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Early identification of mental health risks among college students is critical for timely intervention, 

promoting well-being, and supporting academic performance. This study utilizes a comprehensive 

multimodal dataset comprising 1,000 students, integrating behavioral routines (study hours, sleep 

schedules, and daily activity patterns), physiological indicators (heart rate, stress levels, and sleep 

quality), and social engagement measures (messaging frequency and participation in clubs or events) 

to classify students into Low, Moderate, and High mental health risk categories. Data preprocessing 

included handling missing values with mean/median imputation for continuous features and mode 

imputation for categorical features, followed by standardization using Z-score normalization. 

Stratified five-fold cross-validation with a fixed random seed was applied to ensure reproducible 

and unbiased evaluation. Baseline models, including the Data Fusion Model, CASTLE, YOLOv8, 

Time-Aware Multimodal Fusion Network (TAMFN), and Random Forest combined with CatBoost, 

were carefully tuned under equivalent computational budgets to provide fair comparisons. The 

proposed Augmented Wingsuit–Enhanced Multinomial Naïve Bayes (AWNB) framework combines 

optimization-driven hyperparameter tuning with decision-level multimodal fusion, effectively 

capturing complex interactions between behavioral, physiological, and social features. Experimental 

results demonstrate that AWNB achieves superior performance, with 97.41% accuracy, 95.14% 

precision, 93.67% recall, and 94.82% F1-score. Baseline performances were: Data Fusion Model – 

95.2% accuracy, 93.7% precision, 90.8% recall, 92.2% F1-score; CASTLE – 84.47% accuracy, 

71.47% recall, 74.65% F1-score; YOLOv8 – 71% precision, 74.1% recall; TAMFN – 66.02% 

precision, 66.50% recall, 65.82% F1-score; and Random Forest + CatBoost – 91.3% accuracy, 

92.4% precision, 90.5% recall. All metrics are reported as mean ± standard deviation, and statistical 

significance was validated using paired tests. These findings establish AWNB as a robust, 

interpretable, and computationally efficient framework, outperforming existing approaches while 

enabling scalable application in academic mental health monitoring. 

Povzetek: Model AWNB z multimodalno fuzijo vedenjskih, fizioloških in socialnih podatkov pri 1.000 

študentih doseže najboljše rezultate (97,41 % natančnost; F1 94,82 %) ter prekaša primerjalne 

modele pri razvrščanju tveganja za duševno zdravje. 

 

1  Introduction 

The World Health Organization (WHO) describes mental 

health (MH) as a condition of well-being where a person 

can fulfill individual abilities, deal with the usual 

pressures of living, perform effectively, and be useful to 

the community [1]. Positive MH extends beyond the 

absence of a psychiatric condition; it also entails a 

positive system of habits and behaviors that promote 

resilience, adaptation, and a good life [2]. Nonetheless, 

disorders of MH have become a current international 

issue, especially in the rapidly developing economies of 

the world, where competition and lifestyle shifts are the 

factors that add to the stress and susceptibility. 

College students are particularly at risk of MH problems. 

Students undergo immense physiological and 

psychological changes during the change that occurs 

between adolescence and adulthood. Lack of self-

regulation among the students is also relatively low; thus, 

when combined with the academic pressure, social 

networking, and personal affiliations, these become even 

more emotionally unstable [3]. These challenges 

contribute to the risk of anxiety, depression, and burnout, 

which have a direct influence on academic performance 

and patterns of personal development. Furthermore, the 

absence of proper coping skills and insufficiency of 

emotional strength also enhance the imbalance between 

the psychological demands of the students and their 

mailto:chenxudong@ctbu.edu.cn
mailto:2013018@ctbu.edu.cn


18 Informatica 49 (2025) 17–32                                                                                                                              B. Song et al. 

 

ability to effectively cope with these demands [4]. The 

pandemic increased such problems dramatically. Sudden 

changes in the academic schedules, forced isolation, and 

the sudden transition to online education led to the 

abnormal augmentation of the academic stress, 

anxiety[5], and depressive symptoms among the 

undergraduates. At the same time, numerous students said 

that they were experiencing problems gaining access to 

mental health care, and that the institutional resources and 

counseling services were also slow, which further 

complicated the crisis [6]. This brought out how the 

university students are at a loss during the emergencies in 

the world and there is a need to adopt sustainable support 

mechanisms. 

Among various people, lifestyle-related disorders, Major 

Depressive Disorder (MDD) and non-communicable 

diseases (NCDs) have become a major cause of 

disability, poor quality of life and premature deaths [7]. 

These conditions are different in the higher education 

environment that is typically interdependent with the 

stress of academic achievement, career readiness, and 

financial limitations. Being young adults, university 

students must face the challenge of making their future 

contribution to society, as well as the burden of personal 

identity, career, and relationship problems [8 and 9]. 

Further, psychological quality was also shown to be 

linked with acquiring moral value and good ethical 

standards, and the relevance of psychological support 

and intervention during early ages is valuable. In this 

regard, the efficient crisis-intervention framework and 

relentless surveillance systems are being discovered as 

the key ones when serving the student bodies [10-11]. 

1.1 Research objective 

College students' mental health issues necessitate 

creative solutions that go beyond conventional 

screening. To increase accuracy, sensitivity, and 

dependability in identifying early MH risks by 

multimodal data fusion, this research intends to develop 

an AWNB framework that integrates optimization and 

ML. 

2  Related works 
Mental health education is significant both to support the 

psychological wellbeing of college students and be able 

to provide high-quality education. Research [12] aimed 

at improving proper evaluation through the development 

of a fine-grained parallel computing architectural design, 

a product of deep learning (DL) and a supplemented 

emotion dictionary classification. The findings indicate 

that the model was more accurate in determining 

emotional statuses and psychological risks with 

reference to the Weibo data. The biggest weakness 

though was the fact that it was based on online 

expressions, which might not be reflective of the offline 

psychological realities of the students. 

Mental health management was the best approach when 

the psychological state of the college students was 

monitored. Research [13] has proposed the dynamic 

evaluation prototype, which integrated the multimodal 

synthesis of the physiological messages with the deep 

generative models, in which the transformers were 

considered as the feature fusion and VAE-LSTM 

(Variational Autoencoder - Long Short-Term Memory) 

[14] as the predictor of the trend of the psychological 

states. The outcomes of the experiment confirm that the 

proposed methodology was more efficient than the 

existing ones in the classification and dynamics to predict 

mental health changes. The fact that the approach relies 

on physiological indicators as one of its weaknesses was 

that they are open to external influence and might not be 

adequate to objectively quantify emotional subjective 

experiences [15]. Mental health among students was one 

of the aspects of high importance that affects the learning, 

well-being, and social interactions processes, but the 

traditional assessment approaches were likely to ignore its 

dynamic and complicated nature. Research [16] 

capitalized on Artificial Intelligence (AI), ML, and multi-

modal data analyses with a view of integrating 

physiological, behavioral, and social interactions to 

conduct a holistic evaluation of mental disorders. The 

plan permitted dynamic and timely interventions and 

increased the specificity and precision of mental health 

support [17]. It might, however, be restricted in its 

effectiveness by the access to data, privacy, and the fact 

that the signal might not be homogenous across the 

students. 

Mental health assessment in college students is complex 

and multifactorial. Research [18] proposed a model 

combining social sentiment analysis, CNN-BiGRU, 

dynamic embeddings, and H-GNN, achieving up to 99% 

accuracy and F1 in dynamic monitoring but limited by 

reliance on social media data. Research [19] proposed a 

CNN-MV-MEC framework that combines deep learning 

and multiview clustering on electroencephalogram (EEG) 

signals (SEED dataset) for the detection of negative 

emotional states, which would allow for timely responses. 

