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The timely detection and repair of defects and damages in underground drainage pipes are crucial for the
normal operation of cities. Focusing on the defect detection and damage localization of urban
underground drainage pipes, this paper introduced the Convolutional Block Attention Module (CBAM)
to the You Only Look Once version 5 (YOLOv5) algorithm to enhance its ability of feature extraction.
Then, several different loss functions were compared. Experimental analyses were carried out using the
sewer-ML dataset. The results showed that among different versions of the model, the YOLOv5I model
had better overall performance. Compared with the Squeeze-and-Excitation and coordinate attention
modules, the CBAM had a better optimization effect on the YOLOV5 algorithm, bringing a 5.7% mean
average precision improvement. The detection effect obtained when Softmax Intersection over Union
(SloU) was used as the loss function was better than efficient Intersection over Union (EloU) and Focal
EloU. When CBAM and SloU were used for optimization together, the improved YOLOV5 algorithm
achieved a mean average precision of 93.37% and a frame rate of 85 frames per second, which had an
advantage over the other algorithms. The method can be used in practice.

Povzetek: Izboljsani YOLOVS z modulom CBAM natancno in hitro zazna poskodbe v kanalizacijskih ceveh

(93,37% natancnost, 85 FPS).

1 Introduction

Underground drainage pipes play a very important role in
the collection and transportation of rainwater and sewage.
During long-term operation, defects and damages such as
rupture and deposition are inevitable [1], which pose
certain hidden dangers for urban development and may
cause disasters such as waterlogging and collapse.
Therefore, regular inspection and repair of underground
drainage pipes are necessary to ensure the normal
operation of the city [2]. Manual pipe inspection is less
efficient and prone to errors. If the defects and damages of
drainage pipes can be detected more intelligently and
automatically, the efficiency and quality of inspection can
be greatly improved. Therefore, it is necessary to study the
detection of defects and damages in urban underground
drainage pipes. Most of the current drainage pipe
inspections are carried out by filming the interior of the
pipe through closed-circuit television and combining
methods such as image processing and machine learning
[3]. You Only Look Once version 5 (YOLOV5) is
currently a widely used deep learning algorithm in defect
detection. In terms of its improvement, its combination
with the Convolutional Block Attention Module (CBAM)
mechanism is relatively common.

Fu et al. [4] introduced the CBAM mechanism into the
backbone part of YOLOV5 for the helmet monitoring of
electric bicycle riders. On a self-built dataset, they found
that compared with the original YOLOv5s model, the
proposed model achieved an improvement of 1.89% in the
overall mean average precision (mAP). Pang et al. [5] also
found that combining the CBAM mechanism with
YOLOV5 can significantly improve the efficiency and
accuracy of the model in solar cell defect detection. Lv et
al. [6] also used the CBAM-combined YOLOVS5 structure
in the disease detection of apple tree leaves and achieved
an improvement in the detection effect. In order to further
improve the detection accuracy and speed of defects and
damages in urban underground drainage pipes, this paper
designed a detection method based on a deep learning
algorithm. The CBAM mechanism and Softmax
Intersection over Union (SloU) loss function were
introduced into the YOLOVS5 algorithm. It is assumed that
this improvement can enhance the detection performance
of the YOLOV5 algorithm and improve the detection
accuracy and speed. The assumption was verified through
experiments on the dataset, with the expectation of
providing a new available method for the management and
construction of urban drainage systems.
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2 Related works
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Table 1: Related works

Method Dataset
Xiao et al. | The improved | Laboratory
[4] cumulative sum model simulation
Wang [5] An improved detection | Self-built datasets
method based on
semantic  segmentation
labeling
Heetal.[9] | AlexNet and ResNet50 | Self-built datasets

