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In response to the dual challenges of insufficient generalization of traditional image processing methods 

and high computational complexity of deep learning models in industrial visual scenes, this study proposes 

a two-stage solution integrating object detection and a deep learning scheme. The scheme employs a 

modified Darknet-19 backbone with depthwise separable convolutions and channel rearrangement 

mechanisms for multi-scale feature fusion, significantly improving computational efficiency while 

maintaining accuracy. Experiments on a dataset of 4,000 industrial water level images and 10,000 

encoding samples showed that the research method achieved 97% pixel-level accuracy and 5 mm 

positioning error in water level detection, outperforming suboptimal models by 12%. For encoding 

recognition, it reached a 97% character recognition rate with only 5% false detection rate. In multi-task 

scenarios, system interference was reduced to 0.12, with 62% increased video memory usage and stable 

25 ms edge latency. The multi-scale photometric transformation achieved a lighting invariance index of 

0.93 and improved SNR by 8.7 dB. Lightweight deployment yielded a computational density of 1.26 

GMACs/mm² and a 72-hour failure rate below 0.1%. This work provides an accuracy-efficiency balanced 

solution for industrial vision systems, with applications in smart security and intelligent manufacturing. 

Future work will focus on adaptive calibration and dynamic pruning for enhanced deployment 

adaptability. 

Povzetek:  

 

1 Introduction 
Visual communication plays an increasingly important 

role in modern information society, and images as 

information carriers have the significant advantage of 

"one image is worth a thousand words", which can 

efficiently convey rich information [1-2]. The 

advancement of computer vision technology has enabled 

the automatic extraction of key information from images, 

demonstrating broad application prospects in fields such 

as smart security and smart cities [3-4]. Water level 

detection and coding recognition, as typical visual 

communication tasks, pose an urgent need for Image 

Information Extraction (IIE) technology [5-6]. For 

example, in the non-ferrous smelting scene, due to 

complex environments, uneven lighting, and inaccurate 

exposure, the panoramic image has obvious seams and 

brightness differences. In this context, Subramanyam et al. 

developed a hybrid descriptor method for multi-camera 

visual inspection in the steel industry, targeting low 

registration accuracy and slow stitching of low-texture 

images. By optimizing feature matching and stitching, the 

method achieved 91% matching accuracy and 49 ms 

processing time, outperforming traditional algorithms  

 

while producing high-quality, seamless images for real-

time steel surface inspection [7]. Chang et al. proposed an 

improved defect detection method for printed circuit 

boards to address the issues of low detection accuracy and 

high cost in traditional methods. This method improved 

the segmentation efficiency of the Otsu algorithm by 

optimizing the Particle Swarm Optimization (PSO) 

algorithm, and integrated Fast Library for Approximate 

Nearest Neighbors (FLANN) and Speeded Up Robust 

Features (SURF) algorithm to improve feature matching. 

The experiment showed that the accuracy of this method 

reached 98.9%, significantly improving detection 

efficiency and accuracy, meeting industrial needs [8]. 

Zermane et al. proposed an intelligent control system that 

integrates Support Vector Machine (SVM) and fuzzy logic 

to address the challenges of complex processes in 

industrial regulatory systems. This system could 

accurately identify equipment status, reduce maintenance 

costs, and improve production efficiency through real-

time control commands, achieving substantial 

improvements to traditional industrial supervision 

methods [9]. Hridoy et al. proposed a Deep Learning (DL) 

framework based on transfer learning to address the issue 

of high data demand in industrial inspection systems. 
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Table 1: Comparative analysis of industrial visual information extraction methods. 

Research Method Accuracy(%) 
Processing 
Speed 

Application Domain Limitations 

Hybrid Descriptor-based 

Stitching [7] 
91 High 

Low-texture Image 

Stitching 

Low robustness to lighting variations; 

Limited to specific low-texture scenarios 

PSO-Otsu+SURF[8] 98.9 Medium PCB defect detection 
Large computational load for feature 

matching, unstable under 

SVM+Fuzzy Logic[9] 
Equipment status 

>95 
Real-time 

Industrial supervision 

systems 
industrial noise 

Xception Transfer 

Learning[10] 
99.72-100 Fast 

Industrial defect 

detection 

Relies on manual feature engineering, 

limited generalization 

Weighted Cross-Entropy 

Loss[11] 

Anomaly detection 

>90 
Real-time 

Biotechnology 

industry 

High model complexity, difficult edge 

deployment 

U-Net+CNN[12] 99.43-100 30FPS 
Toy quality 

inspection 

Background interference suppression 

needs improvement 

Game-theoretic Multimodal 

Framework [13] 
Not Specified Medium 

Human-Robot 
Collaboration in 

Assembly 

High deployment cost and complexity; 

Requires strict hardware synchronization; 

Poor generalization to resource-

constrained environments 

 

Comparing the results of various Convolutional 

Neural Network (CNN) architectures, the optimized 

Extreme Inception (Xception) model achieved 

classification accuracy of 100% and 99.72% on nut and 

casting material datasets, significantly improving the 

efficiency of industrial defect detection [10]. 

