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Early identification of mental health risks among college students is critical for timely intervention,
promoting well-being, and supporting academic performance. This study utilizes a comprehensive
multimodal dataset comprising 1,000 students, integrating behavioral routines (study hours, sleep
schedules, and daily activity patterns), physiological indicators (heart rate, stress levels, and sleep
quality), and social engagement measures (messaging frequency and participation in clubs or events)
to classify students into Low, Moderate, and High mental health risk categories. Data preprocessing
included handling missing values with mean/median imputation for continuous features and mode
imputation for categorical features, followed by standardization using Z-score normalization.
Stratified five-fold cross-validation with a fixed random seed was applied to ensure reproducible
and unbiased evaluation. Baseline models, including the Data Fusion Model, CASTLE, YOLOVS,
Time-Aware Multimodal Fusion Network (TAMFN), and Random Forest combined with CatBoost,
were carefully tuned under equivalent computational budgets to provide fair comparisons. The
proposed Augmented Wingsuit—-Enhanced Multinomial Naive Bayes (AWNB) framework combines
optimization-driven hyperparameter tuning with decision-level multimodal fusion, effectively
capturing complex interactions between behavioral, physiological, and social features. Experimental
results demonstrate that AWNB achieves superior performance, with 97.41% accuracy, 95.14%
precision, 93.67% recall, and 94.82% F1-score. Baseline performances were: Data Fusion Model —
95.2% accuracy, 93.7% precision, 90.8% recall, 92.2% F1-score; CASTLE — 84.47% accuracy,
71.47% recall, 74.65% F1-score; YOLOV8 — 71% precision, 74.1% recall; TAMFN — 66.02%
precision, 66.50% recall, 65.82% F1-score; and Random Forest + CatBoost — 91.3% accuracy,
92.4% precision, 90.5% recall. All metrics are reported as mean + standard deviation, and statistical
significance was validated using paired tests. These findings establish AWNB as a robust,
interpretable, and computationally efficient framework, outperforming existing approaches while
enabling scalable application in academic mental health monitoring.

Povzetek: Model AWNB z multimodalno fuzijo vedenjskih, fizioloSkih in socialnih podatkov pri 1.000
Studentih doseze najboljse rezultate (97,41 % natancnost; F1 94,82 %) ter prekasSa primerjalne
modele pri razvrséanju tveganja za dusevno zdravje.

1 Introduction

The World Health Organization (WHO) describes mental
health (MH) as a condition of well-being where a person
can fulfill individual abilities, deal with the usual
pressures of living, perform effectively, and be useful to
the community [1]. Positive MH extends beyond the
absence of a psychiatric condition; it also entails a
positive system of habits and behaviors that promote
resilience, adaptation, and a good life [2]. Nonetheless,
disorders of MH have become a current international
issue, especially in the rapidly developing economies of
the world, where competition and lifestyle shifts are the
factors that add to the stress and susceptibility.

College students are particularly at risk of MH problems.
Students undergo  immense  physiological and
psychological changes during the change that occurs
between adolescence and adulthood. Lack of self-
regulation among the students is also relatively low; thus,
when combined with the academic pressure, social
networking, and personal affiliations, these become even
more emotionally unstable [3]. These challenges
contribute to the risk of anxiety, depression, and burnout,
which have a direct influence on academic performance
and patterns of personal development. Furthermore, the
absence of proper coping skills and insufficiency of
emotional strength also enhance the imbalance between
the psychological demands of the students and their
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ability to effectively cope with these demands [4]. The
pandemic increased such problems dramatically. Sudden
changes in the academic schedules, forced isolation, and
the sudden transition to online education led to the
abnormal augmentation of the academic stress,
anxiety[5], and depressive symptoms among the
undergraduates. At the same time, numerous students said
that they were experiencing problems gaining access to
mental health care, and that the institutional resources and
counseling services were also slow, which further
complicated the crisis [6]. This brought out how the
university students are at a loss during the emergencies in
the world and there is a need to adopt sustainable support
mechanisms.

Among various people, lifestyle-related disorders, Major
Depressive Disorder (MDD) and non-communicable
diseases (NCDs) have become a major cause of
disability, poor quality of life and premature deaths [7].
These conditions are different in the higher education
environment that is typically interdependent with the
stress of academic achievement, career readiness, and
financial limitations. Being young adults, university
students must face the challenge of making their future
contribution to society, as well as the burden of personal
identity, career, and relationship problems [8 and 9].
Further, psychological quality was also shown to be
linked with acquiring moral value and good ethical
standards, and the relevance of psychological support
and intervention during early ages is valuable. In this
regard, the efficient crisis-intervention framework and
relentless surveillance systems are being discovered as
the key ones when serving the student bodies [10-11].

1.1 Research objective

College students' mental
creative solutions that go beyond conventional
screening. To increase accuracy, sensitivity, and
dependability in identifying early MH risks by
multimodal data fusion, this research intends to develop
an AWNB framework that integrates optimization and
ML.

health issues necessitate

2 Related works

Mental health education is significant both to support the
psychological wellbeing of college students and be able
to provide high-quality education. Research [12] aimed
at improving proper evaluation through the development
of a fine-grained parallel computing architectural design,
a product of deep learning (DL) and a supplemented
emotion dictionary classification. The findings indicate
that the model was more accurate in determining
emotional statuses and psychological risks with
reference to the Weibo data. The biggest weakness
though was the fact that it was based on online
expressions, which might not be reflective of the offline
psychological realities of the students.

Mental health management was the best approach when
the psychological state of the college students was
monitored. Research [13] has proposed the dynamic
evaluation prototype, which integrated the multimodal
synthesis of the physiological messages with the deep
generative models, in which the transformers were
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considered as the feature fusion and VAE-LSTM
(Variational Autoencoder - Long Short-Term Memory)
[14] as the predictor of the trend of the psychological
states. The outcomes of the experiment confirm that the
proposed methodology was more efficient than the
existing ones in the classification and dynamics to predict
mental health changes. The fact that the approach relies
on physiological indicators as one of its weaknesses was
that they are open to external influence and might not be
adequate to objectively quantify emotional subjective
experiences [15]. Mental health among students was one
of the aspects of high importance that affects the learning,
well-being, and social interactions processes, but the
traditional assessment approaches were likely to ignore its
dynamic and complicated nature. Research [16]
capitalized on Artificial Intelligence (Al), ML, and multi-
modal data analyses with a view of integrating
physiological, behavioral, and social interactions to
conduct a holistic evaluation of mental disorders. The
plan permitted dynamic and timely interventions and
increased the specificity and precision of mental health
support [17]. It might, however, be restricted in its
effectiveness by the access to data, privacy, and the fact
that the signal might not be homogenous across the
students.

