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In response to the dual challenges of insufficient generalization of traditional image processing methods
and high computational complexity of deep learning models in industrial visual scenes, this study proposes
a two-stage solution integrating object detection and a deep learning scheme. The scheme employs a
modified Darknet-19 backbone with depthwise separable convolutions and channel rearrangement
mechanisms for multi-scale feature fusion, significantly improving computational efficiency while
maintaining accuracy. Experiments on a dataset of 4,000 industrial water level images and 10,000
encoding samples showed that the research method achieved 97% pixel-level accuracy and 5 mm
positioning error in water level detection, outperforming suboptimal models by 12%. For encoding
recognition, it reached a 97% character recognition rate with only 5% false detection rate. In multi-task
scenarios, system interference was reduced to 0.12, with 62% increased video memory usage and stable
25 ms edge latency. The multi-scale photometric transformation achieved a lighting invariance index of
0.93 and improved SNR by 8.7 dB. Lightweight deployment yielded a computational density of 1.26
GMACs/mmz and a 72-hour failure rate below 0.1%. This work provides an accuracy-efficiency balanced
solution for industrial vision systems, with applications in smart security and intelligent manufacturing.
Future work will focus on adaptive calibration and dynamic pruning for enhanced deployment

adaptability.

Povzetek:

1 Introduction

Visual communication plays an increasingly important
role in modern information society, and images as
information carriers have the significant advantage of
"one image is worth a thousand words", which can
efficiently convey rich information [1-2]. The
advancement of computer vision technology has enabled
the automatic extraction of key information from images,
demonstrating broad application prospects in fields such
as smart security and smart cities [3-4]. Water level
detection and coding recognition, as typical visual
communication tasks, pose an urgent need for Image
Information Extraction (lIE) technology [5-6]. For
example, in the non-ferrous smelting scene, due to
complex environments, uneven lighting, and inaccurate
exposure, the panoramic image has obvious seams and
brightness differences. In this context, Subramanyam et al.
developed a hybrid descriptor method for multi-camera
visual inspection in the steel industry, targeting low
registration accuracy and slow stitching of low-texture
images. By optimizing feature matching and stitching, the
method achieved 91% matching accuracy and 49 ms
processing time, outperforming traditional algorithms

while producing high-quality, seamless images for real-
time steel surface inspection [7]. Chang et al. proposed an
improved defect detection method for printed circuit
boards to address the issues of low detection accuracy and
high cost in traditional methods. This method improved
the segmentation efficiency of the Otsu algorithm by
optimizing the Particle Swarm Optimization (PSO)
algorithm, and integrated Fast Library for Approximate
Nearest Neighbors (FLANN) and Speeded Up Robust
Features (SURF) algorithm to improve feature matching.
The experiment showed that the accuracy of this method
reached 98.9%, significantly improving detection
efficiency and accuracy, meeting industrial needs [8].
Zermane et al. proposed an intelligent control system that
integrates Support Vector Machine (SVM) and fuzzy logic
to address the challenges of complex processes in
industrial regulatory systems. This system could
accurately identify equipment status, reduce maintenance
costs, and improve production efficiency through real-
time control commands, achieving substantial
improvements to traditional industrial supervision
methods [9]. Hridoy et al. proposed a Deep Learning (DL)
framework based on transfer learning to address the issue
of high data demand in industrial inspection systems.
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Table 1: Comparative analysis of industrial visual information extraction methods.

Processing

Research Method Accuracy(%) Speed Application Domain Limitations
Hybrid Descriptor-based 91 Hiah Low-texture Image | Low robustness to lighting variations;
Stitching [7] Y Stitching Limited to specific low-texture scenarios
PSO-Otsu+SURFI8] 98.9 Medium PCB defect detection | 298 computational load for feature
matching, unstable under
SVM+Fuzzy Logic[9] Equipment  status Real-time Industrial supervision industrial noise
>95 systems
Xcept_lon Transfer 99.72-100 Fast Indust_rlal defect R_el_les on ma_nua_l feature engineering,
Learning[10] detection limited generalization
Weighted Cross-Entropy | Anomaly detection . Biotechnology High model complexity, difficult edge
Real-time -
Loss[11] >90 industry deployment
U-Net+CNN[12] 99.43-100 30FPS Toy ) quality Backg_round interference  suppression
inspection needs improvement

) High deployment cost and complexity;

Game-theoretic ~ Multimodal . . Human RO.bOt . Requires strict hardware synchronization;
Not Specified Medium Collaboration in R
Framework [13] Poor  generalization to  resource-
Assembly . -
constrained environments

Comparing the results of various Convolutional
Neural Network (CNN) architectures, the optimized
Extreme  Inception  (Xception) model achieved
classification accuracy of 100% and 99.72% on nut and
casting material datasets, significantly improving the
efficiency of industrial defect detection [10].