Fraccaroli et al. proposed a mask-weighted cross-

entropy overlap distance loss function training method to 

address the issue of misjudgment caused by image 

background interference in Industry 4.0 anomaly 

detection. This method has been validated in the practical 

application of anomaly detection projects in the 

biotechnology industry, maintaining the real-time 

performance of CNN while significantly improving the 

accuracy of industrial defect detection [11]. Yang et al. 

proposed a machine vision detection scheme based on an 

improved U-shape Convolutional Network (U-Net) and 

CNN to address poor accuracy in manual quality 

inspection of toy sets. This method achieved an accuracy 

rate of 100% and 99.43% for both whole machine and 

single piece inspections, significantly improving the level 

of toy automation quality inspection [12]. Chu et al. 

developed a game-theoretic multimodal framework 

integrating visual, auditory, and tactile sensing to optimize 

human-robot collaboration in industrial assembly. The 

system enhanced task allocation and decision-making, 

improving conflict resolution efficiency while 

maintaining security, adaptability, and real-time 

responsiveness for intelligent manufacturing [13]. Dei et 

al. developed a multimodal feedback system to address the 

issues of low efficiency in human-machine collaboration 

and difficulty in neural differentiation group interaction in 

industrial environments. This multimodal interaction 

strategy significantly improved workplace accessibility, 

enhanced human-machine collaboration efficiency, and 

improved worker well-being [14]. To systematically 

outline the strengths and weaknesses of existing 

technologies and establish a clear benchmark for 

comparing the method proposed in this paper, Table 1 

provides a summary and comparative analysis of the 

above-related work across four dimensions: accuracy, 

speed, application domain, and limitations. 

Current state-of-the-art (SOTA) methods suffer from 

three main deficiencies: insufficient robustness to 

industrial lighting variations and reflections, inadequate 

real-time performance for high-speed inspection, and a 

significant trade-off between model complexity and 

deployment efficiency. This paper addresses these 

limitations through a novel framework integrating multi-

scale feature fusion and Depthwise Separable Convolution 

(DSC) techniques. Specifically, a multi-scale photometric 

transformation strategy enhances lighting invariance, 

while a lightweight Darknet-19 design achieves 25 ms 

edge inference latency. Additionally, a channel 

rearrangement mechanism compresses the model to 4.3 

MB without sacrificing accuracy. 

The proposed unified architecture balances accuracy 

and efficiency by bridging the gap between traditional 

image processing methods with high computational 

efficiency but poor generalization ability and accurate but 

resource-intensive DL methods. Key innovations include 

a multi-scale fusion mechanism for robustness, 

computational density optimization (1.26 GMACs/mm²) 

for real-time performance, and channel rearrangement for 

reduced memory footprint. Applied to water level 

detection and encoding recognition tasks, the 

incorporation of DSC and architectural modifications 

maintains high accuracy while drastically improving 

computational efficiency. 

This study systematically addresses three core 

research questions through targeted technical innovations: 

(1) Lightweight Darknet-19 with DSCs for SOTA 

detection under industrial noise; (2) Multi-scale feature 

fusion to enhance lighting robustness in water level 

detection; (3) Optimal balance between computational 

efficiency and accuracy for multi-task edge deployment. 

Each component, including Darknet-19 modifications, 

dictionary learning integration, and channel 

rearrangement, is strategically designed to resolve these 

challenges through optimized architectural solutions. 



Multi-Task Visual Information Extraction in Industrial… Informatica 49 (2025) 257–270 259 

 

2 Methods and materials 

2.1 IIE Method integrating object 

detection and DL 

This study formulates a multi-task optimization 

framework where an input image I is processed for two 

core tasks: water-level detection as binary classification 

and encoding recognition as multi-class classification. 

Training employs an alternating sampling strategy with a 

1:1 task ratio per batch. Loss function balancing is 

achieved through weighted summation: 

total water codeL L L =  +  , where 
waterL  is MSE loss for 

water level detection, 
codeL  is cross-entropy loss for 

encoding recognition, and hyperparameters (  =0.6, 

=0.4) are optimized via grid search. The MTL architecture 

employs hard parameter sharing, with Darknet-19 

backbone extracting shared features and task-specific 

layers handling regression and classification. The 

objective function of water level detection aims at 

minimizing the positioning error and maximizing the 

accuracy. The specific definition is shown in equation (1). 

