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Multimodal emotion recognition (MER) requires effective fusion and temporal synchronization of
heterogeneous cues, yet existing approaches often suffer from weak emotional audio representations and
cross-modal misa-lignment. To address these challenges, we propose ESVA, a unified framework that
enhances multimodal emotion understanding through multi-scale audio feature extraction and cross-
modal temporal alignment. Specifically, the audio stream is encoded using HUBERT, augmented with a
trainable post-processing module — the Multi-Scale Feature Extraction (MSFE) layer — to refine
emotional cues across multiple temporal res-olutions. On top of this, ESVA integrates a cross-modal
synchronization module that jointly minimizes local distance and maximizes global correlation to align
audio and video features in time. The entire model is op-timized using self-supervised contrastive learning
to strengthen inter-modal consistency, while LoRA-based fine-tuning enables efficient adaptation of large
pretrained encoders to the emotion recognition domain. Ex-tensive experiments across three benchmark
datasets validate the effectiveness of our approach: ESVA achieves 0.9074 F1 on MER2023, 0.8956 F1
on MER2024, and consistently outperforms baselines on EMER in both clue overlap and label overlap
metrics. These results confirm that combining HUBERT with the MSFE layer, contrastive alignment, and
parameter-efficient fine-tuning yields substantial improvements in both ac-curacy and cross-modal
temporal coherence for real-world emotion recognition scenarios.

Povzetek: Studija predstavi ESVA, enotni okvir za ve¢modalno prepoznavo custev, ki z HuBERT+MSFE
izboljsa zvocne znacilke ter z LoRA prilagoditvijo ucinkovito prenese vnaprej naucene kodirnike na
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domeno custev.

1 Introduction

Emotion recognition (ER) is a key technology for
automatically identifying, judging, and classifying human
emotional states through computers [1]. In recent years,
ER technology has been widely used in many fields,
including mental health testing in smart healthcare [2],
classroom emotional feedback in smart education [3], and
personalized interaction with virtual assistants [4]. Unlike
traditional rule matching and static text classification
methods, emotion recognition not only focuses on
semantic information, but also integrates non-semantic
information such as speech rhythm features, facial micro-
expression features, and eye movement trajectories to
complete multi-granular modeling and dynamic reasoning
of emotions. Single-modality ER is limited; multimodal
fusion of audio, video and text exploits their
complementary cues to overcome noise, ambiguity and
missing data, yielding deeper and more robust emotion
recognition [5].

Multimodal Large Language Models (MLLMs),
represented by models such as Flamingo [6], MiniGPT-
4[7], and GPT-4V [8], have made great progress in cross-

modal reasoning and generation tasks, demonstrating
excellent semantic understanding and expression
capabilities. MLLMs successfully construct a unified
representation space that aligns semantics with
information from various modalities by pre-training on
large-scale data such as images, text, audio, and video, and
demonstrate excellent performance in cross-modal
reasoning and generation tasks. The recently proposed
Emotion-LLaMA [9] model further expands the
application scope of MLLMs. By combining audio and
video front-ends with the LLaMA model, which achieves
a leap from predicting discrete emotion labels to
generating natural language emotion interpretations,
improving the ability of emotion recognition models in
real, complex, and open scenarios.

Despite the great achievements of the above research,
the existing multimodal emotion recognition task still
faces two key challenges that urgently need to be
overcome: Firstly, the limitations of extracting weak
emotional signals from audio modalities. Many important
emotional information is not reflected in the explicit
speech content, but is hidden in the "prosodic features"
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that are not in the speech category. Current mainstream
emotion recognition systems usually use models such as
Whisper [10], Wav2Vec2.0[11] and HUBERT [12] as
common audio encoders for pre-training speech
recognition tasks. The optimization goal of these encoder
models is mainly to recognize the text content of speech.
They are insufficient in effectively capturing fine-grained
acoustic features closely related to emotional expression,
such as fundamental frequency jitter, spectral tilt, and
short-term energy fluctuations. This results in the model's
limited ability to recognize implicit or subtle emotional
fluctuations. Secondly, there is a lack of effective cross-
modal dynamic time series alignment mechanism.
Emotions evolve over time, and their expression depends
on the co-evolution of multimodal signals in the time
dimension. Most of the current multimodal models use
early splicing, late fusion, or attention-based fusion. These
methods usually perform fusion at a static or coarse-
grained level, and are difficult to capture the fine-grained
temporal alignment relationship and dynamic causal
dependency between modalities.

To this end, this paper proposes the Emotion-Sync-
Video-Audio (ESVA) framework to address the above
challenges through the following innovations: based on
the frozen HUBERT parameters, a lightweight multi-scale
convolution and self-supervised contrastive learning
module is designed to significantly enhance the ability to
extract weak acoustic emotion cues and we call it multi-
scale feature extraction (MSFE); an audio and video
alignment combining local distance measurement and
global cross-correlation is proposed to achieve high-
precision temporal synchronization of cross-modal
features; through LoRA fine-tuning LLaMA-2, the
enhanced audio features and aligned visual features are
mapped to a shared emotion semantic space, generating
accurate and interpretable emotion inference results.

