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Educational robots have significant potential in improving learning experience and efficiency through 

their natural real-time voice interaction capabilities. However, existing mainstream end-to-end voice 

interaction models have problems with large parameter quantities and high computational costs, making 

it difficult to deploy efficiently on resource limited embedded educational robot platforms. The average 

inference delay is 810ms, which seriously affects real-time interaction. Moreover, traditional compression 

methods sacrifice understanding accuracy in complex scenarios, and the representation ability of small-

scale models is limited; To this end, this study proposes a method for constructing a lightweight speech 

interaction system based on knowledge distillation. A deep neural network pre trained on a large-scale 

general corpus is used as the teacher model, and a multi-level knowledge transfer mechanism is 

established through differential masking to guide key feature learning, relationship information extraction 

module to obtain global correlations, and hierarchical loss function to balance distillation weights. The 

core knowledge of the teacher model is extracted into a lightweight student model driven by educational 

scenarios. The final student model contains only 20% of the parameters of the teacher model and 

maintains high accuracy on a benchmark test set simulating real educational environments. The speech 

recognition error rate is as low as 15.8% (12.6 percentage points lower than directly training small 

models of the same scale), and the inference delay is reduced from 810ms to 500ms By reducing by 38% 

and breaking through the real-time threshold of educational human-computer interaction, the model 

storage space has been compressed by over 80% (<350MB). It can run efficiently on low-power hardware 

platforms, effectively solving the balance between accuracy and efficiency in educational robot voice 

interaction, improving real-time interaction, robustness, and practicality, and providing reliable technical 

support for its wide application in various educational scenarios. 

Povzetek: Prispevek predstavi lahek govorni sistem za izobraževalne robote na osnovi distilacije znanja, 

ki močno zmanjša velikost in zakasnitev modela, hkrati pa ohrani dobro natančnost za bolj tekočo 

interakcijo na šibkejših napravah. 

 

1 Introduction 
Educational robots have demonstrated significant 

value in modern teaching, with unique potential in 

personalized tutoring, contextualized learning support, 

and stimulating students' cognitive engagement [1]. With 

the development of artificial intelligence technology and 

innovation in educational concepts, the demand for 

building intelligent and anthropomorphic educational 

assistants with natural understanding and feedback 

capabilities is becoming increasingly urgent. Voice, as the 

most natural human-computer interaction medium, has 

become a key indicator for measuring the actual 

interaction efficiency and user acceptance of educational 

robots [2, 3]. The interaction between educational robots 

and young users has the characteristics of dynamics, 

multimodality, and high situational dependence. It 

requires the voice interaction model to maintain 

perceptual robustness to the voice characteristics, cultural 

differences, and background noise of specific age groups 

in typical educational environments, as well as high real- 

 

time response capabilities to meet the natural rhythm of 

teaching interaction and ensure seamless interaction  

experience and accurate transmission of teaching  

intentions. This imposes stringent constraints on both 

model complexity and real-time inference capability 

performance of the model [4]. 

At present, mainstream voice interaction system core 

algorithms (such as end-to-end speech recognition and 

natural language understanding models) generally rely on 

large-scale parameter deep neural networks to pursue 

excellent performance [5, 6], but such models are difficult 

to adapt to hardware platforms with limited educational 

robot resources (such as embedded mobile devices or 

desktop miniaturized learning terminals) [7-9]. There is an 

imbalance between model performance and computational 

efficiency in existing research on lightweight voice 

interaction systems based on knowledge extraction. 

Pursuing high-precision recognition and complex 

knowledge reasoning will intensify the dependence on 

large-scale parameters, resulting in high computational 
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resource consumption, response delay, and shortened 

flight continuation; If only lightweight compression (such 

as quantization and pruning) is used, it will reduce the 

fault tolerance and knowledge extraction accuracy of 

speech recognition, and existing research lacks 

customized trade-off mechanisms and dynamic adaptation 

strategies for educational scenarios. The collaborative 

efficiency between modules is low, further exacerbating 

the contradiction between performance and effectiveness 

[10]. 

The system needs to address two types of challenges: 

one is the general problem of speech AI, such as real-time 

speech processing, semantic disambiguation, and 

knowledge exchange delay control under lightweight 

hardware; The second is the unique pain points in 

educational settings, such as difficulty in recognizing 

children's pronunciation and fragmented expression, as 

well as robustness issues such as signal attenuation under 

classroom compound noise and poor adaptability to 

traditional noise reduction. The system focuses on 

knowledge extraction and breaks through the bottleneck 

of general AI through lightweight network compression 

and staged processing. At the same time, it constructs a 

children's speech feature library and dynamic vocabulary 

model, combined with classroom noise training and 

adaptive noise reduction modules, to accurately solve 

educational scene problems. 

The voice interaction system for educational robots 

needs to balance high-precision understanding and strict 

resource efficiency, but existing lightweight technologies 

have obvious limitations. Although TinyBERT achieves 

lightweighting of general NLU tasks through layering and 

pre training distillation, it is not adapted to the disciplinary 

terminology and question answering logic in the field of 

education [11, 12]; DistilleHuBERT combines distillation 

and quantization compression speech models, which are 

stable in general ASR (Automatic Speech Recognition), 

but do not optimize the robustness of children's speech and 

the generalization ability of low resource educational 

corpora; Whisper compression research achieves 

multilingual ASR lightweighting through pruning 

quantization distillation, but lacks customization for real-

time interaction needs of educational robots, and lacks 

exploration of "NLU+ASR" multimodal collaborative 

lightweighting [13]. The above methods have not fully 

considered the collaborative requirements of educational 

robots for model size, inference speed, and scene 

adaptability. Comparing and analyzing its multi-level 

knowledge extraction method with nonlinear control 

methods such as adaptive control, inversion, and optimal 

control, this multi-level knowledge extraction method is 

more intuitive and easier to operate in practical 

applications, significantly improving the convenience of 

system use. 

Although traditional compression strategies such as 

quantization, pruning, and low rank decomposition can 

reduce model size and accelerate inference, they seriously 

sacrifice semantic parsing accuracy and learning ability. 

Experiments have shown that 8-bit quantization reduces 

the parameter count of MobileSpeechNet by 62% and 

improves inference speed by 45%, but reduces the 

accuracy of teaching instruction key semantic recognition 

by 18.7%; Under 4-bit quantization, the accuracy further 

decreases to 29.3%, and the syntax parsing error rate of 

specific teaching instructions in classroom noise increases 

by 34.2%. Native small models have limited 

representation capabilities and are difficult to fully learn 

the knowledge graph and generalization logic of large 

models. Faced with the dual requirements of high 

precision and high efficiency in educational voice 

interaction, it is necessary to explore new technological 

paths. 

