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Video anomaly detection (VAD) is increasingly deployed in large-scale CCTV networks, yet most existing
approaches are evaluated only in single-domain settings, limiting their reliability in real-world
deployment. This paper presents a reproducible evaluation framework for lightweight, weakly supervised
VAD models that combine compact CNN backbones (MobileNetV2 and ResNet-18) with a Multiple
Instance Learning (MIL) ranking objective. Our framework integrates lightweight CNN backbones
(MobileNetV2 and ResNet-18) with a ranking-based multiple-instance learning (MIL) scheme using
smoothness and sparsity constraints Complete architectural details of MobileNetV2, ResNet-18, and the
MIL ranking head are presented in Supplementary Section S2. Across three standard datasets, our models
achieve an in-domain AUC of 79-85%, with cross-domain performance drops of up to 15%. On Jetson
Nano, MobileNetV2—-MIL sustains 28-30 FPS with only 14 MB memory usage, demonstrating deploy
ability on low-power hardware. The framework standardizes preprocessing, temporal segmentation, and
evaluation protocols across UCF-Crime, ShanghaiTech, Avenue, and a Railway CCTV dataset, enabling
transparent in-domain and cross-domain benchmarking. Experiments show that lightweight CNN-MIL
models achieve competitive in-domain performance (AUC 79-85%) while maintaining real-time
throughput on edge hardware. Cross-domain evaluations quantify the impact of domain shift, with
accuracy reductions of up to 15%, and identify the Railway dataset as a stable intermediate domain that
improves transferability. Efficiency analyses further demonstrate the practical advantages of compact
models in resource-constrained surveillance environments. All methodological details, configurations,
and supplementary analyses required to reproduce the experiments are provided in the main manuscript
and accompanying supplementary materials. Exact training hyperparameters used across all experiments
are listed in Supplementary Section S3.

Povzetek: Clanek predstavi ponovljiv okvir za ocenjevanje lahkih, sibko nadzorovanih VAD modelov
(MobileNetV2/ResNet-18 + MIL), ki dosegajo AUC 79-85 % in delujejo v realnem casu na Jetson Nano,
hkrati pa pokazejo do 15 % padec pri prenosu med domenami.

Introduction

The rapid expansion of CCTV networks across
transportation hubs, commercial complexes, campuses,
and public environments has established video anomaly
detection (VAD) as a critical component of modern
surveillance intelligence. VAD aims to automatically
identify unusual or security-critical events—such as
accidents, theft, or violent behaviour—in long, untrimmed
video streams. Early approaches relied on handcrafted
spatiotemporal descriptors, reconstruction-based models,
and autoencoders [4], as well as temporal regularity
learning [6], high-speed fixed-camera analysis [11], and
recurrent architectures [12]. These techniques, as
summarized in recent surveys [1, 3], exhibit limited
robustness to illumination variations, viewpoint
differences, and scene complexity.

Deep learning has significantly improved anomaly
detection performance by providing more expressive
video representations. CNN models such as ResNet [7]
and MobileNet [8] have proven effective in resource-
constrained environments and are widely adopted in
lightweight surveillance analytics [9, 13]. Weakly
supervised learning using Multiple Instance Learning
(MIL) has become particularly influential, beginning with
the seminal ranking-based MIL framework of Sultani et
al. [16], followed by attention-guided MIL [10],
contrastive MIL [19], and generative weak-supervision
strategies [24]. Knowledge distillation [20] and self-
supervised representation learning [17] have also been
explored to enhance efficiency and reduce labelling
requirements.
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Despite these advancements, most VAD models are
evaluated only within isolated datasets such as UCF-
Crime, ShanghaiTech, and Avenue, offering limited
insight into cross-domain robustness. Recent research on
domain generalization [3, 18, 22] emphasizes that even
strong models suffer degradation under shifts in scene
type, camera perspective, or environmental conditions.
Parallel work on transformers [5, 23] and vision—language
models [2] demonstrate improved performance on
standard benchmarks, but high computational cost and
inconsistent evaluation pipelines hinder deployment on
practical surveillance hardware.

To address these limitations, this paper introduces a
reproducible and transparent evaluation framework for
lightweight CNN—-MIL models based on MobileNetV/2 [8]
and ResNet-18 [7]. Following reproducibility guidelines
from broader machine-learning studies [14, 15], the
framework  standardizes  preprocessing, temporal
segmentation, and evaluation protocols across four
heterogeneous datasets: UCF-Crime [16], ShanghaiTech,
Avenue [11], and a Railway CCTV dataset. This unified
design enables systematic analysis of (1) in-domain
accuracy, (2) cross-domain generalization under domain
shift, (3) robustness to noise, blur, illumination variation,
and compression, and (4) computational performance on
lightweight hardware.

This study is guided by the following research
questions:

e RQl1 — Cross-Domain Generalization:
How well do lightweight CNN-MIL models
generalize across surveillance environments with
differing visual and contextual characteristics?

e RQ2 — Accuracy-Efficiency Trade-Off:
What trade-offs arise between anomaly-detection
accuracy and real-time performance when
compact CNN-MIL models are deployed on
edge or embedded devices?

¢ RQ3 — Robustness and Transferability:
How do common visual corruptions and
intermediate  surveillance domains  affect
robustness, feature stability, and cross-domain
transfer patterns?