Fraccaroli et al. proposed a mask-weighted cross-
entropy overlap distance loss function training method to
address the issue of misjudgment caused by image
background interference in Industry 4.0 anomaly
detection. This method has been validated in the practical
application of anomaly detection projects in the
biotechnology industry, maintaining the real-time
performance of CNN while significantly improving the
accuracy of industrial defect detection [11]. Yang et al.
proposed a machine vision detection scheme based on an
improved U-shape Convolutional Network (U-Net) and
CNN to address poor accuracy in manual quality
inspection of toy sets. This method achieved an accuracy
rate of 100% and 99.43% for both whole machine and
single piece inspections, significantly improving the level
of toy automation quality inspection [12]. Chu et al.
developed a game-theoretic multimodal framework
integrating visual, auditory, and tactile sensing to optimize
human-robot collaboration in industrial assembly. The
system enhanced task allocation and decision-making,
improving  conflict  resolution  efficiency  while
maintaining  security, adaptability, and real-time
responsiveness for intelligent manufacturing [13]. Dei et
al. developed a multimodal feedback system to address the
issues of low efficiency in human-machine collaboration
and difficulty in neural differentiation group interaction in
industrial environments. This multimodal interaction
strategy significantly improved workplace accessibility,
enhanced human-machine collaboration efficiency, and
improved worker well-being [14]. To systematically
outline the strengths and weaknesses of existing
technologies and establish a clear benchmark for
comparing the method proposed in this paper, Table 1
provides a summary and comparative analysis of the
above-related work across four dimensions: accuracy,
speed, application domain, and limitations.

Current state-of-the-art (SOTA) methods suffer from
three main deficiencies: insufficient robustness to
industrial lighting variations and reflections, inadequate
real-time performance for high-speed inspection, and a
significant trade-off between model complexity and
deployment efficiency. This paper addresses these
limitations through a novel framework integrating multi-
scale feature fusion and Depthwise Separable Convolution
(DSC) techniques. Specifically, a multi-scale photometric
transformation strategy enhances lighting invariance,
while a lightweight Darknet-19 design achieves 25 ms
edge inference latency. Additionally, a channel
rearrangement mechanism compresses the model to 4.3
MB without sacrificing accuracy.

The proposed unified architecture balances accuracy
and efficiency by bridging the gap between traditional
image processing methods with high computational
efficiency but poor generalization ability and accurate but
resource-intensive DL methods. Key innovations include
a multi-scale fusion mechanism for robustness,
computational density optimization (1.26 GMACs/mm?)
for real-time performance, and channel rearrangement for
reduced memory footprint. Applied to water level
detection and encoding recognition tasks, the
incorporation of DSC and architectural modifications
maintains high accuracy while drastically improving
computational efficiency.

This study systematically addresses three core
research questions through targeted technical innovations:
(1) Lightweight Darknet-19 with DSCs for SOTA
detection under industrial noise; (2) Multi-scale feature
fusion to enhance lighting robustness in water level
detection; (3) Optimal balance between computational
efficiency and accuracy for multi-task edge deployment.
Each component, including Darknet-19 modifications,
dictionary  learning  integration, and  channel
rearrangement, is strategically designed to resolve these
challenges through optimized architectural solutions.
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2 Methods and materials

2.1 11E Method integrating object
detection and DL

This study formulates a multi-task optimization
framework where an input image | is processed for two
core tasks: water-level detection as binary classification
and encoding recognition as multi-class classification.
Training employs an alternating sampling strategy with a
1:1 task ratio per batch. Loss function balancing is
achieved through weighted summation:
L =4 Lyster T 0 L » Where L. is MSE loss for

water level detection, L., is cross-entropy loss for

encoding recognition, and hyperparameters (A1 =0.6, v
=0.4) are optimized via grid search. The MTL architecture
employs hard parameter sharing, with Darknet-19
backbone extracting shared features and task-specific
layers handling regression and classification. The
objective function of water level detection aims at
minimizing the positioning error and maximizing the
accuracy. The specific definition is shown in equation (1).

min L., = a-Error(y,y)+ B-Complexity(M) (1)

