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Multimodal emotion recognition (MER) requires effective fusion and temporal synchronization of 

heterogeneous cues, yet existing approaches often suffer from weak emotional audio representations and 

cross-modal misa-lignment. To address these challenges, we propose ESVA, a unified framework that 

enhances multimodal emotion understanding through multi-scale audio feature extraction and cross-

modal temporal alignment. Specifically, the audio stream is encoded using HuBERT, augmented with a 

trainable post-processing module — the Multi-Scale Feature Extraction (MSFE) layer — to refine 

emotional cues across multiple temporal res-olutions. On top of this, ESVA integrates a cross-modal 

synchronization module that jointly minimizes local distance and maximizes global correlation to align 

audio and video features in time. The entire model is op-timized using self-supervised contrastive learning 

to strengthen inter-modal consistency, while LoRA-based fine-tuning enables efficient adaptation of large 

pretrained encoders to the emotion recognition domain. Ex-tensive experiments across three benchmark 

datasets validate the effectiveness of our approach: ESVA achieves 0.9074 F1 on MER2023, 0.8956 F1 

on MER2024, and consistently outperforms baselines on EMER in both clue overlap and label overlap 

metrics. These results confirm that combining HuBERT with the MSFE layer, contrastive alignment, and 

parameter-efficient fine-tuning yields substantial improvements in both ac-curacy and cross-modal 

temporal coherence for real-world emotion recognition scenarios. 

Povzetek: Študija predstavi ESVA, enotni okvir za večmodalno prepoznavo čustev, ki z HuBERT+MSFE 

izboljša zvočne značilke ter z LoRA prilagoditvijo učinkovito prenese vnaprej naučene kodirnike na 

domeno čustev. 

 

1 Introduction 
Emotion recognition (ER) is a key technology for 

automatically identifying, judging, and classifying human 

emotional states through computers [1]. In recent years, 

ER technology has been widely used in many fields, 

including mental health testing in smart healthcare [2], 

classroom emotional feedback in smart education [3], and 

personalized interaction with virtual assistants [4]. Unlike 

traditional rule matching and static text classification 

methods, emotion recognition not only focuses on 

semantic information, but also integrates non-semantic 

information such as speech rhythm features, facial micro-

expression features, and eye movement trajectories to 

complete multi-granular modeling and dynamic reasoning 

of emotions. Single-modality ER is limited; multimodal 

fusion of audio, video and text exploits their 

complementary cues to overcome noise, ambiguity and 

missing data, yielding deeper and more robust emotion 

recognition [5]. 

Multimodal Large Language Models (MLLMs), 

represented by models such as Flamingo [6], MiniGPT-

4[7], and GPT-4V [8], have made great progress in cross- 

 

modal reasoning and generation tasks, demonstrating 

excellent semantic understanding and expression 

capabilities. MLLMs successfully construct a unified 

representation space that aligns semantics with 

information from various modalities by pre-training on 

large-scale data such as images, text, audio, and video, and 

demonstrate excellent performance in cross-modal 

reasoning and generation tasks. The recently proposed 

Emotion-LLaMA [9] model further expands the 

application scope of MLLMs. By combining audio and 

video front-ends with the LLaMA model, which achieves 

a leap from predicting discrete emotion labels to 

generating natural language emotion interpretations, 

improving the ability of emotion recognition models in 

real, complex, and open scenarios. 

Despite the great achievements of the above research, 

the existing multimodal emotion recognition task still 

faces two key challenges that urgently need to be 

overcome: Firstly, the limitations of extracting weak 

emotional signals from audio modalities. Many important 

emotional information is not reflected in the explicit 

speech content, but is hidden in the "prosodic features" 
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that are not in the speech category. Current mainstream 

emotion recognition systems usually use models such as 

Whisper [10], Wav2Vec2.0[11] and HuBERT [12] as 

common audio encoders for pre-training speech 

recognition tasks. The optimization goal of these encoder 

models is mainly to recognize the text content of speech. 

They are insufficient in effectively capturing fine-grained 

acoustic features closely related to emotional expression, 

such as fundamental frequency jitter, spectral tilt, and 

short-term energy fluctuations. This results in the model's 

limited ability to recognize implicit or subtle emotional 

fluctuations. Secondly, there is a lack of effective cross-

modal dynamic time series alignment mechanism. 

Emotions evolve over time, and their expression depends 

on the co-evolution of multimodal signals in the time 

dimension. Most of the current multimodal models use 

early splicing, late fusion, or attention-based fusion. These 

methods usually perform fusion at a static or coarse-

grained level, and are difficult to capture the fine-grained 

temporal alignment relationship and dynamic causal 

dependency between modalities. 

To this end, this paper proposes the Emotion-Sync-

Video-Audio (ESVA) framework to address the above 

challenges through the following innovations: based on 

the frozen HuBERT parameters, a lightweight multi-scale 

convolution and self-supervised contrastive learning 

module is designed to significantly enhance the ability to 

extract weak acoustic emotion cues and we call it multi-

scale feature extraction (MSFE); an audio and video 

alignment combining local distance measurement and 

global cross-correlation is proposed to achieve high-

precision temporal synchronization of cross-modal 

features; through LoRA fine-tuning LLaMA-2, the 

enhanced audio features and aligned visual features are 

mapped to a shared emotion semantic space, generating 

accurate and interpretable emotion inference results. 

