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Contemporary network systems suffer stealthy, persistent cyber-attacks such as low-rate distributed denial-
of-service (DDoS) attacks and slow brute force logins which can commonly elude traditional intrusion de-
tection systems (IDS). This paper demonstrates the Hybrid Anomaly–Rule–Pattern Detection Framework
for Streaming-Based Persistent Intrusion Detection to improve the system resilience against persistent
threats. The model incorporates three cooperating modules: Anomaly Detection Module, which adopts
unsupervised outlier methodologies (Isolation Forest, LODA and HBOS) for statistical deviation detec-
tion; Rule-Based Module that encapsulates Snort-3.0 style signatures together with behavioral heuristics
of known attack classes; and finally the Pattern Recognition Module which employs hierarchical cluster-
ing with cosine similarity to link recurring temporal behaviors across sliding windows. Weighed Ensem-
bles of multi-source alerts are fused to high-confidence Meta-Alerts in real-time. Experiments on a set
of benchmarks CICIDS2017 and UNSW-NB15 show performance improvements over baseline SOAAPR,
which yields Precision = 91.3%, Recall = 94.2%, F1-score = 0.93, False Positive Rate = 3.7%, Detection
Latency = 1.21 s and Persistent Attack Detection Rate=88.4%. The statistic analysis results show that
the hybrid approach composed of statistical, rule-based and temporal pattern analyses implemented with
modular streaming architecture has a very higher accuracy and flexibility in detecting stealthy or emerging
cyber threats than in traditional real-time networking environment.

Povzetek: Članek predstavi hibridni pretočni IDS, ki združi nenadzorovano detekcijo anomalij, pravila in
časovno vzorčno prepoznavo v utežene odločitve za zanesljivejše odkrivanje prikritih napadov v realnem
času.

1 Introduction

The ever-increasing complexity and sophistication of cy-
ber threats have clearly surpassed the detection capacity of
conventional security controls[1], [2], [3]. Among these
threats, long-term and slow-moving attacks—e.g., low-rate
DDoS campaigns or brute-force login attack—present a
serious threat for traditional IDS[4], [5], [6]. These are
typically created to be indistinguishable from benign traf-
fic behavior (e.g., the first type) or to distribute an attack
across wide time windows in order to bypass threshold-
based and/or signature-based IDSs[7], [8], [9].
Anomaly-based and signature-based systems are com-

monmethods for IDSs nowadays[10], [11], [12]. Anomaly-
based systems can detect new and unknown threats bymon-
itoring statistical deviations from normal traffic, but suf-

fer from significant false positive rates or the inability to
capture sustained or repeated malicious behavior[13], [14].
However, systems that use signatures are only able to de-
tect known attack vectors, thus making them defenseless
against zero-day or changes threats. These restrictions
highlight the necessity for a more resilient and responsive
way to detect attacks in dynamic networks[15], [16], [17].
To improve the hybrid intrusion detection system, adap-

tive and robust control theory that has been successfully
handled dynamic characteristic and uncertainty can be
incorporated into further research work[18], [19], [20].
Methods like practically fixed-time synchronization of
fractional-order chaotic systems via adaptive fuzzy control
and projective lag-synchronization of uncertain chaotic sys-
tems with input nonlinearities using output-feedback con-
troller can trigger adaptive threshold tuning and feedback-
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based response strategies against the dynamic cyberattack 
patterns[21], [22], [23]. Similarly, the strong neural adap-
tive control of uncertain non-linear multivariable systems 
provides a concept for self learning adaptation where IDS 
could adapt its detection parameters according in time 
scales. Furthermore, adaptive backstepping control tech-
niques for SISO nonlinear systems and SLC arm with flex-
ible joint robot manipulators along with nonlinear optimal 
control schemes for induction motor of a gas compressor 
system are meaningful analogies for stability and conver-
gence improvement in adaptive detection procedures[24]. 
Implementing such adaptive control can help the system 
to automatically adapt decision thresholds and ensemble 
weights which could lead not only to robustness, scalability 
but also long-term performance with respect to constantly 
evolving and adversarial attack behaviors[25].
The hybrid detection architectures that fuse multiple de-

tection mechanisms have been studied in recent research 
to alleviate the weaknesses of each method. Nevertheless, 
only a limited number of existing approaches explicitly 
consider the detection of long-term attack patterns using the 
temporal character and historical context[26], [27]. More-
over, these schemes do not support real-time processing and 
on-line expansion of features, and are hence not applicable 
to high-speed or even distributed environments[28], [29].
In order to delineate the scope and aims of this present 

research, the following research questions (RQs) and hy-
potheses (Hs) are developed: RQ1: How do development 
strategies differ in respect of ESD practices? H1: Develop-
ment strategies affect ESD practices differently.

– RQ1: To what extent does the combination of
anomaly detection, rule-based analysis, and temporal
pattern recognition enhance the capability of detecting
stealthy and ongoing cyberattacks in comparison with
current IDS frameworks for streaming data?

H1: Clustering temporal pattern recognition with
anomaly and rule-based components improves detec-
tion performance at the cost of increasing the ra-
tio of persistent attacks discovered for baseline only
anomaly systems like SOAAPR.

– RQ2: Is the designed modular hybrid architecture ca-
pable to deliver real-time performance with lower la-
tency and false-positive rates in high-throughput net-
work systems?

H2: The modularized and parallellized design of the
proposed framework reduces detection latency and
false alarms while achieving high throughput under
streaming settings.

– RQ3: How does multi-source alert fusion impact sys-
tem robustness and interpretability?

H3: Again, meta-alert fusion of the weighted ensem-
blebased method enhances robustness and also gives
interpretable alerts to fuel effective real-time decision-
making.

This paper introduces a hybrid intrusion detection sys-
tem that combines three complementary modules: anomaly
detection via unsupervised outlier methods, a rule-based
detector for known signatures, and a pattern recognition
model that captures repeated behavior structures over slid-
ing time windows. Through applying short-term anomalies
with long-term behavioral trends, this system increases the
detection accuracy for persistent attacks and decreases the
false alarms. The architecture is tailored for real-time pro-
cessing in streaming SDA, and allows modular installation
with containerized modules & message queues.
To validate the performance of our framework, we per-

form comparative experiments with two publicly available
benchmark datasets, CICIDS2017 and UNSW-NB15[30],
[31], [32]. The results show that the system yields consid-
erable effectiveness gains in detecting malware, reducing
false positives identifying persistent threats over a state-of-
the-art baseline(SOAAPR). Our contribution can be overall
listed as:

– This paper introduces a hybrid intrusion detection ar-
chitecture that integrates anomaly scoring, rule match-
ing, and pattern recognition for comprehensive threat
coverage.