By addressing these questions, the paper provides a
deployment-oriented and empirically grounded analysis of
lightweight weakly supervised VAD models. All
methodological details, hyperparameters, evaluation
settings, and supplementary analyses required for
reproducibility are included in the main manuscript and
accompanying supplementary materials, in accordance
with Informatica guidelines.

2 Related work

Research on video anomaly detection (VAD) spans
several methodological directions, including
reconstruction-based modelling, weakly supervised
learning, transformer architectures, and cross-domain
robustness analysis. Early deep-learning approaches
focused on reconstructing normal patterns using
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autoencoders [4] and temporal regularity modelling [6].
High-speed detection frameworks [11] and recurrent
architectures such as convolutional LSTMs [12] further
expanded the capacity to capture temporal dynamics.
Comprehensive surveys [1, 3] highlight both the progress
and persistent limitations of these architectures,
particularly their sensitivity to scene variations and
domain shift.

2.1 Weakly supervised VAD

Weak supervision has become widely adopted due to
the high cost of frame-level annotation. The MIL-ranking
formulation introduced by Sultani et al. [16] remains a
foundational method, enabling learning from video-level
labels. Subsequent works have extended the MIL
paradigm through attention mechanisms [10], contrastive
learning [19], and generative adversarial modelling [24].
Knowledge distillation strategies [20] and self-supervised
representation learning [17] have also been explored to
improve model compactness and reduce reliance on
labelled data.

2.2 Lightweight and efficient architectures

Efficient CNN backbones such as ResNet [7] and
MobileNet [8] have been adopted in real-time and
embedded surveillance settings due to their favourable
accuracy—efficiency balance. Recent studies [9, 13]
demonstrate the suitability of lightweight architectures for
edge deployment, motivating further evaluation of their
robustness, latency, and resource demands in anomaly
detection pipelines.

2.3 Transformers and vision—language
models

Transformer architectures [5] and vision—-language
models [2] have recently achieved strong anomaly
detection performance on standard benchmarks. However,
as highlighted in surveys [23], these models introduce
significantly higher computational costs, longer inference
times, and increased deployment complexity. Their
evaluation pipelines also differ widely across studies,
complicating direct comparison with lightweight CNN-
based systems.

2.4 Domain generalization and robustness

Recent work emphasizes the importance of
evaluating VAD models under domain shift and
heterogeneous surveillance environments. Studies on
domain generalization [3, 18, 22] reveal the challenges
posed by variations in camera perspective, scene context,
object density, and environmental conditions.
Benchmarks focusing on robustness [22] and real-world
cross-scene evaluation [18] show that even high-
performing models degrade substantially when transferred
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across domains, underscoring the need for standardized
cross-domain protocols.

2.5 Reproducibility in machine learning

Ensuring transparent and replicable experimental
practices is increasingly recognized as essential in
machine-learning research. Guidelines and analyses in
[14, 15] emphasize the importance of standardized
preprocessing, consistent evaluation protocols, and clear
reporting of hyperparameters—principles that directly

motivate the reproducible evaluation framework
adopted in this work. Despite substantial progress in video
anomaly detection, existing literature still lacks a unified
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and reproducible assessment of lightweight CNN-MIL
architectures across multiple domains, robustness
conditions, and explicit efficiency constraints. These gaps
form a central motivation for this study.

A comparative overview of recent VAD approaches
is provided in Table 1, highlighting key differences in
supervision type, computational efficiency, and
performance across datasets. As the results show, our
lightweight CNN-MIL models achieve competitive
accuracy while  maintaining  substantially  lower
computational cost and higher inference speed than
existing methods.

Table 1: Comparative summary of representative video anomaly detection methods.

Method & Year Supervision | Dataset(s) AUC | Params | FLOPs | Inference | Notes
Used (%) (M) (G) FPS

Sultani et al. | Weak UCF-Crime 75.4 25 32 18 MIL Ranking

(CVPR 2018)

Liu et al. (CVPR | Weak ShanghaiTech, | 84.6 28 35 16 Transformer

2022) UCF MIL

Zaheer et al. | Full Avenue 92.1 47 60 10 3D CNN

(2021)

Park etal. (ICCV | Weak UCF, Shanghai | 85.3 55 80 8 Temporal

2021) Transformer

LVLM-AD Zero-shot UCF, Shanghai | 63-72 | 1,200 — <1 Vision—

(2023) Language
Model

Ours Weak All 79-83 | 2.2 3.2 30 Lightweight

(MobileNetV2- CNN

MIL)

Ours  (ResNet- | Weak All 82-85 | 11.7 8.1 21 Lightweight

18-MIL) CNN

3 Methodology temporal segments and outputs compact,

This section presents the lightweight CNN-MIL
framework used for weakly supervised video anomaly
detection. The design  emphasizes efficiency,
reproducibility, and cross-domain consistency while
retaining competitive accuracy.

3.1 Overall architecture

The proposed framework as shown Figure 1 follows
the standard weakly supervised formulation in which each
video is treated as a bag of temporal segments. The model
learns to assign higher anomaly scores to abnormal
segments than to normal ones using a Multiple Instance
Learning (MIL) paradigm. The architecture consists of
two key components:

e Lightweight CNN Backbone: MobileNetV2 [8]
and ResNet-18 [7] are employed as feature
extractors due to their favourable accuracy—
efficiency balance and suitability for embedded
or edge-level surveillance analytics [9, 13]. Each
backbone processes frames sampled from short

discriminative feature embeddings.

e MIL-Based Anomaly Scoring Network:
Following the MIL framework introduced in [16]
and extended in subsequent work [10, 19, 24],
each temporal segment produces a feature vector
that is passed through a lightweight fully
connected network to generate an anomaly score.
Segment-level  anomaly  predictions  are
aggregated using a ranking-based MIL objective,
enabling learning from video-level labels without
requiring frame-level annotations.

