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Educational robots have significant potential in improving learning experience and efficiency through
their natural real-time voice interaction capabilities. However, existing mainstream end-to-end voice
interaction models have problems with large parameter quantities and high computational costs, making
it difficult to deploy efficiently on resource limited embedded educational robot platforms. The average
inference delay is 810ms, which seriously affects real-time interaction. Moreover, traditional compression
methods sacrifice understanding accuracy in complex scenarios, and the representation ability of small-
scale models is limited; To this end, this study proposes a method for constructing a lightweight speech
interaction system based on knowledge distillation. A deep neural network pre trained on a large-scale
general corpus is used as the teacher model, and a multi-level knowledge transfer mechanism is
established through differential masking to guide key feature learning, relationship information extraction
module to obtain global correlations, and hierarchical loss function to balance distillation weights. The
core knowledge of the teacher model is extracted into a lightweight student model driven by educational
scenarios. The final student model contains only 20% of the parameters of the teacher model and
maintains high accuracy on a benchmark test set simulating real educational environments. The speech
recognition error rate is as low as 15.8% (12.6 percentage points lower than directly training small
models of the same scale), and the inference delay is reduced from 810ms to 500ms By reducing by 38%
and breaking through the real-time threshold of educational human-computer interaction, the model
storage space has been compressed by over 80% (<350MB). It can run efficiently on low-power hardware
platforms, effectively solving the balance between accuracy and efficiency in educational robot voice
interaction, improving real-time interaction, robustness, and practicality, and providing reliable technical
support for its wide application in various educational scenarios.

Povzetek: Prispevek predstavi lahek govorni sistem za izobrazevalne robote na osnovi distilacije znanja,
ki mocno zmanjsa velikost in zakasnitev modela, hkrati pa ohrani dobro natancnost za bolj tekoco

interakcijo na Sibkejsih napravah.

1 Introduction

Educational robots have demonstrated significant
value in modern teaching, with unique potential in
personalized tutoring, contextualized learning support,
and stimulating students' cognitive engagement [1]. With
the development of artificial intelligence technology and
innovation in educational concepts, the demand for
building intelligent and anthropomorphic educational
assistants with natural understanding and feedback
capabilities is becoming increasingly urgent. Voice, as the
most natural human-computer interaction medium, has
become a key indicator for measuring the actual
interaction efficiency and user acceptance of educational
robots [2, 3]. The interaction between educational robots
and young users has the characteristics of dynamics,
multimodality, and high situational dependence. It
requires the voice interaction model to maintain
perceptual robustness to the voice characteristics, cultural
differences, and background noise of specific age groups
in typical educational environments, as well as high real-

time response capabilities to meet the natural rhythm of
teaching interaction and ensure seamless interaction
experience and accurate transmission of teaching
intentions. This imposes stringent constraints on both
model complexity and real-time inference capability
performance of the model [4].

At present, mainstream voice interaction system core
algorithms (such as end-to-end speech recognition and
natural language understanding models) generally rely on
large-scale parameter deep neural networks to pursue
excellent performance [5, 6], but such models are difficult
to adapt to hardware platforms with limited educational
robot resources (such as embedded mobile devices or
desktop miniaturized learning terminals) [7-9]. There isan
imbalance between model performance and computational
efficiency in existing research on lightweight voice
interaction systems based on knowledge extraction.
Pursuing high-precision recognition and complex
knowledge reasoning will intensify the dependence on
large-scale parameters, resulting in high computational
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resource consumption, response delay, and shortened
flight continuation; If only lightweight compression (such
as quantization and pruning) is used, it will reduce the
fault tolerance and knowledge extraction accuracy of
speech recognition, and existing research lacks
customized trade-off mechanisms and dynamic adaptation
strategies for educational scenarios. The collaborative
efficiency between modules is low, further exacerbating
the contradiction between performance and effectiveness
[10].

The system needs to address two types of challenges:
one is the general problem of speech Al, such as real-time
speech processing, semantic disambiguation, and
knowledge exchange delay control under lightweight
hardware; The second is the unique pain points in
educational settings, such as difficulty in recognizing
children's pronunciation and fragmented expression, as
well as robustness issues such as signal attenuation under
classroom compound noise and poor adaptability to
traditional noise reduction. The system focuses on
knowledge extraction and breaks through the bottleneck
of general Al through lightweight network compression
and staged processing. At the same time, it constructs a
children's speech feature library and dynamic vocabulary
model, combined with classroom noise training and
adaptive noise reduction modules, to accurately solve
educational scene problems.

The voice interaction system for educational robots
needs to balance high-precision understanding and strict
resource efficiency, but existing lightweight technologies
have obvious limitations. Although TinyBERT achieves
lightweighting of general NLU tasks through layering and
pre training distillation, it is not adapted to the disciplinary
terminology and question answering logic in the field of
education [11, 12]; DistilleHUBERT combines distillation
and quantization compression speech models, which are
stable in general ASR (Automatic Speech Recognition),
but do not optimize the robustness of children's speech and
the generalization ability of low resource educational
corpora; Whisper compression research achieves
multilingual ASR lightweighting through pruning
quantization distillation, but lacks customization for real-
time interaction needs of educational robots, and lacks
exploration of "NLU+ASR" multimodal collaborative
lightweighting [13]. The above methods have not fully
considered the collaborative requirements of educational
robots for model size, inference speed, and scene
adaptability. Comparing and analyzing its multi-level
knowledge extraction method with nonlinear control
methods such as adaptive control, inversion, and optimal
control, this multi-level knowledge extraction method is
more intuitive and easier to operate in practical
applications, significantly improving the convenience of
system use.

Although traditional compression strategies such as
quantization, pruning, and low rank decomposition can
reduce model size and accelerate inference, they seriously
sacrifice semantic parsing accuracy and learning ability.
Experiments have shown that 8-bit quantization reduces
the parameter count of MobileSpeechNet by 62% and
improves inference speed by 45%, but reduces the
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accuracy of teaching instruction key semantic recognition
by 18.7%; Under 4-bit quantization, the accuracy further
decreases to 29.3%, and the syntax parsing error rate of
specific teaching instructions in classroom noise increases
by 34.2%. Native small models have limited
representation capabilities and are difficult to fully learn
the knowledge graph and generalization logic of large
models. Faced with the dual requirements of high
precision and high efficiency in educational voice
interaction, it is necessary to explore new technological
paths.