Huang et al. | An
[10] convolutional
network

improved
neural

3 Design of an algorithm for detecting
defects and damages in underground
drainage pipes

3.1 YOLOV5 algorithm

Among deep learning algorithms, the YOLO series
algorithms have good applications in target detection,
including face recognition and autonomous driving [11].
YOLOV5 is the mainstream model. Compared with
versions like YOLOv4, YOLOVS5 is simpler to use and can
achieve multi-scale detection, which is more efficient.
Based on these advantages, YOLOvV5 is a preferred
algorithm for many targets detection tasks [12]. After
YOLOVS5, YOLOvV7 and YOLOVS introduced some new
complex modules, which have a higher computational
complexity and also place higher demands on computing
resources and memory. As a well-verified benchmark,
YOLOV5 has already gained a wide consensus on its
performance. Moreover, due to a mature and stable
codebase and community ecosystem, YOLOV5 has a clear
modular design that makes it easy to modify. Therefore,
this paper designed a defect detection and damage
localization method for underground drainage pipes based
on the YOLOv5 algorithm. The YOLOv5 algorithm
mainly consists of the following parts.

() Input: The image to be detected is divided into
four feature maps, and they are concatenated in the
channel dimension to reduce the number of parameters.

(2) Feature extraction: it includes three modules: CBS,
C3, and Spatial Pyramid Pooling Fast (SPPF).

(1) CBS: it consists of a Convolution (Conv), a Batch
Normalization (BN), and a Sigmoid Linear Unit (SiLU)
activation function, and their respective functions are
extracting image features, preventing overfitting, and
learning more complex features.

(2) C3: Three CBS modules + one BottleNeck module
for extracting more detailed features;

indoor

The pipeline defect
dataset collected in
real scenarios

Detection performance

The method had a relatively fast detection speed
for defects in urban drainage pipes, which can
reduce the detection costs.

The method had a mean average precision of 72.8,
a precision of 84.0%, and a recall rate of 63.7%.

The two methods achieved an accuracy of 92.00%
and 96.50% respectively for the test set and an
accuracy of 85.41% and 87.94% respectively for
real cases.

The method achieved an accuracy of 90.2%.

(3) SPPF: it is used to combine local and global
features.

(3) Feature fusion: Use the Feature Pyramid Network
(FPN) + Path Aggregation Network (PAN) structure to
fuse shallow graphic features with deep semantic features
and;

(4) Head: it includes three convolutional modules
corresponding to three feature layers.

3.2 An improved YOLOV5 algorithm

Considering the complexity of actual drainage pipe
images, in order to further meet the needs of defect loss
detection, this paper improved the YOLOV5 algorithm by
introducing a CBAM after the C3 module and optimizing
the loss function of the bounding box to enhance the
detection effect. The details are as follows.

(1) CBAM

The attention mechanism enables models to focus
more on the important information in the input, thereby
achieving higher performance, and has good applications
in many areas of research such as speech recognition [13]
and image processing [14]. The environment of urban
underground drainage pipes is very complex, which
increases the difficulty of feature extraction. Therefore,
the attention mechanism can be applied to focus more on
the information useful for defect loss detection. The
CBAM is a lightweight structure [15] that can be quickly
embedded into many models, and it combines two
modules for precise feature extraction as follows.

(1) Channel attention module (CAM): Features of
different channels can be weighted to enhance the
representation of important features, calculated as follows:

M(F)=(MLP(4P(F)}+MLP(MP(F))) =0 ( W, (Wo(Forg) )+, (1, (Ff,'m.)))
where M denotes the channel attention feature map, o is

the sigmoid function, MLP is the shared neural network,
AP denotes the mean feature point, MP denotes the
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maximum feature point, 77, is the mean-pooling feature,
and F,,, is the max-pooling feature.

(2) Spatial attention module (SAM): The spatial
dimension of the feature map can be weighted to enhance
attention to important features at different positions,
complementing the feature information focused on by
CAM. The final feature map is obtained after integration.
The calculation formula is:

My(F)=o (7 (AE)MPED ) = ([FougiFan]).

where Mg represents a spatial attention feature map and
/77 represents convolution operation.