Mental health assessment in college students is complex
and multifactorial. Research [18] proposed a model
combining social sentiment analysis, CNN-BiGRU,
dynamic embeddings, and H-GNN, achieving up to 99%
accuracy and F1 in dynamic monitoring but limited by
reliance on social media data. Research [19] proposed a
CNN-MV-MEC framework that combines deep learning
and multiview clustering on electroencephalogram (EEG)
signals (SEED dataset) for the detection of negative
emotional states, which would allow for timely responses.
These EEG approaches face scalability issues and do not
capture all possible dimensions of an individual’s
psychology. Both studies emphasize how multimodal
approaches and neural models can assess mental health in
a precise but low-friction way with regard to usability and
convenience in identifying a mental state in students.
Psychological stress among adolescents is an increasing
concern with calls for early diagnosis. Research [20]
presented a Multi-modal Interactive Fusion Method
(MIFM) and employed text data, image data, and
sleep/exercise data derived from mobile applications.
They found that the multimodal fusion design was
superior to unimodal detection even though the data
quality from the smartphone was poor. Another work
presented DDNet [21], which is a stacked ensemble model
comprised of MLP, SGD, CatBoost, and Lasso models,
reporting  98-99%  accuracy with  SHAP-based
explanations, although limited to only structured data
types. Similarly, research [22] investigated the use of
ML/DL with behavioral, biomarker, and imaging data for
diagnosing mental disorders, while noting the capability
for future real-time monitoring, yet offered no definitive
conclusion on providing integrated data and covering
ethical considerations. Furthermore, early detection of
depression in college students is important for their well-
being. Research [23] provided CRADDS, which applies
tensor fusion from audio, text, and video along with using
a hybrid SVM-CNN-BiLSTM model on the IloT
devices/tasks, reaching an accuracy of 86.08% versus
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63.04% with SVM. These studies are only examples of
what has been done, and also are notable in that all studies
made reference to privacy concerns when integrating the
various data types, as well as needing optimal multimodal
10T data inputs on the student participants' devices.

3 Methodology

The framework describes an Enhanced multinomial Naive
Bayes (EMNB) classifier, which is coupled with an
Adaptive and Weighted Shared Optimization (AWSO)
policy, that predicts mental health risks among college
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students. The multi-modal data used in the framework
included  behavioral, physiological, and social
characteristics that were preprocessed by handling missing
values, to standardize values, and finally through
visualization with t-SNE. To explain, EMNB is responsible
for modeling latent dependencies and adaptively weighs
the different attributes while AWSO seeks to optimize its
parameters to maximize classification performance. The
hybrid format of EMNB and AWSO will provide early
detection of mental health issues that is robust,
interpretable, and high accuracy. Ultimately, in Figure 2,
the overall procedure is presented alongside the proposed
AWNB framework.
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Figure 2: The process flow of the proposed framework

3.1 Data acquisition

The college-students-mental-health-dataset was sourced
from Kaggle:
(https://www.kaggle.com/datasets/zara2099/college-
students-mental-health-dataset/data) [24]. It includes
demographic, behavioral, lifestyle, and educational
characteristics of students, as well as self-assessed
mental health measures, such as anxiety, depression, and
stress levels. The dataset includes numerical and
categorical variables, including age, gender, study
habits, sleep habits, exercise habits, and social habits.
The dataset contains 1,000 records of college students.
The mental health risk target is represented in three
classes: Low (400 samples) ,Moderte (350 samples), and
High (250 samples). The dataset is balanced among the
three classes so that it may be used for model training
and evaluation.

3.2 Data preprocessing

Efficient preprocessing is an important step in building
trustworthy ML models, because it ensures that the
collected multimodal data is clean, and is a valid
comparison across variations of feature space. In this study,
preprocessing consisted of handling missing values,

normalizing the features, and preparing the dataset for other
feature extraction and classification.

3.2.1 Handling missing values

Multimodal datasets frequently contain missing data
caused by sensor failures or an unsuccessful transmission.
Missing data might skew findings and impair a model's
accuracy. This study used a mixed technique for its
analyses, deleting data with severe missingness and merely
reconstructed partial gaps. Continuous variable imputation
(e.g., heart rate, sleep duration) used mean and median
values for imputation, and mode was used for categorical
variables. This way the dataset was complete and
variability was preserved, and the robustness of the AWNB
Framework could be bolstered for feature fusion and
mental health prediction.

3.2.2 Standardization (Z-Score normalization)

The multimodal dataset collected in this research
comprises heterogeneous features such as behavioral
metrics (e.g., study hours, attendance frequency),
physiological signals (e.g., heart rate, sleep duration),
and social interaction indicators (e.g., number of
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messages, group participation). These features differ not
only in their units of measurement but also in their value
ranges and variances. Directly feeding such raw features
into a ML model often leads to biased learning, where
features with larger numeric scales dominate the
optimization process, while smaller-scale features
contribute minimally. Equation 1 represents the
formulation of Z-score normalization.

—
Zji = ]o_—jul (1)
Where as x;;: Original value of the jth feature for the ith
sample.y;: Mean of the jth feature across all samples. o;:
Standard deviation of the jth feature.Z;;: Standardized
value.

Several  behavioral, physiological, and social
characteristics were standardized using z-score
normalization

3.3 T-distributed Stochastic  Neighbor

Embedding (t-SNE) for feature visualization

Behavioral, physiological, and social interaction aspects
are examples of high-dimensional multimodal data that
frequently show intricate nonlinear interactions that are
difficult to immediately analyze. To resolve this, high-
dimensional data is projected onto a low-dimensional
space (usually 2D or 3D) using t-distributed Stochastic
Neighbor ~ Embedding  (t-SNE), a  nonlinear
dimensionality reduction technique. The ability to
visualize hidden structures, clusters, and separations
makes it easier to identify patterns linked to mental
health problems.
High-dimensional distribution (P): Represents pairwise
similarities among data points in the original feature
space.
Low-dimensional distribution (Q): Represents pairwise
similarities among data points in the reduced feature
space.
The similarity between two data points wjand w; in the
high-dimensional space is measured using conditional
probability. Equation 2 defines similarity P(w;|w;)
Euclidean distances.
P(wi|wi) = 5 S @)
Equation (3), P(w; | w;) is the neighbor selection
probability, w, the number of neighbors, and
S(w;,w;) the Euclidean similarity; the denominator
standardizes over all neighbors nexcluding w;, while
zj, z;denote low-dimensional symbols.