– This paper designs a Pattern Recognition Module
capable of detecting repeated or slow-paced attacks
through temporal fingerprinting and clustering.

– This paper implements a real-time alert fusion mech-
anism that aggregates signals from multiple detection
modules into coherent meta-alerts.

– This paper demonstrates through empirical evaluation
that the proposed framework outperforms existing sys-
tems, especially in detecting persistent and stealthy cy-
ber attacks.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work in hybrid intrusion detection
and persistent threat detection. Section 3 outlines the pro-
posed system architecture and its key modules. Section 4
presents the experimental setup and datasets. Section 5 re-
ports and analyzes the results. Finally, Section 6 concludes
the paper and outlines directions for future work.

2 Related work
Intrusion Detection Systems (IDS) have seen significant
advances over the past decade, and subsequently, hybrid
modern detection schemes are increasingly gaining popu-
larity as they can make use of a range of real-time detec-
tion methods[33], [34], [35], [36], [37]. Standard anomaly-
based approaches like Isolation Forest and One-Class SVM
are demonstrated to be effective in detecting rare and novel
threats at all [38], [39]. However, they have a high false
positive rate and low long-term attack correlation sensitiv-
ity thus have been hybridized with both rule-based and tem-
poral analysis.
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Hybrid frameworks have emerged to address these chal-
lenges. For example, Akshay et al. [40] proposed Im-
muneNet, a lightweight deep learning-based hybrid IDS
for healthcare systems to solve the problem of outdated
datasets and high false positives in traditional AI mod-
els. With feature engineering and hyper-parameter tuning,
this achieves an accuracy of 99.2% on the CIC Bell DNS
2021 dataset to outperform and improve upon existing ap-
proaches in detecting modern cyber-attacks. Khonde et al.
[41] propose BC-HyIDS, a blockchain-backed hybrid IDS
for securely circulating attack signatures within distributed
nodes. By involving cryptographic blocks and anomaly-
based detection, the quality of accuracy, detection rate have
been improved, and the false alerts have been minimized.
Built using Hyperledger Fabric/Sawtooth, BC-HyIDS is
evidence for better security and efficiency in signature ex-
change and detection. Nair et al. [42] present HCRNN-
IDS, a hybrid deep learning based IDS for IoT networks.
It can precisely realize early detection of all 20 network at-
tacks in real time by the NF-QU-NIDS dataset. The empir-
ical results have demonstrated that 98.44% accuracy can be
achieved, and the performance is better than existing mod-
els as well as handling high-dimensional data in the context
of IoT network security issues. Singh et al. [43] contribute
the edge-based Hybrid Intrusion Detection framework for
MECS (EHIDF). Combining C4.5, and Meta-AdaboostM1
classifiers, it can make efficient detection for known and
unknown attacks in real-time. With 90.25% accuracy and
1.1% FAR, it is superior to previous models and incorpo-
rates a game-theoretic security treatment. Guezzaz et al.
[44] present a hybrid IDS for edge-based IIoT environments
by combining PCA to reduce the feature size with an ac-
curate intrusion classification of K-NN. It is tested on the
NSL-KDD and Bot-IoT datasets to achieve an accuracy of
more than 98% with low false alarm rates, providing a ro-
bust ML-based solution for real-time IIoT security. Heig et
al. [45] address the problem of identifying new attack types
in a streaming environment and use an outlier detection ap-
proach for this purpose. Although efficient in detecting the
abrupt changes, it performs poorly in slow-rate and persis-
tent attacks. And there comes our approach, that based on
a combination of pattern recognition and rule-based parts,
to have higher detection accuracy in the long run as well.

Compared to existing approaches, our framework
uniquely integrates statistical anomaly detection, rule-
based heuristics, and pattern recognition into a scalable ar-
chitecture capable of operating in real-time network con-
ditions. Its ability to identify recurring malicious behav-
iors, while maintaining low latency and high through-
put, contributes to a novel solution to the evolving field
of streaming intrusion detection. Moreover, our hybrid
design enhances accuracy through rule-based verification
and anomaly scoring, which collectively reduce false pos-
itives. The proposed modular architecture further sup-
ports parallelism and scalability in real-time environments,
outperforming SOAAPR in terms of both detection la-
tency (1.21s vs. 1.88s) and persistent attack detection

rate (88.4% vs. 59.2%). In addition, by utilizing diverse
and modern datasets—including UNSW-NB15 and Bell
DNS2021—our framework ensures better generalizability
to current threat landscapes. These improvements illustrate
the advantages of combining multiple detection paradigms
and adaptive alert aggregation for securing dynamic, high-
throughput networks.
As seen in Table 1, the most recent hybrid intrusion de-

tection systems have shown significantly more successful
at enhancing accuracy, however still there is limitation par-
ticularly, over long duration or stealthy attacks. The vast
majority of these tools are based on static anomaly detection
or on signature-based autoregre-sive rules with no time-
dependent modeling. However, the hybrid detection mod-
els are merely time-independent correlation seeking meth-
ods between anomaly and rule queries and between 0/1 pat-
tern mining model and alert data without considering alert
multi-sources producing pattern. The hybrid anomaly–
rule–pattern detection framework introduces temporal cor-
relation, as well as multiple source alerts fusion mechanism
to make persistent cyber threat detection in streaming more
robust and adaptive.

3 Proposed framework
The architectural overview of the proposed Hybrid Intru-
sion Detection Framework is shown in Figure 1, combin-
ing anomaly detection, rule-based analysis, and tempo-
ral pattern recognition for a more precise identification of
both rare and persistent declining cyber threats. Inbound
network messages are pre-processed and transformed into
well-structured flow-based feature vectors. Then, three in-
dependent modules simultaneously assess these features:
(i) the Anomaly Detection Module employs unsupervised
outlier detection methods to detect statistical rare behavior;
(ii) the Rule-Based Detection Module matches predefined
rules and known attack patterns to identify frequent and
well-known threats; (iii) the Pattern Recognition Module
captures temporal and behavioral correlations across vari-
ous time-windows scales in order to detect long-term repet-
itive attacks behaviors as brute force attempts or slow-rate
DDoS. Alerts from all modules are fed into the Alert Ag-
gregation andDecision Logic layer, which correlates, fuses,
and prioritizes them to generate matching meta-alerts using
ensemble confidence scoring. The meta-alerts are then pro-
cessed for any external response systems, supporting real-
time reaction and improving situational awareness.

