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With the rapid development of virtual reality (VR), augmented reality (AR), and other technologies, the 

interaction experience of three-dimensional virtual scenes has become a hot spot of research. To enhance user 

immersion, this research proposes an engine-driven multi-modal interaction design for three-dimensional 

virtual scenes. An interdisciplinary experiment involving 20 volunteers compared multimodal interaction 

(MMI) and traditional virtual interaction. The interaction process is optimized by combining an 

intention-capture algorithm, intelligent gloves, a multimodal fuzzy data understanding (MUFD) algorithm, 

and an axis-aligned bounding box (AABB) collision detection algorithm. The design utilizes an intent capture 

algorithm for accurately sensing the user's experimental intent, including multiple sources of information such 

as vision, gesture, and eye tracking. Moreover, a smart glove is used to combine the set of intent probabilities 

from different channels to more accurately capture the ambiguous or incomplete intent of the user. The results 

showed that the minimum accuracy for visual interaction was 91.42%. The minimum accuracy for gesture 

interaction and eye movement interaction was 92.83% and 92.75%, respectively. Compared to traditional 

virtual interaction, this research method reduced response time by 41.85% and achieved system stability of 

99.90%. In terms of immersion, the scores for perceived realism and emotional response were 6.25±1.70 and 

5.81±1.67, respectively. Based on the Igroup Presence Questionnaire (IPQ) assessment, the multimodal 

interaction group showed a 37.96% increase in perceived reality score and a 38.33% increase in emotional 

response score compared to the traditional group. The study approach received minimal user experience 

scores of 4.05, 4.26, and 4.84 for naturalness, simplicity of use, and ease of starting, respectively. 

Furthermore, the system response time took only 120.74ms. In summary, the engine-driven multi-modal 

interaction design and user immersion enhancement strategy for three-dimensional virtual scenes proposed in 

this study can significantly enhance users' VR experience. Especially in complex tasks and demanding 

application scenarios, it can effectively enhance user engagement and satisfaction. 

Povzetek: Študija predstavi večmodalno interakcijo za 3D VR prizore (vid + geste + sledenje očem + pametna 

rokavica), ki v primerjavi s klasično interakcijo skrajša odzivni čas za ~42 %, ohrani 99,9 % stabilnost ter 

poveča občutek prisotnosti in čustveni odziv za ~38 %. 

 

1  Introduction 

Virtual reality (VR) and augmented reality (AR) technology 

have advanced quickly in recent years. This has led to the 

increasing application of three-dimensional virtual scenes in 

a variety of fields, such as gaming, education, healthcare, 

architecture, and so on. Especially in safety critical fields 

such as surgery and aerospace, VR/AR technology requires 

extremely high real-time, stability, and accuracy of 

interaction. For example, VR training for spinal surgery 

requires an interaction delay of 150 ms or less to ensure 

operational synchronization. Meanwhile, VR simulation for 

aircraft piloting requires system stability of at least 99.5% to 

prevent training interruptions. Traditional multimodal 

systems often struggle to meet these requirements  

 

 

simultaneously, becoming a core bottleneck that restricts 

their application in safety critical scenarios. Traditional  

interaction methods mainly focus on the visual and auditory  

levels, while modern VR is gradually integrating tactile, 

kinesthetic, and other perceptual modalities, forming the 

trend of multi-modal interaction (MMI) [1]. However, 

traditional single interaction modes are often difficult to 

meet users' needs for deep immersion experiences. The 

limitations of these interaction modes have become the 

technical bottleneck that restricts the enhancement of VR 

immersion [2]. Therefore, it is particularly important to 

research and develop MMI technology. MMI can not only 

provide users with richer sensory stimulation, but also by 

synthesizing multiple perceptual channels. This can enhance 

the immersion of the virtual scene, thus effectively 
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enhancing the user's sense of participation and immersion. 

Unity3D, as a mature virtual engine software, is widely used 

in game development and architectural digitization [3]. It 

provides the technological basis for building high-fidelity 

three-dimensional scenes by virtue of its powerful real-time 

rendering capability, physical simulation and cross-platform 

support [4-5]. Currently, VR immersive user experience 

mostly relies on head-mounted devices and controllers or 

bare hands to interact with the virtual world. However, this 

type of interaction mainly relies on eye perception and lacks 

a sense of manipulation and realism [6]. In this context, 

smart gloves, as a convenient and flexible interaction device, 

provide new possibilities for MMI in virtual scenes. Smart 

gloves are able to make up for the shortcomings of 

traditional interaction methods through tactile and 

kinesthetic feedback. Therefore, the study innovatively 

proposes a MMI design that combines vision, gesture, and 

eye tracking, aiming to enhance the user's immersion. The 

study captures the user's intention and interacts in 

three-dimensional virtual scenes with a view to enhancing 

the coupling relationship between the user's psychological 

and sensory immersion. 

2  Related works 

As information technology continues to advance, VR and 

AR are now widely utilized in a variety of industries. 

Experts and academics in the domains of healthcare, 

education, and cultural heritage have given them a lot of 

attention. For example, to investigate the use of VR in spine 

medicine, Dargan S et al. conducted a thorough assessment 

of its application in surgery, counseling, education, and 

rehabilitation. The outcomes revealed that the application of 

VR in spine medicine gradually accelerated with the support 

of three-dimensional medical imaging, holograms, wearable 

sensors, 5G technology, artificial intelligence (AI), and 

head-mounted displays [7]. To increase the accessibility and 

pleasure potential for users of VR, AR, and the metaverse, 

Dudley J. et al. suggested the idea of inclusive immersion. 

The results showed that although technologies for VR and 

AR headsets were progressively becoming affordable and 

effective, these technologies had not yet achieved 

widespread user adoption. In particular, the needs of a wider 

and diverse user community needed to be considered [8]. To 

increase the realism, immersion, and overall experience of 

surgical simulation, Lungu A. J. et al. suggested utilizing 

VR, AR, and mixed reality (MR) technology. The results 

showed that the key components of a VR surgical simulator 

were visual and haptic feedback [9]. Duarte M L et al. 

investigated if these cutting-edge technologies might 

supplement or replace conventional anatomy teaching 

techniques in order to evaluate the efficacy of VR and AR in 

anatomy education. The results demonstrated the significant 

advantages of VR and AR in improving student engagement, 

learning efficiency, and knowledge retention [10]. 

In the realm of VR and AR, MMI design is essential. 

Al-Ansi A M et al. proposed a system design based on MMI 

techniques in order to enhance visitor experience through 

visual and audio interaction interfaces. The outcomes 

showed that the interactive system was effective in evoking 

visitors' natural interaction with the cultural heritage 

environment and facilitating a deeper understanding of the 

cultural content [11]. To increase the effectiveness of 

human-machine and human-robot interactions, Sereno M. et 

al. suggested an MMI technique based on the MQTT 

protocol. The findings demonstrated that the design 

accommodated a variety of interaction techniques, including 

touch, speech, and gaze tracking. Moreover, it could 

communicate effectively between multiple devices such as 

computers, smartphones, tablets, etc [12]. Weitz K et al. 

suggested a user MMI method based on a basic voice 

recognition system to investigate the possibilities of virtual 

agents in explainable artificial intelligence (XAI) interface 

design. According to the findings, including virtual agents 

might boost users' confidence in the XAI system [13]. 

Behavioral trajectories, learning outcomes, task 

performance, teacher assistance, student engagement, and 

feedback are some of the six primary objectives that Sharma 

K et al. examined in an attempt to investigate the use of 

multi-modal technology in education. The findings 

demonstrated the great potential of multi-modal technology 

to record and enhance the learning process [14]. 

Wang H et al. conducted a large-sample experiment to 

verify the advantages of a multimodal VR anatomy teaching 

system in terms of the long-term knowledge retention rate. 

The aim was to study how VR teaching improves efficiency. 