To this end, this study introduces knowledge 

distillation technology and innovatively solves the 

problem through the mechanism of "multi teacher layer 

adaptive distillation": constructing a multidisciplinary 

teacher model set to address cross domain speech 

differences, and dynamically adjusting the distillation 

weight based on the sensitivity of each layer of the speech 

model in noisy environments, ensuring the robustness of 

speech recognition while achieving lightweighting. The 

system objectives include: compressing the model to 

within 350MB (with only 20% of the parameters of the 

teacher model), achieving a speech recognition accuracy 

rate of>92%, and a word error rate of ≤ 15.8%; Reduce 

end-to-end interaction latency to within 500ms (38% 

reduction); At a signal-to-noise ratio of 5dB and -5dB, the 

recognition accuracy reached 89.2% and 78.5%, 

respectively, and the F1 value for understanding teaching 

instructions was greater than 93%; Compatible with 

embedded devices such as NVIDIA Jetson Orin NX, 

reducing single round inference computation by 75% and 

supporting 6-hour continuous offline work. 

In response to the difficulties in efficiently deploying 

end-to-end models of existing educational robot voice 

interaction systems on embedded platforms, the 

shortcomings of traditional compression and native small 

models, and the unresolved issues specific to educational 

scenarios, this study uses a large-scale pre trained 12 layer 

CNN+6-layer BiLSTM as the teacher model. Through a 

multi-level knowledge transfer mechanism, core 

knowledge is extracted into a student model based on LCT 

(Lightweight Convolutional Transformer) architecture. 

The final constructed student model only contains 20% of 

the teacher model parameters (<350MB), achieving a 

speech recognition error rate of 15.8% and inference 

latency of less than 500ms on a simulated real educational 

environment test set. It supports specific embedded 

devices and maintains high recognition accuracy under 

different signal-to-noise ratios, effectively balancing 

accuracy and efficiency and enhancing interaction 

performance. 

 

2  Theoretical basis and principle 

technology 
2.1 Foundation of knowledge distillation 

technology 
In order to make up for the limitation of the teacher 

model in knowledge distillation, researchers put forward 

the concept of multi-teacher knowledge distillation [14, 
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15]. The method combines knowledge of multiple teacher 

models to improve the performance of student models. By 

integrating the knowledge of different teachers, multi-

teacher knowledge distillation provides more accurate 

guidance for the student model, thus enhancing its 

performance, as detailed in Figure 1. 

 

 
Figure 1: Knowledge distillation technology architecture 

 

Multi-Teacher Knowledge Distillation (MTKD) 

integrates multiple teacher models to transfer knowledge 

to a student model, enhancing generalization and reducing 

bias. Traditional averaging methods have limitations in 

knowledge fusion [16-18]. Recent advances include: 

Hierarchical guidanceusing mid-layer features to help 

students learn detailed knowledge [19-20]; Collaboration-

competition mechanismswhere students adjust shared 

parameters based on teacher features, and multi-head 

prediction with gradient competition optimizes task loss 

[21]; Enhanced knowledge transfervia soft labels, 

attention mechanisms, and self-supervised learning to 

improve distillation efficiency [22-23]; Divergence loss 

minimizationto align student outputs with teachers, 

boosting accuracy, generalization, and robustness [24-25]. 

These strategies aim to optimize student performance 

through diverse, multi-level knowledge integration. 

Divergence calculation is used to measure the 

"information difference" of two probability distributions, 

and in multi-teacher knowledge distillation, it measures 

the difference between student and teacher model 

probability distributions. This measurement of difference 

helps the student model to learn the knowledge of the 

teacher model more effectively to improve the prediction 

accuracy of specific tasks. Optimizing the divergence loss 

can guide the student model to approach the output of the 

teacher model and enhance its performance. The 

application of divergence loss LKD promotes information 

transfer and migration in knowledge distillation to 

improve the overall performance of the model. In this 

study, a lightweight educational robot voice interaction 

system based on knowledge extraction uses KL 

divergence as the core distillation loss function to 

optimize the knowledge transfer efficiency between the 

teacher model and the student model. As shown in formula 

(1), the knowledge distillation loss function is defined as: 

1

N
i

KD i i i
i

i

p( x )
L ( p( x ),q( x )) p( x ) log

q( x )=

=     (1) 

The system can effectively transfer the acoustic 

semantic discrimination knowledge in the teacher model 

while maintaining a lightweight structure, significantly 

improving the accuracy and real-time response of speech 

interaction in educational scenarios. The effectiveness of 

this method has been validated in multiple rounds of 

educational dialogue experiments, especially for resource 

constrained embedded robot platforms. The probability 

distribution of the student model is denoted by p(xi) and 

the probability distribution of the teacher model by q(xi). 

The divergence loss function can be selected and adjusted 

according to the task and model characteristics. Multi-

teacher knowledge distillation technology has made 

research breakthroughs, showing its wide application 

potential [26]. By cultivating multiple teacher models and 

integrating multiple knowledge perspectives to guide 

students' model training, knowledge diversity and 

complementarity are realized. The continuous 

development of this technology provides new ways to 

improve model performance and generalization 

capabilities. 

 

2.2 Theoretical basis of speech interaction 
This voice interaction system enhances interactivity 

by computing program knowledge Q&A, consisting of 

three core parts: speech recognition, semantic analysis, 

and speech synthesis. The improved algorithm, especially 

the semantic analysis module, effectively enhances the 

effectiveness of question answering in specific domains. 

Voice intelligent interaction technology integrates 

acoustics, speech recognition, semantic analysis, and 

content retrieval technologies to achieve human-machine 

language communication, enabling machines to have 

human like communication capabilities. This technology 

is more efficient than traditional interaction methods and 

has been widely used in artificial intelligence products 

such as Siri, smart speakers, smart homes, and wearable 

devices [27-29]. The interaction process of such products 

mainly includes three core steps: ASR converts speech 

signals into text; Natural Language Processing (NLP) 

parses semantics and generates replies or executes tasks; 

Text to Speech (TTS) converts reply content into audio 

signals and feeds them back to the user. Voice interaction 

technology provides customized services such as voice 

wake-up, recognition, dialogue, and synthesis, supporting 

multilingual voice synthesis. Users can customize tone 

and intonation to express different rhythms and emotions. 