( ) ( )min ,waterL Error Complexityy y M =  +    (1) 

In equation (1), y  is the true water level position. y  

is the predicted value. M  represents the model.   and 

  are regularization parameters. Similarly, for encoding 

recognition, the task is formulated as a cross-entropy 

minimization problem. This formalization ensures that 

each component addresses the research questions through 

measurable objectives. Industrial visual inspection faces a 

critical challenge: traditional image processing methods 

lack generalization for complex conditions, while DL 

models suffer from high computational complexity, 

hindering real-time performance [15-16]. To resolve this 

dilemma, this study proposes a novel two-stage 

framework that synergistically integrates object detection 

with DL, enabling end-to-end collaborative optimization 

of target localization and recognition. Specifically 

addressing reflection interference in water level detection, 

the method reformulates water level line positioning as a 

binary image classification task. A sliding window 

mechanism scans the image to classify regions as either 

wall/benchmark or water wave areas. A Dictionary 

Learning Method (DLM) is then employed to build an 

efficient and accurate classification model. The overall 

DLM framework is depicted in Fig.1. 

The DLM implementation process in Fig.1 consists of 

three core steps. Firstly, preprocess the color water level 

images collected from multiple scenes, and unify the data 

format through weighted grayscale conversion using 

equation (2). Subsequently, it trains and generates a 

feature dictionary based on processed image samples, and 

ultimately uses this dictionary to drive sliding window 

classification, determining the vertical axis of the water 

level line through category transition points. 

( , ) 0.3 ( , ) 0.59 ( , ) 0.11 ( , )Gray x y R x y G x y B x y=  +  +  (2) 

In equation (2), ( , )Gray x y  is the grayscale intensity 

value of the output image at pixel coordinate ( , )x y . 

( , )R x y , ( , )G x y , and ( , )B x y  correspond to the channel 

intensity values of the red, green, and blue primary colors 

of the input color image at position ( , )x y . 
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Figure 1: Flowchart of dictionary learning classification. 



260 Informatica 49 (2022) 257–270 L. Yang 

The image is preprocessed via weighted grayscale 

conversion, and a 400×700 pixel ROI is extracted to 

reduce interference. Dense sampling with a 20-pixel 

sliding window generates an 8000-dimensional feature 

vector, constructing a 20000×8000-dimensional training 

matrix Y  for dictionary learning. To integrate DLM with 

DL into a unified framework, sparse encoding vectors 

from DLM serve as input to Darknet-19. This two-stage 

process involves DLM performing initial water level 

detection, followed by Darknet-19 processing its output 

features for encoding recognition, enabling end-to-end 

optimization. During training, the DLM objective function 

(Equation (3)) is combined with the Darknet-19 loss via a 

weighted sum, allowing DLM to function as both a 

preprocessing and a supervision module. 

0 0

2 21 1
arg min min minD F FS L S L

D Y DS Y DS
N N


 

 
= − − − 

 
‖ ‖ ‖ ‖‖ ‖ ‖ ‖

(3) 

In equation (3),   is the regularization parameter. L  

is the sparse constraint level. N  and N  represent the 

number of positive and negative samples. D  is the 

dictionary matrix. S  is a sparse encoding vector. Y  is a 

negative sample matrix. This objective function, which 

balances intra-class reconstruction and inter-class 

discrimination through parameter tuning, is optimized via 

the Alternating Direction Method of Multipliers 

(ADMM). Dictionary atoms are updated using K-SVD to 

ensure representativeness, while sparse coding satisfying 

the constraints is solved via the Orthogonal Matching 

Pursuit (OMP) algorithm[17-18]. For water level 

calculation, the sparse coding solution is first applied to 

test sample k  as formulated in equation (4). 
2

2 1
ˆ argminss k Ds s= − +‖ ‖ ‖‖               (4) 

In equation (4), ŝ  is the optimal sparse encoding 

vector that is ultimately solved. s  is the candidate 

encoding vector in the optimization process.   is the 

regularization coefficient. The water level line is located 

by scanning the ROI area from top to bottom using a 

sliding window with a 1-pixel step. The y-axis position 

where the classification first changes from "benchmark" 

to "water wave" is recorded, and the actual water level 

value R  is then calculated using preset calibration 

parameters in equation (5). 

( ) r

r w

w

w
R l y l

w
= + −                          (5) 

In equation (5), 
rl  and 

wl  are reference scales. 
rw  

and 
ww  are the correspondence between actual size and 

pixel size. To overcome the poor generalization of the 

computationally efficient yet scenario-specific DLM, this 

study introduces a multi-scale feature fusion architecture. 

This architecture employs spatial pyramid pooling for 

multi-granularity feature extraction, combined with cross-

scale upsampling and an adaptive attention weighting 

mechanism to dynamically optimize the contribution of 

features at different scales, as formulated in equation (6). 

