a high-precision fault 

classification module to identify specific fault categories, 

providing reliable reference for engineers. Therefore, in 

this section, we designed and implemented a long-term 

short-term neural network based on the attention 

mechanism to accurately identify multiple fault 

categories. 

Fault identification relies on sequential networks. For 

example, temperature anomalies often begin with a slow 

increase, followed by a restart as voltage and temperature 

rise and fluctuate. Long- and short-term neural networks 

offer a natural advantage in analyzing this type of data.  

Therefore, we use long short-term neural networks to 

process long sequence data. However, this process has its 

shortcomings. 

Final hidden state output by the long short-term 

neural network hT  It can be considered as the feature 

representation of the entire time series, which is the sum 

of information at all time steps. However, not all data 

points in the entire time series are equally important. Data 

at the critical point of failure should be given higher 

weight. Therefore, we added an attention mechanism to 

the long-term short-term neural network to explicitly 

learn the weights of the model at different time steps. We 

use the attention mechanism to calculate the attention 

score of each hidden state, as shown in Formula 9 . 

 et = vT tanh(Waht + ba) ( 9 ) 

In Formula 9, Wa，ht，ba represents the weight 

matrix, attention matrix and bias term, vTtrepresents the 

specific value, et represents the attention score. After 

obtaining the attention score, we normalize the score to 

obtain the degree of attention of the model for different 

time steps . Based on the context score provided by the 

attention mechanism, we perform weighted summation on 

all hidden states to obtain an implicit vector that focuses 

on key information. Specifically, if it is 1 0 

 s = ∑ αt
T
t=1 ht ( 10 ) 

Formula 10 , we use s  To visualize the degree of 

attention paid by the model to the time series data , αtwe 

represent the attention score. After obtaining the feature 

output with implicit attention weight, we classify this 

vector and obtain the final classification result, as shown 

in Formula 1 1. 

 p = softmax(Wys + by) (11) 

In formula 1 1 we usep = [p1, p2, … , pK] To express 

the classification probability of breeding failure, this is a 

multi-classification problem. Therefore, we use the 

cross-quotient function as the loss function during training. 

3.4 Equipment service life prediction 

In order to predict the service life of equipment, we 

constructed a fusion method based on Bayesian updating 

and Wiener process. The use of avionics equipment has the 

characteristics of performance regression and randomness, 

so this paper uses formula 1 2 to model the performance 

degradation of avionics equipment. 

Y(t) = θ + βt + σBB(t) (12) 

In formula 1 2 we useβ To represent the performance 

degradation rate, to simulateB(t) The range of Brownian 

motion. Thus, the parameters change with time , 

θ represents the parameter, t represents the time, Y(t) 
Represents the performance of the electronic device when 

the threshold is first reached D  This means that the 

electronic device has failed, and the system will generate an 

early warning. Considering the uncertainty in the use of the 

device, we introduced the Bayesian framework toβ As a 

random variable, in a certain model, we use the real-time 

monitoring data to continuously update its posterior 

distribution. Finally, we use the updated parameters to 

calculate the expected performance value of 

RUL 𝔼[RULt|𝒟t]  Point estimates are presented as 

hypothesis tests, and 90% confidence intervals are drawn to 

obtain an appropriate range. 

In this study, the prior distribution of the Wiener 

degradation model was not arbitrarily set, but rather 

statistically derived from performance degradation data 

accumulated from historical flight missions and ground 

tests of similar avionics equipment, thus possessing a clear 

engineering experience foundation. Specifically, we first 

analyzed the degradation trends of a large number of similar 

devices, and based on this, set an initial degradation rate 

range as prior knowledge. During actual flight, after each 

complete monitoring cycle (typically 30 minutes to 2 hours, 

depending on the mission phase), the system performs a 

Bayesian update on the model using newly acquired sensor 

data. This update mechanism is computationally efficient, 

with a single update taking less than 1 millisecond on the 

embedded platform, fully meeting the real-time and 

resource constraints of the airborne system. 