The results showed that students who used visual gesture 

eye movement multimodal interaction had a 28% increase 

in knowledge retention rate after 3 months compared to 

traditional VR teaching [15]. Zhang Y et al. proposed a 

multimodal interaction fusion model based on attention 

mechanism to improve interaction accuracy. The model 

optimizes by dynamically adjusting the weights of visual, 

gesture, and speech modalities. The results showed that this 

method improved the accuracy of intent recognition in 

complex scenes [16]. In order to improve interaction 

sensitivity, Li J et al. designed a real-time interaction 

optimization scheme based on 5G edge computing for the 

problem of tactile feedback delay of smart gloves. The 

results showed that this method reduced the tactile feedback 

delay to less than 50ms [17]. The systematic comparison of 

literature review is shown in Table 1. 

 

Table 1: Systematic comparison of literature review 

 

Research Immersion rating Domains applied Limitations  

Dargan S et al / Healthcare (Spine medicine) Lacks quantitative immersion assessment; no 
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[7]. multi-modal fuzzy intent processing 

Dudley J et al 

[8]. 
/ 

VR/AR/Metaverse (inclusive 

design) 

No clear modality definition; fails to address 

safety-critical scenario adaptation 

Lungu A J et al 

[9]. 
High fidelity Healthcare (surgical simulation) 

No numerical immersion score; does not integrate intent 

fusion algorithms 

Duarte M L et 

al [10]. 

Improved 

engagement 
Education (anatomy teaching) 

Single-modality dependent; no quantitative immersion 

evaluation 

Al-Ansi A M et 

al [11]. 

Enhanced natural 

interaction 
Cultural heritage 

Lacks multi-modal data fusion; ignores environmental 

interference resistance 

Sereno M et al 

[12]. 
/ 

HMI/HRI 

(Human-machine/robot 

interaction) 

No immersion assessment; does not optimize system 

real-time performance 

Weitz K et al 

[13]. 
Improved trust XAI interaction design 

No multi-modal intent integration; limited to trust 

enhancement only 

Sharma K et al 

[14]. 
/ Education (learning process) 

Vague modality description; no practical scenario 

validation 

Wang H et al 

[15]. 
/ 

Education (VR anatomy 

teaching) 

No immersion quantification; fails to verify adaptability 

in complex scenarios 

Zhang Y et al 

[16]. 
/ General MMI 

Ignores fuzzy intent handling; no immersion 

performance assessment 

Li J et al [17]. / MMI hardware optimization 
Only optimizes haptic delay; no multi-modal data fusion 

integration 

 

As evidenced by the above comparison and existing 

research, there are still many shortcomings in existing 

studies. For example, the research of Zhang et al. and Wang 

et al. only focuses on multimodal combinations or 

single-modal optimizations. They failed to address users' 

vague or incomplete intentions. These studies do not use 

fuzzy reasoning to fuse uncertain data from different 

modalities, resulting in poor system adaptability when user 

intent expression is unclear. Almost all studies only provide 

qualitative descriptions of immersion, lacking numerical 

scores or standardized scales for evaluation. This makes it 

impossible to conduct cross-study comparisons or 

performance benchmarking. Moreover, most of the research 

is limited to a single noncritical area without verifying its 

effectiveness in safety-critical areas requiring high real-time 

performance and low error tolerance. For example, although 

Li J et al. optimizes tactile feedback delay, they did not test 

the design in surgical VR scenarios where delay control is 

crucial. In addition, there are few studies that combine 

multimodal design with underlying interaction optimization 

techniques. Unlike this study, which uses multimodal 

interaction (MMI) and axis-aligned bounding boxes 

(AABBs) for collision detection to reduce computational 

load, existing research, such as that of Sereno et al. and 

Sharma et al., rarely considers such optimization. This 

results in an insufficiently smooth and stable system in 

complex virtual scenes. Therefore, the proposed 

engine-driven MMI design for three-dimensional virtual 

scenes, which combines multiple interaction modes and 

immersion enhancement strategies, can make up for the 

shortcomings of existing research. This further promotes the 

application of VR in a wider range of fields, meets the needs 

of diverse users, and enhances their interaction experience 

and immersion. 

3  Engine-driven design for MMI 

The study is based on the Unity3D virtual engine and 

combines glove sensors to capture intent. It uses a 

hierarchical enclosing box algorithm to determine if objects 

are colliding, thereby optimizing interaction experiences. 

Meanwhile, the smart glove is adopted as the core 

interaction interface, and the MMI method of vision, gesture, 

and eye tracking is designed. Moreover, the fuzzy reasoning 

and multi-modal understanding of fuzzy data (MUFD) 

algorithms are used to integrate the user's final intention and 

enhance the user's immersion. 

 

3.1 Intent capture and interaction optimization in 

engine-driven three-dimensional virtual scenes 
Unity3D, a modern game engine, is not only equipped with 

real-time graphic rendering and physical simulation, but also 

supports access to deep learning modules, semantic analysis 

plug-ins, and external interaction devices. This provides a 

technical basis for intent modeling and optimization [18-19]. 

To further enhance the robustness and adaptability of 
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multimodal interaction, the research introduces adaptive 

control and robust control principles to construct cross 

domain technology links. The study first adopts the model 

reference adaptive strategy in adaptive control to monitor 

the input signal-to-noise ratio and data integrity of visual, 

gesture, and eye movement modalities in real time. When 

the SNR of eye movement tracking drops below 30 dB due 

to a change in ambient light intensity, the system 

automatically adjusts the modal weight from 0.3 to 0.1. 

Meanwhile, it increases the weights of the gesture and visual 

modes to prevent interruption of interactions caused by a 

failure of a single mode. In addition, the research also 

integrates the robust control H ∞ control theory. By 

constructing a noise suppression module, it successfully 

controls the interference from sensor noise and data 

transmission delays on intent recognition to within 5%. This 

ensures the system's stable operation in complex 

electromagnetic environments such as aerospace VR 

simulators, while also being suitable for scenarios involving 

high-frequency equipment interference in surgical VR 

procedures. This design fills the technical gap of “heavy 

fusion, light anti-interference” in existing multimodal 

systems [20-21]. Through the behavioral analysis scripts 

and state machine models integrated in the engine, it is 

possible to achieve in-depth understanding and prediction of 

the user's operation paths, gaze points, and behavioral 

sequences, thus promoting the construction of a closed-loop 

interaction “from recognition to response” [22]. Therefore, 

in order to achieve interaction optimization, this study 

adopts an engine-driven three-dimensional virtual scenes 

intent capture and interaction optimization strategy. Engine 

driven intent capture and interaction optimization overall 

architecture is shown in Figure 1. 

Unity3D

Hand 

movements

Virtual hand 

construction

Computer-side

Serial 

communication

Virtual action 

synchronization

Tactile feedbackHaptic device

Active-end

Passive-end

 
 

Figure 1: Engine driven intent capture and interaction optimization overall architecture 

 

In Figure 1, in this overall architectural design, the user 

wears a Leap Motion sensing device to capture hand 

movements. The Unity3D virtual engine builds the virtual 

scene on the computer and controls the operation of the 

virtual hand. When the virtual hand makes contact with a 

virtual object, the system detects the contact. Moreover, the 

contact information is transmitted to the force haptic device 

worn on the slave user through the serial port. The device 

controls the spring and pressure plate through the servo to 

simulate the feeling of a finger touching an object, thus 

enabling the user at the slave end to perceive the presence of 

the virtual object. Additionally, sensors on the active user's 

arm collect real-time motion data and transmit it to the 

exoskeleton device on the follower's arm. This guides the 

arm movements and synchronizes them with the active 

user's movements. Through this architectural design, user 

intent capture and interaction optimization can be effectively 

achieved. The Leap Motion intent capture process is shown 

in Figure 2. 
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Figure 2: Leap motion intent capture process 

 

In Figure 2, the process first utilizes Leap Motion to track 

the movements of the user's hand and fingers, and transmits 

the data to the computer side for video frame reading. The 

system can determine whether the video frame contains 

hand information. If the hand is detected, fingertip analysis 

and tracking is performed.  
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If the hand is not detected, the system will re-read the video 

frame. The technology analyzes and tracks the user's 

fingertips before determining the locations and speeds of the 

fingers to detect the user's motions. The system understands 

the user's objectives based on this information. In virtual 

interaction, it is crucial to determine whether virtual objects 

collide with each other. If efficient collision detection is not 

performed, it can lead to excessive computation, which will 

affect the smoothness of the screen [23]. Therefore, to 

improve the efficiency of collision detection and achieve 

interaction optimization, the study adopts a hierarchical 

enveloping box algorithm to determine whether objects 

collide or not. The algorithm works by wrapping a virtual 

object with a layer of slightly larger geometric shape boxes. 

