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To address the challenge of real-time fault detection in avionics equipment, we proposed a
comprehensive framework consisting of data , model, and decision layers. Data is collected in real time
from multiple 10T sensors and processed based on a standardized framework. The data model layer
utilizes three models for electronic equipment anomaly detection, multi-category fault identification, and
remaining equipment life prediction . The model layer contains three core modules: (1) an unsupervised
anomaly detection model based on stacked denoising autoencoders (SDAES) to identify early latent faults
using reconstruction errors; (2) a long short-term memory network (LSTM-Attention) with an attention
mechanism for accurate classification of multi-class faults; and (3) a Wiener degradation process model
based on Bayesian updates to achieve probabilistic prediction of RUL. Experiments were conducted
based on the NASA C-MAPSS dataset and real flight data provided by partner airlines. The results
showed that the framework achieved an F1 score of 0.969 in the anomaly detection task, an average
accuracy of 97.2% for multi-class fault classification, and a RUL prediction interval coverage of 91.3%.
After quantization and compression, the model inference latency was only 18.3 milliseconds, meeting the
stringent requirements of airborne equipment for lightweight and real-time performance. This method
not only improves the economy and safety of aviation maintenance but also provides an interpretable,
low-latency end-to-end solution for intelligent health management.

Povzetek: Predlagan je vecplastni pristop za sprotno zaznavanje in napovedovanje okvar avionike iz
podatkov senzorjev, ki z nizko zakasnitvijo izboljSa varnost in ucinkovitost vzdrzevanja.

in real time has become a new trend in the development of

1 Introduction

The development of the aviation industry is not only
related to the well-being of the people, but also to national
security. Therefore, a large number of studies have
focused on improving the stability and efficiency of
avionics equipment [1] . Nowadays, the integration and
integration of avionics equipment are constantly
improving, which has promoted the transformation from
traditional flight mode to intelligent flight mode.
However, this has led to the problem of complexity, with
a significant increase in the frequency of failures, the
diversity of failures, and the difficulty of diagnosis. In the
traditional maintenance mode, avionics equipment is
often inspected and repaired regularly. However, in the
highly integrated avionics equipment system, this method
has become ineffective today because any failure of any
electronic equipment may cause a serious aviation crisis
and cause huge economic losses. Therefore, in this
context, how to monitor and diagnose avionics equipment

the avionics field [2] .

During flight, avionics equipment must maintain high-
intensity operation and avoid failures. However, during these
intense and prolonged flights, avionics equipment is prone to
hidden failures and performance degradation, which
traditional maintenance methods are unable to identify.
Therefore, to advance modern avionics systems with high
safety and availability, we must build a more intelligent, real -
time, and accurate fault analysis and detection system.

In this research context, intelligent maintenance and
inspection based on data-driven methods using a large
amount of collected avionics equipment information has
become a new research trend [3] . Traditional fault analysis
often relies on expert experience and fault detection analysis,
or through aviation failure mode and effect analysis. These
methods have obvious shortcomings compared to data-
driven methods. They often require human participation and
cannot achieve real-time monitoring. Data-driven methods
can obtain certain patterns from the operating data of massive
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equipment, thereby performing real-time monitoring
during the operation of the equipment. Relying on sensor
monitoring data obtained from the database, historical
maintenance records, and records of the aviation health
management system to infer possible fault causes and
provide timely feedback to engineers can greatly reduce
the workload of engineers and improve the stability of
aviation operations [4] .

On the other hand, with the rapid development of 5G
communication, edge computing and digital twin
technology, the operation of avionics systems is evolving
in the direction of implementation. However, this trend
runs counter to the lag of fault detection. With the real-
time nature of avionics systems, fault detection always
relies on manual analysis and judgment, which is a lag and
cannot support the real-time operation of avionics
systems. Regarding the analysis of avionics equipment
fault data, research at home and abroad has made certain
progress. For example, flight data recording systems have
been deployed and operated in most airlines. Such
systems can quickly read data from flight process
recorders and combine them with real-time data
transmitted by the status monitoring system to realize the
collection of key module data during aircraft operation [5]
. On the other hand, a large number of studies use big data
analysis technology to collect and manage avionics
equipment fault data. However, the existing research
system still has many deficiencies. The first is the data
island problem, because the data of different airlines are
isolated and exist in different departments and different
flight systems. Some studies often use traditional
suppression-based methods for analysis and judgment
based on large amounts of data. This approach does not
take advantage of the advantages brought by big data. On
the other hand, the generalization ability of this method is
also insufficient. It is difficult to switch and transfer
between different data sources [6] .

To address the challenges of the aforementioned
research, this paper, based on a machine learning
approach and a data-driven approach, constructs an
optimized framework for avionics equipment fault data
analysis and predictive maintenance. This framework
employs a three-layer architecture. The first layer is the
data layer, which collects and processes data from
numerous 10T sensors and avionics systems. The second
layer is the model layer. We incorporate deep learning
models to build a real-time analysis system and enhance
the model's efficiency through the use of edge devices.
The third layer is the decision layer. The model layer's
predictions are presented to users through visualization,
allowing them to independently decide whether to accept
the fault.

Despite the progress made by deep learning in
equipment health management, existing methods still
have significant shortcomings in multi-task collaborative
modeling, cross-domain generalization capabilities, and
real-time deployment feasibility. Therefore, this paper
proposes the following core research question:

"Can a unified multi-layer deep learning architecture
be constructed to achieve high-precision fault detection,
fault type classification, and remaining useful life (RUL)
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prediction while ensuring low latency, and maintain robust
performance on various avionics system datasets?"

To address this question, this paper designs a novel
multi-task temporal network and verifies its effectiveness
and practicality through systematic experiments on C-
MAPSS, XJTU-SY, and a self-built real flight dataset.