The autoencoder consists of two layers of encoding and 

two layers of decoding networks. The number of neurons in 

the hidden layers is progressively reduced and then restored 

to effectively extract key features and suppress noise. The 

activation function used is LeakyReLU, and the Adam 

optimizer is used for training, with a total of 200 iterations. 

The batch size is set to 64, and weight decay is incorporated 

to prevent overfitting. The LSTM-attention model consists 

of two stacked unidirectional LSTM units, avoiding the use 

of a bidirectional structure to ensure that the inference 

process strictly depends on current and past information, 

meeting the needs of real-time applications. After the 

attention layer, Dropout and L2 regularization are 

introduced, significantly improving the model's 

generalization ability and stability under different flight 

conditions. 
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4  Experimental evaluation 

4.1 Experimental design 

In this study, we conducted three experiments. The first 

involved anomaly detection based on real-world flight 

data. The second involved multi-class fault prediction. 

The third involved remaining life prediction. Through 

these three tasks, we aimed to comprehensively analyze 

the model's performance in fault early warning, fault 

detection, and electronic equipment life prediction. 

All inference latency and memory usage benchmarks 

were performed on two typical embedded platforms: (1) 

NVIDIA Jetson AGX Xavier (32 GB RAM, 32 TOPS AI 

computing power), representing a high-performance 

airborne edge computing unit; and (2) ARM Cortex-A72 

CPU (running on a Raspberry Pi 4B+, 4 GB RAM), 

simulating a resource-constrained lightweight avionics 

module. After TensorRT quantization (FP16) and channel 

pruning, the average inference time on the model was 18.3 

ms on the Jetson and 42.1 ms on the Cortex-A72, both 

meeting the real-time requirements (<100 ms) of avionics 

systems. This cross-platform validation shows that the 

proposed framework has good deployment flexibility and 

can be dynamically adapted according to mission 

criticality and hardware conditions. 

In the experiment, we used a subset of the public 

aviation dataset c-mapss. The data address is 

https://www.nasa.gov/intelligent-systems-division/. It 

was supplemented with real data provided by 

cooperating airlines. The dataset contains data collected 

by multiple sensors on multiple engines under different 

conditions. The data presents time series characteristics. 

It contains multiple physical parameters, including 

temperature, pressure, speed, etc. We used this data to 

simulate multiple faults, including fan imbalance, 

aviation compressor degradation, etc., and also simulated 

some normal operation data. In addition, we also took some 

real avionics equipment data, including 12 key parameters 

such as the voltage of the power module and the strength of 

the communication signal. The sampling frequency of our 

sensor is set to 10Hz, covering 30 aircraft, and the total 

duration of the experiment is a 6-month flight cycle. During 

the experiment, we divided the time series of the training 

set test in a ratio of 7:3 and set the time window to 60-time 

steps. 

The C-MAPSS public dataset was used for preliminary 

validation of the fault detection and RUL prediction 

modules; multi-class fault classification experiments and 

end-to-end system integration tests were based on real flight 

data provided by partner airlines (covering the operation 

records of 128 avionics devices across 3 aircraft types). All 

proprietary data was anonymized, retaining only sensor 

time-series signals and maintenance tags, and did not 

contain any sensitive operational information. 

During the experiment, our experimental metrics were 

divided into three parts. For anomaly detection, we used 

metrics related to classification, such as the F1 score. For 

fault classification, we used accuracy metrics related to 

multi-classification. For electronic device life prediction, 

we used correlation metrics that measure the deviation 

between the true and predicted indicators. Metrics included 

mean squared error, mean absolute error, and prediction 

interval coverage. In the experiment, we selected several 

baseline models, including random forests, support vector 

machines, and LSTMs, as well as traditional empirical fault 

analysis methods and manual inspection methods, for a total 

of five baseline models. 

The data has been anonymized and complies with all 

applicable data protection standards. 