Then, based on the intersection of these boxes, it can 

determine whether the object has collided or not [24]. The 

hierarchical enclosing box algorithm is displayed in Figure 

3. 

(a) Bounding sphere (b) OBB (c) AABB (d) K-DOP
 

 

Figure 3: Hierarchical bounding box algorithm 

 

In Figure 3, the hierarchical bounding box algorithm has 

several common forms of bounding balls, oriented bounding box 

(OBB), AABB, and K-discrete orientation polytopes (K-DOP) 

bounding boxes [25]. Among them, the rotation of the enclosing 

sphere does not vary with the velocity of the object, and thus is 

not applicable to collision detection of deformed objects [26]. 

However, OBB and K-DOP have slower and more complex 

rotation following, and thus are more computationally intensive 

[27]. In contrast, AABB has lower computational complexity and 

is more suitable for interaction design in VR. The wrapping box 

of AABB is a polyhedron that can be constructed by describing 

multiple scalars. The computational process is simpler and the 

wrapped objects have smaller gaps [28]. Therefore, the study 

chooses AABB for collision determination, thus achieving 

efficient collision detection and interaction optimization design 

while keeping the computational effort low. Equation (1) displays 

AABB's mathematical expression. 

 

( ) min max min max min max, , , ,AABBR x y z a x a b y b c z c=      

(1) 

 

In Equation (1), 
AABBR  denotes the enclosing box of 

AABB. ( ), ,x y z  denotes the coordinate position of a point in 

three-dimensional space. 
mina  and 

maxa  denote the minimum 

and maximum values in the x  direction. Similarly, 
minb , 

maxb , 

minc , and 
maxc denote the minimum and maximum values in the 

y  and z  directions, respectively. 

 

2.2 Smart glove-based interaction with vision, 

gesture, and eye tracking 
After achieving accurate recognition of user intent and 

interaction optimization at the engine layer, how to naturally 

integrate these multiple input modalities into the user's operating 

behavior becomes the key to further enhance the sense of 

immersion. Currently, visual recognition, gesture interaction, and 

eye tracking are considered as three key perception channels, 

which are building a new multi-modal human-computer 

interaction paradigm [29]. This system incorporates smart 

glove-based fusion interaction technology as a core component of 

the MMI system. This technology is highly compatible with 

natural movements and can simultaneously capture haptic, 

electromyographic, and motion information [30]. The smart 

gloves can accurately capture the degree of bending, pressure 

changes, and inertial movement trajectories of the finger joints 

through the embedded sensor network. This can restore 

high-fidelity hand animations in three-dimensional engine 

scenes for human-like motion actuation [31]. Meanwhile, 

combined with the depth camera and AI image recognition 

algorithm, the system can recognize the visual features of the 

user's environment in real time, such as the scene structure, object 

boundaries, and surface texture, to help quickly lock the 

interaction target. The YOLOv7 algorithm is chosen over 

YOLOv5 and other lightweight models for the visual 

channel because it strikes a balance between real-time 

performance, detection accuracy, and computational resource 

consumption requirements in VR scenes. VR interaction 

requires precise positioning of virtual objects. The YOLOv7 

algorithm is more accurate than the YOLOv5 algorithm, 

especially when detecting small virtual targets. The higher 

accuracy advantage can avoid misjudgment of interaction 

intention caused by visual positioning deviation. Although 

YOLOv7 has slightly higher parameter count than YOLOv5, 

it optimizes feature fusion efficiency through the ELAN 

structure. In this experiment, YOLOv7 achieved an inference 

speed of 85 FPS for 1280×720 virtual scene images in the 

NVIDIA GeForce RTX 3090 hardware environment. This 

result is only 7.6% lower than YOLOv5 and far higher than 

the 30 FPS minimum threshold required for VR interaction. 

If a lighter YOLO Nano structure is chosen, although the 

inference speed can reach 120 FPS, the small object 

detection recall rate cannot meet the high-precision 

interaction requirements. In addition, YOLOv7 supports 

dynamic batch inference, which automatically adjusts the 

size of inference batches based on the complexity of virtual 
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scenes. When the number of objects in the scene is less than 

10, the inference speed increases to 98 FPS. Even when the 

number of objects exceeds 30, it can maintain a frame rate of 

65 FPS or higher. This avoids the sudden drop-in frame rate 

that traditional fixed batch models experience in complex 

VR scenes. It also ensures synchronized visual, gesture, and 

eye movement multimodal interaction. This prevents 

immersion interruption caused by visual delay. Eye tracking 

technology, as an important dimension of sight orientation, can 

help the system recognize the user's current focus of attention, 

thus enhancing the precision of operation and the naturalness of 

interaction. Therefore, this study uses smart gloves as the core 

interaction interface to realize visual, gesture, and eye tracking 

interaction design. The framework of the smart glove-based 

visual, gesture, and eye tracking interaction system is shown in 

Figure 4. 
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Figure 4: Framework for visual, gesture, and eye tracking interaction system based on smart gloves 

 

In Figure 4, the system framework integrates three input 

modalities: vision, gesture, and eye tracking. The visual channel 

performs visual target object capture through the you only look 

once version 7 (YOLOv7) algorithm. Gesture is realized through 

smart gloves combined with Leap Motion for intent capture and 

tracking. Eye tracking is combined with eye tracking for focus 

capture. The target data collected through these three modalities 

are synthesized using fuzzy inference based and MUFD 

algorithms and the fuzzy set affiliation is calculated. After 

normalizing the affiliation degree, combined with the basic trust 

allocation function, the integrated user intent is finally obtained. 

The intention acquisition process of vision and eye tracking is 

shown in Figure 5. 

 

 

In Figure 5, in this process, the current environment 

information is first captured by the camera and the YOLOv7 

algorithm is utilized for object localization. In the visual channel, 

after initializing the YOLOv7 model, the system identifies the 

three-dimensional set of current objects. It also calculates the 

distance change of the same object in this frame and the next 

frame to derive the probability of intent under the visual channel 

and normalize it. Under eye tracking, after initializing the 

YOLOv7 model, the coordinates of the user's line-of-sight focus 

are obtained in conjunction with the eye-tracker. The image 

cropping region is determined based on the line-of-sight focus, 

and the image of the region is input into the YOLOv7 model. The 

confidence level of the object is obtained and this is used as the 

initial intent probability. Next, the system will normalize the 

confidence level and output the final set of intent probabilities. 

Equation (2) displays the formula for calculating distance change. 
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Figure 5 The intention acquisition process of vision and eye tracking 
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( ) ( )( ) ( ) ( )( ) ( ) ( )( )
2 2 2

1 1 1i i i i i i i
D x t x t y t y t z t z t= + − + + − + + − (2) 

 

In Equation (2), 
iD  denotes the change in distance 

between time steps t  and 1t +  for object i . ( )
i

x t , ( )
i

y t , 

and ( )
i

z t  denote the three-dimensional coordinates of object 

i  at the moment of t , respectively. The formula for calculating 

the probability of visual intent is shown in Equation (3). 

( ) ( ) ( )
2 2 2

i

i

i i i

D
V

x t y t z t

=

+ +

(3) 

In Equation (3), 
iV  denotes the visual intention probability, 

i.e., the motion intention of object i  between time steps t  and 

1t + . The focus position formula for eye tracking is shown in 

Equation (4). 

