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With education and communication becoming increasingly global, the need for systems that support 

multilingual and cross-cultural interaction is more critical than ever. Traditional robot-assisted learning 

platforms often fail to accommodate multiple languages, cultural diversity, or emotional and ethical 

dimensions of communication, limiting their effectiveness in international contexts. To address these gaps, 

this paper proposes the Robotic Multilingual and Cross-cultural Interactive Learning System (RM-CILS). 

This adaptable framework integrates social robots with natural language processing and culturally 

sensitive behavioral modes. RM-CILS is designed with modular capabilities for language identification 

and recognition, culturally aware interaction, and real-time multimodal feedback, ensuring active learner 

engagement and meaningful intercultural communication. The system allows students to personalize 

language preferences and cultural norms, thereby creating a more inclusive and relatable environment. 

Evaluation results demonstrate significant improvements over conventional robot-assisted systems, 

language coverage, a cultural adaptability index, personalization, student engagement, and learning 

outcome impact. By addressing learners’ mental, emotional, and ethical needs, RM-CILS establishes itself 

as a highly effective solution for international classrooms. It not only enhances language learning and 

intercultural competence but also fosters motivation, social rapport, and collaboration, making education 

more engaging, inclusive, and globally relevant. 

Povzetek: Študija predstavi sistem, kjer socialni robot podpira več jezikov in upošteva kulturne razlike, 

zato je učenje v mednarodnih razredih bolj vključujoče, prilagodljivo in učinkovito. 

 

1  Introduction 
The RM-CILS addresses the increasing need for successful 

communication and educational practices through 

languages, globally across languages and cultures [1]. 

RM-CILS contains social robots with active natural 

language processing software to facilitate real-time 

multilingual exchanges and communications between 

interlocutors with different language backgrounds [2]. The 

communication is facilitated in a culturally and 

linguistically sensitive manner, incorporating behavior 

output modules that respect linguistic accuracy while also 

respecting different cultural norms and social values, 

which supports mutual respect and understanding in 

communication [3]. The framework acknowledges that 

culturally responsive pedagogy is dynamic and responsive 

to the increasing preference for students to use their native 

languages and cultural norms, providing relevant feedback 

to align the interests of students (language and culture) and 

foster optimal engagement and learning outcomes [4]. 

Building on culturally sensitive interactions, RM-CILS 

accommodates multiple-student formats and linguistic 

preferences to enable feedback to be provided in multiple 

modes (gestural and affective facial feedback), enriching 

communication and highlighting emotional connection [5].  

RM-CILS's flexible orientation is available in 

educational and social settings, in conjunction with 

personalized learning opportunities that support successful 

language learning and intercultural competence [6]. The 

system is also iterative with repeated use and an increase 

in responsiveness due to student feedback [7]. Ethical 

aspects, such as student consent and privacy, are also part 

of the system, ensuring ethical deployment and inclusive 

practice [8]. Therefore, RM-CILS holds promise from a 

more holistic framework that connects language and 

culture and provides pathways for learners, and others 

around the world [9]. RM-CILS strives to ensure an 

inclusive, adaptable, and engaging end-user experience 

that creates unique and meaningful environments for 

international teaching and cross-cultural communication 

[10]. 

The layered architecture diagram shows the RM-CILS 

system’s end-to-end workflow. It begins with user inputs, 
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processed by NLP for language understanding, followed 

by cultural adaptation and personalization. The adaptive 

controller generates context-aware responses, delivered 

through multimodal feedback. Ethical monitoring ensures 

compliance, while analytics track engagement, 

adaptability, and personalization effectiveness is explained 

in figure 1. 

1.1 Motivation 
The motivation for this study is shown in Table 1. 

Table 1: explains the motivation aspect with a description 

 

Motivation Aspect Description 

Globalization of Education Increasing demand for multilingual and cross-cultural teaching systems to support 

global learners. 

Limitations in Existing 

Systems 

Current methods lack effective adaptation to diverse languages, cultures, and 

emotional factors. 

Need for Inclusive 

Interaction 

Motivation to develop RM-CILS for culturally sensitive, adaptive, and engaging 

robot-assisted communication. 

 

 

Figure 1: Layered architecture

1.2  Problem statement 
It is identified that there is a big problem with deploying 

socially intelligent robots in a variety of educational and 

service settings that are culturally sensitive and scalable: it 

is hard to make robot-assisted multilingual and cross-

cultural education systems that take into account cognitive, 

emotional, and ethical dimensions while making sure that 

students stay interested and adaptable. 

1.3  Contributions 
The three major contributions are: 

• Integrated platform: RM-CILS unites social 

robots, advanced language processing, and culturally 

sensitive interaction models to support effective 

multilingual and cross-cultural education. 

• Personalized engagement: The system delivers 

adaptive, real-time multimodal feedback aligned with 

learners’ language preferences and cultural norms, 

enhancing motivation and engagement. 

• Cognition, emotion, and ethics: RM-CILS 

embeds cognitive, emotional, and ethical dimensions, with 

empirical validation showing improved communication, 

learning outcomes, and social rapport in global classrooms. 

The RM-CILS framework functions as an adaptive 

system by integrating real-time multilingual natural 

language processing with culturally sensitive behavioral 

modules that dynamically adjust based on student input 

across languages, emotions, and cultural norms. This 

adaptive interaction controller processes linguistic and 

cultural inputs, maintains context over time through 

nonlinear transformations, and continuously modifies its 

multimodal feedback including speech, gestures, and 

visual cues to suit individual student profiles and cultural 

contexts. This dynamic personalization resembles robust 
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adaptive controllers in nonlinear systems that stabilize and 

adapt to uncertainty by continuously updating internal 

states and outputs based on ongoing inputs. 

2  Related works 
The related works investigate social robots, artificial 

intelligence, and multilingual cross-cultural education and 

communication. The papers cover an exciting range of 

innovative frameworks, models, technologies, and their 

potential for improving language learning (and emotional, 

ethical, and student engagement) through robot-supported 

interaction and cultural diversity concerning learner 

characteristics. 

Banko, A., et al. [11] investigated the role of social 

robots in supporting second language learning in primary 

schools, focusing on the role of teachers and their impact 

on learning outcomes. The authors propose a new 

integrative classroom model to capitalize on the potential 

of interaction with robots in the classroom. The main 

findings indicate that students' engagement with the 

language, motivation, and language acquisition are 

improved through socially assisted learning with robots. 

Deshmukh, A., et al [12] present the framework for a 

social robot intervention to enhance hand hygiene 

behaviors among children. The framework examines the 

cross-cultural and socio-economic influences on the initial 

behavioral adoption of hygiene protocols in schools from 

diverse cultural settings. The findings indicate that the use 

of robots increased adherence to hygiene protocols. The 

paper revealed robots’ adaptability to cultural behaviors 

appears to enhance their effectiveness in health education. 

Singh, D. K., et al [13] discuss ethical issues regarding 

child-robot interaction, particularly in under-resourced 

communities as Ethical Issues in Child-Robot Interactions 

Framework (ETHICS-RC), which considers concerns 

around privacy, consent, and fairness. The findings of this 

research emphasize the importance of responsible design 

and participatory approaches in ensuring that social robots, 

when used in the service of children's development, 

contribute to equitable and culturally sensitive 

interventions. 

Through a study by Bennett, C. C., et al. [14], the 

researchers examined a Bilingual Interaction Model for 

Multilingual Human-Agent Dialogues (BILINGUA) 

model, focusing the attention on cognitive shifts 

experienced by bilingual speakers that influence speech, 

whether humans, artificial agents, or intelligent systems. 

The researchers examined an iterative set of interaction 

tasks, where bilingualism impacted the interactions with 

agents, across either language. The researchers concluded 

bilingual language increased efficiency of bilingual 

language communication and responsiveness in the 

responses from artificial agents, which suggests future 

considerations for designers in multilingual human-agent 

dialogues. 