The model constructed in this paper can significantly
improve of avionics equipment, improving the timeliness of
fault detection. This shifts from a traditional experience-
based approach to a data-based one. From a safety
perspective, this method can effectively provide early
warning of avionics equipment failures, reducing the
incidence of in-flight failures. From an economic
perspective, it can shorten maintenance cycles.

2 Related works

2.1 Avionics equipment fault detection
technology

The evolution of avionics fault detection technology from
traditional experience-based to intelligent has gone through
a long period of time. In the early days, it mainly relied on
basic fault detectors and the experience of maintenance
personnel, and performed fault detection through manual
observation, signal detection, and replacement methods.
This method has the characteristics of low timeliness [7] .
Poor accuracy and high reliance on experience. Therefore,
with the rapid development of information technology in
China, this method has been eliminated. Currently, it mainly
relies on intelligent methods. Scholars have tried to build a
systematic detection method. For example, Kabashkin | et
al. [8] explored the construction of an expert system in their
research. To conduct systematic fault detection, thereby
avoiding the high cost and time waste brought by traditional
exhaustive and pseudo-exhaustive methods. Other studies
pointed out that avionics systems have highly integrated
circuits. The vector generation during testing is complex
and costly, so the construction of such an expert system
requires the construction of a strong expert system. Ali N,
Hussain M et al. [9] proposed automatic test equipment in
their research, which can be used for offline testing of
avionics. Magliano E et al. [10] pointed out in their research
that this type of offline electronic equipment can be
combined with standard test procedures to efficiently
complete the power-on self-test of electronic equipment,
and the signal excitation and response data collection
process provides a feasible method to a certain extent.
However, this type of intelligent algorithm often constructs
a correspondence between equipment failure and equipment
symptoms based on data, and cannot dynamically perceive
problems during the operation of the equipment. In recent
years, Zeng ZY et al. [11] proposed a full-process
monitoring system for electronic equipment, promoting the
transformation of avionics equipment from post-detection
to in-operation monitoring, and promoting the development
of early warning of avionics equipment failures. Das O et
al. [12] showed in their research that this full-process real-
time monitoring fault monitoring system has extremely high
sensitivity for analyzing equipment failures, sudden
equipment aging, and sudden accidents.
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2.2 Data-driven

At present, the data-driven approach to avionics fault
detection has become a new trend. This method avoids
relying on precise physical models and achieves real-time
prediction and early warning of faults by mining the
potential patterns and laws in historical data. In terms of
data collection, a large number of aircraft are now
equipped with a variety of sensors, which provides a basis
for the feasibility of research. Wu ZJ et al. [13] pointed
out in their study that more than 50% of aircraft have
achieved automatic collection of equipment status
information and maintenance information on the fuselage
through the Internet of Things and automatic
identification technology. In terms of data processing,
Ranasinghe K et al. [14] provided a method system for
aviation information data processing and a set of feature
extraction methods for aviation data. In the process of
analysis and processing, Hapka R et al. [15] proposed
using knowledge vector sets to improve the classification
of radar received faults. Compared with the traditional
experience-based method, it achieved a better accuracy.
BOULKROUNE A et al. [16] used the random forest
algorithm and then analyzed the simple feature
importance method to assist in finding the fault
experiment when a multivariate fault occurred in the
communication module. The results showed that this
feature  importance-based method achieved an
improvement in accuracy compared with the traditional
experience-based and rule-based method. f used a long-
term short-term neural network to analyze continuous
aviation failure data and identified potential failure points
through anomaly detection. These failure points were
confirmed to exist in practice, demonstrating the
effectiveness of time series data analysis in aviation data
processing. Although data processing-based methods are
highly feasible, they suffer from poor data interpretability
and difficulty in data collection.
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2.3 Predictive maintenance strategy

Currently, predictive maintenance strategy has become the
core method of sample inspection in modern aviation
systems, which can timely identify equipment maintenance
needs through equipment monitoring and prediction.

Raza A et al. [17] systematically explained in their
research that the basis of maintenance prediction
technology relies on a large number of sensor networks, big
data platforms and machine learning technologies. The
combination of big data and machine learning algorithms
can realize real-time analysis of data and provide early
warning before a failure occurs. In terms of models,
BOULKROUNE A et al. [18] used the Micro-Merck
distribution and degradation model to predict the life of
electronic components. However, this study was carried out
under strict assumptions and is difficult to implement in a
practical environment. Dong L et al. [19] used the Markov
process and Bayesian network to build a dynamic
maintenance prediction system. The maintenance strategy
is adjusted according to the real-time status of the
equipment. However, this model can only achieve
classification. Piumatti D et al. [20] used a comprehensive
prediction method to combine the fault prediction model
with the maintenance cost model and the aviation planning
model to build a multi-objective optimization strategy.
However, this goal focuses on achieving a comprehensive
optimal solution and cannot achieve the freedom of aviation
fault prediction. Gao C et al. [21] introduced digital twin
technology into aviation fault detection for the first time.
By building simulated equipment to simulate fault
scenarios, faults can be predicted to a certain extent.
However, this method also faces the problems of low
feasibility and weak interpretability.

Table 1 provides a systematic cross-sectional
comparison of existing representative research methods,
covering four key dimensions: datasets used, task scope,
performance metrics, and method limitations.

