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Video anomaly detection (VAD) is increasingly deployed in large-scale CCTV networks, yet most existing 

approaches are evaluated only in single-domain settings, limiting their reliability in real-world 

deployment. This paper presents a reproducible evaluation framework for lightweight, weakly supervised 

VAD models that combine compact CNN backbones (MobileNetV2 and ResNet-18) with a Multiple 

Instance Learning (MIL) ranking objective. Our framework integrates lightweight CNN backbones 

(MobileNetV2 and ResNet-18) with a ranking-based multiple-instance learning (MIL) scheme using 

smoothness and sparsity constraints Complete architectural details of MobileNetV2, ResNet-18, and the 

MIL ranking head are presented in Supplementary Section S2. Across three standard datasets, our models 

achieve an in-domain AUC of 79–85%, with cross-domain performance drops of up to 15%. On Jetson 

Nano, MobileNetV2–MIL sustains 28–30 FPS with only 14 MB memory usage, demonstrating deploy 

ability on low-power hardware. The framework standardizes preprocessing, temporal segmentation, and 

evaluation protocols across UCF-Crime, ShanghaiTech, Avenue, and a Railway CCTV dataset, enabling 

transparent in-domain and cross-domain benchmarking. Experiments show that lightweight CNN–MIL 

models achieve competitive in-domain performance (AUC 79–85%) while maintaining real-time 

throughput on edge hardware. Cross-domain evaluations quantify the impact of domain shift, with 

accuracy reductions of up to 15%, and identify the Railway dataset as a stable intermediate domain that 

improves transferability. Efficiency analyses further demonstrate the practical advantages of compact 

models in resource-constrained surveillance environments. All methodological details, configurations, 

and supplementary analyses required to reproduce the experiments are provided in the main manuscript 

and accompanying supplementary materials. Exact training hyperparameters used across all experiments 

are listed in Supplementary Section S3. 

Povzetek:  Članek predstavi ponovljiv okvir za ocenjevanje lahkih, šibko nadzorovanih VAD modelov 

(MobileNetV2/ResNet-18 + MIL), ki dosegajo AUC 79–85 % in delujejo v realnem času na Jetson Nano, 

hkrati pa pokažejo do 15 % padec pri prenosu med domenami.

1 Introduction 
The rapid expansion of CCTV networks across 

transportation hubs, commercial complexes, campuses, 

and public environments has established video anomaly 

detection (VAD) as a critical component of modern 

surveillance intelligence. VAD aims to automatically 

identify unusual or security-critical events—such as 

accidents, theft, or violent behaviour—in long, untrimmed 

video streams. Early approaches relied on handcrafted 

spatiotemporal descriptors, reconstruction-based models, 

and autoencoders [4], as well as temporal regularity 

learning [6], high-speed fixed-camera analysis [11], and 

recurrent architectures [12]. These techniques, as 

summarized in recent surveys [1, 3], exhibit limited 

robustness to illumination variations, viewpoint 

differences, and scene complexity. 

 

 

Deep learning has significantly improved anomaly 

detection performance by providing more expressive 

video representations. CNN models such as ResNet [7] 

and MobileNet [8] have proven effective in resource-

constrained environments and are widely adopted in 

lightweight surveillance analytics [9, 13]. Weakly 

supervised learning using Multiple Instance Learning 

(MIL) has become particularly influential, beginning with 

the seminal ranking-based MIL framework of Sultani et 

al. [16], followed by attention-guided MIL [10], 

contrastive MIL [19], and generative weak-supervision 

strategies [24]. Knowledge distillation [20] and self-

supervised representation learning [17] have also been 

explored to enhance efficiency and reduce labelling 

requirements. 
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Despite these advancements, most VAD models are 

evaluated only within isolated datasets such as UCF-

Crime, ShanghaiTech, and Avenue, offering limited 

insight into cross-domain robustness. Recent research on 

domain generalization [3, 18, 22] emphasizes that even 

strong models suffer degradation under shifts in scene 

type, camera perspective, or environmental conditions. 

Parallel work on transformers [5, 23] and vision–language 

models [2] demonstrate improved performance on 

standard benchmarks, but high computational cost and 

inconsistent evaluation pipelines hinder deployment on 

practical surveillance hardware. 

To address these limitations, this paper introduces a 

reproducible and transparent evaluation framework for 

lightweight CNN–MIL models based on MobileNetV2 [8] 

and ResNet-18 [7]. Following reproducibility guidelines 

from broader machine-learning studies [14, 15], the 

framework standardizes preprocessing, temporal 

segmentation, and evaluation protocols across four 

heterogeneous datasets: UCF-Crime [16], ShanghaiTech, 

Avenue [11], and a Railway CCTV dataset. This unified 

design enables systematic analysis of (1) in-domain 

accuracy, (2) cross-domain generalization under domain 

shift, (3) robustness to noise, blur, illumination variation, 

and compression, and (4) computational performance on 

lightweight hardware. 

This study is guided by the following research 

questions: 

 

• RQ1 — Cross-Domain Generalization: 

How well do lightweight CNN–MIL models 

generalize across surveillance environments with 

differing visual and contextual characteristics? 

• RQ2 — Accuracy–Efficiency Trade-Off: 

What trade-offs arise between anomaly-detection 

accuracy and real-time performance when 

compact CNN–MIL models are deployed on 

edge or embedded devices? 

• RQ3 — Robustness and Transferability: 

How do common visual corruptions and 

intermediate surveillance domains affect 

robustness, feature stability, and cross-domain 

transfer patterns? 

 

By addressing these questions, the paper provides a 

deployment-oriented and empirically grounded analysis of 

lightweight weakly supervised VAD models. All 

methodological details, hyperparameters, evaluation 

settings, and supplementary analyses required for 

reproducibility are included in the main manuscript and 

accompanying supplementary materials, in accordance 

with Informatica guidelines. 