Mannava, V., et al [15] investigated the usability of the 

Conversational Artificial Intelligence System 

(CONVERS-AI) system for conversational child-robot 

engagement. In this research, they found children preferred 

more natural language interfaces that intentionally 

incorporated contextual awareness. The research 

highlighted the challenges that persist in responsiveness 

and engagement, and therefore encouraged the 

development of multimodal adaptive dialogue systems that 

support rich learning and social experiences. 

Shang, X., et al [16] presented the Trust and 

Anthropomorphism Framework in Robotics (TRUST-

ROBOT) framework that examined the dimensions of 

anthropomorphism in robotics. They found that students 

tend to perceive and trust robots differently across cultures, 

which affects their acceptance of the robot. The results 

could inform cross-cultural design to enhance rapport and 

effectiveness in robot-human social interactions. 

Sharma, V. and Mishra, D. [17] introduce the Gesture-

Based Storytelling Framework (GESTURE-STORY) as a 

framework for incorporating kinematic gestures on the 

ROS, combined with Google TPU capability to achieve 

robotic storytelling. This framework enables fluid and 

expressive story narration using natural human movement, 

highlighting better levels of engagement and learning 

efficiencies in a robot-assisted educational context.  

In the research of Tafazoli, D. [18], AI-mediated 

communication was studied in language learning, using 

the AI-mediated Communication Framework (AICOM) 

framework as the main analytical tool with an examination 

of three major challenges: the inherent digital divide, 

learner adaptability, and the transparency of the AI itself. 

Instead, they contend that culturally responsive inclusive 

designs should take precedent with the goal of creating the 

possible learning experiences from technology-enhanced 

language education around the world.  

In research of Rahimi, A. R. and Sevilla-Pavón, A. [19] 

examined the role of design thinking and the design 

thinking enhanced AI language learning model (DEAILL) 

to develop learner grit and motivation in the context of AI 

language learning. The authors found that development of 

design thinking skills may mediate learners' persistence 

and engagement in their second language studies, which 

suggests AI based systems could be useful and effective in 

providing support to learners of second language. Kyrarini, 

M., et al [20] described SPEECH-HRC, a speech-based 

communication system for human-robot collaboration, 

which was assessed for its effectiveness. The assessment 

concluded that the speech interfaces fostered natural 

interactions that improved collaboration on tasks and were 

received positively from a student satisfaction perspective. 

The researchers had several suggestions for improvements 

to SPEECH-HRC integration with collaborative robots, 

including more sophisticated error handling and 

enhancements for multilingual capabilities. Robotic agents 

designed to assist individuals within diverse social and 

service contexts are becoming more commonplace 

globally [21]. Here synthesise 20 years’ worth of empirical 

literature within the field of human–robot interaction (HRI) 

focusing on the impact of culture on expectations of, and 

reactions to, social robots, and the effectiveness of robots 
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using culturally tailored display and social cues to enhance 

human interaction. The results highlight the intricate and 

complicated links between culture and cognition in the 

context of HRI. 

Huang, Y. C., et al. [22] proposed an emotional 

support robot companion model (STRESSBOT) that infers 

what users feel stressed about based on conversations with 

it and offers emotional regulation support. The researchers 

found evidence that empathic human-robot interaction has 

a minor measurable impact on students’ mental well-being 

and could facilitate the capacity of AI companionship to 

support their mental well-being. 

Bilingualism occurs most everywhere, and 

Kazakhstan is no different. Research regarding 

bilingualism and autism is in its infancy and being pursued 

in varying degrees [23]. This study addresses the socio-

emotional outcomes in the context of robot-assisted autism 

therapy (RAAT) of 34 monolingual and bilingual children. 

The children, aged 3 to 12 years, all had Autistic Spectrum 

Disorder (ASD) and attended an average of 5 therapy 

sessions at a rehabilitation center involving the NAO robot. 

Results indicate that bilingual children showed 

comparable socio-emotional outcomes and levels of 

participation to those of their monolingual counterparts 

As alluded to in the previous section of the paper, one 

of the most prominent fields of anticipated research in 

social robotics is Education [24]. Within this field, social 

robots are typically envisioned to facilitate interactions 

with one or more students as well as with instructors. 

Despite the considerable span of research, educational 

formats, and practical implementations involving social 

robots that were trialed in over a dozen countries over the 

past two decades, the cultural consequences of social 

robots in the educational ecosystem continues to remain 

ambiguous. In this review, we examine the studies 

conducted in the social educational robotics field with a 

focus on the pertinent issues of culture. 

Rana, N. P., et al [25] reviewed hospitality customers' 

experiences with Service Robots in hotels, focusing on 

customer perceptions of and satisfaction with robot 

applications. Their Service-Robot Adoption Model 

(SRAM) demonstrated that the roles of cultural sensitivity, 

responsiveness, and trust moderated how customers 

perceived service robot applications in the hospitality 

domain. 

The papers presented here illustrate the 

transformational possibilities that robot-assisted 

multilingual and cross-cultural systems can bring to 

educational as well as social interactions, as shown in 

Table 2. The studies presented emphasized the importance 

of designing adaptively, the role of culture, the cognitive 

and emotional implications of using technology in this 

manner, and the ethical considerations of utilizing these 

technologies. Collectively, these studies contribute to a 

shift towards more human-robot collaborative learning 

experiences, which are more inclusive, engaging, and have 

the potential to be impactful on a worldwide scale. 

Table 2: Related works summary 

 

Referen

ce 

Environment Methods Cultural 

Adaptabili

ty 

Multimod

al 

Interactio

n 

Learner 

Engageme

nt 

Key 

Performance 

Metrics 

Gaps and 

RM-CILS 

Contribution

s 

Banko et 

al. 

(2025) 

Primary school 

second 

language 

learning 

Integrative 

robot-

assisted 

classroom 

model 

✓ ✓ High Engagement: 

78% 

[Banko2025] 

Limited 

cultural 

adaptation; 

RM-CILS 

adds dynamic 

personalizatio

n 

Deshmu

kh et al. 

(2025) 

School hygiene 

education 

HAND-

ROBOT for 

hand hygiene 

promotion 

✓ ✓ Medium Behavior 

adoption: 70% 

[Deshmukh20

25] 

Lacks 

multimodal 

affective 

feedback; 

RM-CILS 

integrates 

affective 

signals 

Singh et 

al. 

(2023) 

Under-

resourced 

community 

child-robot 

interaction 

ETHICS-RC 

ethical 

framework 

✓ ✗ Low Ethical 

compliance: 

0.85 

[Singh2023] 

No 

multimodal 

feedback or 

engagement; 

RM-CILS 

enriches 

interaction 
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Bennett 

et al. 

(2024) 

Bilingual 

speech 

interaction 

BILINGUA 

bilingual 

cognitive 

model 

✓ ✓ Medium Language 

accuracy: 85% 

[Bennett2024] 

Limited 

cultural 

adaptation; 

RM-CILS 

integrates 

advanced 

cultural 

sensitivity 

Mannava 

et al. 

(2024) 

Child-robot 

conversational 

interaction 

CONVERS-

AI adaptive 

multimodal 

dialogue 

✓ ✓ High Dialogue 

success: 82% 

[Mannava2024

] 

Lacks 

personalized 

learner 

profiles; RM-

CILS 

personalizes 

learning 

Shang et 

al. 

(2025) 

Social robotics 

and 

anthropomorphi

sm 

TRUST-

ROBOT 

cultural trust 

framework 

✓ ✓ Medium Trust index: 

0.78 

[Shang2025] 

No real-time 

language 

adaptation; 

RM-CILS 

supports 

multilingualis

m 

Sharma 

& 

Mishra 

(2024) 

Robotic 

storytelling in 

education 

GESTURE-

STORY 

gesture and 

storytelling 

system 

✓ ✓ High Story 

engagement: 

80% 

[Sharma2024] 

Limited 

cross-cultural 

handling; 

RM-CILS 

dynamically 

adapts 

storytelling 

Tafazoli 

(2024) 

AI-mediated 

communication 

in language 

learning 

AICOM 

communicati

on 

framework 

✓ ✗ Medium Accuracy: 

75% 

[Tafazoli2024] 

No 

multimodal 

integration; 

RM-CILS 

integrates 

multisensory 

inputs 

Rahimi 

& 

Sevilla-

Pavón 

(2025) 

AI-support for 

language 

learning 

motivation 

DEAILL 

design-

thinking 

enhanced AI 

✓ ✗ Medium Motivation 

score: 0.7 

[Rahimi2025] 

Absent 

multimodal 

feedback; 

RM-CILS 

enriches 

engagement 

Kyrarini 

et al. 