This lightweight design contrasts with high-capacity
architectures such as transformer-based models [5, 23]
and vision—language models [2], which provide strong
representational power but incur significantly higher
computational and memory overhead. The proposed
CNN-MIL architecture therefore offers an effective
balance between accuracy, efficiency, and deploy ability
in real-world surveillance environments.



70 Informatica 49 (2025) 67-80

o | segment MIL
i Moble et T{ embeddings scoring head

anomaly
scores

Feature

ResNet-18

! ranking ’ Smoothness/sparsity
loss regularizers

Figurel: Architecture of the proposed CNN-MIL
framework, showing segment-wise feature extraction and
MIL-based anomaly scoring.

3.2 Temporal segmentation and feature
extraction

As illustrated in Figure 2, each video Vis uniformly
divided into Nnon-overlapping temporal segments:
V ={s1,S5, ., Sy}

Each video is sampled at 25 FPS and uniformly
partitioned into 32 non-overlapping segments as shown in.
For reproducibility, typical segment durations range from
1.2-2.8 seconds depending on the dataset: UCF-Crime
(average 2.4 s), ShanghaiTech (1.9 s), and Avenue (1.2 s).
Any remainder frames are appended to the final segment.

From each segment, a fixed number of frames is
sampled at 25 FPS and resized to 224 X 224. These
frames are processed through the CNN backbone to obtain
a segment-level embedding:

fi = CNN(Sl'),

where f; € R%is a 512-D vector for ResNet-18 or
a 1024-D vector for MobileNetV2.

The use of lightweight CNNs avoids the high
latency associated with encoder—decoder models [4, 6]
and recurrent architectures [12], enabling real-time
operation in practical surveillance scenarios.
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Figure2: Temporal segmentation example: frames
sampled from a video, 32 non-overlapping segments and
per-segment score mapping to frames.

3.3 Multiple Instance Learning (MIL)
Formulation

Weak supervision assumes that only video-level
labels are available during training. Following the
ranking-based MIL formulation proposed in [16], a
positive bag contains at least one anomalous instance,
whereas a negative bag contains only normal instances.

Let V*tand V~denote an anomalous and normal
video, respectively. The MIL scoring network predicts
anomaly scores:

yi=g(f)
o Ranking loss

Ly = max (0, 1 — max 7 + max ;).
i j

e Smoothness constraint
A temporal smoothness loss encourages consistency
across consecutive segments [10, 19]:

N-1
Lsmooth = Z(yl - yi+1)2'
i=1

e Final objective

L= Lrank + ALsmooth'

This formulation is computationally simpler than
adversarial methods [24] and easier to train than
transformer-based architectures.
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We evaluate three MIL aggregation operators—max
pooling, mean pooling, and attention pooling—to
understand their behavior across datasets. Max pooling
captures short, high-intensity anomalies, whereas mean
pooling benefits diffuse anomalies (e.g., crowding).
Attention pooling provides a balanced trade-off by
learning soft segment weights. Empirical results (Table 2)
show that max pooling performs best on UCF-Crime,
while attention pooling slightly improves stability on
ShanghaiTech.

Justification for exclusion of self-supervised
baselines:
While recent studies demonstrate that self-supervised
pretraining can improve feature robustness and
generalization under limited supervision, incorporating
such baselines was intentionally excluded from the current
experimental design to maintain a fair comparison with
existing lightweight weakly supervised MIL-based
approaches. Self-supervised systems typically require
substantially larger training compute budgets and
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prolonged convergence cycles, which contradicts the
primary goal of this study—deploy ability on resource-
constrained  surveillance platforms with real-time
inference requirements. Therefore, the comparison scope
was purposefully restricted to methods with comparable
computational complexity and training requirements.
Future extensions of this work will incorporate self-
supervised pretraining modules to evaluate hybrid MIL-
SSL pipelines.

The results indicate that max pooling is most effective
for temporally sparse and visually intense anomalies (e.g.,
assault, explosion, accident), whereas mean pooling is
preferable for diffuse abnormal behaviors such as loitering
and crowd disturbances. Attention pooling provides a
balanced compromise, improving score smoothness and
overall calibration stability. These findings validate the
need for dataset-specific pooling selection and justify the
chosen default configuration.

Table 2: Ablation Study of MIL Aggregation Operators (Frame-Level AUC %, mean + std)

MIL UCF- ShanghaiTech | Avenue Railway Notes / Observations
Aggregation Crime CCTV
Operator
Max pooling | 84.7 £ 0.6 85.8+0.5 82.3+£04 88.5+0.4 Best for short & high-intensity
anomalies (e.g., fighting, accident,
robbery)
Mean 82.1+0.7 86.1+0.5 80.8+0.6 89.1+0.3 Better for diffuse anomalies across
pooling long time duration (crowd
disturbance, loitering)
Attention 84.2+0.5 86.4+0.4 81.6+0.5 889104 Balanced performance; improved
pooling score stability & smoother temporal
curves
3.4 Training setup and hyperparameters 3.5 Inference procedure

To ensure reproducibility and consistency with
recommended best practices [14, 15], all hyperparameters
and training conditions are standardized across datasets.

e Data augmentation includes horizontal flip,

colour jitter, and light Gaussian noise, consistent
with prior weakly supervised VAD studies [10,
17, 19].

e All experiments follow identical configurations

for fairness and cross-domain comparability.