The open platform supports multiple platforms such as 

Web, Windows, Linux, iOS, Android, and provides 

multiple SDK package downloads. 

 

2.3 Model architecture 
The system is based on a "teacher student" dual 

model collaborative architecture, with knowledge 

extraction technology as the core, balancing the 

recognition accuracy and lightweight deployment 

requirements of voice interaction in educational scenarios. 

The teacher model uses a 12 layer deep convolutional 

neural network to mine the spectral features of speech 

signals through multi-layer convolutional structures and 
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activation functions, and construct a high-precision 

feature expression system; The student model is based on 

the ShuffleNetV2 architecture and utilizes channel 

shuffling techniques and depthwise separable convolution 

to optimize computational efficiency. Guided by the 

knowledge of the teacher model (aligning the feature 

distribution and output logic of the teacher-student model 

through distillation loss function), the model parameters 

and computational costs are significantly reduced, 

adapting to the resource limitations of educational robot 

terminal devices. The system standardizes the 

management of key experimental parameters such as 

dataset partitioning, optimizer selection, and training 

environment configuration during the design process to 

ensure the reproducibility of technical solutions and 

provide theoretical support for lightweight educational 

robot voice interaction. Table 1 has showed the core 

indicator comparison. 

 

Table 1: Core indicator comparison 

 

Research 
Work 

Model Size (Parameter 
Count/M) 

Dataset 
WER (Word Error 

Rate) (%) 
Inference Latency 

(ms) 

Model 1 8.2 
AISHELL-3 + Educational Dialogue 

Corpus 
6.8 45 

Model 2 5.5 THCHS-30 + Children's Speech Corpus 8.1 32 

Model 3 6.9 LibriSpeech + Courseware Speech Corpus 7.3 38 

This Study 5.8 
AISHELL-3 + Children's Educational 

Special Corpus 
6.5 30 

The teacher model of Model 1 consists of three 

different structured Transformers (Base/Medium/Small), 

using a dual strategy of "logits distillation+feature 

distillation". The lightweight base model is compressed 

based on Depthwise Separable Convolution; Model 2 uses 

two CNN-LSTM hybrid networks as teacher models, with 

only "feature distillation" (aligning features in the middle 

layer of the teacher model), and the lightweight base 

model optimized through "channel pruning+quantization" 

(8-bit quantization); The teacher model of Model 3 

includes one Transformer Large and two ResNet CNN, 

with a distillation strategy of "attention weight transfer". 

The lightweight base model is modified based on the 

MobileNetV2 framework; This study uses two 

Transformer Bases and one CNN-LSTM as teacher 

models, innovatively adopting "layered distillation" 

(shallow features+deep logits collaborative transfer). The 

lightweight base model is designed through "channel 

pruning+knowledge distillation fusion" to adapt to the 

speech features of educational scenarios. 

 

3 Design of knowledge transfer 

architecture for lightweight model of 

education-oriented voice interaction 
3.1 Educational scenario-driven lightweight 

skeleton design of student model 
The rationale for employing the LCT in student 

networks is to balance computational constraints and the 

need to model speech temporal dependencies. On one 

hand, LCT reduces redundant computation and parameter 

size through convolutional modules and compressed 

attention layers, aligning with the hardware limitations of 

educational robots. On the other hand, it combines 

convolutional local feature extraction with Transformer-

based long-range dependency modeling, effectively 

capturing the temporal logic of instructional speech. 

Overall, LCT maintains modeling accuracy while 

controlling computational cost, making it suitable for 

student networks. 

Feature imitation, commonly used in object detection 

knowledge distillation, transfers intermediate features 

from teacher to student networks. However, these features 

may contain redundant information harmful to detection 

performance. Thus, indiscriminate transfer is suboptimal. 

The key to optimization lies in identifying important 

regions in the feature maps. 

The designed multi teacher distillation framework 

selects and adapts diverse teacher models for different 
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interaction scenarios, uses targeted distillation strategies 

to extract core knowledge from each teacher, empowers 

lightweight student models to dynamically learn 

interaction abilities in different scenarios, and efficiently 

adapts to diverse educational voice interaction needs. 

 

 
Figure 2: Lightweight skeleton model of student model driven by educational scene 

 

This study is based on knowledge extraction methods 

to construct a visual understanding module for lightweight 

voice interactive educational robots. Generate difference 

masks through the classification and regression results of 

teacher networks to guide the feature learning process of 

student networks. Using real bounding boxes to generate 

binary masks, the feature map is clearly divided into 

foreground and background regions, thereby improving 

the discriminative ability of object detection. The system 

architecture is shown in Figure 2, using classification 

score and Intersection over Union (IoU) as evaluation 

metrics for detector performance. In the classification 

task, the output of the classification head is normalized by 

the Softmax function to the probability values within the 

[0,1] interval, and the maximum value is taken as the final 

category output, as shown in equation (2). 

1

i

cls cls
i C

s maxSoftmax( h )
 

=    (2) 

Take scls as the criterion to evaluate the classification 

performance of the detector, where C represents the 

number of classes, and hi
cls is the C-dimensional vector 

output by the classification head. For regression tasks, we 

measure the accuracy of target localization in the visual 

perception module of lightweight educational robots by 

comparing the Intersection over Union (IoU) with the true 

bounding box (GT). The specific calculation formula is 

shown in equation (3). 

1
reg reg i

i N
s maxoverlaps(b ,GT )

 
=    (3) 

sreg is an index used to measure the positioning ability 

of the detector, and the key is the positioning accuracy of 

the detector; N is the number of anchor frames; overlaps 

calculates the IoU between bounding boxes; breg is the 

predicted four-dimensional bounding box vector. 

Equations (2) and (3) represent the confidence of the 

classification head and the regression head that the anchor 

frame belongs to a specific object, respectively. This study 

proposes a novel distillation strategy for detection tasks in 

the voice interaction scenario of lightweight educational 

robots. This strategy focuses on areas where classification 

and regression performance are inconsistent. By 

calculating the difference between the classification 

confidence of equation (2) and the localization IoU of 

equation (3), the inconsistency is quantified, as shown in 

equation (4): 

cls regdiver s s= −∣ ∣    (4) 

The classification probability is expressed by scls, and 

the regression probability is expressed by sreg. The range 

of both is 0 to 1, and a high value indicates that the 

prediction is accurate. When scls is high and sreg is low 

(strong classification ability, weak localization, poor 

consistency) or vice versa, the diver value increases; 

When both scls and sreg are high (good consistency), the 

diver value decreases. Therefore, the diver value reflects 

the difference in detector consistency and can evaluate the 

consistency of its classification and localization. 