( ),focus focus focusP x y= (4) 

In Equation (4), 
focusP  denotes the focus position of the 

eye tracking system. 
focusx  and 

focusy  denote the position of 

the user's visual focus on the two-dimensional plane under eye 

tracking, respectively [32]. The minimum and maximum visual 

field coordinates are shown in Equation (5). 

min min

max max

,
2 2

,
2 2

focus focus

focus focus

W H
x x y y

W H
x x y y


= − = −


 = + = +


(5) 

In Equation (5), W  and H  denote the width and height 

of the field of view, respectively. The confidence expression for 

the object category is shown in Equation (6). 

( ),i i iO C S= (6) 

In Equation (6), 
iO  denotes the confidence level of the 

object category i . 
iC  denotes the confidence value of the 

object. 
iS  denotes the categorization score of the object. The 

mathematical expression for the set of intentional probabilities is 

shown in Equation (7). 

1

i

i n

i i

S
P

S=

=


(7) 

In Equation (7), 
iP  denotes the probability of intent for 

each object category i . n  denotes the number of object 

categories. The flow of intention understanding based on MUFD 

algorithm is shown in Figure 6. 
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Figure 6: Intention understanding process based on MUFD algorithm 

 

In Figure 6, in this process, multi-modal intent data from 

vision, gesture, eye movement, etc. are first input. Then, the fuzzy 

set corresponding to each modality is calculated, and the 

affiliation degree of each modality is also obtained. Next, the 

fuzzy intent trust distribution of each modality is calculated to 

obtain the weight of each modal intent. Finally, the final fuzzy 

intention of the user is obtained by constructing the trust 

distribution function and synthesizing the information of each 

modality. The mathematical expression for the set of intention 

probabilities is shown in Equation (8). 

( )inputI MAG V (8) 

In Equation (8), I  denotes the final set of user's intentions. 

inputV  denotes multi-modal input. MAG  denotes multi-modal 

aggregation [33]. The formula for the affiliation degree is shown 

in Equation (9). 

( )
( )

2

22

i i

i

x

i iu x e





−
−

= (9) 

In Equation (9), ( )i iu x  is the affiliation of the input data 

ix . 
i  is the center of the fuzzy set of i  object. 

2

i  denotes 

the variance of this fuzzy set. The normalization process is shown 

in Equation (10). 

( )
( )

( )1

i i

i i

i n i i

u x
u x

u x 

 =


(10) 

The normalization operation by Equation (10) ensures that 

the sum of all fuzzy affiliations is 1. The reliability distribution is 

shown in Equation (11). 
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( )i iCF u x= (11) 

In Equation (11), CF  represents the credibility 

distribution, which indicates the credibility of each modal 

intention. The weighting formula is shown in Equation (12). 

( )i initialx  = + (12) 

In Equation (12), ( )ix  denotes the final weight of the 

input data 
ix . 

initial  denotes the initial weights.   denotes 

the increment adjusted according to the modal trust distribution. 

The basic trust distribution function is shown in Equation (13). 

( ) ( ) ( )i i im i x u x =  (13) 

Equation (13), ( )m i  denotes the trust allocation function 

for modality i , i.e., the initial trust value for the modality. The 

combined trust allocation function is shown in Equation (14). 

( ) ( )
1 3

1

1
iA A i

m A m i A
k  =  

=  
−

  (14) 

In Equation (14), ( )m A  denotes the integrated trust 

allocation function, i.e., the trust allocation after the synthesis of 

all modalities. A  denotes the set of all modalities. k  denotes 

the constant used to adjust the overall trust allocation. ( )
1 3i

m i
 

  

denotes the product operation of the trust allocation function 

( )m i  for all modalities. The final fuzzy intent is shown in 

Equation (15). 

( )maxV m A= (15) 

In Equation (15), V  represents the final fuzzy intent of the 

user. That is, the maximum value is chosen to determine the most 

plausible modality to arrive at the final decision or intention of the 

system. To further clarify the mathematical logic of the 

MUFD algorithm and improve reproducibility, the study first 

uses the construction of fuzzy sets based on Gaussian fuzzy 

functions. Then, it makes the calculation of the trust 

allocation function satisfy the normalization condition 

( ) 1m i = . The constraint condition 

( ) ( ) 1i i ix x   =   is set for the basic trust allocation 

function to ensure that the weight allocation of trust values in 

each modality is reasonable. Finally, in calculating the 

comprehensive trust allocation function ( )m A  the value of 

constant k  is based on 
( ) ( )

1

1 i j

k
m i m j

=
 −  

, 

which is used to correct conflict terms in the multimodal 

information fusion process. This helps to avoid bias in 

judgments caused by contradictions in the data between 

modalities. The pseudocode of MUFD is shown in Table 2. 

 

Table 2: MUFD pseudocode 

 

Input: 

  P_v: Visual intent probability vector 

  P_g: Gesture intent probability vector 

  P_e: Eye-tracking intent probability vector 

  μ_i: Mean of fuzzy set for each object 

  σ_i: Std of fuzzy set for each object  

Output: 

  Final_intent: Index of object with highest fused intent probability 

// Step 1: Calculate fuzzy membership degree (Gaussian function) 

For each object i: 

  μ_v(i) = exp(-(P_v(i) - μ_i)² / (2*σ_i²))  // Vision membership 

  μ_g(i) = exp(-(P_g(i) - μ_i)² / (2*σ_i²))  // Gesture membership 

  μ_e(i) = exp(-(P_e(i) - μ_i)² / (2*σ_i²))  // Eye-tracking membership 

// Step 2: Normalize membership degrees (sum = 1) 

μ_v_norm = μ_v / sum(μ_v) 

μ_g_norm = μ_g / sum(μ_g) 

μ_e_norm = μ_e / sum(μ_e) 

// Step 3: Dynamic weight assignment (trust-based) 

total_max = μ_v_norm.max() + μ_g_norm.max() + μ_e_norm.max() 

ω_v = 0.3 * (μ_v_norm.max() / total_max)  // Vision weight (base=0.3) 

ω_g = 0.4 * (μ_g_norm.max() / total_max)  // Gesture weight (base=0.4, primary) 

ω_e = 0.3 * (μ_e_norm.max() / total_max)  // Eye-tracking weight (base=0.3) 

// Step 4: Fuse intent probabilities 
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Fused_prob(i) = ω_v*μ_v_norm(i) + ω_g*μ_g_norm(i) + ω_e*μ_e_norm(i) 

// Step 5: Determine final intent 

Final_intent = argmax(Fused_prob) 

Return Final_intent 

 

3 Engine-driven validation of MMI 

designs 

After building the experimental environment, the study 

validates the performance of MMI in three-dimensional virtual 

scenes. Moreover, the effect of user's immersion experience is 

evaluated. 

 

3.1 Experimental environment setup 
The trials employ a high-performance computing platform 

and software setup to verify the engine-driven MMI based 

design's performance. This ensures that the system is able to 

process multi-modal data and optimize the interaction experience 

in real-time. The experiments use the Ubuntu 20.04 operating 

system with an Intel Core i9-11900K CPU, NVIDIA GeForce 

RTX 3090 GPU, and 64GB of RAM. In addition, the virtual 

engine used for the experiments is Unity3D, which supports 

real-time graphics rendering and physics simulation features. The 

deep learning framework is TensorFlow 2.6 and the 

programming language is Python 3.8. To ensure efficient data 

processing and interaction response, the experiments set the 

learning rate to 0.001 and the batch size to 32. The smart glove, 

the Manus Prime II data glove, is the core interactive device 

used in the experiment. Its core parameters include 16 

high-precision inertial measurement units (IMUs) and finger 

joint bending sensors. The device adopts USB-C wired 

connection with a sampling rate of up to 1000 Hz. The eye 

tracking device uses Tobii Pro Spectrum eye tracker. The 

device uses the 9-point calibration method with a sampling 

rate of 300 Hz to track eye movements, including rapid ones 

such as scanning and gaze switching. The tracking range is 

±35° for the horizontal viewing angle and ±20° for the 

vertical viewing angle. It supports a sitting distance of 50-80 

cm. In the experiment, the eye tracker is fixed at a distance of 

60 cm from the headset and adapted to VR headsets. The 

dataset used includes indoor virtual scenes and gesture data. 