Beyond benchmark evaluations, ESVA also holds 

strong potential for real-world applications where 

multimodal emotion understanding directly impacts 

safety, health, and user experience. In healthcare, ESVA 

can support emotion-aware patient monitoring systems by 

integrating physiological audio cues (e.g., breathing 

rhythm, tone variation) with visual signals, enabling early 

detection of stress or depression. In education, ESVA 

could assist adaptive learning systems by recognizing 

student engagement or frustration from voice and facial 

expressions, optimizing instructional feedback. In 

intelligent transportation, ESVA may help detect driver 

fatigue or agitation, contributing to active safety 

interventions. To adapt ESVA for such practical scenarios, 

the framework can be extended with adaptive control–

inspired mechanisms that dynamically adjust fusion 

weights and alignment sensitivity under uncertain 

conditions, such as sensor noise or missing modality input. 

Drawing from optimal control theory, feedback-based 

self-tuning can be introduced to maintain stability and 

performance when input quality fluctuates. Moreover, 

Bayesian or reinforcement-based adaptive strategies can 

be incorporated to estimate uncertainty and re-weight 

modalities accordingly, ensuring robust emotion inference 

in noisy, incomplete, or nonstationary environments. 

These extensions will allow ESVA to evolve from 

benchmark-oriented evaluation toward dependable, real-

world multimodal affective intelligence. 

In summary, the main contributions of this paper are 

as follows:  

• An innovative audio feature enhancement 

strategy is proposed. While keeping the encoder structure 

frozen, it integrates multi-scale perception and self-

supervised learning mechanisms, significantly improving 

the model's ability to model weak acoustic emotional 

signals; 

• An efficient audio and video dynamic alignment 

is designed to solve the synchronization problem of 

multimodal data streams in the time dimension and 

enhance cross-modal collaborative reasoning capabilities; 

• A systematic evaluation is conducted on three 

authoritative multimodal emotion recognition benchmark 

datasets: MER2023, MER2024, and EMER. The 

experimental results show that ESVA achieves excellent 

performance in both emotion recognition and reasoning 

tasks, fully verifying the effectiveness and cross-scenario 

applicability of the proposed method. 

2 Related work 

2.1 Multimodal emotion recognition 

Emotion recognition research has gradually shifted from 

relying on a single information source to a multimodal 

analysis method that integrates speech, vision, and text 

[13]. This method effectively compensates for the 

shortcomings of single-modal models such as audio 

models [11,12,14], vision models [15,16,17], and text 

models [18,19,20] in capturing complex emotions by 

cross-validating and supplementing each modal 

information, and significantly improves the accuracy and 

robustness of emotion perception. However, early 

multimodal emotion recognition generally adopted 

traditional machine learning methods such as random 

forests and support vector machines (SVMs), which have 

a strong dependence on artificially designed features. 

With the rapid development of deep learning technology, 

convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs) have been widely used in 

multimodal emotion recognition tasks. These deep 

learning methods mainly achieve effective fusion of 

different modal information through early fusion 

strategies (directly splicing raw data) or late fusion 

strategies (integration at the high-level semantic feature 

level). Experimental results on the standard evaluation 

dataset IEMOCAP [21] show that the performance of 

multimodal fusion methods is significantly better than that 

of single-modal methods. However, traditional 

multimodal fusion methods still have shortcomings in 

modeling temporal dynamic changes and handling noise 

interference. This limitation restricts the generalization 

ability of the model in practical application scenarios. 

The multimodal large language model (MLLM) 

achieves deeper cross-modal understanding and reasoning 

capabilities by projecting the feature representations of 

different modalities into a unified semantic space. In order 
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to correctly understand the temporal events in video 

sequences, the Video-LLaMA [22] and VideoChat [13] 

models use pre-trained visual encoders (such as the CLIP 

model), which are suitable for tasks such as video question 

answering; the PandaGPT [23] model can simultaneously 

process and integrate multiple heterogeneous modal 

information such as images and audio, fully demonstrating 

the technical potential of multi-source information fusion. 

In terms of emotional computing, the Emotion-LLaMA 

[9] model was the first to introduce MLLM technology in 

emotion recognition tasks. By deeply integrating the 

visual and audio front-end modules with the LLaMA 

model, it uses natural language interpretation to replace 

the traditional discrete emotion label classification 

method. Currently, most existing multimodal language 

model (MLLM) frameworks are mainly designed and 

optimized for general multimodal tasks. However, in the 

task of sentiment analysis, modeling the association of 

instantaneous audiovisual events is one of the key 

requirements, but existing frameworks still lack targeted 

technical optimization in this regard. 

2.2 Modality-specific representation 

enhancement technology 

To improve the model's ability to understand specific 

modalities, researchers have proposed a variety of 

enhancement schemes. In the field of audio processing, 

models such as SALMONN [24] and Qwen-Audio [25] 

integrate pre-trained audio encoders such as Whisper [10], 

achieving significant performance improvements in tasks 

such as speech translation and audio question answering. 

In the field of emotion recognition, AffectGPT [26] 

focuses on improving emotion understanding capabilities 

and fine-tunes on MER-Caption data with emotion labels, 

significantly enhancing the model's capabilities in 

emotion recognition and emotional content generation. 

However, existing audio encoders are mainly 

designed for automatic speech recognition tasks, and the 

extracted features focus on the accurate recognition of 

speech content. Therefore, it is difficult to capture 

prosodic features closely related to emotional expression, 

such as changes in pitch contour, changes in speaking 

speed and rhythm, sound quality characteristics and other 

fine-grained acoustic information, and there are obvious 

technical limitations. 