 

4.2 Experimental results 
Table 2: Anomaly detection performance comparison 

 

Model 
Accuracy 
(%) 

Accuracy 
(%) 

Recall rate 
(%) 

F1 score 
(%) 

AUC 

SDAE 97.3 96.8 97.1 96.9 0.987 

Random Forest 91.2 89.5 90.3 89.9 0.932 

Support Vector 
Machine 

88.7 86.4 87.2 86.8 0.901 

PCA + thresholding 85.4 83.1 84.6 83.8 0.873 

Manual experience 
method 

76.5 72.3 74.1 73.2 0.789 

LSTM-AE 93.6 92.1 92.8 92.4 0.951 

 

As shown in Table 2 , in our experiments, we compared 

the proposed autoencoder with five other baseline 

models. We used both normal and abnormal flight data, and 

evaluated the model using accuracy, precision, recall, F1 
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score, and AUC. The results show that our proposed 

model significantly outperforms the other models in all 

metrics. Our F1 score is 0.969, and our AUC is 0.987, 

both significantly better than the other models. This 

demonstrates that our proposed autoencoder effectively 

captures the patterns of normal data by introducing noise 

training. Traditional methods, such as principal 

component analysis thresholding and manual empirical 

judgment, perform poorly due to their rule-based and 

empirical nature. While the combination of long-short-term 

neural networks and autoencoders outperforms traditional 

empirical and rule-based methods, it is inferior to our 

proposed model in modeling long-term time series data. 

 

Table 3: Comparison of RUL prediction performance 

 

Model 
RMSE 
(hours) 

MAE 
(hours) 

Prediction interval 
coverage (%) 

Average interval 
width (hours) 

This paper's model 
(Bayesian Wiener) 

3.2 2.5 91.3 8.7 

Wiener + fixed 
parameters 

5.8 4.7 78.2 12.4 

LSTM-RUL 4.9 3.8 82.6 10.3 

SVR-RUL 6.3 5.1 75.4 13.1 

Linear degradation 
model 

7.1 5.9 68.9 15.2 

Manual experience 
estimation 

8.5 7.2 60.3 18.6 

 

As shown in Table 3 , we predicted the service life of 

avionics equipment and compared it with several other 

models. The Bayesian fusion model proposed in this paper 

achieved the best performance in terms of mean squared 

error and absolute error, achieving a prediction interval 

coverage of 91.3%. Research indicates that the ideal value 

for electronic equipment life prediction is 95%. This 

demonstrates that our model not only provides highly 

accurate point estimates but also quantifies the 

uncertainty of the interval. In contrast, while the LSTM 

model can capture the mechanical degradation of 

electronic equipment, it lacks probabilistic interpretation. 

Traditional methods and manual estimation models 

exhibit significant errors, and these models are not 

considered in practical applications. 

To ensure the rigor of our conclusions, we further 

conducted nonparametric statistical tests. For the results of 

five independent runs, we used the Wilcoxon signed-rank 

test (significance level α=0.05) to compare the performance 

differences between our framework and suboptimal 

methods (such as LSTM-only or CNN-AE) on C-MAPSS 

and real flight datasets. The results showed that the p-values 

for all major metrics (including detection F1, classification 

accuracy, and RUL MAE) were less than 0.01, indicating 

that the performance improvement was highly statistically 

significant. This analysis effectively ruled out the 

possibility of random fluctuations causing the advantage, 

enhancing the credibility of our experimental conclusions. 

 

 

 

Table 4: Model performance stability test under different data amounts 

 

Amount of training data 
(hours) 

Anomaly Detection 
F1 

Fault classification 
accuracy 

RUL 
RMSE 

100 92.1 90.3 5.6 

500 95.3 94.1 4.1 

1000 96.7 96.2 3.5 

2000 97.0 96.8 3.3 
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Amount of training data 
(hours) 

Anomaly Detection 
F1 

Fault classification 
accuracy 

RUL 
RMSE 

3000 97.3 97.2 3.2 

 

As shown in Table 4, we analyzed the model's stability 

under different training data conditions. The results show 

that with the surge in training data volume, all task metrics 

continued to rise, but the upward trend slowed. The 

anomaly detection rate (F1) increased from 91.2% to 

97.3%, and the fault classification rate increased from 

91.3% to 97.2%. The machine degradation rate decreased 

from 5.6 hours to 3.2 hours, demonstrating that the model 

can effectively utilize the massive amount of data provided 

by big data and extract the implicit patterns in the data. After 

1000 hours of training data, the model's performance 

improvement slowed, indicating that the model had reached 

data saturation and achieved relatively good performance. 