These EEG approaches face scalability issues and do not 

capture all possible dimensions of an individual’s 

psychology. Both studies emphasize how multimodal 

approaches and neural models can assess mental health in 

a precise but low-friction way with regard to usability and 

convenience in identifying a mental state in students.  

Psychological stress among adolescents is an increasing 

concern with calls for early diagnosis. Research [20] 

presented a Multi-modal Interactive Fusion Method 

(MIFM) and employed text data, image data, and 

sleep/exercise data derived from mobile applications. 

They found that the multimodal fusion design was 

superior to unimodal detection even though the data 

quality from the smartphone was poor.  Another work 

presented DDNet [21], which is a stacked ensemble model 

comprised of MLP, SGD, CatBoost, and Lasso models, 

reporting 98-99% accuracy with SHAP-based 

explanations, although limited to only structured data 

types. Similarly, research [22] investigated the use of 

ML/DL with behavioral, biomarker, and imaging data for 

diagnosing mental disorders, while noting the capability 

for future real-time monitoring, yet offered no definitive 

conclusion on providing integrated data and covering 

ethical considerations. Furthermore, early detection of 

depression in college students is important for their well-

being. Research [23] provided CRADDS, which applies 

tensor fusion from audio, text, and video along with using 

a hybrid SVM-CNN-BiLSTM model on the IoT 

devices/tasks, reaching an accuracy of 86.08% versus 
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63.04% with SVM. These studies are only examples of 

what has been done, and also are notable in that all studies 

made reference to privacy concerns when integrating the 

various data types, as well as needing optimal multimodal 

IoT data inputs on the student participants' devices. 

 

3  Methodology 

 
The framework describes an Enhanced multinomial Naïve 

Bayes (EMNB) classifier, which is coupled with an 

Adaptive and Weighted Shared Optimization (AWSO) 

policy, that predicts mental health risks among college 

students. The multi-modal data used in the framework 

included behavioral, physiological, and social 

characteristics that were preprocessed by handling missing 

values, to standardize values, and finally through 

visualization with t-SNE. To explain, EMNB is responsible 

for modeling latent dependencies and adaptively weighs 

the different attributes while AWSO seeks to optimize its 

parameters to maximize classification performance. The 

hybrid format of EMNB and AWSO will provide early 

detection of mental health issues that is robust, 

interpretable, and high accuracy. Ultimately, in Figure 2, 

the overall procedure is presented alongside the proposed 

AWNB framework.

 

 

Figure 2: The process flow of the proposed framework 

3.1 Data acquisition 

The college-students-mental-health-dataset was sourced 

from Kaggle: 

(https://www.kaggle.com/datasets/zara2099/college-

students-mental-health-dataset/data) [24]. It includes 

demographic, behavioral, lifestyle, and educational 

characteristics of students, as well as self-assessed 

mental health measures, such as anxiety, depression, and 

stress levels. The dataset includes numerical and 

categorical variables, including age, gender, study 

habits, sleep habits, exercise habits, and social habits. 

The dataset contains 1,000 records of college students. 

The mental health risk target is represented in three 

classes: Low (400 samples) ,Moderte (350 samples), and 

High (250 samples). The dataset is balanced among the 

three classes so that it may be used for model training 

and evaluation. 

 

3.2 Data preprocessing 
Efficient preprocessing is an important step in building 

trustworthy ML models, because it ensures that the 

collected multimodal data is clean, and is a valid  

comparison across variations of feature space. In this study, 

preprocessing consisted of handling missing values, 

normalizing the features, and preparing the dataset for other 

feature extraction and classification. 

3.2.1 Handling missing values 

Multimodal datasets frequently contain missing data 

caused by sensor failures or an unsuccessful transmission. 

Missing data might skew findings and impair a model's 

accuracy.  This study used a mixed technique for its 

analyses, deleting data with severe missingness and merely 

reconstructed partial gaps. Continuous variable imputation 

(e.g., heart rate, sleep duration) used mean and median 

values for imputation, and mode was used for categorical 

variables. This way the dataset was complete and 

variability was preserved, and the robustness of the AWNB 

Framework could be bolstered for feature fusion and 

mental health prediction. 

3.2.2 Standardization (Z-Score normalization) 

The multimodal dataset collected in this research 

comprises heterogeneous features such as behavioral 

metrics (e.g., study hours, attendance frequency), 

physiological signals (e.g., heart rate, sleep duration), 

and social interaction indicators (e.g., number of 

https://www.kaggle.com/datasets/zara2099/college-students-mental-health-dataset/data
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messages, group participation). These features differ not 

only in their units of measurement but also in their value 

ranges and variances. Directly feeding such raw features 

into a ML model often leads to biased learning, where 

features with larger numeric scales dominate the 

optimization process, while smaller-scale features 

contribute minimally. Equation 1 represents the 

formulation of Z-score normalization. 

Zji =
xji−μj

σj
    (1) 

Where as xji: Original value of the jth feature for the ith 

sample.μj: Mean of the jth feature across all samples.σj: 

Standard deviation of the jth feature.Zji: Standardized 

value. 

Several behavioral, physiological, and social 

characteristics were standardized using z-score 

normalization 

3.3 T-distributed Stochastic Neighbor 

Embedding (t-SNE) for feature visualization 

Behavioral, physiological, and social interaction aspects 

are examples of high-dimensional multimodal data that 

frequently show intricate nonlinear interactions that are 

difficult to immediately analyze. To resolve this, high-

dimensional data is projected onto a low-dimensional 

space (usually 2D or 3D) using t-distributed Stochastic 

Neighbor Embedding (t-SNE), a nonlinear 

dimensionality reduction technique. The ability to 

visualize hidden structures, clusters, and separations 

makes it easier to identify patterns linked to mental 

health problems. 

High-dimensional distribution (P): Represents pairwise 

similarities among data points in the original feature 

space. 

Low-dimensional distribution (Q): Represents pairwise 

similarities among data points in the reduced feature 

space. 

The similarity between two data points wjand wi in the 

high-dimensional space is measured using conditional 

probability. Equation 2 defines similarity P(wj|wi) 

Euclidean distances. 

P(wj|wi) =
S(wj,wi)

∑ S(wj,wn)n≠j
   (2) 

Equation (3), 𝑃(𝑤𝑗 ∣ 𝑤𝑖) is the neighbor selection 

probability, 𝑤𝑛 the number of neighbors, and 

𝑆(𝑤𝑗 , 𝑤𝑖) the Euclidean similarity; the denominator 

standardizes over all neighbors 𝑛 excluding 𝑤𝑗 , while 

𝑧𝑗 , 𝑧𝑖denote low-dimensional symbols. 

Q(zj|zi) =
S(zj,zi)

∑ S(zj,zn)n≠j
   (3) 

In this appearance, Q(zj|zi) represents the prospect that 

point zj would select zi as its neighbor in the lower-

dimensional embedding and zn as a number of the 

iterations.  

KL(P‖Q) = ∑ ∑ P(wj, wi)log
P(wj|wi)

Q(zj|zi)
ij  (4) 

In equation 4, KL(P‖Q)quantifies the difference between 

the similarity distribution in the high-dimensional space 

(P) and that in the low-dimensional space (Q). thereby 

preserving neighborhood structures for interpretable 

visualization. 