Table 1: Research summary table

Key performance
Dataset Task Scope indicators (accuracy/error, | limitation
etc.)
C-MAPSS RUL Prediction RMSE: 12.3 Only applicable to single failure mode; does
not consider multi-sensor heterogeneity.
PHM 2008 | Fault Detection + . Relies on manual feature engineering; has
e Accuracy: 92.5% . S
Challenge Classification weak generalization ability.
The model is highly complex; training time
NASA Turbofan RUL Prediction MAE: 8.7 cycles is long; and an online update mechanism is
not integrated.
Self-built o .
industrial bearing | Fault detection F1 score: 0.89 Sm_all Qataset size; lack of public benchmark
validation
dataset
C-MAPSS + | Multitasking RUL MAE: 9.1; Detection | Unhandled cross-domain scenarios;
XJTU-SY (Detection + RUL) | Acc: 94.2% sensitive to noise
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3 Research methods

The model constructed in this paper aims to achieve
dynamic perception of the operating status of avionics
equipment. By identifying anomalies early during a
failure and monitoring the remaining mission life of the
electronic equipment, this paper constructs a multi-
layered, multi-model fusion framework for intelligent
fault prediction and predictive maintenance. This
framework is based on a data-driven philosophy and
combines information processing technology with deep
neural network technology. This forms a complete
technical chain from raw data sensors to final, innovative
decision-making. The framework model constructed in
this paper aims to provide high-precision fault
identification capabilities, maximize the quantification of
uncertainty, and provide aviation maintenance personnel
with interpretable and reliable early warning signals.
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As shown in Figure 1, this paper constructs a three-
layer framework. The first layer is the data acquisition and
preprocessing layer, which primarily uses multi-sensor
sensing and performs data denoising and standardization.
Principal component analysis is also performed on the data
to achieve dimensionality reduction for high-dimensional
data. In the second layer, we use an intelligent diagnostic
model. This module, based on an unsupervised learning
anomaly detection module using autoencoders, is used to
identify early hidden faults. This module combines an
attention mechanism with long-short-term neural networks
to achieve accurate multi-category classification. The third
layer is the prediction and decision layer. We combine a
Bayesian degradation model with monitoring data to update
the parameter distribution, thereby achieving a probabilistic
prediction of service life. This model implements two
functions: fault identification and accurate classification,
and prediction of the service life of avionics equipment.

SDAE 5 Alert
—>» attention-LSTM —» Diagnosis
Bayesian RUI

—>
model

Figure 1: Model framework

3.1 Data collection and preprocessing

During flight, densely deployed loT sensors collect a
large amount of avionics data. This data contains a wealth
of information, including the current, voltage, and inertia
of power modules, the speed and acceleration of test units,
the signal strength of communication circuits, and the
temperature of chips. These data are characterized by
large data volumes, high dimensions, and severe noise
interference. Therefore, we first preprocessed and
extracted features from the data. We assume that the raw
sensor data isX € RNM | we use n to represent the
sampling point of time, m to represent the number of
sensor channels, and j to represent the original signal of
the sensor channelx;(t) , for these data, we first use
median filtering to remove the noise in the pulse data.
Specifically, as shown in Formula 1 [22]

2,(t) = median(x;(t — k), ..., X;(1), ., %;(t + 1)) (1)

In formula 1, k is used to represent the half-width of
the sliding window. This parameter is used to control the
degree of smoothing. ;(t) It represents the filtered signal
value after processing. We set the signal value of the jth
sensor at time t to bexj(t) , the time window size is 2k + 1,
&;(t) represents the filtered data. In addition, for the case of
temporary loss of sensor data or data disconnection, we use
linear interpolation to fill the gap. We standardize the
processed data. Specifically, as shown in Formula 2 [23]

7 =200, =i % ®), o=

Gj

1 o
EZE‘:l(X;(t) —1)%(2)

In Formula 2 , we usez;(t) To represent the th channel

at time t after normalization. y; ,o; They represent the mean

and standard deviation in the time series dimension
respectively. After standardization, the data is delimited to
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a certain range. The difference in dimension is
eliminated and Nrepresents the total amount of data[24].

After data preprocessing, we perform feature
extraction. The features we construct mainly include
mean, variance, skewness, kurtosis and zero-crossing
domain. These features can describe the stability and
dynamic changes of the signal. In terms of frequency, we
use the Fourier transform feature, as shown in Formula 3
[25]

STET;(t,f) = [z ()w(t — t)e 2™ dr (3)

In formula 3 we usez(t) To represent the time
domain signal of a channel.w(-)To express. The time
window function is used to localize the time range to
limit the analysis interval. Usee 2™ To represent the
exponential basis function used to realize the frequency
decomposition,STFT;(t, f) The representative frequency
output represents the frequency f time-frequency
diagram in the time range t. In addition, we also
considered  multiple  frequency-related  features,
including the center of gravity of the spectrum to
represent the frequency of concentrated energy. The drift
of this feature indicates the wear of the mechanical
device, and the frequency bandwidth is used to reflect the
discrete degree of the frequency distribution. The
spectrum sound is used to represent the degree of
uncertainty of the signal, and the quotient is used to
quantify the uncertainty. The increase of this indicator is
often related to the occurrence of abnormalities. After
feature extraction, we performed principal component
analysis, which reduced the dimension of all extracted
video feature vectors. The principal components with a
cumulative contribution of more than 95% are retained,
and the other principal components are removed. The
final result isf, € R%d « D$ , These results are that low-
dimensional representation of high-dimensional features
reduces the complexity of the data.

3.2 Unsupervised anomaly detection based
on stacked denoising autoencoders

In this section, we aim to detect electronic equipment
failures. However, in real-world data, the vast majority
of the data space is normal, with only a very small
number of failures. These failures are numerous and
diverse, making it expensive to obtain labeled data.
Based on this, we developed an unsupervised training
method. Therefore, this section proposes a novel
approach that uses stacked denoising autoencoders and
combines them with unsupervised data for anomaly
detection. The core of this method is to train the model
using a large amount of positive sample data, allowing it
to learn the underlying behavioral patterns of these
positive samples. Once the model encounters negative
samples, it exhibits behavior that deviates from normal
patterns, indicating potential failures. This triggers an
early warning. This reconstruction error-based approach
can significantly alleviate the problems caused by
sample imbalance.
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The autoencoder used in this paper is composed of an
encoder that can compress high-dimensional data into a
low-bit latent space and a decoding part that decodes the
data line. In this model, the input feature vector can be
expressed asf, , in the encoding process, there are two
hidden layers. After the first hidden layer, we get formula 4

h® = g(WDf, + D) (4)

In formula 4, we haveWWb® Use to represent the
weight vector and bias vector of the model, and usec(:)To
improve the nonlinear expression ability of the model. Then
we performed the second layer encoding. As shown in
Formula 5 , W®h®, b@the parameters representing the
encoding of the second layer are[26].

h® = g(WAh® + b@) (5)

Through this structure, we can obtain a deep feature
representation

The encoding process includes two embeddings, the
core purpose of which is to extract the high-dimensional
features implicit in the data and obtain the feature
representation implicit in the data.

