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While real-time multi-person pose estimation is a critical technology for human-computer interaction and 

action recognition tasks, maintaining accuracy and efficiency on confined hardware remains a major 

challenge. To overcome the inherent trade-off between the high computational cost of heatmap-based 

methods and the inferior quality of regression-based ones, this paper uses a coarse-to-fine deep learning 

mechanism to propose a novel two-stage model named Dynamic Resolution Pose Network (DRP-Net). 

The model employs a light regression head first for rapid coarse coordinate estimation, then a dynamic 

refinement head to produce localized heatmaps in small, dense regions of interest to enable precise 

correction. This effectively maximizes the utilization of computation resources and provides high 

localization accuracy with significantly reduced model inference latency. Experimental results verify that 

the medium-sized DRP-Net-M model achieves an Average Precision (AP) of 74.1% on the MS COCO test 

set at a computation cost of mere 2.15 GFLOPs, outperforming the best-performing real-time model 

RTMPose-m with a comparable computational budget. This paper presents a two-stage architecture 

integrating regression and region-localized heatmap refinement. It provides a new high-efficiency 

paradigm for light-weight real-time pose estimation and sets a new direction to build other dense 

prediction tasks in computer vision through its dynamic resolution concept. 

Povzetek: DRP-Net, dvofazni model za realnočasovno večosebno ocenjevanje človeške drže združuje hitro 

regresijo in lokalno toplotno izpopolnjevanje z dinamično ločljivostjo. Metoda dosega visoko točnost ob 

nizki računski zahtevnosti ter je primerna za robne naprave. 

 

1 Introduction 
Human Pose Estimation (HPE), for finding 

anatomical keypoints of the human skeleton, is a computer 

vision foundation technology with profound implications 

for understanding human behavior [1]. Its extensive 

variety of applications has established tremendous 

achievement in many fields, from interactive fitness 

tracking [2] and sophisticated human-computer 

interaction [3] to real-time analysis of sports performance 

[4] and designing immersive experiences for virtual and 

augmented reality [5]. The rapid advancement of deep 

learning has accelerated progress in the research 

community, moving the field beyond constrained one-

person environments to challenging real-world 3D [6] and 

multi-person environments [7]. However, as the demand 

for intelligent applications on low-cost devices grows, 

implementing these computationally intensive models to 

be processed in real time on resources-constrained devices 

such as phones is not an easy process [8]. 

 

Existing multi-person pose estimation methods are 

predominantly divided into two paradigms: top-down and 

bottom-up. Top-down methods, the most accurate at  

present, start with using a person detector to identify 

bounding boxes for every person and then pose estimation 

in each box. For instance, the contributors to Fang et al. 

developed AlphaPose [9], a high-efficiency system with 

superior regional pose estimation, and this approach has 

subsequently been extensively used in challenging 3D 

cases [10]. The latest work on RTMPose by Jiang et al. 

[11] has also demonstrated superior efficiency within the 

top-down approach. Bottom-up methods first recognize all 

keypoints in an image and then group these keypoints into 

one skeleton. A groundbreaking paper in this area is 

OpenPose by Cao et al. [12], which found multiple 

individuals in real time regardless of the number of people. 

From this, Cheng et al. introduced HigherHRNet [13] to 

improve keypoint accuracy in crowded situations. While 

generally faster, bottom-up methods can struggle with 
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scale variations and inter-person occlusions with a lot of 

complexity, which leads to lower precision [14]. 

The most significant challenge in modern HPE 

research is to manage the fundamental trade-off between 

the cost of computation and localization accuracy. The 

rivalry is largely defined by the selection of keypoint 

representation methodology. Heatmap-based methods are 

the de facto standard for top-performance accuracy. A 

groundbreaking contribution in this area was the High-

Resolution Network (HRNet) of Sun et al. [15], which 

maintains high-resolution feature maps throughout the 

whole network with significantly enhanced performance. 

Its influence can be observed in the many subsequent 

designs which have taken advantage of this strong 

architecture, from multi-stage designs [16], dynamic light-

weight versions [17], and models with improved multi-

dimensional weight schemes [18]. However, the greatest 

setback to this method is the enormous computational and 

memory expense of producing and processing such large 

heatmaps. This issue has inspired research on more 

efficient HRNet-like models [19] and other light-weight 

structures to reduce complexity at the cost of accuracy 

[20]. 

To address the efficiency bottleneck, another 

direction of research attempts direct coordinate regression 

or classification. These methods predict keypoint 

coordinates directly from image features without 

processing expensive heatmaps. This approach, adopted 

by new one-stage models, highly reduces model 

complexity and enables greater inference speed. For 

example, Dong and Du leveraged this to enhance the 

YOLOv8 architecture for pose estimation [21], while Lu 

et al. introduced RTMO for high-performance one-stage 

estimation [22]. While these regression-based models are 

computationally efficient, such efficiency often comes at 

the cost of sacrificed localization accuracy and robustness 

compared to their heatmap-based counterparts. 