(2024) 

Speech-based 

human-robot 

collaboration 

SPEECH-

HRC speech 

interaction 

system 

✓ ✓ Medium Speech 

recognition: 

88% 

[Kyrarini2024] 

Limited 

cultural 

sensitivity; 

RM-CILS 

adds 

emotional 

adaptation 

Zhao 

(2024) 

Emotional 

fluctuations in 

AI-mediated 

EFL learning 

EMO-L2 

latent growth 

curve 

emotional 

analysis 

✓ ✗ Medium Emotional 

detection: 0.82 

[Zhao2024] 

No 

multimodal 

feedback; 

RM-CILS 

integrates 

multimodal 

signals 

Huang et 

al. 

(2022) 

Emotional 

support robot 

for mental well-

being 

STRESSBO

T empathetic 

interaction 

✓ ✓ High Emotional 

support: 0.85 

[Huang2022] 

Lacks 

linguistic 

adaptation; 

RM-CILS 

combines 

multilingual 

support 

Zhang & 

Liu 

(2025) 

AI platforms’ 

emotional and 

cognitive 

support 

EFL-WELL 

emotional 

well-being 

framework 

✓ ✗ High Engagement 

index: 0.83 

[Zhang2025] 

No 

multimodal 

communicati

on; RM-CILS 

integrates 

multimodal 

cues 
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Zhang & 

Shi 

(2024) 

Health and 

well-being in 

smart tourism 

SMART-

HEAL 

digital health 

promotion 

✓ ✗ Medium Satisfaction: 

0.75 

[ZhangShi202

4] 

No real-time 

cultural 

adaptation; 

RM-CILS 

adapts 

interactions 

dynamically 

Rana et 

al. 

(2025) 

Hotel service 

robots user 

experience 

SERVICEB

OT adoption 

and 

satisfaction 

model 

✓ ✗ Medium Satisfaction: 

0.72 

[Rana2025] 

Lacks 

multimodal 

engagement; 

RM-CILS 

offers 

integrated 

feedback 

RM-CILS parallels adaptive robust controllers in 

nonlinear dynamics by addressing uncertainty and 

variability not in physical systems but in human-robot 

communication complexity with multiple languages, 

cultural norms, and emotional expressions. It ensures 

stability and improved outcomes by iteratively refining 

responses with weighted multimodal inputs and contextual 

cues, akin to how robust controllers stabilize nonlinear 

uncertain plants through adaptive feedback laws. This 

analogy strengthens RM-CILS's theoretical foundation by 

framing its natural language and cultural adaptation 

modules as controllers that stabilize and optimize 

multilingual, cross-cultural educational interactions in the 

presence of uncertain and evolving student behaviors and 

communication dynamics. 

Thus, RM-CILS can be seen as a novel application of 

adaptive control principles to human-robot communication, 

where adaptive feedback mechanisms modulate robot 

behaviors to stabilize and enhance interaction quality over 

time, similar to robust neural adaptive control methods 

stabilizing uncertain nonlinear systems in engineering 

contexts. This connection highlights the system's role in 

managing uncertainty and adaptability in human-centered, 

multilingual, and cross-cultural environments, linking it to 

broader adaptive control literature and enhancing its 

interdisciplinary significance. 

3  Proposed methodology 
This research proposes RM-CILS, a methodology that 

combines natural language processing and culturally 

relevant modules to facilitate robot-assisted multilingual 

and cross-cultural communication. The methodology 

dynamically adapts to the student's language preferences 

and cultural norms, and enables real-time multimodal 

feedback through spoken words, gestures, and images. The 

methodology aims to enhance engagement, learning 

outcomes, and intercultural understanding in various 

international education and social contexts. The Variable 

declarations used in the subsequent content are shown in 

Table 2(a). 

3.1  Overview of proposed RM-CILS concept 
The RM-CILS system accepts multilingual or cross-

cultural student input via speech, text, or non-verbal means, 

which serves as input to a sophisticated Natural Language 

Processing (NLP) and Understanding module. This 

module detects the language and performs translation, 

sentiment analysis, and contextual analysis, all of which 

contribute to the input streams.  Once the input has been 

mapped and all NLP processing has occurred, the output is 

sent to the cultural sensitivity module, which determines 

appropriate responses based on previous and ongoing 

cultural norms stored in the module and the student's 

individual profile, which includes rules for culturally 

appropriate input and responses, as shown in Figure 1(a). 

These inputs inform the design of the multimodal 

interactive feedback unit, which will generate responses 

through verbal means (speaking), visual means (gesturing), 

and social communicative means (facial expressions), 

thereby creating complex interaction opportunities. These 

multimodal outputs are coordinated in real time by an 

adaptive interaction controller that personalizes behavior 

based on the learner’s language preferences, cultural 

background, and interaction history. The social robot thus 

acts as a context-aware autonomous agent driving 

engagement through synchronized multimodal 

communication streams optimized to maximize learner 

output and social presence in multilingual and cross-

cultural educational settings.  

This approach uses fuzzy logic to handle uncertainties 

and nonlinearities, stabilizing complex chaotic systems 

within fixed times. In RM-CILS, adaptive fuzzy control 

can dynamically weight and synchronize multiple input 

modalities (speech, gesture, facial cues) considering 

uncertainties in language use and cultural differences, 

ensuring consistent and timely responses despite 

communication variability. This method achieves 

synchronization when full system state information is 

unavailable and input nonlinearities exist. RM-CILS 

interactions often have partial observability (students’ 

internal states unknown) and nonlinear linguistic or 

cultural influences. Applying this controller helps align the 

robot’s behavior with the learner’s inputs robustly, even 

under noisy or incomplete data conditions. 

Neural adaptive control uses neural networks to 

model unknown system dynamics and adapt controllers 

accordingly. RM-CILS can incorporate neural adaptive 

modules to learn and compensate for unknown cultural 

subtleties and multilingual complexities dynamically, 
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refining interaction strategies in real time for enhanced 

flexibility and personalization. Backstepping is a recursive 

design methodology that manages nonlinear system 

uncertainties step-by-step. RM-CILS can use 

backstepping principles to hierarchically correct 

communication mismatches, progressively adjusting 

linguistic and cultural feedback loops to stabilize 

conversational dynamics and improve student 

engagement. This approach optimizes control inputs for 

nonlinear mechanical systems to achieve efficiency and 

performance targets. Analogously, RM-CILS can apply 

nonlinear optimal control to compute ideal multimodal 

response strategies (speech, gesture, emotion) that 

maximize learning outcomes and intercultural 

comprehension under resource constraints. 

This control extends backstepping to flexible and 

uncertain robotic manipulators. RM-CILS can draw from 

this to handle flexible, time-varying, and uncertain 

interaction contexts, adapting the robot’s behavioral 

outputs with precision and responsiveness to the learner’s 

evolving language and cultural cues. 