The decoding process is to use a multi-layer neural
network to convert the deep embedding representation into
a high-dimensional feature vector c(W@9z + b@D), Then
we perform the first-layer feature mapping and then use
o(WUDHM 4 b(d2)) the second-layer feature mapping .
After two layers of mapping, we get the final reconstruction
result.

The principle of the encoder-decoder structure is that if
the input data is normally distributed, the feature vector
output by the encoder and decoder process should be very
close to the original feature. f,represents the output feature,
and W@h® | p@represents the parameters and bias terms
respectively.

f, = c(W@h® + b)) (6)

In order to enhance the robustness of the model, we
introduce noise into the training data and superimpose white
noise on the original data, as shown in Formula 7.

e~N(0,8%D), f=f +e(7)

f,The features after mapping eare noise. The training
goal is to reconstruct the original clean data from the
contaminated data. This noise-based recovery training
allows the model to not only learn a simple identity factor
but also learn to ignore the noise components in the data and
focus on the implicit structure and patterns in the data. This
improves the model's robustness to noise and enhances its
ability to observe implicit patterns in normal data.

The goal of this part of the training is to minimize the
reconstruction error, which is Formula 8.

ae = 2 0 e = el + AT WO 2 +

W) (8)

In formula 8 , Z,zrepresents the loss function. The first
term we use is the mean square error Y, ||f, — f||> to
measure the difference between the original input and the
reconstructed input. We use regularization A(Y,; [[W®|12 +
21 W@ 12)to limit the complexity of the model and avoid
overfitting. At the same time, we use hyperparametersiA To
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quantify the balance between policy degree and similarity
degree , T represents the total number of samples.

3.3 Multi-category fault identification

In this section, we provide an anomaly detection method
that can determine whether avionics equipment has
deviated from its normal state. These methods not only
determine whether a fault has occurred, but also analyze
the specific type of fault. For example, common fault
causes include power module failure, overvoltage, and
communication circuit failure. In Section 3.2, we
implemented anomaly early warning triggering. In
Section 3.3, we implemented a high-precision fault
classification module to identify specific fault categories,
providing reliable reference for engineers. Therefore, in
this section, we designed and implemented a long-term
short-term neural network based on the attention
mechanism to accurately identify multiple fault
categories.

Fault identification relies on sequential networks. For
example, temperature anomalies often begin with a slow
increase, followed by a restart as voltage and temperature
rise and fluctuate. Long- and short-term neural networks
offer a natural advantage in analyzing this type of data.

Therefore, we use long short-term neural networks to
process long sequence data. However, this process has its
shortcomings.

Final hidden state output by the long short-term
neural networkhy It can be considered as the feature
representation of the entire time series, which is the sum
of information at all time steps. However, not all data
points in the entire time series are equally important. Data
at the critical point of failure should be given higher
weight. Therefore, we added an attention mechanism to
the long-term short-term neural network to explicitly
learn the weights of the model at different time steps. We
use the attention mechanism to calculate the attention
score of each hidden state, as shown in Formula 9 .

e; = v tanh(W,h; + b,) (9)

In Formula 9, W,, h,, b, represents the weight
matrix, attention matrix and bias term, vTtrepresents the
specific value, e, represents the attention score. After
obtaining the attention score, we normalize the score to
obtain the degree of attention of the model for different
time steps . Based on the context score provided by the
attention mechanism, we perform weighted summation on
all hidden states to obtain an implicit vector that focuses
on key information. Specifically, if itis 1 0

S =ZtT=1atht(10)

Formula 10 , we uses To visualize the degree of
attention paid by the model to the time series data , a,we
represent the attention score. After obtaining the feature
output with implicit attention weight, we classify this
vector and obtain the final classification result, as shown
in Formula 1 1.

p = softmax(Wys + by) (11)

In formula 1 1 we usep = [p4, P2, ---» Px] TO e€Xpress
the classification probability of breeding failure, this is a
multi-classification problem. Therefore, we use the

Q. Xue et al.

cross-quotient function as the loss function during training.

3.4 Equipment service life prediction

In order to predict the service life of equipment, we
constructed a fusion method based on Bayesian updating
and Wiener process. The use of avionics equipment has the
characteristics of performance regression and randomness,
so this paper uses formula 1 2 to model the performance
degradation of avionics equipment.

Y(t) = 8 + Bt + oxB(t) (12)

In formula 1 2 we usef To represent the performance
degradation rate, to simulate B(t) The range of Brownian
motion. Thus, the parameters change with time |,
0 represents the parameter, t represents the time, Y(t)
Represents the performance of the electronic device when
the threshold is first reached D This means that the
electronic device has failed, and the system will generate an
early warning. Considering the uncertainty in the use of the
device, we introduced the Bayesian framework tof3 As a
random variable, in a certain model, we use the real-time
monitoring data to continuously update its posterior
distribution. Finally, we use the updated parameters to
calculate the expected performance value of
RUL E[RUL;|D;] Point estimates are presented as
hypothesis tests, and 90% confidence intervals are drawn to
obtain an appropriate range.