To bridge this performance gap, we introduce the 

Dynamic Resolution Pose Network (DRP-Net), a novel 

coarse-to-fine framework that jointly combines the speed 

of regression with the precision of heatmaps. Our 

approach is motivated by the concept of focusing 

computational effort on challenging areas. This idea has 

also been attempted in earlier work, e.g., DetPoseNet by 

Ke et al. [23], which utilizes coarse-pose filtering, and 

Manousis et al. [24], who use active perception to guide 

the attention of the model. These techniques perform 

admirably for solving ordinary problems like partial 

occlusion [25]. Furthermore, DRP-Net's dynamic 

resolution idea parallels adaptive strategies in control 

systems, such as adaptive fuzzy control [26] and neural 

adaptive control [28], which adjust resources dynamically 

to optimize performance under uncertainty. Similar to 

output-feedback controllers [27] and backstepping 

methods [29,31], DRP-Net adapts refinement based on 

coarse estimates, enhancing generalizability. Nonlinear 

optimal control approaches [30] also inspire our resource 

allocation, emphasizing novelty in vision tasks. DRP-Net 

retains this coarse-to-fine philosophy by first employing 

an extremely effective regression head to predict a coarse 

initial estimate for all keypoints. From these coarse 

predictions, a refinement module then continues to 

generate small, localized, low-resolution heatmaps in only 

the relevant region of interest. Its dynamic resolution 

strategy avoids the very high cost of computing full-image 

heatmaps while leveraging their superior localization 

capability for refinement. Our approach is aimed at 

offering a fresh state-of-the-art trade-off between 

accuracy and speed which allows high-performance multi-

person pose estimation on a more generalizable set of real-

time, real-world situations. 

The major contributions of this paper include: 

1.We propose DRP-Net, a compact and innovative 

two-stage system for real-time multi-person pose 

estimation which smoothly combines regression and 

heatmap-based methods. 

2.We introduce a dynamic resolution strategy in 

which local, low-resolution heatmaps are computationally 

created on-the-fly from coarse initial predictions at the 

expense of little accuracy loss while saving significant 

computational cost. 

3.Large-scale experiments on the MS COCO 

benchmark demonstrate that DRP-Net performs better 

than existing lightweight and real-time models with 

improved performance-efficiency balance on various 

platforms like CPUs and smartphones. 

2  Methodology  
In this section, we provide a comprehensive exposition 

of the architectural design and underlying principles of the 

proposed Dynamic Resolution Pose Network (DRP-Net). 

We aim to establish a new equilibrium between 

localization accuracy and computational efficiency, which 

is critical for real-time multi-person pose estimation. We 

first delineate the overall framework, clarifying how DRP-

Net is integrated into a standard top-down pipeline. 

Subsequently, we conduct an in-depth analysis of the core 

components: the shared backbone network, the Coarse 

Regression Stage, and the Dynamic Refinement Stage. 

Following this, we formulate the composite loss function 

and detail the advanced training and optimization 

strategies employed to maximize model performance.  

 
Figure 1: The overall pipeline of our proposed DRP-Net 

framework, operating within a top-down paradigm. 

CSPNeXt backbone with 3 stages (64-128-256 

channels), input 256x192 → feature map 64x48; Coarse: 
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GAP (1x1) + FC (34 outputs); Refinement: RoIAlign 

crop (7x7, 256 channels) → two 3x3 Conv (128 

channels, ReLU) → 1x1 Conv (1 channel heatmap)[32] 

2.1 Overall framework 

DRP-Net is conceptualized as the core engine within a 

standard top-down multi-person pose estimation pipeline. 

This modular design choice promotes flexibility and 

allows our model to leverage the continuous 

advancements in the field of object detection. The system, 

shown in Figure 1, initially utilizes a high-efficiency, real-

time person detector to acquire the bounding boxes for all 

individuals present in an input image  : 

ℬ = {𝑏1, 𝑏2, … , 𝑏𝑁} =  Detector (𝐼)                   (1) 

For each detected person 𝑛, the corresponding image 

patch 𝐼𝑛  is cropped based on its bounding box 𝑏𝑛  and 

subsequently resized to a fixed resolution, commonly 

256 × 192  pixels. Each patch is then processed 

independently by our DRP-Net for single-person pose 

estimation. This strategy effectively decomposes the 

complex multi-person problem into 𝑁 parallel and more 

manageable single-person tasks, enabling the network to 

focus exclusively on high-efficiency keypoint localization. 

The choice of a backbone network is pivotal as it 

dictates the quality of features available for the 

downstream tasks. For a real-time system, the backbone 

must strike an exceptional balance between feature 

representation capability and inference speed. To this end, 

we adopt a modern lightweight architecture, CSPNeXt, as 

our primary backbone. The backbone processes an input 

image patch 𝐼𝑛 ∈ ℝ𝐻×𝑊×3  and produces a feature map 

𝐹 ∈ ℝ𝐻′×𝑊′×𝐶  at a certain stride, where 𝐹  encapsulates 

the multi-level spatial and semantic information required 

for robust keypoint localization: 

𝐹 = Backbone(𝐼𝑛)                        (2) 

Unlike traditional backbones designed for image 

classification, architectures like CSPNeXt are optimized 

for dense prediction tasks, making them an ideal 

foundation for pose estimation. The features extracted by 

this backbone are then shared by both the coarse and fine 

stages of our network, ensuring parameter efficiency. 