( ) used m mF w F=                            (6) 

In equation (6), 
usedF  is the final fused feature. 

mw  is 

the dynamic weight of the m -th layer feature. 
mF  is the 

feature of the m -th level feature pyramid. Fig.2 shows the 

pyramid feature fusion process, demonstrating the 

hierarchical relationship between its underlying texture, 

mid-level fluctuations, and global features. 

Building on the multi-scale feature fusion technique 

developed for water level detection, this study extends it 

to industrial coding recognition via a two-stage 

framework. The first stage employs Darknet-19 for real-

time encoding block localization, while the second stage 

utilizes dedicated classifiers for cargo and vehicle codes. 

This approach effectively addresses challenges like 

complex backgrounds and character deformation through 

task decoupling, enhancing recognition accuracy without 

compromising real-time performance. The Darknet-19 

backbone architecture is detailed in Fig.3. 

Correlation

Feature Pyramid

Multi-Scale

Cost Volumes AAModules Predictions

...

 

Figure 2: Schematic diagram of pyramid feature fusion process. 



Multi-Task Visual Information Extraction in Industrial… Informatica 49 (2025) 257–270 261 

 

Convolution layer

Maximum pool layer

Convolution layer

Maximum pool layer

Convolution layer ×3

Maximum pool layer

Convolution layer ×3 Maximum pool layer

Convolution layer×6

Average pool layer

Maximum pool layer

Convolution layer×6

Softmax224×224

112×112

56×56

28×28

14×14

7×7

1000

1

 

Figure 3: Darknet-19 backbone network architecture. 

Fig.3 illustrates the Darknet-19 backbone network 

architecture. The network accepts a 224×224 input image 

and progressively reduces spatial resolution to 7×7 

through a series of convolutional and pooling layers, 

facilitating multi-scale feature extraction essential for 

encoding block localization. The model employs an end-

to-end regression architecture, bypassing region proposal 

steps to accelerate detection. In the first stage, a Sigmoid 

activation function is used for binary classification 

(encoding block presence detection) to enhance speed. 

The subsequent recognition stage utilizes dedicated 

Softmax outputs, 10 classes for cargo codes and 36 for 

vehicle codes, enabling precise character-level 

classification within the located regions. In response to the 

problem of insufficient data in industrial scenarios, this 

study proposes geometric transformations to enhance 

perspective adaptability. The image data enhancement 

strategy is shown in Fig.4. 

Fig.4 systematically illustrates the data augmentation 

strategy, categorized into geometric and color space 

transformations. Geometric operations, including 

flipping, rotating, and scaling, expand the diversity of 

spatial features, but require synchronous adjustment of 

ground truth coordinates. Color space transformations, 

such as contrast enhancement and histogram equalization, 

modify only pixel values to improve lighting robustness 

without altering target positions. Together, these 

complementary techniques significantly enhance the 

model's generalization capability against spatial and 

photometric variations. 

2.2 Optimization scheme based on DSC 

After building an IIE framework that integrates object 

detection and DL, it is found that existing models still face 

key bottlenecks such as high computational complexity 

and difficulty in real-time deployment on industrial 

equipment [19]. To address these issues, the DSC 

architecture is introduced, which achieves network 

lightweighting while ensuring feature extraction 

capability through standard convolution decomposition 

and reconstruction. This optimization scheme implements 

a differentiated design for two core tasks, including a 

water level classification network and coding recognition. 

Firstly, for the water level classification network, a 

combination of deep convolution and 1×1 pointwise 

convolution is used instead of the traditional 3×3 standard 

convolution. The schematic diagram of standard 

convolution and DSC is shown in Fig.5. 

In Fig.5, the standard convolution uses a 3D 

convolution kernel ( M × d × N ) to simultaneously 

process spatial features and channel relationships, and its 

computational complexity increases exponentially with 

the number of input and output channels. The standard 

convolution computation is shown in equation (7). 

standard a a b bQ d d d d M N=                  (7) 
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Figure 4: Image data enhancement strategy. 
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Figure 5: Dimension diagram of standard convolution and DSC. 

In contrast, DSC decomposes standard convolution 

into two independent steps: Step 1 is to perform channel 

by channel deep convolution, using M  single channel 

convolution kernels to process each input channel 

separately. Step 2 is to achieve channel dimension 

transformation through 1×1 pointwise convolution. The 

computational complexity of this method is shown in 

equation (8). To clearly illustrate the integration of DSC 

into Darknet-19, Fig.5 (b) provides a standard 

convolutional layer, and Fig.5 (a) is a comparative block 

diagram of the improved DSC layer. In the proposed 

implementation, the standard 3×3 convolutional layers at 

positions [3, 6, 9, 12, 15] in the original Darknet-19 

backbone are replaced with DSC blocks. Each DSC block 

comprises a depthwise convolution for spatial filtering, 

followed by a pointwise convolution for channel 

combination. This strategic substitution significantly 

reduces computational complexity while preserving 

feature extraction performance, which is especially 

advantageous for real-time encoding localization tasks. 

depth a a b b a aQ d d d d M M N d d=     +        (8) 

Secondly, the encoding localization network 

enhances feature reuse through a channel rearrangement 

mechanism [20]. This mechanism inserts a feature 

reconstruction layer between deep convolution and 

pointwise convolution layers, first dividing the input 

feature map into four optimized feature groups. Random 

channel shuffling operation is implemented within each 

group, and feature recombination and concatenation are 

achieved through equation (9). 