S(z,z)
Al2) = 55 3)
In this appearance, Q(z|z;) represents the prospect that
point z; would select z; as its neighbor in the lower-
dimensional embedding and z, as a number of the
iterations.

P(wj[wi)

KL(P|IQ) = ;X P(wj, wi)log Q(z[z:) @

In equation 4, KL(P||Q)quantifies the difference between
the similarity distribution in the high-dimensional space
(P) and that in the low-dimensional space (Q). thereby

S(wj,wj)
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preserving neighborhood structures for interpretable
visualization.

3.4  Augmented  Wingsuit-Enhanced
Multinomial Naive Bayes (AWNB)

The Augmented Wingsuit—-Enhanced Multinomial Naive
Bayes (AWNB) model is designed by advancing the
optimization power of Augmented Wingsuit Search
Optimization (AWSO) and the classification ability of the
Multinomial Naive Bayes (NB) algorithm. Although
traditional NB uses a straightforward yet effective
probabilistic framework for navigating text-like and
categorical data, it is dependent on prior probability
estimate and tuning parameters to achieve a level of
effectiveness. AWSO is a well performing population-
based metaheuristic optimization technique that can
efficiently explore complex search space to locate optimal
parameter combinations. In AWNB, these two paradigms
are combined to increase predictive accuracy when
multimodal data contains behavioral, physiological, and
social data correlated in non-linear ways, while
simultaneously enhancing parameter learning of NB.

3.4.1 Enhanced Multinomial Naive Bayes (NB)

The conditional independence assumption, which is
infrequently correct with actual, empirical data, is the main
issue with Naive Bayes (NB), nonetheless, it is recognized
because of ease and general accuracy. An Improved
Multinomial Naive Bayes model partially addresses the
weaknesses of NB by incorporating a latent variable that
identifies hidden relations between attributes and relaxes
the independence assumption for the dependent attributes.
However, there are still deficiencies regarding scalability,
accountability for heterogeneous attribute distributions,
and high sensitivity to the number of latent states. The
proposed EMNB classifier reduces these deficiencies with
adaptive dependency weighting, regularization, and mixing
components in a latent model framework that increase
classification accuracy.

Posterior probability maximization

Equation 5 defines the basic classification task, where
the model seeks the class label with the maximum
posterior probability.

¢ =argmaxP(D =d|A; = a;,...Ay = ay) (B)

ceC

The EMNB classifier's first step involves predicting the
most likely class for a specific input instance. In
Equation 5, € is the class label predicted for an input, and
C is the set of all possible classes.D is the input data
instance being classified, and A_i is the i-th attribute of
the instance, which has an observed value A;The above
formulation guarantees that the classifier will choose the
class that is most likely to have generated the observed
attributes .



AWNB: Augmented-Wingsuit-Optimized Multinomial Naive...

Bayes Rule in EMNB

This reformulation applies Bayes’ theorem to decompose
the posterior into class prior and conditional likelihood.
P(C|A4,...Ay) < P(C).P(A4,...,Ax|C) (6)

To total the subsequent probability more tractably,
Bayes’ theorem is applied in equation 6. Here,
P(C|A4,...Ay) represents the posterior probability of the
class C given all observed attributes. The term P(C) is
the prior probability of class C, reflecting its overall
likelihood before observing the features,
while P(A4, ..., Ax|C) is the likelihood of observing the
specific attribute values given that the instance belongs
to class C. This decomposition allows the classifier to
separate prior information about class distributions from
the contribution of the observed features.

Adaptive dependency weighting

This change adds a weighting formula that modifies each
attribute's impact under various latent conditions. The
weighting function is expressed in Equation 8.

P(Ay,... ANIC) = Znern [T (P(A{IC H =
h)%i©M)P(H = h)
(7

Additionally, the model offers adaptive weighting for
every attribute under various latent states. For class C
under latent state h , the weighting function
wj(c,h)modifies the impact of the J-th attribute. The
model may dynamically modify each feature's
contribution thanks to this weighting, which enhances
classification performance in diverse datasets.

Regularization term

To avoid overfitting, a Kullback—Leibler (KL)-
divergence-based regularization is applied between the
latent distribution and a uniform prior.

Lyeg = A Dy, (P(IU(H)) (®)

In this expression 9, P(H) is the learned distribution over
latent states, U(H) is the uniform prior over these states,
and A is a hyperparameter controlling the strength of
regularization. This term encourages the latent
distribution to remain close to uniform, avoiding
excessive bias toward particular latent states.

Final decision rule

The final decision function integrates class priors, latent
variable dependences, adaptive weights, and regulation.

¢ = arg max P(D = d) Sner P(H = b) [, (P(A C =
ce
cH= h)wi(c'h)) - Lreg 9

Equation 9 predicts the class label ¢by combining input
attributes A; , class priors, latent dependencies, adaptive
weighting, and KL-divergence regularization. EMNB
overcomes traditional Naive Bayes limitations, handling
high-dimensional, correlated data robustly, improving
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predictive accuracy, interpretability, and scalability for
applications like mental health risk assessment.

3.4.2 Augmented Search

Optimization (AWSO)

Wingsuit

AWSO were incorporating chaos-based perturbation,
adaptive  velocity  control, and neighborhood
diversification, AWSO improves the Wingsuit Flying
Search algorithm by avoiding premature convergence and
limited exploration in high-dimensional space. It
guarantees diversity across the population and supports
global optimization strategies, allowing the AWSO to be
effective in parameter tuning of Enhanced Multinomial
Naive Bayes in data fusion with multimodal distributions.

Initialization

Candidate solutions are initialized using a hybrid
sequence combining the Halton sequence for uniform
distribution and Gaussian perturbations for diversity that
was expressed in equation 11.

0 _(0 0
x©@ = [XE ),Xg ),...,Xg)], X©@ € [Xmins Xmax] (11)

Where as x() — The initial solution vector at iteration
000, x” — The i-th decision variable in the initial
solution Vvector. [Xmin, Xmax]© — Represents that the
initial solution is generated within the constraint-
defined search space (C = constraints). D = problem
dimension. Xin, Xmax = lOwer and upper search space
bounds. Gaussian perturbation ensures spread beyond
deterministic Halton initialization.