Beyond benchmark evaluations, ESVA also holds
strong potential for real-world applications where
multimodal emotion understanding directly impacts
safety, health, and user experience. In healthcare, ESVA
can support emotion-aware patient monitoring systems by
integrating physiological audio cues (e.g., breathing
rhythm, tone variation) with visual signals, enabling early
detection of stress or depression. In education, ESVA
could assist adaptive learning systems by recognizing
student engagement or frustration from voice and facial
expressions, optimizing instructional feedback. In
intelligent transportation, ESVA may help detect driver
fatigue or agitation, contributing to active safety
interventions. To adapt ESVA for such practical scenarios,
the framework can be extended with adaptive control—
inspired mechanisms that dynamically adjust fusion
weights and alignment sensitivity under uncertain
conditions, such as sensor noise or missing modality input.
Drawing from optimal control theory, feedback-based
self-tuning can be introduced to maintain stability and
performance when input quality fluctuates. Moreover,
Bayesian or reinforcement-based adaptive strategies can
be incorporated to estimate uncertainty and re-weight
modalities accordingly, ensuring robust emotion inference
in noisy, incomplete, or nonstationary environments.
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These extensions will allow ESVA to evolve from
benchmark-oriented evaluation toward dependable, real-
world multimodal affective intelligence.

In summary, the main contributions of this paper are
as follows:

« An innovative audio feature enhancement
strategy is proposed. While keeping the encoder structure
frozen, it integrates multi-scale perception and self-
supervised learning mechanisms, significantly improving
the model's ability to model weak acoustic emotional
signals;

« An efficient audio and video dynamic alignment
is designed to solve the synchronization problem of
multimodal data streams in the time dimension and
enhance cross-modal collaborative reasoning capabilities;

+ A systematic evaluation is conducted on three
authoritative multimodal emotion recognition benchmark
datasets: MER2023, MER2024, and EMER. The
experimental results show that ESVA achieves excellent
performance in both emotion recognition and reasoning
tasks, fully verifying the effectiveness and cross-scenario
applicability of the proposed method.

2 Related work

2.1 Multimodal emotion recognition

Emotion recognition research has gradually shifted from
relying on a single information source to a multimodal
analysis method that integrates speech, vision, and text
[13]. This method effectively compensates for the
shortcomings of single-modal models such as audio
models [11,12,14], vision models [15,16,17], and text
models [18,19,20] in capturing complex emotions by
cross-validating and  supplementing each modal
information, and significantly improves the accuracy and
robustness of emotion perception. However, early
multimodal emotion recognition generally adopted
traditional machine learning methods such as random
forests and support vector machines (SVMs), which have
a strong dependence on artificially designed features.
With the rapid development of deep learning technology,
convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) have been widely used in
multimodal emotion recognition tasks. These deep
learning methods mainly achieve effective fusion of
different modal information through early fusion
strategies (directly splicing raw data) or late fusion
strategies (integration at the high-level semantic feature
level). Experimental results on the standard evaluation
dataset IEMOCAP [21] show that the performance of
multimodal fusion methods is significantly better than that
of single-modal methods. However, traditional
multimodal fusion methods still have shortcomings in
modeling temporal dynamic changes and handling noise
interference. This limitation restricts the generalization
ability of the model in practical application scenarios.
The multimodal large language model (MLLM)
achieves deeper cross-modal understanding and reasoning
capabilities by projecting the feature representations of
different modalities into a unified semantic space. In order
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to correctly understand the temporal events in video
sequences, the Video-LLaMA [22] and VideoChat [13]
models use pre-trained visual encoders (such as the CLIP
model), which are suitable for tasks such as video question
answering; the PandaGPT [23] model can simultaneously
process and integrate multiple heterogeneous modal
information such as images and audio, fully demonstrating
the technical potential of multi-source information fusion.
In terms of emotional computing, the Emotion-LLaMA
[9] model was the first to introduce MLLM technology in
emotion recognition tasks. By deeply integrating the
visual and audio front-end modules with the LLaMA
model, it uses natural language interpretation to replace
the traditional discrete emotion label classification
method. Currently, most existing multimodal language
model (MLLM) frameworks are mainly designed and
optimized for general multimodal tasks. However, in the
task of sentiment analysis, modeling the association of
instantaneous audiovisual events is one of the key
requirements, but existing frameworks still lack targeted
technical optimization in this regard.

2.2 Modality-specific representation
enhancement technology

To improve the model's ability to understand specific
modalities, researchers have proposed a variety of
enhancement schemes. In the field of audio processing,
models such as SALMONN [24] and Qwen-Audio [25]
integrate pre-trained audio encoders such as Whisper [10],
achieving significant performance improvements in tasks
such as speech translation and audio question answering.
In the field of emotion recognition, AffectGPT [26]
focuses on improving emotion understanding capabilities
and fine-tunes on MER-Caption data with emotion labels,
significantly enhancing the model's capabilities in
emotion recognition and emotional content generation.