1( ),..., ( )gF Concat Shuffle F Shuffle F  =           (9) 

In equation (9), 
1F  is the i-th group of the input 

feature map. g  is the grouping hyperparameter. The 

channel rearrangement mechanism delivers three principal 

advantages: cross-group channel replacement overcomes 

local receptive field constraints by establishing long-range 

feature dependencies;an asymmetric shuffling strategy 

applies intensive reorganization to low-level detail 

features while employing moderate rearrangement for 

high-level semantic features, enabling layer-adaptive 

processing; and a dynamic grouping mechanism 

automatically adjusts the partition count based on feature 

map resolution, utilizing 4 groups for 112×112 high-

resolution maps while reducing to 2 groups for 56×56 

lower-resolution inputs. This design ensures optimal 

feature interaction across scales while maintaining 

computational efficiency. 

This study presents a comprehensive industrial visual 

information extraction system for two core tasks: water 

level detection and encoding recognition. For water level 

detection, a multi-scale feature fusion algorithm 

effectively integrates DLM and DL. For encoding 

recognition, a two-stage framework utilizes Darknet-19 

for localization, followed by a dedicated classifier. To 

address real-time deployment challenges, a DSC 

optimization scheme with channel rearrangement 

significantly reduces computational complexity. 

Supported by data augmentation and lightweight 

techniques, the solution demonstrates strong task 

adaptability, environmental robustness, and edge 

efficiency. For reproducibility, the Adam optimizer 

(β₁=0.9, β₂=0.999) is used with a batch size of 32, initial 

learning rate of 0.001, and cosine annealing (reduced by 

0.1 every 50 epochs) over 300 rounds. Key 

hyperparameters include weight decay (0.0005), 

momentum (0.9), and loss weights α=0.6 (water level) and 

β=0.4 (encoding). All experiments run on a 4×NVIDIA 

RTX 8000 GPU setup with one-click Docker deployment. 

3 Results 

3.1 Performance verification experiment 

The experiment conducts a comparative study on 

industrial water level detection tasks in the hardware 

environment of Intel Xeon Gold 6248R processor and 

NVIDIA RTX 8000 graphics card. The experimental 

dataset comprises 4,000 industrial water level images with 

reflection and wave interference under diverse lighting 

conditions, partitioned into 3,200 training and 800 test 

samples (80-20 split). For encoding recognition, 10,000 

samples from a hexagonal nut dataset are equally divided 

between cargo and vehicle codes (5,000 each), following 

the same 80-20 training-testing ratio. To enhance model 

robustness, data augmentation strategies are implemented 

including geometric transformations (horizontal flipping 

at 0.5 probability, ±15° rotation, 0.8-1.2 scaling) and color 

space manipulations, all applied synchronously to images 

and ground truth bounding boxes using coordinate 

transformation formulas from Equation (6). The datasets 

are available upon request for research purposes, and 

focus on comparing the performance differences of five 
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algorithms: SIFT feature matching, PSO-Otsu 

Thresholding (PSO-Otsu), SVM classification, traditional 

edge detection, and an optimized information extraction 

algorithm. Through a systematic evaluation of four core 

indicators, namely Pixel-level Accuracy (PA), water level 

positioning error, Peak Signal-To-Noise Ratio (PSNR), 

and single frame processing delay, the comparative results 

are shown in Fig.6. 
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Figure 6: Comprehensive evaluation of quality and efficiency. 
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Figure 7: Multi-dimensional performance comparison of industrial character recognition model. 

Fig.6 demonstrates the superior performance of the 

proposed method across key metrics. In Fig.6(a), it 

achieves a leading 97% PA with a minimal 5 mm 

positioning error, significantly outperforming other 

algorithms. The model excels in both tasks, with high 

water level detection accuracy (0.95 IoU, 0.98 mAP) and 

encoding recognition rates (98% for cargo, 96% for 

vehicle), while a confusion matrix (Table 4) reveals 

minimal misclassification. Fig.6(b) shows the algorithm 

maintains a high PSNR of 34 dB and a low latency of 25 

ms, confirming its comprehensive advantages in image 

quality and real-time processing for industrial scenarios. 