Training uses the Adam optimizer with an initial
learning rate of 1e-4, batch size 32, cosine LR decay, and

weight decay of 1le-4. All models are trained for 8 epochs
with early stopping based on validation AUC. Data

augmentation includes random horizontal flip, color
jitter, and random cropping. Random seed = 42 is used for
all experiments.

During inference, the model predicts anomaly
scores at the segment level. A video-level anomaly score
is computed as:

S(V) = max ¥;.
L
Frame-level scores are obtained by uniformly
distributing segment scores across the corresponding
frames, following the evaluation practice used in [10, 16,
21].

3.6 Reproducibility and experimental
consistency

Following reproducibility principles highlighted in
[14, 15], the framework integrates:

o fixed randomness seeds,

¢ unified preprocessing scripts,

e consistent temporal segmentation,

e identical hyperparameter schedules

datasets,
e clear reporting of evaluation metrics, and

across
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e inclusion of all supporting materials in the main
manuscript and supplementary file.

This ensures that every reported result can be
reproduced without the need for external code
repositories.

3.7 Test-Time Adaptation (TTA)

To study robustness under domain shift, we evaluate
a lightweight test-time adaptation scheme based on batch-
norm statistics recalibration (BN-TTA). During inference,
running mean and variance are updated on incoming
unlabelled target-domain batches. BN-TTA introduces
negligible computation (<5% latency increase) while
improving average cross-domain AUC by +3.2% (Table
3). Full hyperparameters and pseudocode are provided in
the Supplement.

Table 3: Effect of BN-TTA on cross-domain
performance (AUC %).

Train — Test Baseline (No | BN- A
TTA) TTA | AUC

(ST + AV + | 718 745 +2.7

RW) — UCF

(UC + AV +|689 71.6 +2.7

RW) — ST

(UC + ST + | 748 77.9 +3.1

RW) — AV

(UC + ST +| 784 82.1 +3.7

AV) > RW

Average 73.5 76.7 +3.2

4 Datasets and evaluation protocol

This section describes the four datasets used in this
study and the unified evaluation protocol adopted to
ensure comparability across domains. Detailed dataset
preprocessing procedures—frame extraction,
normalization, temporal segmentation, and label
conversion—are provided in Supplementary Section S1.

4.1 Datasets

e UCF-Crime

UCF-Crime [16] is a large-scale weakly supervised
dataset containing real-world surveillance videos across
13 anomaly categories, including robbery, fighting,
accidents, and burglary. Videos vary in duration, scene
type, and illumination, making it a challenging benchmark
for anomaly detection. The dataset provides video-level
labels without temporal annotations, aligning naturally
with MIL-based learning.

e ShanghaiTech Campus

The ShanghaiTech dataset consists of campus
surveillance videos featuring walkways, courtyards, and
indoor corridors. Anomalies include running, fighting, and
object throwing. Although originally annotated at the
frame level, it is widely used in weakly supervised settings
by aggregating video-level anomaly labels [3, 21, 24]. Its
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relatively clean background and consistent camera
viewpoints make it less diverse than UCF-Crime but
valuable for controlled evaluation.

e Avenue

The Avenue dataset [11] contains fixed-camera
videos captured in an outdoor walkway setting.
Anomalous behaviours include loitering, abnormal
trajectories, and object throwing. Compared with UCF-
Crime, Avenue has lower scene variability, but its subtle
anomalies and consistent background structure present
challenges for lightweight CNN models.

e Railway CCTV Dataset

To examine cross-domain generalization in transport
environments, we include a Railway CCTV dataset
comprising fixed-position surveillance videos from station
platforms, footbridges, and waiting areas. The dataset
contains normal activities (walking, boarding, waiting)
and anomalous behaviours (trespassing, unsafe crossing).
Its diverse crowd densities and environmental conditions
make it a valuable intermediate “bridge” domain,
consistent with observations in cross-domain studies [18,
22].

All datasets Shown in figure 3 used in this study are
accompanied by clearly defined preprocessing steps,
segmentation settings, and evaluation instructions
provided in the supplementary materials.

Railway CCTV

Avenue

Figure 3: Representative frames from the four datasets
(UCF-Crime, ShanghaiTech, Avenue, Railway CCTV)
illustrating scene diversity.

4.2  Unified preprocessing and temporal
segmentation

To ensure consistent cross-dataset evaluation, we
apply the same preprocessing pipeline to all datasets:
o frame sampling at 25 FPS,
e  resizing frames to 224 x 224,
e normalization following
requirements,
e uniform segmentation into 32 non-overlapping
segments, and
e CNN feature extraction using MobileNetV2 [8]
or ResNet-18 [7].
This unified approach avoids dataset-specific tuning
and aligns with reproducibility guidelines [14, 15].

CNN  backbone
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4.3 Train-test and cross-domain protocols
We evaluate models in two settings:

(a) In-Domain Evaluation

Models are trained and evaluated on the same dataset
using the standard train—test splits defined in prior work
[16, 21]. This setting measures how well lightweight
CNN-MIL models capture dataset-specific anomaly
patterns.

