
https://doi.org/10.31449/inf.v49i27.11906                                                                                       Informatica 49 (2025) 411–420  411 
 

Adaptive Discretization of Bregman Gradient Flows: A Dynamical 

Systems Perspective on Mirror Descent Convergence Geometry 

 

 

Haitao Song*, Yulei Wang 

Department of Basic Courses, Xinxiang Vocational and Technical College, Xinxiang, Henan 453006, China 

E-mail: songhaitao0373@163.com, yuleiwang12@outlook.com 
*Corresponding author 

 

Keywords: Bregman gradient flow, mirror descent, continuous-time limit, lyapunov-guided adaptive step size, non-

euclidean convergence geometry 

 

Received: September 18, 2025 

The limited convergence efficiency of classical first-order methods in high-dimensional, non-Euclidean 

geometries is addressed by analyzing the continuous-time limit of the Bregman gradient method and its 

connection to Mirror Descent. Focusing on convex optimization with emphasis on ℓ1-regularized sparse 

regression and convex classification, the Bregman gradient flow is derived via a variational formulation, 

yielding the governing ODEs. A Lyapunov energy is constructed to characterize decay; its time derivative 

induces a principled, Lyapunov-guided adaptive step-size rule. During discretization, a stabilization term 

is introduced to ensure that the numerical scheme tracks the continuous flow under curvature-dependent 

mirror geometries.The proposed continuum-guided Mirror Descent (CG-MD) adapts step size to local 

geometry and demonstrates improved efficiency and stability. On synthetic sparse-regression 

benchmarks, CG-MD reduces mean error by ≈30% relative to standard Mirror Descent. On real-world 

sparse regression, CG-MD reaches an error threshold of 0.01 in 140 iterations versus >200 for the 

baseline. In convex classification, CG-MD matches the speed of accelerated Mirror Descent while 

achieving lower terminal error. A sensitivity study across common mirror maps (entropy, Tsallis, log-

barrier) and step-size policies indicates consistent gains for CG-MD. Assumptions and limits (convexity, 

smoothness, discretization overhead) are detailed, and potential extensions to stochastic and nonconvex 

settings are outlined. 

Povzetek: Predlagana metoda izboljša učinkovitost in stabilnost optimizacije v visoko-dimenzionalnih ne-

evklidskih prostorih. 

 

 

1 Introduction 

In high-dimensional optimization and non-Euclidean 

geometric settings, classical Euclidean gradient methods 

often fail to exploit problem structure, leading to slow 

convergence and suboptimal iterative trajectories. 

Bregman divergence and its induced mirror maps furnish 

a geometry that better respects sparsity, constraints, and 

data-adaptive representations, thereby aligning the 

optimization dynamics with the underlying distributional 

structure. Nevertheless, standard mirror-descent–type 

algorithms can exhibit limited convergence efficiency and 

stability due to rigid iteration policies and step-size 

selection, which constrains performance on complex real-

world tasks. 

This study formulates the Bregman gradient method 

within a continuous dynamical-system framework, 

deriving the associated Bregman gradient flow via a 

variational argument and establishing convergence 

guarantees through a Lyapunov-based energy-decay 

analysis. The convergence geometry is characterized 

under different mirror maps, clarifying how energy-decay 

mechanisms depend on curvature and reference geometry. 

Building on these analyses, a Lyapunov-guided adaptive 

step-size rule and a stabilized discretization scheme are 

introduced to produce an improved mirror-descent 

algorithm that balances efficiency and accuracy while 

preserving consistency with the continuous flow. 

Quantitative comparisons against standard and accelerated 

mirror descent on synthetic and real sparse-regression 

benchmarks and convex classification are provided, 

together with sensitivity studies across mirror maps and 

step-size policies. 

The remainder of the paper proceeds as follows. 

Section 2 develops the continuous-limit derivation and 

mathematical background of the Bregman gradient flow. 

Section 3 analyzes convergence geometry via Lyapunov 

methods and mirror mapping. Section 4 presents the 

improved discrete algorithm and experiments on real-

world tasks. Section 5 concludes with limitations and 

potential extensions to stochastic and nonconvex regimes. 