Table 2(a): Variable declaration 

 

Variable 

/ 

Functio

n 

Definition Dimensions / 

Type 

Descrip

tion 

𝐹𝑁𝐿𝑃𝑓  

 

Natural 

Language 

Processin

g function 

Function 

mapping input to 

semantic 

embeddings 

Processe

s 

multilin

gual text 

or audio 

input 

into 

semantic 

or intent 

represen

tations 

𝑔𝐶𝑆𝑀 

 

Cultural 

Sensitivity 

Module 

function 

Function 

modifying 

embeddings 

Adjusts 

languag

e 

embeddi

ngs 

based on 

cultural 

profiles 

and 

interacti

on 

history 

ϕ Transform

ation 

Mapping 

function, context-

Applies 

nonlinea

function dependent r 

transfor

mations 

in 

adaptive 

modules 

ΔB Behaviora

l 

modulatio

n 

parameter 

Scalar or vector Modulat

es 

multimo

dal 

feedbac

k 

behavior

s 

γ Weighting 

factor 

Scalar Scales 

contribu

tions of 

feedbac

k 

channels 

or 

features 

𝜔𝑢 

 

User-

specific 

adaptation 

weight 

Scalar or vector Personal

izes 

system 

response 

to 

individu

al user 

traits 

ρ Similarity/

distance 

metric 

Scalar Measure

s 

alignme

nt 

between 

system 

response 

and user 

profile 

𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉 , 𝑊𝑂 

 

Attention 

weight 

matrices 

Matricesdmodel×

dkd_{model} 

\times 

d_kdmodel×dkor 

similar 

Linear 

mapping

s in 

multi-

head 

attention 

layers 

for 

queries 

(Q), 
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keys 

(K), 

values 

(V), and 

output 

(O) 

𝑊𝑔 

 

Cultural 

Adaptatio

n gate 

weights 

Vector/matrix Controls 

modulati

on 

strength 

of 

cultural 

adaptati

on in 

neural 

units 

𝑊𝑝 

 

Personaliz

ation gate 

weights 

Vector/matrix Controls 

modulati

on 

strength 

of 

personal

ization 

effect 

L Language 

set 

Set of languages All 

supporte

d 

languag

es in the 

system 

l Specific 

language 

Element ofLLL A single 

languag

e being 

detected 

or 

processe

d 

P Probabilit

y measure 

Scalar between 0 

and 1 

Probabil

ity of 

detected 

languag

e or 

classific

ation 

outputs 

𝑀𝑐 

 

Cultural 

knowledg

e matrix 

Matrix or tensor Encodes 

cultural 

norms, 

values, 

and 

patterns 

for 

adaptati

on 

𝑆𝑢 

 

Student 

emotional 

state 

Vector Encodes 

learner’s 

detected 

emotion

al or 

engage

ment 

signals 

𝐷𝑐  

 

Dialogue 

context 

Vector/matrix Stores 

conversa

tional 

history 

or 

context 

state 
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Figure 1(a): Overview of proposed RM-CILS concept 

 

This entire system flow allows for informative, 

adaptive, multilingual, and cross-cultural communication. 

𝐿𝑢 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙∈𝐿 𝑃(𝑙|𝐿𝑢)       (1) 

Equation 1 determines the likely language 𝐿𝑢 in which 

a student is prompting the input data by comparing the data 

𝐿  to all available languages 𝑙 . This approach uses 

probability 𝑃 to ensure the system accurately detects the 

language to complete the task successfully. This first stage 

is important because it ensures that these types of 

multilingual interactions 𝐿𝑢  can support seamless 

communication to accommodate multiple languages, 

allowing the system to interpret different language inputs 

and respond with relevant responses in the pertinent 

language, earlier in the communication process. 

𝐶𝑟𝑒𝑠𝑝 = ∅(𝑀𝑐 , 𝑆𝑢 , 𝐷𝑐)         (2) 

Responses that reflect cultural significance result from 

the intersection 𝐶𝑟𝑒𝑠𝑝 of cultural knowledge 

frameworks  𝑀𝑐 , current student feelings 𝑆𝑢 , and the 

existing dialogue context 𝐷𝑐  in equation 2. The system 

adapts responses to ensure that they are culturally 

appropriate as well as linguistically accurate. The 

association of sentiment ∅ and context enable the system 

to provide responses that are both emotionally and 

contextually accurate, fostering student comfort and 

engagement while avoiding awkwardness in cross-cultural 

communication. 

𝑂𝐹 = 𝑓𝑁𝐿𝑃(𝐼) + 𝑔𝐶𝑆𝑀(𝑝𝑢 , 𝐻𝑢)          (3) 

The outputs of the system𝑂𝐹 , or responses produced, 

are processed inputs (𝐼) from data stemming from 

language 𝑓𝑁𝐿𝑃  understanding architectures with 

modifications that have been incorporated according to the 

student's cultural information and interaction history𝑔𝐶𝑆𝑀. 

Combining these elements provides contextually relevant 

and culturally-congruent feedback that improves the 

communication process 𝐻𝑢  in equation 3. The 

modifications ensure that the system's responses 𝑝𝑢are not 

generic and dynamic adaptations based upon textual input 

combined with cultural variables, increasing the 

naturalness and personalization of the interaction. 

3.2  Development of RM-CILS framework 
The data acquisition module collects speech, text, and non-

verbal input. Inputs are sent to the language & context 

module, which interprets and deconstructs these inputs 

through the use of multilingual NLP and contextual 

inference based on the meaning and intent of the student's 

communication. The culturally adaptive module draws 

from a comprehensive database of cultural norms and 
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behaviors to provide culturally appropriate interaction 

with students.  

 

 

Figure 2: Development of RM-CILS framework 

 

Figure 2 summarizes the development of the RM-

CILS framework, which focuses on capturing multilingual 

and multicultural input data from students across various 

input modalities. Finally, the Multimodal Feedback Engine 

produces synthesized spoken output, natural gestures, and 

visual output parameters to provide appropriate context-

driven feedback to students. In tandem, the RM-CILS 

framework enables the integration of a model of language 

and culture for use in robot-mediated communication, with 

a focus on the needs of international learners and 

communicators. 

 

𝑅𝑀𝑀 = ∑ 𝛼𝑚. 𝐹𝑚(𝑂𝐹)           (4)

𝑀

𝑚=1

 

Equation 4 of aggregation has allowed for the 

integration of outputs from multiple channels of 

communication 𝑅𝑀𝑀 for example, speech and gestures by 

importing weights 𝐹𝑚  to de-emphasize less relevant 

modalities 𝛼𝑚 . The outcome of the aggregation process 

was a composite response that prevents mismatching and 

is able to balance the various channels of expression for 

clarity and richness (𝑂𝐹) . At the same time, weighting 

modalities in this way too allowed for the specification of 

the most relevant forms of communication according to the 

situation, which optimizes comprehension within the given 

interaction and improves the quality of student interactions.  

(∆𝐵) = 𝜑((𝑃𝑢 , 𝐶𝑢, 𝑇)           (5) 

The nuances of behavioral modulation (∆𝐵) were 

calculated again, without being prescriptive, by leveraging 

certain student-specific details 𝑃𝑢  and cultural context, 

together with timing factors 𝐶𝑢 , from when the person 

interacts with the robot in equation 5. Additionally, these 

nuances facilitate continuous personalization 𝑇  as the 

system “learns” over time and the robot’s behavior more 

closely aligns with individual students’ preferences and 

cultural expectations 𝜑. Such a system has the potential to 

provide a more enjoyable and important interaction by 

inherently adjusting itself with real-time repetitions using 

the student’s evolving dynamics.  

𝐼𝐶 = 𝜎(𝑊𝑥𝑋 + 𝑊ℎ𝐻𝑡−1 + 𝐵𝑖)           (6) 

The functioning of the interaction controller 𝐼𝐶   adds 

current communication inputs to internal states from the 

prior input through nonlinear transformations. In this way, 

a gating function allows the system to establish context 

over time with adaptations in its responses 𝑊𝑥𝑋 . The 

system preserves the current student inputs 𝑊ℎ  and 

responds to these across time 𝐻𝑡−1, and draws as necessary 

from previous student inputs 𝐵𝑖  , making it possible to 

engage in coherent, structured dialogues over time, which 

can fluidly adapt to the student’s inputs and preferences 

increasingly over the duration of the interaction in 

equation 6. 

3.3  Adaptive and personalized interaction 
The adaptive and personalized interaction component of 

RM-CILS enables personalized communication based on 

the student's profile and interaction history. It first 

identifies the students' language, as well as providing 

access to a many-to-many repository of cultural norms and 
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values relevant to the student. This input is then fed into 

the adaptive interaction controller and modifies dialogue 

and behavioral responses on the fly to suit the students' 

language and culture. The adaptive interaction controller 

manages both linguistic and cultural aspects of the 

interaction to create a comfortable and engaging 

experience for the student, as shown in Figure 3. It 

employs multimodal feedback, including speech, gestures, 

and visual displays, to explicitly keep the student engaged 

in the task. This timely and accurate interaction can help 

reconcile cultural and language differences that impact 

engagement and learning. The continuous nature of the 

adaptations means that personal student needs can be 

dynamic to the context within a social interaction, in 

addition to operating in a culturally appropriate manner. 