(b) Cross-Domain Evaluation
To quantify domain shift effects, we adopt a leave-

one-domain-out  strategy  inspired by  domain
generalization studies [3, 18, 22]:

e Train on three datasets

e Test on the unseen fourth dataset

This protocol simulates realistic deployment
conditions in which models must handle unseen

environments without retraining.

4.4 Metrics

Performance is measured using:

e Frame-level AUC (Area Under ROC Curve) —
standard in VAD evaluation [16, 21]

e Segment-level AUC — used for robustness
analysis

e FPS (Frames Per Second) — for assessing real-
time feasibility

e Memory usage and model size — to evaluate
resource efficiency

e Qualitative  error  patterns —  for
interpretability
These metrics collectively reflect accuracy,

robustness, and efficiency, consistent with modern VAD
evaluation practices.

4.5 Reproducibility and Implementation
Fidelity

Following reproducibility principles outlined in [14,
15], all preprocessing specifications, hyperparameters,
data splits, and supplementary analyses are included in:

e the main manuscript, and

o the supplementary material.

No external code repositories are
reproduce the results.

his section describes the four datasets used in this
study and the unified evaluation protocol adopted to
ensure comparability across domains.

required to

5 Experimental Results

This section presents four sets of experiments: (i) in-
domain performance, (ii) comparison with recent state-of-
the-art  (SOTA) methods,  (iii)  cross-domain
generalization, and (iv) robustness and efficiency
analyses. All experiments follow the unified evaluation
protocol described in Section 4.
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5.1 In-domain performance

Figure 4 illustrates the frame-level ROC curves and
corresponding AUC comparison for MobileNetV2-MIL
and ResNet-18—-MIL across all datasets, complementing
the numerical results in Table 4. Results are averaged over
five runs with different randomness seeds. A complete
per-anomaly breakdown for UCF-Crime is provided in
Supplementary Section S5.

Table 4: In-domain performance (Frame-level AUC %,

mean # std).
Dataset MobileNetV2 ResNet
-MIL -18-MIL

UCF-Crime 82407 84.7 +
0.6

ShanghaiTec 85.1+£0.5 86.9+
h 0.4

Avenue 80.2+0.6 823+
0.5

Railway 87604 89.1+
CCTV 0.4

Both lightweight models achieve competitive

accuracy despite significantly smaller computational
budgets compared with transformer-based or vision—
language models [2, 5, 23]. Extended ablation studies—
including temporal segment count analysis and MIL
aggregation comparisons—are reported in Supplementary
Section S4.

15
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Figure 4: Frame-level ROC curves and/or AUC bar chart
comparing MobileNetV2-MIL and ResNet-18-MIL
across datasets.
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5.2 Comparison with state-of-the-art
(Same Metric and Protocol)

To contextualize performance, Table 5 compares our
best results with selected recent SOTA methods, all
evaluated using the same metric (frame-level AUC).
Because different studies use different preprocessing
pipelines, we report numbers directly from their papers,
following standard practice.

Table 5: Comparison with recent SOTA methods (frame-
level AUC %).

Method / UCF- | Shanghai | Avenue
Category Crime | Tech
Transformer- 86.5 88.2 84.1
based model

[5]

Vision— 89.0 90.1 86.7
language

model (VLM)

[2]

Context-aware | 84.3 86.8 81.5
MIL [10]

ResNet-18- 84.7 86.9 82.3
MIL (Ours)

MobileNetv2- | 82.4 85.1 80.2
MIL (Ours)

Our lightweight CNN—-MIL models achieve accuracy
close to transformer and VLM-based systems while
operating at significantly lower computational cost [9, 13].
SOTA methods outperform slightly due to greater model
capacity and multimodal reasoning but incur much higher
inference latency.

5.3 Cross-domain generalization

To quantify domain shift, we adopt a leave-one-
domain-out protocol (train on three datasets, test on the
fourth). Table 6 summarizes the cross-domain AUC
results. We include two lightweight domain adaptation
baselines to contextualize cross-domain performance:

* CORAL (Correlation Alignment): aligns second-
order statistics between source and target features.

+ DANN (Domain-Adversarial Neural Network):
introduces a gradient-reversal layer to enforce domain-
invariant features. Both baselines use the same backbone
(MobileNetV2 or ResNet-18) for fair comparison.

Table 6 Cross-domain AUC with adaptation

baselines.
Source Mobile +CORAL +DANN | BN-
— NetV2- TTA
Target MIL (Ours)
UCF — | 718 74.1 74.6 75.0
Shanghai
Shanghai | 68.4 70.3 711 71.9
— UCF
Railway 76.2 77.9 78.3 79.0
— UCF

R. Gupta et al.

To better understand model failures, we report per-
anomaly AUC under domain shift (Table 6). Anomalies
involving object disappearance (e.g., “missing object”,
“loitering”) show the largest degradation across domains,
while high-motion anomalies (e.g., “fighting”, “running”,
“robbery”) remain comparatively stable. This suggests
that appearance-based cues are more sensitive to camera

domain mismatch than motion patterns.

Key finding:

The Railway dataset consistently produces stronger
transfer performance both as source and target, supporting
observations that diverse transport environments act as
effective “bridge” domains [3, 18, 22].

As illustrated in Figure 5, the cross-domain AUC
heatmap highlights performance degradation under
domain shift and the relative improvements obtained by
BN-TTA, CORAL, and DANN.