However, existing audio encoders are mainly
designed for automatic speech recognition tasks, and the
extracted features focus on the accurate recognition of
speech content. Therefore, it is difficult to capture
prosodic features closely related to emotional expression,
such as changes in pitch contour, changes in speaking
speed and rhythm, sound quality characteristics and other
fine-grained acoustic information, and there are obvious
technical limitations.

2.3 Cross-modal temporal alignment

Emotional expression has the obvious characteristic of
dynamic evolution over time. In order to improve the
performance of emotion recognition, the multimodal
emotion recognition system needs to have the ability to
accurately process the timing matching between different
modalities, so as to effectively achieve cross-modal timing
alignment. Traditional sequence alignment methods
mainly rely on the dynamic time warping (DTW)
algorithm, but this algorithm has limitations such as high
computational complexity and low efficiency in
processing long sequences [27].
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With the development of deep learning, researchers
have proposed a variety of cross-modal alignment
methods based on neural networks. Models such as the
Cross-Modal Transformer based on the attention
mechanism improve the alignment effect of cross-modal
features by designing a cross-attention mechanism to learn
and associate the temporal correspondence between audio
and video events [11]. The Audio-Video Fusion [28]
model achieves the goal of audio and video
synchronization with sub-second accuracy based on the
fusion of cross-correlation analysis and the DTW
algorithm. In the research field of multimodal large
language models, the TimeChat [29] model significantly
improves the model's ability to understand the temporal
coherence of long video content by introducing a
dedicated temporal modeling module.

These cross-modal alignment methods have
effectively improved the causal reasoning capabilities of
multimodal emotion recognition, but they still have
certain limitations. Most existing methods use relatively
shallow feature fusion strategies, which are difficult to
effectively deal with noise interference and inter-modal
inconsistency problems in real environments. When faced
with emotional expressions in complex real-world
scenarios, these limitations will affect the coherence and
accuracy of emotional interpretation results, limiting the
promotion of multimodal emotion recognition in real-
world scenarios [30].

To address the above problems, this paper proposes
an ESVA framework model based on the improvement of
Emotion-LLaMA. On the basis of freezing the HUBERT
parameters, it designs lightweight multi-scale convolution
and self-supervised contrastive learning modules to
significantly enhance the ability to extract weak acoustic
emotion cues; it proposes an audio and video alignment
algorithm that combines local distance measurement and
global cross-correlation to achieve high-precision
temporal synchronization of cross-modal features;
through LoRA fine-tuning LLaMA-2, the enhanced audio
features and aligned visual features are mapped to a shared
emotion semantic space, generating accurate and
interpretable emotion inference results.

3 Multimodal emotion recognition
model EVSA

3.1 Emotion-llama model

The Emotion-LLaMA model integrates information from
three modalities: audio, visual, and text, integrating high-
level features extracted by each encoder to achieve
comprehensive multimodal emotion analysis. This model
uses HUBERT for audio encoding and incorporates
multiple visual encoders, including local, temporal, and
global encoders, to extract emotion-related features at
different levels. To achieve efficient multimodal
inference, Emotion-LLaMA also utilizes a linear
projection mechanism to map audio and visual features
into a shared vector space consistent with the textual cues.

However, the Emotion-LLaMA model still has two
shortcomings: first, it lacks the ability to extract multi-
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scale and weak audio emotion information; second, the
temporal synchronization accuracy between audio and
video is insufficient, resulting in reduced robustness and
generalization in dynamic and complex scenes. To address
these issues, this paper proposes an improved Emotion-
Sync-Video-Audio (ESVA) model framework based on
Emotion-LLaMA. By enhancing the audio encoder and
introducing an audio-video alignment algorithm, ESVA
not only better captures weak emation signals but also
significantly improves the temporal alignment of
multimodal data.

3.2 ESVA model architecture

The overall architecture of the proposed ESVA framework
is illustrated in Figure 1, which highlights the key modules
including HUBERT-based audio encoding, the MSFE
layer, and cross-modal temporal alignment. The specific
structure is as follows:

LLahAZ Lora

Lingar Linear

i

Algrment ¥ Alignment Linear

Temporal Local ! Gioal Prompt
C Fncoder Encoder | Encoder

VSPT

Tokenizer

Audio
Encader
L
i *

Audio Video Wideo Framepe,x

Figure 1: Overall architecture diagram of emotion-sync-
video-audio (ESVA) model.

Audio Module: HUBERT serves as the audio encoder
to extract latent representations. Subsequently, multi-scale
convolutional layers we called multi-scale feature
extraction (MSFE) are introduced to capture both short-
term details and long-term dependencies, and self-
supervised contrastive learning is used to enhance
sentiment differentiation. The processed audio vectors are
transformed into the same feature space as the text through
linear mapping and then concatenated with the subsequent
language model input.

Vision Module: To account for both static and
dynamic changes, three visual encoders are used: MAE
(local encoder), VideoMAE (temporal encoder), and EVA
(global encoder). Multi-scale convolution, linear
mapping, and alignment units are used to extract
keyframes and synchronize multimodal information,
thereby better understanding facial expressions,
movement changes, and context.