(2) Loss function

The complete Intersection over Union (CloU) damage
function [16] is used in YOLOvV5, which has better
stability compared to the traditional loU but also has
problems such as high computational complexity and poor
performance in small target boxes. Therefore, the
following improved versions of loU are used in this paper.

(1) Efficient Intersection over Union (EloU) [17]:
Considering the position and shape of the of the target box
and depth features, it can more accurately reflect the
differences between the target box and the real box. The
calculation formula is:

_ P00 v
LEIOU_l -loU+t 2 + ((1—[0U)+v) Vs

4 t w8l " w
V_”_2 arc anF-arC an—/ ,

where p(b,b*') is the Euclidean distance between the
center points of the real box and the predicted box, c is the
diagonal length of the minimum bounding rectangle, ws’
and h*' are the length and width values of the real box, and
w are the length and width values of the predicted box.

(2) Focal EloU: It is based on EloU and combined
with the Focal Loss function [18]. It can pay more
attention to difficult-to-classify samples:

Liocaigiov=10U" Lggoy,

where y is a hyperparameter controlling the curve
curvature, usually 0.5-2.0.

(3) SloU: Based on loU, combined with the Softmax
loss function, it can compare multiple categories of
detection boxes to obtain the optimal detection box:

LS,0U=1-10U+¥,
where A is distance cost, exploring the distances of
different bounding boxes from different centers as much
as possible:

A= Zt:x,y( 1 _e-ypt) :2'e-ypx'e-ypy|
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where ¢,, and ¢, are the width and height of the minimum
bounding rectangle, bfi and bfﬁ are the coordinates of the
real box center, b, and b, are the coordinates of the
predicted box center, y: y=2-4, 4 is the angle cost,
A=1-2sin’ @rcsin (%“)—Z—:) minimizing the number of
distance-related variables to the greatest extent, and Q is

the shape cost, which is used to penalize the difference in
the aspect ratio between the real box and the predicted box.

Q= ZFM),h (1 _e-w,)(),
[w-we!|
N max(w,w&)’
__ ¥
h™ max(h,hg’)’

w

where 0 is the sensitivity controlling the shape cost,
usually 4.

4 Results and analysis

4.1 Experimental settings

The experiment was conducted in a Windows 10
environment, and the specific configuration is presented
in Table 2.

Table 2: Experimental configuration.1
Central processing unit | Intel TM i5-11400F CPU

(CPU)

Graphics processing unit | GeForce RTX1080TI
(GPU) GPU

Acceleration module CUDA 111

Deep learning | PyTorch 1.7.0
framework

For the underground drainage pipe defect damage
detection algorithm, the parameters are set as Table 3.

Table 3: Parameter settings.

Epochs 300

Batch size 16

Image size 640 x 640

Optimizer Stochastic gradient
descent

Initial learning rate 0.001

The experiment used the Sewer-ML dataset [16], with
images from actual drainage pipe inspection projects. Data
distributions in the dataset are shown in Table 4.

Table 4: Data distributions in the Sewer-ML dataset.

Trainin | Validation | Test Total

g
Normal | 552,820 | 68,681 69,221 | 690,722
Defecti | 487,309 | 61,365 60,805 | 609,479
ve
Total 1,040,12 | 130,046 130,02 | 1,300,20

9 6 1
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The Sewer-ML dataset included 18 different types of
defect and damage, five of which were selected in this
paper.

Sediment: Impurities and silt settle at the bottom of
the drainage pipe to form sediment. As the volume
expands, the area of water flow through the pipe decreases,
weakening the pipe’s ability to transport rainwater and
sewage.

Crack: When a pipe breaks due to external forces such
as compression, rainwater and sewage will seep out and
pollute the water environment.

Cut: The cut at the connection of the branch pipe and
the main pipe is uneven, with gaps appearing at the edge
of the cut. This causes rainwater and sewage to seep out,
polluting the groundwater. Soil also flows in, forming
sediment.