Adaptive neighborhood size

Unlike static WFS neighborhoods, AWSO adaptively
adjusts each solution’s neighborhood according to
fitness rank. Equation 12 ensures better solutions retain
larger search neighborhoods for exploration, while
weaker ones shrink toward exploitation.

O — [p® fi—fmin
P )(l) - [Pmax' (1 - fmax—fmm+e)](12)
Where as P®(i) = neighborhood size for solution i at
iteration t.f; = fitness of solution i.f;,, fnax = best and

worst fitness in iteration t.€ = small constant to avoid
division by zero.

Neighborhood point generation with Lévy
Flights

To expand global reach, neighborhood points are
generated not only within the grid but also perturbed by
a Lévy distribution. Lévy flights allow occasional long
jumps to unexplored regions, improving global
exploration. Equation 13 depicts its calculation.

yi(t) =x + alevy(), i=1,..,PO%G) (13)

Where as y].(t) = candidate neighbor ofxi(t).a = step
scaling factor. Levy(B) = Lévy random step with

index [B € (0,2].
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Elite-guided updating

Each solution learns from both the global best solution
and a dynamically selected elite set consisting of top
solutions. This mechanism, represented in equation 14,
balances intensification (learning from the best) and
diversification (learning from multiple elites).

(t+1) ®© ® ®
X; =%+ 1. (Xgp =X ) + 2. (Xe —x;7) (14)

®

Where as x;° — Position (value) of the i -th
(t+1)

solution/agent at iteration t.x; — Updated position
of the i-th solution/agent at the next iteration (t 4+ 1).x,
= randomly chosen elite solution. r;,r, € [0,1] =
learning coefficients. xg, global best solution at
iteration t.

Dynamic grid shrinking

Similar to WFS, AWSO shrinks the search grid over time
but applies a non-linear decay to preserve exploration
longer. Equation 15 represents the shrinking formulation
of the proposed adaptive WSO.

Ax® = Ax©® exp (—y. é) (15)

Where as Ax(® = initial grid size.t = maximum number

of iterations. y € (0,1) = decay rate. S = Maximum
number of iterations or a scaling parameter.

Final updating rule

The final position update combines adaptive
neighborhood, Lévy exploration, elite learning, and grid
shrinking. It was represented in equation 16.

xED = y].(t) + AxO. ¢ + r(xg, — xi(t))

1

(16)

Where as y].(t) = neighborhood candidate.¢ € [—-1,1] =
random scaling factor. r€[0,1] = exploitation
coefficient.

In conclusion, the AWSO improves the classical WFS
through adaptive neighborhood allocation, Lévy-based
long-range exploration, and elite-guided exploitation. The
pseudo-code of AWSO describes an optimization process
during which agents iteratively update positions via glide,
lift, and exploration dynamics all in an attempt to minimize
fitness and discover optimal parameter configurations.
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2. Initialize population (random positions in [-10, 10]):
Agent 1: X1 =[2, -3]
Agent 2: X2 =[-5, 1]
Agent 3: X3 =0, 7]
Agent 4: X4 =[-2, -6]
Agent 5: X5 =[4, 4]
3. Initialize personal bests:
P1=X1,P2=X2,..,P5=X5
4. Evaluate initial fitness (example: f(X) = X1"2 + X2"2):
f(X1) =22 + (-3)"2 =13
f(X2) = (-5)"2 + 1"2 = 26
f(X3)=0"2 + 772 =49
f(X4) = (-2)"2 + (-6)"2 = 40
f(X5) =42 + 4"2 = 32
5. Determine initial global best:
G = X1 (fitness 13, lowest)
6. Iteration loop (t = 1 to Maxlter):
For each agent i:
Example for Agent 2:
- Current position: X2 = [-5, 1]
- Personal best: P2 = [-5, 1]
- Global best: G =[2, -3]
# Compute components
Glide =0.5* (G-X2) =0.5*([2, -3] - [-5,1]) = 0.5 * [7,
-4]1=[3.5,-2]
Lift=0.3* (P2 - X2) = 0.3 * ([-5,1] - [-5,1]) = [0,0]
Exploration = 0.2 * random_vector([-1,1]) = 0.2 * [0.6, -
0.8] =[0.12, -0.16]
- Update position:
X2_new = X2 + Glide + Lift + Exploration
=[-5,1] + [3.5,-2] + [0,0] + [0.12,-0.16]
=1[-1.38, -1.16]
- Ensure bounds [-70,10] — valid
- Evaluate fitness:
f(X2_new) = (-1.38)"2 + (-1.16)"2 = 3.23
- Update personal best: P2 = X2_new (since 3.23 < 26)
- Update global best: G = X2_new (fitness 3.23 < 13)
7. Repeat for all agents and all iterations.
8. After 10 iterations:
- Output best solution: G = [position with lowest fitness]
- Best fitness: f(G)

Pseudo-Code:
AWSO

Augmented Wingsuit Search Optimization

1. Initialize parameters:
- Population size N =5
- Maximum iterations MaxIter = 10
- Dimensionality D = 2
- Position bounds X_min = -10, X_max = 10
- Glide factor = 0.5
- Lift factor = 0.3
- Exploration rate = 0.2

This addition allows to establish a balanced exploration-
exploitation trade-off that reduces the risk of premature
convergence and improves robustness and efficiency
over high dimensional multimodal optimization
problems. When applied to parameter tuning of
classifiers such as Enhanced Multinomial Naive Bayes,
the AWSO optimizer improved convergence speed and
predictive accuracy, thus establishing the AWSO as an
important optimization framework to support numerous
real-life applications such as early detection of mental
health risks. The entire procedure of the methodology is
described in Algorithm 1.
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Algorithm 1: AWNB — Based Early Mental Health Risk Detection

Input: College students’ multimodal dataset D:

(behavioral, physiological, and social features)Output: Predicted mental health risk labels.
Start
Data Acquisition
Load dataset D from Kaggle.
Extract features: demographic, behavioral, physiological, and social interaction attributes.
Identify target mental health variables (anxiety, depression, stress).
Data Preprocessing

Handle missing values:

Continuous — replace with mean/median based on skewness.

Categorical = replace with mode.
Standardize features using Z — score normalization.
Apply t — SNE for feature visualization.

EMNB Classification

Initialize latent variable HHH with states RHR_HRH.