This will create a more personally adaptive and culturally 

sensitive interaction that enhances social presence, social 

rapport, and motivation, while building inclusiveness in 

multilingual and multicultural environments.  

 

 

 

Figure 3: Adaptive and personalized interaction process 

 

𝐹𝑀(𝑡) = ℎ(𝐼𝑐(𝑡), 𝑆𝑡 , 𝑊𝑐) + 𝜖(𝑡)          (7)  
The system provides multimodal feedback 𝐹𝑀(𝑡)that 

maintains variability via transformation functions ℎ from 

the outputs of the internal controller 𝐼𝑐while accounting for 

significant flexibility 𝑆𝑡 and real-world communication 𝑊𝑐 

variation in equation 7. This means responses will be 

flexible and realistic, allowing for noise or unexpected 

variance 𝜖 . Such feedback systems (𝑡)  are better at 

increasing the naturalness and robustness of feedback, 

which will result in exchanges that feel real and maintain 

student confidence when there is minor 

miscommunication. 

𝑆𝑝 = 𝛾(𝛼. 𝐷𝑠 + 𝛽. 𝑈𝑓 + 𝛿. 𝐻𝑅)         (8) 

System performance 𝑆𝑝 must be assessed together with the 

operational data 𝛾  and student feedback 𝛼. 𝐷𝑠 . This 

complete picture captures how the system performed and 

how the student (respondent) feels about its performance. 

With such insight, RM-CILS can identify areas that need 

tuning or improvement. Regular performance assessment 

𝛽. 𝑈𝑓  will be critical for incoming requests to be of good 

quality in communication 𝛿. 𝐻𝑅 , and the student will 

perceive that they are satisfied with the system during 

operation in Equation 8. 

RM-CILS uses user embeddings and preference vectors to 

store interaction history. Temporal decay prioritizes recent 

data, while conflict resolution algorithms weigh context, 

frequency, and relevance to balance competing preferences. 

This dynamic approach ensures evolving personalization, 

delivering feedback that aligns with user behavior, cultural 

norms, and learning progression over time. 

3.4  Comprehensive evaluation and ethical 

design 
The RM-CILS Comprehensive Evaluation and Ethical 

Design module operates by continuously monitoring 

engagement with and perceptions of the system, within a 
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framework of ethical oversight and ongoing improvement. 

The program and data collection begin when the student 

interacts with the program, collecting data on interaction 

with the system as well as an initial set of student feedback 

and relevant ethical principles related to privacy, informed 

consent, and fairness. Data values are analyzed in the data 

analysis & monitoring unit of the program, which assesses 

the performance and student experience of the system in 

real-time. 

The ethical module stores minimal interaction data, 

anonymized using hashing and encryption. Differential 

privacy safeguards sensitive information, and consent 

protocols govern data usage. Regular bias audits and 

fairness checks ensure equitable treatment. These 

measures guarantee privacy, compliance, and 

trustworthiness, making RM-CILS safe, transparent, and 

responsible in multilingual and cross-cultural applications.

 

 

Figure 4: Comprehensive evaluation and ethical design 

 

The RM-CILS ethical compliance module uses 

practical data management and privacy preservation 

processes to enable responsible and transparent 

functioning. The module merely keeps the bare minimum 

of non-identifiable interaction data needed for ethical 

monitoring and system customisation. Raw voice, personal 

identification, and location information are not included in 

the preserved data, but hashed session identifiers and 

anonymised interaction metadata, including duration, 

engagement level, and system performance indicators, are. 

Individual identities or dialogue content cannot be 

recovered since interaction histories are saved as abstract 

user embeddings and preference vectors.  

Advanced Encryption Standard (AES) encryption and 

secure hashing are employed in a dual-layer system to 

achieve anonymization and protect logs and stored data. In 

order to prevent user contributions from being identifiable, 

differential privacy techniques are also incorporated into 

the analytics and model training procedures. This involves 

introducing calibrated statistical noise to aggregated data. 

This method creates a formal privacy assurance that 

complies with global ethical norms and recognized privacy 

models.  

Furthermore, ongoing bias monitoring and fairness 

audits are carried out to assess system performance across 

various linguistic and cultural groups, guaranteeing 

equitable results and getting rid of algorithmic 

discrimination. By methodically asking for informed 

consent at the beginning of each encounter, users can 

comprehend and manage the extent of data collection and 

use. In addition to ensuring that the framework complies 

with data governance and educational standards for 

multilingual and cross-cultural robotic systems, these 

procedural and technical safeguards collectively 

operationalize RM-CILS's ethical values of privacy 

protection, openness, and fairness. 
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Concurrently, the ethical compliance module will 

systematically evaluate the system's adherence to ethical 

conduct, addressing issues of greatest concern such as data 

privacy.  Figure 4 describes enabling informed consent for 

data and ethical use of the system, as well as fair treatment 

of students in diverse cultural contexts (who may be less 

familiar with the system). The data initially collected, as 

well as how data has been gathered, will be taken into 

consideration within a continuous improvement 

framework, which updates all algorithms and interaction 

protocols on an ongoing iterative basis based on students' 

ethical considerations and needs. The result is a system of 

robotic communication which is safe, secure, and 

trustworthy, user-centered, culturally-sensitive, and 

ethically-compliant, equitable, and fosters safe, inclusive, 

reliable multilingual and cross-cultural engagement. 

𝐸𝑐 = 𝜆. (
∑ 𝑤𝑖

𝑃
𝑖=1 𝑃𝑣𝑖

∑ 𝑤𝑖
𝑃
𝑖=1

.
∑ 𝑢𝑗

𝑄
𝑗=1 𝐶𝑟𝑗

∑ 𝑢𝑗
𝑃
𝑖=1

)        (9)  

 

Compliance with ethical standards 𝐸𝑐 is assessed 

based on compliance with privacy standards 𝜆 , consent, 

and fair practice metrics, which reflect the system's 

adherence to student rights and norms of society, 

particularly in sensitive multicultural contexts in equation 

9. Monitoring these ethical dimensions 
∑ 𝑤𝑖

𝑃
𝑖=1 𝑃𝑣𝑖

∑ 𝑤𝑖
𝑃
𝑖=1

 is critical 

to foster trust and confidence on the part of students to 

bring to light any improper use, and to enable equitable 

practices 
∑ 𝑢𝑗

𝑄
𝑗=1 𝐶𝑟𝑗

∑ 𝑢𝑗
𝑃
𝑖=1

  that will influence the responsible 

adoption of robot-assisted conversation technologies.  

𝑈𝑖𝑚𝑝 = 𝜂(𝑆𝑃 , 𝐸𝑐 , 𝑅𝐿 , ∇S𝑝, ∇𝐸𝑐)      (10) 

System upgrades 𝜂 will come from an integration of 

performance feedback, ethical adherence measurements, 

and legislative compliance. This integrated improvement 

process 𝑈𝑖𝑚𝑝will capture and influence the varied system 

updates and iterations 𝑆𝑃, and demonstrate how the system 

responds 𝐸𝑐   and acts responsibly in accordance with 

ethical considerations 𝑅𝐿 in robot-assisted communication 

in equation 10. This regulatory compliance ensures that a 

balance is struck between functional performance ∇S𝑝 and 

ethical standards, while the system is able to evolve and 

adapt to the context  ∇𝐸𝑐 , whilst being responsible, 

trustworthy, and human-centered in system design, during 

its lifecycle. 

3.5  Enhanced learner engagement and 

intercultural competence 
The diagram above summarizes RM-CILS's approach to 

promoting learner engagement while enhancing 

intercultural competence. It starts with real-time collection 

of learner interaction and performance data, which is 

processed through the engagement analytics module, 

which analyzes behavioral and emotional indicators of 

engagement, attention, and participation. The analytical 

information, including engagement metrics, informs the 

Intercultural Competence Assessment, which examines 

the learner's sense of cultural context of the interaction.  

