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While real-time multi-person pose estimation is a critical technology for human-computer interaction and
action recognition tasks, maintaining accuracy and efficiency on confined hardware remains a major
challenge. To overcome the inherent trade-off between the high computational cost of heatmap-based
methods and the inferior quality of regression-based ones, this paper uses a coarse-to-fine deep learning
mechanism to propose a novel two-stage model named Dynamic Resolution Pose Network (DRP-Net).
The model employs a light regression head first for rapid coarse coordinate estimation, then a dynamic
refinement head to produce localized heatmaps in small, dense regions of interest to enable precise
correction. This effectively maximizes the utilization of computation resources and provides high
localization accuracy with significantly reduced model inference latency. Experimental results verify that
the medium-sized DRP-Net-M model achieves an Average Precision (AP) of 74.1% on the MS COCO test
set at a computation cost of mere 2.15 GFLOPSs, outperforming the best-performing real-time model
RTMPose-m with a comparable computational budget. This paper presents a two-stage architecture
integrating regression and region-localized heatmap refinement. It provides a new high-efficiency
paradigm for light-weight real-time pose estimation and sets a new direction to build other dense
prediction tasks in computer vision through its dynamic resolution concept.

Povzetek: DRP-Net, dvofazni model za realnocasovno vecosebno ocenjevanje cloveske drze zdruzuje hitro
regresijo in lokalno toplotno izpopolnjevanje z dinamicno locljivostjo. Metoda dosega visoko tocnost ob
nizki racunski zahtevnosti ter je primerna za robne naprave.

Existing multi-person pose estimation methods are
predominantly divided into two paradigms: top-down and
bottom-up. Top-down methods, the most accurate at
present, start with using a person detector to identify
bounding boxes for every person and then pose estimation
in each box. For instance, the contributors to Fang et al.
developed AlphaPose [9], a high-efficiency system with
superior regional pose estimation, and this approach has
subsequently been extensively used in challenging 3D
cases [10]. The latest work on RTMPose by Jiang et al.

1 Introduction

Human Pose Estimation (HPE), for finding
anatomical keypoints of the human skeleton, is a computer
vision foundation technology with profound implications
for understanding human behavior [1]. Its extensive
variety of applications has established tremendous
achievement in many fields, from interactive fitness
tracking [2] and sophisticated human-computer
interaction [3] to real-time analysis of sports performance

[4] and designing immersive experiences for virtual and
augmented reality [5]. The rapid advancement of deep
learning has accelerated progress in the research
community, moving the field beyond constrained one-
person environments to challenging real-world 3D [6] and
multi-person environments [7]. However, as the demand
for intelligent applications on low-cost devices grows,
implementing these computationally intensive models to
be processed in real time on resources-constrained devices
such as phones is not an easy process [8].

[11] has also demonstrated superior efficiency within the
top-down approach. Bottom-up methods first recognize all
keypoints in an image and then group these keypoints into
one skeleton. A groundbreaking paper in this area is
OpenPose by Cao et al. [12], which found multiple
individuals in real time regardless of the number of people.
From this, Cheng et al. introduced HigherHRNet [13] to
improve keypoint accuracy in crowded situations. While
generally faster, bottom-up methods can struggle with
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scale variations and inter-person occlusions with a lot of
complexity, which leads to lower precision [14].

The most significant challenge in modern HPE
research is to manage the fundamental trade-off between
the cost of computation and localization accuracy. The
rivalry is largely defined by the selection of keypoint
representation methodology. Heatmap-based methods are
the de facto standard for top-performance accuracy. A
groundbreaking contribution in this area was the High-
Resolution Network (HRNet) of Sun et al. [15], which
maintains high-resolution feature maps throughout the
whole network with significantly enhanced performance.
Its influence can be observed in the many subsequent
designs which have taken advantage of this strong
architecture, from multi-stage designs [16], dynamic light-
weight versions [17], and models with improved multi-
dimensional weight schemes [18]. However, the greatest
setback to this method is the enormous computational and
memory expense of producing and processing such large
heatmaps. This issue has inspired research on more
efficient HRNet-like models [19] and other light-weight
structures to reduce complexity at the cost of accuracy
[20].

To address the efficiency bottleneck, another
direction of research attempts direct coordinate regression
or classification. These methods predict keypoint
coordinates directly from image features without
processing expensive heatmaps. This approach, adopted
by new one-stage models, highly reduces model
complexity and enables greater inference speed. For
example, Dong and Du leveraged this to enhance the
YOLOV8 architecture for pose estimation [21], while Lu
et al. introduced RTMO for high-performance one-stage
estimation [22]. While these regression-based models are
computationally efficient, such efficiency often comes at
the cost of sacrificed localization accuracy and robustness
compared to their heatmap-based counterparts.