2 Related work 
Research on video anomaly detection (VAD) spans 

several methodological directions, including 

reconstruction-based modelling, weakly supervised 

learning, transformer architectures, and cross-domain 

robustness analysis. Early deep-learning approaches 

focused on reconstructing normal patterns using 

autoencoders [4] and temporal regularity modelling [6]. 

High-speed detection frameworks [11] and recurrent 

architectures such as convolutional LSTMs [12] further 

expanded the capacity to capture temporal dynamics. 

Comprehensive surveys [1, 3] highlight both the progress 

and persistent limitations of these architectures, 

particularly their sensitivity to scene variations and 

domain shift. 

2.1 Weakly supervised VAD 

Weak supervision has become widely adopted due to 

the high cost of frame-level annotation. The MIL-ranking 

formulation introduced by Sultani et al. [16] remains a 

foundational method, enabling learning from video-level 

labels. Subsequent works have extended the MIL 

paradigm through attention mechanisms [10], contrastive 

learning [19], and generative adversarial modelling [24]. 

Knowledge distillation strategies [20] and self-supervised 

representation learning [17] have also been explored to 

improve model compactness and reduce reliance on 

labelled data. 

2.2 Lightweight and efficient architectures 

Efficient CNN backbones such as ResNet [7] and 

MobileNet [8] have been adopted in real-time and 

embedded surveillance settings due to their favourable 

accuracy–efficiency balance. Recent studies [9, 13] 

demonstrate the suitability of lightweight architectures for 

edge deployment, motivating further evaluation of their 

robustness, latency, and resource demands in anomaly 

detection pipelines. 

2.3 Transformers and vision–language 

models 

Transformer architectures [5] and vision–language 

models [2] have recently achieved strong anomaly 

detection performance on standard benchmarks. However, 

as highlighted in surveys [23], these models introduce 

significantly higher computational costs, longer inference 

times, and increased deployment complexity. Their 

evaluation pipelines also differ widely across studies, 

complicating direct comparison with lightweight CNN-

based systems. 

2.4 Domain generalization and robustness 

Recent work emphasizes the importance of 

evaluating VAD models under domain shift and 

heterogeneous surveillance environments. Studies on 

domain generalization [3, 18, 22] reveal the challenges 

posed by variations in camera perspective, scene context, 

object density, and environmental conditions. 

Benchmarks focusing on robustness [22] and real-world 

cross-scene evaluation [18] show that even high-

performing models degrade substantially when transferred 
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across domains, underscoring the need for standardized 

cross-domain protocols. 

2.5 Reproducibility in machine learning 

Ensuring transparent and replicable experimental 

practices is increasingly recognized as essential in 

machine-learning research. Guidelines and analyses in 

[14, 15] emphasize the importance of standardized 

preprocessing, consistent evaluation protocols, and clear 

reporting of hyperparameters—principles that directly  

motivate the reproducible evaluation framework 

adopted in this work. Despite substantial progress in video 

anomaly detection, existing literature still lacks a unified 

and reproducible assessment of lightweight CNN–MIL 

architectures across multiple domains, robustness 

conditions, and explicit efficiency constraints. These gaps 

form a central motivation for this study. 

A comparative overview of recent VAD approaches 

is provided in Table 1, highlighting key differences in 

supervision type, computational efficiency, and 

performance across datasets. As the results show, our 

lightweight CNN–MIL models achieve competitive 

accuracy while maintaining substantially lower 

computational cost and higher inference speed than 

existing methods.  

 

Table 1: Comparative summary of representative video anomaly detection methods. 

 

 

3 Methodology 
        This section presents the lightweight CNN–MIL 

framework used for weakly supervised video anomaly 

detection. The design emphasizes efficiency, 

reproducibility, and cross-domain consistency while 

retaining competitive accuracy. 

3.1 Overall architecture 

The proposed framework as shown Figure 1 follows 

the standard weakly supervised formulation in which each 

video is treated as a bag of temporal segments. The model 

learns to assign higher anomaly scores to abnormal 

segments than to normal ones using a Multiple Instance 

Learning (MIL) paradigm. The architecture consists of 

two key components: 

 

• Lightweight CNN Backbone: MobileNetV2 [8] 

and ResNet-18 [7] are employed as feature 

extractors due to their favourable accuracy–

efficiency balance and suitability for embedded 

or edge-level surveillance analytics [9, 13]. Each 

backbone processes frames sampled from short  

temporal segments and outputs compact, 

discriminative feature embeddings. 

• MIL-Based Anomaly Scoring Network: 

Following the MIL framework introduced in [16] 

and extended in subsequent work [10, 19, 24], 

each temporal segment produces a feature vector 

that is passed through a lightweight fully 

connected network to generate an anomaly score. 

Segment-level anomaly predictions are 

aggregated using a ranking-based MIL objective, 

enabling learning from video-level labels without 

requiring frame-level annotations. 

 

This lightweight design contrasts with high-capacity 

architectures such as transformer-based models [5, 23] 

and vision–language models [2], which provide strong 

representational power but incur significantly higher 

computational and memory overhead. The proposed 

CNN–MIL architecture therefore offers an effective 

balance between accuracy, efficiency, and deploy ability 

in real-world surveillance environments.  
 

 

Method & Year Supervision Dataset(s) 

Used 

AUC 

(%) 

Params 

(M) 

FLOPs 

(G) 

Inference 

FPS 

Notes 

Sultani et al. 

(CVPR 2018) 

Weak UCF-Crime 75.4 25 32 18 MIL Ranking 

Liu et al. (CVPR 

2022) 

Weak ShanghaiTech, 

UCF 

84.6 28 35 16 Transformer 

MIL 

Zaheer et al. 