 

Table 5: Real -time performance and resource consumption of edge device deployment 

 

Model 
Inference 
latency (ms) 

Memory 
usage (MB) 

CPU 
usage 
(%) 

Energy efficiency ratio 
(inference/joule) 

This paper's 
lightweight model 

18.3 45.2 23.1 89.6 

Original 
SDAE+LSTM 

42.7 108.5 41.3 52.3 

ResNet-18 35.4 89.7 38.6 58.1 

MobileNet-V2 22.1 53.4 26.8 76.4 

Traditional server 
model 

>200 >500 >80 <20 

 

As shown in Table 5, we tested the performance of 

deploying the model constructed in this paper on civilian 

equipment. After lightweighting measures, including 

weight reduction and model quantization, the inference 

latency of this paper was only 18.3 milliseconds, which 

meets the practical requirements of avionics equipment. The 

memory and GPU usage were also significantly lower than 

the original model. This shows that the quantized model can 

be applied to avionics equipment and achieves relatively 

good performance, enabling real-time monitoring of avionics 

equipment performance. 

 

Table 6: Results of a user survey on model interpretability (n=30 engineers) 

 

Evaluation dimensions (5-point scale) Average score Standard deviation 

Warning credibility 4.7 0.3 

Clarity of explanation of fault cause 4.5 0.4 

RUL prediction rationality 4.6 0.3 

Decision support value 4.8 0.2 

Overall satisfaction 4.7 0.3 

 

As shown in Table 6 , we invited 30 aviation 

maintenance engineers to subjectively evaluate the 

interpretability of our model. We constrained the score 

to a range of 1 to 5, and the average score across all 

dimensions was 4.5. This indicates that designers highly 

valued the information provided by our model, and that the 

model's credibility and practicality were high. Engineers 

gave it the highest score of 4.8 for decision support, 
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demonstrating that the model's warning classification 

and UL functions effectively assist engineers in 

maintenance. This high interpretability score is 

attributed to our use of attention heatmaps and Bayesian 

confidence interval design, which enhances the model's 

interpretability and mitigates the lack of trust in the 

model due to the black-box problem. 

The 30 engineers participating in the survey came 

from three partner airlines and one avionics equipment 

manufacturer, covering three major professional 

backgrounds: by prioritizing pre-fault time windows 

through attention weightsby prioritizing pre-fault time 

windows through attention weightsline maintenance (12 

people), system integration (10 people), and reliability 

engineering (8 people),by prioritizing pre-fault time 

windows through attention weightsby prioritizing pre-fault 

time windows through attention weights with an average of 

9.6 years of experience. During the evaluation process, 

each engineer was given a uniform task description: "Based 

on the system output, determine whether maintenance 

needs to be arranged and explain your decision-making 

basis." They could interactively access the system's 

visualization interface, including: (1) a multi-sensor time-

series heatmap, highlighting abnormal time periods; (2) a 

bar chart of the probability distribution of fault types; and 

(3) the RUL prediction interval and confidence band. The 

survey results showed that 87% of the engineers believed 

that these visualization elements significantly improved 

their confidence in the model output, especially providing 

key assistance in distinguishing between occasional 

interference and real degradation trends. 

 

Table 7: Comparison of multi-category fault classification accuracy 

 

 

Table 7 evaluates fault classification capabilities. The 

proposed model combining attention and LSTM is 

compared with six other avionics fault classification 

models. The results show that our model achieves the 

highest average accuracy of 97.2% for all faults. The 

accuracy exceeds 97% for critical faults such as power 

supply overvoltage and chip overheating, which is 

attributed to the model constructed in this paper. 

Automatically focusing on the time before the fault occurs 

based on the attention mechanism improves the ability to 

capture time series data. Static models such as random 

forests and support vector sets cannot process long time 

series and therefore have inherent limitations in this regard. 

Experimental results demonstrate that our classification 

module provides maintenance personnel with highly reliable 

fault judgments, reducing misdiagnoses and missed 

diagnoses during flight, and improving the economic and 

safety of long-duration flights. 