The datasets used include indoor virtual scenes and gesture data, 

which are constructed by Unity3D and the gesture data are 

captured by smart gloves and Leap Motion. The experimental 

data are pre-processed and divided into training and testing sets in 

the ratio of 7:3. The size of the indoor virtual scene dataset is 10 

indoor scenes, each containing 8 types of core interactive objects. 

A total of 40,000 image frames are collected for each object, 

captured from 500 different angles and under varying lighting 

conditions. The image resolution is 1280×720 and the format is 

RGB-D. It is mainly used for training the YOLOv7 visual object 

detection model. The scale of the multimodal gesture interaction 

dataset is collected from 20 volunteers using Manus Prime II 

smart gloves and Leap Motion Ultra. This includes four core 

interactive gestures, including grabbing, releasing, rotating, and 

clicking. Each volunteer performs 50 repetitions of each gesture 

type, resulting in 4,000 valid samples in total. Each set of samples 

contains joint angle data at a sampling rate of 1,000 Hz, along 

with corresponding intent labels. Considering that this experiment 

involves human subjects, all experimental procedures have been 

approved by the ethics review committee and fully comply with 

the ethical guidelines for human subject research in the Helsinki 

Declaration of the World Medical Association. Table 3 displays 

the experimental environment's precise setup. 

 

Table 3: Experimental environment configuration 

 

Environment Configuration 

Operating system Ubuntu 20.04 LTS 

CPU Intel Core i9-11900K 

GPU NVIDIA GeForce RTX 3090 

Random access memory 64GB 

Virtual engine platform Unity3D 

Deep learning framework TensorFlow 2.6 

CUDA 11.2 

Programming language Python 3.8 

 

3.2 Performance validation of MMI in 

three-dimensional virtual scenes 
To validate the effect of engine-driven MMI based design 

on user immersion, the experiment invites 20 volunteers ranging 

from 22 to 27 years old with an average age of 24.5 years old. All 

participants have not been exposed to VR. Moreover, during the 

experiment, the attention span of the volunteers is controlled 

within 90 minutes. In the experiment, volunteers are randomly 

divided into two groups. 32 VR scenes are used in this 

experiment, and these scenes are divided into two scene banks 

based on a two-dimensional emotion model of potency-arousal. 

Each scene bank contains 16 different scenes. The order of scene 

playback is randomly assigned to minimize the interference of 

order effects on the experimental results. Before the start of the 

experiment, all participants need fill out an informed consent 

form to confirm that they are in good mental health and able to 

complete the experimental tasks independently. During the 

experiment, each volunteer is required to remain in a seated 

position, watch the VR scene and perform emotional 

self-assessment. To avoid fatigue caused by prolonged viewing, 

participants take a 20-minute break after completing part of the 

task. The initial sample size for this experiment is set to 20. 

Although the sample size is small, the selection criteria are as 

follows: 1 Based on the preliminary experimental results, the 

coefficient of variation (CV) of the core indicator of the 

multimodal interaction system in this study is ≤15%. 

According to the formula calculation, this value meets the 

statistical power required to detect differences between two 
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groups. 2. Considering the characteristic of dizziness caused 

by long-term wearing in VR experiments, a large sample size 

may lead to fatigue bias in the subjects. Therefore, priority 

should be given to ensuring sample homogeneity to control 

errors. 3. Subsequently, the sample size will be expanded to 

100 for confirmatory experiments, and the results of this 

study can serve as a preliminary empirical basis. Volunteer 

recruitment is an open recruitment process conducted 

through university research volunteer recruitment platforms 

and local technology communities. It uses a voluntary 

registration and screening model without offering any 

material rewards. It only provides explanations of the 

experimental process and feedback on the results. The 

inclusion criteria are individuals aged between 18-30 years 

old, without visual or auditory impairments, without a history 

of motion sickness, and who have not participated in similar 

VR experiments. Exclusion criteria include individuals with 

a history of mental illness or underlying conditions such as 

hypertension or heart disease. Those who experienced 

physical discomfort on the day of the experiment are also 

excluded. The demographic distribution is a male to female 

ratio of 6:4, with an age range of 24.5±1.4. The experiment 

uses a completely randomized design. 20 volunteers are 

assigned to experimental groups (EGs) 1 and 2 using an 

Excel random number table, with 10 people in each group. 

After randomization, baseline balance test is conducted: there 

are no significant differences (p>0.05) in gender (χ²=0.21, 

p=0.646), age (t=0.53, p=0.602), and basic cognitive ability 

(t=0.38, p=0.707) between the two groups. This ensures that 

the initial conditions of the two groups are consistent and 

eliminating the interference of baseline differences on the 

experimental results. 32 VR scenes are used in the 

experiment. It is divided into two scene libraries, each with 

16 scenes, based on valence and arousal. It is not randomly 

constructed, but rather based on a validated database. 

Pre-experiments are conducted to verify its emotional 

valence and arousal effectiveness. 

To evaluate the response accuracy of the system under the 

three interaction modes of gesture recognition, speech recognition, 

and eye tracking, the experiments are conducted to test the visual, 

gesture, and eye tracking interactions respectively. The specific 

tests are as follows: visual interaction triggers the interaction by 

gazing at a specific target or interface element. Gesture 

interactions include gestures such as opening the palm of the hand, 

making a fist, and sliding. Eye-movement interactions are 

triggered by gazing at a target point for 2 s. The MMI accuracy 

test results of the volunteers in the two EGs are shown in Figure 7. 
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A02 A03 A04 A05 A06 A07 A08 A09 A10

88

90

Volunteer ID

B01

92

94

96

98

100

In
te

ra
ct

io
n

 a
cc

u
ra

cy
/%

B02 B03 B04 B05 B06 B07 B08 B09 B10

Visual 

interaction

Gesture 

interaction

Eye movement 

interaction

Visual 

interaction

Gesture 

interaction

Eye movement 

interaction

 
 

Figure 7: MMI accuracy test results 
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In Figure 7(a), the visual interaction accuracy rates of EG 1 

are all above 91%. Among them, the volunteer numbered A03 

has the lowest visual interaction accuracy rate, which is also 

91.42%. The lowest accuracy rates of gesture interaction and eye 

movement interaction are 92.83% and 92.75%, respectively. In 

Figure 7(b), the volunteers in EG 2 has the lowest accuracy rates 

of 91.58%, 92.97%, and 92.63% for visual, gestural, and 

eye-movement interactions, respectively. After independent 

sample t-test verification, there is no significant difference in 

visual interaction accuracy (t=0.32, p=0.752), gesture 

interaction accuracy (t=0.41, p=0.685), and eye movement 

interaction accuracy (t=0.28, p=0.782) between the two 

groups of volunteers. This indicates that the recognition 

accuracy stability of the multimodal interaction design in this 

study is not affected by grouping, and the overall accuracy 

level (both ≥91%) has reliable statistical support. To 

summarize, the interaction accuracy of all participants is above 

91%. It shows that the engine-driven MMI based design can 

achieve high recognition and interaction accuracy in 

three-dimensional virtual scenes. 

To verify whether MMI is consistent with the user's natural 

behavioral patterns, participants will be required to perform the 

task 10 times for each interaction mode. After the tasks are 

completed, participants will fill out a questionnaire to assess the 

naturalness, ease of use, and intuitive operation of each interaction 

mode. Scores range from 1 to 5. A score of 1 indicates that it is not 

at all natural or easy to use, while a score of 5 indicates that it is 

very natural or very easy to use. The results of the naturalness and 

ease of use evaluation of MMI are shown in Figure 8. 
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Figure 8: Assessment results of naturalness and usability of MMI 

 

In Figure 8(a), EG 1 has the lowest naturalness score, ease of 

use score, and difficulty of getting started score of 4.05, 4.26, and 

4.84, respectively. In Figure 8(b), EG 2 has the lowest naturalness 

score, ease of use score, and difficulty of getting started score of 

4.12, 4.31, and 4.80, respectively. According to paired sample 

t-test analysis, there is no significant difference between the 

two groups in terms of naturalness (t=0.57, p=0.573), ease of 

use (t=0.48, p=0.635), and difficulty in getting started (t=0.39, 

p=0.699) scores, and all scores are ≥ 4.0. Based on the t-test 

results (p>0.05), it can be inferred that the naturalness and 

ease of use of the multimodal interaction mode in this study 

are consistent across samples and are not the result of 

individual differences. In summary, the evaluation results of 

both EGs show that the MMI approach has better performance in 

terms of naturalness and ease of use. The overall interaction 
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experience is more intuitive and conforms to the user's natural 

behavioral pattern. 