To rigorously validate industrial coding recognition 

robustness, the experiment utilized an expanded dataset of 

10,000 samples. This dataset incorporated simulated real-

world challenges through ±15° rotations and contrast 

adjustments [0.8, 1.2]. The proposed Darknet-19 scheme 

was benchmarked against FLANN+SURF, YOLOv5, 

Faster R-CNN, and Xception using a multi-faceted 

evaluation system measuring Character Recognition Rate 

(CRR), False Positive Rate (FPR), Structural Similarity 

Index (SSIM), and model parameters. The experimental 

results are shown in Fig.7. 
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Fig.7 presents a multi-dimensional performance 

comparison, demonstrating the superiority of the 

improved Darknet-19 model. As shown in Fig.7(a), the 

proposed method achieves a leading CRR of 97% while 

maintaining a low FPR below 5%, outperforming 

YOLOv5 (95% CRR, 7% FPR). Concurrently, Fig.7(b) 

highlights the model's efficiency, with a compact 

parameter size of 12MB and an inference delay of 25ms, 

while achieving a high SSIM of 0.91. This balance 

between a lightweight architecture and high recognition 

accuracy validates the improved Darknet-19 as an optimal 

solution for industrial-grade character recognition tasks. 

To quantify the specific contribution of DSC to the overall 

performance, an ablation study is conducted comparing 

the proposed DSC-modified Darknet-19 with a baseline 

version using standard convolutional layers. The 

experimental results are shown in Table 2. 

Table 2 shows that replacing standard convolutions 

with depthwise separable versions drastically improves 

efficiency: model size is compressed by 62.9% to 4.3MB, 

computational load droppes 37.5%, and latency is reduced 

by 34.2% to 25 ms. Although CRR only decreases slightly 

by 0.6%, the results confirme the optimal balance between 

efficiency and maintaining industrial deployment 

accuracy. An extensive ablation study is conducted to 

rigorously quantify the individual contributions of the 

proposed architectural components: multi-scale feature 

fusion, DSC, and channel rearrangement. The baseline 

model (Model A) employs standard convolution and 

single-scale features. Subsequent models incrementally 

integrate multi-scale fusion (Model B), DSC (Model C), 

channel shuffling (Model D, and the full proposed model). 

The evaluation on the water level detection task results are 

summarized in Table 3. 

Table 2: Ablation study: DSC vs standard convolution performance comparison. 

Metric Standard Conv Baseline DSC-Modified Improvement 

Model Size 11.6MB 4.3 MB -62.9% 

Computational Load 400 GFLOPs 250 GFLOPs -37.5% 

CRR 97.8% 97.2% -0.6% 

Inference Latency 38 ms 25 ms -34.2% 

Memory Usage 520 MB 300 MB -42.3% 

 

Table 3: Ablation study of key architectural components. 

Model 
Multi-Scale 
Fusion 

DSC 
Channel 
Shuffling 

PA (%) 
Positioning 
Error (mm) 

Model Size 
(MB) 

Latency (ms) 

A × × × 91.2 8.5 11.6 38 

B √ × × 94.5 6.8 11.8 41 

C √ √ × 96.1 5.9 5.2 29 

D (Proposed) √ √ √ 97.0 5.0 4.3 25 
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Figure 8: 4D comparison of parameter quantity-performance relationship of DL model. 

Table 3 clearly quantifies the incremental benefits of 

each architectural component. The addition of Model B 

alone boostes PA by 3.3% and reduces positioning error 

by 1.7 mm. Replacing standard convolutions with DSC 

(Model C) drastically improves efficiency, slashing model 

size by 56% and latency by 29%, while further increasing 

accuracy. Finally, incorporating channel rearrangement 

(Model D) yields the optimal model, achieving the best 

performance (97.0% PA, 5.0 mm error) with the smallest 

size (4.3MB) and lowest latency (25 ms). This ablation 

study confirms that multi-scale fusion improves accuracy, 

DSC improves efficiency, and channel transformation 

optimizes both, ultimately achieving excellent 

performance of the complete model. To verify the 

performance advantages of research networks in terms of 

computational efficiency, three representative 

architectures are selected for comparison: MobileNet 

Version 3 (MobileNetV3), Faster R-CNN, and Raw 

Darknet-19. The design of the evaluation system covers 

three key dimensions: throughput, GPU memory usage, 

edge latency, and computational complexity. The input 

resolution is fixed at 512×512 to unify the testing 

conditions, as shown in Fig.8. 