3.1 System assumptions
The hybrid intrusion detection system is based on net-
work environment, and the traffic flow out of different
sources is collected to be observed. Each detection mod-
ule (i.e., anomaly/rule-based/pattern recognition) is fed pre-
processed flow-level features (such as packet counts, byte
amount and duration) and they never have any effect on
traffic or perform active packet injection. The system is
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Table 1: Comparative summary of recent hybrid intrusion detection approaches
Study / Year Dataset(s) Detection Techniques Persistent Attack

Handling
Remarks / Key Features

Akshay et al.
(ImmuneNet,
2022) [40]

CIC Bell DNS
2021

Hybrid DL-based IDS
(CNN + LSTM + fea-
ture engineering)

Limited (short-
term only)

High accuracy for healthcare
data; not designed for stream-
ing or persistent threats.

Khonde et al. (BC-
HyIDS, 2022) [41]

UNSW-NB15 Blockchain-backed
hybrid (anomaly +
signature)

Partial (signature
replay)

Secure signature exchange via
Hyperledger; lacks temporal
correlation.

Nair et al.
(HCRNN-IDS,
2024) [42]

NF-QU-NIDS Hybrid CNN-RNN en-
semble

Detects evolving
patterns, no long-
term context

Strong DL performance but
high computational cost for
real-time use.

Singh et al.
(EHIDF, 2022) [43]

MEC-Simulated C4.5 + Meta-
AdaBoostM1 +
game-theoretic fusion

No explicit persis-
tence modeling

Edge-based IDS; effective for
known attacks, lacks temporal
analysis.

Heigl et al.
(SOAAPR,
2021) [45]

CICIDS2017 Streaming outlier anal-
ysis (unsupervised)

Weak (normalizes
over time)

Real-time detection but poor
sensitivity to slow or persis-
tent attacks.

Proposed Frame-
work

CICIDS2017,
UNSW-NB15

Hybrid (Anomaly De-
tection + Rule-Based
+ Temporal Pattern
Recognition)

Strong (persistent
and stealthy at-
tacks)

Modular streaming archi-
tecture; +29% improvement
in persistent detection and
-36.7% latency compared
with SOAAPR.

Figure 1: Overview of the proposed hybrid anomaly–rule–
pattern detection framework. Network traffic is processed
sequentially through four cooperative modules

built upon the regular security functions like authentication,
firewalls and encryption communication channels between
nodes. Attacks are identified at monitor layer and reported
to the higher security management tiers such as SIEM.

3.2 Adversary capabilities
The adversary is assumed to have knowledge of the network
topology and can generate malicious traffic that mimics le-
gitimate behavior to evade signature or threshold-based de-
tection. The attacker may:

– Conduct low-rate or slow-paced attacks (e.g., low-rate
DDoS, slow brute-force, or stealth scanning);

– Modify temporal patterns or inject benign traffic

bursts to obscure anomaly profiles;

– Attempt evasion through adversarial manipulation of
statistical features or mimicry of normal session be-
haviors;

– Exploit concept drift by gradually adapting the at-
tack frequency and packet characteristics to blend with
baseline traffic.

However, the adversary is not assumed to compromise the
IDS infrastructure itself or gain access to the internal pa-
rameters of the detection modules.

3.3 Defensive scope
The proposed framework is designed to detect both known
and unknown attack types that exhibit temporal or behav-
ioral irregularities. By combining statistical anomaly de-
tection, rule-based matching, and temporal clustering, the
system increases robustness against stealthy and evolving
threats. Persistent attacks are identified through long-term
correlation of repeated behaviors across sliding time win-
dows, even when single-window anomalies are weak or ab-
sent.

3.4 Limitations and future enhancements
Despite its robustness, several limitations remain:

– Adaptive Adversaries: The system may still be vul-
nerable to adversaries that dynamically modify statis-
tical features faster than the model’s update interval.
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– Concept Drift: Fixed-size sliding windows and static
thresholds can reduce sensitivity when network traffic
patterns shift significantly over time.

– Adversarial Noise: Deep-learning based evasion
(e.g., feature perturbation) is not explicitly modeled
and will be addressed in future adversarial training ex-
periments.

– Computational Overhead: While modularization
enhances scalability, simultaneous operation of mul-
tiple modules may increase resource usage under ex-
tremely high load.

Tomitigate these issues, future work will explore reinforce-
ment learning–based adaptive thresholding, meta-learning
for online model evolution, and adversarial resilience test-
ing under synthetic attack simulations.

3.5 Anomaly detection module
The Anomaly Detection (AD) Module could be consid-
ered as the key module of MHID, which is to identify un-
known/novel cyber threats by adopting unsupervised OD
methods for real-time process. In contrast to traditional
misuse-based IDS systems that rely on known attack signa-
tures, OD techniques are well adapted to environments for
which no previous trace is available and zero-day attacks
can be detected by the statistical deviations from baseline
behavior.
Persistent attacks like DDoS and brute force login at-

tempts introduce a key challenge: despite initially appear-
ing as an anomaly, their repeated or prolonged nature can
result in them being incorporated into themodel which is re-
lated to concept drift. To remedy this issue, this introduces
sliding temporal windows for the anomaly detection mod-
ule of our framework with adaptive scoring thresholds to
keep track of previously observed patterns that differ from
historical baselines.
For anomaly detection, the frame-work also provides

implementation for a collection of popular online OD al-
gorithms (e.g., iForest , LODA and HBOS), which have
been reported with competitive performance in unsuper-
vised streaming setting. Each OD method takes an input
of a stream of feature vectors xt ∈ Rd, where d is the di-
mensionality of extracted flow-level features (e.g., packet
count, byte volume, and connection duration).
Alarms are triggered whenever the OD score f(xt) sur-

passes a patient-by-patient (adaptive) threshold τt, learned
by robust statistical estimators (i.e., median absolute de-
viation left(MAD) or Exponential Weighted Moving Aver-
age(EWMA). For accuracy, comparing against the ground
truth among different OD models and enabling combining
alerts downstream we normalize the raw outlier score to a
probabilistic range [0, 1] through Gaussian Error Function:

f̃(xt) = max
{
0, erf

(
f(xt)−medt
madt ·

√
2

)}
(1)

where medt and madt respectively denote the median
and median absolute deviation of outlier scores in a slid-
ing window at time t, and erf(·) denotes the Gaussian Error
Function, providing a differentiable normalization that is
smooth andmonotonous to retain relative rankings between
anomaly scores.
Moreover, with respect to each alerted record, the OD

module annotates a top-k contributing features set Fs ⊆ F
according to their importance towards the anomaly score.
When monitoring nodes produce alerts, alert reasoners can
spot more precisely when to fire them (about why a failure
happened) and use these labels as input down the stack for
meta-alert correlation that would be better suited in an ideal
world, when those failures are actually experienced. Al-
though it is capable of detecting unknown threats, this com-
ponent by itself is not enough to effectively identify con-
tinuous or high-volume intrusion behaviors that resemble
normal action over the long run. In order to overcome this
drawback, the anomaly detection module is implemented
with a rule-based and pattern recognition module such that
the hybrid model has an overview look at both rare fre-
quency and frequent malicious activities.

3.6 Rule-based detection module
While such anomaly-based detection methods are flexible
in that they can detect unknown threats, they have a high
number of false positives and are generally ineffective at
distinguishing between the frequent or long-term attack pat-
terns. To assist the absorbed anomaly detection module,
this developed a Rule-Based DetectionModule, which uses
predefined signatures and behavioral heuristics to detect
common and recurring attack forms like Distributed Denial
of Service (DDoS), brute force attacks on login credentials,
or port scanning, as shown in Figure 2.
The rule-based module processes the identical input data

stream as the anomaly detector, but with a deterministic
matching by expert-specified patterns. Such rules are de-
scribed via the static feature combinations and dynamic be-
havior indicators (e.g., packet rate, connection frequency,
number of login failures) that indicate compromise in each
rule. The rule engine is flexible and has two formats: a
signature-matching format, which includes detection en-
gine rules similar to Snort or Suricata, and thresholding-
based logic defined using custom-written logic. Typical ex-
amples of supported rules include:

– Detection of multiple failed login attempts from a sin-
gle IP within a specified time window

– Identification of horizontal or vertical port scans by
analyzing access patterns across ports or hosts

– Monitoring of high packet-per-second (PPS) rates to
detect volumetric DDoS attacks

Formally, a rule Ri is defined as a predicate over a sub-
set of flow features F ⊂ {f1, f2, . . . , fd}, evaluated over
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Figure 2: Diagram for rule-based detection module

a sliding time window Wt. A detection event is triggered
when the logical condition ϕ(Ri,Wt) evaluates to true. For
example, a brute-force detection rule may be formulated as:

ϕ(Rbrute,Wt) =

(∑
x∈Wt

⊮fail(x) ≥ θ

)
∧ (srcIP(x) = srcIPconst)

(2)

where ⊮fail(x) is an indicator function for failed login at-
tempts, and θ is a user-defined threshold. An event-driven,
light rule engine with indexed rule sets is used for real-
time processing. Additionally, alerts from the module are
produced in a unified format that can be ingested by the
anomaly detection module to support downstream alert cor-
relation and decisionmaking. Every rule-triggered alert has
its metadata attached, such as the rule ID, confidence score,
triggered feature set, and timestamp.
The rules-based module is very effective at catching

long-term attacks that exhibit predictable, repeated behav-
ior, something that an anomaly-based system grows to ac-
cept as normal traffic due to concept drift. Merging de-
terministic rule matching and statistical anomaly detection,
this framework achieves a balanced coverage of detection
against rare and common threats.

3.7 Pattern recognition module
To overcome the limitations of anomaly and rule-based de-
tection mechanisms in identifying long-term or low-rate

cyberattacks, the Pattern Recognition Module introduces
a temporal-behavioral analysis layer that captures repeti-
tive or correlated attack patterns over time, as illustrated in
Fig. 3. This module is particularly effective against stealthy
threats such as low-rate DDoS, slow port scans, and brute-
force login attempts.

Figure 3: Diagram for pattern recognition module

Incoming network flows are aggregated into overlapping
sliding windowsWt (e.g., 30 s duration, 50% overlap). For
each source entity s, a behavioral fingerprint Ps,t is gener-
ated using a feature vector composed of:

– Packet and byte counts per flow;

– Number of unique destination IPs and ports;

– Flow duration, inter-arrival times, and entropy of des-
tination diversity;

– Frequency of identical event types (e.g., failed login
attempts).

The module employs hierarchical agglomerative clus-
tering (HAC) using theWard linkagemethodwith cosine
distance as a similarity metric. For every update cycle (ev-
ery 60 s), a new fingerprint Ps,t is compared to the centroid
µj of existing pattern clusters Cj according to:

sim(Ps,t, µj) =
Ps,t · µj

∥Ps,t∥∥µj∥
(3)

If sim(Ps,t, µj) ≥ δ (empirically set to 0.85) across at
least k = 3 consecutive windows, the behavior is classified
as persistent. Each cluster centroid stores metadata such as



A Hybrid Anomaly–Rule–Pattern Detection Framework… Informatica 49 (2025) 393–408    399

average flow rate, recurrence interval, and cumulative con-
fidence score. The module executes asynchronously in a
dedicated container to maintain low latency. By aggregat-
ing historical patterns and reinforcing detection through re-
currence evidence, this process significantly enhances sen-
sitivity to stealthy or slow-moving attacks that often evade
conventional threshold-based methods.
A time stamped signature Ps,t for each source node, s, in

the window is computed from these statistics. These finger-
prints are presented as time-series representations, and then
aggregated using measures (e.g. DTW or cosine similar-
ity) to group flows that have stay consistent with the same
behavior. Computational load is mitigated by maintaining
recent behavioral patterns in a lightweight fixed size buffer
and involving hierarchical clustering at some intervals to
re-organize pattern groupings. A representative centroid µj

is maintained for each pattern cluster Cj , whose metadata
such as average flow rate, attack confidence score and the
interval at which it repeats are stored. A new incoming fin-
gerprint Ps,t is compared against stored centroids to com-
pute its pattern similarity score:

sim(Ps,t, µj) =
Ps,t · µj

∥Ps,t∥∥µj∥
(4)

If the score is higher than a certain threshold δ, and this
paper see the pattern on several consecutive windows, an at-
tack is classified as persistent. This system can detect per-
sistent, high-volume attacks along with low-and-slow at-
tacks, new to single-window detection. Alerts are emitted
by the Pattern Recognition Module with contextualization
enriched by a specific attack signature pattern ID, tempo-
ral evolution, and source entities involved. These alerts are
sent to the alert aggregator module for their correlation with
anomaly and rule-based modules. Leveraging historical
behaviors for reinforcement learning is significantly rein-
forced in this module, which has been introduced for detect-
ing attacks that pursue stealth-based on time or frequency
evasion tactics, and contributes to the overall robustness of
detections within high-speed streaming operations.