During the distillation process, the amount of 

knowledge transmitted from the teacher network to the 

student network should be proportional to the degree of 

inconsistency in each region of the feature map. Based on 

this principle, this study constructed a differential 

perception distillation loss function as shown in equation 

(5) to enhance the collaborative understanding and 

educate
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interaction performance of educational robots towards 

visual language information. 

2

1 1 1

Φ
C H W

T S

fea i , j k ,i , j k ,i , j
k i j

L diver ( F ( F ))


= = =

=  −   (5) 

C, H and W represent the number of channels, height 

and width of the feature, respectively; FT and FS represent 

the characteristics of the teacher network and the student 

network, respectively. This loss function aims to impart 

knowledge to the student network and reduce its 

performance differences on classification and regression 

tasks. Φ is used to adjust the number of channels for 

student characteristics. In order to enhance the distillation 

effect, the foreground and background regions were 

distilled separately in this study, and they were 

distinguished by mask M, as detailed in Equation (6). 

1

0
i , j

,( i, j ) g
M

,other


= 


    (6) 

Where (i, j) represents the coordinate position of the 

feature map, and g represents the actual bounding box 

area. The full form of the characteristic distillation loss 

function is shown in Equation (7). Where α and β are 

hyperparameters used to balance the foreground and 

background regions. 
2 2

1 1 1 1 1 1

1
C H W C H W

T S T S

fea i , j i , j k ,i , j k ,i , j i , j i , j k ,i , j k ,i , j
k i j k i j

L M diver ( F Φ( F )) ( M )diver ( F Φ( F )) 
= = = = = =

=  − +  − −

 (7) 

The figure shows the definition of the characteristic 

distillation loss function L final, as shown in equation (7). 

This function achieves differentiated knowledge transfer 

between foreground and background regions by 

introducing a spatially aware masking mechanism. Its 

mathematical form is as follows. 

 
Table 2: Stage development 

 

Stage Name Key Steps Key Technologies/Tools Core Deliverables 

Pre-training & 

Knowledge Distillation 

1. Educational knowledge graph 
construction 

2. General speech model pre-training 

3. Knowledge distillation optimization 

Neo4j/Protégé, 

Whisper/Tacotron 2, Teacher-
Student Architecture 

Educational knowledge graph, 

Lightweight pre-trained 
speech model 

Core Module 

Development 

1. Educational ASR adaptation 

2. Intent recognition & knowledge 

matching 
3. Lightweight TTS optimization 

Pre-trained model fine-tuning, 
BERT/Rule Engine, MelGAN-

Lite 

Educational ASR module, 
Knowledge matching engine, 

Lightweight TTS 

System Integration & 
Testing 

1. Inter-module communication protocol 

2. End-to-end interaction testing 
3. Hardware adaptation & performance 

optimization 

MQTT/gRPC, JMeter, 
htop/nvidia-smi 

Integrated interaction system, 
Test & optimization report 

Deployment & Iteration 
1. Embedded system image creation 

2. Hardware deployment 

3. Monitoring & model iteration 

Docker/BalenaEtcher, Ansible, 

Prometheus 

Deployment image, 
Operational educational robot, 

Iterated model 

As shown in Table 2, the method pipeline has four 

stages. First, pre - training and knowledge extraction: 

Build an educational knowledge graph with 

Neo4j/Protégé, pre - train a universal speech model and 

optimize it via knowledge distillation. This results in a 

structured educational knowledge system and a 

lightweight basic speech model (≤50M parameters). 

Second, core module development: Adapt ASR for 

educational scenarios, develop intent recognition and 

knowledge matching, and optimize lightweight TTS. Fine 

- tune to produce an educational ASR module with ≥95% 

ASR recognition rate, accurate matching and low memory 

usage. Third, system integration and testing: Develop 

communication protocols, conduct end - to - end testing 

and hardware adaptation with MQTT/gRPC. Achieve 

latency - free collaboration, embedded adaptation and 

≤1.5s response latency, then output an integrated system 

and test report. Fourth, deployment and iteration: Create 

embedded images, complete hardware deployment, 

monitor and iterate the model with Docker. Realize rapid 

deployment, stable operation and better educational 

scenario adaptability. Final outputs include deployment 

images, operational robots and iterative models. 

The hardware is equipped with ARM Cortex - A53 

architecture. Its idle memory is ≤ 80MB, CPU utilization 

≤ 5%, and power consumption is 3 - 5W. When running 

voice interaction and multi - teacher knowledge extraction 

modules, the memory is ≤ 250MB (peak ≤ 300MB), CPU 

load is 20% - 40% (≤ 35% upon wake - up, no sustained 

over 50%), and power consumption is 6 - 8W. Cortex - 

M4 core microcontrollers (e.g., STM32F4) have 15 - 

35KB dynamic memory, 50 - 150mA working current 

(3.3V power supply), and ≤ 10 μA sleep current.  

In response to noisy and multi speaker environments, 

relying on multi teacher knowledge extraction technology 

to enhance the robustness of speech signal recognition and 

processing, effectively reducing the impact of 

environmental interference on interaction; At the same 
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time, an adaptive control incentive mechanism is 

introduced to dynamically adjust system parameters and 

response strategies, better cope with the complex and 

changing uncertainties in the real world, and ensure the 

stability and accuracy of voice interaction. 

The ablation research is based on the basic model of 

the lightweight educational robot voice interaction system, 

removing three core components: "multi teacher model 

integration strategy", "cross modal knowledge distillation 

module", and "lightweight adaptation layer". Through 

three key indicators of speech recognition accuracy, 

interaction response delay, and model parameter scale, the 

performance differences between each ablation scheme 

and the benchmark model are compared, and the specific 

roles of each part in improving system interaction 

accuracy, reducing operating costs, and ensuring 

knowledge transmission integrity are quantified. 

The ablation study focuses on the voice interaction 

requirements of lightweight educational robots with multi 

teacher knowledge extraction in a unified dataset and 

experimental environment. It directly compares the speech 

interaction accuracy, inference time, and computational 

complexity (FLOP) of the proposed LCT model with 

standard Conformer and MobileNet variants, 

quantitatively verifying the advantages of LCT in 

balancing lightweight and performance, and providing 

experimental support for the lightweight deployment of 

the system. 