In equation (1), y is the true water level position. y

is the predicted value. M represents the model. « and
S are regularization parameters. Similarly, for encoding

recognition, the task is formulated as a cross-entropy
minimization problem. This formalization ensures that
each component addresses the research questions through
measurable objectives. Industrial visual inspection faces a
critical challenge: traditional image processing methods
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lack generalization for complex conditions, while DL
models suffer from high computational complexity,
hindering real-time performance [15-16]. To resolve this
dilemma, this study proposes a novel two-stage
framework that synergistically integrates object detection
with DL, enabling end-to-end collaborative optimization
of target localization and recognition. Specifically
addressing reflection interference in water level detection,
the method reformulates water level line positioning as a
binary image classification task. A sliding window
mechanism scans the image to classify regions as either
wall/benchmark or water wave areas. A Dictionary
Learning Method (DLM) is then employed to build an
efficient and accurate classification model. The overall
DLM framework is depicted in Fig.1.

The DLM implementation process in Fig.1 consists of
three core steps. Firstly, preprocess the color water level
images collected from multiple scenes, and unify the data
format through weighted grayscale conversion using
equation (2). Subsequently, it trains and generates a
feature dictionary based on processed image samples, and
ultimately uses this dictionary to drive sliding window
classification, determining the vertical axis of the water
level line through category transition points.

Gray(x, y) =0.3xR(X, y) +0.59x G(x, y) +0.11x B(x, y) (2)

In equation (2), Gray(x,y) is the grayscale intensity
value of the output image at pixel coordinate (X,Yy) .
R(x,y), G(x,y), and B(x,y) correspond to the channel

intensity values of the red, green, and blue primary colors
of the input color image at position (X, y).
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Figure 1: Flowchart of dictionary learning classification.
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The image is preprocessed via weighted grayscale
conversion, and a 400x700 pixel ROI is extracted to
reduce interference. Dense sampling with a 20-pixel
sliding window generates an 8000-dimensional feature
vector, constructing a 20000x8000-dimensional training
matrix Y for dictionary learning. To integrate DLM with
DL into a unified framework, sparse encoding vectors
from DLM serve as input to Darknet-19. This two-stage
process involves DLM performing initial water level
detection, followed by Darknet-19 processing its output
features for encoding recognition, enabling end-to-end
optimization. During training, the DLM objective function
(Equation (3)) is combined with the Darknet-19 loss via a
weighted sum, allowing DLM to function as both a
preprocessing and a supervision module.

. . 1 . 1, -
D =argmin,, (mmHSHOSL NH Y -DSIE —amin g ﬁH Y- DSH,Z:J

®)
In equation (3), « isthe regularization parameter. L
is the sparse constraint level. N and N represent the
number of positive and negative samples. D is the
dictionary matrix. S is a sparse encoding vector. Y is a
negative sample matrix. This objective function, which
balances intra-class reconstruction and inter-class
discrimination through parameter tuning, is optimized via
the Alternating Direction Method of Multipliers
(ADMM). Dictionary atoms are updated using K-SVD to
ensure representativeness, while sparse coding satisfying
the constraints is solved via the Orthogonal Matching
Pursuit (OMP) algorithm[17-18]. For water level
calculation, the sparse coding solution is first applied to
test sample k as formulated in equation (4).

§=argmin_| k—Dsl; + Al sl| (4)

In equation (4), § is the optimal sparse encoding
vector that is ultimately solved. s is the candidate
encoding vector in the optimization process. S is the

regularization coefficient. The water level line is located
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by scanning the ROI area from top to bottom using a
sliding window with a 1-pixel step. The y-axis position
where the classification first changes from "benchmark"
to "water wave" is recorded, and the actual water level
value R is then calculated using preset calibration
parameters in equation (5).

R:Ir+(y—lw)x% (®)

In equation (5), I, and |, are reference scales. w.
and w,, are the correspondence between actual size and

pixel size. To overcome the poor generalization of the
computationally efficient yet scenario-specific DLM, this
study introduces a multi-scale feature fusion architecture.
This architecture employs spatial pyramid pooling for
multi-granularity feature extraction, combined with cross-
scale upsampling and an adaptive attention weighting
mechanism to dynamically optimize the contribution of
features at different scales, as formulated in equation (6).