2.3 Cross-modal temporal alignment 

Emotional expression has the obvious characteristic of 

dynamic evolution over time. In order to improve the 

performance of emotion recognition, the multimodal 

emotion recognition system needs to have the ability to 

accurately process the timing matching between different 

modalities, so as to effectively achieve cross-modal timing 

alignment. Traditional sequence alignment methods 

mainly rely on the dynamic time warping (DTW) 

algorithm, but this algorithm has limitations such as high 

computational complexity and low efficiency in 

processing long sequences [27]. 

With the development of deep learning, researchers 

have proposed a variety of cross-modal alignment 

methods based on neural networks. Models such as the 

Cross-Modal Transformer based on the attention 

mechanism improve the alignment effect of cross-modal 

features by designing a cross-attention mechanism to learn 

and associate the temporal correspondence between audio 

and video events [11]. The Audio-Video Fusion [28] 

model achieves the goal of audio and video 

synchronization with sub-second accuracy based on the 

fusion of cross-correlation analysis and the DTW 

algorithm. In the research field of multimodal large 

language models, the TimeChat [29] model significantly 

improves the model's ability to understand the temporal 

coherence of long video content by introducing a 

dedicated temporal modeling module. 

These cross-modal alignment methods have 

effectively improved the causal reasoning capabilities of 

multimodal emotion recognition, but they still have 

certain limitations. Most existing methods use relatively 

shallow feature fusion strategies, which are difficult to 

effectively deal with noise interference and inter-modal 

inconsistency problems in real environments. When faced 

with emotional expressions in complex real-world 

scenarios, these limitations will affect the coherence and 

accuracy of emotional interpretation results, limiting the 

promotion of multimodal emotion recognition in real-

world scenarios [30]. 

To address the above problems, this paper proposes 

an ESVA framework model based on the improvement of 

Emotion-LLaMA. On the basis of freezing the HuBERT 

parameters, it designs lightweight multi-scale convolution 

and self-supervised contrastive learning modules to 

significantly enhance the ability to extract weak acoustic 

emotion cues; it proposes an audio and video alignment 

algorithm that combines local distance measurement and 

global cross-correlation to achieve high-precision 

temporal synchronization of cross-modal features; 

through LoRA fine-tuning LLaMA-2, the enhanced audio 

features and aligned visual features are mapped to a shared 

emotion semantic space, generating accurate and 

interpretable emotion inference results. 

3 Multimodal emotion recognition 

model EVSA 

3.1 Emotion-llama model 

The Emotion-LLaMA model integrates information from 

three modalities: audio, visual, and text, integrating high-

level features extracted by each encoder to achieve 

comprehensive multimodal emotion analysis. This model 

uses HuBERT for audio encoding and incorporates 

multiple visual encoders, including local, temporal, and 

global encoders, to extract emotion-related features at 

different levels. To achieve efficient multimodal 

inference, Emotion-LLaMA also utilizes a linear 

projection mechanism to map audio and visual features 

into a shared vector space consistent with the textual cues. 

However, the Emotion-LLaMA model still has two 

shortcomings: first, it lacks the ability to extract multi-
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scale and weak audio emotion information; second, the 

temporal synchronization accuracy between audio and 

video is insufficient, resulting in reduced robustness and 

generalization in dynamic and complex scenes. To address 

these issues, this paper proposes an improved Emotion-

Sync-Video-Audio (ESVA) model framework based on 

Emotion-LLaMA. By enhancing the audio encoder and 

introducing an audio-video alignment algorithm, ESVA 

not only better captures weak emotion signals but also 

significantly improves the temporal alignment of 

multimodal data. 

3.2 ESVA model architecture 

The overall architecture of the proposed ESVA framework 

is illustrated in Figure 1, which highlights the key modules 

including HuBERT-based audio encoding, the MSFE 

layer, and cross-modal temporal alignment. The specific 

structure is as follows: 

 

 

Figure 1: Overall architecture diagram of emotion-sync-

video-audio (ESVA) model. 

Audio Module: HuBERT serves as the audio encoder 

to extract latent representations. Subsequently, multi-scale 

convolutional layers we called multi-scale feature 

extraction (MSFE) are introduced to capture both short-

term details and long-term dependencies, and self-

supervised contrastive learning is used to enhance 

sentiment differentiation. The processed audio vectors are 

transformed into the same feature space as the text through 

linear mapping and then concatenated with the subsequent 

language model input. 

Vision Module: To account for both static and 

dynamic changes, three visual encoders are used: MAE 

(local encoder), VideoMAE (temporal encoder), and EVA 

(global encoder). Multi-scale convolution, linear 

mapping, and alignment units are used to extract 

keyframes and synchronize multimodal information, 

thereby better understanding facial expressions, 

movement changes, and context. 

Text Module: Text is processed through word 

segmentation and cue word templates to obtain language 

features. These features, along with embeddings from 

audio and video, are fed into the LLaMA2 backbone 

network to enable cross-modal context modeling and 

sentiment inference. Fusion and fine-tuning: The features 

of the three modalities are deeply fused within LLaMA2; 

a LoRA lightweight fine-tuning module is added at the 

output end to efficiently optimize the multimodal 

sentiment analysis capabilities. 

3.3 Audio encoder enhancement 

In this section, we introduce the trainable post-processing 

layer, which we call the Multi-Scale Feature Extraction 

(MSFE) layer. This layer is designed to optimize the 

extraction ability of multi-scale emotional audio features 

by learning adaptive feature representations across 

different temporal resolutions. 