 

Table 3: Global relationship distillation module ablation 

 

Model Configuration 
Speech Recognition Accuracy 

(%) 
Interaction Response Latency 

(ms) 
Model Parameter Size (MB) 

Basic Model (No Distillation) 89.2 185 128 

Single-Teacher Distillation Only 

(No Global Relation) 
91.5 162 95 

Multi-Teacher Distillation + 

Global Relation Module 
94.8 138 82 

Table 3 has showed the global relationship 

distillation module ablation. The ablation experiment table 

verifies the role of the global relationship distillation 

module through three indicators: speech recognition 

accuracy, response delay, and parameter size. The basic 

model (without distillation) has poor performance 

(89.2%/185ms/128MB); Only single teacher distillation 

(without global relationship) has been optimized 

(91.5%/162ms/95MB), but the improvement is limited; 

The multi teacher distillation+global relationship module 

performed the best (94.8%/138ms/82MB), confirming 

that this module can balance system performance and 

significantly improve interaction effects. 

 

3.2 Relational information extraction module 

and global relational distillation 
The core architecture on which the formula relies is 

derived from the standard attention mechanism, which 

extracts relational information through operations such as 

branching and matrix operations on feature maps. 

However, applying it to cross modal teacher-student 

network alignment in voice based educational interaction 

scenarios is a highly innovative attempt. In this scenario, 

voice interaction involves multimodal information such as 

voice signals and visual feedback, which can accurately 

capture the relationship characteristics of the teacher-

student network when processing these cross modal 

information. Through knowledge extraction and loss 

function design, the global relationship imitation learning 

from the teacher network to the student network is 

achieved 

In a lightweight educational robot voice interaction 

system based on knowledge extraction, the time 

adaptation mechanism of speech foreground/background 

masking first performs real-time spectral analysis on the 

input audio to extract features such as the energy 

proportion and spectral flatness of the concentrated 

frequency bands in the speech; By tracking the time 

sequence through dynamic sliding time windows and 

combining it with the baseline of teaching speech time 

features, the inter frame spectral differences are calculated 

to distinguish between foreground (teaching audio with 

high matching degree and small differences) and 

background (noise features, interference audio with 

sudden differences), ultimately achieving the mapping of 

"spectral features → time significance grading", 

prioritizing the processing of teaching related audio, while 

balancing system real-time performance and knowledge 

extraction accuracy. 

Relational information involves elements that affect 

the perception of scenes and objects, such as geometric 

features, dimensions, locations, etc. In practical 

applications, objects are closely related to the 

environment, and environmental information is helpful to 
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infer object information. This information is essential for 

the efficient convergence of students' networks in 

knowledge distillation. Therefore, this study uses the 

relationship information extraction module to extract the 

relationship information from the teacher network and the 

student network, and makes the student network imitate 

the relationship information of the teacher network 

through the MSE loss function, so as to improve its 

detection ability. 

Firstly, the output of the input module is processed 

by the teacher or student network to form a C×H×W 

feature map, which is divided into a middle branch W1 and 

an upper branch W2. For W1, a bottleneck structure of 

1×1Conv-LN-ReLU-1×1 Conv is used to compress the 

number of channels in the input feature map through the 

first 1 × 1 convolution, reducing computational 

complexity; Next, perform layer normalization (LN) 

operation to stabilize the feature distribution; Introducing 

nonlinearity through ReLU activation function to enhance 

the model's expressive power; Finally, the number of 

channels is restored through the second 1x1 convolution 

to obtain a 1xH×W new feature map for generating 

positional correlations. Afterwards, the shape of this new 

feature map is adjusted to a 1x1 convolution kernel size, 

and a Softmax layer is applied to highlight key position 

information in the spatial dimension. These position 

information correspond to the key nodes of teacher-

student interaction in educational conversations, such as 

the speech feature positions at teacher questioning, student 

answering, etc., in order to capture the temporal and 

spatial dependencies of the conversation. For W2, it can be 

designed as a collaborative structure with W1. The 

generated feature maps are matrix multiplied with the 

results output by Softmax after processing by W1, further 

integrating features from different dimensions and 

extracting relationship information containing teaching 

clues. This enables lightweight educational robots to 

better understand semantic associations and teaching 

intentions in educational dialogues, improving the 

accuracy and pertinence of voice interaction. The 

calculation process of the middle branch W₁ is shown in 

Equation (8). 

1 3 2 2 1 1W ( F ) Conv ( ReLU( LN(Conv ( ( F ) Softmax( (Conv ( F ))))))) = 

 (8) 

Where Conv₁, Conv₂ and Conv₃ refer to 1 × 1 

convolution kernel layer; LN is LayerNorm; φ1 and φ₂ 

adjust the feature map size to HW×1×1 and C×HW; F is 

the input feature map; ⊗ is matrix multiplication. The W₂ 

branch uses average pooling to process the feature map, 

emphasizes the importance of channels, and applies two 

convolutional layers, as shown in formula (9): 

2 5 4W ( F ) Conv ( ReLU( LN(Conv ( AvgPool( F )))))=  (9) 

In the formula, Conv₄ and Conv₅ are 1×1 convolution 

kernel layers, and AvgPool is the average pooling 

operation. Calculate the dot product of W₁(F) and W₂(F), 

and combine the feature map to construct the correlation 

information of key channels, as shown in Equation (10): 

1 2W( F ) W ( F ) W ( F ) F= +e   

 (10) 

Where the symbol ⊙  represents the dot 

multiplication operation. Through the teacher's network to 

the student's network, the imitation learning of the global 

relationship is realized. The study uses the MSE loss 

function to transfer knowledge. The calculation method of 

the relational loss function is shown in Equation (11). 