Fused = Z(Wm : Fm) (6)
In equation (6), F, is the final fused feature. w, is
the dynamic weight of the m-th layer feature. F_ is the

feature of the m -th level feature pyramid. Fig.2 shows the
pyramid feature fusion process, demonstrating the
hierarchical relationship between its underlying texture,
mid-level fluctuations, and global features.

Building on the multi-scale feature fusion technique
developed for water level detection, this study extends it
to industrial coding recognition via a two-stage
framework. The first stage employs Darknet-19 for real-
time encoding block localization, while the second stage
utilizes dedicated classifiers for cargo and vehicle codes.
This approach effectively addresses challenges like
complex backgrounds and character deformation through
task decoupling, enhancing recognition accuracy without
compromising real-time performance. The Darknet-19
backbone architecture is detailed in Fig.3.

Multi-Scale
Feature Pyramid Cost Volumes AAModules Predictions
i ﬂ — —>
o —
A — O
ﬂ

Figure 2: Schematic diagram of pyramid feature fusion process.
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Figure 3: Darknet-19 backbone network architecture.

Fig.3 illustrates the Darknet-19 backbone network
architecture. The network accepts a 224x224 input image
and progressively reduces spatial resolution to 7x7
through a series of convolutional and pooling layers,
facilitating multi-scale feature extraction essential for
encoding block localization. The model employs an end-
to-end regression architecture, bypassing region proposal
steps to accelerate detection. In the first stage, a Sigmoid
activation function is used for binary classification
(encoding block presence detection) to enhance speed.
The subsequent recognition stage utilizes dedicated
Softmax outputs, 10 classes for cargo codes and 36 for
vehicle codes, enabling precise character-level
classification within the located regions. In response to the
problem of insufficient data in industrial scenarios, this
study proposes geometric transformations to enhance
perspective adaptability. The image data enhancement
strategy is shown in Fig.4.

Fig.4 systematically illustrates the data augmentation
strategy, categorized into geometric and color space
transformations.  Geometric  operations, including
flipping, rotating, and scaling, expand the diversity of
spatial features, but require synchronous adjustment of
ground truth coordinates. Color space transformations,
such as contrast enhancement and histogram equalization,
modify only pixel values to improve lighting robustness
without altering target positions. Together, these
complementary techniques significantly enhance the

model's generalization capability against spatial and
photometric variations.

2.2 Optimization scheme based on DSC

After building an IIE framework that integrates object
detection and DL, it is found that existing models still face
key bottlenecks such as high computational complexity
and difficulty in real-time deployment on industrial
equipment [19]. To address these issues, the DSC
architecture is introduced, which achieves network
lightweighting while ensuring feature extraction
capability through standard convolution decomposition
and reconstruction. This optimization scheme implements
a differentiated design for two core tasks, including a
water level classification network and coding recognition.
Firstly, for the water level classification network, a
combination of deep convolution and 1x1 pointwise
convolution is used instead of the traditional 3x3 standard
convolution. The schematic diagram of standard
convolution and DSC is shown in Fig.5.

In Fig.5, the standard convolution uses a 3D
convolution kernel (M x d x N ) to simultaneously
process spatial features and channel relationships, and its
computational complexity increases exponentially with
the number of input and output channels. The standard
convolution computation is shown in equation (7).

Quangarg = g xd, xdy xdy xM x N @)
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Figure 4: Image data enhancement strategy.
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Figure 5: Dimension diagram of standard convolution and DSC.

In contrast, DSC decomposes standard convolution
into two independent steps: Step 1 is to perform channel
by channel deep convolution, using M single channel
convolution kernels to process each input channel
separately. Step 2 is to achieve channel dimension
transformation through 1x1 pointwise convolution. The
computational complexity of this method is shown in
equation (8). To clearly illustrate the integration of DSC
into Darknet-19, Fig.5 (b) provides a standard
convolutional layer, and Fig.5 (a) is a comparative block
diagram of the improved DSC layer. In the proposed
implementation, the standard 3x3 convolutional layers at
positions [3, 6, 9, 12, 15] in the original Darknet-19
backbone are replaced with DSC blocks. Each DSC block
comprises a depthwise convolution for spatial filtering,
followed by a pointwise convolution for channel
combination. This strategic substitution significantly
reduces computational complexity while preserving
feature extraction performance, which is especially
advantageous for real-time encoding localization tasks.

Qyeptn = d xd, xd, xd, xM +M xNxd, xd, (8)

Secondly, the encoding localization network
enhances feature reuse through a channel rearrangement
mechanism [20]. This mechanism inserts a feature
reconstruction layer between deep convolution and
pointwise convolution layers, first dividing the input
feature map into four optimized feature groups. Random
channel shuffling operation is implemented within each
group, and feature recombination and concatenation are
achieved through equation (9).