 

2 Related works 

Recent advances at the intersection of non-Euclidean 

geometry and first-order optimization have clarified how 
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Bregman distances shape descent dynamics in both 

convex and selected nonconvex regimes. For nonconvex 

splitting, Chen and Peng established rate characterizations 

for Bregman ADMM via KL-based arguments, relating 

objective geometry to distinct decay behaviors [1]. Under 

relative smoothness and relatively strong quasi-convexity, 

Li and Guo proved linear convergence of a Bregman 

gradient scheme and gave iterate contraction guarantees 

[2]. Extending to saddle-point settings with 

nonsmoothness, Zhang and Li developed Bregman 

proximal ascent–descent and derived inner maximization 

inequalities that bound inter-iterate progress [3]. 

Links between geometry, discretization, and 

convergence also emerge from guidance/control and 

geometric PDE discretization. Drawing on differential-

geometric curve principles, Bai et al. designed a fixed-

time convergence law with reduced controller parameters 

and sharpened time bounds, illustrating how curvature-

aware dynamics alter decay envelopes [4]. From the 

discretization side, Wu et al. analyzed isogeometric 

solvers for Laplace–Beltrami operators on G1G^1G1 

curves and identified spline spaces with optimal rates, an 

observation consonant with geometry-consistent 

numerical trajectories [5]. 

Methodologically, second-order structure with non-

Euclidean regularization has been revisited. Doikov and 

Nesterov proposed gradient-regularized Newton variants 

under general norms with Bregman distances, exposing 

curvature control beyond Euclidean metrics [6]. For 

stochastic, potentially nonconvex objectives with non-

Lipschitz gradients, Ding et al. introduced stochastic 

Bregman proximal gradients that replace quadratic 

surrogates by Bregman proximity to better align local 

modeling with mirror maps [7]. Focusing on last-iterate 

behavior, Azizian et al. quantified rates across Bregman 

proximal families—mirror descent, mirror-prox, and 

optimistic variants—highlighting the interplay of local 

geometry, regularity, and sharpness [8]. 

Acceleration and large-scale composition have been 

studied through geometry-aware lenses. Using triangular 

scaling of Bregman distances, Hanzely et al. obtained 

accelerated Bregman proximal gradients with rates 

governed by the scaling exponent [9]. For finite sums with 

relative smoothness and convex regularization, Zhang et 

al. proposed proximal-like incremental aggregated 

gradients and proved linear convergence under distance-

growth conditions [10]. Inertial regularization within 

Bregman frameworks was analyzed for nonconvex 

problems by Wu et al., clarifying how momentum 

interacts with mirror geometry [11]. On oracle complexity 

and certificates, Dragomir et al. established optimal 

complexity guarantees and verification tools for first-

order Bregman methods [12]. In imaging science, Benning 

et al. formulated gradient descent within a Bregman-

distance perspective, showing how reference geometry 

controls implicit bias and path selection [13]. Error-bound 

mechanisms connected to linear rates of Bregman 

proximal gradients were provided via level-set 

subdifferential bounds by Zhu et al. [14]. Geometry-aware 

row-action methods for nonlinear systems were further 

developed through a Bregman–Kaczmarz scheme by 

Gower et al. [15]. 

Mirror-descent ideas have also influenced 

reinforcement learning and over-parameterized models. 

Zhan et al. presented policy mirror descent under 

regularization with linear convergence in a generalized 

framework [16]. For over-parameterized nonlinear 

models, Azizan et al. analyzed stochastic mirror descent, 

elucidating mirror-map-induced regularization and 

generalization [17]. A homotopic policy mirror-descent 

approach with improved sample complexity and 

algorithmic regularization was proposed by Li, Lan, and 

Zhao [18]. 

Parallel developments in adaptive, robust, and 

optimal control provide stability tools relevant to 

geometry-guided discretizations. Practical fixed-time 

synchronization via adaptive fuzzy control was 

demonstrated by Boulkroune et al. [19]. Output-feedback 

projective lag-synchronization for uncertain chaotic 

systems with input nonlinearities was studied by 

Boulkroune et al. [20]. Robust neural adaptive control for 

uncertain multivariable dynamics was analyzed by Zouari 

et al. [21]. Within backstepping designs, adaptive 

strategies for uncertain SISO systems and flexible single-

link manipulators were developed by Zouari et al. and 

Zouari et al. [22] [24]. Nonlinear optimal control has been 

applied to induction-motor-driven gas compressors and 

complex coupled-vehicle systems by Rigatos et al. [23] 

[30], and to autonomous tactical maneuvers that blend 

nonlinear optimal and backstepping controllers by Lee et 

al. [29]. Learning-aided control includes event-sampled 

adaptive fuzzy schemes under intermittent sensing (Zhu et 

al. [25]), bounded robust adaptive neural control with 

reinforcement learning for underwater vehicles (Elhaki et 

al. [26]), fixed-time robust neural learning with prescribed 

performance (Wang et al. [27]), and neural adaptive RL 

for input-delay nonlinear systems within a backstepping 

track-and-optimize loop (Zhu et al. [28]). 