In this study, the prior distribution of the Wiener
degradation model was not arbitrarily set, but rather
statistically derived from performance degradation data
accumulated from historical flight missions and ground
tests of similar avionics equipment, thus possessing a clear
engineering experience foundation. Specifically, we first
analyzed the degradation trends of a large number of similar
devices, and based on this, set an initial degradation rate
range as prior knowledge. During actual flight, after each
complete monitoring cycle (typically 30 minutes to 2 hours,
depending on the mission phase), the system performs a
Bayesian update on the model using newly acquired sensor
data. This update mechanism is computationally efficient,
with a single update taking less than 1 millisecond on the
embedded platform, fully meeting the real-time and
resource constraints of the airborne system.

The autoencoder consists of two layers of encoding and
two layers of decoding networks. The number of neurons in
the hidden layers is progressively reduced and then restored
to effectively extract key features and suppress noise. The
activation function used is LeakyRelLU, and the Adam
optimizer is used for training, with a total of 200 iterations.
The batch size is set to 64, and weight decay is incorporated
to prevent overfitting. The LSTM-attention model consists
of two stacked unidirectional LSTM units, avoiding the use
of a bidirectional structure to ensure that the inference
process strictly depends on current and past information,
meeting the needs of real-time applications. After the
attention layer, Dropout and L2 regularization are
introduced,  significantly  improving the  model's
generalization ability and stability under different flight
conditions.
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4 Experimental evaluation

4.1 Experimental design

In this study, we conducted three experiments. The first
involved anomaly detection based on real-world flight
data. The second involved multi-class fault prediction.
The third involved remaining life prediction. Through
these three tasks, we aimed to comprehensively analyze
the model's performance in fault early warning, fault
detection, and electronic equipment life prediction.

All inference latency and memory usage benchmarks
were performed on two typical embedded platforms: (1)
NVIDIA Jetson AGX Xavier (32 GB RAM, 32 TOPS Al
computing power), representing a high-performance
airborne edge computing unit; and (2) ARM Cortex-A72
CPU (running on a Raspberry Pi 4B+, 4 GB RAM),
simulating a resource-constrained lightweight avionics
module. After TensorRT quantization (FP16) and channel
pruning, the average inference time on the model was 18.3
ms on the Jetson and 42.1 ms on the Cortex-A72, both
meeting the real-time requirements (<100 ms) of avionics
systems. This cross-platform validation shows that the
proposed framework has good deployment flexibility and
can be dynamically adapted according to mission
criticality and hardware conditions.

In the experiment, we used a subset of the public
aviation dataset c-mapss. The data address is
https://www.nasa.gov/intelligent-systems-division/. It
was supplemented with real data provided by
cooperating airlines. The dataset contains data collected
by multiple sensors on multiple engines under different
conditions. The data presents time series characteristics.
It contains multiple physical parameters, including
temperature, pressure, speed, etc. We used this data to
simulate multiple faults, including fan imbalance,

4.2 Experimental results
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aviation compressor degradation, etc., and also simulated
some normal operation data. In addition, we also took some
real avionics equipment data, including 12 key parameters
such as the voltage of the power module and the strength of
the communication signal. The sampling frequency of our
sensor is set to 10Hz, covering 30 aircraft, and the total
duration of the experiment is a 6-month flight cycle. During
the experiment, we divided the time series of the training
set test in a ratio of 7:3 and set the time window to 60-time
steps.

The C-MAPSS public dataset was used for preliminary
validation of the fault detection and RUL prediction
modules; multi-class fault classification experiments and
end-to-end system integration tests were based on real flight
data provided by partner airlines (covering the operation
records of 128 avionics devices across 3 aircraft types). All
proprietary data was anonymized, retaining only sensor
time-series signals and maintenance tags, and did not
contain any sensitive operational information.

During the experiment, our experimental metrics were
divided into three parts. For anomaly detection, we used
metrics related to classification, such as the F1 score. For
fault classification, we used accuracy metrics related to
multi-classification. For electronic device life prediction,
we used correlation metrics that measure the deviation
between the true and predicted indicators. Metrics included
mean squared error, mean absolute error, and prediction
interval coverage. In the experiment, we selected several
baseline models, including random forests, support vector
machines, and LSTMs, as well as traditional empirical fault
analysis methods and manual inspection methods, for a total
of five baseline models.

The data has been anonymized and complies with all
applicable data protection standards.

Table 2: Anomaly detection performance comparison

Accuracy Accuracy Recall rate F1 score

SDAE 97.3 96.8 97.1 96.9 0.987
Random Forest 91.2 89.5 90.3 89.9 0.932
Support Vector

Machine 88.7 86.4 87.2 86.8 0.901
PCA + thresholding 85.4 83.1 84.6 83.8 0.873
Manual experience

method 76.5 72.3 74.1 73.2 0.789
LSTM-AE 93.6 92.1 92.8 92.4 0.951

As shown in Table 2, in our experiments, we compared
the proposed autoencoder with five other baseline

models. We used both normal and abnormal flight data, and
evaluated the model using accuracy, precision, recall, F1
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score, and AUC. The results show that our proposed
model significantly outperforms the other models in all
metrics. Our F1 score is 0.969, and our AUC is 0.987,
both significantly better than the other models. This
demonstrates that our proposed autoencoder effectively
captures the patterns of normal data by introducing noise
training. Traditional methods, such as principal

Q. Xue et al.

component analysis thresholding and manual empirical
judgment, perform poorly due to their rule-based and
empirical nature. While the combination of long-short-term
neural networks and autoencoders outperforms traditional
empirical and rule-based methods, it is inferior to our
proposed model in modeling long-term time series data.