F’ = Concat| Shuffle(F,),..., Shuffle(F,) | (9)
In equation (9), F, is the i-th group of the input
feature map. g is the grouping hyperparameter. The

channel rearrangement mechanism delivers three principal
advantages: cross-group channel replacement overcomes
local receptive field constraints by establishing long-range
feature dependencies;an asymmetric shuffling strategy
applies intensive reorganization to low-level detail
features while employing moderate rearrangement for
high-level semantic features, enabling layer-adaptive
processing; and a dynamic grouping mechanism
automatically adjusts the partition count based on feature
map resolution, utilizing 4 groups for 112x112 high-
resolution maps while reducing to 2 groups for 56x56
lower-resolution inputs. This design ensures optimal

feature interaction across scales while maintaining
computational efficiency.

This study presents a comprehensive industrial visual
information extraction system for two core tasks: water
level detection and encoding recognition. For water level
detection, a multi-scale feature fusion algorithm
effectively integrates DLM and DL. For encoding
recognition, a two-stage framework utilizes Darknet-19
for localization, followed by a dedicated classifier. To
address real-time deployment challenges, a DSC
optimization scheme with channel rearrangement
significantly  reduces  computational  complexity.
Supported by data augmentation and lightweight
techniques, the solution demonstrates strong task
adaptability, environmental robustness, and edge
efficiency. For reproducibility, the Adam optimizer
(B:=0.9, B=0.999) is used with a batch size of 32, initial
learning rate of 0.001, and cosine annealing (reduced by
0.1 every 50 epochs) over 300 rounds. Key
hyperparameters include weight decay (0.0005),
momentum (0.9), and loss weights a=0.6 (water level) and
B=0.4 (encoding). All experiments run on a 4xNVIDIA
RTX 8000 GPU setup with one-click Docker deployment.

3 Results

3.1 Performance verification experiment

The experiment conducts a comparative study on
industrial water level detection tasks in the hardware
environment of Intel Xeon Gold 6248R processor and
NVIDIA RTX 8000 graphics card. The experimental
dataset comprises 4,000 industrial water level images with
reflection and wave interference under diverse lighting
conditions, partitioned into 3,200 training and 800 test
samples (80-20 split). For encoding recognition, 10,000
samples from a hexagonal nut dataset are equally divided
between cargo and vehicle codes (5,000 each), following
the same 80-20 training-testing ratio. To enhance model
robustness, data augmentation strategies are implemented
including geometric transformations (horizontal flipping
at 0.5 probability, +15° rotation, 0.8-1.2 scaling) and color
space manipulations, all applied synchronously to images
and ground truth bounding boxes using coordinate
transformation formulas from Equation (6). The datasets
are available upon request for research purposes, and
focus on comparing the performance differences of five
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algorithms:  SIFT  feature  matching, PSO-Otsu
Thresholding (PSO-Otsu), SVM classification, traditional
edge detection, and an optimized information extraction
algorithm. Through a systematic evaluation of four core
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indicators, namely Pixel-level Accuracy (PA), water level
positioning error, Peak Signal-To-Noise Ratio (PSNR),
and single frame processing delay, the comparative results
are shown in Fig.6.
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Figure 6: Comprehensive evaluation of quality and efficiency.
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Figure 7: Multi-dimensional performance comparison of industrial character recognition model.

Fig.6 demonstrates the superior performance of the
proposed method across key metrics. In Fig.6(a), it
achieves a leading 97% PA with a minimal 5 mm
positioning error, significantly outperforming other
algorithms. The model excels in both tasks, with high
water level detection accuracy (0.95 loU, 0.98 mAP) and
encoding recognition rates (98% for cargo, 96% for
vehicle), while a confusion matrix (Table 4) reveals
minimal misclassification. Fig.6(b) shows the algorithm
maintains a high PSNR of 34 dB and a low latency of 25
ms, confirming its comprehensive advantages in image
quality and real-time processing for industrial scenarios.