The fundamental goal of pose estimation is to represent 

a person's posture as a structured set of anatomical 

keypoints. These keypoints, as illustrated in Figure 2, 

correspond to major joints and landmarks on the human 

body, such as wrists, elbows, knees, and ankles. The 

spatial arrangement of these points defines the overall 

configuration of the body. Our proposed DRP-Net is 

designed to accurately and efficiently determine the 

precise 2D coordinates for each of these predefined 

keypoints for every person detected in the input image. 

 

Figure 2: An illustration of human pose representation 

using a set of anatomical keypoints. 

2.2 Coarse regression stage: efficient initial 

localization 

The principal objective of the coarse regression stage is 

to rapidly generate an approximate location for each 

keypoint with minimal computational expenditure. The 

feature map 𝐹  from the backbone is channeled into the 

coarse regression head. To uphold maximal efficiency, 

this head's design is intentionally minimalistic, 

comprising only a Global Average Pooling (GAP) layer 

followed by a single Fully Connected (FC) layer. The 

GAP layer aggressively downsamples the spatial 

dimensions of the feature map, producing a compact 

feature vector ∈ ℝ𝐶  : 

𝑣 =
1

𝐻′×𝑊′
∑  𝐻′

𝑖=1 ∑  𝑊′

𝑗=1 𝐹(𝑖, 𝑗)                         (3) 

This vector 𝑣 serves as a global descriptor of the input 

person's features. The FC layer then functions as a linear 

regressor, mapping this global feature vector directly to 

the coarse keypoint coordinates. For a pose comprising 𝐾 

keypoints, the output is a flattened vector of size 2𝐾 : 

𝑃coarse = FC(𝑣) ∈ ℝ2𝐾                         (4) 

Here, 𝑃coarse = {(𝑥𝑐
𝑘, 𝑦𝑐

𝑘) ∣ 𝑘 = 1,… , 𝐾}  denotes the set 

of predicted coarse coordinates. For training this stage, we 

employ the Smooth L1 Loss, defined as: 

SmoothL1(𝑧) = {
0.5𝑧2  if |𝑧| < 1
|𝑧| − 0.5  otherwise 

               (5) 

This loss function is a robust choice for regression tasks. 

The loss for this stage, ℒcoarse , is computed as the average 
loss over all keypoints marked as visible in the ground-
truth annotation: 
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ℒcoarse =
1

𝐾vis
∑  𝐾
𝑘=1 𝕀(𝑣𝑘 > 0) ⋅ SmoothL1(𝑝𝑐

𝑘 − 𝑝gt
𝑘 )          

(6) 

where 𝑝gt
𝑘  is the ground-truth coordinate for the 𝑘-th 

keypoint, 𝐾vis  is the total number of visible keypoints, and 

𝕀(𝑣𝑘 > 0)  is an indicator function that equals 1 if the 

keypoint is visible and 0 otherwise. We chose GAP+FC 

for maximal efficiency, accepting minor spatial loss, as 

ablation shows it provides effective initials without 

residuals' added complexity. 

2.3 Dynamic refinement stage: precision 

through focused attention 

This stage forms the core of our network's high-

precision capabilities. It refines the initial predictions from 

the coarse stage by applying a more powerful localization 

method over a tightly focused search area. For each 

keypoint 𝑘, we utilize its coarse coordinate 𝑝𝑐
𝑘 = (𝑥𝑐

𝑘 , 𝑦𝑐
𝑘) 

to dynamically define a Region of Interest (ROI) centered 

at that location on the backbone's feature map 𝐹. From this 

map, we crop a local feature patch 𝐹roi 
𝑘  of a fixed spatial 

size × 𝑆 : 

𝐹roi
𝑘 = RoIAlign(𝐹, Box(𝑝𝑐

𝑘 , 𝑆))                  (7) 

The cropping operation is implemented via RolAlign, 

which employs differentiable bilinear interpolation to 

extract features, preserving the precise spatial alignment 

indispensable for accurate localization. Each cropped 

feature patch 𝐹roi 
𝑘  is subsequently processed by a small, 

dedicated refinement head, which is composed of a few 

lightweight convolutional layers. Its function is to predict 

a localized, low-resolution heatmap 𝐻𝑘 ∈ ℝℎ×𝑤 : 

𝐻𝑘 =  RefineHead (𝐹roi
𝑘 )                      (8) 

To ensure reproducibility, we specify the architecture of 

the refinement head. It is a minimalistic yet effective 

module consisting of two 3x3 convolutional layers, each 

with 128 channels and followed by a ReLU activation 

function. A final 1x1 convolutional layer then projects the 

features into the single-channel heatmap 𝐻𝑘 . This 

lightweight design adds minimal computational overhead 

while providing sufficient capacity for precise local 

refinement.The ground-truth target heatmap, 𝐻gt
𝑘 , used for 

training is a 2D Gaussian distribution rendered onto a 

ℎ × 𝑤 canvas. The peak of the Gaussian is centered at the 

ground-truth location ( 𝑢gt
𝑘 , 𝑣gt

𝑘  ) relative to the ROI's 

center: 