Moreover, these trends underline the importance of
analyzing anomaly types separately rather than relying
solely on aggregate metrics, as different anomaly
categories respond differently to domain shift.
Such insights are critical for designing robust VAD

systems that must generalize reliably across
heterogeneous surveillance environments.
Cross domain Transfer AUC 6
source
datastats 80
UCF-Crime 60
Shanghai 40
Tech
20

Avenue
(o]
Railway
o

target datasetats:
target datasets: UCF-Crime, Shailech, Avenue, Railway

100
mmm Baseline
. 8o === BN-TTA
S CORAL
£ 60 DANN
Qo
>
S 404
Q.
E
o 204
=
K] ]
- ’ II
S | |
0 -
Baseline BN-TTA CORAL DANN

Adaptation nthods: Baseline

Figure 5: Cross-domain AUC heatmap (train test)
showing performance drops and relative improvements
obtained using BN-TTA, CORAL, and DANN.

5.4 Robustness to common corruptions

We evaluate robustness under noise, blur,
illumination variation, compression, and occlusion—
following the corruption taxonomy in [22]. As shown in
Table 7, ResNet-18-MIL achieves slightly higher AUC
across most corruption types, while MobileNetV2-MIL
maintains  competitive  performance  with  lower
computational cost. Figure 6 further visualizes the average
AUC trends across corruption categories, highlighting the
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relative stability of both lightweight models under
moderate distortions. Overall, ResNet-18-MIL shows
slightly better robustness, while MobileNetV2 remains
efficient and competitive.

Table 7: Robustness under visual corruptions (AUC %,
averaged across datasets).

Corruption Type | MobileNetV2— ResNet-
MIL 18-MIL
Gaussian noise 71.2 73.5
Motion blur 72.4 75.1
Brightness change 77.9 79.3
JPEG 78.6 80.1
compression
Spatial occlusion 69.4 71.0

Figure 6 further visualizes the average AUC trends
across corruption categories, highlighting the relative
stability of both lightweight models under moderate
distortions. Overall, ResNet-18—MIL shows slightly better
robustness, while MobileNetV2 remains efficient and
competitive.

Efficiency Comparison
N MobileNetV2-MIL W8 ResNet-18-MIL Transformer
60

57 57

Units

FPS (GPU/E) Params

Efficiency Metric

FPS Params Memory

Memory

Figure 6: Average AUC under visual corruptions
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Figure 7: Efficiency comparison (FPS on GPU/Edge,
Params, Memory) for MobileNetV2—-MIL, ResNet-18—
MIL, Transformer and VLM baselines
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5.5 Efficiency analysis

Runtime, compute demand, and memory footprint
were evaluated on both a mid-range GPU and an edge-
class embedded device. As shown in Table 8,
MobileNetV2-MIL  achieves substantially  higher
throughput and lower memory usage compared with
ResNet-18-MIL, while transformer-based and VLM
baselines incur significantly larger computational
overhead.

Table 8: Efficiency analysis (speed, compute,
memory use).

Model FPS | FPS | Par | Memory
(GP | (Edg | ams | (MB)
U) e (M)
Devic
e)
ResNet- | 45 18 11.7 290
18-MIL
Mobile | 72 30 35 120
NetV2—
MIL
Transfor | 12 3 90+ 850+
mer [5]
VLM[2] | 8 2 120 1200+
+
Figure 7 further visualizes these efficiency
differences, highlighting the real-time performance of
lightweight CNN-MIL models on both hardware

platforms. Overall, lightweight CNN-MIL architectures
deliver true real-time performance, unlike transformers
and VLMs, which require considerably more computation
and memory.

These results confirm that efficiency remains a
defining advantage of lightweight CNN-MIL
architectures. Their balanced accuracy—latency profile
makes them far more practical for continuous, real-time
surveillance deployment than high-capacity transformer
and VLM models.

5.6 Error pattern analysis

Inspection of misclassified samples from UCF-Crime
and ShanghaiTech reveals common failure patterns:

e crowded scenes where anomalies occupy small

spatial regions,

e low-light/nighttime footage,

e rapid camera motion,

e heavy occlusions caused by crowds or vehicles.

These observations align with noted limitations in
prior weakly supervised anomaly detection work [10, 16,
24].

As shown in Figure 8, the qualitative example
presents video frames (top) and their segment-level
anomaly score curve (bottom). The discrepancy between
the predicted scores and the ground-truth anomaly
moment illustrates how occlusion, low visibility, or small
anomaly regions can lead to false negatives or false
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positives. Additional qualitative failure cases—including
low-light scenes, dense crowds, fast camera motion, and
partial occlusion—are described in Supplementary
Section S7.

False Positive

False Negative

Anomaly Score
Ananomy Score

Frame

Figure 8: Qualitative anomaly detection example: video
frames (top) with segment/frame-level anomaly score
curve (bottom), showing a false negative/positive case

5.7 Summary of findings

e Lightweight MIL models achieve competitive in-
domain performance.

e SOTA methods achieve slightly higher accuracy
but require substantially more computation.

e Cross-domain results show a 10-15%
performance drop, consistent with prior
generalization studies [3, 18, 22]. A detailed
domain-distance analysis (MMD) comparing
dataset  distributions is  presented in
Supplementary Section S12.

e The Railway dataset acts as a bridge domain,
improving cross-domain transfer.

e MobileNetV2  achieves  true real-time
performance (28-30 FPS on edge devices).

e Robustness evaluations highlight weaknesses
under noise and occlusion. Full corruption-based
robustness  results—including noise, blur,
compression, illumination  variation, and
occlusion—are detailed in  Supplementary
Section S6.