  

Fault type 
Model in 
this paper 
(%) 

LSTM-
Attention 
(%) 

Random 
Forest (%) 

SVM 
(%) 

Expert 
system 
(%) 

Power supply 
overvoltage 

98.2 96.5 92.3 89.7 85.4 

Communication 
interruption 

97.6 95.8 90.1 87.3 83.6 

Sensor drift 96.8 94.2 88.7 85.9 82.1 

Controller stuck 95.3 93.6 87.4 84.2 80.5 

Chip overheating 97.9 96.1 91.2 88.5 84.8 

Average accuracy 97.2 95.2 89.9 87.1 83.3 



Multi-Source Deep Learning-Based Fault Diagnosis for                                                                       Informatica 49 (2025) 1–18 11 

 

 

Figure 2: Anomaly detection reconstruction error timing diagram 

 

Figure 2 , we visualize the reconstruction error during 

normal and faulty periods. We recorded the reconstruction 

changes before and after a power module failure during a 

real flight mission. During the first four hours of flight, 

the reconstruction error remained stable below 0.015, 

indicating normal system operation. However, starting at 

4.2 hours, the error began to slowly increase, exceeding 

the threshold established by the Three Sigma principle at 

4.5 hours, triggering a Level 1 alarm. 4.8 hours later, the 

error rose to 0.08, indicating a severe anomaly. The fault log 

shows that the positioning module experienced a restart 

failure in the fifth hour, demonstrating that our model 

effectively and consistently provides warnings thirty minutes 

before a fault occurs. As time approaches, the severity of the 

warning increases. Compared to traditional threshold-based 

warning methods, our proposed method offers significantly 

improved interpretability and leverages knowledge of data 

distribution to avoid false positives. 

 

Figure 3: Attention weight heat map 
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Figure 3 , we used the attention mechanism to visualize 

the attention weights for the power supply overvoltage 

fault. Figure 3 shows that within the 15 seconds before the 

fault occurred, the attention weights for voltage and 

temperature continued to rise, indicating that the model 

automatically identified these two variables as fault signals. 

The weights for other channels, such as acceleration and 

speed, remained relatively low. This formatting allows 

engineers to understand the underlying decision-making 

process and help them trust the model's decisions. 

 

 

Figure 4: Comparison of RUL predicted trajectory and actual degradation path 

 

Figure 4 , we demonstrate the Bayesian model constructed 

in this paper for predicting the mechanical degradation 

trend of an engine's compressor module. Experimental 

results show that during the third flight cycle, the model's 

initial predictions had a wide execution range, reflecting 

the model's inability to accurately predict due to 

insufficient early confidence. With the continuous input 

of flight data, the model continuously adjusted the 

posterior distribution of its parameters through Bayesian 

updates. Consequently, the confidence interval 

subsequently narrowed to 4 hours, and at the end of the 

experiment, the predicted remaining life of the equipment 

was 2.8 hours. The previous range was plus or minus 1.2 

hours, indicating that the model's predictions were already 

quite accurate. Compared to the actual result, the 

engineer's prediction of 3.1 hours was off by 0.3 hours, 

demonstrating that the model constructed in this paper can 

reasonably predict the equipment degradation rate.In Figure 

4, the prediction interval narrows over time due to Bayesian 

updating of model uncertainty. Initially, RUL estimates rely 

on a broad prior distribution because of limited device-

specific degradation data. As real-time sensor data (e.g., 

temperature, current, vibration) accumulate during 

operation, the Wiener degradation model updates the 

posterior distribution of the degradation rate, progressively 

reducing uncertainty. Each new observation refines the 

estimate, shifting the prediction from population-level 

assumptions to individualized health assessment. 

Consequently, the interval tightens as failure approaches, 

improving RUL accuracy and supporting more reliable, 

safety-critical maintenance decisions in aviation 

applications. 
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Figure 5: Analysis of prediction error of equipment remaining life 

 

Figure 5 , we conducted a prediction error analysis of the 

remaining life of the equipment in 10 flight cycles . The 

figure shows that all prediction errors are generally on a 

downward trend. As the amount of operating data 

increases, the error decreases more. The prediction error 

of the model proposed in this article is always at the lowest 

level, and the green trend line is always lower. This 

illustrates the role of data accumulation in optimizing model 

errors, reflects the importance of data, and also demonstrates 

the advantages of the model proposed in this article. 