Compute conditional probabilities: P(Al,...,AN | C) = Yh € RH[]i = INP(Ai | C,H = h)P(H
=h)P(A_1,...,AN|C) =\sum_{h\inR_H}\prod_{i = 1}"N P(A_i |C,H = h) P(H
= h)P(A1,...,AN | C) = Yh € RH[[i = INP(Ai | C,H = h)P(H = h)
Apply adaptive dependency weighting: P(A1,...,AN | C) = Yh € RH[]i = IN[P(A4i | C,H = h)wi(C,h)]P(H
=h)P(A_1,...,AN | C) =\sum_{h\in R_H}\prod_{i = 1}*N [P(A_i | C,H = h)w_i(C,h)}] P(H
= h)P(AL,...,AN | C) = Y h € RH[]i = 1N[P(Ai | C,H = h)wi(C,h)]P(H = h)
Include KL — divergence regularization: Lreg = ADKL(P(H) || U(H))L_{\text{reg}}
=\lambda D_{\text{KL}}(P(H) \| U(H))Lreg = ADKL(P(H) Il U(H))
Compute posterior and predict class label: c = arg max c € C[P(D = d)Yh € RH[[i = IN(P(4i| C =c,H
= h)wi(C, h)) — Lreg|\hat{c} =\arg \max_{c\in C} [ P(D = d) \sum_{h \in R_H} \prod_{i
=1}"N (P(A_i | C =c,H = )Mw_i(C,h)}) — L {\text{reg}}]c" = argmaxc € C[P(D =d)Xh
€ RH[[i = IN(P(Ai | C = ¢, H = h)wi(C, h)) — Lreg]
AWSO Optimization
Initialize candidate solutions x(0)x*{(0)}x(0) using Halton sequence + Gaussian perturbation.

For each iteration ttt:

Compute adaptive neighborhood P (t) ()P {(t)}(D)P(t)(i).

Generate neighborhood candidates with Lévy flights.
Update solutions with elite — guided learning.

Shrink search grid non — linearly (Ax(t)\Delta x"{(t)}4x(t)).
Update positions: xi(t + 1) = yj(t) + Ax(t)p + r(xgb — xi(t))x_i*{(t + 1)}
= yJjM(®} +\Delta x*{(O)} \phi + r (x_{gb} — x_i*{()}Pxi(t +1)
= yj(t) + Ax(t)p + r(xgb — xi(t)).
Hybrid EMNB — AWSO Integration

Evaluate EMNB performance using candidate solutions.

Update EMNB parameters (priors and likelihoods) using AWSO — optimized values.
Repeat AWSO optimization until convergence or maximum iterations reached.
Prediction
Use an optimized EMNB model to classify students’ mental health risk labels.
End

The EMNB training process consists of full Expectation (E-
step) and Maximization (M-step) equations used to update the
probabilities of latent variables and the likelihoods of
features. AWSO-driven candidate solutions are mappings to
the probabilities of Naive Bayes features, and the weights for
each feature will be updated iteratively, using adaptive
neighborhood search, elite-guided learning, and Lévy-flight

perturbations to maintain exploration. Decision-level fusion
is performed using weighted majority voting to fuse classifier
outputs across the behavioral, physiological, and social
modalities. The finalized AWNB hyperparameters are shown
in Table 1, together with their functions, chosen values, and
explanations to guarantee consistent accuracy of
classification, balanced exploration, and resolution
effectiveness during refinement.
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Table 1: Optimized hyperparameter settings for the AWNB model

Hyperparameter Description Chosen Justification
Value

N_agents Number of  wingsuit | 20 Medium population ensures exploration with

agents manageable runtime
Maxlter Maximum iterations 100 Enough iterations for convergence
glide_factor Exploitation toward | 0.5 Balanced global pull

global best
lift_factor Attraction to personal best | 0.3 Maintains memory of previous good solutions
exploration_rate Random perturbation 0.2 Introduces stochasticity to avoid local optima
o (Laplace | For MNB 1 Prevents zero probabilities
smoothing)
Wi_init_range Initial feature weights [0.1,1] Ensures all features have influence initially
weight_bounds Allowed feature weight | [0,1] Ensures valid scaling for MNB

range

The AWNB framework contributes to mutual reinforcing
hybridization, where AWSO is constantly updating NB’s
prior and likelihood parameters, and NB is used to guide
AWSO based on classification performance of potential
solutions. This provides a closed-loop model optimization
cycle, beneficial for avoiding local optima, improving
sensitivity for early warning signals, and providing stable
performance across heterogeneous data types. AWNB is,
therefore, a scalable and interpretable solution, accuracy-
based early mental health risk detection in higher
education. Our research effectively intersects optimization
algorithms with probabilistic learning models.

4 Results and discussion

This section showed the effectiveness and strength of the
proposed AWNB framework, table 2 summarizes all
experimental settings including dataset source, files,
number of samples, class distribution, preprocessing,
feature  encoding, validation, and computing
environment. This promotes replicability and provides
reviewers with unambiguous detail of AWNB
experimental workflow.\

Table 2: Experimental setup and dataset details for AWNB study

Category

Description

Programming Environment

Python 3.10.13 (Jupyter Notebook)

Libraries Used

NumPy 1.26.4, Pandas 2.2.2, Scikit-learn 1.5.1, Matplotlib 3.8.3, Seaborn
0.13.2

Dataset Source

Kaggle: College Students Mental Health Dataset

Dataset File Name

college_student_mental_health.csv

Total Samples

1000

Total Attributes

12

Class Distribution

Depressed: 528, Not Depressed: 482

Missing Value Handling

>30% missing — dropped; controlled missingness experiments at 10%, 30%,
50%

Imputation Schemes Tested

Mean, Median, KNN

Feature Scaling

z-score normalization for numerical features

Categorical Encoding

One-hot encoding

Validation Protocol

Stratified 5-Fold Cross-Validation (random_state = 42)

Hardware Used

Intel® Core™ i7-12700H CPU @ 2.30 GHz, NVIDIA® GeForce RTX™
3060 (6 GB), 32 GB RAM, Windows 11 Pro (64-bit)

AWNB Robustness Results

Accuracy (%) with missing data: « 10% missing — Mean: 96.8, Median: 96.9,
kNN: 97.0 * 30% missing — Mean: 95.7, Median: 95.9, kNN: 96.1 * 50%
missing — Mean: 94.2, Median: 94.5, kKNN: 94.8