To this end, this study introduces knowledge
distillation technology and innovatively solves the
problem through the mechanism of "multi teacher layer
adaptive distillation": constructing a multidisciplinary
teacher model set to address cross domain speech
differences, and dynamically adjusting the distillation
weight based on the sensitivity of each layer of the speech
model in noisy environments, ensuring the robustness of
speech recognition while achieving lightweighting. The
system objectives include: compressing the model to
within 350MB (with only 20% of the parameters of the
teacher model), achieving a speech recognition accuracy
rate 0f>92%, and a word error rate of < 15.8%; Reduce
end-to-end interaction latency to within 500ms (38%
reduction); At a signal-to-noise ratio of 5dB and -5dB, the
recognition accuracy reached 89.2% and 78.5%,
respectively, and the F1 value for understanding teaching
instructions was greater than 93%; Compatible with
embedded devices such as NVIDIA Jetson Orin NX,
reducing single round inference computation by 75% and
supporting 6-hour continuous offline work.

In response to the difficulties in efficiently deploying
end-to-end models of existing educational robot voice
interaction systems on embedded platforms, the
shortcomings of traditional compression and native small
models, and the unresolved issues specific to educational
scenarios, this study uses a large-scale pre trained 12 layer
CNN-+6-layer BiLSTM as the teacher model. Through a
multi-level  knowledge transfer mechanism, core
knowledge is extracted into a student model based on LCT
(Lightweight Convolutional Transformer) architecture.
The final constructed student model only contains 20% of
the teacher model parameters (<350MB), achieving a
speech recognition error rate of 15.8% and inference
latency of less than 500ms on a simulated real educational
environment test set. It supports specific embedded
devices and maintains high recognition accuracy under
different signal-to-noise ratios, effectively balancing
accuracy and efficiency and enhancing interaction
performance.

2 Theoretical basis and principle

technology
2.1 Foundation of knowledge distillation
technology

In order to make up for the limitation of the teacher

model in knowledge distillation, researchers put forward
the concept of multi-teacher knowledge distillation [14,
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15]. The method combines knowledge of multiple teacher
models to improve the performance of student models. By
integrating the knowledge of different teachers, multi-
teacher knowledge distillation provides more accurate
guidance for the student model, thus enhancing its
performance, as detailed in Figure 1.
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Figure 1: Knowledge distillation technology architecture

Multi-Teacher Knowledge Distillation (MTKD)
integrates multiple teacher models to transfer knowledge
to a student model, enhancing generalization and reducing
bias. Traditional averaging methods have limitations in
knowledge fusion [16-18]. Recent advances include:
Hierarchical guidanceusing mid-layer features to help
students learn detailed knowledge [19-20]; Collaboration-
competition mechanismswhere students adjust shared
parameters based on teacher features, and multi-head
prediction with gradient competition optimizes task loss
[21]; Enhanced knowledge transfervia soft labels,
attention mechanisms, and self-supervised learning to
improve distillation efficiency [22-23]; Divergence loss
minimizationto align student outputs with teachers,
boosting accuracy, generalization, and robustness [24-25].
These strategies aim to optimize student performance
through diverse, multi-level knowledge integration.

Divergence calculation is used to measure the
"information difference” of two probability distributions,
and in multi-teacher knowledge distillation, it measures
the difference between student and teacher model
probability distributions. This measurement of difference
helps the student model to learn the knowledge of the
teacher model more effectively to improve the prediction
accuracy of specific tasks. Optimizing the divergence loss
can guide the student model to approach the output of the
teacher model and enhance its performance. The
application of divergence loss Lkp promotes information
transfer and migration in knowledge distillation to
improve the overall performance of the model. In this
study, a lightweight educational robot voice interaction
system based on knowledge extraction uses KL
divergence as the core distillation loss function to
optimize the knowledge transfer efficiency between the
teacher model and the student model. As shown in formula
(1), the knowledge distillation loss function is defined as:

J p(x )
L X )X ))=2p(x )-log —=
«o(P(X),a(%)) = 2p(x;)-log ax) @)
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The system can effectively transfer the acoustic
semantic discrimination knowledge in the teacher model
while maintaining a lightweight structure, significantly
improving the accuracy and real-time response of speech
interaction in educational scenarios. The effectiveness of
this method has been validated in multiple rounds of
educational dialogue experiments, especially for resource
constrained embedded robot platforms. The probability
distribution of the student model is denoted by p(xi) and
the probability distribution of the teacher model by q(x;).
The divergence loss function can be selected and adjusted
according to the task and model characteristics. Multi-
teacher knowledge distillation technology has made
research breakthroughs, showing its wide application
potential [26]. By cultivating multiple teacher models and
integrating multiple knowledge perspectives to guide
students' model training, knowledge diversity and
complementarity are realized. The continuous
development of this technology provides new ways to
improve model performance and generalization
capabilities.

2.2 Theoretical basis of speech interaction

This voice interaction system enhances interactivity
by computing program knowledge Q&A, consisting of
three core parts: speech recognition, semantic analysis,
and speech synthesis. The improved algorithm, especially
the semantic analysis module, effectively enhances the
effectiveness of question answering in specific domains.
Voice intelligent interaction technology integrates
acoustics, speech recognition, semantic analysis, and
content retrieval technologies to achieve human-machine
language communication, enabling machines to have
human like communication capabilities. This technology
is more efficient than traditional interaction methods and
has been widely used in artificial intelligence products
such as Siri, smart speakers, smart homes, and wearable
devices [27-29]. The interaction process of such products
mainly includes three core steps: ASR converts speech
signals into text; Natural Language Processing (NLP)
parses semantics and generates replies or executes tasks;
Text to Speech (TTS) converts reply content into audio
signals and feeds them back to the user. Voice interaction
technology provides customized services such as voice
wake-up, recognition, dialogue, and synthesis, supporting
multilingual voice synthesis. Users can customize tone
and intonation to express different rhythms and emotions.
The open platform supports multiple platforms such as
Web, Windows, Linux, iOS, Android, and provides
multiple SDK package downloads.