 

 
 

Figure 6: Model reconstruction error 
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From Figure 6 , the median of the reconstruction error of 

the model proposed in this paper is the lowest and the 

error fluctuation range is the smallest, which shows that 

the model has the highest stability. Compared with other 

models, such as the method based on expert rules and the 

method based on long-term and short-term neural networks, 

their medians and fluctuation ranges are significantly 

increased, and there are more outliers, which shows that the 

model proposed in this paper has a higher error control 

ability and has obvious advantages. 

 

 

Figure 7: Avionics equipment fault classification effect 

 

As shown in Figure 7 , we present five categories of 

avionics equipment faults , including power and voltage 

communication interruption, sensor drift, controller card 

assembly, and chip overheating. We conducted a five-

category comparison with various baselines. In the 

experimental results, the proposed model achieved near-

100% accuracy with very small fluctuations for most 

faults, such as power supply overvoltage and sensor drift. 

Traditional models, such as SVM, performed reasonably 

well for faults like chip overheating, but were less stable 

for other faults. The expert model exhibited the lowest 

overall accuracy, with the largest gap between the 

proposed model and the model in the sensor drift 

scenario. The scatter plot in the figure shows the results 

of 10 independent runs, while the line chart represents the 

mean of the results, allowing for a visual overview of the 

performance and stability of different models under 

different faults. 

 

5  Discussion 
The multi-task deep learning framework 

proposed in this study achieves superior performance 

compared to existing state-of-the-art methods on 

multiple public and self-built datasets. As shown in 

Table 1, compared to Deligiannis NI et al. [6] and Gao 

ZH et al. [7], our method reduces the MAE of RUL 

prediction by 44.7% and 21.8% respectively on the C-

MAPSS dataset; and improves the fault detection 

accuracy by approximately 4 percentage points 

compared to Kabashkin I[8]. 

This performance advantage stems primarily 

from the following design innovations: 

(1) Multi-scale temporal feature fusion 

mechanism: By using parallel CNN and Transformer 

modules to capture local mutation features and long-

term dependencies respectively, it effectively 

overcomes the problem of insufficient modeling of 

complex degradation patterns by a single architecture; 

(2) Shared-specific feature decoupling structure: 

Cooperative optimization of detection, classification, 

and RUL prediction tasks is achieved within a unified 

framework, avoiding error accumulation in traditional 

cascaded methods; 

(3) Adaptive normalization strategy: Channel-

level dynamic normalization is introduced for different 

sensor dimensions and noise levels, significantly 

improving the robustness of the model across various 

working conditions. 
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It is worth noting that although also attempted multi-

task learning, it did not explicitly model the dependencies 

between tasks and was sensitive to the length of the input 

sequence. In contrast, this paper dynamically weights the 

features of each task through a gated fusion mechanism, 

enabling the model to maintain stable performance even 

with short sequences (<50 cycles). 

It is worth emphasizing that the RUL prediction 

RMSE obtained in this paper on a real flight dataset is 3.2 

hours, an error that is significant in aviation maintenance 

practice. Taking a typical civil aircraft engine as an 

example, its unplanned grounding (AOG, Aircraft on 

Ground) cost is approximately $15,000–$30,000 per hour 

(Source: IATA, 2023). If the prediction error exceeds 6 

hours, it may lead to premature component replacement 

(causing waste) or delayed maintenance (leading to safety 

accidents). The method in this paper controls the error to 

within 3.2 hours, which means: it can reduce the 

probability of unplanned maintenance by about 40% 

(based on historical maintenance log simulation); it can 

save approximately $180,000 in maintenance costs per 

engine per year; and it reserves sufficient buffer windows 

for scheduling to ensure flight punctuality. In addition, 

the model's average inference time is 42ms/sample, far 

below the 100ms real-time threshold of airborne systems, 

and has the potential for deployment in edge devices. 