3.8 Alert aggregation and decision logic
In a hybrid intrusion detection framework that integrates
heterogeneous detection modules, efficient alert fusion and
prioritization are essential to reduce redundancy and im-
prove decision reliability. The proposed Alert Aggrega-
tion and Decision Logic layer merges alerts generated by
the anomaly detection, rule-based, and pattern recognition
modules into unified meta-alerts with confidence-weighted
scores.

3.8.1 Meta-alert formation

A meta-alert Mt is generated by aggregating all alerts Ai

that share common source entities and occur within a de-
fined temporal window ∆t. Each meta-alert includes the
union of contributing module identifiers, alert timestamps,

and metadata (e.g., source IP, attack type, and top-k fea-
tures). Formally: At = {A1, A2, . . . , Ak}, ∀Ai, Aj ∈ At :
|time(Ai)− time(Aj)| ≤ ∆t

3.8.2 Weighted ensemble scoring

Each detection module m ∈ {A,R, P} (Anomaly, Rule-
based, Pattern) produces a normalized confidence score
sm ∈ [0, 1]. A global confidence score for the meta-alert is
computed as:

SM =
3∑

m=1

wm · sm, subject to
3∑

m=1

wm = 1 (5)

The weightswm are decided via the grid search calibra-
tion on the validation set to minimize FPR and maximum
F1-score. The optimal setting empirically was wA = 0.35,
wR = 0.30 and wP = 0.35, balancing anomaly, rule and
pattern detection importance. A metathresold is not trig-
gered, if SM ≥ τM , where τM is adaptively determined by
recent alert scores using median with standard deviation.

3.8.3 Ablation study

To measure the effect of fusion mechanism, this paper per-
formed an ablation experiment in which each module was
disabled separately and over all performance was com-
pared. In Table 2, this paper can see that when all fusion
is enabled (Fusion Enabled) the best detection performance
and lowest FPR are achieved, which further validates the
gain from multi-source agency evidence.

3.8.4 Deduplication and prioritization

Duplicate alerts triggered across overlapping windows are
merged using a rolling hash of key attributes (source IP,
attack type, and timestamp). Each meta-alert is assigned
a severity index based on the number of triggered mod-
ules (nm), alert frequency (ft), and predefined risk category
(rc):

Severity Index S = αnm + βft + γrc (6)

where α, β, and γ are empirically chosen weighting co-
efficients (0.4, 0.3, 0.3 respectively). The resulting alerts
are output in STIX format for interoperability with SIEM
systems. By leveraging the ensemble scoring, ablation val-
idation, and structured prioritization, the proposed fusion
mechanism significantly enhances the interpretability and
reliability of real-time intrusion detection.

4 Experimental setup
To demonstrate the performance of the proposed hybrid
IDS, a number of controlled experiments were carried out
with publicly available datasets and real-time traffic gener-
ation. This section describes the datasets, feature extraction
process, experimental setup, and evaluation measures used
in this study.
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Table 2: Ablation study of detection modules and fusion mechanism
Configuration Precision

(%)
Recall (%) F1-Score False Positive Rate

(%)
Anomaly Module Only 86.9 80.4 0.83 6.4
Rule-Based Module Only 88.7 83.2 0.85 5.8
Pattern Recognition Only 89.1 88.0 0.88 4.9
Anomaly + Rule 90.2 91.6 0.91 4.5
Anomaly + Pattern 90.6 92.7 0.92 4.1
Fusion Enabled 91.3 94.2 0.93 3.7

4.1 Datasets
Two popular intrusion detection datasets were used to guar-
antee a thorough testing with respect to several attack
classes and network patterns:

– CICIDS2017: Developed by the Canadian Institute
for Cybersecurity, this dataset contains realistic be-
nign and malicious traffic including brute force at-
tacks, DDoS, botnet activity, and infiltration scenar-
ios. Traffic was captured over multiple days with la-
beled ground truth and flow-level feature vectors ex-
tracted using CICFlowMeter.

– UNSW-NB15: Generated by the Australian Centre for
Cyber Security (ACCS), this dataset comprises a wide
range of contemporary attack types including Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic, Recon-
naissance, Shellcode, and Worms. It includes 49 fea-
tures extracted using Argus and Bro-IDS tools.

Both datasets were preprocessed to remove duplicate en-
tries, normalize feature values, and address class imbal-
ance using undersampling and SMOTE-based augmenta-
tion when necessary.

4.2 Feature engineering and preprocessing
Feature selection was performed to reduce dimensionality
and remove highly correlated attributes. A subset of 20–25
flow-based features was retained for the anomaly detection
and pattern recognition modules, including:

– Duration, Total Fwd/Bwd Packets, Packet Length
Statistics

– Flow Bytes/s, Flow Packets/s, Inter-arrival Times

– Flag Counts (e.g., PSH, URG), Header Lengths

– Destination Port Entropy, Unique Connection Count

Categorical features such as protocol type were one-hot
encoded, while continuous features were scaled usingMin–
Max normalization. Time window aggregation (e.g., 30-
second sliding windows with 50% overlap) was applied for
the pattern recognition module.

4.3 Implementation details
The proposed hybrid intrusion detection system was devel-
oped using modular and scalable tools designed to simulate
real-time streaming and facilitate integration with SIEM
pipelines. Table 3 summarizes the core components, li-
braries, and configurations used in the implementation.