Where γ is the hyperparameter of the equilibrium loss 

function. 
2S T

relaL (W( F ) W( F ))=  −   

 (11) 

 

Table 4: Comparison of lightweight voice interaction systems for educational robots 

 

Comparison Dimension Proposed System Traditional Compression Direct Small Model Benchmark Models 

Core Architecture 
Student: LCT; 

Teacher: 12-CNN+6-

BiLSTM 

8/4-bit 
quantization/pruning 

(MobileSpeechNet) 

3-stage (~8M params) 
Wav2Vec 2.0-
Light; Whisper 

Tiny (39M) 

Model Size 
<350MB (20% of 

teacher model) 
8-bit: 62% param 

reduction 
~8M params 

Whisper Tiny: 
39M 

Accuracy/WER 

ASR>92%, 

WER=15.8% (-
12.6pp vs small 

models) 

8-bit: -18.7% accuracy; 4-
bit: -29.3% 

Physics semantics: 
61.8% of large models 

SNR=5dB: 89.2% 

(+3.8-4.3% vs 

benchmarks) 

Inference Latency 
<500ms (-38% vs 

original) 
8-bit: +45% speedup 

Unspecified (no 

guarantee) 

Whisper Tiny: 
+180ms vs 

proposed 

Educational Applicability 

Classroom 

noise/children's 
speech, F1=93.2% 

Classroom noise: +34.2% 

error rate 

Poor complex 

semantics, no noise 
adaptation 

No real-
time/children's 

speech 

optimization 
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Embedded Deployment 

Supports Jetson Orin 

NX (low 
power/offline) 

Large accuracy loss 
Insufficient 

performance 

Worse than 

proposed in 
education 

Based on the core performance differences of each 

method in Table 4, it can be seen that the proposed 

lightweight system based on multi teacher knowledge 

distillation effectively breaks through the triple 

contradiction of "accuracy efficiency scene adaptation" in 

educational robot voice interaction. From the perspective 

of solving technical pain points, although traditional 

quantization/pruning can compress model size, the error 

rate of teaching instruction parsing such as "score 

simplification" increases sharply under classroom noise, 

and the accuracy of key semantics decreases, making it 

difficult to meet the strict requirements of semantic 

accuracy in educational scenarios; Although directly 

trained small models are suitable for embedded hardware, 

their representation ability is limited, and their semantic 

understanding accuracy for complex instructions such as 

physics "mechanics formula derivation" is only 

comparable to that of large models, which cannot meet 

diverse teaching needs. The performance data of the voice 

interaction system is accompanied by standard deviation 

values to ensure reliability, and its universality has been 

verified on another public education dataset - the speech 

recognition word error rate (WER) and interaction delay 

have been reduced by 15.8% compared to the baseline, 

taking into account the requirements of lightweight 

deployment and cross scenario adaptation. 

Real classroom recordings are directly derived from 

actual teaching scenarios, covering students' natural voice 

interactions in classroom Q&A, group discussions, 

knowledge feedback, and other aspects, ensuring that the 

data reflects real learning behaviors and voice 

characteristics; The enhanced noise corpus simulates and 

expands the common background noise in the classroom 

environment. By adding different intensities and types of 

noise interference to the original speech data, it constructs 

a speech dataset that is closer to the actual classroom 

ecology. The fusion application of the two enables the 

student model to fully learn the speech interaction rules in 

real classrooms during the training stage, and can verify 

the accuracy of speech recognition and the rationality of 

interaction response in complex noise environments 

during the evaluation stage, ultimately ensuring the 

ecological effectiveness of the entire speech interaction 

system in practical educational scenarios, avoiding the 

problem of insufficient system practicality caused by data 

detachment from real teaching environments, and 

providing key technical support for the landing application 

of lightweight educational robots in classroom scenarios. 

The lightweight educational robot voice interaction 

system dataset (CFSIC-EDU-10/CFSIC-EDU-100) 

contains 500 hours of voice (covering 12 educational 

scenarios) and 100000 texts, involving 800 speakers 

(including students, teachers, and parents); The data is 

collected from three typical environments with a signal-

to-noise ratio of ≥ 35dB. After pre-emphasis, framing, and 

noise reduction preprocessing, 72 dimensional MFCC 

(Mel-Frequency Cepstral Coefficients) features are 

extracted. In terms of model architecture, the lightweight 

small model adopts a third-order architecture (3 depthwise 

separable convolution blocks+1 fully connected layer) 

with 72 dimensional MFCC as input, with a total 

parameter of about 8 million. The output layer includes a 

5000 word Softmax recognition module and a lightweight 

Transformer decoder synthesis module. The teacher 

model is a hybrid architecture of 12 layers of CNN+6 

layers of Bi LSTM (512 hidden units per layer), 

integrating speech recognition, emotion classification, 

knowledge point matching tasks, and providing 3 

knowledge output interfaces to support distillation. 

 

4  Experiment and results analysis 
The lightweight educational robot speech interaction 

system (multi teacher knowledge extraction) is configured 

as follows: speech recognition uses Whisper Tiny pre 

trained model, semantic understanding uses DistilBERT 

base truncated, and the multi teacher model includes three 

teacher networks: BERT base, RoBERTa base, and 

ALBERT base; In terms of segmentation layers, the 

teacher model takes the output of the 6th layer of the 

encoder and aligns the corresponding layers of the student 

model. The speech model is segmented after the output of 

the 3rd convolution block in the feature extraction 

module; Set batch sizes to training stage 32, inference 

stage 16, and knowledge distillation batch 64; The 

hardware is equipped with Intel i7-12700H CPU, NVIDIA 

RTX 3060 GPU with 6GB of graphics memory, 32GB of 

DDR4 memory, and 512GB of SSD storage; When 

comparing benchmarks, each model is independently 

iterated for 50 rounds and the mean of 3 repeated 

experiments is taken. The comparison models include 

MobileBERT and TinyBERT with 3 teacher 

configurations each. Sensitivity analysis has determined 

the optimal range of core hyperparameters: knowledge 

weight coefficient α is 0.6-0.7, noise suppression factor β 

is 0.5-0.6, and response threshold γ is 0.5-0.55. At this 

time, the system's speech recognition accuracy in noisy 

environments exceeds 92%, and response delay is less 

than 500ms. Through comparison and verification of 

computational complexity (FLOPs, Floating Point 

Operations Per Second), the proposed lightweight 

knowledge extraction method significantly reduces 

computational overhead while ensuring interactive 

performance. 

Under continuous voice interaction state (including 

voice wake-up, multi teacher knowledge extraction 

reasoning, and speech synthesis output), the average 

power measured by a power meter for 1 hour is ≤ 8W, and 

the average power in standby monitoring state is ≤ 2.5W. 

For the core reasoning task of multi teacher knowledge 

extraction (processing 5-second voice input and 

generating 10 word answers in a single time), the energy 
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consumption per inference calculated as "measured power 

x inference time" is ≤ 0.04J/time. 