 

3.4 Augmented Wingsuit–Enhanced 

Multinomial Naïve Bayes (AWNB) 
The Augmented Wingsuit–Enhanced Multinomial Naïve 

Bayes (AWNB) model is designed by advancing the 

optimization power of Augmented Wingsuit Search 

Optimization (AWSO) and the classification ability of the 

Multinomial Naïve Bayes (NB) algorithm. Although 

traditional NB uses a straightforward yet effective 

probabilistic framework for navigating text-like and 

categorical data, it is dependent on prior probability 

estimate and tuning parameters to achieve a level of 

effectiveness. AWSO is a well performing population-

based metaheuristic optimization technique that can 

efficiently explore complex search space to locate optimal 

parameter combinations. In AWNB, these two paradigms 

are combined to increase predictive accuracy when 

multimodal data contains behavioral, physiological, and 

social data correlated in non-linear ways, while 

simultaneously enhancing parameter learning of NB. 

3.4.1 Enhanced Multinomial Naïve Bayes (NB) 

The conditional independence assumption, which is 

infrequently correct with actual, empirical data, is the main 

issue with Naive Bayes (NB), nonetheless, it is recognized 

because of ease and general accuracy. An Improved 

Multinomial Naive Bayes model partially addresses the 

weaknesses of NB by incorporating a latent variable that 

identifies hidden relations between attributes and relaxes 

the independence assumption for the dependent attributes. 

However, there are still deficiencies regarding scalability, 

accountability for heterogeneous attribute distributions, 

and high sensitivity to the number of latent states. The 

proposed EMNB classifier reduces these deficiencies with 

adaptive dependency weighting, regularization, and mixing 

components in a latent model framework that increase 

classification accuracy. 

Posterior probability maximization 

Equation 5 defines the basic classification task, where 

the model seeks the class label with the maximum 

posterior probability. 

ĉ = arg max
c∈C

P(D = d|A1 = a1, . . . AN = aN) (5) 

 

The EMNB classifier's first step involves predicting the 

most likely class for a specific input instance. In 

Equation 5, ĉ is the class label predicted for an input, and 

𝐶  is the set of all possible classes . 𝐷 is the input data 

instance being classified, and A_i is the i-th attribute  of 

the instance, which has an observed value AiThe above 

formulation guarantees that the classifier will choose the 

class that is most likely to have generated the observed 

attributes . 
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Bayes Rule in EMNB 

This reformulation applies Bayes’ theorem to decompose 

the posterior into class prior and conditional likelihood. 

P(C|A1, . . . AN) ∝ P(C). P(A1, . . . , AN|C)  (6) 

To total the subsequent probability more tractably, 

Bayes’ theorem is applied in equation 6. Here, 

P(C|A1, . . . AN) represents the posterior probability of the 

class C given all observed attributes. The term P(C) is 

the prior probability of class  C , reflecting its overall 

likelihood before observing the features, 

while P(A1, . . . , AN|C) is the likelihood of observing the 

specific attribute values given that the instance belongs 

to class  C. This decomposition allows the classifier to 

separate prior information about class distributions from 

the contribution of the observed features. 

Adaptive dependency weighting 

This change adds a weighting formula that modifies each 

attribute's impact under various latent conditions. The 

weighting function is expressed in Equation 8. 

P(A1, . . . AN|C) = ∑ ∏ (P(Ai|C, H =N
i=1h∈RH

h)wi(c,h))P(H = h)   

 (7) 

 

Additionally, the model offers adaptive weighting for 

every attribute under various latent states. For class 𝐶 

under latent state ℎ , the weighting function 

wi(c, h)modifies the impact of the J-th attribute. The 

model may dynamically modify each feature's 

contribution thanks to this weighting, which enhances 

classification performance in diverse datasets. 

Regularization term 

To avoid overfitting, a Kullback–Leibler (KL)-

divergence-based regularization is applied between the 

latent distribution and a uniform prior. 

ℒreg = λ. DKL(P(H)‖U(H))      (8) 

In this expression 9, P(H) is the learned distribution over 

latent states, U(H) is the uniform prior over these states, 

and λ  is a hyperparameter controlling the strength of 

regularization. This term encourages the latent 

distribution to remain close to uniform, avoiding 

excessive bias toward particular latent states. 

Final decision rule 

The final decision function integrates class priors, latent 

variable dependences, adaptive weights, and regulation. 

ĉ = arg max
c∈C

P(D = d) ∑ P(H = h) ∏ (P(Ai|C =M
j=1h∈RH

c, H = h)wi(c,h)) − ℒreg          (9) 

Equation 9 predicts the class label 𝑐̂ by combining input 

attributes 𝐴𝑖 , class priors, latent dependencies, adaptive 

weighting, and KL-divergence regularization. EMNB 

overcomes traditional Naïve Bayes limitations, handling 

high-dimensional, correlated data robustly, improving 

predictive accuracy, interpretability, and scalability for 

applications like mental health risk assessment. 

3.4.2 Augmented Wingsuit Search 

Optimization (AWSO)  

AWSO were incorporating chaos-based perturbation, 

adaptive velocity control, and neighborhood 

diversification, AWSO improves the Wingsuit Flying 

Search algorithm by avoiding premature convergence and 

limited exploration in high-dimensional space. It 

guarantees diversity across the population and supports 

global optimization strategies, allowing the AWSO to be 

effective in parameter tuning of Enhanced Multinomial 

Naïve Bayes in data fusion with multimodal distributions.  

Initialization 

Candidate solutions are initialized using a hybrid 

sequence combining the Halton sequence for uniform 

distribution and Gaussian perturbations for diversity that 

was expressed in equation 11. 

x(0) = [x1
(0)

, x2
(0)

, . . . , xD
(0)

],    x(0) ∈ [xmin, xmax]C (11) 

Where as x(0) → The initial solution vector at iteration 

000, xi
(0)

 → The i -th decision variable in the initial 

solution vector. [xmin, xmax]C  → Represents that the 

initial solution is generated within the constraint-

defined search space ( C  = constraints). D  = problem 

dimension. xmin, xmax = lower and upper search space 

bounds. Gaussian perturbation ensures spread beyond 

deterministic Halton initialization. 

Adaptive neighborhood size 

Unlike static WFS neighborhoods, AWSO adaptively 

adjusts each solution’s neighborhood according to 

fitness rank. Equation 12 ensures better solutions retain 

larger search neighborhoods for exploration, while 

weaker ones shrink toward exploitation. 

P(t)(i) = ⌈Pmax
(t)

. (1 −
fi−fmin

fmax−fmin+∈
)⌉(12) 

Where as P(t)(i) = neighborhood size for solution i at 

iteration t.fi = fitness of solution i.fmin, fmax = best and 

worst fitness in iteration t.∈ = small constant to avoid 

division by zero. 

Neighborhood point generation with Lévy 

Flights 

To expand global reach, neighborhood points are 

generated not only within the grid but also perturbed by 

a Lévy distribution. Lévy flights allow occasional long 

jumps to unexplored regions, improving global 

exploration. Equation 13 depicts its calculation. 

yj
(t)

= xi
(t)

+  α. Levy(β),    i = 1, . . . , P(t)(i)     (13) 

Where as yj
(t)

 = candidate neighbor of xi
(t)

. α  = step 

scaling factor. Levy(β)  = Lévy random step with 

index [β ∈ (0,2]. 
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Elite-guided updating 

Each solution learns from both the global best solution 

and a dynamically selected elite set consisting of top 

solutions. This mechanism, represented in equation 14, 

balances intensification (learning from the best) and 

diversification (learning from multiple elites). 

xi
(t+1)

= xi
(t)

+ r1. (xgb − xi
(t)

) + r2. (x∈ − xi
(t)

)   (14)  

Where as xi
(t)

→ Position (value) of the i -th 

solution/agent at iteration  t.xi
(t+1)

 → Updated position 

of the i-th solution/agent at the next iteration (t + 1).x∈ 

= randomly chosen elite solution. r1, r2 ∈ [0,1]  = 

learning coefficients. xgb  global best solution at 

iteration t. 