Disconnection: The joints of the two ends of the pipe
are not fully joined, causing the joints to shift and create a
gap, which will allow rainwater and sewage to seep out
and pollute the water environment.

Obstacle: They may be foreign matters carried in by
rainwater or sewage, or other material that fall off and
block in the pipe, resulting in a reduction in water flow
area.

The five selected types exhibit a high degree of
diversity in visual characteristics, covering various
challenges ranging from slender small targets (cracks),
complex texture targets (tree roots) to large-area irregular
targets (sediments). This provides a testing benchmark for
comprehensively evaluating the generalization and
robustness of the model. Moreover, these five types of
defects have sufficient and high-quality annotation data,
ensuring the effectiveness of model training and the
statistical reliability of the evaluation results. The images
in the dataset were enhanced using operations such as
translation, rotation, and cropping to obtain 3,000 images
of each type. Image quality was improved through
histogram equalization and sharpening. They were labeled
using the Labellmg tool [20]. Moreover, ten-fold cross-
validation method [21] was used to divide the dataset into
a training set, a validation set, and a test set. For the
detection effect of the algorithm, the loU threshold value
was set as 0.5, and samples below 0.5 were considered
negative cases. The following evaluation indicators were
used:

(1) precision: Precision=

P
TP+FP

P
TP+FN

(2) recall rate: Recall=

(3) average precision (AP): area under the precision-
recall curve, AP= /(: P(R)dR,

(4) mAP: mAP=2147%

(5) frames per second (FPS) [22]: the number of
images detected per second, which is used to reflect the
detection speed of a model.
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In the above equations, 7P is the number of positive
samples detected as positive, FP is the number of negative
samples detected as positive, and FN is the number of
positive samples detected as negative.

4.2 Result analysis

The YOLOvV5 algorithm was divided into different
versions based on network width and depth. Experiments
were conducted on different versions. The obtained mAP
and FPS are shown in Table 5 and Figure 1.

Table 5: Comparison of different versions of YOLOV5.2

MAP/% FPS Parameter
guantity
YOLOv5SN 78.12 93 1.90x108
YOLOvV5s 81.77 90 7.20x108
YOLOv5mM 83.94 82 2.12x107
YOLOV5I 85.51 81 4.65x107
—e— mAP FPS
90 - L 94
80 P— 92
70 - 1%
60 |- 4 88
S 50 | 186
[ | W
fol [
0 4 80
20 | {78
10 | 76
0 L - - 74
YOLOvSn YOLOVSs YOLOvSm YOLOVSI
Method

Figure 1: Comparison of different versions of YOLOV5.

As shown in Table 5 and Figure 1, with the expansion
of model size, the mAP for the defect detection and
damage localization also increased. The mAP of the
YOLOv5n algorithm was 78.12%, and the mAP of the
YOLOVSI algorithm was 85.51%, which was 7.39%
higher than the YOLOv5n algorithm. However, the
increase in scale also affected the detection speed; the
larger the scale, the slower the detection speed. The
comparison between YOLOv5m and YOLOV5I showed
an increase of 1.57% in mAP and a decrease of one in FPS,
indicating that the difference in detection speed between
them was not significant. Therefore, in the subsequent
experiments, the YOLOV5I version was used.

The effects of different attention mechanisms on
detection results were compared (Table 6, Figure 2).

Table 6: Comparison of different attention mechanisms

(Unit: %).3
Baselin | Squeeze- | Coordina | CBA
e and- te M
Excitatio | Attention
n (SE) (CA)
Sediment 85.33 87.64 88.46 90.88
Crack 71.21 73.36 74.41 81.21
Cut 94.56 95.16 96.77 98.97
Disconnecti 95.19 96.93 96.14 97.43
on
Obstacle 81.26 83.56 85.57 87.56
mAP 85.51 87.33 88.27 91.21
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Figure 2: Comparison of different attention mechanisms.

