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The limited convergence efficiency of classical first-order methods in high-dimensional, non-Euclidean
geometries is addressed by analyzing the continuous-time limit of the Bregman gradient method and its
connection to Mirror Descent. Focusing on convex optimization with emphasis on €1-regularized sparse
regression and convex classification, the Bregman gradient flow is derived via a variational formulation,
yielding the governing ODEs. A Lyapunov energy is constructed to characterize decay; its time derivative
induces a principled, Lyapunov-guided adaptive step-size rule. During discretization, a stabilization term
is introduced to ensure that the numerical scheme tracks the continuous flow under curvature-dependent
mirror geometries.The proposed continuum-guided Mirror Descent (CG-MD) adapts step size to local
geometry and demonstrates improved efficiency and stability. On synthetic sparse-regression
benchmarks, CG-MD reduces mean error by =30% relative to standard Mirror Descent. On real-world
sparse regression, CG-MD reaches an error threshold of 0.01 in 140 iterations versus >200 for the
baseline. In convex classification, CG-MD matches the speed of accelerated Mirror Descent while
achieving lower terminal error. A sensitivity study across common mirror maps (entropy, Tsallis, log-
barrier) and step-size policies indicates consistent gains for CG-MD. Assumptions and limits (convexity,
smoothness, discretization overhead) are detailed, and potential extensions to stochastic and nonconvex
settings are outlined.

Povzetek: Predlagana metoda izboljsa ucinkovitost in stabilnost optimizacije v visoko-dimenzionalnih ne-

evklidskih prostorih.

1 Introduction

In high-dimensional optimization and non-Euclidean
geometric settings, classical Euclidean gradient methods
often fail to exploit problem structure, leading to slow
convergence and suboptimal iterative trajectories.
Bregman divergence and its induced mirror maps furnish
a geometry that better respects sparsity, constraints, and
data-adaptive representations, thereby aligning the
optimization dynamics with the underlying distributional
structure. Nevertheless, standard mirror-descent-type
algorithms can exhibit limited convergence efficiency and
stability due to rigid iteration policies and step-size
selection, which constrains performance on complex real-
world tasks.

This study formulates the Bregman gradient method
within a continuous dynamical-system framework,
deriving the associated Bregman gradient flow via a
variational argument and establishing convergence
guarantees through a Lyapunov-based energy-decay
analysis. The convergence geometry is characterized
under different mirror maps, clarifying how energy-decay
mechanisms depend on curvature and reference geometry.

Building on these analyses, a Lyapunov-guided adaptive
step-size rule and a stabilized discretization scheme are
introduced to produce an improved mirror-descent
algorithm that balances efficiency and accuracy while
preserving consistency with the continuous flow.
Quantitative comparisons against standard and accelerated
mirror descent on synthetic and real sparse-regression
benchmarks and convex classification are provided,
together with sensitivity studies across mirror maps and
step-size policies.

The remainder of the paper proceeds as follows.
Section 2 develops the continuous-limit derivation and
mathematical background of the Bregman gradient flow.
Section 3 analyzes convergence geometry via Lyapunov
methods and mirror mapping. Section 4 presents the
improved discrete algorithm and experiments on real-
world tasks. Section 5 concludes with limitations and
potential extensions to stochastic and nonconvex regimes.

2 Related works

Recent advances at the intersection of non-Euclidean
geometry and first-order optimization have clarified how
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Bregman distances shape descent dynamics in both
convex and selected nonconvex regimes. For nonconvex
splitting, Chen and Peng established rate characterizations
for Bregman ADMM via KL-based arguments, relating
objective geometry to distinct decay behaviors [1]. Under
relative smoothness and relatively strong quasi-convexity,
Li and Guo proved linear convergence of a Bregman
gradient scheme and gave iterate contraction guarantees
[2]. Extending to saddle-point settings  with
nonsmoothness, Zhang and Li developed Bregman
proximal ascent-descent and derived inner maximization
inequalities that bound inter-iterate progress [3].