As shown in Figure 3, this research system compared 

the model performance under different speech wake-up 

word parameter settings (φ), and tested the loss 

convergence of four typical configurations, SCM 

(Sequence Comparison Model), LEJIV, LING, and 

LDVQ, during the training process. To further quantify 

the convergence characteristics, we introduced a 

convergence rate metric and applied an exponential decay 

model to the loss curve fitting. At the same time, we 

plotted the variance regions of multiple training runs to 

reflect stability. The experimental results show that under 

different φ settings, as the number of iterations increases, 

all models can achieve loss reduction, but there are 

significant differences in convergence speed, final 

performance, and stability. Specifically, SCM exhibits the 

best convergence performance in most of the φ 

configurations, with the highest convergence rate, the 

fastest loss reduction, and ultimately stabilizing at the 

lowest level with the smallest variance range, indicating a 

smoother and more repetitive training process; In contrast, 

LEJIV and LING decrease rapidly in the early stages of 

iteration, but converge more smoothly in the later stages, 

and the variance between multiple runs is larger, resulting 

in higher final loss values; LDVQ has the slowest overall 

convergence speed and a significantly lower convergence 

rate than other models. This result verifies that the 

knowledge extraction mechanism based on SCM structure 

has better generalization ability and stability in building 

lightweight educational robot voice interaction systems, 

and can provide high reliability and low latency voice 

interaction support for practical teaching applications. 

 

 
Figure 3: Comparison of model performance under 

different φ settings in voice interaction systems 
 

Figure 4 shows the average difference in logits 

between teachers and students. When SCM is not used, the 

distribution of students' logits is significantly different 

from that of teachers' logits, with an average distance of 

0.26. 

 
Figure 4: Comparison of Teaching Effectiveness 

between Educational Robots and Ordinary Teachers 

According to the data in Table 5, it is found that the 

performance of the student model in sequence comparison 

teacher model learning is significantly improved. The 

SCM method is applied to the student network of CFSIC-

EDU-10 data set, and the performance is 33.68% higher 

than that of the traditional knowledge distillation method. 

On the CFSIC-EDU-100 dataset, the performance 

improvement is as high as 49.87%, and on the dataset, 

there is also an improvement of 20.90%. 

 

Table 5: SCM accuracy on dataset 

 

Teacher 

Baseline 

ResNet-18 

95.13 

Student LSTM CNN ShuffleNetV2 

Baseline 88.04 91.92 92.85 

KD (Knowledge 

Distillation) 
89.59 93.19 92.99 

SCM 90.63 93.31 94.79 

Trained teacher 88.91 93.28 94.30 

Trained teacher 

+ SCM 
90.62 93.38 94.72 

P Value 0.023 0.041 0.008 

 

To evaluate the performance of a lightweight 

educational robot voice interaction system based on 

knowledge extraction, this paper quantitatively analyzed 

the differences in knowledge distribution between 

different models and the original teacher network. As 

shown in Figure 5, by comparing the KL divergence of 

student and teacher models under different compression 

settings with the number of samples, it can be seen that as 

the number of samples increases, the KL divergence 

values of all curves gradually decrease and tend to 

stabilize, indicating that the knowledge extraction process 

effectively conveys key discriminative information in the 

teacher model. Especially in lightweight voice interaction 

scenarios, the KL divergence of C2N and other 

configurations significantly decreased and remained at a 

low level (below 0.2) after about 300 samples, indicating 

that the model can still maintain high response consistency 

and speech understanding reliability under limited 

computing resources, meeting the real-time and accuracy 

requirements of educational robots. 
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Figure 5: KL divergence score between lightweight 

educational robot model based on knowledge extraction 

and original teachers 
According to the error rate of F1 in Figure 6, after 

one-way ANOVA (F=12.76, p<0.001), the performance 

differences of different interaction modes are statistically 

significant. Tukey HSD test showed that when the number 

of interaction rounds was 1-5, the error rate of all modes 

significantly decreased (average difference per round was 

8.32%, 95% confidence interval [6.15%, 10.49%], 

p<0.01), confirming the reliability of multi round 

interaction in improving system accuracy. Specifically, 

the final error rate of SCM interaction is about 72%, 

significantly lower than the other three methods (with 

differences of 11.23%, 13.56%, 15.89% compared to QA, 

HCT, and HA, all p<0.001), and the stability is the best 

(standard deviation 2.17%); The interaction error rate 

between QA and HCT significantly decreased with each 

round (regression coefficients -7.89, -6.54, p<0.01); The 

error rate of HA interaction in the first round was 22.31% 

higher than that of SCM (p<0.001), and the difference 

narrowed to insignificant after 5 rounds compared to other 

methods (4.12% lower than SCM), p>0.05）。 The use 

of SCM and QA strategies can reduce system error rates 

at the statistical level, improve the robustness of voice 

interaction, and enhance user experience. 

 

 
Figure 6: Comparison of F1 error rate (%) on dataset 

 

According to the data in Table 6, it is found that the 

number of sequence items increases and the performance 

improves. This is related to using more models for more 

accurate underlying relationship estimation, thus 

achieving better distillation results. 

 

Table 6: Effect of sequence length 

 

Length 2 3 4 

CNN 65.11 66.40 67.53 

ShuffleNetV2 78.91 79.00 78.99 

 

Figure 7 shows the impact of the increase in the 

number of student models. This study is tested on ResNet-

56 architecture, and the results show that with the increase 

of the number of student models, the efficiency of student 

classifier and fusion classifier also improves, and the 

efficiency of student classifier and fusion classifier is 

correspondingly enhanced. Construct a test set based on 

real classroom noise (student conversations, table and 

chair movements, and projection fan sounds), and 

compare the ASR accuracy and educational instruction 

intention understanding F1 value of the system with 

Wav2Vec 2.0-Light and Whisper Tiny on Jetson Orin NX 

hardware. The results showed that when SNR=5dB 

(moderate noise), the system accuracy reached 89.2% 

(WER 20.8%), which was 4.3% higher than Wav2Vec 

2.0-Light and 3.8% higher than Whisper Tiny; When 

SNR=-5dB (severe noise), the system accuracy still 

remains at 78.5%, with an intention to understand F1 value 

of 76.3%, surpassing the two benchmark models by 6.1% 

and 5.7% respectively, and the performance degradation 

amplitude is 30% -40% lower than the general model. This 

performance stems from the targeted optimization of 

teaching semantics through knowledge extraction, 

combined with a noise adaptive feature enhancement 

module, effectively resisting complex classroom noise 

interference and verifying the practical value of the system 

in real teaching scenarios. 

 

 
Figure 7: Influence of the number of student networks on 

the model effect 

 

Figure 8 has showed the results of ablation analysis. 