𝐻gt
𝑘 (𝑢, 𝑣) = exp⁡ (−

(𝑢−𝑢gt
𝑘 )

2
+(𝑣−𝑣gt

𝑘 )
2

2𝜎2
)                   (9) 

Here, the standard deviation σ is set to 2. This value is 

a common choice in the pose estimation literature, as it 

creates a target heatmap with a peak that is sufficiently 

sharp to provide a strong learning signal but also smooth 

enough to ease optimization. The loss function for this 

refinement stage, ℒfine , is the Mean Squared Error (MSE) 

between the predicted heatmaps and the target Gaussian 

heatmaps: 

ℒfine =
1

𝐾vis 

∑  𝐾
𝑘=1 𝕀(𝑣𝑘 > 0) ⋅ ‖𝐻𝑘 − 𝐻gt

𝑘 ‖
𝐹

2
              (10) 

where, ‖ ⋅ ‖𝐹
2  denotes the squared Frobenius norm. 

During inference, the final keypoint coordinate is 

determined by identifying the location of the maximum 

activation within the predicted heatmap 𝐻𝑘. Patch size is 

fixed at 7x7; scale invariance is achieved via input 

normalization and backbone's multi-scale features. 

2.4 Training and optimization strategies 

To maximize the performance of DRP-Net, we employ 

a series of advanced training and optimization strategies. 

A critical aspect is its end-to-end training capability. The 

total loss for the network is a weighted sum of the losses 

from the coarse and fine stages: 

ℒtotal = 𝜆coarse ℒcoarse + 𝜆fine ℒfine                    (11) 

The hyperparameters 𝜆coarse  and 𝜆fine  balance the 

contribution of each loss term. By backpropagating the 

total loss, the shared backbone learns to generate feature 

representations that are beneficial for both tasks. We use 

the AdamW optimizer, which decouples weight decay 

from the gradient update. The learning rate is managed by 

a Flat-Cosine annealing schedule. Furthermore, we utilize 

Exponential Moving Average (EMA) of the model's 

weights. EMA maintains a shadow copy of the model 

parameters 𝜃′ that is updated as a moving average of the 

trained parameters 𝜃𝑡 at each step  : 

𝜃𝑡
′ = 𝛿𝜃𝑡−1

′ + (1 − 𝛿)𝜃𝑡                      (12) 

where 𝛿 is the decay rate. This technique often leads 

to significant improvements in performance by smoothing 

out fluctuations. A two-stage data augmentation strategy 

is also employed. The initial, longer training phase uses 

strong augmentations, while the final, shorter phase 

switches to weak augmentations to fine-tune the model. 

For video-based applications, performing person 

detection on every single frame is computationally 

redundant. We integrate a skip-frame detection 

mechanism. In this scheme, the full detection-plus-pose 

pipeline is executed only periodically. In the intermediate 

frames, the bounding boxes for each person are derived 

from the pose estimation results of the previous frame. To 

ensure temporal smoothness, two post-processing steps 

are applied. First, an Object Keypoint Similarity (OKS)-

based Non-Maximum Suppression (NMS) is used to 

resolve duplicate detections. Second, a OneEuro filter is 

applied to the time series of each keypoint's coordinates. 

The OneEuro filter is a low-pass filter with an adaptive 

cutoff frequency. The filtered value 𝑥̂𝑡  at time 𝑡  is 

computed from the previous filtered value 𝑥̂𝑡−1  and the 

current measurement 𝑥𝑡 : 
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𝑥̂𝑡 = 𝛼𝑥̂𝑡−1 + (1 − 𝛼)𝑥𝑡                     (13) 

The smoothing factor 𝛼 is dynamically adjusted based 

on the rate of change of the signal, which effectively 

smooths out jitter while preserving fast movements. The 

complete inference process of DRP-Net for a single 

person patch is summarized in Algorithm 1. 

Algorithm 1: DRP-Net inference process for a 

single image patch 

Input: Image patch 𝐼, number of keypoints 𝐾, ROI 

size 𝑆. 

Output: Final refined keypoint coordinates 𝑃final . 

1. Shared feature extraction: 

2. 𝐅 ← ℬ(𝐈patch ). 

3. Coarse regression: 𝐯 ← GlobalA 

veragePooling (𝐅); 
4. 𝑃𝑐𝑜𝑎𝑟𝑠𝑒 ← 𝒞(𝐯). 
5. Dynamic refinement: Initialize 𝑃final ← ∅. 