Synthesis and gaps. The above literature shows (i) 

provable convergence of Bregman-prox and mirror 

methods in convex and selected nonconvex settings [1]–

[3], [6]–[15], (ii) policy-level mirror descent with 

homotopies and sample-complexity gains [16]–[18], and 

(iii) stability-oriented adaptive/robust/optimal controllers 

that can inform geometry-aware step-size and momentum 

design [19]–[30]. However, three open issues motivate our 

study: (a) a Lyapunov-guided adaptive discretization of 

Bregman flows that makes sensitivity to mirror maps and 

curvature explicit; (b) systematic rate/decay comparisons 

against accelerated or adaptive mirror-descent baselines 

under non-Euclidean metrics; and (c) a principled bridge 

to nonconvex and stochastic settings that leverages 

control-theoretic stability while preserving mirror-

induced geometry. Our framework addresses these points 

by aligning step-size evolution with Lyapunov decay, 

quantifying geometry-dependent rates, and empirically 

contrasting with state-of-the-art accelerated/adaptive 

mirror-descent methods. 
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3 Methods 

3.1 Modeling phase 

Under non-Euclidean geometry, directly using 

Euclidean distance to characterize the optimization 

problem often leads to deviations in convergence 

properties, especially when the parameter space exhibits 

strong non-uniform curvature, the gradient update 

trajectory cannot faithfully reflect the energy decay law of 

the underlying geometry. To address this phenomenon, it 

is a natural choice to reformulate the optimization problem 

into a space induced by Bregman divergence. Let the 

objective function be f(x) and the auxiliary function be a 

strictly convex generating function ϕ(x), then the Bregman 

divergence between two points x and y is expressed as: 

Dϕ(x,y)=ϕ(x)-ϕ(y)-⟨∇ϕ(y),x-y⟩(1) 

Under this metric, the gradient update trajectory is 

controlled by the curvature of the generating function, so 

that the optimization process can conform to the geometric 

characteristics of the parameter space. In this way, the 

optimization problem after mapping no longer relies on a 

single Euclidean projection, but on a mirror mapping 

∇ϕ(x), which makes it more natural to express itself on 

sparse constraints and probability simplexes. 

In the continuous time description framework, the 

limit form of the optimization process can be 

characterized by variational methods. A trajectory x(t) that 

evolves over time is considered, with the goal of 

maintaining a monotonically decreasing Lyapunov energy 

along the mapping space [11-12]. The functional is 

defined: 

E(x(t))=f(x(t))+
1

η
Dϕ(x(t),x(0))(2) 

η > 0 is the adjustment parameter. The dynamics 

related to the Bregman divergence can be obtained 

through the Euler–Lagrange equation: 
d

dt
∇ϕ(x(t))=-η∇f(x(t))(3) 

Applying the variational principle yields the 

dynamical form, which is equation (3), showing that in the 

mirror space, the trajectory is subject to the curvature 

tensor of the generating function, forming a damped non-

Euclidean gradient flow. This dynamic equation reveals 

the fluidized continuous model hidden behind the discrete 

update, that is, the trajectory of gradient descent in the 

mirror space is no longer a straight line, but is subject to 

the geometric curvature of ϕ, gradually approaching the 

optimal solution as time evolves. In actual numerical 

experiments, different choices of generating functions 

lead to significant differences. For example, the entropy 

function corresponds to the KL divergence of the 

probability space, while the quadratic function 

corresponds to the Euclidean space, thus providing a 

flexible geometric interface for subsequent algorithm 

design. Figure 1 shows the average energy decay rate 

corresponding to three different dimensional scales and 

two types of generating functions. The data comes from 

simulation calculations and the values are the averages of 

10 independent runs: 

 
Figure 1: Average energy decay rate 

 

3.2 Construction of dynamic system 

In the optimization modeling framework with 

Bregman divergence as the metric, the discrete iterative 

process can be transformed into the form of a continuous 

dynamic system, thereby revealing the deep geometric 

laws of the update trajectory. Let the generating function 

be φ(x), and the objective function be f(x), the mirror 

variable z(t)=∇ϕ(x(t)) is defined for the trajectory x(t). 