To rigorously validate industrial coding recognition
robustness, the experiment utilized an expanded dataset of
10,000 samples. This dataset incorporated simulated real-
world challenges through +15° rotations and contrast
adjustments [0.8, 1.2]. The proposed Darknet-19 scheme
was benchmarked against FLANN+SURF, YOLOVS5,
Faster R-CNN, and Xception using a multi-faceted
evaluation system measuring Character Recognition Rate
(CRR), False Positive Rate (FPR), Structural Similarity
Index (SSIM), and model parameters. The experimental
results are shown in Fig.7.
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Fig.7 presents a multi-dimensional performance
comparison, demonstrating the superiority of the
improved Darknet-19 model. As shown in Fig.7(a), the
proposed method achieves a leading CRR of 97% while
maintaining a low FPR below 5%, outperforming
YOLOV5 (95% CRR, 7% FPR). Concurrently, Fig.7(b)
highlights the model's efficiency, with a compact
parameter size of 12MB and an inference delay of 25ms,
while achieving a high SSIM of 0.91. This balance
between a lightweight architecture and high recognition
accuracy validates the improved Darknet-19 as an optimal
solution for industrial-grade character recognition tasks.
To quantify the specific contribution of DSC to the overall
performance, an ablation study is conducted comparing
the proposed DSC-modified Darknet-19 with a baseline
version using standard convolutional layers. The
experimental results are shown in Table 2.

L. Yang

Table 2 shows that replacing standard convolutions
with depthwise separable versions drastically improves
efficiency: model size is compressed by 62.9% to 4.3MB,
computational load droppes 37.5%, and latency is reduced
by 34.2% to 25 ms. Although CRR only decreases slightly
by 0.6%, the results confirme the optimal balance between
efficiency and maintaining industrial deployment
accuracy. An extensive ablation study is conducted to
rigorously quantify the individual contributions of the
proposed architectural components: multi-scale feature
fusion, DSC, and channel rearrangement. The baseline
model (Model A) employs standard convolution and
single-scale features. Subsequent models incrementally
integrate multi-scale fusion (Model B), DSC (Model C),
channel shuffling (Model D, and the full proposed model).
The evaluation on the water level detection task results are
summarized in Table 3.

Table 2: Ablation study: DSC vs standard convolution performance comparison.

Metric Standard Conv Baseline DSC-Modified Improvement
Model Size 11.6MB 4.3 MB -62.9%
Computational Load 400 GFLOPs 250 GFLOPs -37.5%
CRR 97.8% 97.2% -0.6%
Inference Latency 38 ms 25 ms -34.2%
Memory Usage 520 MB 300 MB -42.3%
Table 3: Ablation study of key architectural components.

Multi-Scale Channel Positionin Model  Size
Model Fusion DSC Shuffling PA (%) Error (mm% (MB) Latency (ms)
A X X X 91.2 8.5 11.6 38
B \ x x 945 6.8 11.8 41
c N N x 96.1 5.9 5.2 29
D (Proposed) \ N N 97.0 5.0 43 25
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Figure 8: 4D comparison of parameter quantity-performance relationship of DL model.

Table 3 clearly quantifies the incremental benefits of
each architectural component. The addition of Model B
alone boostes PA by 3.3% and reduces positioning error
by 1.7 mm. Replacing standard convolutions with DSC
(Model C) drastically improves efficiency, slashing model
size by 56% and latency by 29%, while further increasing
accuracy. Finally, incorporating channel rearrangement
(Model D) yields the optimal model, achieving the best
performance (97.0% PA, 5.0 mm error) with the smallest
size (4.3MB) and lowest latency (25 ms). This ablation
study confirms that multi-scale fusion improves accuracy,
DSC improves efficiency, and channel transformation
optimizes  both, ultimately achieving excellent
performance of the complete model. To verify the
performance advantages of research networks in terms of
computational efficiency, three representative
architectures are selected for comparison: MobileNet
Version 3 (MobileNetV3), Faster R-CNN, and Raw
Darknet-19. The design of the evaluation system covers
three key dimensions: throughput, GPU memory usage,
edge latency, and computational complexity. The input
resolution is fixed at 512x512 to unify the testing
conditions, as shown in Fig.8.