Although the results from the hyperparameter sensitivity
analysis indicate the model performs largely with consistent
performance  regardless of hyperparameters, the
computational efficiency tests suggest it converges quickly
with relatively low overhead. Furthermore, exploratory
studies of behavioral, physiological, and lifestyle factors
show how valuable multimodal fusion can be for capturing

complex behavioral interactions. The AWNB routinely
exceeds baseline models in regression-based, ablation, and
comparative studies, demonstrating the crucial role that
optimization and multimodal merge can play in producing
accurate, scalable and interpretable predictions.
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4.1 Synthetic data validation of AWSO

To assess the ability of AWSO to free itself from local
optima, a synthetic multimodal dataset, with known
feature interactions, was created. The AWNB model was
optimized on this dataset, and convergence was
compared to other standard optimizers such as grid
search, Bayesian optimization, and the CMA-ES
algorithm. The findings of the analysis demonstrate that
AWSO consistently identifies near-optimal parameters
from the global minimum, converges quicker, and
escapes local optima, establishing, once again, the
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strength and ability of AWSO to optimize for multimodal
feature-weight optimization.

4.2 Statistical analysis of AWSO

The Wilcoxon signed-rank test results is shown in Table 3,
indicate that the AWNB maodel significantly outperforms the
baseline for Low, Moderate, and High mental health risk
categories. This confirms the strength and dependability of
the AWNB model to accurately predict individual student risk
labels across folds.

Table 3: Wilcoxon signed-rank test on predicted mental health labels

Variable AWNB 95% Cl | Baseline 95% Cl | Test p- Significant (p
Mean£SD | (AWNB) Mean = SD (Baseline) Statistic value | <0.05)
(W)

Low Risk 0.92+0.03 | 0918 — 1 0.88+0.04 0.878-0.882 | 14 0.041 | Yes

0.922
Moderate 0.95+0.02 | 0.949 —10.91+£0.03 0.909-0.911 | 15 0.043 | Yes
Risk 0.951
High Risk | 0.94+0.02 | 0.939 — 1 0.89+0.04 0.888-0.892 | 15 0.043 | Yes

0.941

Note: Wilcoxon signed-rank test confirms AWNB predictions per risk category significantly outperform baseline (p < 0.05).

4.3 Computational efficiency

Computational efficiency is the ability of a computer or
algorithm to complete a task as efficiently as possible while
using the least amount of time, memory, and energy
possible, which leads to quicker execution and reduced
expenses. Besides the performance of AWNB in
classification, its ability to compute was also evaluated
based on training time, inference time, and convergence
speed.

Table 4: Computational efficiency comparison between
AWNB and baseline optimization methods

Model AWNB (Proposed)
Training Time (s) 118+3.4
Inference Time (ms) 12+0.8

Iterations to Converge | 200+5

Average Accuracy (%) | 95.3+1.2

These efficiency results, which are presented in Table 4,
confirm that AWNB outperforms other optimization
techniques in terms of faster convergence and lower
computing overhead in addition to improved classification
accuracy.

Because of this computational advantage, AWNB would be
extremely suited to scalable application in the academic
real world, where prompt and early identification of mental
health risk is essential.
Figure 3 functions as a key analytical component to
corroborate the multimodal dataset used in the AWNB-
based mental health model. (@) The
Streamgraph of Features by Risk Group demonstrates the
contributions of the behavioral and physiological features
across varying mental health risk groups, reinforces that
stress levels are an important contributing feature, and
demonstrates the multifactorial nature of mental health. (b)
The Scatter Plot Matrix with Distribution portrays the
relationships between features in pairwise fashion and
separability between risk groups lends additional support
for multimodal discriminability. (c) In the Study Hours vs
Sleep Hours Scatter Plot, the independence of behavioral
modalities is shown, as the data indicate a weak correlation
between time spent studying and time spent sleeping. (d)
The Rug Plot of Stress Levels, a visual representation of
the densities of distributions, along with potential points of
concentration, provides further support for the reliability,
clarity, and utility of the features to aid in AWNB
prediction performance.
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(©)

Figure 3. Exploratory visualization of multimodal
features across mental health risk groups. (a)
Cumulative distributions for study hours, sleep
schedules, and stress levels. (b) Feature-wise and
pairwise relationships.(c) Study hours versus sleep
duration. (d) Stress levels.

Figure 4 are important instruments of analysis that support the
validity of multimodal data that serves as the foundation of
the mental health prediction model based on AWNB. (a)
RadViz demonstrates the relationships between features and
their ability to separate classes, which are causing prevailing
feature impact at different stress levels. (b) Parallel
Coordinates Plot is a multivariate correlation and category
dispersion of behavioral and physiological indicators. (c)
Heart Rate Distribution Histogram checks whether
physiological reactions are normal and stable, which
guarantees the validity of data input. (d) Lag Plot of Sleep
Schedules measures time independence, which confirms that
variations in the dayly sleep are independent. Together, the
analyses enhance feature interpretability, which makes
AWNB more accurate in data fusion and more predictive.

Raviz (Radial visuaiizatint Parsiel Cosraimates pist

Figure 4: Graphical Representation of (a) Multimodal
student data showing clustering across study hours, sleep
schedules, stress levels, and step counts. (b) Feature-wise

variations among high, moderate, and low stress
categories.(c) Distribution of heart rate across participants,
illustrating cardiovascular activity variation. (d) Sleep
schedules highlight the temporal stability and variability of
sleep patterns.
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4.4 Multivariate relationship analysis

The analysis of the multivariate interaction between
behavioral and physiological variables may give more
information about the hidden indicators of mental health
risk. Figure 5 presents a visualization of dependence of
stress, sleep, time spent studying, and number of steps in
superimposed visualizations. These visualizations may
be useful in visualizing nonlinear relationships and
clustering effects which may not be indicated in the more
familiar univariate or bivariate summaries. As shown in
Figure 5(a), individuals with moderate risk levels
experienced more stress and poor sleep stability. Figure
5(b) indicates that the number of stress-related cycles
(study-sleep) correlates with balanced study-sleep cycles
that reduce stress which is moderated by the quality of
sleep. Figure 5(c) indicates that the number of steps
taken reduces stress which is cooled down by the quality
of sleep. This confirms the multimodal combination of
AWNB to accurately predict early-risks.

(c)

Figure 5: Graphical Illustration of (a) Stress levels vs. sleep

quality across mental health risk groups. (b) Study hours vs.

sleep hours, highlighting density regions. (c) Bubble chart of

step count vs. stress levels with bubble size indicating sleep
quality.