Text Module: Text is processed through word
segmentation and cue word templates to obtain language
features. These features, along with embeddings from
audio and video, are fed into the LLaMA2 backbone
network to enable cross-modal context modeling and
sentiment inference. Fusion and fine-tuning: The features
of the three modalities are deeply fused within LLaMAZ2;
a LoRA lightweight fine-tuning module is added at the
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output end to efficiently optimize the multimodal
sentiment analysis capabilities.

3.3 Audio encoder enhancement

In this section, we introduce the trainable post-processing
layer, which we call the Multi-Scale Feature Extraction
(MSFE) layer. This layer is designed to optimize the
extraction ability of multi-scale emotional audio features
by learning adaptive feature representations across
different temporal resolutions.

Audio emotions manifest themselves differently
across different timeframes: short-term fluctuations in
intonation, pauses, and energy reveal subtle emaotions,
while longer periods reflect context, speech rate, and
overall emotional direction. To fully capture cross-
temporal information, we constructed a multi-scale feature
extraction (MSFE) layer based on the audio features F,
generated by HUBERT:

Fy = ?’:1 w;-¢i(Fp) (1)

Here, ¢; represents convolution operations with
different receptive fields, w; represents the trainable
weights for different receptive fields, and N represents the
number of scales. MSFE learns emotional patterns at
different temporal granularities through parallel
convolution operations. This allows ESVA to focus on
local speech details while preserving overall emotional
trends, enhancing its ability to perceive and express
complex and dynamic emotional signals.
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Figure 2: Audio emotion recognition enhancement
module.

Furthermore, to address the common ambiguity and
mixed attributes found in real-world emotional signals
(e.g., "joy mixed with anxiety" and "anger mixed with
helplessness™). The detailed design of the Multi-Scale
Feature Extraction (MSFE) layer is shown in Figure 2,
where multiple convolutional branches capture emotional
cues at different temporal resolutions. Specifically, for
each audio sample, a positive sample (of the same emotion
category) and multiple negative samples (of different
emotion categories) are constructed, and training is
performed using the following contrastive loss function:
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exp (sim(Fy F1))
Yjexp (sim(Fl'q',FQ))

@)

Leontrast = —1

Here, F, represents samples with the same emotion as

the current audio F’, F; is a random negative sample, and
sim(-) represents feature similarity calculation. This
mechanism enables the model to automatically aggregate
audio features of the same category in the feature space,
widening the distribution distance between different
categories, thereby significantly enhancing the
discriminability and generalization of audio emotion
features.

3.4 Audio-video alignment

To achieve high-precision synchronization of cross-modal
emotional features in the temporal dimension, this paper
proposes an audio-video alignment algorithm based on
local-global joint optimization. After preprocessing the
original audio signal S,(t) and video frame sequence
Sy (t) through filtering, denoising, and normalization, a
deep neural network is used to extract the emotional
features of the corresponding modality. The feature
extraction function is defined as:

Fy=f(5.),F, = g(5,(t) ®)

Among them, f(+) and g(-) represent the audio and
video feature extraction modules respectively. The
extracted features F, and F, provide the basis for
subsequent alignment.

To capture fine-grained temporal dynamics, we
segment the preprocessed feature sequence using a fixed-
length time window At. Within each window, we extract
the corresponding audio and video feature segments F}
and F¢. By calculating the distance metric under the time
offset 7, we obtain the local optimal alignment
relationship:

Di(v) = ||[Fh(t) — Fy(t + o) (4)

The optimal local offset is determined by the value of
7 that minimizes D*(t) , thus ensuring that the two modes
are synchronized within each fine-grained window.

In order to further improve the global synchronization
of audio and video features, this paper introduces the
cross-correlation function to perform overall correlation
analysis on cross-modal features. The cross-modal
correlation function is defined as:

C(‘[) — ft0+T

to Fa(t) - Fy(t+ t)dt (5)

Among them, T is the integration interval, and the
optimal time offset T makes it reach the global maximum,
thereby revealing the intrinsic correlation between audio
and video emotional signals.

Combining the local and global alignment results, a
global optimization strategy is used to solve the final
alignment offset t*. The specific objective function is
constructed as:
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" = argmax,C(t) (6)

The structure of the proposed alignment network and
the formulation of the local/global loss are depicted in
Figure 3, which visualizes how the alignment offset T is
derived from the combined objectives. This mechanism
ensures precise alignment of emotional signals across the
entire time domain, laying the foundation for subsequent
multimodal fusion and emotion recognition, and
effectively improving the system's robustness and
generalization capabilities in complex dynamic scenarios.

to+T
c(r) =f Fa(t) - Fy(t + 7)dt
to
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& ]
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Figure 3: Audio video alignment algorithm.

3.5 Comprehensive loss function

To achieve the coordinated optimization of the audio
and video alignment module and the emotion classifier,
this paper designs the following comprehensive loss
function to jointly train the alignment error and the
emotion recognition error. The specific objective function
is as follows:

L= ‘Calign + ALono (1)

Here, Lg;;4, represents the loss term based on local
and global alignment errors, L,,,,represents the loss term
for the sentiment classification task, and A is a
hyperparameter that balances the two losses. Through
end-to-end joint optimization, the model effectively
improves the accuracy and robustness of sentiment
recognition while maintaining multimodal feature
synchronization.