6. for 𝑘 = 1 to 𝐾 do 

7. 𝐏𝑐,𝑘 ← 𝑃𝑐𝑜𝑎𝑟𝑠𝑒[𝑘]; 
8. Compute the axis-aligned bounding box 

9. Box ⁡𝑘 ← Define_ROI_Box (𝐩𝑐,𝑘, 𝑆); 
10. Crop the corresponding feature patch via 

differentiable bilinear interpolation: 

11. 𝐅roi ,𝑘 ← RoIAlign(𝐅, 𝐁𝐨𝐱𝑘); 
12. Generate a localized heatmap: 

13. 𝐇𝑘 ← ℛ(𝑭roi ,𝑘); 

14. Identify the location of maximum activation: 

15. (𝑢𝑘, 𝑣𝑘) ← arg⁡max
(𝑢,𝑣)

 𝐇𝑘; 

16. Map the heatmap coordinates back to the 

original patch coordinate system: 

17. 𝐩𝑓,𝑘 ←  Convert_to_Patch_Coords ((𝑢𝑘 , 𝑣𝑘), Box𝑘); 

18. Append 𝐩𝑓,𝑘 to 𝑃final . 

19. end for 

20. Return 𝑃final . 

3 Experiments  
This chapter presents a comprehensive empirical 

evaluation of our proposed Dynamic Resolution Pose 

Network (DRP-Net). We conduct a series of rigorous 

experiments to validate its effectiveness and efficiency. 

First, we detail the experimental setup, including the 

datasets, evaluation metrics, and implementation specifics. 

Second, we compare DRP-Net against a range of state-of-

the-art real-time pose estimation methods on the 

challenging MS COCO benchmark. Third, we perform in-

depth ablation studies to dissect the contribution of each 

key component in our design. Finally, we provide a 

qualitative analysis to visually demonstrate the robustness 

and precision of our model in complex, real-world 

scenarios. 

3.1 Experimental setup 

Our primary experiments are conducted on the MS 

COCO (Microsoft Common Objects in Context) dataset, 

which is the most widely recognized benchmark for 2D 

human pose estimation. We strictly adhere to the standard 

protocol, using the train2017 split (containing ~118k 

images) for training and evaluating performance on the 

val2017 split (5k images). For the top-down pipeline, we 

utilize the person detection bounding boxes provided by 

the dataset organizers to ensure a fair comparison with 

other methods. 

The primary metric for evaluating keypoint localization 

accuracy is the standard Average Precision (AP) based on 

Object Keypoint Similarity (OKS). OKS is defined as: 

OKS =
∑  𝑖  exp⁡(−𝑑𝑖

2/2𝑠2𝑘𝑖
2)⋅𝛿(𝑣𝑖>0)

∑  𝑖  𝛿(𝑣𝑖>0)
                   (14) 

where 𝑑𝑖  is the Euclidean distance between a 

predicted keypoint and its corresponding ground truth, 𝑠 

is the object scale, 𝑘𝑖 ⁡ is a perkeypoint constant that 

controls falloff, and 𝑣𝑖  indicates the visibility of the 

keypoint. We report the standard AP (averaged over 10 

OKS thresholds from 0.50 to 0.95), along with AP50 (OKS > 

0.50) and AP75 (OKS > 0.75). To evaluate model 

efficiency, we measure GFLOPs (Giga Floating-point 

Operations) to quantify computational complexity and the 

total number of model Parameters (M) to assess model 

size. 

We implement DRP-Net using the PyTorch deep 

learning framework. All models are trained on 8 NVIDIA 

A100 GPUs. We use the CSPNeXt architecture as our 

default backbone. The input image patches are resized to 

256 times 192 pixels. For optimization, we use the 

AdamW optimizer with a base learning rate of 4 times 

10−3  and a weight decay of 0.05. The learning rate is 

scheduled using a Flat-Cosine annealing strategy over 420 

epochs, with a 1000-iteration warm-up period. The two-

stage data augmentation and EMA strategies described in 

the previous chapter are applied. For a fair top-down 

comparison, we use the same high-performance RTMDet 

detector across all relevant experiments. 

3.2 Comparison with state-of-the-art 

methods 

We compare DRP-Net with several leading real-time 

pose estimation methods, including both top-down and 

bottom-up approaches. The comparison focuses on the 

trade-off between accuracy (AP) and computational cost 

(GFLOPs). To provide a more comprehensive comparison 

against the latest advances, we have also included 

ViTPose-B, a recent state-of-the-art method based on the 

Vision Transformer architecture. While transformer-

based models like ViTPose demonstrate very high 

accuracy, they typically come with a significantly higher 

computational cost, which is not ideal for real-time 

applications on constrained hardware. 

Table 1 presents a detailed quantitative comparison on 

the COCO val2017 dataset. Our proposed DRP-Net is 

presented in several sizes (DRP-Net-S, DRP-Net-M, 

DRP-Net-L) to demonstrate its scalability. The results 
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clearly indicate that DRP-Net achieves a superior balance 

of performance and efficiency. For instance, our DRP-

Net-M model achieves an AP of 74.1%, surpassing the 

highly optimized RTMPose-m by a notable margin while 

operating at a comparable computational budget (~2.0 

GFLOPs). Even our smaller DRP-Net-S model 

outperforms other lightweight methods like TinyPose and 

MoveNet, delivering significantly higher accuracy with 

only a marginal increase in complexity. Compared to 

ViTPose-B, our DRP-Net-L model achieves a competitive 

AP of 75.9% with less than half the computational cost 

(4.60 GFLOPs vs. 9.8 GFLOPs), highlighting the 

effectiveness of our dynamic resolution approach for 

efficient pose estimation. 