Audio emotions manifest themselves differently 

across different timeframes: short-term fluctuations in 

intonation, pauses, and energy reveal subtle emotions, 

while longer periods reflect context, speech rate, and 

overall emotional direction. To fully capture cross-

temporal information, we constructed a multi-scale feature 

extraction (MSFE) layer based on the audio features 𝐹𝐴 

generated by HuBERT: 

 

𝑭𝑨
′ = ∑ 𝒘𝒊 ∙ 𝝓𝒊(𝑭𝑨)

𝑵
𝒊=𝟏                           (1) 

 

Here, 𝜙𝑖  represents convolution operations with 

different receptive fields, 𝑤𝑖  represents the trainable 

weights for different receptive fields, and N represents the 

number of scales. MSFE learns emotional patterns at 

different temporal granularities through parallel 

convolution operations. This allows ESVA to focus on 

local speech details while preserving overall emotional 

trends, enhancing its ability to perceive and express 

complex and dynamic emotional signals. 

 

 

Figure 2: Audio emotion recognition enhancement 

module. 

Furthermore, to address the common ambiguity and 

mixed attributes found in real-world emotional signals 

(e.g., "joy mixed with anxiety" and "anger mixed with 

helplessness"). The detailed design of the Multi-Scale 

Feature Extraction (MSFE) layer is shown in Figure 2, 

where multiple convolutional branches capture emotional 

cues at different temporal resolutions. Specifically, for 

each audio sample, a positive sample (of the same emotion 

category) and multiple negative samples (of different 

emotion categories) are constructed, and training is 

performed using the following contrastive loss function: 
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 𝑳𝒄𝒐𝒏𝒕𝒓𝒂𝒔𝒕 = −𝒍𝒐𝒈
𝐞𝐱𝐩⁡(𝒔𝒊𝒎(𝑭𝑨

′′,𝑭𝑨
+))

∑ 𝐞𝐱𝐩⁡(𝒔𝒊𝒎(𝑭𝑨
′′,𝑭𝑨

𝒋
))𝒋

                  (2) 

 

Here, 𝐹𝐴
+represents samples with the same emotion as 

the current audio 𝐹𝐴
′′, 𝐹𝐴

𝑗
 is a random negative sample, and 

𝑠𝑖𝑚(∙)  represents feature similarity calculation. This 

mechanism enables the model to automatically aggregate 

audio features of the same category in the feature space, 

widening the distribution distance between different 

categories, thereby significantly enhancing the 

discriminability and generalization of audio emotion 

features. 

3.4 Audio-video alignment 

To achieve high-precision synchronization of cross-modal 

emotional features in the temporal dimension, this paper 

proposes an audio-video alignment algorithm based on 

local-global joint optimization. After preprocessing the 

original audio signal 𝑆𝐴(𝑡)  and video frame sequence 

𝑆𝑉(𝑡) through filtering, denoising, and normalization, a 

deep neural network is used to extract the emotional 

features of the corresponding modality. The feature 

extraction function is defined as: 

 

  𝑭𝑨 = 𝒇(𝑺𝑨(𝒕)), 𝑭𝒗 = 𝒈(𝑺𝒗(𝒕))                       (3) 

 

Among them, 𝑓(∙) and 𝑔(∙) represent the audio and 

video feature extraction modules respectively. The 

extracted features 𝐹𝐴  and 𝐹𝑣  provide the basis for 

subsequent alignment. 

To capture fine-grained temporal dynamics, we 

segment the preprocessed feature sequence using a fixed-

length time window Δt. Within each window, we extract 

the corresponding audio and video feature segments 𝐹𝐴
𝑖 

and 𝐹𝑉
𝑖 . By calculating the distance metric under the time 

offset τ, we obtain the local optimal alignment 

relationship: 

 

𝑫𝒊(𝝉) = ‖𝑭𝑨
𝒊 (𝒕) − 𝑭𝑽

𝒊 (𝒕 + 𝝉)‖                       (4) 

 

The optimal local offset is determined by the value of 

τ that minimizes 𝐷𝑖(𝜏) , thus ensuring that the two modes 

are synchronized within each fine-grained window. 

In order to further improve the global synchronization 

of audio and video features, this paper introduces the 

cross-correlation function to perform overall correlation 

analysis on cross-modal features. The cross-modal 

correlation function is defined as: 

 

 𝑪(𝝉) = ∫ 𝑭𝑨(𝒕) ∙ 𝑭𝑽(𝒕 + 𝝉)𝒅𝒕
𝒕𝟎+𝑻

𝒕𝟎
                    (5) 

 

Among them, 𝑇 is the integration interval, and the 

optimal time offset 𝜏 makes it reach the global maximum, 

thereby revealing the intrinsic correlation between audio 

and video emotional signals. 

Combining the local and global alignment results, a 

global optimization strategy is used to solve the final 

alignment offset τ^*. The specific objective function is 

constructed as: 

𝝉∗ = 𝒂𝒓𝒈𝒎𝒂𝒙𝝉𝐂(𝛕)                              (6) 

 

The structure of the proposed alignment network and 

the formulation of the local/global loss are depicted in 

Figure 3, which visualizes how the alignment offset τ* is 

derived from the combined objectives. This mechanism 

ensures precise alignment of emotional signals across the 

entire time domain, laying the foundation for subsequent 

multimodal fusion and emotion recognition, and 

effectively improving the system's robustness and 

generalization capabilities in complex dynamic scenarios. 

 

Figure 3: Audio video alignment algorithm. 