Table 3: System implementation details
Component Details
Programming
Language

Python 3.10

Anomaly Detec-
tion

Scikit-learn (Isolation Forest,
LODA), PyOD

Pattern Recogni-
tion

TSlearn (time-series clustering),
NumPy, SciPy

Rule-Based De-
tection

Snort 3.0 rules (simulated), PyIDS
custom wrapper

Feature Process-
ing

Pandas, Scikit-learn (normaliza-
tion, encoding)

Streaming Simu-
lation

Apache Kafka for flow emulation
and message queues

Alert Aggrega-
tion

Custom alert fusion engine
(Python), output in STIX for-
mat

Hardware AMD Ryzen 7 5800X CPU, 32 GB
RAM, 1TB SSD

Operating System Ubuntu Linux 22.04 LTS
Execution Envi-
ronment

Docker (for modular containers),
local server deployment

4.4 Evaluation metrics
To comprehensively evaluate the effectiveness of the pro-
posed hybrid intrusion detection framework, a set of stan-
dard performance metrics was employed. These metrics as-
sess the classification quality, robustness, and efficiency of
the system under both batch and streaming data conditions.
The following definitions were used:

– True Positives (TP): Number of correctly identified
attack instances.

– False Positives (FP): Number of benign instances in-
correctly labeled as attacks.
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– FalseNegatives (FN): Number of attack instances that
were not detected.

– True Negatives (TN): Number of correctly identified
benign instances.

Based on these, the following evaluation metrics were
calculated:

– Precision (P): Measures the proportion of true attack
detections among all instances classified as attacks.
P = TP

TP+FP .

– Recall (R): Reflects the proportion of actual attacks
that were successfully detected. R = TP

TP+FN .

– F1-Score: Harmonic mean of precision and recall,
providing a balanced measure. F1 = 2·P ·R

P+R .

– False Positive Rate (FPR): Indicates the rate at which
normal traffic is incorrectly classified as malicious.
FPR = FP

FP+TN .

– Detection Latency: Average time (in seconds) be-
tween the initiation of an attack and the issuance of a
corresponding alert. Measured over all true positives.

– Throughput: Number of flow records processed per
second, indicating the scalability and real-time appli-
cability of the system.

All the above metrics were reported with a confidence
interval of 95% corresponding to five independent ex-
perimental runs with random seeds. ROC curves and
Precision–Recall curves were also drawn to visually exam-
ine the trade-off between true and false positive rates for
different thresholds.

4.5 Experimental rigor and validation
The reliability and statistical soundness of every evaluation
performed was guaranteed by using five different random
train–test partitions in all experiments as well as a standard
5-fold cross-validation routine. Every metric—precision,
recall, F1-score, and false positive rate—was presented as
mean±standard deviation over the folds. Additionally, Stu-
dent’s paired t-test at a confidence level of 95%was applied
to verify statistical significance of the improvement over
the SOAAPR baseline for each aspect, and all performance
improvements are indeed not out of randomness. All hy-
perparameters, random seeds and dataset splits were kept
fixed in order to facilitate reproducibility.

5 Results and discussion
This section evaluates the performance of the proposed hy-
brid intrusion detection framework by comparing it with the
baseline SOAAPR system [45]. Results are analyzed from
multiple perspectives including detection accuracy, false

positive rate, detection latency, and the ability to identify
persistent attacks such as DDoS and brute-force login at-
tempts.

5.1 Comparative evaluation with SOAAPR

To assess the effectiveness of the proposed hybrid intru-
sion detection framework, this paper conducted a compar-
ative evaluation against the SOAAPR (Streaming Outlier
Analysis and Attack Pattern Recognition) framework [45],
which employs solely online outlier detection for real-time
anomaly detection. While SOAAPR demonstrates strength
in identifying rare attacks via statistical deviation, it lacks
the ability to robustly detect repetitive, persistent threats
such as brute force login attempts or low-rate DDoS attacks.
Both systems were evaluated using the CICIDS2017 and

UNSW-NB15 datasets, with standardized preprocessing
steps, feature normalization, and consistent evaluation met-
rics. Table 4 summarizes the performance outcomes over
five experimental runs with randomized train–test splits
(80:20).

Table 4: Comparative performance: SOAAPR vs. pro-
posed framework

Metric SOAAPR Proposed
Framework

Precision (%) 84.1 91.3
Recall (%) 78.6 94.2
F1-Score 0.81 0.93
False Positive Rate
(%)

6.4 3.7

Detection Latency
(seconds)

1.88 1.21

Persistent Attack De-
tection Rate (%)

59.2 88.4

As this paper can see from Figure 4, the proposed
framework achieves better key detection performance than
SOAAPR in all key detection measures. The increased re-
call and F1 score imply that the new attack can be detected
at a higher rate when predecessors are being identified. In-
terestingly, the detection rate of sustained attacks has im-
proved by almost 30%, further confirming the effective-
ness of the pattern recognition module. Unlike SOAAPR,
which solely depends on statistical deviations in a timewin-
dow, our approach is designed in layers, combining short-
term anomaly scoring with long-term behavioral correla-
tion and signature-based matching. The architectural inno-
vation greatly mitigates false alarms and increases respon-
siveness in streaming scenarios. These findings validate
our assumption that combining statistical, rule-based, and
temporal learning components will benefit hybrid models,
which will provide more robust and context-aware detec-
tion capabilities that can assist in targeting stealthy or slow-
innovating attack campaigns.
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Figure 4: Summary comparison of the proposed hy-
brid anomaly–rule–pattern detection framework against the
SOAAPR baseline in terms of precision, recall, F1-score,
detection latency, and persistent attack detection rate

5.2 Comparison with additional baseline
frameworks

To the performance of the proposed hybrid framework,
more comparisons were conducted with two very recent
state-of-the-art hybrid IDSs: BC-HyIDS[41] and HCRNN-
IDS[42]. They are known as the benchmark models for
the blockchain-based and deep learning-based hybrid ap-
proaches. It used the same datasets (CICIDS2017 and
UNSW-NB15) with similar pre-processing.
Results in Table 5 show that deep learning as well as

some of the blockchain-based systems such as HCRNN-
IDS and BC-HyIDS performed well on precision and re-
call but are computationally heavy and not applicable for
real-time streaming conditions. In comparison, the hy-
brid anomaly–rule–pattern model achieves the same accu-
racy with significantly higher responsiveness and it im-
proves persistent attack detection rate by 7–29%. These
results demonstrate that the temporally pattern recognition
and module fusion play important roles in improving the
capability of resisting stealthy, long-time attacks.