Table 1: Comparison with state-of-the-art methods on the 

COCO val2017 dataset. DRP-Net consistently 

outperforms other methods in the same complexity class. 

Method 
Backbo

ne 

Input 

Size 

GFLO

Ps 

Para

ms 

(M) 

AP 
AP_

50 
𝐴𝑃_75 

Top-Down 

FastPose 
ResNet

-50 

256x1

92 
5.91 34.5 

71.

2 
89.1 78.5 

Lite-

HRNet 

Lite-

HRNet 

256x1

92 
1.10 5.3 

68.

9 
88.0 75.4 

ViTPose-

B   ViT-B   

256x1

92   9.80    87.1   

76.

3   91.5   83.1   

RTMPose

-s 

CSPNe

Xt-s 

256x1

92 
0.68 6.2 

69.

6 
88.5 76.8 

RTMPose

-m 
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Figure 3 further visualizes this relationship between 

accuracy and computational cost. The plot clearly shows 

that the DRP-Net series (represented by the purple line) 

establishes a new state-of-the-art frontier. For any given 

GFLOPs budget, our models deliver a higher AP score 

than competing methods, demonstrating the architectural 

efficiency of our coarse-to-fine dynamic resolution 

approach. 

 

 

 

 
Figure 3: Accuracy (AP) vs. complexity (GFLOPs) on 

the COCO val2017. 

3.3 Ablation studies 

To validate our design choices, we conducted a series 

of ablation studies on the COCO val2017 dataset using the 

DRP-Net-M model as the baseline. 

We first investigate the contribution of each stage in our 

two-stage design. We compare three variants: (1) the full 

DRP-Net model; (2) a "Coarse Only" version that relies 

solely on the regression head; and (3) a "Refine Only" 

version where the refinement head is guided by ground-

truth locations during training (simulating a perfect coarse 

stage). As shown in Table 2, the "Coarse Only" model 

achieves a respectable but limited AP of 69.2%, 

demonstrating the speed but lower accuracy of pure 

regression. The "Refine Only" model shows high potential 

but is not a practical system. The full DRP-Net model 

significantly outperforms both, achieving 74.1% AP. This 

confirms that the coarse stage provides an effective 

starting point, and the dynamic refinement stage is crucial 

for achieving high precision. The synergy between the two 

stages is essential for the model's success. 

 

Table 2: Ablation study on the coarse-to-fine framework. 

 

Model Variant AP DeltaAP 

DRP-Net-M (Full Model) 74.1 - 

Coarse Only (Regression) 69.2 -4.9 

Refine Only (Oracle) 75.5 +1.4 

 

The 1.4% AP difference between the full model and the 

Oracle-guided refinement model suggests that the coarse 

regression head provides a highly effective initial estimate, 

only marginally limiting the ultimate performance of the 

fine stage.  

 

 

 

 

 

 

 

 

 

 



DRP-Net: A Coarse-to-Fine Dynamic Resolution Network for…                                                Informatica 49 (2025) 329–338  335 

 

While Oracle is idealistic, it bounds potential; future work 

could add no-refinement baseline.We also analyze the 

impact of the ROI size, 𝑆, used in the dynamic refinement 

stage. A larger ROI provides more context but increases 

computational cost. Table 3 shows the results for different 

values of 𝑆. An ROI size of 7 times 7 provides the best 

balance, yielding the highest AP. A smaller size of 5 times 

5 leads to a performance drop, likely due to insufficient 

local context, while a larger size of 9 times 9 does not 

provide further gains and slightly increases the model's 

GFLOPs. This justifies our choice of 𝑆 = 7 for the final 

model. 

Table 3: Ablation study on the ROI size for the 

refinement head. 

ROI Size ( 𝑆 timesS) GFLOPs AP 

5 times5 2.05 73.5 

7 times7 2.15 74.1 

9 times9 2.28 74.0 

 

To investigate the sensitivity of our model to the loss 

weights defined in Equation (11), we conducted an 

ablation study on the hyperparameters λcoarse and λfine. 

These weights balance the contributions of the coarse 

regression stage and the fine refinement stage. After 

testing the performance of DRP-Net-M with different 

weight combinations. The results indicate that giving 

equal weight to both stages (λcoarse=1.0,λfine=1.0) yields the 

best performance. Reducing the weight of the coarse loss 

slightly degrades performance, suggesting that proper 

initial coarse localization is crucial for the refinement 

stage. Similarly, down-weighting the refinement loss 

leads to a significant drop in accuracy, confirming the 

importance of the heatmap-based refinement for achieving 

high precision. We note that in a top-down pipeline, where 

person patches are cropped and resized to a fixed input 

resolution, the scale of the person within the patch is 

largely normalized. This normalization makes a fixed ROI 

size a robust and computationally efficient choice for our 

framework, as validated by the results in Table 3. While 

exploring an adaptive ROI size that dynamically adjusts 

based on the predicted pose or person scale could yield 

marginal improvements, it would also introduce additional 

complexity. We leave this as a potential direction for 

future work. 