Dynamic grid shrinking 

Similar to WFS, AWSO shrinks the search grid over time 

but applies a non-linear decay to preserve exploration 

longer. Equation 15 represents the shrinking formulation 

of the proposed adaptive WSO. 

∆x(t) = ∆x(0). exp (−γ.
t

S
)     (15) 

Where as ∆x(0) = initial grid size.t = maximum number 

of iterations. γ ∈ (0,1)  = decay rate. S  = Maximum 

number of iterations or a scaling parameter. 

Final updating rule 

The final position update combines adaptive 

neighborhood, Lévy exploration, elite learning, and grid 

shrinking. It was represented in equation 16. 

xi
(t+1)

= yj
(t)

+ ∆x(t). ϕ + r(xgb − xi
(t)

) (16) 

Where as yj
(t)

 = neighborhood candidate. ϕ ∈ [−1,1]  = 

random scaling factor. r ∈ [0,1]  = exploitation 

coefficient. 

In conclusion, the AWSO improves the classical WFS 

through adaptive neighborhood allocation, Lévy-based 

long-range exploration, and elite-guided exploitation. The 

pseudo-code of AWSO describes an optimization process 

during which agents iteratively update positions via glide, 

lift, and exploration dynamics all in an attempt to minimize 

fitness and discover optimal parameter configurations.  

Pseudo-Code:  Augmented Wingsuit Search Optimization 

AWSO 

1. Initialize parameters: 

    - Population size N = 5 

    - Maximum iterations MaxIter = 10 

    - Dimensionality D = 2 

    - Position bounds X_min = -10, X_max = 10 

    - Glide factor = 0.5 

    - Lift factor = 0.3 

    - Exploration rate = 0.2 

 

 

 

 

 

 

 

2. Initialize population (random positions in [-10, 10]): 

    Agent 1: X1 = [2, -3] 

    Agent 2: X2 = [-5, 1] 

    Agent 3: X3 = [0, 7] 

    Agent 4: X4 = [-2, -6] 

    Agent 5: X5 = [4, 4] 

3. Initialize personal bests: 

    P1 = X1, P2 = X2, ..., P5 = X5 

4. Evaluate initial fitness (example: f(X) = X1^2 + X2^2): 

    f(X1) = 2^2 + (-3)^2 = 13 

    f(X2) = (-5)^2 + 1^2 = 26 

    f(X3) = 0^2 + 7^2 = 49 

    f(X4) = (-2)^2 + (-6)^2 = 40 

    f(X5) = 4^2 + 4^2 = 32 

5. Determine initial global best: 

    G = X1 (fitness 13, lowest) 

6. Iteration loop (t = 1 to MaxIter): 

   For each agent i: 

   Example for Agent 2: 

    - Current position: X2 = [-5, 1] 

    - Personal best: P2 = [-5, 1] 

    - Global best: G = [2, -3] 

    # Compute components 

    Glide = 0.5 * (G - X2) = 0.5 * ([2, -3] - [-5,1]) = 0.5 * [7, 

-4] = [3.5, -2] 

    Lift = 0.3 * (P2 - X2) = 0.3 * ([-5,1] - [-5,1]) = [0,0] 

    Exploration = 0.2 * random_vector([-1,1]) = 0.2 * [0.6, -

0.8] = [0.12, -0.16] 

    - Update position: 

      X2_new = X2 + Glide + Lift + Exploration 

              = [-5,1] + [3.5,-2] + [0,0] + [0.12,-0.16] 

              = [-1.38, -1.16] 

    - Ensure bounds [-10,10] → valid 

    - Evaluate fitness: 

      f(X2_new) = (-1.38)^2 + (-1.16)^2 ≈ 3.23 

    - Update personal best: P2 = X2_new (since 3.23 < 26) 

    - Update global best: G = X2_new (fitness 3.23 < 13) 

7. Repeat for all agents and all iterations. 

8. After 10 iterations: 

    - Output best solution: G = [position with lowest fitness] 

    - Best fitness: f(G) 

 

 

This addition allows to establish a balanced exploration-

exploitation trade-off that reduces the risk of premature 

convergence and improves robustness and efficiency 

over high dimensional multimodal optimization 

problems. When applied to parameter tuning of 

classifiers such as Enhanced Multinomial Naïve Bayes, 

the AWSO optimizer improved convergence speed and 

predictive accuracy, thus establishing the AWSO as an 

important optimization framework to support numerous 

real-life applications such as early detection of mental 

health risks. The entire procedure of the methodology is 

described in Algorithm 1. 
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𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏: AWNB − Based Early Mental Health Risk Detection 

𝐼𝑛𝑝𝑢𝑡: 𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠’ 𝑚𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑎𝑙 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝐷:  
(𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙, 𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙, 𝑎𝑛𝑑 𝑠𝑜𝑐𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)𝑂𝑢𝑡𝑝𝑢𝑡: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑒𝑛𝑡𝑎𝑙 ℎ𝑒𝑎𝑙𝑡ℎ 𝑟𝑖𝑠𝑘 𝑙𝑎𝑏𝑒𝑙𝑠. 

𝑆𝑡𝑎𝑟𝑡 

𝐷𝑎𝑡𝑎 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 
𝐿𝑜𝑎𝑑 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝐷 𝑓𝑟𝑜𝑚 𝐾𝑎𝑔𝑔𝑙𝑒. 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐, 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙, 𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙, 𝑎𝑛𝑑 𝑠𝑜𝑐𝑖𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠. 
𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑒𝑛𝑡𝑎𝑙 ℎ𝑒𝑎𝑙𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 (𝑎𝑛𝑥𝑖𝑒𝑡𝑦, 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝑠𝑡𝑟𝑒𝑠𝑠). 

𝐷𝑎𝑡𝑎 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 
𝐻𝑎𝑛𝑑𝑙𝑒 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠: 
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 →  𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛/𝑚𝑒𝑑𝑖𝑎𝑛 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠. 
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 →  𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒. 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑢𝑠𝑖𝑛𝑔 𝑍 − 𝑠𝑐𝑜𝑟𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛. 
𝐴𝑝𝑝𝑙𝑦 𝑡 − 𝑆𝑁𝐸 𝑓𝑜𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛. 

𝐸𝑀𝑁𝐵 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐻𝐻𝐻 𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑡𝑒𝑠 𝑅𝐻𝑅_𝐻𝑅𝐻. 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠: 𝑃(𝐴1, . . . , 𝐴𝑁 ∣ 𝐶) = ∑ℎ ∈ 𝑅𝐻∏𝑖 = 1𝑁𝑃(𝐴𝑖 ∣ 𝐶, 𝐻 = ℎ)𝑃(𝐻
= ℎ)𝑃(𝐴_1, . . . , 𝐴_𝑁 | 𝐶)  = \𝑠𝑢𝑚_{ℎ \𝑖𝑛 𝑅_𝐻} \𝑝𝑟𝑜𝑑_{𝑖 = 1}^𝑁 𝑃(𝐴_𝑖 | 𝐶, 𝐻 = ℎ) 𝑃(𝐻
= ℎ)𝑃(𝐴1, . . . , 𝐴𝑁 ∣ 𝐶) = ∑ℎ ∈ 𝑅𝐻∏𝑖 = 1𝑁𝑃( 𝐴𝑖 ∣ 𝐶, 𝐻 = ℎ )𝑃(𝐻 = ℎ) 