4.5 Clustering and pattern visualization

Visualization methods founded on clustering can assist in
the process of finding latent groupings of student behavior
and physiological behavior, and present findings that can
be interpreted in terms of concealed mental health
phenotypes. Figure 6 shows the results of hierarchical
clustering and Andrews curves that give us a structure and
functional view of separability of groups in relation to
various levels of risks. In Figure 6 a, we can see clear
groups of students, and the closer the two students are to
each other, the closer their behavioral multimodal qualities.
Such natural clusters are congruent with known categories
of risks, and unsupervised analysis proves effective in risk
stratification of mental health. In the meantime, Figure 6b,
Andrews curves show periodically smooth curves that
easily differentiate between high-risk profile and
moderate/low-risk groups. This visual differentiability
escalates further the appropriateness of implementing the
clustering insights into the AWNB-based decision fusion
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model, which is interpretable and robust to early mental
health risks detection.

(a) ()

Figure 6: Visual Enhancement of (a) Student groupings
based on multimodal features. (b) Feature trajectories
across high, moderate, and low mental health risk
categories.

4.6 ROC curve visualization

Figure 7(a) ROC curve illustrates the trade-off between true
and false positive rates, confirming high discrimination
ability. Figure 7 (b) Precision—Recall curve demonstrates
balanced precision and recall, reflecting strong predictive
reliability across mental health risk categories.

Recalver Operating Charactanstic (ROC) Curve: Precision-Recall Curve

o ’2;1‘
Figure 7: ROC and precision-recall curves of AWNB model

Figure 8 (a) Calibration curve shows agreement between
predicted probabilities and observed mental health
outcomes with Brier score, indicating prediction
reliability. Figure 8 (b) Precision-recall trade-off
demonstrates how decision thresholds balance false
positives and true positives for interventions.
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(a) (b}
Figure 8:Calibration and threshold trade-off for AWNB
prediction (a) calibration curve, (b) precision-recall

4.7 Performance comparison of different
methods

The effectiveness of the proposed AWNB model was
evaluated by comparing it to some of the recent methods.
The models that were utilized to compare with the
proposed frameworks were the Data Fusion Model [24],
which comprises ML methods, such as decision trees,
random forests, logistic regression, and the Apriori
algorithm, (eduCationaldAtafuSion for mentaLhEalth
detection) CASTLE [25], (You Only Look Once, version
8) YOLOv8 [26], (time-aware attention-based
multimodal fusion depression detection network)
TAMEFN [27], and Random Forest (RF) + CatBoost [28]
are among the chosen techniques. Accuracy, precision,
recall, and F1-score are common classification metrics
used to evaluate early warning and danger detection
systems, and these metrics were used to evaluate each
model.

The accuracy measures the overall proportion of correctly
classified samples across all categories. Precision
indicates the fraction of correctly identified positive
instances among all predicted positives, representing the
reliability of positive predictions. Recall is the proportion
of actual cases that are accurately labeled, and it is
important when identifying at-risk students early, too. F1-
score is the harmonic mean of precision and recall, and is
a balanced measure when class distributions are
unbalanced.

Table 5: Comparative performance of existing methods and the proposed AWNB model

Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Data fusion Model [25] 95.2 93.7 90.8 92.2
CASTLE [26] 84.47 - 71.47 74.65
YOLOV8 [27] - 71 74.1 -

TAMFN [28] - 66.02 66.50 65.82

RF + CatBoost [29] 91.3 92.4 90.5 -

AWNB [Proposed] 97.41 95.14 93.67 94.82
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Figure 9: Graphical representation of the performance metrics

Table 5 and Figure 9 that the proposed AWNB model is
more effective than the baseline approaches in all the
metrics that were evaluated. The Data Fusion Model [20]
yielded positive results, yet AWNB achieved better than 2
percent precision of higher accuracy, recall and F1-score.
The less robust performance was also mentioned by
methods such as CASTLE [21], YOLOv8 [22], and
TAMFEN [23], which underlines the robustness of the
proposed decision-level fusion model, combined with the
use of an Augmented Wingsuit optimization. These
findings indicate that AWNB can be used in early mental
health risk identification and guarantee reliability and
sensitivity when identifying at-risk students.

4.8 Regression-based performance analysis
The predictive accuracy and generalization capacity of the
suggested AWNB model were evaluated using regression-
based analysis in addition to categorization measures.
Regression measures, especially regarding ongoing mental
health risk score projections, offer supplementary
information on the efficacy of models. The RF + CatBoost
hybrid model [23] and the suggested AWNB method were
compared. somewhat less than that of RF+CatBoost
(0.918), indicating that although AWNB is very good at
reducing error in prediction, the ensemble-based
RF+CatBoost offers a superior accounting of variance
overall. This demonstrates the trade-off between variable
collection and inaccuracy elimination. AWNB, however,
shows more usefulness in the early warning system
environment where reducing misclassification risk is
crucial.

Table 6: Regression metric comparison between models.

Model | RF + | AWNB
CatBoost [Proposed]
[23]

MAE | 0.125 + | 0.104 +0.005
0.007

R2 0.918 + | 0.807 £0.012
0.010

From Table 6, it can be observed that the proposed
AWNB model achieved the lowest MAE (0.104),
indicating superior predictive accuracy compared to
RF + CatBoost (0.125). However, the R? value of AWNB
(0.807) was

4.9 Ablation evaluation

To evaluate the contribution of each aspect of the AWNB
framework, an ablation study was conducted. There were
different versions of the model assessed, (i) naive bayes
standard version no optimizations, (ii) optimized naive
bayes version without multimodal fusion, and (iii) AWNB
with some data modalities not present. The model used to
compare was complete AWNB with all the improvements.