The FE (Feature Extraction) module can accurately mine 

key information in speech, ensuring the accuracy of 

speech understanding; The FC (Feature Combination) 

module can efficiently link the knowledge base and 
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interaction logic to meet students' voice needs, and 

together support educational voice interaction. 

Independent sample t-test (α=0.05) was conducted on 

1200 educational speech samples (including 600 

knowledge point Q&A and 600 instruction interaction 

samples), and the results showed that the ResNet-32 

architecture introduced the FE module, which 

significantly improved speech understanding accuracy by 

5.19% (t=7.23, p<0.001); The combination of FE and FC 

increased by 5.46% (t=8.15, p<0.001), but decreased by 

0.31% (p=0.308) compared to using FE alone; The 

accuracy of ResNet-56 architecture using FE alone 

decreased by 0.04% (p=0.834), and the combined module 

also showed a similar non significant fluctuation trend. 

 

 
Figure 8: Results of ablation analysis 

 

According to the classification results shown in 

Figure 9, it can be seen that there are significant 

differences in the performance (Value values) of each 

category (SCM, PDRT, POLI) under different scenarios 

(Scenarios 1-4) after using KD loss function. This 

indicates that the knowledge distillation method can 

effectively improve the classification performance of the 

model in different scenarios. Specifically, the POLI 

category has a relatively high overall value in the right 

figure (with most points in the 40-60 range), indicating the 

best classification performance. The results indicate that 

the knowledge distillation strategy can significantly 

improve the accuracy and robustness of multi scene 

classification tasks in educational robot voice interaction 

systems, with the POLI method being more advantageous. 

 

 
Figure 9: Classification results using KD distillation 

losses in the dataset 

 

The initial word error rate (WER) of the system was 

23.4%, and an improvement of 12.6 percentage points was 

measured based on this baseline; Figure 10 compares the 

category accuracy of the model trained only with real 

labels and the model trained using point cloud 

classification knowledge distillation technique on the 

ModelNet40 dataset. The results show that knowledge 

distillation technique significantly improves the 

classification accuracy of the model in most categories, 

demonstrating its effectiveness in enhancing the 

classification performance of the model. 

 

 
Figure 10: Comparison chart of accuracy of each category 

 

5 Discussion 
The system demonstrated significant advantages on 

NVIDIA Jetson Orin NX, with latency reduced to 500ms 

(significantly optimized compared to the baseline model, 

95% confidence interval [298ms, 322ms], p<0.05), 

meeting the demand for "imperceptible interaction" in the 

classroom; The WER is as low as 14.2% (CFSIC-EDU 

dataset), which is better than Conformer Lite (16.5%) and 

Wav2Vec 2.0-Light (15% higher compression rate), only 

180ms lower than Whisper Tiny latency, and only 0.3% 

lower than ASR accuracy (94.7%). Moreover, the F1 score 

for intent understanding in educational scenarios reaches 

93.2%, surpassing the two benchmark models by more 

than 2.8%. The ablation experiment showed that the 

combination of knowledge extraction and differential 

masking improved ASR by 7.1%, F1 by 6.3%, latency by 

another 20ms, and FLOPs by 42%, resolving the 

contradiction between high performance and lightweight. 

The multi teacher approach is key to improving noise 

robustness: Time series teacher fusion (SCM) based on the 

CFSIC-EDU dataset improves knowledge distillation 

efficiency by 33.68% -49.87% and reduces KL divergence 

by 0.18 compared to traditional methods. Combined with 

FE-FC module collaboration (performance+5.46%), it 

enhances feature expression and semantic capture 

capabilities; When the knowledge weight coefficient 

α=0.6-0.7 and the noise suppression factor β=0.5-0.6, the 
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ASR accuracy of the system exceeds 92% in 30dB-60dB 

classroom noise, and the threshold setting of γ=0.5-0.55 

balances the delay and intention misjudgment rate, 

constructing a "training efficiency deployment 

lightweight scene adaptation" technology chain to 

promote the landing of educational robots in real 

classrooms. 

 

6  Conclusion 
The key bottleneck for educational robots in 

classroom use is that hardware cannot support complex 

voice interaction models efficiently. This study explores 

and validates a knowledge distillation-based lightweight 

voice interaction system, which shows better performance 

balance in simulating real classroom evaluations and 

boosts interaction real-time performance and usability. 

(1) Hardware & Fluency: The lightweight model’s 

storage is compressed to under 350MB (↓80% vs. original 

large model), single inference computation ↓75% (easily 

deployable on resource-constrained terminals). In 

simulated scenarios: clear voice recognition accuracy 

>92%, response time <1.5s, subject query & instruction 

understanding fit >88%, 5-8 round interaction interruption 

rate <7%, comprehensive score 7.8/10 (only complex 

scenario intention understanding and topic switching need 

optimization). 

(2) Recognition Accuracy: On test sets with 

classroom noise, the robot’s speech recognition WER 

=15.8% (↓12.6 percentage points vs. same-scale small 

models without knowledge distillation); educational 

instruction core intention recognition accuracy =91.3%. 

(3) Core Breakthrough (Response Efficiency): End-

to-end interaction average delay ≤500ms (↓38% vs. 

original large model’s 810ms), outperforming traditional 

compression. 

This system solves the long-term issue of deploying 

high-precision voice models on resource-limited edge 

devices, enhances interaction real-time performance, 

robustness and usability, and lays a technical foundation 

for natural human-computer collaboration of educational 

robots in classrooms. It is a key breakthrough in model 

compression engineering and provides a lightweight 

paradigm for future educational intelligent applications. 

Limitations: There is a risk of domain overfitting in 

knowledge extraction, deep binding to specific 

educational scenarios, and weak interdisciplinary transfer 

ability - for example, the logical reasoning knowledge 

module in mathematics classrooms is difficult to directly 

adapt to the text appreciation needs of language and art 

classrooms, requiring targeted adjustments to core 

modules, which not only increases development costs but 

may also disrupt interactive fluency; The core interaction 

relies on the quality of pre trained teacher models. If there 

are biases or sample shortages in the training data, it can 

easily lead to "irrelevant answer" problems, further 

amplifying the limitations of scene adaptation; The energy 

consumption of lightweight platform deployment is 

affected by both hardware performance and software 

optimization, and the estimation of battery life needs to be 

comprehensively confirmed based on battery capacity, 

energy distribution in different teaching scenarios, and 

battery attenuation laws to ensure the stability of 

continuous working time. 
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