(2021) 

Full Avenue 92.1 47 60 10 3D CNN 

Park et al. (ICCV 

2021) 

Weak UCF, Shanghai 85.3 55 80 8 Temporal 

Transformer 

LVLM-AD 

(2023) 

Zero-shot UCF, Shanghai 63–72 1,200 — <1 Vision–

Language 

Model 

Ours 

(MobileNetV2–

MIL) 

Weak All 79–83 2.2 3.2 30 Lightweight 

CNN 

Ours (ResNet-

18–MIL) 

Weak All 82–85 11.7 8.1 21 Lightweight 

CNN 
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Figure1: Architecture of the proposed CNN–MIL 

framework, showing segment-wise feature extraction and 

MIL-based anomaly scoring. 

 

3.2 Temporal segmentation and feature 

extraction 

As illustrated in Figure 2, each video 𝑉is uniformly 

divided into 𝑁non-overlapping temporal segments: 

 

𝑉 = {𝑠1, 𝑠2, … , 𝑠𝑁}. 
          

Each video is sampled at 25 FPS and uniformly 

partitioned into 32 non-overlapping segments as shown in. 

For reproducibility, typical segment durations range from 

1.2–2.8 seconds depending on the dataset: UCF-Crime 

(average 2.4 s), ShanghaiTech (1.9 s), and Avenue (1.2 s). 

Any remainder frames are appended to the final segment. 

From each segment, a fixed number of frames is 

sampled at 25 FPS and resized to 224 × 224. These 

frames are processed through the CNN backbone to obtain 

a segment-level embedding: 

 

𝐟𝑖 = CNN(𝑠𝑖), 
 

where 𝐟𝑖 ∈ ℝ𝑑is a 512-D vector for ResNet-18 or 

a 1024-D vector for MobileNetV2. 

The use of lightweight CNNs avoids the high 

latency associated with encoder–decoder models [4, 6] 

and recurrent architectures [12], enabling real-time 

operation in practical surveillance scenarios. 

 

 

 

 

 

 

 
Figure2: Temporal segmentation example: frames 

sampled from a video, 32 non-overlapping segments and 

per-segment score mapping to frames. 

3.3 Multiple Instance Learning (MIL) 

Formulation 

Weak supervision assumes that only video-level 

labels are available during training. Following the 

ranking-based MIL formulation proposed in [16], a 

positive bag contains at least one anomalous instance, 

whereas a negative bag contains only normal instances. 

Let 𝑉+and 𝑉−denote an anomalous and normal 

video, respectively. The MIL scoring network predicts 

anomaly scores: 

𝑦̂𝑖 = 𝑔(𝐟𝑖) 

• Ranking loss 

 

ℒrank = max⁡(0,  1 − max⁡
𝑖

𝑦̂𝑖
+ +max⁡

𝑗
𝑦̂𝑗
−). 

 

• Smoothness constraint 

A temporal smoothness loss encourages consistency 

across consecutive segments [10, 19]: 

 

ℒsmooth = ∑(𝑦̂𝑖

𝑁−1

𝑖=1

− 𝑦̂𝑖+1)
2. 

 

• Final objective 

 

ℒ = ℒrank + 𝜆ℒsmooth. 
 

This formulation is computationally simpler than 

adversarial methods [24] and easier to train than 

transformer-based architectures. 
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We evaluate three MIL aggregation operators—max 

pooling, mean pooling, and attention pooling—to 

understand their behavior across datasets. Max pooling 

captures short, high-intensity anomalies, whereas mean 

pooling benefits diffuse anomalies (e.g., crowding). 

Attention pooling provides a balanced trade-off by 

learning soft segment weights. Empirical results (Table 2) 

show that max pooling performs best on UCF-Crime, 

while attention pooling slightly improves stability on 

ShanghaiTech. 

 

Justification for exclusion of self-supervised 

baselines: 

While recent studies demonstrate that self-supervised 

pretraining can improve feature robustness and 

generalization under limited supervision, incorporating 

such baselines was intentionally excluded from the current 

experimental design to maintain a fair comparison with 

existing lightweight weakly supervised MIL-based 

approaches. Self-supervised systems typically require 

substantially larger training compute budgets and 

prolonged convergence cycles, which contradicts the 

primary goal of this study—deploy ability on resource-

constrained surveillance platforms with real-time 

inference requirements. Therefore, the comparison scope 

was purposefully restricted to methods with comparable 

computational complexity and training requirements. 

Future extensions of this work will incorporate self-

supervised pretraining modules to evaluate hybrid MIL–

SSL pipelines. 

The results indicate that max pooling is most effective 

for temporally sparse and visually intense anomalies (e.g., 

assault, explosion, accident), whereas mean pooling is 

preferable for diffuse abnormal behaviors such as loitering 

and crowd disturbances. Attention pooling provides a 

balanced compromise, improving score smoothness and 

overall calibration stability. These findings validate the 

need for dataset-specific pooling selection and justify the 

chosen default configuration. 

 

 

 

Table 2: Ablation Study of MIL Aggregation Operators (Frame-Level AUC %, mean ± std) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Training setup and hyperparameters 

To ensure reproducibility and consistency with 

recommended best practices [14, 15], all hyperparameters 

and training conditions are standardized across datasets. 

• Data augmentation includes horizontal flip, 

colour jitter, and light Gaussian noise, consistent 

with prior weakly supervised VAD studies [10, 

17, 19]. 

• All experiments follow identical configurations 

for fairness and cross-domain comparability. 

Training uses the Adam optimizer with an initial 

learning rate of 1e-4, batch size 32, cosine LR decay, and  

 

weight decay of 1e-4. All models are trained for 8 epochs 

with early stopping based on validation AUC. Data  

augmentation includes random horizontal flip, color 

jitter, and random cropping. Random seed = 42 is used for 

all experiments. 