3.4 Qualitative analysis 

To provide a more intuitive understanding of our 

model's capabilities, we present qualitative results on 

challenging, in-the-wild images. 

To provide a more intuitive understanding of our 

model's capabilities, we present qualitative results on 

challenging, in-the-wild images. Figure 4 showcases the 

performance of DRP-Net in diverse and difficult scenarios, 

including scenes with significant person-person 

occlusion, unusual poses, and large groups. Even under 

these challenging conditions, DRP-Net generates spatially 

precise and contextually aware predictions. The model 

successfully localizes keypoints for snowboarders against 

a complex background, distinguishes individuals in a 

densely packed historical photograph, and captures the 

dynamic poses of multiple dancers in motion. This 

robustness stems from our model's ability to first obtain a 

stable global estimate and then use the refinement head to 

produce accurate localized heatmaps, effectively handling 

ambiguity and partial visibility. 

 

Figure 4: Qualitative results of DRP-Net on challenging 

multi-person scenes. Skip-frame reduces latency by 30% 

with <1% AP drop on video sequences. 

Beyond qualitative improvements, we quantitatively 

evaluate the performance of the entire inference pipeline, 

including the skip-frame detection mechanism. Figure 5 

plots the trade-off between end-to-end pipeline accuracy 

(Pipeline AP) and inference latency on a GPU. The results 

show that our DRP-Net series, when integrated with the 

RTMDet-nano detector, achieves a superior performance 

curve. Specifically, our DRP-Net-M pipeline delivers a 

73.2% AP at a latency of only 4.3ms, significantly 

outperforming other configurations in terms of efficiency. 

This demonstrates that our proposed framework is not 

only accurate but also exceptionally fast, making it highly 

suitable for real-world, real-time video analysis tasks. 

 

 
 

Figure 5: End-to-end pipeline performance on GPU. 
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Figure 6: Accuracy vs. Complexity on the MPII subset. 

  

For many real-world applications, especially on edge 

devices, models must process low-resolution video 

streams to maintain real-time performance. To evaluate 

DRP-Net's robustness in such scenarios, we conducted 

experiments on a lower input resolution of 192x144 pixels. 

DRP-Net-M continues to demonstrate a superior 

accuracy-efficiency trade-off compared to RTMPose-m. 

While accuracy naturally degrades for both models at 

lower resolutions, DRP-Net-M experiences a smaller drop 

in AP (-3.5%) compared to RTMPose-m (-3.9%) while 

being computationally cheaper, highlighting its robustness 

and efficiency. 

While multi-person pose estimation in crowded scenes 

presents a significant challenge, high-performance single-

person pose estimation is equally critical for a vast array 

of real-world applications, such as personal fitness 

tracking, augmented reality avatars, and human-computer 

interaction. Many specialized lightweight models, 

including MoveNet and TinyPose, are specifically 

optimized for these sparse scenarios, prioritizing low 

latency on edge devices. To demonstrate the versatility 

and superior efficiency of our proposed DRP-Net, we 

conduct a focused evaluation on a single-person subset of 

the MPII dataset. This allows for a direct and fair 

comparison with methods tailored for this domain. Figure 

6 plots the relationship between model accuracy 

(SinglePerson Keypoints AP) and computational 

complexity (GFLOPs). The results clearly illustrate the 

performance landscape of current state-of-the-art 

lightweight models. 

A key motivation for DRP-Net is its suitability for 

deployment on resource-constrained devices. To validate 

its practical performance, we benchmarked the DRP-Net-

M model on a representative mobile device equipped with 

a Qualcomm Snapdragon 865 CPU. We measured not 

only inference latency but also energy consumption, 

which is a critical metric for battery-powered devices. 

Furthermore, we evaluated the impact of post-training 

INT8 quantization, a standard technique for accelerating 

inference on edge hardware. As detailed in Table 4, the 

quantized DRP-Net-M achieves a significant 1.8x speedup 

in latency with only a minor 0.9% drop in AP. Crucially, 

it consumes less energy per frame compared to the popular 

lightweight model MoveNet, while offering substantially 

higher accuracy. These results empirically confirm that 

DRP-Net provides an excellent solution for high-accuracy, 

real-time pose estimation on mobile and edge platforms. 

Table 4: Performance on a mobile device (Snapdragon 

865 CPU) 

 

Method Quantization 
AP 
(%) 

Latency 
(ms) 

Throughput 
(FPS) 

Energy 
(mJ/frame) 

MoveNet 

(Thunder) FP32 66.5 18.2 55 225 

RTMPose-m INT8 72.8 15.5 64 195 

DRP-Net-M 

(Ours) FP32 74.1 25 40 290 

DRP-Net-M 

(Ours) INT8 73.2 13.9 72 175 

3.5 Comprehensive performance dashboard 

To provide a holistic view of the practical applicability 

of our DRP-Net, a final experiment was designed to 

consolidate its performance across multiple dimensions. 