Using the variational method, the dynamic evolution law 

is obtained to satisfy: 
d

dt
z(t)=

d

dt
∇ϕ(x(t))=-∇f(x(t))(4) 

This shows that in the mirror variable space, the 

gradient flow evolves in a standard descending direction, 

while in the original space, the trajectory is dominated by 

the curvature of φ, and the mapping to the non-Euclidean 

manifold presents a non-linear convergence path. This 

dynamic system can be regarded as the limit form of the 

discrete Mirror Descent method when time approaches the 

continuous limit, and its continuation equation provides a 

unified expression for theoretical analysis [13-14]. 

In order to measure convergence, the Lyapunov 

function is constructed for the system. The definitions are 

as follows: 

V(x(t))=f(x(t))-f(x⋆)+
1

η
Dϕ(x⋆,x(t))(5) 

The error term in the objective function directly 

measures the difference between the target value of the 

current point on the trajectory and the optimal solution, 

and is the core component of the traditional energy 

function. The Bregman divergence term complements the 

distance metric consistent with the underlying geometry. 

It reflects the relative position of the trajectory and the 

optimal solution in non-Euclidean space. Unlike a single 

Euclidean norm, this term is defined by the curvature 

tensor, making it more natural for sparse constraints or 

probability simplexes. x⋆ is the optimal solution, and η>0 

is a positive parameter. Taking the derivative with respect 

to time, it can be obtained: 
d

dt
V(x(t))=⟨∇f(x(t)),ẋ(t)⟩+

1

η

d

dt
Dϕ(x⋆,x(t))(6) 
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Using the simplified equation of the above dynamic 

equation, 
d

dt
V(x(t))≤0 can be obtained. This shows that the 

Lyapunov function decreases monotonically during the 

evolution of the system, and further proves the stability of 

the optimization trajectory converging to the optimal 

solution. The rate of decrease of the Lyapunov function 

value can intuitively reflect the convergence rate of the 

system. Through numerical simulation of different 

problem dimensions and adjustment parameter η settings, 

the following average Lyapunov value decay rate is 

obtained, as shown in Table 1: 

 

Table 1: Average Lyapunov value decay rate 

 

Dimension η=0.5 η=1.0 η=1.5 η=2.0 η=2.5 

100 0.92 0.88 0.85 0.83 0.81 

300 0.90 0.86 0.83 0.81 0.79 

500 0.88 0.84 0.81 0.79 0.77 

800 0.87 0.83 0.80 0.78 0.76 

1000 0.86 0.82 0.79 0.77 0.75 

1500 0.85 0.81 0.78 0.76 0.74 

3.3 Geometric analysis 

In non-Euclidean optimization, the trajectory of 

gradient update is not a uniformly shrinking circular 

domain, but is determined by the mirror mapping defined 

by the generating function φ(x). For the defined mapping 

z=∇ϕ(x), the shape of the convergence domain 

corresponds to an equal potential energy decay region in 

the mirror space, and then returns to the original variable 

space through the inverse mapping ∇ϕ
-1

(z). It is assumed 

that the boundary of the convergence domain is 

constrained by the energy function: 

Ωτ={x∈Rd∣f(x)-f(x⋆)+
1

η
Dϕ(x,x⋆)≤τ}(7) 

τ is a threshold constant, representing the contour 

lines of different convergence levels. If φ(x) is a quadratic 

function, the region is approximately an ellipsoid, while 

when τ is an entropy function, the region appears as a 

curved subset within the probability simplex, reflecting 

the shaping of the optimization path by geometric 

curvature. 

In terms of energy decay rate, the average rate can be 

defined as: 

r=
V(x(0))-V(x(T))

T
(8) 

Among them, V(x) is the Lyapunov function, and T 

is the time span. Different mirror mapping functions have 

a significant impact on the rate. Under the strongly 

constrained entropy geometry, the shape of the 

convergence domain is more concentrated and the energy 

decays faster; while under the Euclidean geometry, the 

region is uniformly expanded and the decay rate is slightly 

lower [15-16]. The compactness of the convergence 

regions corresponding to the two types of generating 

functions is measured in different dimensions. 