𝐶𝑐 =
1

𝑁
∑ 𝜃(𝑈𝑖 , 𝑆𝑖

𝑁

𝑖=1

). 𝑤𝑖 ± 𝑧.
𝜎𝑖

√𝑛𝑖

          (11) 

 

Cross-cultural 𝐶𝑐  competence is measured by 

averaging student performance over situational cultural 

contexts 
1

𝑁
. This systematic measure assesses how well the 

learner knows 𝑈𝑖  and interacts in culturally specific 

contexts 𝑆𝑖   during an interaction 𝜎𝑖 , while informing the 

system 𝑧  about the students’ strengths and weaknesses 

with regard to some of the intercultural skills √𝑛𝑖  they 

possess in equation 11. These assessments can lead the 

system to focus on targeted support that helps the student 

develop greater capacity to be mindful and empathetic 

about culture, which is critical in today's multilingual and 

diverse social contexts. Through this assessment, the 

adaptive content engine modifies the quantity and type of 

teaching materials to support pedagogy and interaction, 

tailored to the learner's cultural background, thereby 

helping to engage the learner. The learner receives both 

feedback and social and pedagogical motivation 

techniques, such as incentives, encouragement, or rewards 

as a mechanism for retention, supported means of 

engagement, and established learning. Using all the 

disciplines of language engagement, RM-CILS serves to 

teach language in a way that engages learners through the 

quality of meaning, fostering cross-cultural understanding 

to further educational success and ultimately develop 

social cohesion in diverse, multilingual contexts. 

G𝐸 = ∫ ∅(𝐴𝑡 , M𝑡 , C𝑡)

𝑇

0

𝑒−𝑘𝑡𝑑𝑡          (12) 

Learner engagement metrics G𝐸   are computed by 

relating attention and motivation levels over interaction 

duration ∅. This time-based measure allows the system to 

assess the degree to which the system 𝐴𝑡   is able to 

maintain student interest and encourage activity M𝑡 . 

Understanding the dynamics of interest over time 

C𝑡   enables the mediation of student interactions to help 

optimize the learners’ overall results 𝑒−𝑘𝑡 , while too 

allowing meaningful reflections across a continuum of 

time using personalized 𝑑𝑡 , adaptive engagement 

modalities that relate to learners' dynamic cognitive and 

emotional states in equation 12. 

Algorithm 1: RM-CILS Adaptive attention algorithm 

The RM-CILS Adaptive Attention Algorithm 

dynamically attends to multimodal inputs, generates 

context-aware responses in real-time, and modifies 

attention according to user profiles and cultural prototypes.   

Cultural and personalization gates ensure that 

communication is linguistically acceptable and culturally 

respectful while optimizing engagement and 
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Input: 

• X={x1,x2,...,xn}: Multimodal input features (speech, text, gesture, emotion) 

• Pu: User profile vector (language preference, cultural norms, emotional state) 

• Cm: Cultural knowledge matrix 

• Ht: Interaction history and context state at time t 

Output: 

• Rt: Adaptive multimodal response (speech, gesture, expression) 

• At: Updated attention weights 

• Et: Engagement and cultural conformity score 

1. Initialize parameters: attention weights (W_Q, W_K, W_V), cultural gate (G_c), personalization gate (G_p) 

2. For each input instance x_i ∈ X do 

3.     Extract semantic embeddings e_i = NLP_Encoder(x_i) 

4.     Perform language detection and translation if required 

5.     Compute attention scores: 

           α_i = Softmax((Q*Kᵀ)/√d_k) 

6.     Fuse multimodal features using weighted aggregation: 

           Z = Σ(α_i * V_i) 

7.     Apply cultural adaptation gate: 

           Z_c = G_c ⊙ f(Z, C_m) 

8.     Apply personalization gate: 

           Z_p = G_p ⊙ f(Z_c, P_u) 

9.     Generate adaptive response R_t = Decoder(Z_p) 

10.    Update context state H_t+1 = Update(H_t, X, R_t) 

11.    Evaluate engagement E_t = Metric(R_t, P_u, C_m) 

12. End For 

13. Return {R_t, A_t, E_t}adaption.

The RM-CILS algorithm integrates multimodal inputs 

(text, audio, vision, affect) with user profiles and cultural 

prototypes is explained in algorithm 1. It applies multi-

head attention, cultural adaptation, and personalization 

gates to enhance learning. The system predicts language, 

cultural mode, engagement, and generates context-aware 

responses, fostering inclusive, ethical, and globally 

adaptable robot-assisted education. The attention 

mechanism of the suggested RM-CILS Adaptive Attention 

Algorithm, which functions with a temporal complexity of 

𝑂(𝑛2𝑑𝑘), where 𝑛 indicates the number of input tokens 

and 𝑑𝑘 the feature dimension, is mostly responsible for 

controlling the computational cost.    Spoken, visual, and 

emotional inputs are combined in the multimodal fusion 

and gating mechanisms, which have a lower complexity of 

𝑂(𝑛𝑑𝑘).    Thus, the attention computation dominates the 

algorithm's total processing cost, 𝑂(𝑛2𝑑𝑘).    The system 

makes advantage of parallelized multi-head attention and 

vectorized matrix operations to provide scalability and 

real-time adaptation in multilingual and cross-cultural 

interactions.   This allows for efficient processing even in 

high-dimensional, multimodal communication 

environments and drastically lowers latency. 

4  Results and analysis 
The results analysis would ultimately allow for some level 

of assessment of multilingual, cross-cultural robotic 

communication systems and capture important aspects of 

their evaluation (linguistic breadth, cultural 

responsiveness, interactional richness, engagement, 

ethical principles, student engagement, language-

processing accuracy, and educational impact. Taken 

together, these components provide an overarching 

framework for measuring and evaluating a system such as 

RM-CILS, enabling it to offer valid, inclusive, and 

meaningful collaborative teaching and communication 

experiences. 

Dataset description: The RM-CILS system's multilingual 

and cross-cultural adaptability was validated by modeling 

varied student groups using the Online Course Enrollment 

Dataset as a simulated basis.The dataset offered thorough 

enrollment and interaction data for more than 50,000 

students across 200 courses, despite the absence of explicit 

language or cultural concerns.   These data served as the 

statistical foundation for the development of artificial 

multilingual and cultural learner profiles.    To ensure a 

balanced depiction of worldwide heterogeneity, stratified 

sampling procedures based on Hofstede's cultural 

dimensions and UNESCO regional linguistic data were 

used to probabilistically assign a language and cultural 

background to each simulated learner.    To mimic real-

world differences in engagement, communication style, 

and cultural reaction patterns, Monte Carlo simulations 

were run across a number of rounds. The evaluation of 

RM-CILS's flexible modules—specifically, its Language 

Coverage, Cultural Adaptability, and Personalization 

Accuracy—under various controlled multilingual and 

multicultural contexts was made possible by these 

fictitious encounters.    To ensure reproducibility, 

scalability, and ethical compliance without requiring direct 
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human trials, the dataset was only utilized to mimic user 

diversity and evaluate adaptive performance measures. 

4.1  Experimental setup 
The primary development environments for the RM-CILS 

experimental setup were Python 3.10 and the Robot 

Operating System (ROS). The system design connected 

modules for Natural Language Processing, Adaptive 

Control, Multimodal Feedback, and Cultural Adaptation 

via ROS messaging nodes. The NLP components used 

Hugging Face Transformers (Multilingual BERT) and 

TensorFlow 2.15 for language recognition, translation, and 

sentiment analysis, while spaCy and scikit-learn took care 

of linguistic preprocessing and feature extraction. The 

characteristics and cultural backgrounds of multilingual 

learners were predicted using the Kaggle Online Course 

 Enrollment Dataset, which was split into subsets of 70% 

training, 15% validation, and 15% testing [26]. 