To verify the comprehensive performance of the 

engine-driven MMI based design, the study analyzes it in 

comparison with the traditional virtual interaction methods. The 

study uses a Keysight U2722A power analyzer to measure 

energy and resource consumption. The analyzer collects 

real-time instantaneous power during system operation, 

records data every five minutes, and monitors continuously 

for two hours. Then, it calculates the average power 

consumption. The Ubuntu system's built-in htop tool 

measures resource consumption by calculating CPU usage, 

GPU memory usage, and memory usage. The average value 

during the experimental period is used as the evaluation 

indicator. The difference between energy and resource 

consumption is verified through an independent sample t-test 

(p<0.05), ensuring that the difference between the two sets of 

data is statistically significant. Table 4 compares the 

performance of several approaches. 

 

Table 4: Performance comparison of different methods 

 

Index 
MM

I 

Traditional virtual 

interaction 

Response time/ms 
120.

74 
207.67 

System smoothness 4.8/5 3.5/5 

System stability/% 
99.9

0 
95.23 

Device compatibility High Medium 

Energy consumption and 

resource use 
Low High 

In Table 4, the response time of the studied MMI method is 

only 120.74ms, which is 41.85% lower than the traditional virtual 

interaction method. In terms of system fluency, the fluency score 

of the research method is 4.8/5, which is very smooth. In contrast, 

the fluency score of the traditional virtual interaction method is 

3.5/5, with occasional lagging. The system stability of the 

research method is 99.90%. In comparison, the system stability of 

the traditional virtual interaction method is only 95.23%. In terms 

of device compatibility, the research method has high 

compatibility and supports a wide range of devices. In contrast, 

the traditional virtual interaction method has low device 

compatibility and supports a limited variety of devices. Finally, 

the research method performs better in terms of energy and 

resource consumption, which is a significant advantage over the 

high energy and resource consumption of traditional virtual 

interaction methods. Through independent sample t-test 

verification, the differences in response time (t=12.63, 

p<0.001) and system stability (t=8.92, p<0.001) between 

multimodal and traditional virtual interactions in this study 

are statistically significant (p<0.001). This proves that the 

performance improvement is not a random fluctuation, but 

rather an inevitable result of multimodal design and engine 

optimization. In summary, the engine-driven MMI based design 

outperforms traditional virtual interaction methods in terms of 

response time, smoothness, system stability, device compatibility, 

and energy efficiency.  

To verify the effect of interaction optimization, the study 

conducts confounding experiments on the perceptual judgments 

of different virtual objects. In the experiment, the virtual objects 

comprised four shapes: sphere, cube, cylinder, and pyramid. 

Volunteers randomly contacts a virtual object and make 

perceptual judgments. A total of 10 virtual object contacts are 

made in each experiment. The results of the volunteers' judgment 

accuracy in the confusion experiment are shown in Figure 9. 
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Figure 9: Confusion experiment judgment accuracy results 

 

In Figure 9(a), the volunteers in EG 1 have judgment 

accuracy of 0.99, 0.96, 0.95, and 0.96 for virtual objects such as 

sphere, cube, cylinder, and pyramid, respectively. In Figure 9(b), 

the judgment accuracy of volunteers in EG 2 for the same virtual 

objects are 0.99, 0.97, 0.95, and 0.96, respectively. In summary, 

volunteers in both EGs shows high accuracy in the perceptual 

judgment of virtual objects, and the difference between the two 

groups is small. In summary, the engine-driven MMI design 
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based on the engine-driven MMI design realizes the interaction 

optimization design with high accuracy. 

 

3.3 Validation of the effect of user immersion 

experience 
To verify the effect of engine-driven MMI design on user 

immersion, the study adopts a standardized scale (Igroup 

presence questionnaire (IPQ)) to assess user immersion. The IPQ 

scale mainly evaluates the user's perceived realism, emotional 

response, and other dimensions. The higher the score, the stronger 

the user's immersion experience. In the experiment, volunteers in 

EG 1 are designed by engaging in an engine-driven MMI based 

design. Volunteers in EG 2 uses traditional virtual interaction 

methods. The study compares the scores of the two groups on 

each dimension of immersion. The results are shown in Figure 

10. 
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Figure 10: Comparison of scores in immersion dimensions between two groups 

 

In Figure 10, EG 1 scores 6.25±1.70 on the dimension of 

perceived realism, while EG 2 scores 4.53±1.62 on this 

dimension. EG 1's score improves by 37.96% compared to EG 2. 

In the emotional response dimension, the scores of EG 1 and EG 

2 are 5.81±1.67 and 4.20±1.59, respectively. There is an 

improvement of 38.33% in the score of EG 1 as compared to EG 

2. In the dimension of sense of control, the scores of EG 1 and EG 

2 are 6.04±1.21 and 4.83±1.19, respectively. EG 1 improves by 

25.05% compared to EG 2. In terms of participation, the scores of 

EG 1 and EG 2 are 6.46±1.83 and 4.61±1.87, respectively. EG 1 

improves by 40.13% over EG 2. According to independent 

sample t-test analysis, EG 1 scores significantly higher than 

EG 2 in four dimensions: perceived reality (t=3.87, p<0.001), 

emotional response (t=3.65, p<0.001), sense of control 

(t=2.98, p=0.005), and participation (t=4.12, p<0.001). The 

differences in all dimensions are statistically significant (p < 

0.01), proving that the multimodal interaction design used in 

this study reliably improves user immersion and is not due to 

differences in the random sample. In summary, the scores of 

EG 1 are significantly higher than that of EG 2 in all dimensions. 

It shows that the engine-driven MMI-based design can 

significantly enhance the user's immersive experience. 

To further validate the immersion effect, the study compares 

the scores of participating in an engine-driven MMI based design 

and a traditional virtual interaction approach in terms of emotion 

evocation using a two-dimensional emotion model of 

potency-arousal. The 32 VR scenes used in the experiment are 

not randomly constructed, but are designed based on 

Russell's Circular Model of Affect (1980) [34]. The efficacy 

and arousal are evaluated subjectively using the Self 

Assessment Manikin (SAM) scale. In the study, 'emotional 

valence/arousal' is a subjective experiential assessment that 

complements objective physiological responses collected 

through sensors such as heart rate and brainwaves. The 

emotion evocation scores for both groups are shown in Table 5. 

 

Table 5: Emotional induction scores for two groups 

 

Emotional 

type 

Grou

p 

Mean pleasure 

level 

Pleasure standard 

deviation 

Average awakening 

degree 

Standard deviation of awakening 

degree 

HVHA EG 1 6.85 1.12 7.45 0.98 
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EG 2 5.90 1.25 6.20 1.12 

HVLA 
EG 1 5.40 1.31 6.75 1.05 

EG 2 4.75 1.10 5.80 1.03 

LVHA 
EG 1 4.50 1.20 6.40 1.15 

EG 2 3.95 1.05 5.50 1.00 

LVLA 
EG 1 3.25 1.15 5.10 1.25 

EG 2 3.00 1.13 4.83 1.04 

 

In Table 5, in the high valence, high arousal (HVHA) 

scenario, EG 1 outperforms EG 2 by 0.95 and 1.25 in 

pleasantness and arousal, respectively. In the high valence, low 

arousal (HVLA) scenario, EG 1 outperforms EG 2 by 0.65 and 

0.95. In the low valence, high arousal (LVHA) type, EG 1 is 0.55 

higher in pleasantness and 0.90 higher in arousal. In the low 

valence, low arousal (LVLA) context, despite the relatively small 

difference in mood scores between the two groups, EG 1 still has 

a slight advantage in pleasure and arousal. It shows that it can still 

play a certain role in mood evocation in a calmer mood state. 