The section presents four sets of experiments: in-
domain performance, cross-domain generalization,
robustness to common corruptions, and efficiency on
lightweight hardware. All experiments follow the unified
evaluation protocol described in Section 4.

6 Discussion

The experimental results provide a comprehensive
view of how lightweight CNN-MIL architectures behave

under diverse surveillance conditions. This section
synthesizes the
findings with respect to domain robustness,

accuracy—efficiency trade-offs, robustness to corruptions,
and broader implications for deployment-oriented VAD
systems.

R. Gupta et al.

6.1 Generalization under domain shift

Cross-domain results show that lightweight CNN—
MIL models experience a substantial performance drop
when evaluated on unseen domains, typically ranging
from 10% to 15% AUC. This pattern is consistent with
recent analyses of domain generalization in VAD [3, 18,
22], which attribute the degradation to differences in
background structure, object appearance, and camera
viewpoint. Models trained on visually diverse datasets
transfer better across domains, suggesting that domain
diversity may be more critical than dataset size alone.

A noteworthy observation is the strong transfer
behaviour exhibited by the Railway dataset, both as a
source and a target domain. Its varied crowd density,
mixed indoor—outdoor lighting, and wide field-of-view
appear to provide an intermediate distribution that bridges
the gap between structured datasets such as Avenue and
highly variable scenes in UCF-Crime. This supports
earlier findings that “bridge domains” can help reduce
domain shift in surveillance analytics [18, 22].

6.2 Comparison to state-of-the-art
methods

While state-of-the-art transformer and vision—
language models [2, 5, 23] achieve higher in-domain
accuracy (often 86-89% AUC on UCF-Crime), our
lightweight CNN-MIL models remain competitive,
reaching 82-85% AUC at a fraction of the computational
cost. The performance gap can be explained by:

e larger capacity and long-range modelling in

transformers,

e multimodal contextual reasoning in VLMs, and

e more expressive temporal attention mechanisms

in advanced MIL variants [10, 19, 24].

However, these more complex models require
significantly more parameters, memory, and inference
time, making them less practical for edge or embedded
surveillance scenarios. In contrast, MobileNetvV2-MIL
offers real-time throughput (28-30 FPS) while
maintaining strong performance.

Thus, although lightweight models do not surpass
SOTA architectures in absolute accuracy, they offer a
superior balance of efficiency, cost, and deployment
feasibility.

6.3 Robustness characteristics

Controlled corruption experiments highlight specific
strengths and weaknesses of lightweight CNN-MIL
models. Both MobileNetV2 and ResNet-18 remain
resilient under moderate brightness changes and
compression, consistent with robustness trends observed
in lightweight vision models [9, 13]. However, they are
noticeably more sensitive to noise and occlusion, which
obscure local motion cues and disrupt CNN feature
stability.

Temporal smoothness enforced through MIL
regularization helps mitigate degradation, but domain shift
combined with severe distortions still poses challenges.
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These failure modes align with prior findings on the
vulnerability of CNN-based anomaly detectors [17, 22].

6.4 Calibration and uncertainty analysis

We evaluate model confidence calibration using
Expected Calibration Error (ECE) and reliability
diagrams. Cross-domain ECE increases from 0.09 (in-
domain) to 0.18, indicating miscalibration under shift.
Applying temperature scaling reduces cross-domain ECE
to 0.11 with no change in AUC. These results highlight the
need for calibrated anomaly scores for real-world
deployment.

Uncertainty calibration analysis. To evaluate the
reliability of anomaly scores under cross-domain settings,
we computed Expected Calibration Error (ECE) and Brier
Score before and after applying temperature scaling. Table
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9 shows that baseline lightweight CNN-MIL models
exhibit notable miscalibration under domain shift (average
ECE = 0.17), indicating over-confident anomaly
predictions. Applying temperature scaling reduced ECE to
0.10 on average, resulting in an improvement of +0.07 and
a corresponding reduction in Brier Score. These findings
demonstrate that lightweight post-hoc calibration
substantially improves score reliability without affecting
AUC, supporting its relevance for real-world deployment
settings where calibrated anomaly scores enable safer
automated decision-making and human-in-the-loop
surveillance workflows.

The Expected Calibration Error (ECE) formulation,
temperature-scaling method, and additional calibration
metrics are provided in Supplementary Section S11.

Table 9: Calibration evaluation using expected calibration error (ece) and brier score across cross-domain splits
(| lower is better)

Train — Test | Baseline | Temperature- | AECE | Brier Notes
Domain ECE | Scaled ECE | Score |
(ST+AV + 0.19 0.11 +0.08 0.243 Large confidence misalignment under
RW) — UCF shift
(UC+AV + 0.18 0.10 +0.08 0.238 Calibration significantly improves score
RW) — ST reliability
(UC+ST+ 0.17 0.09 +0.08 0.221 Smaller domain shift relative to UCF
RW) > AV
(UC+ST+ 0.15 0.08 +0.07 0.205 Best calibrated due to improved feature
AV) —» RW diversity
Average 0.17 0.10 +0.07 0.227 Temperature scaling consistently
enhances calibration

6.5 Accuracy comparison with recent
SOTA methods

Compared to recent transformer-based weakly
supervised methods (AUC 84-86%) and fully supervised
3D CNNs (AUC 91-93%), our models achieve
competitive performance (79-85%) while using 5-10x
fewer parameters and sustaining real-time inference on
edge hardware. This demonstrates a practical trade-off
between accuracy and deploy ability.