3.5 Comprehensive loss function 

To achieve the coordinated optimization of the audio 

and video alignment module and the emotion classifier, 

this paper designs the following comprehensive loss 

function to jointly train the alignment error and the 

emotion recognition error. The specific objective function 

is as follows: 

 

𝓛 = 𝓛𝒂𝒍𝒊𝒈𝒏 + 𝝀𝓛𝒆𝒎𝒐                                    (7) 

 

Here, ℒ𝑎𝑙𝑖𝑔𝑛  represents the loss term based on local 

and global alignment errors,  ℒ𝑒𝑚𝑜represents the loss term 

for the sentiment classification task, and λ is a 

hyperparameter that balances the two losses. Through 

end-to-end joint optimization, the model effectively 

improves the accuracy and robustness of sentiment 

recognition while maintaining multimodal feature 

synchronization. 

Integrating the minimized local distance 𝐷local(Eq. 4) 

and the maximized cross-correlation 𝐶global (Eq. 5), we 

define the overall alignment loss as 

 

𝑳align = 𝜶 𝑫local(𝝉) − 𝜷 𝑪global(𝝉)                         (8) 

 

where 𝛼and 𝛽control the relative contributions of local 

and global terms. The optimal synchronization offset is 

thus obtained by 

 

𝝉∗ = 𝐚𝐫𝐠⁡𝐦𝐢𝐧⁡
𝝉

𝑳align(𝝉)                             (9) 

 

This combined formulation captures both local fine-

scale feature similarity and global temporal consistency, 
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and serves as the alignment component in the overall loss 

𝐿 = 𝐿align + 𝜆𝐿emodescribed above. 

4 Experiments and results analysis 

4.1 Pre-training 

4.1.1 Datasets 

This work uses the MERR [31] (Multimodal Emotion 

Recognition and Reasoning) dataset for pre-training. This 

dataset is collected from real-world scenarios such as 

interviews, speeches, and film clips, and contains 33,105 

valid samples, each of which provides strictly aligned 

trimodal raw data. The dataset not only provides 28,618 

coarse-grained annotations, which mark the entire 

utterance with a dominant emotion category (covering 

nine basic categories: happiness, sadness, anger, surprise, 

fear, disgust, neutrality, suspicion, and contempt), but also 

provides 4,487 fine-grained annotations, which depict 

complex emotions, the process of emotion transfer, and 

the level of emotion intensity. 

4.1.2 Instruction tuning 

Based on the MERR dataset, this paper fine-tuned the pre-

trained model using the emotion recognition and emotion 

inference instruction sets from the Emotion-LLaMA 

model to further improve the accuracy and F1 score of 

speech emotion recognition. Fine-tuning training was 

performed in parallel on eight NVIDIA V100 GPUs. The 

training environment was configured with Python 3.9, 

integrated with PyTorch 2.0.0, Transformers 4.30.0, 

Accelerate 0.20.3, BitsAndBytes 0.37.0, and the NCCL 

backend to maximize multi-GPU communication 

bandwidth and ensure efficient and stable training. 

Through pre-training, the model's performance on 

emotion recognition and emotion inference tasks was 

significantly improved, laying the foundation for 

subsequent experimental validation. 

4.2 Experimental verification 

To fully validate the generalization and robustness of the 

ESVA model in multimodal emotion recognition tasks, 

this paper conducted systematic experiments on three 

mainstream multimodal emotion recognition datasets: 

MER2023, EMER, and MER2024. These datasets and 

corresponding experimental configurations are 

summarized in Table 1, providing the sample distribution, 

modality composition, and label balance for each 

benchmark. By comparing performance with various 

mainstream models, we demonstrated improved 

performance of ESVA in various scenarios and further 

explored the model's performance and applicability in 

complex tasks. 

Table 1: Experimental datasets. 

Datasets Scale / Subset Tasks 

MER2023 [32] 

5030 labeled/ 

73148 unlaeled（

Train&Val 、

Multi-label 

classification, 

MULTI、 NOISE

、SEMI） 

semi-supervised, 

noise robust 

EMER [33] 332 Samples 

Explainable 

Emotional 

Reasoning 

MER2024 [34] 

115595 Samples（

SEMI、NOISE、

OV） 

Open, semi-

supervision, 

robustness 

 

4.2.1 MER2023 multimodal emotion 

recognition results 

The MER2023 Challenge dataset [35] is primarily used 

for research on multi-label learning, noise robustness, and 

semi-supervised learning in multimodal emotion 

recognition. The dataset is collected from video clips of 

movies and TV series collected on the Internet, providing 

5,030 labeled samples and 73,148 unlabeled samples, 

including strictly aligned audio, video, and some text 

modalities. A multi-label system is used for emotion 

annotation, introducing challenging scenarios such as 

background human voices and device noise. The dataset 

uses Macro F1-Score as the core evaluation metric. 

Table 2: Comparison with other models on MER2023 

dataset. 

Model Modality F1 score 

Wav2vec 2.0 [11] A 0.4028 

VGGish [14]  A 0.5481 

HuBERT 

[12]Error! 

Reference source 

not found. 