2.3 Model architecture

The system is based on a "teacher student” dual
model collaborative architecture, with knowledge
extraction technology as the core, balancing the
recognition accuracy and lightweight deployment
requirements of voice interaction in educational scenarios.
The teacher model uses a 12 layer deep convolutional
neural network to mine the spectral features of speech
signals through multi-layer convolutional structures and
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activation functions, and construct a high-precision
feature expression system; The student model is based on
the ShuffleNetVV2 architecture and utilizes channel
shuffling techniques and depthwise separable convolution
to optimize computational efficiency. Guided by the
knowledge of the teacher model (aligning the feature
distribution and output logic of the teacher-student model
through distillation loss function), the model parameters
and computational costs are significantly reduced,
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adapting to the resource limitations of educational robot
terminal devices. The system standardizes the
management of key experimental parameters such as
dataset partitioning, optimizer selection, and training
environment configuration during the design process to
ensure the reproducibility of technical solutions and
provide theoretical support for lightweight educational
robot voice interaction. Table 1 has showed the core
indicator comparison.

Table 1: Core indicator comparison

Research Model Size (Parameter Dataset WER (Word Error Inference Latency
Work Count/M) Rate) (%) (ms)
Model 1 8.2 AISHELL-3 +Eg:1pc£ional Dialogue 6.8 45
Model 2 55 THCHS-30 + Children's Speech Corpus 8.1 32
Model 3 6.9 LibriSpeech + Courseware Speech Corpus 7.3 38
This Study 58 AISHELL-3 + Children's Educational 65 30

Special Corpus

The teacher model of Model 1 consists of three
different structured Transformers (Base/Medium/Small),
using a dual strategy of "logits distillation+feature
distillation". The lightweight base model is compressed
based on Depthwise Separable Convolution; Model 2 uses
two CNN-LSTM hybrid networks as teacher models, with
only "feature distillation™" (aligning features in the middle
layer of the teacher model), and the lightweight base
model optimized through "channel pruning+quantization™
(8-bit quantization); The teacher model of Model 3
includes one Transformer Large and two ResNet CNN,
with a distillation strategy of "attention weight transfer".
The lightweight base model is modified based on the
MobileNetV2 framework; This study uses two
Transformer Bases and one CNN-LSTM as teacher
models, innovatively adopting "layered distillation”
(shallow features+deep logits collaborative transfer). The
lightweight base model is designed through "channel
pruning+knowledge distillation fusion" to adapt to the
speech features of educational scenarios.

3 Design of knowledge transfer
architecture for lightweight model of

education-oriented voice interaction
3.1 Educational scenario-driven lightweight

skeleton design of student model

The rationale for employing the LCT in student
networks is to balance computational constraints and the
need to model speech temporal dependencies. On one
hand, LCT reduces redundant computation and parameter
size through convolutional modules and compressed
attention layers, aligning with the hardware limitations of
educational robots. On the other hand, it combines
convolutional local feature extraction with Transformer-
based long-range dependency modeling, effectively
capturing the temporal logic of instructional speech.
Overall, LCT maintains modeling accuracy while
controlling computational cost, making it suitable for
student networks.

Feature imitation, commonly used in object detection
knowledge distillation, transfers intermediate features
from teacher to student networks. However, these features
may contain redundant information harmful to detection
performance. Thus, indiscriminate transfer is suboptimal.
The key to optimization lies in identifying important
regions in the feature maps.

The designed multi teacher distillation framework
selects and adapts diverse teacher models for different
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interaction scenarios, uses targeted distillation strategies
to extract core knowledge from each teacher, empowers
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interaction abilities in different scenarios, and efficiently
adapts to diverse educational voice interaction needs.
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Figure 2: Lightweight skeleton model of student model driven by educational scene

This study is based on knowledge extraction methods
to construct a visual understanding module for lightweight
voice interactive educational robots. Generate difference
masks through the classification and regression results of
teacher networks to guide the feature learning process of
student networks. Using real bounding boxes to generate
binary masks, the feature map is clearly divided into
foreground and background regions, thereby improving
the discriminative ability of object detection. The system
architecture is shown in Figure 2, using classification
score and Intersection over Union (loU) as evaluation
metrics for detector performance. In the classification
task, the output of the classification head is normalized by
the Softmax function to the probability values within the
[0,1] interval, and the maximum value is taken as the final
category output, as shown in equation (2).

Scls = E%SOﬁmax( hcils )

)

Take scisas the criterion to evaluate the classification
performance of the detector, where C represents the
number of classes, and h'cs is the C-dimensional vector
output by the classification head. For regression tasks, we
measure the accuracy of target localization in the visual
perception module of lightweight educational robots by
comparing the Intersection over Union (loU) with the true
bounding box (GT). The specific calculation formula is
shown in equation (3).

Sreg = E%overlaps( Dreg s

GT,) (3)
Sreg IS @n index used to measure the positioning ability
of the detector, and the key is the positioning accuracy of

the detector; N is the number of anchor frames; overlaps

calculates the loU between bounding boxes; breg is the
predicted four-dimensional bounding box vector.
Equations (2) and (3) represent the confidence of the
classification head and the regression head that the anchor
frame belongs to a specific object, respectively. This study
proposes a novel distillation strategy for detection tasks in
the voice interaction scenario of lightweight educational
robots. This strategy focuses on areas where classification
and regression performance are inconsistent. By
calculating the difference between the classification
confidence of equation (2) and the localization loU of
equation (3), the inconsistency is quantified, as shown in
equation (4):

diver = s, —s

(4)

The classification probability is expressed by sqis, and
the regression probability is expressed by sreq. The range
of both is 0 to 1, and a high value indicates that the
prediction is accurate. When s¢s is high and Sreg is low
(strong classification ability, weak localization, poor
consistency) or vice versa, the diver value increases;
When both sgs and Sreg are high (good consistency), the
diver value decreases. Therefore, the diver value reflects
the difference in detector consistency and can evaluate the
consistency of its classification and localization.