Compactness is represented by the ratio of the region 

volume to the Euclidean sphere. Table 2 shows the 

compactness of the convergence regions in different 

dimensions: 

 

Table 2: Compactness of the convergence regions in different dimensions 

 

Dimension 
Quadratic 

φ 

Entropy 

φ 

Tsallis 

φ 

Log-

barrier φ 

Hybrid 

φ 

100 0.92 0.78 0.85 0.80 0.88 

300 0.90 0.75 0.83 0.78 0.86 

500 0.89 0.73 0.82 0.77 0.85 

800 0.87 0.72 0.81 0.76 0.84 

1000 0.86 0.71 0.80 0.75 0.83 

1500 0.85 0.70 0.79 0.74 0.82 
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Table 2 shows that the convergence region ratios 

resulting from the entropy function are significantly 

smaller than those from the quadratic function, indicating 

that the trajectory converges more tightly around the 

optimal point, with this advantage increasing particularly 

in high dimensions. The hybrid φ maintains high 

compactness in all dimensions, combining flexibility and 

stability. The convergence acceleration factors for 

different dimensions under the same configuration are 

shown in Table 3: 

 

Table 3: Convergence acceleration factors in different dimensions 

 

Dimension 
Quadratic 

φ 

Entropy 

φ 

Tsallis 

φ 

Log-

barrier φ 

Hybrid 

φ 

100 1.00 1.07 1.04 1.05 1.03 

300 1.00 1.08 1.05 1.06 1.04 

500 1.00 1.09 1.06 1.07 1.05 

800 1.00 1.10 1.07 1.07 1.05 

1000 1.00 1.11 1.08 1.08 1.06 

1500 1.00 1.12 1.09 1.09 1.07 

Using Quadratic φ as the baseline value and a fixed 

rate ratio of 1.00, Entropy φ exhibits faster convergence in 

all dimensions. Its acceleration factor steadily increases 

with increasing dimensionality, reaching a 12% higher 

acceleration factor than Quadratic φ at 1500 dimensions. 

Tsallis φ lies between the quadratic and entropy functions, 

demonstrating a gradual improvement. 

3.4 Discretization and Improved Algorithms 

In the optimization framework based on Bregman 

divergence, the design of the discretization algorithm 

often directly determines the stability and convergence 

rate of the numerical behavior. In order to alleviate the 

oscillation and premature stagnation problems caused by 

the fixed step size, an adaptive step size mechanism can 

be introduced so that the update amplitude can be 

automatically adjusted as the energy decreases. Let the 

update form be: 

xk+1=∇ϕ
-1(∇ϕ(xk)-η

k
∇f(xk))(9) 

η
k
 is the step size factor that is dynamically adjusted 

with the iteration round. The adaptive rule can be 

characterized by the energy decay rate. For example, when 

the Lyapunov function does not decrease enough, η
k
 is 

reduced, and when the convergence trend is obvious, η
k
 is 

moderately increased. This method can effectively avoid 

the update instability that occurs in the saddle point or high 

curvature area, while improving the global convergence 

rate [17-18]. In order to further suppress the cumulative 

error in the discretization process, a control strategy needs 

to be introduced. A common practice is to add a prediction 

correction term to the step size update, that is: 

η
k
=

ηk-1

1+α∥∇f(xk)∥
(10) 

α>0 is the adjustment coefficient, and the gradient 

norm is used to control the decrease amplitude in real time. 

This structure ensures that even in the case of gradient 

explosion, the step size automatically shrinks, thereby 

avoiding numerical divergence. Comparisons of these 

different behaviors can be demonstrated through 

experimental data. For example, under the same initial 

values and objective function settings, the convergence 

trends of the fixed-step-size method and the adaptive-step-

size method differ significantly in the early stages of the 

iteration. The adaptive-step-size method is more stable 

and eliminates the oscillatory tailing phenomenon. Table 

4 shows the energy reduction ratio of the improved 

algorithm compared to the fixed-step-size algorithm under 

the condition of a fixed number of iterations. 

 

Table 4: Energy reduction ratio 

 

Dimension α=0.1 α=0.3 α=0.5 α=0.7 α=1.0 

100 1.12 1.18 1.21 1.22 1.20 

300 1.10 1.15 1.20 1.21 1.19 

500 1.09 1.14 1.19 1.20 1.18 

800 1.08 1.13 1.18 1.19 1.17 
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Dimension α=0.1 α=0.3 α=0.5 α=0.7 α=1.0 

1000 1.07 1.12 1.17 1.18 1.16 

1500 1.06 1.11 1.16 1.17 1.15 

Adaptive and discrete control strategies achieve 

energy savings exceeding those achieved with fixed step 

sizes in all dimensions. The optimal performance lies in 

the range α = 0.5–0.7, resulting in improvements of 

approximately 15%–22%, demonstrating that balancing 

the control terms significantly accelerates convergence. 