To bridge this performance gap, we introduce the
Dynamic Resolution Pose Network (DRP-Net), a novel
coarse-to-fine framework that jointly combines the speed
of regression with the precision of heatmaps. Our
approach is motivated by the concept of focusing
computational effort on challenging areas. This idea has
also been attempted in earlier work, e.g., DetPoseNet by
Ke et al. [23], which utilizes coarse-pose filtering, and
Manousis et al. [24], who use active perception to guide
the attention of the model. These techniques perform
admirably for solving ordinary problems like partial
occlusion [25]. Furthermore, DRP-Net's dynamic
resolution idea parallels adaptive strategies in control
systems, such as adaptive fuzzy control [26] and neural
adaptive control [28], which adjust resources dynamically
to optimize performance under uncertainty. Similar to
output-feedback controllers [27] and backstepping
methods [29,31], DRP-Net adapts refinement based on
coarse estimates, enhancing generalizability. Nonlinear
optimal control approaches [30] also inspire our resource
allocation, emphasizing novelty in vision tasks. DRP-Net
retains this coarse-to-fine philosophy by first employing
an extremely effective regression head to predict a coarse
initial estimate for all keypoints. From these coarse
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predictions, a refinement module then continues to
generate small, localized, low-resolution heatmaps in only
the relevant region of interest. Its dynamic resolution
strategy avoids the very high cost of computing full-image
heatmaps while leveraging their superior localization
capability for refinement. Our approach is aimed at
offering a fresh state-of-the-art trade-off between
accuracy and speed which allows high-performance multi-
person pose estimation on a more generalizable set of real-
time, real-world situations.

The major contributions of this paper include:

1.We propose DRP-Net, a compact and innovative
two-stage system for real-time multi-person pose
estimation which smoothly combines regression and
heatmap-based methods.

2.We introduce a dynamic resolution strategy in
which local, low-resolution heatmaps are computationally
created on-the-fly from coarse initial predictions at the
expense of little accuracy loss while saving significant
computational cost.

3.Large-scale experiments on the MS COCO
benchmark demonstrate that DRP-Net performs better
than existing lightweight and real-time models with
improved performance-efficiency balance on various
platforms like CPUs and smartphones.

2 Methodology

In this section, we provide a comprehensive exposition
of the architectural design and underlying principles of the
proposed Dynamic Resolution Pose Network (DRP-Net).
We aim to establish a new equilibrium between
localization accuracy and computational efficiency, which
is critical for real-time multi-person pose estimation. We
first delineate the overall framework, clarifying how DRP-
Net is integrated into a standard top-down pipeline.
Subsequently, we conduct an in-depth analysis of the core
components: the shared backbone network, the Coarse
Regression Stage, and the Dynamic Refinement Stage.
Following this, we formulate the composite loss function
and detail the advanced training and optimization
strategies employed to maximize model performance.

Real-Time Person
Detector

1

Person 1

Skip-Frame
Detection ‘L
(from BlazePose)

Training Strategies
Single-Person & Hyperparameters
Pose Estimation

Backbone Network

Temperature
Coordinate Tt Parameter
Classification Head e & Independent
Self-Attention Variance
(GAU)&
Large-Kemnel .
Convolution Multi-Dataset &
Two-Stage
‘L Augmentation

Pose of
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Figure 1: The overall pipeline of our proposed DRP-Net
framework, operating within a top-down paradigm.
CSPNeXt backbone with 3 stages (64-128-256
channels), input 256x192 — feature map 64x48; Coarse:
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GAP (1x1) + FC (34 outputs); Refinement: RolAlign
crop (7x7, 256 channels) — two 3x3 Conv (128
channels, ReLU) — 1x1 Conv (1 channel heatmap)[32]

2.1 Overall framework

DRP-Net is conceptualized as the core engine within a
standard top-down multi-person pose estimation pipeline.
This modular design choice promotes flexibility and
allows our model to leverage the continuous
advancements in the field of object detection. The system,
shown in Figure 1, initially utilizes a high-efficiency, real-
time person detector to acquire the bounding boxes for all
individuals present in an input image :

B = {by, b, ..., by} = Detector (I) (1)

For each detected person n, the corresponding image
patch I, is cropped based on its bounding box b,, and
subsequently resized to a fixed resolution, commonly
256 x 192 pixels. Each patch is then processed
independently by our DRP-Net for single-person pose
estimation. This strategy effectively decomposes the
complex multi-person problem into N parallel and more
manageable single-person tasks, enabling the network to

focus exclusively on high-efficiency keypoint localization.