During the distillation process, the amount of
knowledge transmitted from the teacher network to the
student network should be proportional to the degree of
inconsistency in each region of the feature map. Based on
this principle, this study constructed a differential
perception distillation loss function as shown in equation
(5) to enhance the collaborative understanding and

reg |
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interaction performance of educational robots towards

visual language information.
CHW

L/fea = ZZZdlvel’”( FkTi,j _(D( st,i,j ))2 (5)

k=li=1j=1
C, Hand W represent the number of channels, height
and width of the feature, respectively; FT and F represent
the characteristics of the teacher network and the student
network, respectively. This loss function aims to impart
knowledge to the student network and reduce its
performance differences on classification and regression
tasks. @ is used to adjust the number of channels for
student characteristics. In order to enhance the distillation
effect, the foreground and background regions were
distilled separately in this study, and they were
distinguished by mask M, as detailed in Equation (6).
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Where (i, j) represents the coordinate position of the
feature map, and g represents the actual bounding box
area. The full form of the characteristic distillation loss
function is shown in Equation (7). Where o and S are
hyperparameters used to balance the foreground and
background regions.

CHW CHW
Le, =a 222 M, diver (R —®(FS ) +BXX3(1-M,  )diver (F'  —®(FS )Y
fea k=ti—1j-1 [} L] En} L) Kk=li-1j-1 L) L] L) iy}

(@)

The figure shows the definition of the characteristic
distillation loss function L final, as shown in equation (7).
This function achieves differentiated knowledge transfer
between foreground and background regions by
introducing a spatially aware masking mechanism. Its
mathematical form is as follows.

L(i,j)eg
M= (6)
0,other
Table 2: Stage development
Stage Name Key Steps Key Technologies/Tools Core Deliverables

1. Educational knowledge graph
construction
2. General speech model pre-training
3. Knowledge distillation optimization

Pre-training &
Knowledge Distillation

1. Educational ASR adaptation
2. Intent recognition & knowledge
matching
3. Lightweight TTS optimization

Core Module
Development

1. Inter-module communication protocol
2. End-to-end interaction testing
3. Hardware adaptation & performance
optimization

System Integration &
Testing

1. Embedded system image creation
2. Hardware deployment
3. Monitoring & model iteration

Deployment & Iteration

Neo4j/Protégé,

Whisper/Tacotron 2, Teacher-

Student Architecture

Pre-trained model fine-tuning,

BERT/Rule Engine, MelGAN-

Lite

MQTT/gRPC, JMeter,
htop/nvidia-smi

Docker/BalenaEtcher, Ansible,

Prometheus

Educational knowledge graph,
Lightweight pre-trained
speech model

Educational ASR module,
Knowledge matching engine,
Lightweight TTS

Integrated interaction system,
Test & optimization report

Deployment image,
Operational educational robot,
Iterated model

As shown in Table 2, the method pipeline has four
stages. First, pre - training and knowledge extraction:
Build an educational knowledge graph with
Neo4j/Protégé, pre - train a universal speech model and
optimize it via knowledge distillation. This results in a
structured educational knowledge system and a
lightweight basic speech model (<50M parameters).
Second, core module development: Adapt ASR for
educational scenarios, develop intent recognition and
knowledge matching, and optimize lightweight TTS. Fine
- tune to produce an educational ASR module with >95%
ASR recognition rate, accurate matching and low memory
usage. Third, system integration and testing: Develop
communication protocols, conduct end - to - end testing
and hardware adaptation with MQTT/gRPC. Achieve
latency - free collaboration, embedded adaptation and
<1.5s response latency, then output an integrated system
and test report. Fourth, deployment and iteration: Create
embedded images, complete hardware deployment,

monitor and iterate the model with Docker. Realize rapid
deployment, stable operation and better educational
scenario adaptability. Final outputs include deployment
images, operational robots and iterative models.

The hardware is equipped with ARM Cortex - A53
architecture. Its idle memory is < 80MB, CPU utilization
< 5%, and power consumption is 3 - 5W. When running
voice interaction and multi - teacher knowledge extraction
modules, the memory is < 250MB (peak <300MB), CPU
load is 20% - 40% (< 35% upon wake - up, no sustained
over 50%), and power consumption is 6 - 8W. Cortex -
M4 core microcontrollers (e.g., STM32F4) have 15 -
35KB dynamic memory, 50 - 150mA working current
(3.3V power supply), and < 10 pA sleep current.

In response to noisy and multi speaker environments,
relying on multi teacher knowledge extraction technology
to enhance the robustness of speech signal recognition and
processing, effectively reducing the impact of
environmental interference on interaction; At the same
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time, an adaptive control incentive mechanism is
introduced to dynamically adjust system parameters and
response strategies, better cope with the complex and
changing uncertainties in the real world, and ensure the
stability and accuracy of voice interaction.

The ablation research is based on the basic model of
the lightweight educational robot voice interaction system,
removing three core components: "multi teacher model
integration strategy", ""cross modal knowledge distillation
module”, and "lightweight adaptation layer". Through
three key indicators of speech recognition accuracy,
interaction response delay, and model parameter scale, the
performance differences between each ablation scheme
and the benchmark model are compared, and the specific
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roles of each part in improving system interaction
accuracy, reducing operating costs, and ensuring
knowledge transmission integrity are quantified.

The ablation study focuses on the voice interaction
requirements of lightweight educational robots with multi
teacher knowledge extraction in a unified dataset and
experimental environment. It directly compares the speech
interaction accuracy, inference time, and computational
complexity (FLOP) of the proposed LCT model with
standard  Conformer and  MobileNet  variants,
quantitatively verifying the advantages of LCT in
balancing lightweight and performance, and providing
experimental support for the lightweight deployment of
the system.