A 0.8511 

ResNet [15] V 0.4132 

MAE [16]  V 0.5547 

VideoMAE [17]  V 0.6068 

RoBERTa [18] T 0.4061 

BERT [19]  T 0.4360 

MacBERT [20]  T 0.4632 

MER2023Baseline 

[32]  
A,V 0.8675 

MER2023-

Baseline [32] 
A,V,T 0.8640 

Transformer [35] A,V,T 0.8853 

FBP [36] A,V,T 0.8855 

VAT [20] A,V 0.8911 

Emotion-LLaMA 

[9] 
A,V 0.8905 

Emotion-LLaMA 

[9] 
A,V,T 0.9036 

ESVA (ours) A,V,T 0.9074 

 

Quantitative results on MER2023 are presented in 

Table 2, and the per-class performance distribution is 

illustrated in Figure 4, showing that ESVA improves 

recognition consistency across emotion categories. The 

models in this table include unimodal models, such as 

those with speech (A), vision (V), and text (T); and 
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multimodal models, including those with speech + vision 

(A, V) and speech + vision + text (A, V, T). The confusion 

matrix of the ESVA model on the MER2023 dataset is 

shown in Figure 4. Experiments show that, among 

unimodal models, the audio model HuBERT leads with an 

F1 score of 0.8511, significantly outperforming the video 

model VideoMAE (0.6068) and the text model MacBERT 

(0.4632), highlighting the discriminative advantages of 

acoustic features. However, when comparing unimodal 

models to multimodal models, their performance is 

insufficient. Multimodal fusion models achieve 

breakthrough performance through cross-modal 

complementarity. Large multimodal models, such as the 

MER2023-Baseline, outperform large unimodal models. 

The subsequent Transformer multimodal model and the 

FBP multimodal model both achieved F1 scores 

exceeding 0.88. The VAT and Emotion-LLaMA models 

even outperformed these models. This is because these 

models deeply integrate multimodal features, significantly 

improving their performance. The ESVA model in this 

work further improves the performance of the audio 

modality based on the Emotion-LLaMA model, while 

effectively aligning features between the audio and visual 

models. This results in an F1 score that is 0.42 percentage 

points higher than the Emotion-LLaMA model. 

 

Figure 4: Emotion recognition confusion matrix for 

ESVA in MER2023 dataset. 

4.2.2 EMER dataset 

The EMER (Explainable Multimodal Emotion 

Reasoning) dataset [36] specifically addresses the issues 

of ambiguous labels and difficult-to-explain reasoning in 

traditional emotion recognition. It requires the model to 

not only give emotional judgments but also explain them 

in natural language. EMER randomly selected 332 non-

neutral emotion clips from MER2023, including three 

modalities: video, audio, and text. The annotation process 

is divided into four steps: three annotators independently 

annotate; ChatGPT summarizes the results; then open 

emotion label inference is performed; and finally, expert 

review is performed. The double annotations obtained in 

this way not only include emotion categories, but also 

reasoning basis, and record facial micro-expressions, 

voice rhythm, and contextual details. It is currently an 

important tool for testing multimodal emotion reasoning 

capabilities. 

The evaluation uses two metrics: clue overlap and 

label overlap. Both are scored on a 0–10 scale and quantify 

the model's ability to reason about emotional causality. 

Clue overlap assesses whether the model's reasoning 

matches the semantics of the ground truth, while label 

overlap compares the model's predicted emotional labels 

with those manually labeled. 

Table 3: Comparison with other models on EMER dataset. 

Model Clue Overlap Label Overlap 

VideoChat-Text 

[13]  
6.42 3.94 

Video-LLaMA 

[22]  
6.64 4.89 

Video-ChatGPT 

[38] 
6.95 5.74 

PandaGPT [23]  7.14 5.51 

VideoChat-

Embed [13]  
7.15 5.65 

Valley [39] 7.24 5.77 

Emotion-LLaMA 

[9] 
7.83 6.25 

ESVA (ours) 7.89 6.28 

 

Table 3 summarizes the results on MER2024, where 

ESVA continues to outperform the baselines in both F1 

and accuracy metrics. Evaluations show that the general 

multimodal model Video-ChatGPT only achieved 6.95 

and 5.74 points in cue overlap and label matching, 

respectively. The knowledge-enhanced model PandaGPT 

improved these scores to 7.14 and 5.51, respectively, but 

still failed to surpass the benchmarks of 7.83 and 6.25 

established by the specialized sentiment model Emotion-

LLaMA. The ESVA model proposed in this study 

performed the best among all algorithms, achieving 7.89 

points in cue overlap and 6.28 points in label matching. 

The cue generation quality improved by 0.76 percentage 

points compared to the Emotion-LLaMA model, and the 

label matching accuracy increased by 0.48 percentage 

points. The leading increase in cue quality was 

significantly higher than that in label matching, validating 

the core contribution of the cross-modal temporal 

alignment mechanism to enhanced interpretability. 

4.2.3 MER2024 dataset 

The MER2024 Challenge dataset [37] adds the task of 

open vocabulary multimodal emotion recognition (MER-

OV) based on the MER2023 dataset. This dataset is 

derived from movies, TV series, and social media videos 

and contains 115,595 samples, covering data from 

multiple modalities such as video, speech, facial motion 

capture, and text transcription. The evaluation metrics 

include the predicted label accuracy, the true label recall, 

and the average value. 
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Table 4: Comparison with other models on the MER2024 

dataset. 