Integrating the minimized local distance D, (Eq. 4)
and the maximized cross-correlation Cyopa (EQ. 5), we
define the overall alignment loss as

Lalign =a Dlocal (T) - B Cglobal (T) (8)
where aand Scontrol the relative contributions of local
and global terms. The optimal synchronization offset is

thus obtained by

T° = arg min Ly, (7) 9)

This combined formulation captures both local fine-
scale feature similarity and global temporal consistency,
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and serves as the alignment component in the overall loss
L = Lyjign + ALemodescribed above.

4 Experiments and results analysis
4.1 Pre-training

41.1 Datasets

This work uses the MERR [31] (Multimodal Emotion
Recognition and Reasoning) dataset for pre-training. This
dataset is collected from real-world scenarios such as
interviews, speeches, and film clips, and contains 33,105
valid samples, each of which provides strictly aligned
trimodal raw data. The dataset not only provides 28,618
coarse-grained annotations, which mark the entire
utterance with a dominant emotion category (covering
nine basic categories: happiness, sadness, anger, surprise,
fear, disgust, neutrality, suspicion, and contempt), but also
provides 4,487 fine-grained annotations, which depict
complex emotions, the process of emotion transfer, and
the level of emotion intensity.

4.1.2 Instruction tuning

Based on the MERR dataset, this paper fine-tuned the pre-
trained model using the emotion recognition and emotion
inference instruction sets from the Emotion-LLaMA
model to further improve the accuracy and F1 score of
speech emotion recognition. Fine-tuning training was
performed in parallel on eight NVIDIA V100 GPUs. The
training environment was configured with Python 3.9,
integrated with PyTorch 2.0.0, Transformers 4.30.0,
Accelerate 0.20.3, BitsAndBytes 0.37.0, and the NCCL
backend to maximize multi-GPU communication
bandwidth and ensure efficient and stable training.

Through pre-training, the model's performance on
emotion recognition and emotion inference tasks was
significantly improved, laying the foundation for
subsequent experimental validation.

4.2 Experimental verification

To fully validate the generalization and robustness of the
ESVA model in multimodal emotion recognition tasks,
this paper conducted systematic experiments on three
mainstream multimodal emotion recognition datasets:
MER2023, EMER, and MER2024. These datasets and
corresponding  experimental ~ configurations  are
summarized in Table 1, providing the sample distribution,
modality composition, and label balance for each
benchmark. By comparing performance with various
mainstream  models, we demonstrated improved
performance of ESVA in various scenarios and further
explored the model's performance and applicability in
complex tasks.

Table 1: Experimental datasets.
Tasks

Scale / Subset
5030 labeled .
73148 unlaeled (Multi-label

Train&\Val X classification,

Datasets

MER2023 [32]
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MULTI . NOISEsemi-supervised,
. SEMI) noise robust
Explainable
EMER [33] 332 Samples Emotional
Reasoning
115595 Samples (open, semi-
MER2024 [34] [SEMI. NOISE. supervision,
oV) robustness

421 MER2023 multimodal emotion

recognition results

The MER2023 Challenge dataset [35] is primarily used
for research on multi-label learning, noise robustness, and
semi-supervised learning in  multimodal emotion
recognition. The dataset is collected from video clips of
movies and TV series collected on the Internet, providing
5,030 labeled samples and 73,148 unlabeled samples,
including strictly aligned audio, video, and some text
modalities. A multi-label system is used for emotion
annotation, introducing challenging scenarios such as
background human voices and device noise. The dataset
uses Macro F1-Score as the core evaluation metric.

Table 2: Comparison with other models on MER2023
dataset.

Model Modality F1 score
Wav2vec 2.0 [11] |A 0.4028
VGGish [14] A 0.5481
HUBERT

[12]Error! 0.8511
Reference  source

not found.

ResNet [15] v 0.4132
MAE [16] v 0.5547
VideoMAE [17] VM 0.6068
RoBERTa[18] [T 0.4061
BERT [19] T 0.4360
MacBERT [20] [T 0.4632
MER2023Baseline

[32] AV 0.8675
MER2023-

Baseline [32] AVT 0.8640
Transformer [35] |AV,T 0.8853
FBP [36] AV, T 0.8855
VAT [20] AV 0.8911
[Egr]notlon-LLaMA AV 0.8905
[Egr]notlon-LLaMA AV.T 0.9036
ESVA (ours) AV, T 0.9074