Fig.8 presents a 4D performance comparison, 

demonstrating the superior efficiency of the improved 

Darknet-19. The model achieves a leading balance of 30 

FPS and 250 GFLOPs at 25M parameters, significantly 

outperforming comparative architectures. Specifically, 

Fig. 8(a) shows the improved Darknet-19 attains 30 FPS, 

doubling the speed of MobileNetV3 (15 FPS) and 

surpassing Faster R-CNN (25 FPS). Fig.8(b) indicates a 

memory usage of 300MB, a 100MB reduction compared 

to Faster R-CNN. Fig.8(c) reveals an edge latency of 25 

ms, superior to MobileNetV3's 50 ms and Faster R-CNN's 

40 ms. Fig.8(d) demonstrates a computational cost of 250 

GFLOPs, which is 37.5% lower than Faster R-CNN. This 

comprehensive advantage across all metrics validates its 

industrial deployment strengths. To further assess 

generalization, 5-fold cross-validation on 4,000 water 

level images yields a consistent accuracy range of 95.2%-

97.8% (SD ± 1.1%). External testing on a public dataset 

with 2,000 images confirms robust cross-scenario 

stability, maintaining 94.5% pixel-level accuracy and 6 

mm positioning error on unseen samples. 

3.2 Scene verification experiment 

To verify the robustness of the proposed multi-scale 

photometric transformation strategy in extreme industrial 

lighting environments, this experiment uses Basler ace 

acA2000-50gc industrial camera to collect three typical 

industrial scene data: strong reflective water surface, low 

illumination coding area, and dynamic shadow 

interference. The comparative methods cover four classic 

lighting processing methods: traditional color constancy 

theory, histogram equalization, Contrast Limited Adaptive 

Histogram Equalization (CLAHE) algorithm, and Retina 

Cortex (Retinex) Theory. The validation indicators 

consider both physical properties and visual quality: Light 

Invariance Index (LII), Dynamic Range Retention Rate 
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(DRR), SURF, SNR, and color distortion, as shown in 

Table 4. 

Table 4 demonstrates the superior performance of the 

multi-scale photometric transformation strategy across all 

evaluated metrics. The method achieves a leading LII of 

0.93, a 14.8% improvement over the Retinex method, and 

a DRR of 94.3%, surpassing CLAHE by 9.1%. It also 

attains a 91.7% feature matching rate (8.3% higher than 

comparative methods), an 8.7 dB SNR improvement for 

noise suppression, and excellent color fidelity with a ΔE 

of 3.2. By excelling in all five core indicators, the strategy 

effectively resolves lighting interference issues in 

industrial detection scenarios. The term "task decoupling" 

is defined as separating public feature extraction from 

task-specific processing via a hard parameter-sharing 

architecture, mathematically formulated as ( )
sharedF I=  

and ( )task task sharedY F=  .   is the shared encoder and 

task  is the task-specific decoder. Resource Sharing 

Efficiency (RSE) is quantified by the protocol: 

, ,1

max

1

N

i shared i alonei
L L

RSE
N L

=
−

= −



, where 

,i sharedL  and 

,i aloneL  denote the loss of task under multi-task and 

independent training, respectively, and 
maxL  is a 

normalization factor. The computational efficiency of 

three multi-task schemes, independently trained models, 

traditional MTL, and the proposed decoupling 

architecture, is evaluated on an NVIDIA Jetson AGX 

Xavier platform using a mixed dataset. Key performance 

dimensions, including Multi-Task Interference (MTI), 

RSE, and Memory Growth Rate (MGR), are assessed, 

with results detailed in Fig.9. 

Table 4: Performance comparison of illumination processing algorithms. 

Evaluation dimension Test index 
Color 

constancy 

Histogram 

equalization 
CLAHE Retinex 

Multi-scale 
photometric 

transformation 

strategy 

Illumination stability L index (0-1) 0.68 0.72 0.75 0.81 0.93 

Detail reservation DRR/% 82.4 78.6 85.2 88.7 94.3 

Characteristic-induced 
SURF matching 

repetition rate /% 
71.5 65.8 76.2 83.4 91.7 

Noise suppression SNR/dB 4.2 3.8 5.1 6.3 8.7 

Color fidelity ΔE 6.8 8.2 5.7 4.9 3.2 
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Figure 9: Comparison of dynamic evolution of key indicators in MTL. 

Table 5: Comparison of test results of edge deployment in extreme environment. 

Evaluation dimension Test index 
Original Darknet-

19 

TensorRT-optimized 

edition 

Lightweight 

scheme 

Temperature stability ΔT fluctuation range/℃ ±5.1 ±3.8 ±2.3 

Resistance to mechanical 
vibration 

Fault tolerance rate 82.4% 89.7% 95.3% 



Multi-Task Visual Information Extraction in Industrial… Informatica 49 (2025) 257–270 267 

 

Electromagnetic compatibility Immunity (EMI/dB) 5.2 4.1 2.8 

Computational efficiency Calculated density (GMACs/mm²) 0.37 0.89 1.26 

Long term stability 72h failure rate 1.7% 0.6% 0.09% 

Model compression Storage volume (MB) 11.6 6.2 4.3 

 

Fig.9 demonstrates the superior performance of the 

proposed decoupling architecture across all multi-task 

evaluation metrics. As illustrated, the architecture 

achieves minimal MTI of 0.12, representing a 76.9% 

reduction compared to traditional methods. It also attains 

89.3% RSE, a 23.2% improvement, while optimizing 

MGR to +62% (70.5% better than traditional MTL). The 

architecture achieves 8.4 ms task switching latency, 

reducing delay by 70.6% while maintaining stable 

performance under industrial multi-tasking conditions. 