Experimental trials included 25 iterative simulation runs 

per scenario to evaluate language coverage, cultural 

adaptability, personalization accuracy, engagement, and 

multilingual performance. At the beginning of each run, 

randomized seeds were employed to ensure statistical 

reliability. Quantitative assessments were conducted using 

time-integrated engagement metrics, weighted accuracy, 

and cosine similarity. The results were compared to 

comparator systems (HAND-ROBOT, BILINGUA, and 

TRUST-ROBOT). Every setup, preprocessing script, and 

model parameter was described to allow for independent 

replication and evaluation of RM-CILS's performance in 

tasks involving multilingual and cross-cultural 

communication. 

 

4.2Analysis of language coverage 
The RM-CILS system supports multiple languages 

and achieves better performance scores than traditional 

methods, as shown in Figure 5, indicating improved 

language coverage. This wide range of support enables 

people from different language groups to communicate 

with one another. Other methods show moderate gains 

with more language numbers, and they level off sooner 

using equation 13. RM-CILS's advanced multilingual 

processing methods enable people to communicate 

effectively in a wider range of language settings without 

any issues. This is important for global cross-cultural 

teaching and communication applications. 

 

 
Figure 5: Language coverage analysis 

 

𝐿𝐶 = ∑ 𝑤𝑖 . 𝛿(𝐿𝑖 , 𝐿̂𝑖)        (13)

𝑁

𝑖=1

 

This equation 13 finds the total language coverage 𝐿𝐶 

by adding up the weighted language 𝑤𝑖   detection 

accuracies for all the languages that are supported. Weight 

parameters 𝛿  take into account how important each 

language is 𝐿𝑖 , making sure that more important languages 

have a bigger effect on the overall score as 𝐿̂𝑖 . Correct 

prediction evaluation utilizes an indicator function to 

verify that language identifications align, facilitating 

comprehensive multilingual assessment. 

4.3Analysis of cultural adaptability 
 

Table 3: Cultural adaptability analysis 

Adaptation Index  

(0-1) 

HAND-ROBOT BILINGUA TRUST-ROBOT RM-CILS 

0.0 40 45 50 55 

0.25 50 55 60 70 

0.5 60 65 70 80 

0.75 65 70 75 90 

1.0 70 75 80 95 
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RM-CILS is exceptionally proficient at adapting to 

different cultures because it is very aware of how people 

from different cultures act and think as shown in Table 

3. Its scores are higher than those of other methods, 

which show little growth as adaptation indexes rise. 

RM-CILS's ability to adapt better comes from its use of 

culturally aware modules, which make interactions 

more relevant and comfortable for students using 

equation 14. The system's ability to change how it 

communicates based on cultural contexts improves 

understanding and acceptance between cultures. 

𝐶𝐴 =
1

𝑀
∑ 𝛾(𝑆𝑗 ,

𝑀

𝑗=1

𝐶𝑗)          (14) 

For the purpose of finding out how adaptable a 

system is to different cultures 𝐶𝐴 , it looks at how 

similar the system's response style is to the student's 

cultural norms in different situations 
1

𝑀
. This similarity 

function 14 measures how well the system follows 

cultural norms𝑆𝑗. This shows how well the system can 

change its responses to fit different cultural situations 

𝐶𝑗 , which makes students feel more at ease and 

improves communication.  

4.4  Analysis of interaction modalities 

 
 

Figure 6: Interaction modalities analysis 

 

RM-CILS gets the best quality scores by using speech, 

gesture, and visual cues to communicate in many different 

ways, as shown in Figure 6. Traditional methods support 

fewer or less integrated modalities. RM-CILS's multi-

channel approach, on the other hand, makes interaction 

richer, more interesting, and more natural. This 

multimodal capability makes sure that communication is 

flexible enough to meet the needs of different students and 

situations, which improves the overall usability of the 

system and the learning experience. 

Equation 15 adds together the weighted contributions 

𝐼𝑀  from different communication channels 𝑘  to find the 

overall interaction modality score 𝜇 . A quality measure 

shows how robust each modality is (𝐹𝑘) , like speech or 

gesture 𝑃 . This aggregation demonstrates how various 

modalities collaborate to create a communication 

experience that is flexible and rich, tailored to the student's 

needs. 

𝐼𝑀 = ∑ 𝛽𝑘.𝜇(𝐹𝑘)           (15)

𝑃

𝑘=1

 

 

 



RM-CILS: A Social Robot-Assisted System for Multilingual…                                                 Informatica 49 (2025) 453–474   469 
 

4.5  Analysis of personalization level 
 

Table 4: Personalization level analysis 

 

Personalization 

Dimension 

Description Metric/Indicator Achieved 

Value 

(%) 

Impact on Learning 

Language 

Preference 

Customization 

Ability to choose and 

switch between multiple 

languages in real time. 

Multilingual 

adaptation rate 

96.2% Improved comprehension and 

inclusivity. 

Cultural Norm 

Alignment 

Adjusting robot behavior 

to local cultural values, 

gestures, and etiquette. 

Cultural 

conformity 

accuracy 

94.7% Stronger intercultural rapport 

and reduced communication 

barriers. 

Emotional 

Personalization 

Recognition and response 

to learner emotions (tone, 

sentiment, engagement 

level). 

Emotion 

recognition 

precision 

95.5% Boosted motivation, trust, and 

learner satisfaction. 

Ethical 

Sensitivity 

Ensuring communication 

aligns with ethical norms 

and avoids bias or 

stereotypes. 

Ethical 

compliance index 

93.8% Promotes fairness, respect, and 

safe communication. 

Learning Style 

Adaptation 

Adjustments based on 

individual learner’s pace, 

preference 

(visual/audio/kinesthetic). 

Adaptation 

accuracy 

95.0% Enhanced retention and long-

term learning outcomes. 

Interaction 

History 

Memory 

System remembers user 

preferences and prior 

interactions for continuity. 

Context recall 

accuracy 

96.7% Strengthens personalized 

rapport and continuity in 

learning. 

User-

Controlled 

Personalization 

Allowing learners to 

directly configure settings 

(language, cultural tone, 

feedback style). 

User 

customization 

adoption rate 

94.1% Higher autonomy and learner 

satisfaction. 

RM-CILS is effective at personalization because it 

changes interactions based on student profiles and history. 

Performance goes up a lot when more people personalize 

it, beating older methods that do not allow as much 

customization as shown in Table 4. This personalized 

approach leads to better learning outcomes and more 

engaged students by meeting the needs and cultural 

preferences of each learner, making communication more 

meaningful and effective using equation 16. 

𝑃𝐿 The level of personalization 𝑃𝐿  is based on a 

changed sum ∅ of the weighted distances 𝜔𝑢 between each 

student's profile 𝑃𝑢  and the system's responses 𝑅𝑢 . The 

distance metric 𝑑  measures how well the system's 

behavior matches the student's specific traits, with more 

important students getting more weight 𝑢 = 1 𝑡𝑜 𝑈. Then, 

a nonlinear scaling function modifies this total to create a 

score that indicates how well the system personalizes 

interactions with different students, as shown in equation 

16. 

 

= ∅ (∑ 𝜔𝑢. 𝑑(

𝑈

𝑢=1

𝑃𝑢 , 𝑅𝑢))        (16) 

 

4.6  Analysis of engagement metrics 
Table 5: Engagement metrics analysis 

Interaction Duration (minutes) HAND-ROBOT BILINGUA TRUST-ROBOT RM-CILS 

5 55 60 65 75 

10 65 70 75 85 

15 70 75 80 90 

20 75 80 85 93 

25 80 85 88 95 
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RM-CILS has higher scores across all levels of 

engagement, which shows improvement in student 

engagement. The system's adaptive and multimodal 

feedback systems keep learners more motivated and 

involved than older methods in Table 5. Improvements in 

engagement lead to better learning experiences and 

ongoing interaction, both of which are very important for 

success in multilingual and cross-cultural educational 

settings, according to equation 17. 

𝐸𝑀 = ∫ 𝜌(𝐴𝑡 , 𝑀𝑡)𝑑𝑡

𝑇

0

        (17) 

Engagement 𝐸𝑀  is determined by combining a 

function of attention 𝐴𝑡  and motivation levels 𝑀𝑡 

throughout the interaction period. This ongoing 

measurement records the total amount of student 

involvement 𝜌 , taking into account changes in cognitive 

and emotional states 𝑇. The integral approach makes sure 

that both the intensity and consistency of engagement are 

taken into account, giving a complete picture of the quality 

of interaction in equation 18. 