3.5 Inference procedure 

During inference, the model predicts anomaly 

scores at the segment level. A video-level anomaly score 

is computed as: 

 

𝑆(𝑉) = max⁡
𝑖

𝑦̂𝑖 . 

Frame-level scores are obtained by uniformly 

distributing segment scores across the corresponding 

frames, following the evaluation practice used in [10, 16, 

21]. 

3.6 Reproducibility and experimental 

consistency 

Following reproducibility principles highlighted in 

[14, 15], the framework integrates: 

• fixed randomness seeds, 

• unified preprocessing scripts, 

• consistent temporal segmentation, 

• identical hyperparameter schedules across 

datasets, 

• clear reporting of evaluation metrics, and 

MIL 

Aggregation 

Operator 

UCF-

Crime 

ShanghaiTech Avenue Railway 

CCTV 

Notes / Observations 

Max pooling 84.7 ± 0.6 85.8 ± 0.5 82.3 ± 0.4 88.5 ± 0.4 Best for short & high-intensity 

anomalies (e.g., fighting, accident, 

robbery) 

Mean 

pooling 

82.1 ± 0.7 86.1 ± 0.5 80.8 ± 0.6 89.1 ± 0.3 Better for diffuse anomalies across 

long time duration (crowd 

disturbance, loitering) 

Attention 

pooling 

84.2 ± 0.5 86.4 ± 0.4 81.6 ± 0.5 88.9 ± 0.4 Balanced performance; improved 

score stability & smoother temporal 

curves 
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• inclusion of all supporting materials in the main 

manuscript and supplementary file. 

 

This ensures that every reported result can be 

reproduced without the need for external code 

repositories. 

3.7 Test-Time Adaptation (TTA) 

To study robustness under domain shift, we evaluate 

a lightweight test-time adaptation scheme based on batch-

norm statistics recalibration (BN-TTA). During inference, 

running mean and variance are updated on incoming 

unlabelled target-domain batches. BN-TTA introduces 

negligible computation (<5% latency increase) while 

improving average cross-domain AUC by +3.2% (Table  

3). Full hyperparameters and pseudocode are provided in 

the Supplement. 

 

Table 3: Effect of BN-TTA on cross-domain 

performance (AUC %). 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Datasets and evaluation protocol 
This section describes the four datasets used in this 

study and the unified evaluation protocol adopted to 

ensure comparability across domains. Detailed dataset 

preprocessing procedures—frame extraction, 

normalization, temporal segmentation, and label 

conversion—are provided in Supplementary Section S1. 

4.1 Datasets 

• UCF-Crime 

UCF-Crime [16] is a large-scale weakly supervised 

dataset containing real-world surveillance videos across 

13 anomaly categories, including robbery, fighting, 

accidents, and burglary. Videos vary in duration, scene 

type, and illumination, making it a challenging benchmark 

for anomaly detection. The dataset provides video-level 

labels without temporal annotations, aligning naturally 

with MIL-based learning. 

• ShanghaiTech Campus 

The ShanghaiTech dataset consists of campus 

surveillance videos featuring walkways, courtyards, and 

indoor corridors. Anomalies include running, fighting, and 

object throwing. Although originally annotated at the 

frame level, it is widely used in weakly supervised settings 

by aggregating video-level anomaly labels [3, 21, 24]. Its 

relatively clean background and consistent camera 

viewpoints make it less diverse than UCF-Crime but 

valuable for controlled evaluation. 

• Avenue 

The Avenue dataset [11] contains fixed-camera 

videos captured in an outdoor walkway setting. 

Anomalous behaviours include loitering, abnormal 

trajectories, and object throwing. Compared with UCF-

Crime, Avenue has lower scene variability, but its subtle 

anomalies and consistent background structure present 

challenges for lightweight CNN models. 

• Railway CCTV Dataset 

To examine cross-domain generalization in transport 

environments, we include a Railway CCTV dataset 

comprising fixed-position surveillance videos from station 

platforms, footbridges, and waiting areas. The dataset 

contains normal activities (walking, boarding, waiting) 

and anomalous behaviours (trespassing, unsafe crossing). 

Its diverse crowd densities and environmental conditions 

make it a valuable intermediate “bridge” domain, 

consistent with observations in cross-domain studies [18, 

22]. 

All datasets Shown in figure 3 used in this study are 

accompanied by clearly defined preprocessing steps, 

segmentation settings, and evaluation instructions 

provided in the supplementary materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Representative frames from the four datasets 

(UCF-Crime, ShanghaiTech, Avenue, Railway CCTV) 

illustrating scene diversity. 

4.2 Unified preprocessing and temporal 

segmentation 

To ensure consistent cross-dataset evaluation, we 

apply the same preprocessing pipeline to all datasets: 

• frame sampling at 25 FPS, 

• resizing frames to 224 × 224, 

• normalization following CNN backbone 

requirements, 

• uniform segmentation into 32 non-overlapping 

segments, and 

• CNN feature extraction using MobileNetV2 [8] 

or ResNet-18 [7]. 

This unified approach avoids dataset-specific tuning 

and aligns with reproducibility guidelines [14, 15]. 

Train → Test Baseline (No 

TTA) 

BN-

TTA 

Δ 

AUC 

(ST + AV + 

RW) → UCF 

71.8 74.5 +2.7 

(UC + AV + 

RW) → ST 

68.9 71.6 +2.7 

(UC + ST + 

RW) → AV 

74.8 77.9 +3.1 

(UC + ST + 

AV) → RW 

78.4 82.1 +3.7 

Average 73.5 76.7 +3.2 
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4.3 Train–test and cross-domain protocols 

We evaluate models in two settings: 

 

(a) In-Domain Evaluation 

Models are trained and evaluated on the same dataset 

using the standard train–test splits defined in prior work 

[16, 21]. This setting measures how well lightweight 

CNN–MIL models capture dataset-specific anomaly 

patterns. 