Evaluating a real-time system requires more than just 

assessing its accuracy on a static benchmark; it 

necessitates a concurrent analysis of model complexity, 

computational cost, and real-world inference latency on 

diverse hardware platforms. To this end, we present a 

comprehensive performance dashboard (Figure 7) that 

encapsulates the key characteristics of our flagship DRP-

Net-M model. 

 

 
 

Figure 7: Comprehensive performance dashboard for the 

DRP-Net-M model. 

 

This dashboard serves as a visual summary, integrating 

quantitative metrics with qualitative results to offer a clear 

and intuitive understanding of the model's capabilities. It 

showcases the model's core accuracy (AP), its complexity 

(GFLOPs and Parameters), and its deployment efficiency 

on standard CPU, GPU, and Mobile hardware. 

Furthermore, it provides a qualitative example of its 

output in a challenging scenario and situates its 

performance within the broader landscape of state-of-the-

art methods. This integrated perspective confirms that 

DRP-Net not only excels in theoretical metrics but also 

delivers robust and efficient performance in settings that 

mirror real-world deployment conditions. 

4 Discussion 
DRP-Net outperforms RTMPose-M primarily due to its 

hybrid coarse-to-fine architecture, which combines 
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regression for rapid initial localization with localized 

heatmaps for precise refinement, achieving superior 

efficiency without sacrificing accuracy. Unlike 

RTMPose's uniform heatmap approach, DRP-Net's 

dynamic resolution minimizes computational overhead by 

focusing resources on regions of interest, resulting in a 1.1% 

higher AP (74.1% vs. 73.0%) at comparable GFLOPs 

(~2.15). This gain stems from architectural decisions like 

the shared CSPNeXt backbone and end-to-end training, 

which enhance feature reuse and synergy between stages, 

as validated in ablations. Compared to other SOTA 

models on COCO, such as RSN (79.2% AP) or DarkPose 

(77.4%), DRP-Net prioritizes real-time performance on 

edge devices, trading marginal accuracy for 2-3x speed 

improvements, enabling 20% faster inference on mobiles 

like Snapdragon 865. 

However, limitations exist: in extreme occlusions or 

dense crowding, the coarse regression stage may introduce 

errors, as global pooling loses fine spatial details under 

ambiguity. Future work could integrate occlusion-aware 

modules, inspired by CrowdPose benchmarks where 

models like HigherHRNet excel. Implications are 

significant: DRP-Net advances lightweight HPE for 

resource-constrained applications, boosting human-

computer interaction in AR/VR, fitness tracking, and 

surveillance. By setting a new efficiency-accuracy frontier, 

it facilitates deployment in critical sectors like healthcare 

and autonomous systems, fostering broader AI 

accessibility. 

5 Conclusion 
We addressed the long-standing issue in real-time 

multi-person pose estimation: the opposing trade-off 

among the high accuracy of heatmap-based methods and 

the efficiency of direct regression methods. To avoid this 

limitation, we introduced the Dynamic Resolution Pose 

Network (DRP-Net), a novel coarse-to-fine framework 

that aims to achieve a new state-of-the-art balance 

between speed and accuracy, particularly for resource-

constrained settings. Our major contribution is the new 

two-stage architecture which synergistically combines the 

strengths of both dominant paradigms. DRP-Net first uses 

a light-weight regression head to provide rapid coarse 

keypoint location predictions at low computational cost, 

effectively shrinking the search space. A dynamic 

refinement head later utilizes such coarse predictions to 

generate small, localized, low-resolution heatmaps, using 

its powerful localization capability sparingly on interest 

areas. This dynamic resolution method intelligently 

handles computation resources without paying the 

extravagant cost of full-image heatmaps yet retaining their 

improved accuracy. 

The extensive experiments conducted on the MS COCO 

benchmark overwhelmingly support the performance of 

our method. Our DRP-Net models consistently 

outperform existing state-of-the-art real-time methods, 

establishing a new performance threshold on the accuracy-

vs-complexity plane. Surprisingly, our DRP-Net-M model 

achieved a 74.1% AP and surpassed comparable models 

like RTMPose-m while using an identical computational 

budget. In addition, our large-scale ablation tests 

empirically demonstrated that the collaboration between 

the coarse and fine stages is crucial for the model to 

function. Quantitative results also showed the robustness 

of DRP-Net in crowded, complex scenes as well as its 

ability to produce temporally coherent predictions for 

video inputs. 

Looking ahead, several promising directions for future 

work are feasible. The dynamic resolution concept 

described here is not limited to object detection and may 

be used for other dense prediction tasks, such as semantic 

segmentation or human mesh reconstruction 3D. Further 

research on even more efficient backbone networks and 

quantization-aware training could push the performance 

of edge devices even higher. Finally, the application of the 

DRP-Net method to directly tackle 3D pose estimation 

from monocular images is an interesting and difficult area 

for future work. 
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