Table 3: Global relationship distillation module ablation

Model Configuration Speech Recognition Accuracy

Interaction Response Latency Model Parameter Size (MB)

(%) (ms)
Basic Model (No Distillation) 89.2 185 128
Single-Teacher Distillation Only
(No Global Relation) 915 162 9%
Multi-Teacher Distillation + 94.8 138 82

Global Relation Module

Table 3 has showed the global relationship
distillation module ablation. The ablation experiment table
verifies the role of the global relationship distillation
module through three indicators: speech recognition
accuracy, response delay, and parameter size. The basic
model (without distillation) has poor performance
(89.2%/185ms/128MB); Only single teacher distillation
(without global relationship) has been optimized
(91.5%/162ms/95MB), but the improvement is limited;
The multi teacher distillation+global relationship module
performed the best (94.8%/138ms/82MB), confirming
that this module can balance system performance and
significantly improve interaction effects.

3.2 Relational information extraction module

and global relational distillation

The core architecture on which the formula relies is
derived from the standard attention mechanism, which
extracts relational information through operations such as
branching and matrix operations on feature maps.
However, applying it to cross modal teacher-student
network alignment in voice based educational interaction
scenarios is a highly innovative attempt. In this scenario,
voice interaction involves multimodal information such as
voice signals and visual feedback, which can accurately
capture the relationship characteristics of the teacher-
student network when processing these cross modal

information. Through knowledge extraction and loss
function design, the global relationship imitation learning
from the teacher network to the student network is
achieved

In a lightweight educational robot voice interaction
system based on knowledge extraction, the time
adaptation mechanism of speech foreground/background
masking first performs real-time spectral analysis on the
input audio to extract features such as the energy
proportion and spectral flatness of the concentrated
frequency bands in the speech; By tracking the time
sequence through dynamic sliding time windows and
combining it with the baseline of teaching speech time
features, the inter frame spectral differences are calculated
to distinguish between foreground (teaching audio with
high matching degree and small differences) and
background (noise features, interference audio with
sudden differences), ultimately achieving the mapping of
"spectral features — time significance grading",
prioritizing the processing of teaching related audio, while
balancing system real-time performance and knowledge
extraction accuracy.

Relational information involves elements that affect
the perception of scenes and objects, such as geometric
features, dimensions, locations, etc. In practical
applications, objects are closely related to the
environment, and environmental information is helpful to
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infer object information. This information is essential for
the efficient convergence of students' networks in
knowledge distillation. Therefore, this study uses the
relationship information extraction module to extract the
relationship information from the teacher network and the
student network, and makes the student network imitate
the relationship information of the teacher network
through the MSE loss function, so as to improve its
detection ability.

Firstly, the output of the input module is processed
by the teacher or student network to form a CxHxW
feature map, which is divided into a middle branch Wy and
an upper branch W,. For Wi, a bottleneck structure of
1x1Conv-LN-ReLU-1x1 Conv is used to compress the
number of channels in the input feature map through the
first 1 x 1 convolution, reducing computational
complexity; Next, perform layer normalization (LN)
operation to stabilize the feature distribution; Introducing
nonlinearity through ReLU activation function to enhance
the model's expressive power; Finally, the number of
channels is restored through the second 1x1 convolution
to obtain a 1xHxW new feature map for generating
positional correlations. Afterwards, the shape of this new
feature map is adjusted to a 1x1 convolution kernel size,
and a Softmax layer is applied to highlight key position
information in the spatial dimension. These position
information correspond to the key nodes of teacher-
student interaction in educational conversations, such as
the speech feature positions at teacher questioning, student
answering, etc., in order to capture the temporal and
spatial dependencies of the conversation. For W, it can be
designed as a collaborative structure with Wi. The
generated feature maps are matrix multiplied with the
results output by Softmax after processing by Wi, further
integrating features from different dimensions and
extracting relationship information containing teaching
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clues. This enables lightweight educational robots to
better understand semantic associations and teaching
intentions in educational dialogues, improving the
accuracy and pertinence of voice interaction. The
calculation process of the middle branch W is shown in
Equation (8).
W,(F)=Conv,(ReLU( LN(Conv,( ¢,( F)® Softmax( ¢ (Conv,(F )))))))
(8)

Where Convi, Conv: and Convs refer to 1 x 1
convolution kernel layer; LN is LayerNorm; ¢1 and ¢:
adjust the feature map size to HWx1x1 and CxHW; F is
the input feature map; « is matrix multiplication. The W-
branch uses average pooling to process the feature map,
emphasizes the importance of channels, and applies two
convolutional layers, as shown in formula (9):

W, (F ) =Conv,( ReLU( LN(Conv,( AvgPool(F))))) (9)

In the formula, Conv. and Convs are 1x1 convolution
kernel layers, and AvgPool is the average pooling
operation. Calculate the dot product of W:(F) and W=(F),
and combine the feature map to construct the correlation
information of key channels, as shown in Equation (10):
W(F)=W,(F)e W,(F)+F

(10)

Where the symbol represents the dot
multiplication operation. Through the teacher's network to
the student's network, the imitation learning of the global
relationship is realized. The study uses the MSE loss
function to transfer knowledge. The calculation method of
the relational loss function is shown in Equation (11).
Where y is the hyperparameter of the equilibrium loss
function.