Table 7: Ablation study results showing the impact of optimization and multimodal fusion on AWNB performance

Model Variant Modalities Used | Accuracy | Precision Recall F1-Score AUC
(%) (%) (%) (%) (macro)
Naive Bayes (baseline) All features 85.3+12 | 845+11 | 839+13 | 842+1.2 | 0.87+0.01
Multinomial Naive Bayes All features 884+10| 874+12 | 869+11 | 87.1+x1.1 | 0.90+0.01
(baseline)
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NB + Optimization (without All features 91.7+09 | 91.0+10 | 90.3+0.8 | 90.6+0.9 | 0.93+0.01
fusion)
NB + Multimodal Fusion (no Behavioral + 925+1.1| 918+10 | 91.2+1.2 | 915+1.1 | 0.94+0.01
optimization) Physiological +
Social
AWNB (partial modalities: HR Physiological 934+10| 926+09 | 92.9+1.0 | 922+0.9 | 0.95+0.01
+ Steps) (HR + Steps)
AWNB  [Proposed]  (with | Behavioral +|9741 +|9514 +|93.67+0.7 | 94.82+0.6 | 0.97+£0.01
optimization + fusion) Physiological + | 0.5 0.6
Social

The ablation study presented in Table 7, indicates that both
optimization and multimodal fusion are significant factors
of total model performance. In isolation, optimization
improves accuracy ~3.3%, while multimodal fusion
improves accuracy ~4.1%. Nonetheless, the full AWNB
model improves upon all models, demonstrating that both
optimization and multimodal fusion are imperative for the
early, accurate detection of mental health risk.

4.10 comparison with dataset

Table 8 shows the accuracy, R? and adjusted R2 of
AWNB on the new college student mental health dataset
in relation to the existing datasets. It again demonstrates
AWNB's superior predictive performance and
generalizability based on the multiple data sources being
used.

Table 8: Comparison of AWNB performance across multiple student dataset

Augmented Wingsuit-Enhanced Naive Bayes (AWNB) data comparison

Dataset Accuracy R2 Adjusted R?
(%)

Proposed Dataset: College Student Mental Health 97.41 0.92 0.91

[24]

Existing Dataset 1: Student Mental Health [30] 89.7 0.85 0.84

Existing Dataset 2: Mental Health Data [31] 91.2 0.87 0.86

4.11 Discussion

The proposed AWNB Framework provides colleges and
universities with a potentially powerful tool for early
detection of mental health issues and to help identify and
provide timely interventions to students at risk for mental
health concerns. In particular, the inclusion of behavioral,
physiological, and social modalities into AWNB provides
an opportunity to provide more objective, continuous (in
nearly real-time), and timely opportunities to engage
students than through periodic or intermittent subjective
questionnaires and surveys. AWNB and the awareness it
generates may also help clinicians prioritize resource
allocation and aid in developing policy. Nonetheless,
practical application of AWNB will require a substantial
amount of consideration with respect to the number

of challenges that practitioners will continuously have to
think about. Data privacy and ethics will be essential
elements; data from students must be de-identified, consent
verified, and storage secured for institutional and legal
purposes. Adaptability across populations will be salient,
as behavioral and physiological patterns can change based
on demographic, culture, and academic context; the model
may need to be retrained or adjusted for different students.
Lastly, moving into practice as part of the
operationalization of a university system will require
practical elements like ease of use, ability of output to be
interpreted by future client counselors, and established
behavior for how to handle the false positive/negative and
have a human-in-the-loop and rational agent deliberation
with decision-making. Table 9 suggested the summary of
the research

Table 9: Related studies on college students’ mental health using Al/ML approaches

S. Study & | Proposed Method | Objective Key Findings Limitations
No Year
1 Kolenik Smartphone-based | Stress, anxiety, | Enabled real-time | Limited sample; privacy
(2022) digital assessment | depression mental health tracking | concerns  not  fully
monitoring addressed
2 Kolenik& Intelligent Behavior and | Improved engagement | Prototype stage; limited
Gams (2021) | cognitive assistants | attitude change | and awareness longitudinal validation
support
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3 Kolenik& Persuasive Reduce mental | Effective in attitude | Small-scale deployment;
Gams (2021) | technology health disparities modification limited generalizability
interventions
4 Li, L. (2025) | Social sentiment + | Assess student | Accurately classified | Requires social media
multi-branch neural | mental health via | risk levels access; potential bias in
networks social data data
5 Zhou & Dong | Deep features + | Evaluate students’ | High clustering | Needs complex
(2023) multiview  fuzzy | mental health accuracy; identified | preprocessing; small
clustering risk groups dataset
6 Zhang et al. | Multi-modal Detect psychological | Improved predictive | Focused on teenagers;

behavioral data

(2020) interactive fusion stress in teenagers performance not fully tested for
college students
7 Mumenin et | DDNet hybrid ML | Detect  depression | Robust detection; | Computationally
al. (2025) model among university | outperformed baseline | intensive; needs
students ML models multimodal inputs
8 Kannan et al. | ML & deep | Early management | Increased prediction | Limited dataset
(2024) learning for early | of mental health | accuracy diversity; no real-time
detection disorders deployment
9 Wang (2024) | Deep learning | Multi-modal High detection | Requires  high-quality
depression analysis | detection using | accuracy; multimodal | sensor data; resource-
physiological + | integration effective heavy

10 | Wu (2025)

Data fusion early
warning system

Psychological crisis
detection

Early warning
achieved; improved
prediction metrics

Dataset limited to single
institution;
generalizability

unknown

Regarding the limitations of existing methodologies,
AWNB significantly addresses these weaknesses. The Data
Fusion Model [25] is less capable of dealing with nonlinear
feature interactions, and CASTLE [26] is intended for a
specific application area and is not as scalable. YOLOv8
[27] tends to overfit when dealing with non-visual data,
TAMFN [28] is burdensome in terms of computational
needs and interpretability, and RF + CatBoost [29] is
subject to feature imbalance. AWNB can detect early
mental health risk that is robust, scalable, and practical; it
utilizes optimization-based tuning, multimodal data fusion,
and interpretable outputs that facilitate academic
interventions and broader-scale programs for student
wellbeing.

5 Conclusion

Mental health problems in students require early
intervention to boost health and academic success, the
suggested AWNB provides improved performance through
its superior optimization and/or multimodal fusion. The
results show that the AWMNB reaches 97.41 percent
accuracy, 95.14 percent precision, 93.67 percent recall, and
94.82 percent Fl-score, an improvement over existing
baseline. Additionally, with 200 iterations and training
time of 118 seconds, shows that AWNB can converge
faster and is computationally competent. These positive
results were still limited by specific conditions like a

slightly lower R2 (0.807) compared to ensemble models
and the requirement to have data presented across multiple
modalities. Moreover, when we propose a significant
extension of AWNB, which will inevitably lead to higher
computational costs due to the inclusion of complex
optimization and deep-learning elements, it will likely
incur even more computational costs, particularly later for
data fusion when working with bigger dataset sizes. Future
studies would extend AWNB development to a bigger
cross-domain dataset bridging multimodal data, develop
deep learning feature extraction, and explore explainability
for real-world applicability.
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