Quantitative results on MER2023 are presented in
Table 2, and the per-class performance distribution is
illustrated in Figure 4, showing that ESVA improves
recognition consistency across emotion categories. The
models in this table include unimodal models, such as
those with speech (A), vision (V), and text (T); and
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multimodal models, including those with speech + vision
(A, V) and speech + vision + text (A, V, T). The confusion
matrix of the ESVA model on the MER2023 dataset is
shown in Figure 4. Experiments show that, among
unimodal models, the audio model HUBERT leads with an
F1 score of 0.8511, significantly outperforming the video
model VideoMAE (0.6068) and the text model MacBERT
(0.4632), highlighting the discriminative advantages of
acoustic features. However, when comparing unimodal
models to multimodal models, their performance is
insufficient.  Multimodal  fusion models achieve
breakthrough  performance through  cross-modal
complementarity. Large multimodal models, such as the
MER2023-Baseline, outperform large unimodal models.
The subsequent Transformer multimodal model and the
FBP multimodal model both achieved F1 scores
exceeding 0.88. The VAT and Emotion-LLaMA models
even outperformed these models. This is because these
models deeply integrate multimodal features, significantly
improving their performance. The ESVA model in this
work further improves the performance of the audio
modality based on the Emotion-LLaMA model, while
effectively aligning features between the audio and visual
models. This results in an F1 score that is 0.42 percentage
points higher than the Emotion-LLaMA model.
MER2023 dataset

neutral QEkMdem 2.00 1.00 2.00 2.00 1.00 80
3.00 gEXeem 1.00 3.00 3.00 2.00

anger

T 608
2 happiness  1.00  1.00 2.00 2.00 4.00 g
o 5]
E sadness  2.00 3.00 2.00 4.00 2.00 - 40 é
]
worry  2.00 2.00 1.00 3.00 3.00 L 20 =
surprise  1.00 2.00 3.00 2.00 2.00
© @ 9 I z 3
= 2 £ £ 5§ &
T
Pré:d\cted label
Figure 4: Emotion recognition confusion matrix for
ESVA in MER2023 dataset.
4.2.2 EMER dataset
The EMER (Explainable Multimodal Emotion

Reasoning) dataset [36] specifically addresses the issues
of ambiguous labels and difficult-to-explain reasoning in
traditional emotion recognition. It requires the model to
not only give emotional judgments but also explain them
in natural language. EMER randomly selected 332 non-
neutral emotion clips from MER2023, including three
modalities: video, audio, and text. The annotation process
is divided into four steps: three annotators independently
annotate; ChatGPT summarizes the results; then open
emotion label inference is performed; and finally, expert
review is performed. The double annotations obtained in
this way not only include emotion categories, but also
reasoning basis, and record facial micro-expressions,
voice rhythm, and contextual details. It is currently an
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important tool for testing multimodal emotion reasoning
capabilities.

The evaluation uses two metrics: clue overlap and
label overlap. Both are scored on a 010 scale and quantify
the model's ability to reason about emotional causality.
Clue overlap assesses whether the model's reasoning
matches the semantics of the ground truth, while label
overlap compares the model's predicted emotional labels
with those manually labeled.

Table 3: Comparison with other models on EMER dataset.

Model Clue Overlap Label Overlap
VideoChat-Text

[13] 6.42 3.94
Video-LLaMA

[22] 6.64 4.89
\Video-ChatGPT

[38] 6.95 5.74
PandaGPT [23] [7.14 5.51
'VideoChat-

Embed [13] 7.15 5.65
\Valley [39] 7.24 5.77
[Egr]notlon-LLaMA 7 83 625
ESVA (ours) 7.89 6.28

Table 3 summarizes the results on MER2024, where
ESVA continues to outperform the baselines in both F1
and accuracy metrics. Evaluations show that the general
multimodal model Video-ChatGPT only achieved 6.95
and 5.74 points in cue overlap and label matching,
respectively. The knowledge-enhanced model PandaGPT
improved these scores to 7.14 and 5.51, respectively, but
still failed to surpass the benchmarks of 7.83 and 6.25
established by the specialized sentiment model Emotion-
LLaMA. The ESVA model proposed in this study
performed the best among all algorithms, achieving 7.89
points in cue overlap and 6.28 points in label matching.
The cue generation quality improved by 0.76 percentage
points compared to the Emotion-LLaMA model, and the
label matching accuracy increased by 0.48 percentage
points. The leading increase in cue quality was
significantly higher than that in label matching, validating
the core contribution of the cross-modal temporal
alignment mechanism to enhanced interpretability.

423 MER2024 dataset

The MER2024 Challenge dataset [37] adds the task of
open vocabulary multimodal emotion recognition (MER-
OV) based on the MER2023 dataset. This dataset is
derived from movies, TV series, and social media videos
and contains 115,595 samples, covering data from
multiple modalities such as video, speech, facial motion
capture, and text transcription. The evaluation metrics
include the predicted label accuracy, the true label recall,
and the average value.
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Table 4: Comparison with other models on the MER2024

dataset.