Table 3: Comparison of RUL prediction performance

Model RMSE MAE Prediction interval Average interval
(hours) (hours) coverage (%o) width (hours)

This paper's model

(Bayesian Wiener) 3.2 2.5 91.3 8.7

Wiener + fixed

parameters 5.8 4.7 78.2 12.4

LSTM-RUL 4.9 3.8 82.6 10.3

SVR-RUL 6.3 5.1 75.4 13.1

Linear degradation

model 7.1 5.9 68.9 15.2

Manual experience

estimation 8.5 7.2 60.3 18.6

As shown in Table 3 , we predicted the service life of
avionics equipment and compared it with several other
models. The Bayesian fusion model proposed in this paper
achieved the best performance in terms of mean squared
error and absolute error, achieving a prediction interval
coverage of 91.3%. Research indicates that the ideal value
for electronic equipment life prediction is 95%. This
demonstrates that our model not only provides highly
accurate point estimates but also quantifies the
uncertainty of the interval. In contrast, while the LSTM
model can capture the mechanical degradation of
electronic equipment, it lacks probabilistic interpretation.
Traditional methods and manual estimation models
exhibit significant errors, and these models are not
considered in practical applications.

To ensure the rigor of our conclusions, we further
conducted nonparametric statistical tests. For the results of
five independent runs, we used the Wilcoxon signed-rank
test (significance level a=0.05) to compare the performance
differences between our framework and suboptimal
methods (such as LSTM-only or CNN-AE) on C-MAPSS
and real flight datasets. The results showed that the p-values
for all major metrics (including detection F1, classification
accuracy, and RUL MAE) were less than 0.01, indicating
that the performance improvement was highly statistically
significant. This analysis effectively ruled out the
possibility of random fluctuations causing the advantage,
enhancing the credibility of our experimental conclusions.

Table 4: Model performance stability test under different data amounts

Amount of training data Anomaly Detection Fault classification RUL
(hours) F1 accuracy RMSE
100 92.1 90.3 5.6
500 95.3 94.1 4.1
1000 96.7 96.2 3.5
2000 97.0 96.8 3.3
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Amount of training data Anomaly Detection Fault classification RUL
(hours) F1 accuracy RMSE
3000 97.3 97.2 3.2

As shown in Table 4, we analyzed the model's stability
under different training data conditions. The results show
that with the surge in training data volume, all task metrics
continued to rise, but the upward trend slowed. The
anomaly detection rate (F1) increased from 91.2% to
97.3%, and the fault classification rate increased from

Table 5: Real -time performance and

91.3% to 97.2%. The machine degradation rate decreased
from 5.6 hours to 3.2 hours, demonstrating that the model
can effectively utilize the massive amount of data provided
by big data and extract the implicit patterns in the data. After
1000 hours of training data, the model's performance
improvement slowed, indicating that the model had reached
data saturation and achieved relatively good performance.

resource consumption of edge device deployment

Model Inference Memory SSZUE Energy efficiency ratio
latency (ms) usage (MB) (%)g (inference/joule)

This paper's

lightweight model 18.3 45.2 23.1 89.6

Original

SDAE+LSTM 42.7 108.5 41.3 52.3

ResNet-18 35.4 89.7 38.6 58.1

MobileNet-V2 22.1 53.4 26.8 76.4

Traditional server

model >200 >500 >80 <20

As shown in Table 5, we tested the performance of
deploying the model constructed in this paper on civilian
equipment. After lightweighting measures, including
weight reduction and model quantization, the inference
latency of this paper was only 18.3 milliseconds, which

meets the practical requirements of avionics equipment. The
memory and GPU usage were also significantly lower than
the original model. This shows that the quantized model can
be applied to avionics equipment and achieves relatively
good performance, enabling real-time monitoring of avionics
equipment performance.

Table 6: Results of a user survey on model interpretability (n=30 engineers)

Evaluation dimensions (5-point scale) Average score Standard deviation
Warning credibility 4.7 0.3
Clarity of explanation of fault cause 45 0.4
RUL prediction rationality 4.6 0.3
Decision support value 4.8 0.2
Overall satisfaction 4.7 0.3

As shown in Table 6 , we invited 30 aviation
maintenance engineers to subjectively evaluate the
interpretability of our model. We constrained the score
to a range of 1 to 5, and the average score across all

dimensions was 4.5. This indicates that designers highly
valued the information provided by our model, and that the
model's credibility and practicality were high. Engineers
gave it the highest score of 4.8 for decision support,
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demonstrating that the model's warning classification
and UL functions effectively assist engineers in
maintenance. This high interpretability score is
attributed to our use of attention heatmaps and Bayesian
confidence interval design, which enhances the model's
interpretability and mitigates the lack of trust in the
model due to the black-box problem.

The 30 engineers participating in the survey came
from three partner airlines and one avionics equipment
manufacturer, covering three major professional
backgrounds: by prioritizing pre-fault time windows
through attention weightsby prioritizing pre-fault time
windows through attention weightsline maintenance (12
people), system integration (10 people), and reliability
engineering (8 people),by prioritizing pre-fault time

Q. Xue et

windows through attention weightsby prioritizing pre-fault
time windows through attention weights with an average of
9.6 years of experience. During the evaluation process,
each engineer was given a uniform task description: "Based
on the system output, determine whether maintenance
needs to be arranged and explain your decision-making
basis." They could interactively access the system's
visualization interface, including: (1) a multi-sensor time-
series heatmap, highlighting abnormal time periods; (2) a
bar chart of the probability distribution of fault types; and
(3) the RUL prediction interval and confidence band. The
survey results showed that 87% of the engineers believed
that these visualization elements significantly improved
their confidence in the model output, especially providing
key assistance in distinguishing between occasional
interference and real degradation trends.