 

(b) Cross-Domain Evaluation 

To quantify domain shift effects, we adopt a leave-

one-domain-out strategy inspired by domain 

generalization studies [3, 18, 22]: 

• Train on three datasets 

• Test on the unseen fourth dataset 

This protocol simulates realistic deployment 

conditions in which models must handle unseen 

environments without retraining. 

4.4 Metrics 

Performance is measured using: 

• Frame-level AUC (Area Under ROC Curve) — 

standard in VAD evaluation [16, 21] 

• Segment-level AUC — used for robustness 

analysis 

• FPS (Frames Per Second) — for assessing real-

time feasibility 

• Memory usage and model size — to evaluate 

resource efficiency 

• Qualitative error patterns — for 

interpretability 

These metrics collectively reflect accuracy, 

robustness, and efficiency, consistent with modern VAD 

evaluation practices. 

4.5 Reproducibility and Implementation 

Fidelity 

Following reproducibility principles outlined in [14, 

15], all preprocessing specifications, hyperparameters, 

data splits, and supplementary analyses are included in: 

• the main manuscript, and 

• the supplementary material. 

No external code repositories are required to 

reproduce the results. 

his section describes the four datasets used in this 

study and the unified evaluation protocol adopted to 

ensure comparability across domains. 

5 Experimental Results 
This section presents four sets of experiments: (i) in-

domain performance, (ii) comparison with recent state-of-

the-art (SOTA) methods, (iii) cross-domain 

generalization, and (iv) robustness and efficiency 

analyses. All experiments follow the unified evaluation 

protocol described in Section 4. 

5.1 In-domain performance 

Figure 4 illustrates the frame-level ROC curves and 

corresponding AUC comparison for MobileNetV2–MIL 

and ResNet-18–MIL across all datasets, complementing 

the numerical results in Table 4. Results are averaged over 

five runs with different randomness seeds. A complete 

per-anomaly breakdown for UCF-Crime is provided in 

Supplementary Section S5. 

 

Table 4: In-domain performance (Frame-level AUC %, 

mean ± std). 

Dataset MobileNetV2

–MIL 

ResNet

-18–MIL 

UCF-Crime 82.4 ± 0.7 84.7 ± 

0.6 

ShanghaiTec

h 

85.1 ± 0.5 86.9 ± 

0.4 

Avenue 80.2 ± 0.6 82.3 ± 

0.5 

Railway 

CCTV 

87.6 ± 0.4 89.1 ± 

0.4 

 

Both lightweight models achieve competitive 

accuracy despite significantly smaller computational 

budgets compared with transformer-based or vision–

language models [2, 5, 23]. Extended ablation studies—

including temporal segment count analysis and MIL 

aggregation comparisons—are reported in Supplementary 

Section S4. 

 

 
 

Figure 4: Frame-level ROC curves and/or AUC bar chart 

comparing MobileNetV2–MIL and ResNet-18–MIL 

across datasets. 
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5.2 Comparison with state-of-the-art 

(Same Metric and Protocol) 

To contextualize performance, Table 5 compares our 

best results with selected recent SOTA methods, all 

evaluated using the same metric (frame-level AUC). 

Because different studies use different preprocessing 

pipelines, we report numbers directly from their papers, 

following standard practice. 

 

Table 5: Comparison with recent SOTA methods (frame-

level AUC %). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our lightweight CNN–MIL models achieve accuracy 

close to transformer and VLM-based systems while 

operating at significantly lower computational cost [9, 13]. 

SOTA methods outperform slightly due to greater model 

capacity and multimodal reasoning but incur much higher 

inference latency. 

5.3 Cross-domain generalization 

To quantify domain shift, we adopt a leave-one-

domain-out protocol (train on three datasets, test on the 

fourth). Table 6 summarizes the cross-domain AUC 

results. We include two lightweight domain adaptation 

baselines to contextualize cross-domain performance: 

 • CORAL (Correlation Alignment): aligns second-

order statistics between source and target features.  

• DANN (Domain-Adversarial Neural Network): 

introduces a gradient-reversal layer to enforce domain-

invariant features. Both baselines use the same backbone 

(MobileNetV2 or ResNet-18) for fair comparison. 

 

Table 6 Cross-domain AUC with adaptation 

baselines. 
Source 

→ 

Target 

Mobile 

NetV2–

MIL 

+CORAL +DANN BN-

TTA 

(Ours) 

UCF → 

Shanghai 

71.8 74.1 74.6 75.0 

Shanghai 

→ UCF 

68.4 70.3 71.1 71.9 

Railway 

→ UCF 

76.2 77.9 78.3 79.0 

To better understand model failures, we report per-

anomaly AUC under domain shift (Table 6). Anomalies 

involving object disappearance (e.g., “missing object”, 

“loitering”) show the largest degradation across domains, 

while high-motion anomalies (e.g., “fighting”, “running”, 

“robbery”) remain comparatively stable. This suggests 

that appearance-based cues are more sensitive to camera 

domain mismatch than motion patterns. 

 

Key finding: 

The Railway dataset consistently produces stronger 

transfer performance both as source and target, supporting 

observations that diverse transport environments act as 

effective “bridge” domains [3, 18, 22]. 

As illustrated in Figure 5, the cross-domain AUC 

heatmap highlights performance degradation under 

domain shift and the relative improvements obtained by 

BN-TTA, CORAL, and DANN. 