From Table 6 and Figure 2, it can be seen that among
different types of defect detection and damage localization,
the detection of cuts and disconnections was more
accurate. This may be because the characteristics of
disconnections and cuts are more obvious and easier to
identify. Cracks vary in size and direction and are easily
confused with the background, making detection difficult.
Similarly, sediments are located at the bottom of the pipe
with blurred boundaries and are not easy to detect, and
obstacles are also easily confused with sediment. The
mAP was improved after the addition of different attention
mechanisms compared to the baseline, and the CBAM had
the best performance. SE only considered the importance
of channel pixels and lacked attention to channel positions.
CA performed limited on complex tasks. CBAM
combined channel attention and spatial attention and
achieved high accuracy in the detection of complex
defects (cracks and obstacles), demonstrating its
advantages.

The effects of different loss functions on the detection
results were compared (Table 7, Figures 3 and 4).

Table 7: Comparison of different loss functions

(unit: %).4
Baseline EloU Focal SloU
EloU
Sediment 85.33 86.16 86.89 87.03
Crack 71.21 72.64 72.23 73.07
Cut 94.56 96.17 96.68 97.03
Disconnection 95.19 96.55 96.91 97.28
Obstacle 81.26 82.33 82.94 83.19
mAP 85.51 86.77 87.13 87.52

0.20

baseline
EloU
Focal ELoU

0.15

SloU

Loss value
o
=
T

0.05

0 25 50 75 100 125 150

Number of iterations

Figure 3: Loss value curve comparison chart.
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Figure 4: Comparison of different loss functions.

From Table 7 and Figures 3 and 4, it can be seen that
after improving the loss function, the convergence of the
network became faster, the detection performance was
improved to a certain extent, but to a small extent. Among
the three loss functions, SloU exhibited the greatest
improvement in detection performance and had the best
convergence effect, and its mAP had an improvement of
2.01% compared to the baseline. Therefore, SloU can be
used instead of the original CloU in YOLOV5 to achieve
performance improvement.

The effect of the improvement on the detection results
was determined by the ablation experiment (Table 8,
Figure 5).

Table 8: Ablation experiments.5

mAP/% FPS
Baseline 85.51+2.16 81+1.21
YOLOvV5+CBAM 91.21+3.33 79+0.77
YOLOvV5+SloU 87.52+2.77 83+1.45
YOLOV5+CBAM+SloU | 93.37+3.56* | 85+1.17*

Note:* indicates p < 0.05 compared to the other method
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Method
Figure 5: Ablation experiments.

According to Table 8 and Figure 5, the introduction of
CBAM brought a 5.7% mAP improvement, and the FPS
dropped from 81 to 79, indicating that the introduction of
CBAM was beneficial to the improvement of detection
accuracy, but it affected the detection speed to some extent.
From this perspective, CBAM could effectively enhance
the feature extraction ability, but it increased the
computational load. The introduction of SloU brought a
2.01% mAP improvement, and the FPS increased from 81
to 83, possibly because SloU had a fast convergence speed.
By introducing structural priors (angles and shapes), SloU
guided the model to converge to a state with greater
“geometric regularity” during the training process,
providing higher-quality predicted bounding box
proposals, thus significantly reduced the computational
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latency and achieved an improvement in throughput. The
combined use of CBAM and SloU achieved the best
results, achieving a mAP of 93.37% and a FPS of 85.
Moreover, the statistical significance results showed that
compared the results of YOLOv5+CBAM+SloU with the
other methods, the p value was less than 0.05,
demonstrating the reliability of the improvement to the
YOLOV5 algorithm.

The method proposed was compared with some other
deep learning-based detection methods (Table 9 and
Figure 6).

Table 9: Comparison with other detection methods.6

MAP/% FPS
Single-Shot 59.87 54
Multibox
Detection  (SSD)
[23]
YOLOv3 [24] 75.59 68
YOLOV4 [25] 81.21 72
Faster  regional- | 84.93 38
based
convolutional
neural  network
(R-CNN) [26]
The improved | 93.37 85
YOLOvV5

== mAP FPS

100 1 %
90 //‘ 1 80
80 . 470
70
60
50 F
40
30 F
20 k 1 20
10 1 10

mAP/%
]
FPS

YOLOv4
Method

Figure 6: Comparison with other detection methods.