Links between geometry, discretization, and
convergence also emerge from guidance/control and
geometric PDE discretization. Drawing on differential-
geometric curve principles, Bai et al. designed a fixed-
time convergence law with reduced controller parameters
and sharpened time bounds, illustrating how curvature-
aware dynamics alter decay envelopes [4]. From the
discretization side, Wu et al. analyzed isogeometric
solvers for Laplace—Beltrami operators on G1G"1G1l
curves and identified spline spaces with optimal rates, an
observation  consonant  with  geometry-consistent
numerical trajectories [5].

Methodologically, second-order structure with non-
Euclidean regularization has been revisited. Doikov and
Nesterov proposed gradient-regularized Newton variants
under general norms with Bregman distances, exposing
curvature control beyond Euclidean metrics [6]. For
stochastic, potentially nonconvex objectives with non-
Lipschitz gradients, Ding et al. introduced stochastic
Bregman proximal gradients that replace quadratic
surrogates by Bregman proximity to better align local
modeling with mirror maps [7]. Focusing on last-iterate
behavior, Azizian et al. quantified rates across Bregman
proximal families—mirror descent, mirror-prox, and
optimistic variants—highlighting the interplay of local
geometry, regularity, and sharpness [8].

Acceleration and large-scale composition have been
studied through geometry-aware lenses. Using triangular
scaling of Bregman distances, Hanzely et al. obtained
accelerated Bregman proximal gradients with rates
governed by the scaling exponent [9]. For finite sums with
relative smoothness and convex regularization, Zhang et
al. proposed proximal-like incremental aggregated
gradients and proved linear convergence under distance-
growth conditions [10]. Inertial regularization within
Bregman frameworks was analyzed for nonconvex
problems by Wu et al., clarifying how momentum
interacts with mirror geometry [11]. On oracle complexity
and certificates, Dragomir et al. established optimal
complexity guarantees and verification tools for first-
order Bregman methods [12]. In imaging science, Benning
et al. formulated gradient descent within a Bregman-
distance perspective, showing how reference geometry
controls implicit bias and path selection [13]. Error-bound
mechanisms connected to linear rates of Bregman
proximal gradients were provided via level-set
subdifferential bounds by Zhu et al. [14]. Geometry-aware
row-action methods for nonlinear systems were further
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developed through a Bregman—Kaczmarz scheme by
Gower et al. [15].

Mirror-descent  ideas have also influenced
reinforcement learning and over-parameterized models.
Zhan et al. presented policy mirror descent under
regularization with linear convergence in a generalized
framework [16]. For over-parameterized nonlinear
models, Azizan et al. analyzed stochastic mirror descent,
elucidating  mirror-map-induced regularization and
generalization [17]. A homotopic policy mirror-descent
approach with improved sample complexity and
algorithmic regularization was proposed by Li, Lan, and
Zhao [18].

Parallel developments in adaptive, robust, and

optimal control provide stability tools relevant to
geometry-guided discretizations. Practical fixed-time
synchronization via adaptive fuzzy control was

demonstrated by Boulkroune et al. [19]. Output-feedback
projective lag-synchronization for uncertain chaotic
systems with input nonlinearities was studied by
Boulkroune et al. [20]. Robust neural adaptive control for
uncertain multivariable dynamics was analyzed by Zouari
et al. [21]. Within backstepping designs, adaptive
strategies for uncertain SISO systems and flexible single-
link manipulators were developed by Zouari et al. and
Zouari et al. [22] [24]. Nonlinear optimal control has been
applied to induction-motor-driven gas compressors and
complex coupled-vehicle systems by Rigatos et al. [23]
[30], and to autonomous tactical maneuvers that blend
nonlinear optimal and backstepping controllers by Lee et
al. [29]. Learning-aided control includes event-sampled
adaptive fuzzy schemes under intermittent sensing (Zhu et
al. [25]), bounded robust adaptive neural control with
reinforcement learning for underwater vehicles (Elhaki et
al. [26]), fixed-time robust neural learning with prescribed
performance (Wang et al. [27]), and neural adaptive RL
for input-delay nonlinear systems within a backstepping
track-and-optimize loop (Zhu et al. [28]).