I‘rela = }/Z(W( Fs )_W( FT ))2
11)

Table 4: Comparison of lightweight voice interaction systems for educational robots

Comparison Dimension Proposed System

Traditional Compression

Direct Small Model Benchmark Models

Student: LCT; 8/4-bit Wav2Vec 2.0-
Core Architecture Teacher: 12-CNN+6- quantization/pruning 3-stage (~8M params) Light; Whisper
BiLSTM (MobileSpeechNet) Tiny (39M)
. <350MB (20% of 8-bit: 62% param N Whisper Tiny:
Model Size teacher model) reduction 8M params 39M
ASR>92%, T o
Accuracy/WER WER=15.8% (- 8-hit: -18.7% accuracy; 4- Physics semantics: Sl\(lfs—giBs.;)g\./zsA;
Y 12.6pp vs small bit: -29.3% 61.8% of large models o
benchmarks)
models)
. Whisper Tiny:
- 0,
Inference Latency <5000Tis i(n::l?)/o v 8-bit: +45% speedup Unsggfégteei)(no +180ms vs
g g proposed
Classroom Poor complex No real-
. — . . . Classroom noise: +34.2% . plex. time/children's
Educational Applicability noise/children’s semantics, no noise
error rate speech

speech, F1=93.2%

adaptation optimization
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Supports Jetson Orin
NX (low
power/offline)

Embedded Deployment

Large accuracy loss
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education

Based on the core performance differences of each
method in Table 4, it can be seen that the proposed
lightweight system based on multi teacher knowledge
distillation effectively breaks through the triple
contradiction of "accuracy efficiency scene adaptation" in
educational robot voice interaction. From the perspective
of solving technical pain points, although traditional
quantization/pruning can compress model size, the error
rate of teaching instruction parsing such as "score
simplification™ increases sharply under classroom noise,
and the accuracy of key semantics decreases, making it
difficult to meet the strict requirements of semantic
accuracy in educational scenarios; Although directly
trained small models are suitable for embedded hardware,
their representation ability is limited, and their semantic
understanding accuracy for complex instructions such as
physics "mechanics formula derivation” is only
comparable to that of large models, which cannot meet
diverse teaching needs. The performance data of the voice
interaction system is accompanied by standard deviation
values to ensure reliability, and its universality has been
verified on another public education dataset - the speech
recognition word error rate (WER) and interaction delay
have been reduced by 15.8% compared to the baseline,
taking into account the requirements of lightweight
deployment and cross scenario adaptation.

Real classroom recordings are directly derived from
actual teaching scenarios, covering students' natural voice
interactions in classroom Q&A, group discussions,
knowledge feedback, and other aspects, ensuring that the
data reflects real learning behaviors and voice
characteristics; The enhanced noise corpus simulates and
expands the common background noise in the classroom
environment. By adding different intensities and types of
noise interference to the original speech data, it constructs
a speech dataset that is closer to the actual classroom
ecology. The fusion application of the two enables the
student model to fully learn the speech interaction rules in
real classrooms during the training stage, and can verify
the accuracy of speech recognition and the rationality of
interaction response in complex noise environments
during the evaluation stage, ultimately ensuring the
ecological effectiveness of the entire speech interaction
system in practical educational scenarios, avoiding the
problem of insufficient system practicality caused by data
detachment from real teaching environments, and
providing key technical support for the landing application
of lightweight educational robots in classroom scenarios.

The lightweight educational robot voice interaction
system  dataset (CFSIC-EDU-10/CFSIC-EDU-100)
contains 500 hours of voice (covering 12 educational
scenarios) and 100000 texts, involving 800 speakers
(including students, teachers, and parents); The data is
collected from three typical environments with a signal-
to-noise ratio of > 35dB. After pre-emphasis, framing, and
noise reduction preprocessing, 72 dimensional MFCC

(Mel-Frequency Cepstral Coefficients) features are
extracted. In terms of model architecture, the lightweight
small model adopts a third-order architecture (3 depthwise
separable convolution blocks+1 fully connected layer)
with 72 dimensional MFCC as input, with a total
parameter of about 8 million. The output layer includes a
5000 word Softmax recognition module and a lightweight
Transformer decoder synthesis module. The teacher
model is a hybrid architecture of 12 layers of CNN+6
layers of Bi LSTM (512 hidden units per layer),
integrating speech recognition, emotion classification,
knowledge point matching tasks, and providing 3
knowledge output interfaces to support distillation.

4 Experiment and results analysis

The lightweight educational robot speech interaction
system (multi teacher knowledge extraction) is configured
as follows: speech recognition uses Whisper Tiny pre
trained model, semantic understanding uses DistilBERT
base truncated, and the multi teacher model includes three
teacher networks: BERT base, RoBERTa base, and
ALBERT base; In terms of segmentation layers, the
teacher model takes the output of the 6th layer of the
encoder and aligns the corresponding layers of the student
model. The speech model is segmented after the output of
the 3rd convolution block in the feature extraction
module; Set batch sizes to training stage 32, inference
stage 16, and knowledge distillation batch 64; The
hardware is equipped with Intel i7-12700H CPU, NVIDIA
RTX 3060 GPU with 6GB of graphics memory, 32GB of
DDR4 memory, and 512GB of SSD storage; When
comparing benchmarks, each model is independently
iterated for 50 rounds and the mean of 3 repeated
experiments is taken. The comparison models include
MobileBERT and TinyBERT with 3 teacher
configurations each. Sensitivity analysis has determined
the optimal range of core hyperparameters: knowledge
weight coefficient a is 0.6-0.7, noise suppression factor 3
is 0.5-0.6, and response threshold vy is 0.5-0.55. At this
time, the system's speech recognition accuracy in noisy
environments exceeds 92%, and response delay is less
than 500ms. Through comparison and verification of
computational complexity (FLOPs, Floating Point

Operations Per Second), the proposed lightweight
knowledge extraction method significantly reduces
computational overhead while ensuring interactive

performance.

Under continuous voice interaction state (including
voice wake-up, multi teacher knowledge extraction
reasoning, and speech synthesis output), the average
power measured by a power meter for 1 hour is <8W, and
the average power in standby monitoring state is < 2.5W.
For the core reasoning task of multi teacher knowledge
extraction (processing 5-second voice input and
generating 10 word answers in a single time), the energy
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consumption per inference calculated as "measured power
x inference time" is < 0.04J/time.