From Table 9 and Figure 6, it can be seen that the SSD
performed poorly in drainage pipe defect detection and
damage localization, with a mAP of 59.87% only and an
FPS of 54. The feature fusion of SSD was relatively
simple, while the proposed method realized the
bidirectional fusion of deep and shallow features. When
facing defects of different scales, the proposed method
was more robust. Although the Faster R-CNN algorithm
had high accuracy (mAP = 84.93), this came at the
expense of speed. Its FPS was only 38. Faster R-CNN is a
two-stage detector. Its serial process is computationally
complex and the inference speed is slow, while YOLOvV5
can achieve end-to-end fast inference. Compared with
YOLOv3 and YOLOV4, the improved YOLOV4 algorithm
proposed in this paper is advanced in terms of network
architecture and data augmentation. The introduced
CBAM and SloU also bring significant performance
improvements. Generally speaking, the proposed method
was significantly superior to the other methods in terms of
both precision and speed.

L s L 0
SSD YOLOv3 Faster R-CNN  Improved YOLOVS
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5 Discussion

In the detection of defects and damages in urban
underground drainage pipes, this paper designed a
YOLOV5 algorithm improved by combining the CBAM
mechanism and SloU, and verified its detection
performance of using the sewer-ML dataset. The results
showed that compared with other attention mechanisms or
other loss functions, the selected CBAM and SloU both
had advantages. Comparisons with other deep learning
detection methods showed that as a single-stage detector,
SSD has insufficient ability to extract the diverse defect
features of the pipes, resulting in many false detections
and missed detections. As a two-stage detector, Faster R-
CNN has many calculation steps and takes a long time,
failing to meet the requirements of rapid response and
efficient inspection. As early versions of the YOLO series,
YOLOvV3 and YOLOV4 are also inferior to YOLOVS5 in
terms of precision and speed. The combination of the
CBAM mechanism with YOLOV5 can help the YOLOvV5
network focus more accurately on the key features of the
defects, providing the subsequent detection head with
more informative and less noisy features. SloU
reconsiders the cost of bounding box regression, which
helps the model generate prediction boxes with a higher
degree of fit with the real boxes, bringing faster
convergence and better convergence effects to the model.
Under the synergistic effect of CBAM and SloU, the
precision and speed of the improved YOLOVS5 algorithm
for the detection of defects and damages in urban
underground drainage pipes were improved.

Based on the research results, the designed algorithm
can be applied in the detection of defects and damages in
actual urban underground drainage pipes. For example, it
can be applied in inspection robots to detect complex
underground drainage pipes, process video streams in real
time, and accurately locate and quantify defects, which
makes it possible to formulate point-to-point repair plans
and greatly saves the costs of excavation and repair. For
the municipal system, the intelligent detection is
conducive to the municipal department in formulating
predictive maintenance plans. According to the detection
results, priority maintenance can be carried out on high-
risk pipe sections, thus avoiding accidents such as road
collapse and urban waterlogging, and having a profound
impact on enhancing urban safety and reducing operation
and maintenance costs.

In future actions, experiments will be carried out on a
more diverse dataset of underground drainage pipe defects
and tested under more realistic conditions, such as
occluded defects and noisy images. Meanwhile, further
research will also be conducted on the deployment of the
algorithm in the actual environment.

6 Conclusion

This paper designed a method based on the YOLOv5
algorithm for defect damage detection of urban
underground drainage pipes. Through experiments on the
dataset, it was found that the proposed method effectively
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balanced accuracy and speed. The detection accuracy for
different defect loss types was above 80%, mAP reached
93.37%, and the FPS was 85. It can be applied in actual
urban sewage management to achieve better detection of
defects and damages in underground drainage pipes.
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