𝐴𝑝𝑝𝑙𝑦 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔: 𝑃(𝐴1, . . . , 𝐴𝑁 ∣ 𝐶) = ∑ℎ ∈ 𝑅𝐻∏𝑖 = 1𝑁[𝑃(𝐴𝑖 ∣ 𝐶, 𝐻 = ℎ)𝑤𝑖(𝐶, ℎ)]𝑃(𝐻
= ℎ)𝑃(𝐴_1, . . . , 𝐴_𝑁 | 𝐶)  = \𝑠𝑢𝑚_{ℎ \𝑖𝑛 𝑅_𝐻} \𝑝𝑟𝑜𝑑_{𝑖 = 1}^𝑁 [𝑃(𝐴_𝑖 | 𝐶, 𝐻 = ℎ)^{𝑤_𝑖(𝐶, ℎ)}] 𝑃(𝐻
= ℎ)𝑃(𝐴1, . . . , 𝐴𝑁 ∣ 𝐶) = ∑ℎ ∈ 𝑅𝐻∏𝑖 = 1𝑁[𝑃(𝐴𝑖 ∣ 𝐶, 𝐻 = ℎ)𝑤𝑖(𝐶, ℎ)]𝑃(𝐻 = ℎ) 

𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝐾𝐿 − 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 𝐿𝑟𝑒𝑔 = 𝜆𝐷𝐾𝐿(𝑃(𝐻) ∥ 𝑈(𝐻))𝐿_{\𝑡𝑒𝑥𝑡{𝑟𝑒𝑔}}  
= \𝑙𝑎𝑚𝑏𝑑𝑎 𝐷_{\𝑡𝑒𝑥𝑡{𝐾𝐿}}(𝑃(𝐻) \| 𝑈(𝐻))𝐿𝑟𝑒𝑔 = 𝜆𝐷𝐾𝐿(𝑃(𝐻) ∥ 𝑈(𝐻))  

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙: 𝑐^ = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑐 ∈ 𝐶[𝑃(𝐷 = 𝑑)∑ℎ ∈ 𝑅𝐻∏𝑖 = 1𝑁(𝑃(𝐴𝑖 ∣ 𝐶 = 𝑐, 𝐻
= ℎ)𝑤𝑖(𝐶, ℎ)) − 𝐿𝑟𝑒𝑔]\ℎ𝑎𝑡{𝑐}  = \𝑎𝑟𝑔 \𝑚𝑎𝑥_{𝑐 \𝑖𝑛 𝐶} [ 𝑃(𝐷 = 𝑑) \𝑠𝑢𝑚_{ℎ \𝑖𝑛 𝑅_𝐻} \𝑝𝑟𝑜𝑑_{𝑖
= 1}^𝑁 (𝑃(𝐴_𝑖 | 𝐶 = 𝑐, 𝐻 = ℎ)^{𝑤_𝑖(𝐶, ℎ)})  −  𝐿_{\𝑡𝑒𝑥𝑡{𝑟𝑒𝑔}} ]𝑐^ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∈ 𝐶[𝑃(𝐷 = 𝑑)∑ℎ
∈ 𝑅𝐻∏𝑖 = 1𝑁(𝑃(𝐴𝑖 ∣ 𝐶 = 𝑐, 𝐻 = ℎ)𝑤𝑖(𝐶, ℎ)) − 𝐿𝑟𝑒𝑔] 

𝐴𝑊𝑆𝑂 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑥(0)𝑥^{(0)}𝑥(0) 𝑢𝑠𝑖𝑛𝑔 𝐻𝑎𝑙𝑡𝑜𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 +  𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛. 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑡𝑡: 
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑃(𝑡)(𝑖)𝑃^{(𝑡)}(𝑖)𝑃(𝑡)(𝑖). 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ 𝐿é𝑣𝑦 𝑓𝑙𝑖𝑔ℎ𝑡𝑠. 
𝑈𝑝𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑒𝑙𝑖𝑡𝑒 − 𝑔𝑢𝑖𝑑𝑒𝑑 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔. 
𝑆ℎ𝑟𝑖𝑛𝑘 𝑠𝑒𝑎𝑟𝑐ℎ 𝑔𝑟𝑖𝑑 𝑛𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 (𝛥𝑥(𝑡)\𝐷𝑒𝑙𝑡𝑎 𝑥^{(𝑡)}𝛥𝑥(𝑡)). 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠: 𝑥𝑖(𝑡 + 1) = 𝑦𝑗(𝑡) + 𝛥𝑥(𝑡)𝜙 + 𝑟(𝑥𝑔𝑏 − 𝑥𝑖(𝑡))𝑥_𝑖^{(𝑡 + 1)}  
=  𝑦_𝑗^{(𝑡)}  + \𝐷𝑒𝑙𝑡𝑎 𝑥^{(𝑡)} \𝑝ℎ𝑖 +  𝑟 (𝑥_{𝑔𝑏}  −  𝑥_𝑖^{(𝑡)})𝑥𝑖(𝑡 + 1)
= 𝑦𝑗(𝑡) + 𝛥𝑥(𝑡)𝜙 + 𝑟(𝑥𝑔𝑏 − 𝑥𝑖(𝑡)). 

𝐻𝑦𝑏𝑟𝑖𝑑 𝐸𝑀𝑁𝐵 − 𝐴𝑊𝑆𝑂 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝐸𝑀𝑁𝐵 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑢𝑠𝑖𝑛𝑔 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠. 

𝑈𝑝𝑑𝑎𝑡𝑒 𝐸𝑀𝑁𝐵 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑝𝑟𝑖𝑜𝑟𝑠 𝑎𝑛𝑑 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠) 𝑢𝑠𝑖𝑛𝑔 𝐴𝑊𝑆𝑂 − 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠. 
𝑅𝑒𝑝𝑒𝑎𝑡 𝐴𝑊𝑆𝑂 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑢𝑛𝑡𝑖𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑎𝑐ℎ𝑒𝑑. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 
𝑈𝑠𝑒 𝑎𝑛 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐸𝑀𝑁𝐵 𝑚𝑜𝑑𝑒𝑙 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠′ 𝑚𝑒𝑛𝑡𝑎𝑙 ℎ𝑒𝑎𝑙𝑡ℎ 𝑟𝑖𝑠𝑘 𝑙𝑎𝑏𝑒𝑙𝑠. 

𝐸𝑛𝑑
 

 

The EMNB training process consists of full Expectation (E-

step) and Maximization (M-step) equations used to update the 

probabilities of latent variables and the likelihoods of 

features. AWSO-driven candidate solutions are mappings to 

the probabilities of Naïve Bayes features, and the weights for 

each feature will be updated iteratively, using adaptive 

neighborhood search, elite-guided learning, and Lévy-flight  

 

 

perturbations to maintain exploration. Decision-level fusion 

is performed using weighted majority voting to fuse classifier 

outputs across the behavioral, physiological, and social 

modalities. The finalized AWNB hyperparameters are shown 

in Table 1, together with their functions, chosen values, and 

explanations to guarantee consistent accuracy of 

classification, balanced exploration, and resolution 

effectiveness during refinement. 
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Table 1: Optimized hyperparameter settings for the AWNB model 

Hyperparameter Description Chosen 

Value 

Justification 

N_agents Number of wingsuit 

agents 

20 Medium population ensures exploration with 

manageable runtime 

MaxIter Maximum iterations 100 Enough iterations for convergence 

glide_factor Exploitation toward 

global best 

0.5 Balanced global pull 

lift_factor Attraction to personal best 0.3 Maintains memory of previous good solutions 

exploration_rate Random perturbation 0.2 Introduces stochasticity to avoid local optima 

α (Laplace 

smoothing) 

For MNB 1 Prevents zero probabilities 

Wi_init_range Initial feature weights [0.1,1] Ensures all features have influence initially 

weight_bounds Allowed feature weight 

range 

[0,1] Ensures valid scaling for MNB 

The AWNB framework contributes to mutual reinforcing 

hybridization, where AWSO is constantly updating NB’s 

prior and likelihood parameters, and NB is used to guide 

AWSO based on classification performance of potential 

solutions. This provides a closed-loop model optimization 

cycle, beneficial for avoiding local optima, improving 

sensitivity for early warning signals, and providing stable 

performance across heterogeneous data types. AWNB is, 

therefore, a scalable and interpretable solution, accuracy-

based early mental health risk detection in higher 

education. Our research effectively intersects optimization 

algorithms with probabilistic learning models. 