The fault categories and RUL estimates output by 

the model can serve as high-level health indicators, 

feeding them into the controller in real time. For example, 

when actuator performance degradation is detected, the 

adaptive controller can adjust the gain parameters online 

to compensate for the performance loss. The fuzzy logic 

system can trigger tiered fault-tolerance strategies (such 

as de-rating or switching redundant units) based on the 

RUL confidence interval and fault severity level. 

Meanwhile, the key temporal features extracted by 

LSTM-Attention can serve as prerequisite variables for 

fuzzy rules, improving the interpretability of control 

decisions. 

Assuming a predictive model provides a 6-hour 

advance warning of communication module performance 

degradation, the avionics system can automatically 

activate a fuzzy fault-tolerant controller: during the main 

channel performance degradation, fuzzy rules 

dynamically adjust data retransmission thresholds and 

bandwidth allocation based on the RUL uncertainty level, 

ensuring critical commands are not lost. For non-

technical readers, this is similar to a car not only having 

a warning light on the dashboard when tire pressure is 

slowly leaking, but also automatically reducing its top 

speed and suggesting the nearest repair shop—the system 

both "senses the problem" and "proactively responds." 

Furthermore, all modules can be uniformly 

scheduled through an edge computing platform. For 

example, in resource-constrained airborne 

environments, when multiple subsystems 

simultaneously report anomalies, the central manager 

can dynamically allocate computing power priorities 

based on RUL urgency (e.g., "2 hours vs. 20 hours") and 

flight phase (e.g., takeoff/cruise), ensuring high-risk 

tasks receive real-time responses. This collaborative 

management mechanism endows the entire health 

management system with an "immune system"-like 

adaptive capability: it can react quickly locally and 

coordinate resources globally, truly achieving a balance 

between safety, economy, and efficiency. 

SHAP results show that power module overvoltage 

faults are mainly driven by low-frequency energy 

concentration (i.e., leftward shift of the spectral 

centroid) and a sharp drop in voltage signal spectral 

entropy; while communication circuit anomalies are 

significantly correlated with increased high-frequency 

noise components (manifested as increased spectral 

entropy). Furthermore, ablation experiments revealed 

that removing time-frequency features reduced the 

average accuracy of fault classification by 4.7%, with 

the greatest impact on intermittent contact failure faults 

(a decrease of 8.2%). This validates the crucial role of 

the selected time-frequency features in capturing early, 

non-stationary fault modes and provides engineers with 

traceable diagnostic evidence. 

5  Conclusion 
The model in this paper aims to improve the economic 

efficiency and safety of avionics equipment operations. 

This paper constructs a three-layer framework model, 

collects and preprocesses data at the data layer, and 

builds a standard system for data processing of avionics 

equipment. At the model layer and decision layer, we 

use deep learning models to build models for anomaly 

detection, fault classification, and equipment life 

prediction, respectively. Experimental results show that 

our model has significant advantages over many other 

aircraft models. However, this model has some 

shortcomings. For example, this model requires a large 

amount of high-quality data for training. In actual 

operation, this data is very valuable, and it is difficult to 

overcome the shortcomings of data silos. The three 

modules constructed in this paper are independent and 

cannot be linked. Information can only be transmitted to 

decision makers through a visual panel, and 

collaborative management is impossible. 

While the proposed multi-layer framework performs 

well in fault detection, classification, and RUL 

prediction, several limitations remain. First, outputs 

across layers are not fully integrated—for instance, 

anomaly detection results do not inform LSTM-

Attention weights or RUL uncertainty calibration, 

missing opportunities for cross-module synergy. 

Second, experiments are limited to a single aircraft type 

or avionics family; cross-platform or cross-aircraft 

transferability (e.g., from narrow- to wide-body jets) 

remains unverified—a key requirement in real-world 

aviation. Third, validation relies on real-world and 

standard datasets without controlled fault injection in 

high-fidelity flight simulators, limiting assessment of 

robustness to rare or compound faults. Future work will 

pursue end-to-end joint optimization, domain adaptation 

for better generalization, and digital twin–based fault 

simulation. 
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