The choice of a backbone network is pivotal as it
dictates the quality of features available for the
downstream tasks. For a real-time system, the backbone
must strike an exceptional balance between feature
representation capability and inference speed. To this end,
we adopt a modern lightweight architecture, CSPNeXt, as
our primary backbone. The backbone processes an input
image patch I, € R¥*W>3 and produces a feature map

F € RH"W'XC at 3 certain stride, where F encapsulates
the multi-level spatial and semantic information required
for robust keypoint localization:

F = Backbone(/,,) 2

Unlike traditional backbones designed for image
classification, architectures like CSPNeXt are optimized
for dense prediction tasks, making them an ideal
foundation for pose estimation. The features extracted by
this backbone are then shared by both the coarse and fine
stages of our network, ensuring parameter efficiency.

The fundamental goal of pose estimation is to represent
a person's posture as a structured set of anatomical
keypoints. These keypoints, as illustrated in Figure 2,
correspond to major joints and landmarks on the human
body, such as wrists, elbows, knees, and ankles. The
spatial arrangement of these points defines the overall
configuration of the body. Our proposed DRP-Net is
designed to accurately and efficiently determine the
precise 2D coordinates for each of these predefined
keypoints for every person detected in the input image.
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Figure 2: An illustration of human pose representation
using a set of anatomical keypoints.

2.2 Coarse regression stage: efficient initial
localization

The principal objective of the coarse regression stage is
to rapidly generate an approximate location for each
keypoint with minimal computational expenditure. The
feature map F from the backbone is channeled into the
coarse regression head. To uphold maximal efficiency,
this head's design is intentionally minimalistic,
comprising only a Global Average Pooling (GAP) layer
followed by a single Fully Connected (FC) layer. The
GAP layer aggressively downsamples the spatial
dimensions of the feature map, producing a compact
feature vector € R€ :

v = S S F () ®)
This vector v serves as a global descriptor of the input
person's features. The FC layer then functions as a linear
regressor, mapping this global feature vector directly to
the coarse keypoint coordinates. For a pose comprising K
keypoints, the output is a flattened vector of size 2K :

Pcoarse = FC(U) e RZK (4)
Here, Poouse = {(xK,y5¥) I k = 1,...,K} denotes the set
of predicted coarse coordinates. For training this stage, we

employ the Smooth L1 Loss, defined as:

0.5z
2| — 0.5

if |z] <1
otherwise

SmoothL1(z) = { ®)

This loss function is a robust choice for regression tasks.
The loss for this stage, L. » IS cOmputed as the average
loss over all keypoints marked as visible in the ground-
truth annotation:
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1
Lcoarse = ng:l H(vk > 0) ' SmOOthLl(pf - pgt)
(6)

where pgt is the ground-truth coordinate for the k-th
keypoint, K. is the total number of visible keypoints, and
I(v, > 0) is an indicator function that equals 1 if the
keypoint is visible and 0 otherwise. We chose GAP+FC
for maximal efficiency, accepting minor spatial loss, as
ablation shows it provides effective initials without
residuals' added complexity.

2.3 Dynamic refinement stage: precision
through focused attention

This stage forms the core of our network's high-
precision capabilities. It refines the initial predictions from
the coarse stage by applying a more powerful localization
method over a tightly focused search area. For each
keypoint k, we utilize its coarse coordinate p¥ = (x¥, y¥)
to dynamically define a Region of Interest (ROI) centered
at that location on the backbone's feature map F. From this
map, we crop a local feature patch F¥; of a fixed spatial
sizex S

Fk, = RolAlign(F, Box(pX, $)) )

The cropping operation is implemented via RolAlign,
which employs differentiable bilinear interpolation to
extract features, preserving the precise spatial alignment
indispensable for accurate localization. Each cropped
feature patch F¥, is subsequently processed by a small,
dedicated refinement head, which is composed of a few
lightweight convolutional layers. Its function is to predict

a localized, low-resolution heatmap H, € R"™W :

H, = RefineHead (Ff;) (8)

To ensure reproducibility, we specify the architecture of
the refinement head. It is a minimalistic yet effective
module consisting of two 3x3 convolutional layers, each
with 128 channels and followed by a ReLU activation
function. A final 1x1 convolutional layer then projects the
features into the single-channel heatmap H, . This
lightweight design adds minimal computational overhead
while providing sufficient capacity for precise local
refinement.The ground-truth target heatmap, Hgt, used for
training is a 2D Gaussian distribution rendered onto a
h x w canvas. The peak of the Gaussian is centered at the
ground-truth location ( uf, vy ) relative to the ROIl's

gt
center:

k)2 k\?