Table 7: Comparison of multi-category fault classification accuracy

Model in LSTM- Expert
Fault type this paper Attention ?gpedsgrg, %6) (s(,\/g ')VI system
(%) (%) (%)
Power supply
overvoltage 98.2 96.5 92.3 89.7 85.4
Communication
interruption 97.6 95.8 90.1 87.3 83.6
Sensor drift 96.8 94.2 88.7 85.9 82.1
Controller stuck 95.3 93.6 87.4 84.2 80.5
Chip overheating 97.9 96.1 91.2 88.5 84.8
Average accuracy 97.2 95.2 89.9 87.1 83.3

Table 7 evaluates fault classification capabilities. The
proposed model combining attention and LSTM is
compared with six other avionics fault classification
models. The results show that our model achieves the
highest average accuracy of 97.2% for all faults. The
accuracy exceeds 97% for critical faults such as power
supply overvoltage and chip overheating, which is
attributed to the model constructed in this paper.
Automatically focusing on the time before the fault occurs

based on the attention mechanism improves the ability to
capture time series data. Static models such as random
forests and support vector sets cannot process long time
series and therefore have inherent limitations in this regard.
Experimental results demonstrate that our classification
module provides maintenance personnel with highly reliable
fault judgments, reducing misdiagnoses and missed
diagnoses during flight, and improving the economic and
safety of long-duration flights.
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Anomaly Detection with Three Failures
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Figure 2: Anomaly detection reconstruction error timing diagram

Figure 2 , we visualize the reconstruction error during  €rror rose to 0.08, indicating a severe anomaly. The fault log
normal and faulty periods. We recorded the reconstruction ~ Shows that the positioning module experienced a restart
Changes before and after a power module failure during a failure in the fifth hOUr, demonstrating that our model
real flight mission. During the first four hours of flight, ~ effectively and consistently provides warnings thirty minutes
the reconstruction error remained stable below 0.015,  before afault occurs. As time approaches, the severity of the
indicating normal system operation. However, starting at warning increases. Compared to traditional threshold-based
4.2 hours, the error began to slowly increase, exceeding ~ Warning methods, our proposed method offers significantly
the threshold established by the Three Sigma principle at  improved interpretability and leverages knowledge of data
4.5 hours, triggering a Level 1 alarm. 4.8 hours later, the  distribution to avoid false positives.
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Figure 3: Attention weight heat map



12 Informatica 49 (2025) 1-18
al.

Figure 3, we used the attention mechanism to visualize
the attention weights for the power supply overvoltage
fault. Figure 3 shows that within the 15 seconds before the
fault occurred, the attention weights for voltage and
temperature continued to rise, indicating that the model

Q. Xue et

automatically identified these two variables as fault signals.
The weights for other channels, such as acceleration and
speed, remained relatively low. This formatting allows
engineers to understand the underlying decision-making
process and help them trust the model's decisions.

RUL Prediction Trajectory vs True Degradation Path
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Figure 4: Comparison of RUL predicted trajectory and actual degradation path

Figure 4 , we demonstrate the Bayesian model constructed
in this paper for predicting the mechanical degradation
trend of an engine's compressor module. Experimental
results show that during the third flight cycle, the model's
initial predictions had a wide execution range, reflecting
the model's inability to accurately predict due to
insufficient early confidence. With the continuous input
of flight data, the model continuously adjusted the
posterior distribution of its parameters through Bayesian
updates. Consequently, the confidence interval
subsequently narrowed to 4 hours, and at the end of the
experiment, the predicted remaining life of the equipment
was 2.8 hours. The previous range was plus or minus 1.2
hours, indicating that the model's predictions were already
quite accurate. Compared to the actual result, the
engineer's prediction of 3.1 hours was off by 0.3 hours,

demonstrating that the model constructed in this paper can
reasonably predict the equipment degradation rate.In Figure
4, the prediction interval narrows over time due to Bayesian
updating of model uncertainty. Initially, RUL estimates rely
on a broad prior distribution because of limited device-
specific degradation data. As real-time sensor data (e.g.,
temperature, current, vibration) accumulate during
operation, the Wiener degradation model updates the
posterior distribution of the degradation rate, progressively
reducing uncertainty. Each new observation refines the
estimate, shifting the prediction from population-level
assumptions  to individualized health  assessment.
Consequently, the interval tightens as failure approaches,
improving RUL accuracy and supporting more reliable,
safety-critical ~ maintenance  decisions in  aviation
applications.
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RUL Prediction Error Trend Across Flight Cycles
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Figure 5: Analysis of prediction error of equipment remaining life

Figure 5, we conducted a prediction error analysis of the ~ Of the model proposed in this article is always at the lowest
remaining life of the equipment in 10 flight cycles . The  level, and the green trend line is always lower. This
figure shows that all prediction errors are genera“y on a illustrates the role of data accumulation in OptlmIZIng model
downward trend. As the amount of operating data  errors, reflects the importance of data, and also demonstrates

increases, the error decreases more. The prediction error  the advantages of the model proposed in this article.
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From Figure 6, the median of the reconstruction error of
the model proposed in this paper is the lowest and the
error fluctuation range is the smallest, which shows that
the model has the highest stability. Compared with other
models, such as the method based on expert rules and the

Q. Xue et

method based on long-term and short-term neural networks,
their medians and fluctuation ranges are significantly
increased, and there are more outliers, which shows that the
model proposed in this paper has a higher error control
ability and has obvious advantages.

Classification Accuracy Comparison Across Avionics Fault Types
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Figure 7: Avionics equipment fault classification effect

As shown in Figure 7 , we present five categories of
avionics equipment faults , including power and voltage
communication interruption, sensor drift, controller card
assembly, and chip overheating. We conducted a five-
category comparison with various baselines. In the
experimental results, the proposed model achieved near-
100% accuracy with very small fluctuations for most
faults, such as power supply overvoltage and sensor drift.
Traditional models, such as SVM, performed reasonably
well for faults like chip overheating, but were less stable
for other faults. The expert model exhibited the lowest
overall accuracy, with the largest gap between the
proposed model and the model in the sensor drift
scenario. The scatter plot in the figure shows the results
of 10 independent runs, while the line chart represents the
mean of the results, allowing for a visual overview of the
performance and stability of different models under
different faults.

5 Discussion

The multi-task deep learning framework
proposed in this study achieves superior performance
compared to existing state-of-the-art methods on
multiple public and self-built datasets. As shown in
Table 1, compared to Deligiannis NI et al. [6] and Gao

ZH et al. [7], our method reduces the MAE of RUL
prediction by 44.7% and 21.8% respectively on the C-
MAPSS dataset; and improves the fault detection
accuracy by approximately 4 percentage points
compared to Kabashkin I1[8].