Accuracys [Recalls AVG
Model % % %
Empty 0 0 0
Random 13.42 24.85 19.13
Ground Truth [93.37 52.51 72.94
Valley [39] 20.16 13.26 16.71
Otter [40] 29.64 23.04 26.34
PandaGPT [23] [35.75 31.57 33.66
E;'geo"-'-aMA 31.08 32,26 31.67
\VideoChat [13] 43.17 44,92 44.05
\VideoChat? [41]46.91 34.78 40.85
Eggeo'ChatGPT%.zo 39.33 1277
SALMONN [24]42.20 44,75 43.47
Qwen-Audio
25] 55.12 32.91 44.02
[QE]LUG'OW' 44.80 46.54 45.67
AffectGPT [26] 166.14 46.56 56.35
GPT-4V [43] [56.19 58.97 57.58
Emotion-
LLaMA [9] 69.61 62.59 66.10
ESVA (ours) 70.08 62.49 66.29

The EMER dataset results are reported in Table 4,
which confirms ESVA’s robustness under noisy and
imbalanced multimodal conditions. Table 4 compares the
performance of different models on the MER2024 open
vocabulary sentiment recognition task. Figure 5 shows the
confusion matrix of the ESVA model on the MER2024
dataset. This task requires the model to freely generate any
number of sentiment labels to describe complex
psychological states. Evaluation is based on three metrics:
the predicted label exact match rate, the true label recall
rate, and their combined mean. Experiments show that
general large models such as GPT-4V only reach an
overall average of 57.58%, the professional voice model
Qwen-Audio is 44.02%, and the professional emotion
model Emotion-LLaMA establishes the original optimal
level with an exact match rate of 69.61% and an overall
average of 66.10%; the ESVA model proposed in this
study has an exact match rate of 70.08%, becoming the
first model to break the 70% accuracy rate. Its overall
average of 66.29% is also ahead of other models.
Although the recall rate of 62.49% is slightly lower than
that of Emotion-LLaMA by 0.10 percentage points, the
significant advantage of 0.47 percentage points in
accuracy ultimately pushes the overall performance to
exceed 0.19 percentage points, which is 15.31 percentage
points higher than the overall average of the general large
model GPT-4V, verifying the cross-modal architecture's
ability to accurately portray open emotional descriptions.
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Figure 5: Emotion recognition confusion matrix for
ESVA in MER2024 Dataset.

4.3 Ablation study

To verify the contribution of each component in the ESVA
model to performance, we conducted ablation experiments
on the MERR dataset. The experimental results are shown
in Tables 5 and 6.

Table 5 shows the impact of different audio and visual
encoders on model performance. The comparison of audio
encoders shows that the HUBERT model achieves the best
performance, with an F1-Score of 0.8394, significantly
outperforming Wav2Vec, VGGish, and Whisper. The
comparison of visual encoders shows that VideoMAE
performs best, with an F1-Score of 0.6762, exceeding
MAE (0.6366) and EVA (0.6635). When combining
multiple visual encoders, the combination of MAE,
VideoMAE, and EVA achieves the best visual encoding
F1-Score, with an F1-Score of 0.7122. This demonstrates
that multimodal fusion can effectively improve overall
emotion recognition capabilities.

Table 5: Ablation experiments of different encoders.

IAudio Encoder  Video Encoder F1-Score
Wav2Vec - 0.4893
VGGish - 0.5944
\Whisper - 0.5324
HUBERT - 0.8394
MAE 0.6366
\VideoMAE 0.6762
EVA 0.6635
MAE,VideoMAE,EVA0.7122
HUBERT MAE 0.8800
HUBERT VideoMAE 0.8757
HUBERT MAE,VideoMAE 0.8880
HUBERT MAE,EVA 0.8896
HUBERT \VideoMAE,EVA 0.8802
HUBERT MAE,VideoMAE,EVVA0.8910
MSFE-HUBERT |[MAE,VideoMAE,EVA/0.8911
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Because the HUBERT model achieved the best
performance in the audio encoder category, the overall
model performance was further improved by fixing the
audio encoder and combining different visual encoders.
The F1-Score of HUBERT plus MAE was 0.8800,
exceeding the F1-Score of the HUBERT model alone,
demonstrating the effectiveness of the multimodal model
combination. After fusing multiple visual encoders, the
F1-Score improved to 0.8910, demonstrating the
significant advantages of multimodal information
complementarity, which effectively improves the model's
ability to recognize emation.

To further improve model performance, we
introduced multi-scale convolutional layer optimization
into the model. This resulted in a slight improvement in
model performance, with the F1-Score increasing from
0.8910 to 0.8911. This indicates that the performance
ceiling of the model has been reached through encoder
modifications alone. Therefore, we proposed an audio-
video alignment module to further improve model
performance.

In order to further compare the performance
contributions of the two different algorithms proposed in
this paper, corresponding ablation experiments were
conducted, namely, comparing three different
implementations of the ESVA model and its variants, as
well as the baseline model Emotion-LLaMA.

Table 6: Ablation experiment results.