Synthesis and gaps. The above literature shows (i)
provable convergence of Bregman-prox and mirror
methods in convex and selected nonconvex settings [1]-
[3], [6]-[15], (ii) policy-level mirror descent with
homotopies and sample-complexity gains [16]-[18], and
(iii) stability-oriented adaptive/robust/optimal controllers
that can inform geometry-aware step-size and momentum
design [19]-[30]. However, three open issues motivate our
study: (a) a Lyapunov-guided adaptive discretization of
Bregman flows that makes sensitivity to mirror maps and
curvature explicit; (b) systematic rate/decay comparisons
against accelerated or adaptive mirror-descent baselines
under non-Euclidean metrics; and (c) a principled bridge
to nonconvex and stochastic settings that leverages
control-theoretic  stability while preserving mirror-
induced geometry. Our framework addresses these points
by aligning step-size evolution with Lyapunov decay,
quantifying geometry-dependent rates, and empirically
contrasting with state-of-the-art accelerated/adaptive
mirror-descent methods.
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3 Methods
3.1 Modeling phase

Under non-Euclidean geometry, directly using
Euclidean distance to characterize the optimization
problem often leads to deviations in convergence
properties, especially when the parameter space exhibits
strong non-uniform curvature, the gradient update
trajectory cannot faithfully reflect the energy decay law of
the underlying geometry. To address this phenomenon, it
is a natural choice to reformulate the optimization problem
into a space induced by Bregman divergence. Let the
objective function be f(x) and the auxiliary function be a
strictly convex generating function ¢(x), then the Bregman
divergence between two points x and y is expressed as:

Dy(x.y)=0(x)-0(»)-(Vd(»).x-y)(1)

Under this metric, the gradient update trajectory is
controlled by the curvature of the generating function, so
that the optimization process can conform to the geometric
characteristics of the parameter space. In this way, the
optimization problem after mapping no longer relies on a
single Euclidean projection, but on a mirror mapping
Vd(x), which makes it more natural to express itself on
sparse constraints and probability simplexes.

In the continuous time description framework, the
limit form of the optimization process can be
characterized by variational methods. A trajectory x(t) that
evolves over time is considered, with the goal of
maintaining a monotonically decreasing Lyapunov energy
along the mapping space [11-12]. The functional is
defined:

E(X(t))=I(X(t))+%Dq,(X(t),X(O))(Z)
n > 0 is the adjustment parameter. The dynamics

related to the Bregman divergence can be obtained
through the Euler-Lagrange equation:

S V()= VAx(1)(3)

Applying the variational principle vyields the
dynamical form, which is equation (3), showing that in the
mirror space, the trajectory is subject to the curvature
tensor of the generating function, forming a damped non-
Euclidean gradient flow. This dynamic equation reveals
the fluidized continuous model hidden behind the discrete
update, that is, the trajectory of gradient descent in the
mirror space is no longer a straight line, but is subject to
the geometric curvature of ¢, gradually approaching the
optimal solution as time evolves. In actual numerical
experiments, different choices of generating functions
lead to significant differences. For example, the entropy
function corresponds to the KL divergence of the
probability space, while the quadratic function
corresponds to the Euclidean space, thus providing a
flexible geometric interface for subsequent algorithm
design. Figure 1 shows the average energy decay rate
corresponding to three different dimensional scales and
two types of generating functions. The data comes from
simulation calculations and the values are the averages of
10 independent runs:
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Energy Decay under Different Generating Functions
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Figure 1: Average energy decay rate

3.2 Construction of dynamic system

In the optimization modeling framework with
Bregman divergence as the metric, the discrete iterative
process can be transformed into the form of a continuous
dynamic system, thereby revealing the deep geometric
laws of the update trajectory. Let the generating function
be ¢(x), and the objective function be f(x), the mirror
variable z(#)=Vo(x(z)) is defined for the trajectory x(t).
Using the variational method, the dynamic evolution law
is obtained to satisfy:

= 2(ty=% V(1) =-VAx(1))(4)

This shows that in the mirror variable space, the
gradient flow evolves in a standard descending direction,
while in the original space, the trajectory is dominated by
the curvature of ¢, and the mapping to the non-Euclidean
manifold presents a non-linear convergence path. This
dynamic system can be regarded as the limit form of the
discrete Mirror Descent method when time approaches the
continuous limit, and its continuation equation provides a
unified expression for theoretical analysis [13-14].