Fig.8 presents a 4D performance comparison,
demonstrating the superior efficiency of the improved
Darknet-19. The model achieves a leading balance of 30
FPS and 250 GFLOPs at 25M parameters, significantly
outperforming comparative architectures. Specifically,
Fig. 8(a) shows the improved Darknet-19 attains 30 FPS,
doubling the speed of MobileNetv3 (15 FPS) and

surpassing Faster R-CNN (25 FPS). Fig.8(b) indicates a
memory usage of 300MB, a 100MB reduction compared
to Faster R-CNN. Fig.8(c) reveals an edge latency of 25
ms, superior to MobileNetV3's 50 ms and Faster R-CNN's
40 ms. Fig.8(d) demonstrates a computational cost of 250
GFLOPs, which is 37.5% lower than Faster R-CNN. This
comprehensive advantage across all metrics validates its
industrial deployment strengths. To further assess
generalization, 5-fold cross-validation on 4,000 water
level images yields a consistent accuracy range of 95.2%-
97.8% (SD + 1.1%). External testing on a public dataset
with 2,000 images confirms robust cross-scenario
stability, maintaining 94.5% pixel-level accuracy and 6
mm positioning error on unseen samples.

3.2 Scene verification experiment

To verify the robustness of the proposed multi-scale
photometric transformation strategy in extreme industrial
lighting environments, this experiment uses Basler ace
acA2000-50gc industrial camera to collect three typical
industrial scene data: strong reflective water surface, low
illumination coding area, and dynamic shadow
interference. The comparative methods cover four classic
lighting processing methods: traditional color constancy
theory, histogram equalization, Contrast Limited Adaptive
Histogram Equalization (CLAHE) algorithm, and Retina
Cortex (Retinex) Theory. The validation indicators
consider both physical properties and visual quality: Light
Invariance Index (LII), Dynamic Range Retention Rate



266  Informatica 49 (2022) 257-270

(DRR), SURF, SNR, and color distortion, as shown in
Table 4.

Table 4 demonstrates the superior performance of the
multi-scale photometric transformation strategy across all
evaluated metrics. The method achieves a leading LIl of
0.93, a 14.8% improvement over the Retinex method, and
a DRR of 94.3%, surpassing CLAHE by 9.1%. It also
attains a 91.7% feature matching rate (8.3% higher than
comparative methods), an 8.7 dB SNR improvement for
noise suppression, and excellent color fidelity with a AE
of 3.2. By excelling in all five core indicators, the strategy
effectively resolves lighting interference issues in
industrial detection scenarios. The term "task decoupling”
is defined as separating public feature extraction from
task-specific processing via a hard parameter-sharing
architecture, mathematically formulated as F,,., = ®(1)

and Yy = Wog(Faaes ) - @ is the shared encoder and

shared

L. Yang

Y. is the task-specific decoder. Resource Sharing
Efficiency (RSE) is quantified by the protocol:

" L
Li ,shared

RSE =1- zi:1||‘i,shared -
denote the loss of task under multi-task and

i,alone |

,  Where and

N-L,..
L,

independent training, respectively, and L, is a

normalization factor. The computational efficiency of
three multi-task schemes, independently trained models,
traditional MTL, and the proposed decoupling
architecture, is evaluated on an NVIDIA Jetson AGX
Xavier platform using a mixed dataset. Key performance
dimensions, including Multi-Task Interference (MTI),
RSE, and Memory Growth Rate (MGR), are assessed,
with results detailed in Fig.9.

i,alone

Table 4: Performance comparison of illumination processing algorithms.

Multi-scale
Evaluation dimension Test index Color Hlsto_grar_n CLAHE Retinex photometrlc_
constancy equalization transformation
strategy
Illumination stability L index (0-1) 0.68 0.72 0.75 0.81 0.93
Detail reservation DRR/% 82.4 78.6 85.2 88.7 94.3
Characteristic-induced SUR'.:. matching 715 65.8 76.2 83.4 91.7
repetition rate /%
Noise suppression SNR/dB 4.2 3.8 5.1 6.3 8.7
Color fidelity AE 6.8 8.2 5.7 49 3.2
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Figure 9: Comparison of dynamic evolution of key indicators in MTL.
Table 5: Comparison of test results of edge deployment in extreme environment.
Evaluation dimension Test index Original Darknet- Te_n§orRT-opt|m|zed Lightweight
19 edition scheme
Temperature stability AT fluctuation range/°C +5.1 +3.8 +2.3
R'e5|st'ance to mechanical Fault tolerance rate 82.4% 89.7% 95.3%
vibration
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Electromagnetic compatibility | Immunity (EMI/dB) 5.2 4.1 2.8
Computational efficiency Calculated density (GMACs/mm?) 0.37 0.89 1.26
Long term stability 72h failure rate 1.7% 0.6% 0.09%
Model compression Storage volume (MB) 11.6 6.2 43