Repeated measures analysis of variance (ANOVA) is conducted 

on the pleasure and arousal scores of two groups in different 

emotional scenarios. The results are showed that in HVHA 

scenario (pleasure: F=10.25, p<0.001; awakening degree: 

F=14.83, p<0.001), HVLA scenario (pleasure degree: F=6.72, 

p=0.012; awakening degree: F=8.35, p=0.006), LVHA scenario  

 

 

(pleasure degree: F=4.91, p=0.032). In the awakening degree 

(F=9.07, p<0.001), the scores of EG 1 are significantly higher 

than those of EG 2 (p<0.05). There is no statistically significant 

difference between the two groups in the LVLA scenario alone 

(pleasure level: F=2.89, p=0.095; awakening degree: F=3.12, 

p=0.082). This further proves that the induction effect of this 

study design in high arousal emotional scenarios is statistically 

significant. In summary, the VR engine-driven MMI-based 

design outperforms the traditional two-dimensional video 

approach in terms of effectiveness of emotional elicitation. In 

particular, it can stimulate participants' immersion and emotional 

responses more significantly in high arousal situations. 

To validate immersion and emotional responses more 

visually, the study compares the physiological responses of the 

two EGs in scenarios with different emotional types, as shown in 

Figure 11. 
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Figure 11: Comparison of physiological responses between two EGs 

 

In Figure 11(a), EG 1 has the strongest physiological 

response in the HVHA scenario, with a heart rate of 90.57±10.64 

beats/min and brain wave activity of 12.55±3.58 μV. In contrast, 

EG 1 has the weakest physiological response in the LVLA 

scenario, with a heart rate of 78.64±10.69 beats/min and brain 

wave activity of 9.08±2.67 μV. In Figure 11(b), EG 2 also has the 

strongest physiological response to the HVHA scenario, with a 

heart rate of 80.42±12.93 beats per minute, which is 11.20% 

lower compared to EG 1. The brainwave activity is 9.05±2.89 μV, 

which is 27.88% lower compared to EG 1. In the LVLA scenario, 

EG 2 has the lowest physiological response, with a heart rate of 

70.62±11.28 beats per minute, which is 10.19% lower than that of 

EG 1. The brain wave activity is 5.57±2.09 μV, which is 38.65% 

lower than that of EG 1. Through independent sample t-test 

verification, it is found that there are statistically significant 

differences in heart rate (t=2.76, p=0.010) and brainwave 

activity (t=3.94, p<0.001) between the two groups in the 

HVHA scenario. In the LVLA scenario, the differences in 

heart rate (t=2.15, p=0.038) and brainwave activity (t=4.28, 

p<0.001) between the two groups are also statistically 

significant. This proves that the multimodal interaction 

design in this study has a significant stimulating effect on 

users' physiological responses, and this effect is statistically 

reliable. In summary, the virtual environment designed based on 

MMI has significant advantages in enhancing immersion and 

emotional response. 

To compare the subjective experience of the two EGs, the 

study collects subjective feedback from the users through a 
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questionnaire to assess the volunteers' perception of the virtual 

scene. Each dimension is rated using a 1-7 rating scale, with 1 

indicating very poor and 7 indicating excellent. The findings of 

the two EGs are shown in Table 6. 

 

Table 6: Survey results of two Egs 

 

Dimension EG 1 EG 2 

Pleasure 6.25±0.82 4.86±1.25 

Authenticity 6.48±0.72 5.24±1.11 

Interactivity 6.59±0.61 4.97±1.39 

Illusion of immersion 6.30±0.91 5.03±1.05 

 

In Table 6, EG 1 scores significantly higher than EG 2 on all 

dimensions. The mean rating of EG 1 on pleasure is 6.25±0.82, 

which is 28.60% higher compared to EG 2. In terms of 

authenticity, the mean score of EG 1 is 6.48±0.72, which is 

23.66% higher compared to EG 2. In terms of interactivity, EG 1 

has a rating of 6.59±0.61, which is 32.59% higher than EG 2. In 

terms of immersion, the average rating of EG 1 is 6.30±0.91, 

which is 25.24% higher than that of EG 2. It indicates that the 

design effectively improves the user's sense of immersion. 

According to independent sample t-test analysis, EG 1 scores 

significantly higher than EG 2 in the dimensions of pleasure 

(t=3.57, p<0.001), authenticity (t=3.29, p=0.002),  

 

 

 

interactivity (t=4.68, p<0.001), and immersion illusion 

(t=3.41, p<0.001). Moreover, all dimensional differences are 

statistically significant (p<0.01). This further confirms the 

reliability of improving user subjective experience. In 

summary, the virtual environment designed based on MMI can 

significantly enhance the subjective experience of users. 

To further validate the advantages of multimodal design in 

research, it is compared with two mainstream multimodal 

VR/AR methods from recent years: tactile systems based on 

visual gesture and tactile design, and audio systems based on 

visual audio and gesture design. As shown in Table 7, quantitative 

analysis of response time, stability, and error handling is also 

supplemented.  

 

Table 7: Quantitative analysis of different multimodal VR/AR methods 

 

Indicator Multimodal interaction Tactile system Audio system 

Response time (ms) 120.74 185.57 152.43 

System stability (%) 99.9 97.54 98.14 

Error recognition rate (%) ≤0.80 3.23 2.88 

Modal failure switching delay (ms) 50 120 105 

 

As shown in Table 7, this study reduces response time by 

34.94% compared to the tactile system and by 20.79% compared 

to the audio system. This improvement is thanks to the AABB 

collision detection algorithm, which reduces collision judgment 

computation by 40%. In terms of system stability, this study 

improves by 2.36% compared to tactile systems and by 1.76% 

compared to audio systems. This improvement is due to the 

system's robust control and anti-interference design. In terms of 

error recognition rate, the error recognition rate of ≤0.80% in this 

study is only 24.77% of the tactile system and 27.78% of the 

audio system. The core reason is that the MUFD algorithm solves 

the problem of modal data conflict through fuzzy intention 

credibility allocation. In terms of error handling, this study's 

“modal failure redundancy switching” function only requires a 

delay of 50 ms, which is much faster than the tactile system's 120 

ms and the audio system's 105 ms. This feature allows it to avoid 

operational delays caused by tactile sensor failures in surgical VR. 

To clarify the necessity of the MUFD algorithm, ablation 

experiments are designed to compare MUFD with two 

mainstream benchmark fusion techniques: simple weighted sum 

fusion and rule-based fusion. The ablation experiments are shown 

in Table 8. 

 
Table 8: Ablation experiment 

 

Fusion technique 
Intent recognition 

accuracy (%) 

Error 

recognition rate 

(%) 

Accuracy in modal 

conflict scenarios (%) 

Accuracy when 

eye-tracking fails (%) 

Average 

inference time 

(ms) 

Simple weighted 

sum fusion 
82.63 5.87 61.25 75.38 8.2 

Rule-based 

fusion 
86.41 4.32 73.75 80.12 11.5 

MUFD 

algorithm 
92.37 0.78 91.5 89.85 15.7 
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As shown in Table 8, simple weighting and fusion cannot 

cope with fluctuations in modal data quality due to the use of 

fixed weights. This results in an accuracy rate of only 82.63%. 

The MUFD calculates the degree of membership for each mode 

using a Gaussian fuzzy function. It also dynamically adjusts the 

weights, improving the overall accuracy by 9.74% and reducing 

the error recognition rate to 0.78%. Rule-based fusion relies on 

preset logic. When faced with conflicts in eye movement gestures, 

only rigid rules that prioritize gestures can be used for 

decision-making. The accuracy rate of conflict scenarios is only 

73.75%. MUFD quantifies the degree of modal conflict by using 

fuzzy intention credibility distribution CF and comprehensive 

trust allocation m (A), and selects the intention with the highest 

credibility to improve the accuracy of conflict scenarios by 

17.75%. Additionally, when eye movement fails, the accuracy of 

the simple weighted sum and rule-based fusion decreases to 

75.38% and 80.12%, respectively. This is due to their reliance on 

eye movement data or their failure to redistribute weights when 

ignoring eye movement. However, the MUFD's redundancy 

switching mechanism for modal failure still maintains a high 

accuracy of 89.85%. This proves that its robustness in complex 

scenarios is significantly better than that of the benchmark 

method. In summary, the MUFD algorithm performs better in 

intent recognition accuracy, error control, and robustness. This 

verifies its necessity as the core algorithm for multimodal fusion 

in this study. 