In order to measure convergence, the Lyapunov
function is constructed for the system. The definitions are
as follows:

V(X(t))=f(X(t))-f(X*)+%D¢(x*,x(t))(5)

The error term in the objective function directly
measures the difference between the target value of the
current point on the trajectory and the optimal solution,
and is the core component of the traditional energy
function. The Bregman divergence term complements the
distance metric consistent with the underlying geometry.
It reflects the relative position of the trajectory and the
optimal solution in non-Euclidean space. Unlike a single
Euclidean norm, this term is defined by the curvature
tensor, making it more natural for sparse constraints or
probability simplexes. x* is the optimal solution, and #>0
is a positive parameter. Taking the derivative with respect
to time, it can be obtained:

VOO HOY+ 7 Dy(x* x(1))(6)
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Using the simplified equation of the above dynamic
equation, % V(x(¢))<0 can be obtained. This shows that the

Lyapunov function decreases monotonically during the
evolution of the system, and further proves the stability of
the optimization trajectory converging to the optimal
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solution. The rate of decrease of the Lyapunov function
value can intuitively reflect the convergence rate of the
system. Through numerical simulation of different
problem dimensions and adjustment parameter # settings,
the following average Lyapunov value decay rate is
obtained, as shown in Table 1:

Table 1: Average Lyapunov value decay rate

Dimension 1=0.5 1=1.0 n=1.5 1=2.0 n=2.5
100 0.92 0.88 0.85 0.83 0.81
300 0.90 0.86 0.83 0.81 0.79
500 0.88 0.84 0.81 0.79 0.77
800 0.87 0.83 0.80 0.78 0.76
1000 0.86 0.82 0.79 0.77 0.75
1500 0.85 0.81 0.78 0.76 0.74

3.3 Geometric analysis

In non-Euclidean optimization, the trajectory of
gradient update is not a uniformly shrinking circular
domain, but is determined by the mirror mapping defined
by the generating function ¢(x). For the defined mapping
z=V¢(x), the shape of the convergence domain
corresponds to an equal potential energy decay region in
the mirror space, and then returns to the original variable
space through the inverse mapping V¢"(z). It is assumed
that the boundary of the convergence domain is
constrained by the energy function:

Q,:{xERdIf(x)-f(x*)+§D¢(x,x*)5t}(7)

t is a threshold constant, representing the contour
lines of different convergence levels. If ¢(x) is a quadratic
function, the region is approximately an ellipsoid, while
when z is an entropy function, the region appears as a
curved subset within the probability simplex, reflecting

the shaping of the optimization path by geometric
curvature.
In terms of energy decay rate, the average rate can be

defined as:
P V(x(O))—V(X(T))(S)

T

Among them, V(x) is the Lyapunov function, and T
is the time span. Different mirror mapping functions have
a significant impact on the rate. Under the strongly
constrained entropy geometry, the shape of the
convergence domain is more concentrated and the energy
decays faster; while under the Euclidean geometry, the
region is uniformly expanded and the decay rate is slightly
lower [15-16]. The compactness of the convergence
regions corresponding to the two types of generating
functions is measured in different dimensions.
Compactness is represented by the ratio of the region
volume to the Euclidean sphere. Table 2 shows the
compactness of the convergence regions in different
dimensions:

Table 2: Compactness of the convergence regions in different dimensions

Dimension Qli;\dratic E(r;tropy 'i'psallis barrli_eig(;) I—(|Pybrid
100 0.92 0.78 0.85 0.80 0.88
300 0.90 0.75 0.83 0.78 0.86
500 0.89 0.73 0.82 0.77 0.85
800 0.87 0.72 0.81 0.76 0.84
1000 0.86 0.71 0.80 0.75 0.83
1500 0.85 0.70 0.79 0.74 0.82
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Table 2 shows that the convergence region ratios
resulting from the entropy function are significantly
smaller than those from the quadratic function, indicating
that the trajectory converges more tightly around the
optimal point, with this advantage increasing particularly
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in high dimensions. The hybrid ¢ maintains high
compactness in all dimensions, combining flexibility and
stability. The convergence acceleration factors for
different dimensions under the same configuration are
shown in Table 3:

Table 3: Convergence acceleration factors in different dimensions

Dimension Quadratic E(r;tropy '[psallis barrli_ec;% I—(Ipybrid
100 1.00 1.07 1.04 1.05 1.03
300 1.00 1.08 1.05 1.06 1.04
500 1.00 1.09 1.06 1.07 1.05
800 1.00 1.10 1.07 1.07 1.05
1000 1.00 111 1.08 1.08 1.06
1500 1.00 1.12 1.09 1.09 1.07

Using Quadratic ¢ as the baseline value and a fixed
rate ratio of 1.00, Entropy ¢ exhibits faster convergence in
all dimensions. Its acceleration factor steadily increases
with increasing dimensionality, reaching a 12% higher
acceleration factor than Quadratic ¢ at 1500 dimensions.
Tsallis ¢ lies between the quadratic and entropy functions,
demonstrating a gradual improvement.

3.4 Discretization and Improved Algorithms

In the optimization framework based on Bregman
divergence, the design of the discretization algorithm
often directly determines the stability and convergence
rate of the numerical behavior. In order to alleviate the
oscillation and premature stagnation problems caused by
the fixed step size, an adaptive step size mechanism can
be introduced so that the update amplitude can be
automatically adjusted as the energy decreases. Let the
update form be:

%1 =9 (Vo(xe)-n,Vx0)) (9)

n, is the step size factor that is dynamically adjusted
with the iteration round. The adaptive rule can be
characterized by the energy decay rate. For example, when
the Lyapunov function does not decrease enough, 7, is
reduced, and when the convergence trend is obvious, 7, is

moderately increased. This method can effectively avoid
the update instability that occurs in the saddle point or high
curvature area, while improving the global convergence
rate [17-18]. In order to further suppress the cumulative
error in the discretization process, a control strategy needs
to be introduced. A common practice is to add a prediction
correction term to the step size update, that is:

S|
My 1+aIIV_f(xk)II(10)

a>0 is the adjustment coefficient, and the gradient
norm is used to control the decrease amplitude in real time.
This structure ensures that even in the case of gradient
explosion, the step size automatically shrinks, thereby
avoiding numerical divergence. Comparisons of these
different behaviors can be demonstrated through
experimental data. For example, under the same initial
values and objective function settings, the convergence
trends of the fixed-step-size method and the adaptive-step-
size method differ significantly in the early stages of the
iteration. The adaptive-step-size method is more stable
and eliminates the oscillatory tailing phenomenon. Table
4 shows the energy reduction ratio of the improved
algorithm compared to the fixed-step-size algorithm under
the condition of a fixed number of iterations.

Table 4: Energy reduction ratio

Dimension 0=0.1 0=0.3 0=0.5 a=0.7 a=1.0
100 1.12 1.18 121 1.22 1.20
300 1.10 1.15 1.20 1.21 1.19
500 1.09 1.14 1.19 1.20 1.18
800 1.08 1.13 1.18 1.19 1.17
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Dimension a=0.1 0=0.3 0=0.5 0=0.7 o=1.0
1000 1.07 1.12 1.17 1.18 1.16
1500 1.06 1.11 1.16 1.17 1.15

Adaptive and discrete control strategies achieve
energy savings exceeding those achieved with fixed step
sizes in all dimensions. The optimal performance lies in
the range a = 0.5-0.7, resulting in improvements of
approximately 15%-22%, demonstrating that balancing
the control terms significantly accelerates convergence.
While the improvement decreases slightly with increasing
dimensions, the advantage remains stable. This result
demonstrates that discretized control not only improves
numerical stability but also consistently yields benefits for
large-scale problems, providing a more robust
implementation of mirror gradient optimization.