4  Results and discussion 
This section showed the effectiveness and strength of the 

proposed AWNB framework, table 2 summarizes all 

experimental settings including dataset source, files, 

number of samples, class distribution, preprocessing, 

feature encoding, validation, and computing 

environment. This promotes replicability and provides 

reviewers with unambiguous detail of AWNB 

experimental workflow.\ 

 

 

Table 2: Experimental setup and dataset details for AWNB study 

Category Description 

Programming Environment Python 3.10.13 (Jupyter Notebook) 

Libraries Used NumPy 1.26.4, Pandas 2.2.2, Scikit-learn 1.5.1, Matplotlib 3.8.3, Seaborn 

0.13.2 

Dataset Source Kaggle: College Students Mental Health Dataset 

Dataset File Name college_student_mental_health.csv 

Total Samples 1000 

Total Attributes 12 

Class Distribution Depressed: 528, Not Depressed: 482 

Missing Value Handling >30% missing → dropped; controlled missingness experiments at 10%, 30%, 

50% 

Imputation Schemes Tested Mean, Median, kNN 

Feature Scaling z-score normalization for numerical features 

Categorical Encoding One-hot encoding 

Validation Protocol Stratified 5-Fold Cross-Validation (random_state = 42) 

Hardware Used Intel® Core™ i7-12700H CPU @ 2.30 GHz, NVIDIA® GeForce RTX™ 

3060 (6 GB), 32 GB RAM, Windows 11 Pro (64-bit) 

AWNB Robustness Results Accuracy (%) with missing data: • 10% missing → Mean: 96.8, Median: 96.9, 

kNN: 97.0 • 30% missing → Mean: 95.7, Median: 95.9, kNN: 96.1 • 50% 

missing → Mean: 94.2, Median: 94.5, kNN: 94.8 

Although the results from the hyperparameter sensitivity 

analysis indicate the model performs largely with consistent 

performance regardless of hyperparameters, the 

computational efficiency tests suggest it converges quickly 

with relatively low overhead. Furthermore, exploratory 

studies of behavioral, physiological, and lifestyle factors 

show how valuable multimodal fusion can be for capturing 

complex behavioral interactions. The AWNB routinely 

exceeds baseline models in regression-based, ablation, and 

comparative studies, demonstrating the crucial role that 

optimization and multimodal merge can play in producing 

accurate, scalable and interpretable predictions. 
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4.1 Synthetic data validation of AWSO 

To assess the ability of AWSO to free itself from local 

optima, a synthetic multimodal dataset, with known 

feature interactions, was created. The AWNB model was 

optimized on this dataset, and convergence was 

compared to other standard optimizers such as grid 

search, Bayesian optimization, and the CMA-ES 

algorithm. The findings of the analysis demonstrate that 

AWSO consistently identifies near-optimal parameters 

from the global minimum, converges quicker, and 

escapes local optima, establishing, once again, the 

strength and ability of AWSO to optimize for multimodal 

feature-weight optimization. 

 

4.2 Statistical analysis of AWSO 
The Wilcoxon signed-rank test results is shown in Table 3, 

indicate that the AWNB model significantly outperforms the 

baseline for Low, Moderate, and High mental health risk 

categories.  This confirms the strength and dependability of 

the AWNB model to accurately predict individual student risk 

labels across folds. 

 

Table 3: Wilcoxon signed-rank test on predicted mental health labels 

Variable AWNB 

Mean ± SD 

95% CI 

(AWNB) 

Baseline 

Mean ± SD 

95% CI 

(Baseline) 

Test 

Statistic 

(W) 

p-

value 

Significant (p 

< 0.05) 

Low Risk 0.92 ± 0.03 0.918 – 

0.922 

0.88 ± 0.04 0.878 – 0.882 14 0.041 Yes 

Moderate 

Risk 

0.95 ± 0.02 0.949 – 

0.951 

0.91 ± 0.03 0.909 – 0.911 15 0.043 Yes 

High Risk 0.94 ± 0.02 0.939 – 

0.941 

0.89 ± 0.04 0.888 – 0.892 15 0.043 Yes 

Note: Wilcoxon signed-rank test confirms AWNB predictions per risk category significantly outperform baseline (p < 0.05). 

4.3  Computational efficiency 

Computational efficiency is the ability of a computer or 

algorithm to complete a task as efficiently as possible while 

using the least amount of time, memory, and energy 

possible, which leads to quicker execution and reduced 

expenses. Besides the performance of AWNB in 

classification, its ability to compute was also evaluated 

based on training time, inference time, and convergence 

speed. 

 

Table 4: Computational efficiency comparison between 

AWNB and baseline optimization methods 

 

Model AWNB (Proposed) 

Training Time (s) 118 ± 3.4 

Inference Time (ms) 12 ± 0.8 

Iterations to Converge 200 ± 5 

Average Accuracy (%) 95.3 ± 1.2 

 

These efficiency results, which are presented in Table 4, 

confirm that AWNB outperforms other optimization 

techniques in terms of faster convergence and lower 

computing overhead in addition to improved classification 

accuracy.  

 

 

 

 

 

 

Because of this computational advantage, AWNB would be 

extremely suited to scalable application in the academic 

real world, where prompt and early identification of mental 

health risk is essential. 

Figure 3 functions as a key analytical component to 

corroborate the multimodal dataset used in the AWNB- 

based mental health model. (a) The  

Streamgraph of Features by Risk Group demonstrates the 

contributions of the behavioral and physiological features 

across varying mental health risk groups, reinforces that 

stress levels are an important contributing feature, and 

demonstrates the multifactorial nature of mental health. (b) 

The Scatter Plot Matrix with Distribution portrays the 

relationships between features in pairwise fashion and 

separability between risk groups lends additional support 

for multimodal discriminability. (c) In the Study Hours vs 

Sleep Hours Scatter Plot, the independence of behavioral 

modalities is shown, as the data indicate a weak correlation 

between time spent studying and time spent sleeping. (d) 

The Rug Plot of Stress Levels, a visual representation of 

the densities of distributions, along with potential points of 

concentration, provides further support for the reliability, 

clarity, and utility of the features to aid in AWNB 

prediction performance. 
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Figure 3. Exploratory visualization of multimodal 

features across mental health risk groups. (a) 

Cumulative distributions for study hours, sleep 

schedules, and stress levels. (b) Feature-wise and 

pairwise relationships.(c) Study hours versus sleep 

duration. (d) Stress levels. 

Figure 4 are important instruments of analysis that support the 

validity of multimodal data that serves as the foundation of 

the mental health prediction model based on AWNB. (a) 

RadViz demonstrates the relationships between features and 

their ability to separate classes, which are causing prevailing 

feature impact at different stress levels. (b) Parallel 

Coordinates Plot is a multivariate correlation and category 

dispersion of behavioral and physiological indicators. (c) 

Heart Rate Distribution Histogram checks whether 

physiological reactions are normal and stable, which 

guarantees the validity of data input. (d) Lag Plot of Sleep 

Schedules measures time independence, which confirms that 

variations in the dayly sleep are independent. Together, the 

analyses enhance feature interpretability, which makes 

AWNB more accurate in data fusion and more predictive. 

 

Figure 4: Graphical Representation of (a) Multimodal 

student data showing clustering across study hours, sleep 

schedules, stress levels, and step counts. (b) Feature-wise 

variations among high, moderate, and low stress 

categories.(c) Distribution of heart rate across participants, 

illustrating cardiovascular activity variation. (d) Sleep 

schedules highlight the temporal stability and variability of 

sleep patterns. 