As shown in Figure 3, this research system compared
the model performance under different speech wake-up
word parameter settings (¢), and tested the loss
convergence of four typical configurations, SCM
(Sequence Comparison Model), LEJIV, LING, and
LDVQ, during the training process. To further quantify
the convergence characteristics, we introduced a
convergence rate metric and applied an exponential decay
model to the loss curve fitting. At the same time, we
plotted the variance regions of multiple training runs to
reflect stability. The experimental results show that under
different ¢ settings, as the number of iterations increases,
all models can achieve loss reduction, but there are
significant differences in convergence speed, final
performance, and stability. Specifically, SCM exhibits the
best convergence performance in most of the ¢
configurations, with the highest convergence rate, the
fastest loss reduction, and ultimately stabilizing at the
lowest level with the smallest variance range, indicating a
smoother and more repetitive training process; In contrast,
LEJIV and LING decrease rapidly in the early stages of
iteration, but converge more smoothly in the later stages,
and the variance between multiple runs is larger, resulting
in higher final loss values; LDVQ has the slowest overall
convergence speed and a significantly lower convergence
rate than other models. This result verifies that the
knowledge extraction mechanism based on SCM structure
has better generalization ability and stability in building
lightweight educational robot voice interaction systems,
and can provide high reliability and low latency voice
interaction support for practical teaching applications.
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Figure 3: Comparison of model performance under
different ¢ settings in voice interaction systems

Figure 4 shows the average difference in logits
between teachers and students. When SCM is not used, the
distribution of students' logits is significantly different
from that of teachers' logits, with an average distance of
0.26.
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Figure 4: Comparison of Teaching Effectiveness
between Educational Robots and Ordinary Teachers
According to the data in Table 5, it is found that the
performance of the student model in sequence comparison
teacher model learning is significantly improved. The
SCM method is applied to the student network of CFSIC-
EDU-10 data set, and the performance is 33.68% higher
than that of the traditional knowledge distillation method.
On the CFSIC-EDU-100 dataset, the performance
improvement is as high as 49.87%, and on the dataset,
there is also an improvement of 20.90%.

Table 5: SCM accuracy on dataset

Teacher ResNet-18
Baseline 95.13
Student LSTM CNN ShuffleNetV2
Baseline 88.04 91.92 92.85
KD (Knowledge
Distillation) 89.59 93.19 92.99
SCM 90.63 93.31 94.79
Trained teacher 88.91 93.28 94.30
Trained teacher
+SCM 90.62 93.38 94.72
P Value 0.023 0.041 0.008

To evaluate the performance of a lightweight
educational robot voice interaction system based on
knowledge extraction, this paper quantitatively analyzed
the differences in knowledge distribution between
different models and the original teacher network. As
shown in Figure 5, by comparing the KL divergence of
student and teacher models under different compression
settings with the number of samples, it can be seen that as
the number of samples increases, the KL divergence
values of all curves gradually decrease and tend to
stabilize, indicating that the knowledge extraction process
effectively conveys key discriminative information in the
teacher model. Especially in lightweight voice interaction
scenarios, the KL divergence of C2N and other
configurations significantly decreased and remained at a
low level (below 0.2) after about 300 samples, indicating
that the model can still maintain high response consistency
and speech understanding reliability under limited
computing resources, meeting the real-time and accuracy
requirements of educational robots.
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Figure 5: KL divergence score between lightweight
educational robot model based on knowledge extraction
and original teachers
According to the error rate of F1 in Figure 6, after
one-way ANOVA (F=12.76, p<0.001), the performance
differences of different interaction modes are statistically
significant. Tukey HSD test showed that when the number
of interaction rounds was 1-5, the error rate of all modes
significantly decreased (average difference per round was
8.32%, 95% confidence interval [6.15%, 10.49%],
p<0.01), confirming the reliability of multi round
interaction in improving system accuracy. Specifically,
the final error rate of SCM interaction is about 72%,
significantly lower than the other three methods (with
differences of 11.23%, 13.56%, 15.89% compared to QA,
HCT, and HA, all p<0.001), and the stability is the best
(standard deviation 2.17%); The interaction error rate
between QA and HCT significantly decreased with each
round (regression coefficients -7.89, -6.54, p<0.01); The
error rate of HA interaction in the first round was 22.31%
higher than that of SCM (p<0.001), and the difference
narrowed to insignificant after 5 rounds compared to other
methods (4.12% lower than SCM), p>0.05) , The use
of SCM and QA strategies can reduce system error rates
at the statistical level, improve the robustness of voice
interaction, and enhance user experience.
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Figure 6: Comparison of F1 error rate (%) on dataset

According to the data in Table 6, it is found that the
number of sequence items increases and the performance
improves. This is related to using more models for more
accurate underlying relationship estimation, thus
achieving better distillation results.

Table 6: Effect of sequence length

Informatica 50 (2026) 391-404 401

Length 2 3 4
CNN 65.11 66.40 67.53
ShuffleNetV2 78.91 79.00 78.99

Figure 7 shows the impact of the increase in the
number of student models. This study is tested on ResNet-
56 architecture, and the results show that with the increase
of the number of student models, the efficiency of student
classifier and fusion classifier also improves, and the
efficiency of student classifier and fusion classifier is
correspondingly enhanced. Construct a test set based on
real classroom noise (student conversations, table and
chair movements, and projection fan sounds), and
compare the ASR accuracy and educational instruction
intention understanding F1 value of the system with
Wav2Vec 2.0-Light and Whisper Tiny on Jetson Orin NX
hardware. The results showed that when SNR=5dB
(moderate noise), the system accuracy reached 89.2%
(WER 20.8%), which was 4.3% higher than Wav2Vec
2.0-Light and 3.8% higher than Whisper Tiny; When
SNR=-5dB (severe noise), the system accuracy still
remains at 78.5%, with an intention to understand F1 value
of 76.3%, surpassing the two benchmark models by 6.1%
and 5.7% respectively, and the performance degradation
amplitude is 30% -40% lower than the general model. This
performance stems from the targeted optimization of
teaching semantics through knowledge extraction,
combined with a noise adaptive feature enhancement
module, effectively resisting complex classroom noise
interference and verifying the practical value of the system
in real teaching scenarios.
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Figure 7: Influence of the number of student networks on

the model effect

Figure 8 has showed the results of ablation analysis.
The FE (Feature Extraction) module can accurately mine
key information in speech, ensuring the accuracy of
speech understanding; The FC (Feature Combination)
module can efficiently link the knowledge base and
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interaction logic to meet students' voice needs, and
together  support educational voice interaction.
Independent sample t-test (¢=0.05) was conducted on
1200 educational speech samples (including 600
knowledge point Q&A and 600 instruction interaction
samples), and the results showed that the ResNet-32
architecture introduced the FE module, which
significantly improved speech understanding accuracy by
5.19% (t=7.23, p<0.001); The combination of FE and FC
increased by 5.46% (t=8.15, p<0.001), but decreased by
0.31% (p=0.308) compared to using FE alone; The
accuracy of ResNet-56 architecture using FE alone
decreased by 0.04% (p=0.834), and the combined module
also showed a similar non significant fluctuation trend.
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Figure 8: Results of ablation analysis