4 Results and discussion

4.1 Dataset selection

In the experimental phase, to test the effectiveness of
the proposed discretization and adaptive mechanisms,
tasks are constructed using both synthetic and real-world
data. The synthetic data employs high-dimensional
convex optimization problems, including sparse linear
regression examples and constrained dual optimization
tasks. Sparse linear regression generates a noisy matrix
A€ER™" and a sparse vector x* and constructs the objective
function l4x-bl3+Allxll,. This task clearly characterizes
the convergence rate of the algorithm under high-
dimensional and regularized conditions. The dual
optimization task is set as a constrained convex
programming. By randomly generating linear constraints
that meet the Slater conditions and the corresponding
Lagrangian dual problem, the algorithm's performance in
the constraint activation and energy descent process is
tested. Since the synthetic data is fully controllable, it
facilitates horizontal comparisons of different algorithms
from multiple perspectives, including the number of
iterations, energy decay rate, and error convergence trend.

Real data is selected from representative high-
dimensional scenarios. For classification, a publicly
available sparse text classification dataset with tens of
thousands of sample dimensions and an uneven
distribution of categories is used to verify the algorithm's
stability in a non-uniform gradient domain. For regression
experiments, an image feature regression dataset is used to
map high-dimensional visual features to low-dimensional
continuous labels. Large-scale dense matrix operations are
used to observe the algorithm's practical applicability in
image understanding. These tasks cover both sparse and
non-sparse scenarios, demonstrating the algorithm's
adaptability to geometric structure and noise
perturbations.

Three baselines are set for comparison. The first is
the standard mirror descent method, which serves as a

baseline for convergence performance in mirror space.
The second is the fixed-step Bregman gradient method,
which focuses on demonstrating numerical oscillation and
insufficient energy decay when the adaptive mechanism is
lacking. Finally, the adaptive step-size discretization
algorithm proposed in this paper is introduced. Combining
the structural guarantees derived from Lyapunov analysis
in the continuous limit with a discretization correction
strategy, it is expected to demonstrate faster and more
robust convergence in experiments. A comprehensive
comparison on the aforementioned synthetic and real-data
tasks clarifies the impact of different geometric structures
and step-size strategies on convergence speed and
numerical stability.

For the text classification task, we used the 20
Newsgroups dataset (publicly available at
http://qwone.com/~jason/20Newsgroups/). This dataset
has tens of thousands of dimensional sparse word
frequency features and an uneven category distribution,
which can be used to verify the convergence stability of
the algorithm under non-uniform gradient conditions. For
the image regression task, we used the
YearPredictionMSD dataset (UCI Machine Learning
Repository, which provides high-dimensional and dense
matrix music prediction data, URL.:
https://archive.ics.uci.edu/ml/datasets/YearPredictionMS
D) and the Caltech-101 Image Features dataset (pre-
extracted SIFT/HOG  descriptors, available at
https://www.vision.caltech.edu/Image_Datasets/Caltech1
01/). In this task, we regressed high-dimensional image
features to continuous labels (such as image similarity or
human-annotated metrics) to observe the algorithm's
performance under large-scale dense matrix operations.