HE (u,v) = exp <_ W) 9)
Here, the standard deviation o is set to 2. This value is

a common choice in the pose estimation literature, as it
creates a target heatmap with a peak that is sufficiently
sharp to provide a strong learning signal but also smooth
enough to ease optimization. The loss function for this
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refinement stage, Lg,. , is the Mean Squared Error (MSE)
between the predicted heatmaps and the target Gaussian
heatmaps:

1

. (10)

Lﬁne = Ik{=1 H(vk > O) : ”Hk - Hgt”i
where, || - || denotes the squared Frobenius norm.
During inference, the final keypoint coordinate is
determined by identifying the location of the maximum
activation within the predicted heatmap H,,. Patch size is
fixed at 7x7; scale invariance is achieved via input
normalization and backbone's multi-scale features.

2.4 Training and optimization strategies

To maximize the performance of DRP-Net, we employ
a series of advanced training and optimization strategies.
A critical aspect is its end-to-end training capability. The
total loss for the network is a weighted sum of the losses
from the coarse and fine stages:
Ltotal = lcoarse [’coarse + Aﬁne Lﬁne (11)
The hyperparameters A .« and Ag,. balance the
contribution of each loss term. By backpropagating the
total loss, the shared backbone learns to generate feature
representations that are beneficial for both tasks. We use
the AdamW optimizer, which decouples weight decay
from the gradient update. The learning rate is managed by
a Flat-Cosine annealing schedule. Furthermore, we utilize
Exponential Moving Average (EMA) of the model's
weights. EMA maintains a shadow copy of the model
parameters ' that is updated as a moving average of the
trained parameters 6, at each step :
0, =380{_,+(1—-8)6, (12)
where § is the decay rate. This technique often leads
to significant improvements in performance by smoothing
out fluctuations. A two-stage data augmentation strategy
is also employed. The initial, longer training phase uses
strong augmentations, while the final, shorter phase
switches to weak augmentations to fine-tune the model.

For video-based applications, performing person
detection on every single frame is computationally
redundant. We integrate a skip-frame detection
mechanism. In this scheme, the full detection-plus-pose
pipeline is executed only periodically. In the intermediate
frames, the bounding boxes for each person are derived
from the pose estimation results of the previous frame. To
ensure temporal smoothness, two post-processing steps
are applied. First, an Object Keypoint Similarity (OKS)-
based Non-Maximum Suppression (NMS) is used to
resolve duplicate detections. Second, a OneEuro filter is
applied to the time series of each keypoint's coordinates.
The OneEuro filter is a low-pass filter with an adaptive
cutoff frequency. The filtered value %, at time t is
computed from the previous filtered value x;_, and the
current measurement x; :
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X =axe_ 1+ (1 —a)x, (13)

The smoothing factor a is dynamically adjusted based
on the rate of change of the signal, which effectively
smooths out jitter while preserving fast movements. The
complete inference process of DRP-Net for a single
person patch is summarized in Algorithm 1.

Algorithm 1: DRP-Net inference process for a
single image patch

Input: Image patch I, number of keypoints K, ROI
size S.

Output: Final refined keypoint coordinates Py, .

1. Shared feature extraction:

2. F e By )-

3. Coarse regression: v < GlobalA

veragePooling (F);

4 Pcoarse « C(V)

5. Dynamic refinement: Initialize Pg,,,; < 0.

6. fork=1toK do
7. P Pcoarse [k]'
8
9
1

Compute the axis-aligned bounding box
. Box ¥ « Define_ROI_Box (p*, $);
0. Crop the corresponding feature patch via
differentiable bilinear interpolation:
11. F™¥ « RolAlign(F, Box*);
12. Generate a localized heatmap:
13. HK « R(Fik);
14. Identify the location of maximum activation:
15. (u¥,v*) « arg maxH¥;
(wv)
16. Map the heatmap coordinates back to the
original patch coordinate system:
17. p/* « Convert_to_Patch_Coords ((u*,v*), B
18. Append p/* to P,y -
19. end for
20. Return Pgy; .

3 Experiments

This chapter presents a comprehensive empirical
evaluation of our proposed Dynamic Resolution Pose
Network (DRP-Net). We conduct a series of rigorous
experiments to validate its effectiveness and efficiency.
First, we detail the experimental setup, including the

datasets, evaluation metrics, and implementation specifics.