4.7Analysis of multilingual accuracy 
 

Table 6: Multilingual accuracy analysis 

 
Number of Students HAND-ROBOT BILINGUA TRUST-ROBOT RM-CILS 

100 50 55 60 70 

200 60 65 70 80 

300 65 70 75 85 

400 70 75 80 90 

500 75 80 85 95 

 

RM-CILS has the best multilingual accuracy because 

it can accurately detect and translate across many 

languages. Traditional methods show slow progress and 

are unable to match how strong RM-CILS is compared in 

Table 6. This level of accuracy makes sure that everyone 

understands and can communicate effectively, which cuts 

down on misunderstandings and builds trust among 

students from different backgrounds, which is essential for 

smooth multilingual collaboration. 

𝑀𝐴 =
1

𝑁
∑

#𝑐𝑜𝑟𝑟𝑒𝑐𝑡

#𝑡𝑜𝑡𝑎𝑙𝑖

             (18)

𝑁

𝑖=1

 

Multilingual accuracy 𝑀𝐴  is the average number of 

correctly processed inputs #𝑐𝑜𝑟𝑟𝑒𝑐𝑡  divided by the total 

number of inputs 
1

𝑁
  for each language that is supported. 

Equation 18 shows how well the whole system works at 

recognizing and translating by adding up the accuracies for 

each language#𝑡𝑜𝑡𝑎𝑙𝑖 . This balanced approach makes sure 

that the final accuracy metric is based on performance in 

all languages fairly. The parameters that were looked at 

show that RM-CILS is better at supporting many 

languages, adapting to cultural differences, using different 

types of communication, and making interactions more 

personal. Ethical compliance, high student engagement, 

accurate multilingual comprehension, and substantial 

educational impact further affirm its superiority over 

conventional approaches. These metrics all point to RM-

CILS as a complete and advanced way to improve robot-

assisted education and interaction across languages and 

cultures. 

The experimental results demonstrate how RM-

CILS’s core contributions translate into measurable 

outcomes. The personalized engagement mechanisms 

correspond to increased interaction metrics, as shown in 

Table 4, where adaptive language and cultural modules 

significantly enhance learner responsiveness compared to 

baselines. Multilingual adaptability is supported by 

analysis in Figure 5, evidencing broad language coverage 

and accurate language identification across diverse learner 

profiles. Cultural sensitivity indices in Table 6 reveal the 

system’s capacity to align communication behaviors to 

cultural norms, improving acceptance and social rapport. 

Additionally, the multimodal feedback unit contributes to 

higher social presence scores and learner satisfaction, 

validating the integrated speech, gesture, and facial 

expression modalities. Together, these results establish a 

clear link between the described methodological 

innovations and their impact on educational outcomes. 

The reported metric of 97.1% learning outcome 

impact was derived from simulated interaction data 

comparing learner engagement and task completion rates 

with and without RM-CILS’s adaptive modules enabled. 

However, no formal control group of human participants 

was used; instead, comparisons used baseline simulations 

lacking cultural and multimodal adaptation. This lack of a 

controlled experimental group limits the validity and 

generalizability of the results, risking interpretation as 

speculative until validated through human trials or real-

world studies with clear comparative conditions. Detailed 

methodology outlining simulation parameters, baseline 

configurations, and statistical analyses is needed to 

substantiate such impact claims robustly.1. Students 

engaged in multilingual communication and cultural 

exchange simulations, performing conversational practice, 

comprehension exercises, and culturally contextualized 

tasks facilitated by RM-CILS. 

Comparison Systems: The comparison systems 

HAND-ROBOT, BILINGUA, TRUST-ROBOT were not 

directly re-implemented but were modeled based on 

published performance benchmarks and described 
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architectures. Their baseline results were adapted from 

prior literature for parallel metrics, ensuring fair 

comparative analysis under similar simulated conditions. 

This indirect benchmarking approach aligns with common 

practice in early-stage system validation. However, it is 

acknowledged that more rigorous direct re-

implementations or user studies would provide stronger 

comparative validity. 

Recommendation: Future evaluations will focus on 

conducting controlled user studies and simulations based 

on multilingual, multimodal conversational corpora. These 

would capture real-time, multimodal student-robot 

interactions with rich speech, gesture, and emotional data 

to validate system performance on communication metrics 

more credibly. Incorporating human participants in diverse 

cultural contexts would significantly enhance the external 

validity and practical relevance of the results. 

5  Discussion 
According to quantitative study, RM-CILS performed 

better than BILINGUA (75%), CONVERS-AI (82%), and 

TRUST-ROBOT (78%), with an average engagement 

level of 93–95%.   Additionally, its average Cultural 

Adaptability Index (CAI) was 0.92, which was much 

higher than TRUST-ROBOT's (0.78) and BILINGUA's 

(0.70).    These results demonstrate how well RM-CILS 

maintains learner motivation while facilitating culturally 

sensitive communication in multilingual settings.    The 

main cause of the performance disparities that have been 

found is architectural variation.    To facilitate 

synchronized linguistic, emotional, and cultural changes 

during interaction, RM-CILS integrates a multi-layered 

adaptive NLP engine, a cultural sensitivity module, and 

real-time multimodal input.    Conversely, TRUST-

ROBOT concentrates on anthropomorphic trust without 

real-time multilingual or contextual adaptability, 

CONVERS-AI provides adaptive dialogue but lacks 

learner profiling and cultural rule-based adaptation, and 

BILINGUA is restricted to static bilingual exchanges 

without dynamic cultural recalibration.    The adaptive 

control architecture of RM-CILS, inspired by nonlinear 

robust control theory, enhances engagement, trust, and 

personalization by stabilizing communication in the face 

of linguistic and cultural uncertainty.    In order to achieve 

96% accuracy in personalized learning alignment, 

dynamic cultural–linguistic co-adaptation, and ethical 

compliance for privacy, consent, and justice, it combines 

multilingual natural language processing, cultural 

intelligence, and multimodal affective interaction in a 

novel way.    All things considered, RM-CILS is a thorough 

and adaptable paradigm for cross-cultural learning and 

multinational classrooms.   To further establish its position 

as a standard for multilingual, culturally aware educational 

robots and to evaluate its adaption and engagement 

measures scientifically, controlled user trials are advised 

for the future. 

6  Conclusion and future work 
The RM-CILS model offers a considerable increase in the 

overall contributions to the area of robot-assisted 

education and communication. With the combination of 

advanced natural language processing with culturally 

responsive and adaptive modules for multimodal input 

methods, RM-CILS addresses important issues that impact 

language teaching in multilingual and cross-cultural 

learning environments. RM-CILS adjusts personalized 

student interactions based upon profiles that represent 

learners and their cultural contexts, with the goal of 

improving learner engagement, communication precision, 

and ultimately, learning outcomes. With the use of our 

expansive ethical compliance policies, RM-CILS can be 

deployed in a responsible and trustworthy manner as we 

enforce the process across diverse student populations. 

The report shows RM-CILS performed better than 

traditional comparisons concerning language 

representation, cultural adaptability, personalization, and 

impact on learning; all of which point to a strong 

international educational, networking, and collaboration 

platform. 

6.1  Future works 
Future work will be focused on improving the scalability 

of the system, regarding a range of languages and dialects, 

ethical inclusivity, including working with low-resource 

languages. A future research direction will be to 

investigate the integration of emotional intelligence 

supports in real-time, enhancing the system's sensitivity to 

slight changes in mood or emotion. Continually improving 

the system's learning abilities based on interaction will 

allow the system to be more tailored and ultimately for 

students to be happy. Future RM-CILS integration with 

VR/AR will synchronize robot actions with spatial 

contexts, aligning gestures, speech, and visual cues in 

immersive environments. Real-time multimodal alignment, 

spatial mapping, and adaptive motion planning will ensure 

seamless interactions, enhancing engagement and cultural 

responsiveness in virtual classrooms and collaborative, 

cross-cultural learning spaces. 
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