Model 
Accuracys 

/% 

Recalls 

/% 

AVG 

/% 

Empty 0 0 0 

Random 13.42 24.85 19.13 

Ground Truth 93.37 52.51 72.94 

Valley [39] 20.16 13.26 16.71 

Otter [40] 29.64  23.04 26.34 

PandaGPT [23]  35.75  31.57 33.66 

Video-LLaMA 

[22]  
31.08 32.26 31.67 

VideoChat [13]  43.17  44.92  44.05 

VideoChat2 [41] 46.91 34.78 40.85 

Video-ChatGPT 

[38] 
46.20 39.33 42.77 

SALMONN [24]  42.20 44.75 43.47 

Qwen-Audio 

[25]  
55.12 32.91 44.02 

mPLUG-Owl 

[42] 
44.80 46.54 45.67 

AffectGPT [26]  66.14 46.56 56.35 

GPT-4V [43] 56.19  58.97 57.58 

Emotion-

LLaMA [9] 
69.61 62.59 66.10 

ESVA (ours) 70.08 62.49 66.29 

 

The EMER dataset results are reported in Table 4, 

which confirms ESVA’s robustness under noisy and 

imbalanced multimodal conditions. Table 4 compares the 

performance of different models on the MER2024 open 

vocabulary sentiment recognition task. Figure 5 shows the 

confusion matrix of the ESVA model on the MER2024 

dataset. This task requires the model to freely generate any 

number of sentiment labels to describe complex 

psychological states. Evaluation is based on three metrics: 

the predicted label exact match rate, the true label recall 

rate, and their combined mean. Experiments show that 

general large models such as GPT-4V only reach an 

overall average of 57.58%, the professional voice model 

Qwen-Audio is 44.02%, and the professional emotion 

model Emotion-LLaMA establishes the original optimal 

level with an exact match rate of 69.61% and an overall 

average of 66.10%; the ESVA model proposed in this 

study has an exact match rate of 70.08%, becoming the 

first model to break the 70% accuracy rate. Its overall 

average of 66.29% is also ahead of other models. 

Although the recall rate of 62.49% is slightly lower than 

that of Emotion-LLaMA by 0.10 percentage points, the 

significant advantage of 0.47 percentage points in 

accuracy ultimately pushes the overall performance to 

exceed 0.19 percentage points, which is 15.31 percentage 

points higher than the overall average of the general large 

model GPT-4V, verifying the cross-modal architecture's 

ability to accurately portray open emotional descriptions. 

 

 

Figure 5: Emotion recognition confusion matrix for 

ESVA in MER2024 Dataset. 

4.3 Ablation study 

To verify the contribution of each component in the ESVA 

model to performance, we conducted ablation experiments 

on the MERR dataset. The experimental results are shown 

in Tables 5 and 6. 

Table 5 shows the impact of different audio and visual 

encoders on model performance. The comparison of audio 

encoders shows that the HuBERT model achieves the best 

performance, with an F1-Score of 0.8394, significantly 

outperforming Wav2Vec, VGGish, and Whisper. The 

comparison of visual encoders shows that VideoMAE 

performs best, with an F1-Score of 0.6762, exceeding 

MAE (0.6366) and EVA (0.6635). When combining 

multiple visual encoders, the combination of MAE, 

VideoMAE, and EVA achieves the best visual encoding 

F1-Score, with an F1-Score of 0.7122. This demonstrates 

that multimodal fusion can effectively improve overall 

emotion recognition capabilities. 

Table 5: Ablation experiments of different encoders. 

Audio Encoder Video Encoder F1-Score 

Wav2Vec - 0.4893 

VGGish - 0.5944 

Whisper - 0.5324 

HuBERT - 0.8394 

 MAE 0.6366 

 VideoMAE 0.6762 

 EVA 0.6635 

 MAE,VideoMAE,EVA 0.7122 

HuBERT MAE 0.8800 

HuBERT VideoMAE 0.8757 

HuBERT MAE,VideoMAE 0.8880 

HuBERT MAE,EVA 0.8896 

HuBERT VideoMAE,EVA 0.8802 

HuBERT MAE,VideoMAE,EVA 0.8910 

MSFE-HuBERT  MAE,VideoMAE,EVA 0.8911 
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Because the HuBERT model achieved the best 

performance in the audio encoder category, the overall 

model performance was further improved by fixing the 

audio encoder and combining different visual encoders. 

The F1-Score of HuBERT plus MAE was 0.8800, 

exceeding the F1-Score of the HuBERT model alone, 

demonstrating the effectiveness of the multimodal model 

combination. After fusing multiple visual encoders, the 

F1-Score improved to 0.8910, demonstrating the 

significant advantages of multimodal information 

complementarity, which effectively improves the model's 

ability to recognize emotion. 

To further improve model performance, we 

introduced multi-scale convolutional layer optimization 

into the model. This resulted in a slight improvement in 

model performance, with the F1-Score increasing from 

0.8910 to 0.8911. This indicates that the performance 

ceiling of the model has been reached through encoder 

modifications alone. Therefore, we proposed an audio-

video alignment module to further improve model 

performance. 

In order to further compare the performance 

contributions of the two different algorithms proposed in 

this paper, corresponding ablation experiments were 

conducted, namely, comparing three different 

implementations of the ESVA model and its variants, as 

well as the baseline model Emotion-LLaMA. 

Table 6: Ablation experiment results. 