This performance advantage stems primarily
from the following design innovations:

(1) Multi-scale temporal feature fusion
mechanism: By using parallel CNN and Transformer
modules to capture local mutation features and long-
term dependencies respectively, it effectively
overcomes the problem of insufficient modeling of
complex degradation patterns by a single architecture;

(2) Shared-specific feature decoupling structure:
Cooperative optimization of detection, classification,
and RUL prediction tasks is achieved within a unified
framework, avoiding error accumulation in traditional
cascaded methods;

(3) Adaptive normalization strategy: Channel-
level dynamic normalization is introduced for different
sensor dimensions and noise levels, significantly
improving the robustness of the model across various
working conditions.
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It is worth noting that although also attempted multi-
task learning, it did not explicitly model the dependencies
between tasks and was sensitive to the length of the input
sequence. In contrast, this paper dynamically weights the
features of each task through a gated fusion mechanism,
enabling the model to maintain stable performance even
with short sequences (<50 cycles).

It is worth emphasizing that the RUL prediction
RMSE obtained in this paper on a real flight dataset is 3.2
hours, an error that is significant in aviation maintenance
practice. Taking a typical civil aircraft engine as an
example, its unplanned grounding (AOG, Aircraft on
Ground) cost is approximately $15,000-$30,000 per hour
(Source: 1ATA, 2023). If the prediction error exceeds 6
hours, it may lead to premature component replacement
(causing waste) or delayed maintenance (leading to safety
accidents). The method in this paper controls the error to
within 3.2 hours, which means: it can reduce the
probability of unplanned maintenance by about 40%
(based on historical maintenance log simulation); it can
save approximately $180,000 in maintenance costs per
engine per year; and it reserves sufficient buffer windows
for scheduling to ensure flight punctuality. In addition,
the model's average inference time is 42ms/sample, far
below the 100ms real-time threshold of airborne systems,
and has the potential for deployment in edge devices.

The fault categories and RUL estimates output by
the model can serve as high-level health indicators,
feeding them into the controller in real time. For example,
when actuator performance degradation is detected, the
adaptive controller can adjust the gain parameters online
to compensate for the performance loss. The fuzzy logic
system can trigger tiered fault-tolerance strategies (such
as de-rating or switching redundant units) based on the
RUL confidence interval and fault severity level.
Meanwhile, the key temporal features extracted by
LSTM-Attention can serve as prerequisite variables for
fuzzy rules, improving the interpretability of control
decisions.

Assuming a predictive model provides a 6-hour
advance warning of communication module performance
degradation, the avionics system can automatically
activate a fuzzy fault-tolerant controller: during the main
channel  performance degradation, fuzzy rules
dynamically adjust data retransmission thresholds and
bandwidth allocation based on the RUL uncertainty level,
ensuring critical commands are not lost. For non-
technical readers, this is similar to a car not only having
a warning light on the dashboard when tire pressure is
slowly leaking, but also automatically reducing its top
speed and suggesting the nearest repair shop—the system
both "senses the problem™ and "proactively responds.”

Furthermore, all modules can be uniformly
scheduled through an edge computing platform. For
example, in resource-constrained airborne
environments, when multiple subsystems
simultaneously report anomalies, the central manager
can dynamically allocate computing power priorities
based on RUL urgency (e.g., "2 hours vs. 20 hours™) and
flight phase (e.g., takeoff/cruise), ensuring high-risk
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tasks receive real-time responses. This collaborative
management mechanism endows the entire health
management system with an "immune system"-like
adaptive capability: it can react quickly locally and
coordinate resources globally, truly achieving a balance
between safety, economy, and efficiency.

SHAP results show that power module overvoltage
faults are mainly driven by low-frequency energy
concentration (i.e., leftward shift of the spectral
centroid) and a sharp drop in voltage signal spectral
entropy; while communication circuit anomalies are
significantly correlated with increased high-frequency
noise components (manifested as increased spectral
entropy). Furthermore, ablation experiments revealed
that removing time-frequency features reduced the
average accuracy of fault classification by 4.7%, with
the greatest impact on intermittent contact failure faults
(a decrease of 8.2%). This validates the crucial role of
the selected time-frequency features in capturing early,
non-stationary fault modes and provides engineers with
traceable diagnostic evidence.

5 Conclusion

The model in this paper aims to improve the economic
efficiency and safety of avionics equipment operations.
This paper constructs a three-layer framework model,
collects and preprocesses data at the data layer, and
builds a standard system for data processing of avionics
equipment. At the model layer and decision layer, we
use deep learning models to build models for anomaly
detection, fault classification, and equipment life
prediction, respectively. Experimental results show that
our model has significant advantages over many other
aircraft models. However, this model has some
shortcomings. For example, this model requires a large
amount of high-quality data for training. In actual
operation, this data is very valuable, and it is difficult to
overcome the shortcomings of data silos. The three
modules constructed in this paper are independent and
cannot be linked. Information can only be transmitted to
decision makers through a visual panel, and
collaborative management is impossible.

While the proposed multi-layer framework performs
well in fault detection, classification, and RUL
prediction, several limitations remain. First, outputs
across layers are not fully integrated—for instance,
anomaly detection results do not inform LSTM-
Attention weights or RUL uncertainty calibration,
missing opportunities for cross-module synergy.
Second, experiments are limited to a single aircraft type
or avionics family; cross-platform or cross-aircraft
transferability (e.g., from narrow- to wide-body jets)
remains unverified—a key requirement in real-world
aviation. Third, validation relies on real-world and
standard datasets without controlled fault injection in
high-fidelity flight simulators, limiting assessment of
robustness to rare or compound faults. Future work will
pursue end-to-end joint optimization, domain adaptation
for better generalization, and digital twin—based fault
simulation.
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