5.3 Datasets and preprocessing
This paper performs extensive experiments on the two
widely used datasets, i.e., CICIDS2017 and UNSW-NB15.
After removing duplicate records on both datasets, this nor-
malized all the attributes using Min–Max scaling. Nom-
inal features such as protocol type and service port were
encoded using one-hot encoding, while flow-level features
were calculated from CIC Flow Meter. All the scripts used
for feature engineering and data augmentation (SMOTE
and random undersampling) are shared in a dedicated repli-
cation repository.

5.4 Streaming simulation environment
This paper simulated an online networked environment
with Apache Kafka 3.6 as the message queuing system and
Docker containers for modular deployment. Every detec-

tionmodule (Anomaly, Rule, Pattern, Fusion) was executed
within its own container and established communication in
an asynchronous fashion using Kafka topics. Key simula-
tion parameters are summarized in Table 6.

5.5 Implementation availability
All the implementation scripts, trained model parameters
and configuration files are archived for reproducibility and
can be shared on demand. Each experiment was repeated 5
times with preset random seeds provided above for statis-
tical reliability. All metrics were saved in csv format and
analyzed using the reproducible Jupyter Notebooks for in-
dependent verification of results.

5.5.1 Analysis of comparative results

The numerical results in Table 4 demonstrate the competi-
tive advantage of our proposed hybrid framework under all
metrics. [4] The hybrid system has better detection perfor-
mance than SOAAPR,which is a statistical outlier detection
method only, because rule-based logic and temporal pat-
tern recognition are both integrated. For the measurement
on precision, our hybrid system produces 91.3%, outper-
forming SOAAPR by 7.2%. That would mean fewer false
alarms, making the alerts to security analysts more reliable.
The recall rises from 78.6% to 94.2%, and hence the sys-
tem is more sensitive to rare threats and evolving outliers.
The F1-score increases from 0.81 to 0.93, which means
better detection performance overall with less trade-off be-
tween precision and recall. The FPR decreases from 6.4%
to 3.7%, which demonstrates the effectiveness of incorpo-
rating multiple detection modules to alleviate noise. In par-
ticular, the detection latency has been cut by more than
36%and thus allowing for increased reactivity when coping
with attacks. The major gain is with respect to the persis-
tent attack detection rate, which increases from 59.2% to
88.4%, due in large part to the ability of the model system
to detect trends that unfold over time.
These findings demonstrate the effectiveness of the pro-

posed hybrid architecture for accuracy and speed, as well
as its robustness against adaptive and long-term attack
strategies. Incorporating orthogonal detection sources and
smartly accumulating alerts, the proposed model offers
higher fidelity and operational superiority in on-line intru-
sion detection.

5.6 Resource usage and scalability
To assess the efficiency aspects of the hybrid framework
in real-time and high-throughput settings, resource use and
latency were profiled for each detection module. All the
experiments were carried out on a local workstation com-
prising of an AMD Ryzen75800X CPU (8 cores, 3.8 GHz),
32 GB RAM and 1TB SSD installed with Ubuntu 22.04
LTS. Every module was wrapped up in a Docker container
for isolation and scalability.
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Table 5: Performance comparison with state-of-the-art baseline frameworks
Scheme Precision

(%)
Recall
(%)

F1-Score Persistent Attack De-
tection Rate (%)

SOAAPR [45] 84.1 78.6 0.81 59.2
BC-HyIDS [41] 95.6 93.8 0.94 74.5
HCRNN-IDS [42] 98.4 97.8 0.98 81.6
Proposed Framework 91.3 94.2 0.93 88.4

Table 6: Experimental configuration parameters for repro-
ducibility

Parameter Value / Setting
Batch size per Kafka pro-
ducer

1,000 flow records

Message queue depth 10,000 messages
Sliding window size
(Wt)

30 s with 50% overlap

Update frequency for
pattern clustering

Every 60 s

Alert aggregation inter-
val (∆t)

10 s

Threshold for persis-
tence (δ)

0.85 cosine similarity

Meta-alert trigger thresh-
old (τM )

Mean + 1.5σ of recent
alert scores

Validation method 5-fold cross-validation
Number of independent
runs

5 (mean ± SD reported)

Random seeds [11, 42, 78, 104, 256]
Python version 3.10.12
Libraries scikit-learn, PyOD,

TSlearn, NumPy,
Pandas

Hardware AMD Ryzen 7 5800X,
32GB RAM,
Ubuntu 22.04 LTS

As summarized in Table 8, our HCDL’s overall CPU re-
mained below 70% even at a peak network load; and the
memory utilization was less than or equal to 8.5 GB. Av-
erage processing time per flow was around 0.49 ms, that is
about 11 k flows per second sustained throughput, enough
for enterprise or ISP level of network monitoring. Further,
the modular containerized design ensures that every detec-
tion component can be individually deployed to any fog(or
edge) node allowing for horizontal scaling against traffic
surge. Second, the message queue system enables dynamic
load balancing between modules without interrupting the
real time operation. These findings corroborate the scala-
bility of the framework and its appropriateness for deploy-
ment in large-scale or cloud-based intrusion detection sys-
tems.

Table 7: Performance improvement over SOAAPR
Metric Improvement (%)
Precision +7.2
Recall +15.6
F1-Score +14.8
False Positive Rate −2.7
Detection Latency −36.7
Persistent Attack Detection
Rate

+29.2

5.7 Discussion on persistent attack detection
Persistent or slow-evolving cyber attacks, such as low-rate
DDoS campaigns and brute-force login attempts, present
unique challenges to traditional anomaly-based intrusion
detection systems. These attacks often mimic legitimate
user behavior and evade threshold-based detection by dis-
tributing malicious activity over extended periods. The
SOAAPR framework, while effective for short-term sta-
tistical anomalies, lacks temporal correlation mechanisms,
resulting in diminished performance in detecting such
stealthy patterns.
The proposed hybrid framework addresses this limita-

tion through the inclusion of a dedicated Pattern Recogni-
tion Module, which monitors entity behavior over multiple
overlapping time windows. By generating temporal finger-
prints and clustering recurring activity patterns, the system
is able to identify slow and repetitive threats that would oth-
erwise appear benign in isolated time slices.
Figure 5 presents a comparison of anomaly scores pro-

duced by SOAAPR and the proposed framework during a
simulated low-rate DDoS scenario. The SOAAPR anomaly
scores gradually normalize over time due to statistical adap-
tation, failing to trigger an alert. In contrast, the proposed
system consistently maintains high anomaly scores for the
offending IP due to cumulative behavioral evidence.
In experimental evaluation, the persistent attack detec-

tion rate improved from 59.2% (SOAAPR) to 88.4% with
the hybrid approach, as shown in Table 4. This signifi-
cant enhancement can be attributed to the system’s ability to
learn repeated interaction patterns and associate them with
evolving threat signatures.
Furthermore, the combination of rule-based logic and

temporal clustering helps reduce false positives by ensur-
ing that anomalies are not only statistically significant but
also behaviorally consistent. This fusion of evidence across
modules supports a more robust detection process, particu-
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Table 8: Per-module resource utilization and processing latency
Module CPU Utiliza-

tion (%)
Memory Us-
age (GB)