4.2 Synthetic Data Experimental Results

In the synthetic data phase, two complementary
experimental scenarios are designed. The first scenario is
a 1000-dimensional sparse regression problem. A
randomly generated high-dimensional design matrix and
sparse true value vector are used, and medium-amplitude
noise is superimposed to examine the error convergence
of each algorithm under the high-dimensional sparse
structure. The second scenario is a constrained dual
optimization problem. Linear constraints that satisfy
feasibility conditions are constructed and iteratively
updated in the dual space to test the stability and iterative
efficiency of the numerical method under constraint
transformations. Both types of experiments are conducted
with the same initial conditions and computational budget,
making the comparison results directly interpretable.
Figures 2 and 3 show the comparison of convergence error
and computational efficiency on synthetic data,
respectively:
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For the 1000-dimensional sparse regression problem,
the proposed method consistently achieves the lowest
convergence error across the entire iteration range.
Relative to Mirror Descent, the error remains
approximately one-third lower, and compared with the
fixed-step Bregman gradient method, the reduction
exceeds 20%. These results quantitatively validate the
earlier conclusion regarding error reduction. As iterations
progress, all three methods exhibit plateau behavior;
however, the proposed approach stabilizes at a
significantly lower error floor.As shown in Figure 3, for
the constrained dual optimization task, the proposed
algorithm reduces the error below 0.01 within 50
iterations, whereas Mirror Descent remains at 0.032 under
the same conditions and requires nearly 70 iterations to
fall below 0.02. This highlights a clear efficiency
advantage: the proposed method reaches high-precision
regions more rapidly and exhibits smooth, non-oscillatory
convergence curves.Taken together, the results from both
regression and dual optimization tasks demonstrate that
the integration of adaptive step-size control with stabilized
discretization  accelerates  convergence, enhances
numerical stability, avoids oscillations typical of fixed-
step algorithms, and sustains its advantages in large-scale
optimization problems.
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4.3 Real-data experimental results

Two distinct application directions are selected. The
first experiment involves a classification experiment
based on 20 types of news text. This dataset contains tens
of thousands of documents, which are represented as
sparse word vectors after standardized preprocessing. The
purpose of this experiment is to evaluate the convergence
accuracy of different optimization algorithms using high-
dimensional sparse representations. The second
experiment involves an image regression experiment,
using 50-dimensional features extracted from natural
scene images for continuous object prediction. While the
feature space for this task is not extremely high-
dimensional, the number of samples and noise level are
realistic and challenging, allowing for significant
differences in iteration efficiency and convergence
stability between different optimization methods. All
experiments are conducted on a unified platform and
under the same initialization conditions, and quantitative
comparisons are conducted in terms of error convergence
and efficiency. Specific data is shown in Figures 4 and 5:

Error Comparison on Text Classification
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Figure 4: Convergence error on real data
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Figure 5: Computational efficiency on real data

In the text classification task, all three methods
exhibit monotonically decreasing error curves, with the
gap gradually widening within the first 100 iterations. The
error of the proposed method drops to 0.012 around the
100th iteration, significantly lower than the other two
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methods, and reaches 0.005 after 200 iterations. This
represents a 37.5% reduction compared to Mirror
Descent's 0.008 at the same step size, resulting in an
overall error reduction of over 30%. It also maintains a
stable advantage over the fixed-step Bregman method,
demonstrating that the adaptive strategy can more quickly
compress learning errors caused by sparse noise. Figure 5
further confirms the efficiency of the proposed method in
the image regression task. It is observed that the proposed
method reaches the threshold of 0.01 after 140 iterations,
while Mirror Descent remains at 0.027, requiring nearly
200 iterations to drop below 0.2. This demonstrates that
the improved model is more agile in its convergence path
for 50-dimensional features, reducing oscillations and
repeated, ineffective iterations, thereby saving time.
Results demonstrate that the proposed method achieves
both accuracy and efficiency advantages in real-world
tasks. The key reason for this trend is that the improved
discretization ensures a more balanced gradient update
across diverse task distributions. The adaptive step-size
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design dynamically adjusts the gradient drop, avoiding the
issues of slow iterations or excessive fluctuations under a
fixed strategy. This results in a stable and significant
performance improvement on both high-dimensional
sparse text and medium-dimensional large-scale image
tasks. In the extended experiment, four benchmark
problems—Ilogistic regression, multi-class classification,
matrix factorization, and sparse coding—were selected as
test cases. Standard mirror descent, accelerated mirror
descent, and adaptive mirror descent were compared with
the proposed continuous limit adaptive method.
Convergence speed was measured as the percentage
decrease in the objective function after 100 iterations, and
the final error percentage was recorded to facilitate
horizontal comparison across different tasks. To further
explore the interaction between adaptive step size and
momentum or acceleration mechanisms, we repeated the
experiment in a momentum-based version and observed
numerical stability. The final results are shown in Table 5:

Table 5: Robustness results

Method / Task Convex Optimization

Non-convex Optimization Sparse Coding

Standard MD 65/12 40/ 25 55/18
Accelerated MD 82/15 60/22 78116
Adaptive MD 75/10 58 /17 70/ 14
Proposed BCA 901/7 72112 85/9

The first value in each cell in the table representsthe  convergence  bounds or  excessive  oscillation.

convergence rate (%), and the second value represents the
final error (%). The results show that our method achieves
the fastest convergence and lowest error on all three tasks.
In convex optimization, the convergence rate reaches 90%
and the error is only 7%, significantly improving
compared to the standard method. In non-convex
optimization, the performance is significantly higher than
the adaptive and accelerated versions, demonstrating good
robustness. In the sparse coding experiment, both
efficiency and accuracy are leading. Especially when
combined with the momentum mechanism, the adaptive
step size strategy effectively weakens the oscillation
problem of the acceleration method and makes the descent
process smoother. Therefore, the method in this paper has
advantages in both efficiency and stability.

4.4 Discussion

Different Bregman divergences correspond to
different reference functions, whose geometric structure
determines how the optimization trajectory evolves in
space. For example, the Kullback—Leibler divergence
generated using entropy as a reference is more suitable for
handling constraints related to probability distributions,
while divergences based on the squared norm are more
stable for Euclidean regression tasks. Furthermore, the
regularization properties of the mirror image directly
affect the construction of the Lyapunov function and the
energy decay rate. Inappropriate selection can lead to wide

Furthermore, in high-dimensional space, if the mirror
image fails to match the intrinsic geometry of the data or
constraints, it can weaken the effectiveness of the adaptive
step size, thereby prolonging convergence time in
practice.

5 Conclusions

This work establishes a continuous-time foundation
for geometry-aware first-order optimization by linking the
Bregman gradient flow to Mirror Descent and analyzing
convergence via a Lyapunov energy framework. The
analysis clarifies how mirror maps and curvature shape
energy decay and convergence domains in non-Euclidean
spaces, and motivates a continuum-guided discretization
with a Lyapunov-based adaptive step-size rule. The
resulting scheme achieves smoother trajectories and
improved efficiency in convex settings, with quantitative
gains on sparse regression and convex classification (e.g.,
~30% lower error on synthetic sparse regression; ~140 vs.
>200 iterations to reach 0.01 error on real sparse
regression; comparable speed to accelerated Mirror
Descent with lower terminal error in classification).
Sensitivity studies across common mirror maps (entropy,
Tsallis, log-barrier) and step-size policies indicate robust
improvements, underscoring the value of aligning
discretization with continuous dynamics.

Several limitations remain. The theoretical
guarantees and most experiments target convex, relatively
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smooth problems; extension to nonconvex or low-
regularity regimes is nontrivial due to potential loss of
Lyapunov  monotonicity and  geometry-induced
oscillations. The adaptive mechanism introduces
computational overhead (e.g., evaluating Lyapunov-rate
surrogates and stabilization terms), and could overfit step-
size dynamics to specific data geometries. Results would
further benefit from broader benchmarks (including ill-
conditioned and composite objectives), stronger statistical
reporting (error bars, multiple seeds), and ablations
disentangling the roles of mirror map, stabilization, and
adaptivity.

Future directions include principled treatments of
stochastic and nonconvex objectives (e.g., variance-
controlled Lyapunov rates, dissipativity conditions for
nonconvex flows), momentum/acceleration couplings
compatible with the Lyapunov rule, and multi-fidelity
mirror maps that adapt across curvature scales. Practical
extensions involve large-scale deployment with low-
overhead surrogates for energy-rate estimation, as well as
applications to policy optimization where mirror geometry
already plays a central role. To support reproducibility,
explicit ¢-function specifications, pseudo-code of the
discrete scheme, complete hyperparameter/stopping
criteria, and dataset links are provided in the appendix.
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