Model F1-Score 
Relative descent 

rate 

ESVA  0.8956 -0 

ESVA w/o MSFE 0.8943 -0.14% 

ESVA w/o Audio & 

Video alignment 
0.8913 -0.48% 

Emotion-LLaMA 

(Baseline) 
0.8910 -0.51% 

 

The ablation experiments in Table 6 validate the 

contributions of the multi-scale convolutional layer and 

the audio-video alignment module in the ESVA model. As 

shown in Table 6, the ESVA model, which fully utilizes 

the multi-scale convolutional layer optimization of the 

audio output layer and the audio-video alignment 

algorithm, achieves an F1-Score of 0.8956, achieving the 

best performance among the four models. This model not 

only demonstrates fine-grained audio modeling 

capabilities but also accurately captures emotional 

information across different audio and video modalities, 

demonstrating strong emotion recognition capabilities. To 

further explore the contributions of each innovative 

approach, we removed the audio-video alignment 

algorithm and the multi-scale convolutional layer 

optimization method from our experiments. The results 

show that removing the multi-scale convolutional layer 

optimization reduces the model's F1-Score to 0.8923, 

while removing the audio-video alignment algorithm 

reduces the model's F1-Score to 0.8911. In comparison, 

the baseline model, Emotion-LLaMA, achieves an F1-

Score of 0.8910, a 0.51% decrease compared to the full 

model. These data show that the two innovative method 

components proposed in this article have improved the 

model's understanding ability of emotion recognition tasks 

to varying degrees. 

4.4 Adaptive control–inspired alignment 

enhancement 

Inspired by nonlinear control—backstepping, fuzzy and 

neural adaptive schemes—the Adaptive Alignment 

Controller (AAC) tunes ESVA’s audio-video sync on-line 

to keep temporal coherence under uncertain, time-varying 

multimodal inputs. 

In this study, we simulate an Adaptive Alignment 

Controller (AAC) that dynamically adjusts ESVA’s cross-

modal alignment parameters based on the temporal drift 

between audio and video streams in Table 7. The 

controller estimates alignment uncertainty and adaptively 

tunes synchronization weights using feedback 

compensation, mimicking adaptive backstepping in 

maintaining trajectory stability. 

 

Table 7: Performance comparison of adaptive control–

inspired alignment strategies in ESVA 

Model Description 
MER2023 

F1 

EMER 

Label 

Overlap 

MER2024 

Avg(%) 

ESVA 

(baseline) 

Original model 

with fixed 

alignment 

weights 

0.9074 6.28 66.29 

ESVA + 

Fuzzy 

Control 

Adds rule-

based adaptive 

alignment 

tuning 

0.9076 6.29 66.31 

ESVA + 

Neural 

Adaptive 

Control 

Incorporates 

uncertainty 

estimation via 

neural feedback 

0.9081 6.31 66.34 

ESVA + 

Backstepping 

Alignment 

(AAC) 

Feedback-

driven adaptive 

synchronization 

with dynamic 

gain 

0.9080 6.28 66.28 

 

As shown in Table 7, incorporating adaptive control 

mechanisms into ESVA yields consistent yet modest 

improvements across benchmark datasets. The fuzzy 

control variant achieves the most stable overall gain, 

improving the MER2023 F1-score from 0.9074 to 0.9076 

and the MER2024 average accuracy from 66.29 % to 

66.31 %. The neural adaptive control method further 

enhances temporal synchronization by dynamically 

compensating for uncertainty in cross-modal features, 

resulting in the highest EMER label-overlap score (6.31). 

Although the backstepping-based adaptive alignment 

(AAC) maintains robust synchronization performance, its 

gains are slightly lower due to sensitivity to local 

oscillations in feedback updates. Overall, these results 

confirm that adaptive and feedback-driven control 

strategies—especially those incorporating fuzzy and 

neural adaptation—can improve ESVA’s real-time 
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stability and cross-modal temporal coherence under 

uncertain or noisy conditions. 

In future work, we plan to further extend this line of 

research by systematically integrating adaptive and robust 

control mechanisms into multimodal emotion recognition 

frameworks. Specifically, we aim to explore hybrid 

adaptive strategies that combine backstepping, fuzzy 

inference, and neural self-tuning within the ESVA 

architecture to achieve stronger dynamic stability and 

cross-modal synchronization. Such advancements are 

expected to enhance the model’s adaptability and 

reliability in complex real-world emotion understanding 

scenarios. 

4.5 Discussion 

ESVA outperforms SOTA models on MER2023 (F1 

0.9074), EMER (Clue/Label Overlap 7.89/6.28) and 

MER2024 (66.29% accuracy) thanks to its MSFE noise-

robust cue extractor and fine-grained cross-modal 

alignment, but gains over Emotion-LLaMA are modest, 

large encoders hinder low-resource deployment, and 

future work will pursue lightweight, adaptive, self-tuning 

architectures. 

5 Conclusions 
To address the shortcomings of Emotion-LLaMA 

(Emotion-LLaMA) in its insufficient cross-modal feature 

alignment and limited ability to capture subtle audio 

variations, this paper proposes a novel multimodal 

emotion recognition framework, Emotion-Sync-Video-

Audio (ESVA). Without adjusting the audio encoder 

parameters, ESVA significantly improves its ability to 

model weak emotional signals by introducing an audio 

encoder enhancement module and an audio-video 

alignment algorithm. It also effectively addresses the 

temporal synchronization challenge of audio and video 

streams, further enhancing the understanding of 

audiovisual information. Experimental results 

demonstrate that ESVA outperforms existing methods on 

three major multimodal emotion recognition benchmark 

datasets: MER2023, MER2024, and EMER. Ablation 

experiments also confirm the key role of the multi-scale 

convolutional layers and the audio-video alignment 

module in improving performance. However, the model 

still has room for improvement in feature encoding and 

inference efficiency. Future work will focus on refining 

the feature extraction strategy, enhancing the model's real-

time performance, and verifying its generalization and 

robustness on more diverse datasets. 
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