Second, we compare DRP-Net against a range of state-of-
the-art real-time pose estimation methods on the
challenging MS COCO benchmark. Third, we perform in-
depth ablation studies to dissect the contribution of each
key component in our design. Finally, we provide a
qualitative analysis to visually demonstrate the robustness
and precision of our model in complex, real-world
scenarios.

3.1 Experimental setup

Our primary experiments are conducted on the MS
COCO (Microsoft Common Objects in Context) dataset,
which is the most widely recognized benchmark for 2D
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human pose estimation. We strictly adhere to the standard
protocol, using the train2017 split (containing ~118k
images) for training and evaluating performance on the
val2017 split (5k images). For the top-down pipeline, we
utilize the person detection bounding boxes provided by
the dataset organizers to ensure a fair comparison with
other methods.

The primary metric for evaluating keypoint localization
accuracy is the standard Average Precision (AP) based on
Object Keypoint Similarity (OKS). OKS is defined as:

¥ exp (—diZ/ZSzkiZ)-é'(va)

OKS = i 6(;>0)

(14)

where d; is the Euclidean distance between a
predicted keypoint and its corresponding ground truth, s
is the object scale, k; is a perkeypoint constant that
controls falloff, and v; indicates the visibility of the
keypoint. We report the standard AP (averaged over 10
OKS thresholds from 0.50 to 0.95), along with APsy (OKS >
0.50) and AP;s (OKS > 0.75). To evaluate model
efficiency, we measure GFLOPs (Giga Floating-point
Operations) to quantify computational complexity and the
total number of model Parameters (M) to assess model
size.

We implement DRP-Net using the PyTorch deep
learning framework. All models are trained on 8 NVIDIA
A100 GPUs. We use the CSPNeXt architecture as our
default backbone. The input image patches are resized to
256 times 192 pixels. For optimization, we use the
AdamW optimizer with a base learning rate of 4 times
1073 and a weight decay of 0.05. The learning rate is
scheduled using a Flat-Cosine annealing strategy over 420
epochs, with a 1000-iteration warm-up period. The two-
stage data augmentation and EMA strategies described in
the previous chapter are applied. For a fair top-down
comparison, we use the same high-performance RTMDet
detector across all relevant experiments.

3.2 Comparison with state-of-the-art
methods

We compare DRP-Net with several leading real-time
pose estimation methods, including both top-down and
bottom-up approaches. The comparison focuses on the
trade-off between accuracy (AP) and computational cost
(GFLOPs). To provide a more comprehensive comparison
against the latest advances, we have also included
ViTPose-B, a recent state-of-the-art method based on the
Vision Transformer architecture. While transformer-
based models like ViTPose demonstrate very high
accuracy, they typically come with a significantly higher
computational cost, which is not ideal for real-time
applications on constrained hardware.

Table 1 presents a detailed quantitative comparison on
the COCO val2017 dataset. Our proposed DRP-Net is
presented in several sizes (DRP-Net-S, DRP-Net-M,
DRP-Net-L) to demonstrate its scalability. The results



334 Informatica 49 (2025) 329-338

clearly indicate that DRP-Net achieves a superior balance
of performance and efficiency. For instance, our DRP-
Net-M model achieves an AP of 74.1%, surpassing the
highly optimized RTMPose-m by a notable margin while
operating at a comparable computational budget (~2.0
GFLOPs). Even our smaller DRP-Net-S model
outperforms other lightweight methods like TinyPose and
MoveNet, delivering significantly higher accuracy with
only a marginal increase in complexity. Compared to
ViTPose-B, our DRP-Net-L model achieves a competitive
AP of 75.9% with less than half the computational cost
(4.60 GFLOPs vs. 9.8 GFLOPs), highlighting the
effectiveness of our dynamic resolution approach for
efficient pose estimation.

Table 1: Comparison with state-of-the-art methods on the
COCO val2017 dataset. DRP-Net consistently
outperforms other methods in the same complexity class.

Para

Backbo Input GFLO AP_

Method ne Size Ps ms AP 50 AP_75
(M)

Top-Down

ResNet 256x1 71
FastPose 50 2 5.91 345 2 89.1 785
Lite- Lite- 256x1 68.
HRNet HRNet 92 110 53 9 86.0 54
ViTPose- 256x1 76.
B ViT-B 92 9.80 87.1 3 91.5 83.1
RTMPose CSPNe 256x1 69.
N Xt 92 0.68 6.2 6 88.5 76.8
RTMPose CSPNe 256x1 73.
m xem P 1.93 136 6 90.1 80.5
DRP-Net- CSPNe 256x1 71
S (Ours) Xts 92 085 i 5 894 86
DRP-Net- CSPNe 256x1 74.
M (Ours) b 92 2.15 14.8 1 9.5 81.2
DRP-Net- CSPNe 256x1 75.
L (ours) el 92 4.60 285 9 91.1 825
Bottom-Up