Subsequently, the edge computing reliability of the 

lightweight scheme is verified under extreme industrial 

conditions. Testing is conducted on a Raspberry Pi 4B 

platform within an environmental chamber (-20°C to 

60°C), simulating harsh industrial scenarios including 

electromagnetic interference and mechanical vibration. 

The proposed scheme is compared against original 

Darknet-19, Tensor Runtime, and Tensor RT 

implementations to assess its robustness in challenging 

deployment environments. The reliability test is deployed 

on a Raspberry Pi 4B. It subjects the system to extreme 

environmental stresses, including temperature cycling (-

20 ℃ to 60 ℃), mechanical vibration (10-500 Hz), and 

electromagnetic interference (10 V/m). Over a 72-hour 

continuous run, key metrics including CPU utilization, 

memory usage, inference latency, and system crash 

counts, are monitored. The system is deemed fault-tolerant 

if it experiences ≤2 crashes with auto-recovery under 30 

seconds. The failure rate is calculated as (crashes / total 

runtime) × 100%. The benchmark models are Faster R-

CNN and Xception. The validation indicators include 

temperature stability, vibration fault tolerance, 

electromagnetic immunity, computational density, and 72-

hour continuous operation failure rate, as shown in Table 

5. 

In Table 5, temperature fluctuations are controlled at 

± 2.3 ℃, a decrease of 54.9% compared to the original 

Darknet-19. The vibration fault tolerance rate reaches 

95.3%, an increase of 15.6%. The electromagnetic 

immunity is 2.8 dB, with a decrease of 46.2%. In terms of 

computational efficiency, DSC achieves a computational 

density of 1.26 GMACs/mm2, which is 41.6% higher than 

TensorRT. The model volume is compressed to 4.3 MB, a 

decrease of 62.9%. Model compression employs a three-

step pipeline: channel pruning first eliminates 30% of 

parameters, INT8 quantization then reduces weight 

precision from FP32 (75% storage saving), and Huffman 

coding provides final lossless compression. The overall 

ratio is calculated as: Final Size = Original Size × (1 - 0.3) 

× (8/32) × Huffman Ratio. Long-term operation testing 

shows that the 72-hour failure rate is only 0.09%, a 

decrease of 94.7% compared to the benchmark. The 

lightweight solution provides key technical support for 

industrial edge deployment. 

4 Discussion 
This study demonstrates that the proposed method 

achieves significant performance improvements over 

baseline approaches, with a 12% higher PA (97% vs. 85%) 

compared to SIFT/PSO-Otsu. These advantages are 

attributed to three key innovations: (1) DSCs reduce 

computational complexity by 37.5% while maintaining 

feature extraction capability; (2) Channel rearrangement 

compresses the model size to 4.3MB without sacrificing 

accuracy; (3) Multi-scale photometric transformation 

enhances lighting robustness, achieving a 0.93 LII versus 

0.78–0.85 for traditional methods. The design involves a 

trade-off of a 62% memory usage increase for substantial 

gains in accuracy and real-time performance (25 ms 

latency). However, the method has limitations. It depends 

on manual reference scale calibration for water level 

detection, and its performance may degrade under extreme 

occlusion (>70% surface coverage) or in high-reflectivity 

environments where water surface features become 

indistinguishable. These scenarios represent potential 

failure cases, necessitating supplementary solutions like 

polarization filters or sensor fusion in practical 

deployments. 

5 Conclusion 
This work successfully addresses the trade-off between 

traditional methods' poor generalization and DL models' 

high computational complexity in industrial vision tasks. 

By integrating a modified Darknet-19 backbone with 

multi-scale feature fusion, DSC, and channel 

rearrangement, the proposed two-stage framework 

achieves an optimal balance between accuracy and 

efficiency. Experimental results validated its 

effectiveness: 97% PA and 5 mm positioning error in 

water level detection, 97% CRR with 5% FPR in encoding 

recognition, and robust multi-task performance with 

minimal interference (0.12 MTI). The system also 

exhibited exceptional environmental adaptability (0.93 

LII, 94.3% DRR, 8.7 dB SNR improvement) and reliable 

edge deployment capabilities, achieving a computational 

density of 1.26 GMACs/mm2, a 72-hour failure rate 

below 0.1%, and stable temperature fluctuation control 

within ±2.3 °C. 
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