Model F1-Score Relative  descent
rate

ESVA 0.8956 -0

ESVA w/o MSFE [0.8943 -0.14%

E_SVA vv_/o Audio &0.8913 0.48%

\Video alignment

Emotlgn-LLaMA 08910 0.51%

(Baseline)

The ablation experiments in Table 6 validate the
contributions of the multi-scale convolutional layer and
the audio-video alignment module in the ESVA model. As
shown in Table 6, the ESVA model, which fully utilizes
the multi-scale convolutional layer optimization of the
audio output layer and the audio-video alignment
algorithm, achieves an F1-Score of 0.8956, achieving the
best performance among the four models. This model not
only demonstrates fine-grained audio modeling
capabilities but also accurately captures emotional
information across different audio and video modalities,
demonstrating strong emotion recognition capabilities. To
further explore the contributions of each innovative
approach, we removed the audio-video alignment
algorithm and the multi-scale convolutional layer
optimization method from our experiments. The results
show that removing the multi-scale convolutional layer
optimization reduces the model's F1-Score to 0.8923,
while removing the audio-video alignment algorithm
reduces the model's F1-Score to 0.8911. In comparison,
the baseline model, Emotion-LLaMA, achieves an F1-
Score of 0.8910, a 0.51% decrease compared to the full
model. These data show that the two innovative method
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components proposed in this article have improved the
model's understanding ability of emotion recognition tasks
to varying degrees.

4.4  Adaptive control-inspired alignment
enhancement

Inspired by nonlinear control—backstepping, fuzzy and
neural adaptive schemes—the Adaptive Alignment
Controller (AAC) tunes ESVA’s audio-video sync on-line
to keep temporal coherence under uncertain, time-varying
multimodal inputs.

In this study, we simulate an Adaptive Alignment
Controller (AAC) that dynamically adjusts ESVA’s cross-
modal alignment parameters based on the temporal drift
between audio and video streams in Table 7. The
controller estimates alignment uncertainty and adaptively
tunes  synchronization  weights using feedback
compensation, mimicking adaptive backstepping in
maintaining trajectory stability.

Table 7: Performance comparison of adaptive control—
inspired alignment strategies in ESVA

EMER |MER2024
Model Description mERZOZSLabeI IAvg(%0)
Overlap
Original model
ESVA with — fixedy 9574 62 66.20
(baseline)  jalignment
weights
ESVA +'t?ads(ejzfj adan:il\?e-
Fuzzy ) PiVeh o076 .29 66.31
alignment
Control .
tuning
ESVA +Incorporates
Neural uncertainty |y 9081 31 66.34
IAdaptive estimation vid
Control neural feedback]
ESVA Fgedback- _
Backsteppingdr'ven ao_lapt_lve
- synchronization0.9080  [6.28 66.28
Alignment with  dynamic
(AAC) mody
gain

As shown in Table 7, incorporating adaptive control
mechanisms into ESVA vyields consistent yet modest
improvements across benchmark datasets. The fuzzy
control variant achieves the most stable overall gain,
improving the MER2023 F1-score from 0.9074 to 0.9076
and the MER2024 average accuracy from 66.29 % to
66.31 %. The neural adaptive control method further
enhances temporal synchronization by dynamically
compensating for uncertainty in cross-modal features,
resulting in the highest EMER label-overlap score (6.31).
Although the backstepping-based adaptive alignment
(AAC) maintains robust synchronization performance, its
gains are slightly lower due to sensitivity to local
oscillations in feedback updates. Overall, these results
confirm that adaptive and feedback-driven control
strategies—especially those incorporating fuzzy and
neural adaptation—can improve ESVA’s real-time
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stability and cross-modal temporal coherence under
uncertain or noisy conditions.

In future work, we plan to further extend this line of
research by systematically integrating adaptive and robust
control mechanisms into multimodal emotion recognition
frameworks. Specifically, we aim to explore hybrid
adaptive strategies that combine backstepping, fuzzy
inference, and neural self-tuning within the ESVA
architecture to achieve stronger dynamic stability and
cross-modal synchronization. Such advancements are
expected to enhance the model’s adaptability and
reliability in complex real-world emotion understanding
scenarios.

4.5 Discussion

ESVA outperforms SOTA models on MER2023 (F1
0.9074), EMER (Clue/Label Overlap 7.89/6.28) and
MER2024 (66.29% accuracy) thanks to its MSFE noise-
robust cue extractor and fine-grained cross-modal
alignment, but gains over Emotion-LLaMA are modest,
large encoders hinder low-resource deployment, and
future work will pursue lightweight, adaptive, self-tuning
architectures.

5 Conclusions

To address the shortcomings of Emotion-LLaMA
(Emotion-LLaMA) in its insufficient cross-modal feature
alignment and limited ability to capture subtle audio
variations, this paper proposes a novel multimodal
emotion recognition framework, Emotion-Sync-Video-
Audio (ESVA). Without adjusting the audio encoder
parameters, ESVA significantly improves its ability to
model weak emotional signals by introducing an audio
encoder enhancement module and an audio-video
alignment algorithm. It also effectively addresses the
temporal synchronization challenge of audio and video
streams, further enhancing the understanding of
audiovisual information. Experimental results
demonstrate that ESVA outperforms existing methods on
three major multimodal emotion recognition benchmark
datasets: MER2023, MER2024, and EMER. Ablation
experiments also confirm the key role of the multi-scale
convolutional layers and the audio-video alignment
module in improving performance. However, the model
still has room for improvement in feature encoding and
inference efficiency. Future work will focus on refining
the feature extraction strategy, enhancing the model's real-
time performance, and verifying its generalization and
robustness on more diverse datasets.
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