Moreover, these trends underline the importance of 

analyzing anomaly types separately rather than relying 

solely on aggregate metrics, as different anomaly 

categories respond differently to domain shift. 

Such insights are critical for designing robust VAD 

systems that must generalize reliably across 

heterogeneous surveillance environments. 

 

 
 

Figure 5: Cross-domain AUC heatmap (train test) 

showing performance drops and relative improvements 

obtained using BN-TTA, CORAL, and DANN. 

5.4 Robustness to common corruptions 

We evaluate robustness under noise, blur, 

illumination variation, compression, and occlusion—

following the corruption taxonomy in [22]. As shown in 

Table 7, ResNet-18–MIL achieves slightly higher AUC 

across most corruption types, while MobileNetV2–MIL 

maintains competitive performance with lower 

computational cost. Figure 6 further visualizes the average 

AUC trends across corruption categories, highlighting the 

 

Method / 

Category 

UCF-

Crime 

Shanghai 

Tech 

Avenue 

Transformer-

based model 

[5] 

86.5 88.2 84.1 

Vision–

language 

model (VLM) 

[2] 

89.0 90.1 86.7 

Context-aware 

MIL [10] 

84.3 86.8 81.5 

ResNet-18–

MIL (Ours) 

84.7 86.9 82.3 

MobileNetV2–

MIL (Ours) 

82.4 85.1 80.2 

 

  



Lightweight CNN–MIL Models for Cross-Domain Video… Informatica 49 (2025) 67–80 75 

 

relative stability of both lightweight models under 

moderate distortions. Overall, ResNet-18–MIL shows 

slightly better robustness, while MobileNetV2 remains 

efficient and competitive. 

 

Table 7: Robustness under visual corruptions (AUC %, 

averaged across datasets). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 further visualizes the average AUC trends 

across corruption categories, highlighting the relative 

stability of both lightweight models under moderate 

distortions. Overall, ResNet-18–MIL shows slightly better 

robustness, while MobileNetV2 remains efficient and 

competitive. 

 

 
 

Figure 6: Average AUC under visual corruptions 

 

 

 
 

Figure 7: Efficiency comparison (FPS on GPU/Edge, 

Params, Memory) for MobileNetV2–MIL, ResNet-18–

MIL, Transformer and VLM baselines 

 

 

5.5 Efficiency analysis 

Runtime, compute demand, and memory footprint 

were evaluated on both a mid-range GPU and an edge-

class embedded device. As shown in Table 8, 

MobileNetV2–MIL achieves substantially higher 

throughput and lower memory usage compared with 

ResNet-18–MIL, while transformer-based and VLM 

baselines incur significantly larger computational 

overhead.  

 

Table 8: Efficiency analysis (speed, compute, 

memory use). 

 

Model FPS 

(GP

U) 

FPS 

(Edg

e 

Devic

e) 

Par

ams 

(M) 

Memory 

(MB) 

ResNet-

18–MIL 

45 18 11.7 290 

Mobile

NetV2–

MIL 

72 30 3.5 120 

Transfor

mer [5] 

12 3 90+ 850+ 

VLM [2] 8 2 120

+ 

1200+ 

 

Figure 7 further visualizes these efficiency 

differences, highlighting the real-time performance of 

lightweight CNN–MIL models on both hardware 

platforms. Overall, lightweight CNN–MIL architectures 

deliver true real-time performance, unlike transformers 

and VLMs, which require considerably more computation 

and memory. 

These results confirm that efficiency remains a 

defining advantage of lightweight CNN–MIL 

architectures. Their balanced accuracy–latency profile 

makes them far more practical for continuous, real-time 

surveillance deployment than high-capacity transformer 

and VLM models. 

5.6 Error pattern analysis 

Inspection of misclassified samples from UCF-Crime 

and ShanghaiTech reveals common failure patterns: 

• crowded scenes where anomalies occupy small 

spatial regions, 

• low-light/nighttime footage, 

• rapid camera motion, 

• heavy occlusions caused by crowds or vehicles. 

These observations align with noted limitations in 

prior weakly supervised anomaly detection work [10, 16, 

24]. 

As shown in Figure 8, the qualitative example 

presents video frames (top) and their segment-level 

anomaly score curve (bottom). The discrepancy between 

the predicted scores and the ground-truth anomaly 

moment illustrates how occlusion, low visibility, or small 

anomaly regions can lead to false negatives or false 

Corruption Type MobileNetV2–

MIL 

ResNet-

18–MIL 

Gaussian noise 71.2 73.5 

Motion blur 72.4 75.1 

Brightness change 77.9 79.3 

JPEG 

compression 

78.6 80.1 

Spatial occlusion 69.4 71.0 
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positives. Additional qualitative failure cases—including 

low-light scenes, dense crowds, fast camera motion, and 

partial occlusion—are described in Supplementary 

Section S7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Qualitative anomaly detection example: video 

frames (top) with segment/frame-level anomaly score 

curve (bottom), showing a false negative/positive case 

5.7 Summary of findings 

• Lightweight MIL models achieve competitive in-

domain performance. 

• SOTA methods achieve slightly higher accuracy 

but require substantially more computation. 

• Cross-domain results show a 10–15% 

performance drop, consistent with prior 

generalization studies [3, 18, 22]. A detailed 

domain-distance analysis (MMD) comparing 

dataset distributions is presented in 

Supplementary Section S12. 

• The Railway dataset acts as a bridge domain, 

improving cross-domain transfer. 

• MobileNetV2 achieves true real-time 

performance (28–30 FPS on edge devices). 

• Robustness evaluations highlight weaknesses 

under noise and occlusion. Full corruption-based 

robustness results—including noise, blur, 

compression, illumination variation, and 

occlusion—are detailed in Supplementary 

Section S6. 