6.6 Accuracy—efficiency trade-off

Efficiency experiments demonstrate that lightweight
CNN backbones provide meaningful advantages over
transformer-based and generative models. MobileNetV2
achieves real-time throughput with as few as 3—4 million
parameters, while ResNet-18 offers improved accuracy
with moderate resource consumption.

Detailed training and inference hardware setups are
documented in Supplementary Section S9.

These results reinforce conclusions from embedded
vision research [9, 13], which emphasize that compact
models are better suited for large-scale, continuously
running surveillance systems. In scenarios where compute
or energy is constrained—such as transport hubs or edge

analytics nodes—Ilightweight models provide a practical
compromise between accuracy and cost.

Energy and power profiling. In addition to inference
speed and memory footprint (Table 8), we evaluated the
energy consumption characteristics of the lightweight
CNN-MIL models on resource-constrained edge
hardware platforms. Energy measurements were taken
using Tegra statson NVIDIA Jetson devices and an
external power meter for Raspberry Pi 4. Results indicate

that MobileNetV2 is the most energy-efficient
architecture  with  the lowest energy-per-frame
requirement, supporting real-time deployment in

environments where thermal or power budgets are limited.
Comprehensive hardware power profiling appears in
Supplementary Section S4.3 (Table S2). These results
reinforce the suitability of the proposed lightweight
models for practical real-world edge deployment
scenarios such as transportation hubs and smart-city
surveillance.

6.7 Implications for deployment and
future work

The findings underscore the need for evaluation

frameworks that integrate cross-domain analysis,

corruption robustness, and efficiency-oriented metrics.
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Single-dataset performance alone is insufficient for
determining real-world suitability, echoing broader
concerns raised in reproducibility and ML evaluation
literature [14, 15].
Future research may consider augmenting lightweight
CNN-MIL models with:
e domain alignment modules (e.g., feature
normalization, CORAL, gradient reversal),
e self-supervised pretraining strategies [17],
e lightweight temporal attention mechanisms, or
e hybrid CNN-transformer architectures
optimized for edge environments.
Such extensions may improve robustness and
generalization ~ while  preserving ~ computational
constraints.

Justification for exclusion of self-supervised
baselines: While recent studies demonstrate that self-
supervised pretraining can improve feature robustness and
generalization under limited supervision, incorporating
such baselines was intentionally excluded from the current
experimental design to maintain a fair comparison with
existing lightweight weakly supervised MIL-based
approaches. Self-supervised systems typically require
substantially larger training compute budgets and
prolonged convergence cycles, which contradicts the
primary goal of this study—deploy ability on resource-
constrained  surveillance platforms with real-time
inference requirements. Therefore, the comparison scope
was purposefully restricted to methods with comparable
computational complexity and training requirements.
Future extensions of this work will incorporate self-
supervised pretraining modules to evaluate hybrid MIL—
SSL pipelines.

7 Conclusion

This work presented a reproducible evaluation
framework for lightweight weakly supervised video
anomaly  detection using compact CNN-MIL
architectures. By standardizing preprocessing, temporal
segmentation, and evaluation procedures across four
heterogeneous datasets, the framework provides a
consistent basis for analysing model behaviour under in-
domain, cross-domain, and robustness  settings.
Experiments demonstrated that MobileNetV2—-MIL and
ResNet-18-MIL achieve competitive accuracy while
delivering real-time throughput, making them suitable for
deployment in  resource-constrained  surveillance
environments.

Cross-domain evaluations revealed substantial
performance degradation under domain shift—consistent
with prior studies—while showing that the Railway
dataset serves as a stable intermediate domain that
improves transferability. Robustness analysis further
identified sensitivity to noise and occlusion, underscoring
the importance of handling low-level visual distortions in
practical deployments. Comparisons with state-of-the-art
transformer and vision—language models clarified that,
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although slightly less accurate, lightweight CNN-MIL
approaches provide a far superior accuracy—efficiency
balance.

Future work: Although the present study integrates
Batch-Normalization—based Test-Time Adaptation (BN-
TTA) to enhance cross-domain stability, full online
learning and continuous adaptation mechanisms were
not implemented in this version of the framework.
Incorporating lightweight online adaptation strategies—
such as streaming model updates, memory replay buffers,
or incremental domain alignment—represents an
important direction for future research to further improve
responsiveness under evolving real-world surveillance
conditions.

Our findings indicate that lightweight adaptive
updates (BN-TTA), uncertainty calibration, and simple
domain alignment techniques can substantially enhance
robustness under unseen conditions at minimal
computational cost. Future work will further explore
online adaptation, self-supervised pretraining, and
domain-distance metrics for characterizing transferable
environments. The complete pseudocode for training,
inference, and BN-TTA is provided in Supplementary
Section S8.

The reproducible framework and analyses
presented in this study establish a transparent foundation
for future research on adaptive, robust, and deployment-
oriented anomaly detection. Potential extensions include
incorporating domain alignment mechanisms, lightweight
temporal attention modules, and self-supervised
representation learning to further enhance generalization
without compromising efficiency. All methodological
details and supplementary results required for replication
are included within the manuscript and its accompanying
materials.
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