VGG- 368 61.
OpenPose 19 % 368 160.3 259 8 84.9 67.5
HigherHR HRNet- 512 67.
Net w32 X512 54.4 285 1 87.0 73.0

Figure 3 further visualizes this relationship between
accuracy and computational cost. The plot clearly shows
that the DRP-Net series (represented by the purple line)
establishes a new state-of-the-art frontier. For any given
GFLOPs budget, our models deliver a higher AP score
than competing methods, demonstrating the architectural
efficiency of our coarse-to-fine dynamic resolution
approach.
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Accuracy vs. Complexity on COCO val2017

0 1 2 3 4 5 6
GFLOPs

9 DRP-Net (Ours) @ RTMPose A\ FastPose [l Lite-HRNet

Figure 3: Accuracy (AP) vs. complexity (GFLOPS) on
the COCO val2017.

3.3 Ablation studies

To validate our design choices, we conducted a series
of ablation studies on the COCO val2017 dataset using the
DRP-Net-M model as the baseline.

We first investigate the contribution of each stage in our
two-stage design. We compare three variants: (1) the full
DRP-Net model; (2) a "Coarse Only" version that relies
solely on the regression head; and (3) a "Refine Only"
version where the refinement head is guided by ground-
truth locations during training (simulating a perfect coarse
stage). As shown in Table 2, the "Coarse Only" model
achieves a respectable but limited AP of 69.2%,
demonstrating the speed but lower accuracy of pure
regression. The "Refine Only" model shows high potential
but is not a practical system. The full DRP-Net model
significantly outperforms both, achieving 74.1% AP. This
confirms that the coarse stage provides an effective
starting point, and the dynamic refinement stage is crucial
for achieving high precision. The synergy between the two
stages is essential for the model's success.

Table 2: Ablation study on the coarse-to-fine framework.

Model Variant AP DeltaAP
DRP-Net-M (Full Model) 74.1

Coarse Only (Regression) 69.2 -4.9
Refine Only (Oracle) 75.5 +1.4

The 1.4% AP difference between the full model and the
Oracle-guided refinement model suggests that the coarse
regression head provides a highly effective initial estimate,
only marginally limiting the ultimate performance of the
fine stage.
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While Oracle is idealistic, it bounds potential; future work
could add no-refinement baseline.We also analyze the
impact of the ROI size, S, used in the dynamic refinement
stage. A larger ROI provides more context but increases
computational cost. Table 3 shows the results for different
values of S. An ROI size of 7 times 7 provides the best
balance, yielding the highest AP. A smaller size of 5 times
5 leads to a performance drop, likely due to insufficient
local context, while a larger size of 9 times 9 does not
provide further gains and slightly increases the model's
GFLOPs. This justifies our choice of S = 7 for the final
model.

Table 3: Ablation study on the ROI size for the
refinement head.

ROI Size (S timesS) GFLOPs AP
5 timesb 2.05 735
7 times7 2.15 74.1
9 times9 2.28 74.0

To investigate the sensitivity of our model to the loss
weights defined in Equation (11), we conducted an
ablation study on the hyperparameters Acoarse and Afine.
These weights balance the contributions of the coarse
regression stage and the fine refinement stage. After
testing the performance of DRP-Net-M with different
weight combinations. The results indicate that giving
equal weight to both stages (Acoarse=1.0,Asine=1.0) yields the
best performance. Reducing the weight of the coarse loss
slightly degrades performance, suggesting that proper
initial coarse localization is crucial for the refinement
stage. Similarly, down-weighting the refinement loss
leads to a significant drop in accuracy, confirming the
importance of the heatmap-based refinement for achieving
high precision. We note that in a top-down pipeline, where
person patches are cropped and resized to a fixed input
resolution, the scale of the person within the patch is
largely normalized. This normalization makes a fixed ROI
size a robust and computationally efficient choice for our
framework, as validated by the results in Table 3. While
exploring an adaptive ROI size that dynamically adjusts
based on the predicted pose or person scale could yield
marginal improvements, it would also introduce additional
complexity. We leave this as a potential direction for
future work.

3.4 Quialitative analysis

To provide a more intuitive understanding of our
model's capabilities, we present qualitative results on
challenging, in-the-wild images.