The section presents four sets of experiments: in-

domain performance, cross-domain generalization, 

robustness to common corruptions, and efficiency on 

lightweight hardware. All experiments follow the unified 

evaluation protocol described in Section 4. 

6 Discussion 
The experimental results provide a comprehensive 

view of how lightweight CNN–MIL architectures behave 

under diverse surveillance conditions. This section 

synthesizes the 

 findings with respect to domain robustness, 

accuracy–efficiency trade-offs, robustness to corruptions, 

and broader implications for deployment-oriented VAD 

systems. 

6.1 Generalization under domain shift 

Cross-domain results show that lightweight CNN–

MIL models experience a substantial performance drop 

when evaluated on unseen domains, typically ranging 

from 10% to 15% AUC. This pattern is consistent with 

recent analyses of domain generalization in VAD [3, 18, 

22], which attribute the degradation to differences in 

background structure, object appearance, and camera 

viewpoint. Models trained on visually diverse datasets 

transfer better across domains, suggesting that domain 

diversity may be more critical than dataset size alone. 

A noteworthy observation is the strong transfer 

behaviour exhibited by the Railway dataset, both as a 

source and a target domain. Its varied crowd density, 

mixed indoor–outdoor lighting, and wide field-of-view 

appear to provide an intermediate distribution that bridges 

the gap between structured datasets such as Avenue and 

highly variable scenes in UCF-Crime. This supports 

earlier findings that “bridge domains” can help reduce 

domain shift in surveillance analytics [18, 22]. 

6.2 Comparison to state-of-the-art 

methods 

While state-of-the-art transformer and vision–

language models [2, 5, 23] achieve higher in-domain 

accuracy (often 86–89% AUC on UCF-Crime), our 

lightweight CNN–MIL models remain competitive, 

reaching 82–85% AUC at a fraction of the computational 

cost. The performance gap can be explained by: 

• larger capacity and long-range modelling in 

transformers, 

• multimodal contextual reasoning in VLMs, and 

• more expressive temporal attention mechanisms 

in advanced MIL variants [10, 19, 24]. 

However, these more complex models require 

significantly more parameters, memory, and inference 

time, making them less practical for edge or embedded 

surveillance scenarios. In contrast, MobileNetV2–MIL 

offers real-time throughput (28–30 FPS) while 

maintaining strong performance. 

Thus, although lightweight models do not surpass 

SOTA architectures in absolute accuracy, they offer a 

superior balance of efficiency, cost, and deployment 

feasibility. 

6.3 Robustness characteristics 

Controlled corruption experiments highlight specific 

strengths and weaknesses of lightweight CNN–MIL 

models. Both MobileNetV2 and ResNet-18 remain 

resilient under moderate brightness changes and 

compression, consistent with robustness trends observed 

in lightweight vision models [9, 13]. However, they are 

noticeably more sensitive to noise and occlusion, which 

obscure local motion cues and disrupt CNN feature 

stability. 

Temporal smoothness enforced through MIL 

regularization helps mitigate degradation, but domain shift 

combined with severe distortions still poses challenges. 
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These failure modes align with prior findings on the 

vulnerability of CNN-based anomaly detectors [17, 22]. 

6.4 Calibration and uncertainty analysis 

We evaluate model confidence calibration using 

Expected Calibration Error (ECE) and reliability 

diagrams. Cross-domain ECE increases from 0.09 (in-

domain) to 0.18, indicating miscalibration under shift. 

Applying temperature scaling reduces cross-domain ECE 

to 0.11 with no change in AUC. These results highlight the 

need for calibrated anomaly scores for real-world 

deployment. 

Uncertainty calibration analysis. To evaluate the 

reliability of anomaly scores under cross-domain settings, 

we computed Expected Calibration Error (ECE) and Brier 

Score before and after applying temperature scaling. Table 

9 shows that baseline lightweight CNN–MIL models 

exhibit notable miscalibration under domain shift (average 

ECE = 0.17), indicating over-confident anomaly 

predictions. Applying temperature scaling reduced ECE to 

0.10 on average, resulting in an improvement of +0.07 and 

a corresponding reduction in Brier Score. These findings 

demonstrate that lightweight post-hoc calibration 

substantially improves score reliability without affecting 

AUC, supporting its relevance for real-world deployment 

settings where calibrated anomaly scores enable safer 

automated decision-making and human-in-the-loop 

surveillance workflows. 

The Expected Calibration Error (ECE) formulation, 

temperature-scaling method, and additional calibration 

metrics are provided in Supplementary Section S11. 

 

Table 9: Calibration evaluation using expected calibration error (ece) and brier score across cross-domain splits 

(↓ lower is better) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5 Accuracy comparison with recent 

SOTA methods 

Compared to recent transformer-based weakly 

supervised methods (AUC 84–86%) and fully supervised 

3D CNNs (AUC 91–93%), our models achieve 

competitive performance (79–85%) while using 5–10× 

fewer parameters and sustaining real-time inference on 

edge hardware. This demonstrates a practical trade-off 

between accuracy and deploy ability. 

6.6 Accuracy–efficiency trade-off 

Efficiency experiments demonstrate that lightweight 

CNN backbones provide meaningful advantages over 

transformer-based and generative models. MobileNetV2 

achieves real-time throughput with as few as 3–4 million 

parameters, while ResNet-18 offers improved accuracy 

with moderate resource consumption. 

Detailed training and inference hardware setups are 

documented in Supplementary Section S9. 

These results reinforce conclusions from embedded 

vision research [9, 13], which emphasize that compact 

models are better suited for large-scale, continuously 

running surveillance systems. In scenarios where compute 

or energy is constrained—such as transport hubs or edge 

analytics nodes—lightweight models provide a practical 

compromise between accuracy and cost. 