4.4  Multivariate relationship analysis 

The analysis of the multivariate interaction between 

behavioral and physiological variables may give more 

information about the hidden indicators of mental health 

risk. Figure 5 presents a visualization of dependence of 

stress, sleep, time spent studying, and number of steps in 

superimposed visualizations. These visualizations may 

be useful in visualizing nonlinear relationships and 

clustering effects which may not be indicated in the more 

familiar univariate or bivariate summaries.  As shown in 

Figure 5(a), individuals with moderate risk levels 

experienced more stress and poor sleep stability. Figure 

5(b) indicates that the number of stress-related cycles 

(study-sleep) correlates with balanced study-sleep cycles 

that reduce stress which is moderated by the quality of 

sleep. Figure 5(c) indicates that the number of steps 

taken reduces stress which is cooled down by the quality 

of sleep. This confirms the multimodal combination of 

AWNB to accurately predict early-risks. 

 

 

 
Figure 5: Graphical Illustration of (a) Stress levels vs. sleep 

quality across mental health risk groups. (b) Study hours vs. 

sleep hours, highlighting density regions. (c) Bubble chart of 

step count vs. stress levels with bubble size indicating sleep 

quality. 

4.5 Clustering and pattern visualization 

Visualization methods founded on clustering can assist in 

the process of finding latent groupings of student behavior 

and physiological behavior, and present findings that can 

be interpreted in terms of concealed mental health 

phenotypes. Figure 6 shows the results of hierarchical 

clustering and Andrews curves that give us a structure and 

functional view of separability of groups in relation to 

various levels of risks. In Figure 6 a, we can see clear 

groups of students, and the closer the two students are to 

each other, the closer their behavioral multimodal qualities. 

Such natural clusters are congruent with known categories 

of risks, and unsupervised analysis proves effective in risk 

stratification of mental health. In the meantime, Figure 6b, 

Andrews curves show periodically smooth curves that 

easily differentiate between high-risk profile and 

moderate/low-risk groups. This visual differentiability 

escalates further the appropriateness of implementing the 

clustering insights into the AWNB-based decision fusion 
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model, which is interpretable and robust to early mental 

health risks detection. 

 

 

Figure 6: Visual Enhancement of (a) Student groupings 

based on multimodal features. (b) Feature trajectories 

across high, moderate, and low mental health risk 

categories. 

4.6 ROC    curve visualization  
Figure 7(a) ROC curve illustrates the trade-off between true 

and false positive rates, confirming high discrimination 

ability. Figure 7 (b) Precision–Recall curve demonstrates 

balanced precision and recall, reflecting strong predictive 

reliability across mental health risk categories. 

 

Figure 7: ROC and precision–recall curves of AWNB model 

Figure 8 (a) Calibration curve shows agreement between 

predicted probabilities and observed mental health 

outcomes with Brier score, indicating prediction 

reliability. Figure 8 (b) Precision-recall trade-off 

demonstrates how decision thresholds balance false 

positives and true positives for interventions. 

 

Figure 8:Calibration and threshold trade-off for AWNB 

prediction (a) calibration curve, (b) precision-recall 

4.7 Performance comparison of different 

methods 

The effectiveness of the proposed AWNB model was 

evaluated by comparing it to some of the recent methods. 

The models that were utilized to compare with the 

proposed frameworks were the Data Fusion Model [24], 

which comprises ML methods, such as decision trees, 

random forests, logistic regression, and the Apriori 

algorithm, (eduCationaldAtafuSion for mentaLhEalth 

detection) CASTLE [25], (You Only Look Once, version 

8) YOLOv8 [26], (time-aware attention-based 

multimodal fusion depression detection network) 

TAMFN [27], and Random Forest (RF) + CatBoost [28] 

are among the chosen techniques. Accuracy, precision, 

recall, and F1-score are common classification metrics 

used to evaluate early warning and danger detection 

systems, and these metrics were used to evaluate each 

model. 

The accuracy measures the overall proportion of correctly 

classified samples across all categories. Precision 

indicates the fraction of correctly identified positive 

instances among all predicted positives, representing the 

reliability of positive predictions. Recall is the proportion 

of actual cases that are accurately labeled, and it is 

important when identifying at-risk students early, too. F1-

score is the harmonic mean of precision and recall, and is 

a balanced measure when class distributions are 

unbalanced.

 

Table 5: Comparative performance of existing methods and the proposed AWNB model 

Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Data fusion Model [25] 95.2 93.7 90.8 92.2 

CASTLE [26] 84.47 - 71.47 74.65 

YOLOv8 [27] - 71 74.1 - 

TAMFN [28] - 66.02 66.50 65.82 

RF + CatBoost [29] 91.3 92.4 90.5 - 

AWNB [Proposed] 97.41 95.14 93.67 94.82 
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Figure 9: Graphical representation of the performance metrics 

 

Table 5 and Figure 9 that the proposed AWNB model is 

more effective than the baseline approaches in all the 

metrics that were evaluated. The Data Fusion Model [20] 

yielded positive results, yet AWNB achieved better than 2 

percent precision of higher accuracy, recall and F1-score. 

The less robust performance was also mentioned by 

methods such as CASTLE [21], YOLOv8 [22], and 

TAMFN [23], which underlines the robustness of the 

proposed decision-level fusion model, combined with the 

use of an Augmented Wingsuit optimization. These 

findings indicate that AWNB can be used in early mental 

health risk identification and guarantee reliability and 

sensitivity when identifying at-risk students. 

4.8  Regression-based performance analysis 
The predictive accuracy and generalization capacity of the 

suggested AWNB model were evaluated using regression-

based analysis in addition to categorization measures. 

Regression measures, especially regarding ongoing mental 

health risk score projections, offer supplementary 

information on the efficacy of models. The RF + CatBoost 

hybrid model [23] and the suggested AWNB method were 

compared. somewhat less than that of RF+CatBoost 

(0.918), indicating that although AWNB is very good at 

reducing error in prediction, the ensemble-based 

RF+CatBoost offers a superior accounting of variance 

overall. This demonstrates the trade-off between variable 

collection and inaccuracy elimination. AWNB, however, 

shows more usefulness in the early warning system 

environment where reducing misclassification risk is 

crucial. 

Table 6: Regression metric comparison between models. 

Model  RF + 

CatBoost 

[23] 

AWNB 

[Proposed] 

MAE 0.125 ± 

0.007 

0.104 ± 0.005 

R² 0.918 ± 

0.010 

0.807 ± 0.012 

 

From Table 6, it can be observed that the proposed 

AWNB model achieved the lowest MAE (0.104), 

indicating superior predictive accuracy compared to 

RF + CatBoost (0.125). However, the R² value of AWNB 

(0.807) was  

4.9  Ablation evaluation 

To evaluate the contribution of each aspect of the AWNB 

framework, an ablation study was conducted. There were 

different versions of the model assessed, (i) naive bayes 

standard version no optimizations, (ii) optimized naive 

bayes version without multimodal fusion, and (iii) AWNB 

with some data modalities not present. The model used to 

compare was complete AWNB with all the improvements. 