Fig.9 demonstrates the superior performance of the
proposed decoupling architecture across all multi-task
evaluation metrics. As illustrated, the architecture
achieves minimal MTI of 0.12, representing a 76.9%
reduction compared to traditional methods. It also attains
89.3% RSE, a 23.2% improvement, while optimizing
MGR to +62% (70.5% better than traditional MTL). The
architecture achieves 8.4 ms task switching latency,
reducing delay by 70.6% while maintaining stable
performance under industrial multi-tasking conditions.
Subsequently, the edge computing reliability of the
lightweight scheme is verified under extreme industrial
conditions. Testing is conducted on a Raspberry Pi 4B
platform within an environmental chamber (-20°C to
60°C), simulating harsh industrial scenarios including
electromagnetic interference and mechanical vibration.
The proposed scheme is compared against original
Darknet-19, Tensor Runtime, and Tensor RT
implementations to assess its robustness in challenging
deployment environments. The reliability test is deployed
on a Raspberry Pi 4B. It subjects the system to extreme
environmental stresses, including temperature cycling (-
20 °C to 60 °C), mechanical vibration (10-500 Hz), and
electromagnetic interference (10 V/m). Over a 72-hour
continuous run, key metrics including CPU utilization,
memory usage, inference latency, and system crash
counts, are monitored. The system is deemed fault-tolerant
if it experiences <2 crashes with auto-recovery under 30
seconds. The failure rate is calculated as (crashes / total
runtime) x 100%. The benchmark models are Faster R-
CNN and Xception. The validation indicators include
temperature  stability, vibration fault tolerance,
electromagnetic immunity, computational density, and 72-
hour continuous operation failure rate, as shown in Table
5.

In Table 5, temperature fluctuations are controlled at
+ 2.3 °C, a decrease of 54.9% compared to the original
Darknet-19. The vibration fault tolerance rate reaches
95.3%, an increase of 15.6%. The electromagnetic
immunity is 2.8 dB, with a decrease of 46.2%. In terms of
computational efficiency, DSC achieves a computational
density of 1.26 GMACs/mm2, which is 41.6% higher than
TensorRT. The model volume is compressed to 4.3 MB, a
decrease of 62.9%. Model compression employs a three-
step pipeline: channel pruning first eliminates 30% of
parameters, INT8 quantization then reduces weight
precision from FP32 (75% storage saving), and Huffman
coding provides final lossless compression. The overall
ratio is calculated as: Final Size = Original Size x (1 - 0.3)
x (8/32) x Huffman Ratio. Long-term operation testing
shows that the 72-hour failure rate is only 0.09%, a
decrease of 94.7% compared to the benchmark. The
lightweight solution provides key technical support for
industrial edge deployment.

4 Discussion

This study demonstrates that the proposed method
achieves significant performance improvements over
baseline approaches, with a 12% higher PA (97% vs. 85%)
compared to SIFT/PSO-Otsu. These advantages are
attributed to three key innovations: (1) DSCs reduce
computational complexity by 37.5% while maintaining
feature extraction capability; (2) Channel rearrangement
compresses the model size to 4.3MB without sacrificing
accuracy; (3) Multi-scale photometric transformation
enhances lighting robustness, achieving a 0.93 LIl versus
0.78-0.85 for traditional methods. The design involves a
trade-off of a 62% memory usage increase for substantial
gains in accuracy and real-time performance (25 ms
latency). However, the method has limitations. It depends
on manual reference scale calibration for water level
detection, and its performance may degrade under extreme
occlusion (>70% surface coverage) or in high-reflectivity
environments where water surface features become
indistinguishable. These scenarios represent potential
failure cases, necessitating supplementary solutions like
polarization filters or sensor fusion in practical
deployments.

5 Conclusion

This work successfully addresses the trade-off between
traditional methods' poor generalization and DL models'
high computational complexity in industrial vision tasks.
By integrating a modified Darknet-19 backbone with
multi-scale feature fusion, DSC, and channel
rearrangement, the proposed two-stage framework
achieves an optimal balance between accuracy and
efficiency.  Experimental  results  validated its
effectiveness: 97% PA and 5 mm positioning error in
water level detection, 97% CRR with 5% FPR in encoding
recognition, and robust multi-task performance with
minimal interference (0.12 MTI). The system also
exhibited exceptional environmental adaptability (0.93
LIl, 94.3% DRR, 8.7 dB SNR improvement) and reliable
edge deployment capabilities, achieving a computational
density of 1.26 GMACs/mm2, a 72-hour failure rate
below 0.1%, and stable temperature fluctuation control
within 2.3 °C.
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