While the improvement decreases slightly with increasing 

dimensions, the advantage remains stable. This result 

demonstrates that discretized control not only improves 

numerical stability but also consistently yields benefits for 

large-scale problems, providing a more robust 

implementation of mirror gradient optimization. 

 

4 Results and discussion 

4.1 Dataset selection 

In the experimental phase, to test the effectiveness of 

the proposed discretization and adaptive mechanisms, 

tasks are constructed using both synthetic and real-world 

data. The synthetic data employs high-dimensional 

convex optimization problems, including sparse linear 

regression examples and constrained dual optimization 

tasks. Sparse linear regression generates a noisy matrix 

A∈Rm×n and a sparse vector x⋆ and constructs the objective 

function ∥Ax-b∥2
2+λ∥x∥1. This task clearly characterizes 

the convergence rate of the algorithm under high-

dimensional and regularized conditions. The dual 

optimization task is set as a constrained convex 

programming. By randomly generating linear constraints 

that meet the Slater conditions and the corresponding 

Lagrangian dual problem, the algorithm's performance in 

the constraint activation and energy descent process is 

tested. Since the synthetic data is fully controllable, it 

facilitates horizontal comparisons of different algorithms 

from multiple perspectives, including the number of 

iterations, energy decay rate, and error convergence trend. 

Real data is selected from representative high-

dimensional scenarios. For classification, a publicly 

available sparse text classification dataset with tens of 

thousands of sample dimensions and an uneven 

distribution of categories is used to verify the algorithm's 

stability in a non-uniform gradient domain. For regression 

experiments, an image feature regression dataset is used to 

map high-dimensional visual features to low-dimensional 

continuous labels. Large-scale dense matrix operations are 

used to observe the algorithm's practical applicability in 

image understanding. These tasks cover both sparse and 

non-sparse scenarios, demonstrating the algorithm's 

adaptability to geometric structure and noise 

perturbations. 

Three baselines are set for comparison. The first is 

the standard mirror descent method, which serves as a 

baseline for convergence performance in mirror space. 

The second is the fixed-step Bregman gradient method, 

which focuses on demonstrating numerical oscillation and 

insufficient energy decay when the adaptive mechanism is 

lacking. Finally, the adaptive step-size discretization 

algorithm proposed in this paper is introduced. Combining 

the structural guarantees derived from Lyapunov analysis 

in the continuous limit with a discretization correction 

strategy, it is expected to demonstrate faster and more 

robust convergence in experiments. A comprehensive 

comparison on the aforementioned synthetic and real-data 

tasks clarifies the impact of different geometric structures 

and step-size strategies on convergence speed and 

numerical stability. 

For the text classification task, we used the 20 

Newsgroups dataset (publicly available at 

http://qwone.com/~jason/20Newsgroups/). This dataset 

has tens of thousands of dimensional sparse word 

frequency features and an uneven category distribution, 

which can be used to verify the convergence stability of 

the algorithm under non-uniform gradient conditions. For 

the image regression task, we used the 

YearPredictionMSD dataset (UCI Machine Learning 

Repository, which provides high-dimensional and dense 

matrix music prediction data, URL: 

https://archive.ics.uci.edu/ml/datasets/YearPredictionMS

D) and the Caltech-101 Image Features dataset (pre-

extracted SIFT/HOG descriptors, available at 

https://www.vision.caltech.edu/Image_Datasets/Caltech1

01/). In this task, we regressed high-dimensional image 

features to continuous labels (such as image similarity or 

human-annotated metrics) to observe the algorithm's 

performance under large-scale dense matrix operations. 

4.2 Synthetic Data Experimental Results 

In the synthetic data phase, two complementary 

experimental scenarios are designed. The first scenario is 

a 1000-dimensional sparse regression problem. A 

randomly generated high-dimensional design matrix and 

sparse true value vector are used, and medium-amplitude 

noise is superimposed to examine the error convergence 

of each algorithm under the high-dimensional sparse 

structure. The second scenario is a constrained dual 

optimization problem. Linear constraints that satisfy 

feasibility conditions are constructed and iteratively 

updated in the dual space to test the stability and iterative 

efficiency of the numerical method under constraint 

transformations. Both types of experiments are conducted 

with the same initial conditions and computational budget, 

making the comparison results directly interpretable. 