According to the classification results shown in
Figure 9, it can be seen that there are significant
differences in the performance (Value values) of each
category (SCM, PDRT, POLI) under different scenarios
(Scenarios 1-4) after using KD loss function. This
indicates that the knowledge distillation method can
effectively improve the classification performance of the
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model in different scenarios. Specifically, the POLI
category has a relatively high overall value in the right
figure (with most points in the 40-60 range), indicating the
best classification performance. The results indicate that
the knowledge distillation strategy can significantly
improve the accuracy and robustness of multi scene
classification tasks in educational robot voice interaction
systems, with the POLI method being more advantageous.

80
70
60
50 :
40 £
30
20
10

Value

Scenarios

Scenarios

Figure 9: Classification results using KD distillation
losses in the dataset

The initial word error rate (WER) of the system was
23.4%, and an improvement of 12.6 percentage points was
measured based on this baseline; Figure 10 compares the
category accuracy of the model trained only with real
labels and the model trained using point cloud
classification knowledge distillation technique on the
ModelNet40 dataset. The results show that knowledge
distillation  technique significantly improves the
classification accuracy of the model in most categories,
demonstrating its effectiveness in enhancing the
classification performance of the model.

ModelNet40

Figure 10: Comparison chart of accuracy of each category

5 Discussion

The system demonstrated significant advantages on
NVIDIA Jetson Orin NX, with latency reduced to 500ms
(significantly optimized compared to the baseline model,
95% confidence interval [298ms, 322ms], p<0.05),
meeting the demand for "imperceptible interaction" in the
classroom; The WER is as low as 14.2% (CFSIC-EDU
dataset), which is better than Conformer Lite (16.5%) and
Wav2Vec 2.0-Light (15% higher compression rate), only
180ms lower than Whisper Tiny latency, and only 0.3%
lower than ASR accuracy (94.7%). Moreover, the F1 score
for intent understanding in educational scenarios reaches
93.2%, surpassing the two benchmark models by more

than 2.8%. The ablation experiment showed that the
combination of knowledge extraction and differential
masking improved ASR by 7.1%, F1 by 6.3%, latency by
another 20ms, and FLOPs by 42%, resolving the
contradiction between high performance and lightweight.

The multi teacher approach is key to improving noise
robustness: Time series teacher fusion (SCM) based on the
CFSIC-EDU dataset improves knowledge distillation
efficiency by 33.68% -49.87% and reduces KL divergence
by 0.18 compared to traditional methods. Combined with
FE-FC module collaboration (performance+5.46%), it
enhances feature expression and semantic capture
capabilities; When the knowledge weight coefficient
0=0.6-0.7 and the noise suppression factor $=0.5-0.6, the
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ASR accuracy of the system exceeds 92% in 30dB-60dB
classroom noise, and the threshold setting of y=0.5-0.55
balances the delay and intention misjudgment rate,
constructing a "training efficiency  deployment
lightweight scene adaptation” technology chain to
promote the landing of educational robots in real
classrooms.

6 Conclusion

The key bottleneck for educational robots in
classroom use is that hardware cannot support complex
voice interaction models efficiently. This study explores
and validates a knowledge distillation-based lightweight
voice interaction system, which shows better performance
balance in simulating real classroom evaluations and
boosts interaction real-time performance and usability.

(1) Hardware & Fluency: The lightweight model’s
storage is compressed to under 350MB (|80% vs. original
large model), single inference computation |75% (easily
deployable on resource-constrained terminals). In
simulated scenarios: clear voice recognition accuracy
>92%, response time <1.5s, subject query & instruction
understanding fit >88%, 5-8 round interaction interruption
rate <7%, comprehensive score 7.8/10 (only complex
scenario intention understanding and topic switching need
optimization).

(2) Recognition Accuracy: On test sets with
classroom noise, the robot’s speech recognition WER
=15.8% (]12.6 percentage points vs. same-scale small
models without knowledge distillation); educational
instruction core intention recognition accuracy =91.3%.

(3) Core Breakthrough (Response Efficiency): End-
to-end interaction average delay <500ms (|38% vs.
original large model’s 810ms), outperforming traditional
compression.

This system solves the long-term issue of deploying
high-precision voice models on resource-limited edge
devices, enhances interaction real-time performance,
robustness and usability, and lays a technical foundation
for natural human-computer collaboration of educational
robots in classrooms. It is a key breakthrough in model
compression engineering and provides a lightweight
paradigm for future educational intelligent applications.

Limitations: There is a risk of domain overfitting in
knowledge extraction, deep binding to specific
educational scenarios, and weak interdisciplinary transfer
ability - for example, the logical reasoning knowledge
module in mathematics classrooms is difficult to directly
adapt to the text appreciation needs of language and art
classrooms, requiring targeted adjustments to core
modules, which not only increases development costs but
may also disrupt interactive fluency; The core interaction
relies on the quality of pre trained teacher models. If there
are biases or sample shortages in the training data, it can
easily lead to "irrelevant answer" problems, further
amplifying the limitations of scene adaptation; The energy
consumption of lightweight platform deployment is
affected by both hardware performance and software
optimization, and the estimation of battery life needs to be
comprehensively confirmed based on battery capacity,
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energy distribution in different teaching scenarios, and
battery attenuation laws to ensure the stability of
continuous working time.
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