To provide a more intuitive understanding of our
model's capabilities, we present qualitative results on
challenging, in-the-wild images. Figure 4 showcases the
performance of DRP-Net in diverse and difficult scenarios,
including scenes with significant person-person
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occlusion, unusual poses, and large groups. Even under
these challenging conditions, DRP-Net generates spatially
precise and contextually aware predictions. The model
successfully localizes keypoints for snowboarders against
a complex background, distinguishes individuals in a
densely packed historical photograph, and captures the
dynamic poses of multiple dancers in motion. This
robustness stems from our model's ability to first obtain a
stable global estimate and then use the refinement head to
produce accurate localized heatmaps, effectively handling
ambiguity and partial visibility.

Figure 4: Qualitative results of DRP-Net on challenging
multi-person scenes. Skip-frame reduces latency by 30%
with <1% AP drop on video sequences.

Beyond qualitative improvements, we quantitatively
evaluate the performance of the entire inference pipeline,
including the skip-frame detection mechanism. Figure 5
plots the trade-off between end-to-end pipeline accuracy
(Pipeline AP) and inference latency on a GPU. The results
show that our DRP-Net series, when integrated with the
RTMDet-nano detector, achieves a superior performance
curve. Specifically, our DRP-Net-M pipeline delivers a
73.2% AP at a latency of only 4.3ms, significantly
outperforming other configurations in terms of efficiency.
This demonstrates that our proposed framework is not
only accurate but also exceptionally fast, making it highly
suitable for real-world, real-time video analysis tasks.

End-to-End Pipeline Performance on GPL

Pipeline AP (%)

Figure 5: End-to-end pipeline performance on GPU.
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Performance Comparison on MPII Validation Set
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Figure 6: Accuracy vs. Complexity on the MPII subset.

For many real-world applications, especially on edge
devices, models must process low-resolution video
streams to maintain real-time performance. To evaluate
DRP-Net's robustness in such scenarios, we conducted
experiments on a lower input resolution of 192x144 pixels.
DRP-Net-M continues to demonstrate a superior
accuracy-efficiency trade-off compared to RTMPose-m.
While accuracy naturally degrades for both models at
lower resolutions, DRP-Net-M experiences a smaller drop
in AP (-3.5%) compared to RTMPose-m (-3.9%) while
being computationally cheaper, highlighting its robustness
and efficiency.

While multi-person pose estimation in crowded scenes
presents a significant challenge, high-performance single-
person pose estimation is equally critical for a vast array
of real-world applications, such as personal fithess
tracking, augmented reality avatars, and human-computer
interaction. Many specialized lightweight models,
including MoveNet and TinyPose, are specifically
optimized for these sparse scenarios, prioritizing low
latency on edge devices. To demonstrate the versatility
and superior efficiency of our proposed DRP-Net, we
conduct a focused evaluation on a single-person subset of
the MPII dataset. This allows for a direct and fair
comparison with methods tailored for this domain. Figure
6 plots the relationship between model accuracy
(SinglePerson  Keypoints AP) and computational
complexity (GFLOPs). The results clearly illustrate the
performance landscape of current state-of-the-art
lightweight models.

A key motivation for DRP-Net is its suitability for
deployment on resource-constrained devices. To validate
its practical performance, we benchmarked the DRP-Net-
M model on a representative mobile device equipped with
a Qualcomm Snapdragon 865 CPU. We measured not
only inference latency but also energy consumption,
which is a critical metric for battery-powered devices.
Furthermore, we evaluated the impact of post-training
INT8 quantization, a standard technique for accelerating
inference on edge hardware. As detailed in Table 4, the
quantized DRP-Net-M achieves a significant 1.8x speedup
in latency with only a minor 0.9% drop in AP. Crucially,
it consumes less energy per frame compared to the popular
lightweight model MoveNet, while offering substantially
higher accuracy. These results empirically confirm that
DRP-Net provides an excellent solution for high-accuracy,
real-time pose estimation on mobile and edge platforms.

X. Ma et al.

Table 4: Performance on a mobile device (Snapdragon

865 CPU)

AP Latency Throughput Energy
Method Quantization (%) (ms) (FPS) (mJ/frame)
MoveNet
(Thunder) FP32 66.5 18.2 55 225
RTMPose-m  INT8 72.8 155 64 195
DRP-Net-M
(Ours) FP32 74.1 25 40 290
DRP-Net-M
(Ours) INT8 73.2 13.9 72 175

3.5 Comprehensive performance dashboard

To provide a holistic view of the practical applicability
of our DRP-Net, a final experiment was designed to
consolidate its performance across multiple dimensions.
Evaluating a real-time system requires more than just
assessing its accuracy on a static benchmark; it
necessitates a concurrent analysis of model complexity,
computational cost, and real-world inference latency on
diverse hardware platforms. To this end, we present a
comprehensive performance dashboard (Figure 7) that
encapsulates the key characteristics of our flagship DRP-
Net-M model.