Figures 2 and 3 show the comparison of convergence error 

and computational efficiency on synthetic data, 

respectively: 
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Figure 2: Convergence error comparison 

 

 
Figure 3: Computational efficiency 

 

For the 1000-dimensional sparse regression problem, 

the proposed method consistently achieves the lowest 

convergence error across the entire iteration range. 

Relative to Mirror Descent, the error remains 

approximately one-third lower, and compared with the 

fixed-step Bregman gradient method, the reduction 

exceeds 20%. These results quantitatively validate the 

earlier conclusion regarding error reduction. As iterations 

progress, all three methods exhibit plateau behavior; 

however, the proposed approach stabilizes at a 

significantly lower error floor.As shown in Figure 3, for 

the constrained dual optimization task, the proposed 

algorithm reduces the error below 0.01 within 50 

iterations, whereas Mirror Descent remains at 0.032 under 

the same conditions and requires nearly 70 iterations to 

fall below 0.02. This highlights a clear efficiency 

advantage: the proposed method reaches high-precision 

regions more rapidly and exhibits smooth, non-oscillatory 

convergence curves.Taken together, the results from both 

regression and dual optimization tasks demonstrate that 

the integration of adaptive step-size control with stabilized 

discretization accelerates convergence, enhances 

numerical stability, avoids oscillations typical of fixed-

step algorithms, and sustains its advantages in large-scale 

optimization problems. 

 

4.3 Real-data experimental results 

Two distinct application directions are selected. The 

first experiment involves a classification experiment 

based on 20 types of news text. This dataset contains tens 

of thousands of documents, which are represented as 

sparse word vectors after standardized preprocessing. The 

purpose of this experiment is to evaluate the convergence 

accuracy of different optimization algorithms using high-

dimensional sparse representations. The second 

experiment involves an image regression experiment, 

using 50-dimensional features extracted from natural 

scene images for continuous object prediction. While the 

feature space for this task is not extremely high-

dimensional, the number of samples and noise level are 

realistic and challenging, allowing for significant 

differences in iteration efficiency and convergence 

stability between different optimization methods. All 

experiments are conducted on a unified platform and 

under the same initialization conditions, and quantitative 

comparisons are conducted in terms of error convergence 

and efficiency. Specific data is shown in Figures 4 and 5: 

 

 
 

Figure 4: Convergence error on real data 

 

 
 

Figure 5: Computational efficiency on real data 

 

In the text classification task, all three methods 

exhibit monotonically decreasing error curves, with the 

gap gradually widening within the first 100 iterations. The 

error of the proposed method drops to 0.012 around the 

100th iteration, significantly lower than the other two 
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methods, and reaches 0.005 after 200 iterations. This 

represents a 37.5% reduction compared to Mirror 

Descent's 0.008 at the same step size, resulting in an 

overall error reduction of over 30%. It also maintains a 

stable advantage over the fixed-step Bregman method, 

demonstrating that the adaptive strategy can more quickly 

compress learning errors caused by sparse noise. Figure 5 

further confirms the efficiency of the proposed method in 

the image regression task. It is observed that the proposed 

method reaches the threshold of 0.01 after 140 iterations, 

while Mirror Descent remains at 0.027, requiring nearly 

200 iterations to drop below 0.2. This demonstrates that 

the improved model is more agile in its convergence path 

for 50-dimensional features, reducing oscillations and 

repeated, ineffective iterations, thereby saving time. 

Results demonstrate that the proposed method achieves 

both accuracy and efficiency advantages in real-world 

tasks. The key reason for this trend is that the improved 

discretization ensures a more balanced gradient update 

across diverse task distributions. The adaptive step-size 

design dynamically adjusts the gradient drop, avoiding the 

issues of slow iterations or excessive fluctuations under a 

fixed strategy. This results in a stable and significant 

performance improvement on both high-dimensional 

sparse text and medium-dimensional large-scale image 

tasks. In the extended experiment, four benchmark 

problems—logistic regression, multi-class classification, 

matrix factorization, and sparse coding—were selected as 

test cases. Standard mirror descent, accelerated mirror 

descent, and adaptive mirror descent were compared with 

the proposed continuous limit adaptive method. 