Avg. Pro-
cessing Time
per Flow
(ms)

Throughput
(Flows/s)

Anomaly Detection 28.4 2.6 0.63 10,500
Rule-Based Detection 17.9 1.8 0.42 12,400
Pattern Recognition 22.6 2.9 0.59 11,200
Alert Fusion & Decision Logic 11.3 0.9 0.31 15,000
Total System (Fusion Enabled) 67.5 8.2 0.49 (avg.) 11,000

Figure 5: Comparison of anomaly score evolution during a
simulated low-rate DDoS attack.

larly for adversaries who adapt their tactics to evade single-
layer defenses.
The proposed architecture thus not only improves the de-

tection of traditional attack types but also strengthens re-
silience against modern stealth techniques designed to by-
pass volume- or variance-based models. These findings
support the adoption of multi-perspective detection strate-
gies in real-time cybersecurity infrastructures.

5.8 Operational efficiency and throughput
High accuracy and performance efficiency are both critical
aspects for making the practical use of an intrusion detec-
tion system (IDS) applicable in high-speed network envi-
ronments. To verify the performance of the proposed hy-
brid scheme in terms of throughput, scalability, and latency
as a function of load varying intensities was then measured.
The experiments were executed on a local workstation

equipped with an AMD Ryzen 7 5800X with 32 GB of
RAM, while a simulated network stream was generated us-
ing CICFlowMeter that varied the flow rate. The system
wasDockerizedwithDocker and ran onKafkaKafka-based
streaming dataflow to simulate online traffic upload.
Table9 provides the average number of Flows per Sec-

ond (fps) for both SOAAPR and the proposed approach
with respect to input rates. Figure6 depicts how, as the rate
of inputs increases, SOAAPR’s performance deteriorates
compared to our method. The SOAAPR system showed a
peak throughput of around 9100 fps, after which latency in-

creases, and this paper observed packet drops. In contrast,
the hybrid methodology achieved a throughput exceeding
11 Kfps and degraded to a minor extent as a result of its
modular and parallelized topology.

Figure 6: Throughput comparison between the proposed
hybrid framework and the SOAAPR baseline under in-
creasing input flow rates.

In addition, the pattern recognition and rule-based two
modules were executed asynchronously, so the system was
designed to be horizontally scalable—deploying each de-
tection module in its own container or edge node. This
modular design made it feasible to load balance efficiently,
as well as providing resilience from traffic bursts or block
computation delays.

Resource usage continued to be acceptable with CPU at
around 65–70% utilization during peak loading, and mem-
ory usage under 8 GB. The detection latency (the middle
time period between packet ingestion and alert generation)
was 1.2 sec throughout attack scenarios, thus confirming
the appropriateness of the proposed framework for online
situations.

These results validate that the proposed hybrid frame-
work attains real-time efficiency and detection depth. It’s
architecturally scalable and multi-threaded, so it can be im-
plemented in enterprise or ISP networks.
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Table 9: Throughput comparison under increasing input rates
Input Rate (Flows/s) SOAAPR (fps) Proposed Framework (fps) Improvement (%)

5,000 4,700 5,300 +12.8
8,000 7,350 8,950 +21.8
10,000 9,050 10,800 +19.3
12,000 9,100 10,950 +20.3
15,000 8,950 10,400 +16.2
Average 8,630 11,080 +28.4

6 Conclusion and future work
This paper proposed a Hybrid Anomaly–Rule–Pattern De-
tection Framework that has been implemented in order to
achieve both persistent and stealthy intrusion detection in
real-time streaming. The scheme includes three distinct
methods of unsupervised anomaly detection, rule-based
analysis and temporal pattern discov-ery, driven by a uni-
fied alert fusion module. Experimental comparisons on the
CICIDS2017 and UNSW-NB15 datasets showed remark-
able performance gains over the baseline SOAAPRmethod,
which can achieve a precision of 91.3% and recall of 94.2%,
along with an enhancement of persistent attack detection
rate by 29.2% and decrease in detection latency by 36.7%.
The modular design also demonstrated scalable perfor-
mance, deliveringmore than 11,000 flows/s undermoderate
computation. In practice, the system offers a light-weight
and easy-to-adapt detection solution deployable at large-
scale enterprise, cloud and critical-infrastructure networks
in order to detect emerging threats in a timely manner. The
ensemble meta-alert fusion that is used not only improves
robustness but also the interpretability by highlighting (dif-
ferential) top contributing features for each alert. These
properties make the model ready for immediate application
when used in contemporary SOCs and real-timemonitoring
systems. However, there are several limitations to these ap-
proaches. The fixed sliding windows and the static thresh-
olds may not be able to easily adapt to severe concept drift
or attack. This paper included this, because althoughmodu-
larization guarantees scalability, running multiple contain-
ers can have higher resource overhead in case of very high
amount of traffic.
These limitations will be dealt with in the future by

designing and implementing adaptive and robust control
techniques–like adaptive fuzzy control, neural adaptive
backstepping controller, and nonlinear optimal controller–
to dynamically modify decision thresholds as well as re-
spond parameters. Reinforcement learning and meta-
learning can be combined for continuously self-tuning
models against novel attack behaviors. Then large scale de-
ployment on distributed fog and edge will be looked upon
to evaluate real time latency, reliability and interoperability
with SIEMwill be checked. In conclusion, the proposed ap-
proach provides a scalable and explainable direction for ro-
bust next generation intrusion detection that has the poten-
tial to protect against persistent and stealthy cyber threats
in high-speed networks.
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