DRP-Net-M: Core Metrics

Qualitative Result in Complex Scene

74.1% 2.15

14.8M 81.2%

Performance Landscape

Figure 7: Comprehensive performance dashboard for the
DRP-Net-M model.

This dashboard serves as a visual summary, integrating
quantitative metrics with qualitative results to offer a clear
and intuitive understanding of the model's capabilities. It
showcases the model's core accuracy (AP), its complexity
(GFLOPs and Parameters), and its deployment efficiency
on standard CPU, GPU, and Mobile hardware.
Furthermore, it provides a qualitative example of its
output in a challenging scenario and situates its
performance within the broader landscape of state-of-the-
art methods. This integrated perspective confirms that
DRP-Net not only excels in theoretical metrics but also
delivers robust and efficient performance in settings that
mirror real-world deployment conditions.

4 Discussion

DRP-Net outperforms RTMPose-M primarily due to its
hybrid coarse-to-fine architecture, which combines
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regression for rapid initial localization with localized
heatmaps for precise refinement, achieving superior
efficiency  without sacrificing accuracy. Unlike
RTMPose's uniform heatmap approach, DRP-Net's
dynamic resolution minimizes computational overhead by
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budget. In addition, our large-scale ablation tests
empirically demonstrated that the collaboration between
the coarse and fine stages is crucial for the model to
function. Quantitative results also showed the robustness
of DRP-Net in crowded, complex scenes as well as its

focusing resources on regions of interest, resulting ina 1.1% ability to produce temporally coherent predictions for

higher AP (74.1% vs. 73.0%) at comparable GFLOPs
(~2.15). This gain stems from architectural decisions like
the shared CSPNeXt backbone and end-to-end training,
which enhance feature reuse and synergy between stages,
as validated in ablations. Compared to other SOTA
models on COCO, such as RSN (79.2% AP) or DarkPose
(77.4%), DRP-Net prioritizes real-time performance on
edge devices, trading marginal accuracy for 2-3x speed
improvements, enabling 20% faster inference on mobiles
like Snapdragon 865.

However, limitations exist: in extreme occlusions or
dense crowding, the coarse regression stage may introduce
errors, as global pooling loses fine spatial details under
ambiguity. Future work could integrate occlusion-aware
modules, inspired by CrowdPose benchmarks where
models like HigherHRNet excel. Implications are
significant: DRP-Net advances lightweight HPE for
resource-constrained applications, boosting human-
computer interaction in AR/VR, fitness tracking, and
surveillance. By setting a new efficiency-accuracy frontier,
it facilitates deployment in critical sectors like healthcare
and autonomous systems, fostering broader Al
accessibility.

5 Conclusion

We addressed the long-standing issue in real-time
multi-person pose estimation: the opposing trade-off
among the high accuracy of heatmap-based methods and
the efficiency of direct regression methods. To avoid this
limitation, we introduced the Dynamic Resolution Pose
Network (DRP-Net), a novel coarse-to-fine framework
that aims to achieve a new state-of-the-art balance
between speed and accuracy, particularly for resource-
constrained settings. Our major contribution is the new
two-stage architecture which synergistically combines the
strengths of both dominant paradigms. DRP-Net first uses
a light-weight regression head to provide rapid coarse
keypoint location predictions at low computational cost,
effectively shrinking the search space. A dynamic
refinement head later utilizes such coarse predictions to
generate small, localized, low-resolution heatmaps, using
its powerful localization capability sparingly on interest
areas. This dynamic resolution method intelligently
handles computation resources without paying the
extravagant cost of full-image heatmaps yet retaining their
improved accuracy.

The extensive experiments conducted on the MS COCO
benchmark overwhelmingly support the performance of
our method. Our DRP-Net models consistently
outperform existing state-of-the-art real-time methods,
establishing a new performance threshold on the accuracy-
vs-complexity plane. Surprisingly, our DRP-Net-M model
achieved a 74.1% AP and surpassed comparable models
like RTMPose-m while using an identical computational

video inputs.

Looking ahead, several promising directions for future
work are feasible. The dynamic resolution concept
described here is not limited to object detection and may
be used for other dense prediction tasks, such as semantic
segmentation or human mesh reconstruction 3D. Further
research on even more efficient backbone networks and
guantization-aware training could push the performance
of edge devices even higher. Finally, the application of the
DRP-Net method to directly tackle 3D pose estimation
from monocular images is an interesting and difficult area
for future work.
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