Convergence speed was measured as the percentage 

decrease in the objective function after 100 iterations, and 

the final error percentage was recorded to facilitate 

horizontal comparison across different tasks. To further 

explore the interaction between adaptive step size and 

momentum or acceleration mechanisms, we repeated the 

experiment in a momentum-based version and observed 

numerical stability. The final results are shown in Table 5: 

 

Table 5: Robustness results 

 

Method / Task Convex Optimization Non-convex Optimization Sparse Coding 

Standard MD 65 / 12 40 / 25 55 / 18 

Accelerated MD 82 / 15 60 / 22 78 / 16 

Adaptive MD 75 / 10 58 / 17 70 / 14 

Proposed BCA 90 / 7 72 / 12 85 / 9 

The first value in each cell in the table represents the 

convergence rate (%), and the second value represents the 

final error (%). The results show that our method achieves 

the fastest convergence and lowest error on all three tasks. 

In convex optimization, the convergence rate reaches 90% 

and the error is only 7%, significantly improving 

compared to the standard method. In non-convex 

optimization, the performance is significantly higher than 

the adaptive and accelerated versions, demonstrating good 

robustness. In the sparse coding experiment, both 

efficiency and accuracy are leading. Especially when 

combined with the momentum mechanism, the adaptive 

step size strategy effectively weakens the oscillation 

problem of the acceleration method and makes the descent 

process smoother. Therefore, the method in this paper has 

advantages in both efficiency and stability. 

 

4.4 Discussion 

Different Bregman divergences correspond to 

different reference functions, whose geometric structure 

determines how the optimization trajectory evolves in 

space. For example, the Kullback–Leibler divergence 

generated using entropy as a reference is more suitable for 

handling constraints related to probability distributions, 

while divergences based on the squared norm are more 

stable for Euclidean regression tasks. Furthermore, the 

regularization properties of the mirror image directly 

affect the construction of the Lyapunov function and the 

energy decay rate. Inappropriate selection can lead to wide 

convergence bounds or excessive oscillation. 

Furthermore, in high-dimensional space, if the mirror 

image fails to match the intrinsic geometry of the data or 

constraints, it can weaken the effectiveness of the adaptive 

step size, thereby prolonging convergence time in 

practice. 

 

5 Conclusions 

This work establishes a continuous‐time foundation 

for geometry-aware first-order optimization by linking the 

Bregman gradient flow to Mirror Descent and analyzing 

convergence via a Lyapunov energy framework. The 

analysis clarifies how mirror maps and curvature shape 

energy decay and convergence domains in non-Euclidean 

spaces, and motivates a continuum-guided discretization 

with a Lyapunov-based adaptive step-size rule. The 

resulting scheme achieves smoother trajectories and 

improved efficiency in convex settings, with quantitative 

gains on sparse regression and convex classification (e.g., 

≈30% lower error on synthetic sparse regression; ≈140 vs. 

>200 iterations to reach 0.01 error on real sparse 

regression; comparable speed to accelerated Mirror 

Descent with lower terminal error in classification). 

Sensitivity studies across common mirror maps (entropy, 

Tsallis, log-barrier) and step-size policies indicate robust 

improvements, underscoring the value of aligning 

discretization with continuous dynamics. 

Several limitations remain. The theoretical 

guarantees and most experiments target convex, relatively 
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smooth problems; extension to nonconvex or low-

regularity regimes is nontrivial due to potential loss of 

Lyapunov monotonicity and geometry-induced 

oscillations. The adaptive mechanism introduces 

computational overhead (e.g., evaluating Lyapunov-rate 

surrogates and stabilization terms), and could overfit step-

size dynamics to specific data geometries. Results would 

further benefit from broader benchmarks (including ill-

conditioned and composite objectives), stronger statistical 

reporting (error bars, multiple seeds), and ablations 

disentangling the roles of mirror map, stabilization, and 

adaptivity. 

Future directions include principled treatments of 

stochastic and nonconvex objectives (e.g., variance-

controlled Lyapunov rates, dissipativity conditions for 

nonconvex flows), momentum/acceleration couplings 

compatible with the Lyapunov rule, and multi-fidelity 

mirror maps that adapt across curvature scales. Practical 

extensions involve large-scale deployment with low-

overhead surrogates for energy-rate estimation, as well as 

applications to policy optimization where mirror geometry 

already plays a central role. To support reproducibility, 

explicit φ-function specifications, pseudo-code of the 

discrete scheme, complete hyperparameter/stopping 

criteria, and dataset links are provided in the appendix. 
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