 

 

Table 7: Ablation study results showing the impact of optimization and multimodal fusion on AWNB performance 

 

Model Variant Modalities Used Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC 

(macro) 

Naïve Bayes (baseline) All features 85.3 ± 1.2 84.5 ± 1.1 83.9 ± 1.3 84.2 ± 1.2 0.87 ± 0.01 

Multinomial Naïve Bayes 

(baseline) 

All features 88.4 ± 1.0 87.4 ± 1.2 86.9 ± 1.1 87.1 ± 1.1 0.90 ± 0.01 



AWNB: Augmented-Wingsuit–Optimized Multinomial Naïve… Informatica 49 (2025) 17–32 29 

 

NB + Optimization (without 

fusion) 

All features 91.7 ± 0.9 91.0 ± 1.0 90.3 ± 0.8 90.6 ± 0.9 0.93 ± 0.01 

NB + Multimodal Fusion (no 

optimization) 

Behavioral + 

Physiological + 

Social 

92.5 ± 1.1 91.8 ± 1.0 91.2 ± 1.2 91.5 ± 1.1 0.94 ± 0.01 

AWNB (partial modalities: HR 

+ Steps) 

Physiological 

(HR + Steps) 

93.4 ± 1.0 92.6 ± 0.9 91.9 ± 1.0 92.2 ± 0.9 0.95 ± 0.01 

AWNB [Proposed] (with 

optimization + fusion) 

Behavioral + 

Physiological + 

Social 

97.41 ± 

0.5 

95.14 ± 

0.6 

93.67 ± 0.7 94.82 ± 0.6 0.97 ± 0.01 

The ablation study presented in Table 7, indicates that both 

optimization and multimodal fusion are significant factors 

of total model performance. In isolation, optimization 

improves accuracy ~3.3%, while multimodal fusion 

improves accuracy ~4.1%. Nonetheless, the full AWNB 

model improves upon all models, demonstrating that both 

optimization and multimodal fusion are imperative for the 

early, accurate detection of mental health risk. 

4.10 comparison with dataset 

Table 8 shows the accuracy, R² and adjusted R² of 

AWNB on the new college student mental health dataset 

in relation to the existing datasets. It again demonstrates 

AWNB's superior predictive performance and 

generalizability based on the multiple data sources being 

used.

 

Table 8: Comparison of AWNB performance across multiple student dataset 

Augmented Wingsuit–Enhanced Naïve Bayes (AWNB) data comparison 

Dataset Accuracy 

(%) 

R² Adjusted R² 

Proposed Dataset: College Student Mental Health 

[24] 

97.41  0.92 0.91 

Existing Dataset 1: Student Mental Health [30] 89.7  0.85 0.84 

Existing Dataset 2: Mental Health Data [31] 91.2  0.87 0.86 

 

4.11  Discussion 

The proposed AWNB Framework provides colleges and 

universities with a potentially powerful tool for early 

detection of mental health issues and to help identify and 

provide timely interventions to students at risk for mental 

health concerns. In particular, the inclusion of behavioral, 

physiological, and social modalities into AWNB provides 

an opportunity to provide more objective, continuous (in 

nearly real-time), and timely opportunities to engage 

students than through periodic or intermittent subjective 

questionnaires and surveys. AWNB and the awareness it 

generates may also help clinicians prioritize resource 

allocation and aid in developing policy. Nonetheless, 

practical application of AWNB will require a substantial 

amount of consideration with respect to the number  

of challenges that practitioners will continuously have to 

think about. Data privacy and ethics will be essential 

elements; data from students must be de-identified, consent 

verified, and storage secured for institutional and legal 

purposes. Adaptability across populations will be salient, 

as behavioral and physiological patterns can change based 

on demographic, culture, and academic context; the model 

may need to be retrained or adjusted for different students. 

Lastly, moving into practice as part of the 

operationalization of a university system will require 

practical elements like ease of use, ability of output to be 

interpreted by future client counselors, and established 

behavior for how to handle the false positive/negative and 

have a human-in-the-loop and rational agent deliberation 

with decision-making. Table 9 suggested the summary of 

the research  

 

Table 9: Related studies on college students’ mental health using AI/ML approaches

S. 

No 

Study & 

Year 

Proposed Method Objective Key Findings Limitations 

1 Kolenik 

(2022)  

Smartphone-based 

digital assessment 

Stress, anxiety, 

depression 

monitoring 

Enabled real-time 

mental health tracking 

Limited sample; privacy 

concerns not fully 

addressed 

2 Kolenik& 

Gams (2021)  

Intelligent 

cognitive assistants 

Behavior and 

attitude change 

support 

Improved engagement 

and awareness 

Prototype stage; limited 

longitudinal validation 
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3 Kolenik& 

Gams (2021)  

Persuasive 

technology 

interventions 

Reduce mental 

health disparities 

Effective in attitude 

modification 

Small-scale deployment; 

limited generalizability 

4 Li, L. (2025)  Social sentiment + 

multi-branch neural 

networks 

Assess student 

mental health via 

social data 

Accurately classified 

risk levels 

Requires social media 

access; potential bias in 

data 

5 Zhou & Dong 

(2023)  

Deep features + 

multiview fuzzy 

clustering 

Evaluate students’ 

mental health 

High clustering 

accuracy; identified 

risk groups 

Needs complex 

preprocessing; small 

dataset 

6 Zhang et al. 

(2020)  

Multi-modal 

interactive fusion 

Detect psychological 

stress in teenagers 

Improved predictive 

performance 

Focused on teenagers; 

not fully tested for 

college students 

7 Mumenin et 

al. (2025)  

DDNet hybrid ML 

model 

Detect depression 

among university 

students 

Robust detection; 

outperformed baseline 

ML models 

Computationally 

intensive; needs 

multimodal inputs 

8 Kannan et al. 

(2024)  

ML & deep 

learning for early 

detection 

Early management 

of mental health 

disorders 

Increased prediction 

accuracy 

Limited dataset 

diversity; no real-time 

deployment 

9 Wang (2024)  Deep learning 

depression analysis 

Multi-modal 

detection using 

physiological + 

behavioral data 

High detection 

accuracy; multimodal 

integration effective 

Requires high-quality 

sensor data; resource-

heavy 

10 Wu (2025)  Data fusion early 

warning system 

Psychological crisis 

detection 

Early warning 

achieved; improved 

prediction metrics 

Dataset limited to single 

institution; 

generalizability 

unknown 

Regarding the limitations of existing methodologies, 

AWNB significantly addresses these weaknesses. The Data 

Fusion Model [25] is less capable of dealing with nonlinear 

feature interactions, and CASTLE [26] is intended for a 

specific application area and is not as scalable. YOLOv8 

[27] tends to overfit when dealing with non-visual data, 

TAMFN [28] is burdensome in terms of computational 

needs and interpretability, and RF + CatBoost [29] is 

subject to feature imbalance. AWNB can detect early 

mental health risk that is robust, scalable, and practical; it 

utilizes optimization-based tuning, multimodal data fusion, 

and interpretable outputs that facilitate academic 

interventions and broader-scale programs for student 

wellbeing. 

5  Conclusion 
Mental health problems in students require early 

intervention to boost health and academic success, the 

suggested AWNB provides improved performance through 

its superior optimization and/or multimodal fusion. The 

results show that the AWMNB reaches 97.41 percent 

accuracy, 95.14 percent precision, 93.67 percent recall, and 

94.82 percent F1-score, an improvement over existing 

baseline. Additionally, with 200 iterations and training 

time of 118 seconds, shows that AWNB can converge 

faster and is computationally competent. These positive 

results were still limited by specific conditions like a 

slightly lower R2 (0.807) compared to ensemble models 

and the requirement to have data presented across multiple 

modalities. Moreover, when we propose a significant 

extension of AWNB, which will inevitably lead to higher 

computational costs due to the inclusion of complex 

optimization and deep-learning elements, it will likely 

incur even more computational costs, particularly later for 

data fusion when working with bigger dataset sizes. Future 

studies would extend AWNB development to a bigger 

cross-domain dataset bridging multimodal data, develop 

deep learning feature extraction, and explore explainability 

for real-world applicability. 
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