Energy and power profiling. In addition to inference 

speed and memory footprint (Table 8), we evaluated the 

energy consumption characteristics of the lightweight 

CNN–MIL models on resource-constrained edge 

hardware platforms. Energy measurements were taken 

using Tegra stats on NVIDIA Jetson devices and an 

external power meter for Raspberry Pi 4. Results indicate 

that MobileNetV2 is the most energy-efficient 

architecture with the lowest energy-per-frame 

requirement, supporting real-time deployment in 

environments where thermal or power budgets are limited. 

Comprehensive hardware power profiling appears in 

Supplementary Section S4.3 (Table S2). These results 

reinforce the suitability of the proposed lightweight 

models for practical real-world edge deployment 

scenarios such as transportation hubs and smart-city 

surveillance. 

6.7 Implications for deployment and 

future work 

The findings underscore the need for evaluation 

frameworks that integrate cross-domain analysis, 

corruption robustness, and efficiency-oriented metrics. 

Train → Test 

Domain 

Baseline 

ECE ↓ 

Temperature-

Scaled ECE ↓ 

Δ ECE Brier 

Score ↓ 

Notes 

(ST + AV + 

RW) → UCF 

0.19 0.11 +0.08 0.243 Large confidence misalignment under 

shift 

(UC + AV + 

RW) → ST 

0.18 0.10 +0.08 0.238 Calibration significantly improves score 

reliability 

(UC + ST + 

RW) → AV 

0.17 0.09 +0.08 0.221 Smaller domain shift relative to UCF 

(UC + ST + 

AV) → RW 

0.15 0.08 +0.07 0.205 Best calibrated due to improved feature 

diversity 

Average 0.17 0.10 +0.07 0.227 Temperature scaling consistently 

enhances calibration 
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Single-dataset performance alone is insufficient for 

determining real-world suitability, echoing broader 

concerns raised in reproducibility and ML evaluation 

literature [14, 15]. 

Future research may consider augmenting lightweight 

CNN–MIL models with: 

• domain alignment modules (e.g., feature 

normalization, CORAL, gradient reversal), 

• self-supervised pretraining strategies [17], 

• lightweight temporal attention mechanisms, or 

• hybrid CNN–transformer architectures 

optimized for edge environments. 

Such extensions may improve robustness and 

generalization while preserving computational 

constraints. 

 

Justification for exclusion of self-supervised 

baselines: While recent studies demonstrate that self-

supervised pretraining can improve feature robustness and 

generalization under limited supervision, incorporating 

such baselines was intentionally excluded from the current 

experimental design to maintain a fair comparison with 

existing lightweight weakly supervised MIL-based 

approaches. Self-supervised systems typically require 

substantially larger training compute budgets and 

prolonged convergence cycles, which contradicts the 

primary goal of this study—deploy ability on resource-

constrained surveillance platforms with real-time 

inference requirements. Therefore, the comparison scope 

was purposefully restricted to methods with comparable 

computational complexity and training requirements. 

Future extensions of this work will incorporate self-

supervised pretraining modules to evaluate hybrid MIL–

SSL pipelines. 

7  Conclusion 

      This work presented a reproducible evaluation 

framework for lightweight weakly supervised video 

anomaly detection using compact CNN–MIL 

architectures. By standardizing preprocessing, temporal 

segmentation, and evaluation procedures across four 

heterogeneous datasets, the framework provides a 

consistent basis for analysing model behaviour under in-

domain, cross-domain, and robustness settings. 

Experiments demonstrated that MobileNetV2–MIL and 

ResNet-18–MIL achieve competitive accuracy while 

delivering real-time throughput, making them suitable for 

deployment in resource-constrained surveillance 

environments. 

Cross-domain evaluations revealed substantial 

performance degradation under domain shift—consistent 

with prior studies—while showing that the Railway 

dataset serves as a stable intermediate domain that 

improves transferability. Robustness analysis further 

identified sensitivity to noise and occlusion, underscoring 

the importance of handling low-level visual distortions in 

practical deployments. Comparisons with state-of-the-art 

transformer and vision–language models clarified that, 

although slightly less accurate, lightweight CNN–MIL 

approaches provide a far superior accuracy–efficiency 

balance. 

Future work: Although the present study integrates 

Batch-Normalization–based Test-Time Adaptation (BN-

TTA) to enhance cross-domain stability, full online 

learning and continuous adaptation mechanisms were 

not implemented in this version of the framework. 

Incorporating lightweight online adaptation strategies—

such as streaming model updates, memory replay buffers, 

or incremental domain alignment—represents an 

important direction for future research to further improve 

responsiveness under evolving real-world surveillance 

conditions. 

Our findings indicate that lightweight adaptive 

updates (BN-TTA), uncertainty calibration, and simple 

domain alignment techniques can substantially enhance 

robustness under unseen conditions at minimal 

computational cost. Future work will further explore 

online adaptation, self-supervised pretraining, and 

domain-distance metrics for characterizing transferable 

environments. The complete pseudocode for training, 

inference, and BN-TTA is provided in Supplementary 

Section S8. 

The reproducible framework and analyses 

presented in this study establish a transparent foundation 

for future research on adaptive, robust, and deployment-

oriented anomaly detection. Potential extensions include 

incorporating domain alignment mechanisms, lightweight 

temporal attention modules, and self-supervised 

representation learning to further enhance generalization 

without compromising efficiency. All methodological 

details and supplementary results required for replication 

are included within the manuscript and its accompanying 

materials. 
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including frame extraction settings, temporal 

segmentation rules, normalization statistics, and example 

input–output mappings for the CNN backbones. The 

supplementary files also contain extended tables reporting 

per-class anomaly results, detailed hyperparameter 

configurations, ablation experiments, and robustness 
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