To verify the construct validity of immersion assessment, 

Pearson correlation analysis is conducted between the four core 

sub dimensions of the IPQ scale and physiological signals. The 

results of the IPQ scale are shown in Table 9. 

 
Table 9: IPQ scale results 

 

IPQ sub dimension Heart rate (beats/minute) Brain wave activity level (μ V) 

Perceived reality r=0.623** r=0.715** 

Emotional response r=0.587** r=0.692** 

Sense of control r=0.415* r=0.483** 

Participation rate r=0.591** r=0.678** 

Note: r is the Pearson correlation coefficient, ** p<0.01, p<0.05. 

 

As shown in Table 9, the correlation between perceived 

reality and EEG activity is the strongest (r=0.715, p<0.01). This 

indicates that the more realistic a virtual scene appears to a user, 

the more active their EEG becomes. This finding aligns with the 

theoretical logic of high immersion being accompanied by high 

cognitive participation. The correlation between perceived control 

and heart rate is r=0.415 (p<0.05), indicating that an increase in 

users' sense of control over the interaction process moderately 

increases physiological arousal. However, the correlation is 

weaker than that of other dimensions. This may be because 

perceived control depends more on interaction fluency than 

emotional arousal. All subdimensions are significantly and 

positively correlated with physiological signals (p<0.05). This 

indicates that the subjective evaluation results of the IPQ scale are 

consistent with objective physiological indicators. Thus, 

subjective scoring bias is eliminated, and the effectiveness of the 

immersion assessment is verified in this study. 

4 Discussion 

With the rapid development of VR and AR technology, the 

application of 3D virtual scenes in entertainment, education, 

healthcare, engineering, and other fields is becoming increasingly 

widespread. To enhance users' immersion in virtual scenes, a 

multimodal interaction system was designed that integrates vision, 

gestures, and eye tracking for engine-driven 3D scenes. Its 

performance advantages were verified through experiments. 

The results showed that the lowest accuracy rates for 

studying the interactions of visual, gestural, and eye movements 

reached 91.42%, 92.83%, and 92.75%, respectively. These rates 

achieved precise capture of user intent. However, existing 

research not reported the accuracy of specific interactions in 

multimodal designs. For example, Al Ansi et al. [11] and Sereno 

et al. [12] described the functionality of their “visual+audio” and 

“speech+touch+eye movement” systems, respectively, but did 

not improve accuracy. The “visual+gesture+speech” system 

proposed by Zhang Y et al. [16] only mentioned the improvement 

of intent recognition accuracy, but does not provide specific 

numerical values. Moreover, in this study, the fusion of intent 

capture algorithm and MUFD algorithm stabilized the accuracy 

of the three core interaction modes at over 91%. This result 

provided a quantitative basis for the accuracy benchmark of 

multimodal interaction and solved the problem of being unable to 

verify interaction reliability due to a lack of accuracy evaluation, 

as described by Sereno et al. [12]. It was especially suitable for 

scenarios requiring precise recognition of instrument operation 

intentions in surgical VR. 

The disconnect between multimodal design and underlying 

optimization is prevalent in existing research. For example, the 

multimodal system proposed by Sharma K et al. [14] did not 

involve the optimization of interaction delay, while Li J et al. only 

optimized the tactile delay without integrating multimodal data 

fusion technology. To deal with those issues, this study 

achieved a response time of 120.74ms using the AABB collision 

detection algorithm and the MUFD algorithm with real-time data 

fusion mechanism. The multimodal system with tactile feedback 

reduced by 34.94%, while the multimodal system with audio 

reduced by 20.79%. At the same time, the system stability 

reached 99.90%, which was significantly higher than the 

qualitative high-fidelity description of traditional virtual 

interaction and Lungu AJ et al. [9] surgical simulation system. 

This performance leap directly solved the core pain points of 

operational deviation and lag affecting immersion caused by 
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delays in safety critical scenarios. This was because the previous 

model focused on weight distribution for clear intentions or 

single-mode data transmission. It did not design solutions for the 

fuzzy intentions commonly seen in user operations. The MUFD 

algorithm used a Gaussian ambiguity function to construct a 

fuzzy set, which could quantitatively characterize uncertain data 

from vision, gestures, eye movements, and other modes. This 

avoided the interference of deviation from a single mode of data 

on the overall judgment. 

The results also showed that, in the HVHA scenario, heart 

rate was 90.57±10.64 beats per minute, while brainwave activity 

level was 12.55±3.58 μV. These values increased by 11.20% and 

27.88%, respectively, compared to those of the traditional 

interaction group. The reason for the significant improvement in 

specific physiological indicators is that traditional virtual 

interactions lack tactile and kinesthetic feedback, leading to a 

disconnect in user perception. This study utilizes the force tactile 

feedback and arm motion synchronization mechanisms of smart 

gloves to give users a realistic tactile and kinaesthetic experience 

of touch and motion synchronization in virtual scenes. At the 

same time, by combining YOLOv7 target positioning, eye 

tracking and other visual technologies, a multi sensory closed 

loop of “sight touch motion eye” has been constructed. This high 

perceived reality makes it easier for users to immerse themselves 

in virtual scenes, thereby triggering stronger physiological arousal. 

The improvement of physiological indicators is directly related to 

the smoothness of interaction. A delay or lag in the system will 

interrupt the user's immersive state and weaken their 

physiological response. This study used the AABB collision 

detection algorithm and modal failure redundancy switching to 

reduce the response time to 120.74 ms and improve system 

stability to 99.9%. The smooth and seamless interaction 

experience avoids immersive interruptions, allowing users to 

maintain high levels of immersion and physiological indicators in 

HVHA scenarios. 

In summary, the performance differences between this study 

and existing systems are primarily due to technological 

breakthroughs in multi-device deep integration, a multi-modal 

real-time fusion mechanism, and underlying interaction 

optimization. However, although this study has achieved 

significant improvements to existing systems, there are still 

certain limitations. For example, the adaptability of different 

hardware devices has not been considered. Additionally, the 

sample size of users is small and does not cover different age 

groups or levels of operating experience. This makes it difficult to 

verify the system's ability to adapt to personalized needs. Future 

research should focus on improving system compatibility and 

expanding support for multiple hardware devices. Additionally, 

the system's personalized adaptation capabilities should be 

verified and optimized through large-scale user testing. In 

addition, more advanced multimodal fusion algorithms and 

interaction technologies will be further explored to continuously 

enhance users' immersion and interaction experience in virtual 

scenes. 

 

5  Conclusion 

The study designed MMI and immersion enhancement 

strategies around engine-driven three-dimensional virtual scenes. 

The results showed a minimum accuracy of 91.42% for visual 

interactions, and 92.83% and 92.75% for gesture and 

eye-movement interactions, respectively. In terms of system 

performance, the response time of the studied method was only 

120.74ms, which was significantly less than the conventional 

method. The fluency score was scored 4.8/5, which showed a 

very high fluency. Compared with existing multimodal VR/AR 

methods, the core improvements of this study were reflected in 

three aspects: Firstly, adaptive robust control fusion solved the 

problem of the weak anti-interference ability of existing systems, 

making them adaptable to safety-critical scenarios, such as 

surgery and aerospace. Secondly, the combination of the AABB 

and MUFD algorithms achieved the collaborative optimization of 

response time and error recognition rate. Performance indicators 

improved by 20%-35% compared to those of mainstream 

systems. The third objective was to innovate the “modal failure 

redundancy switching” mechanism, which controlled fault 

response delays within 50 ms and avoided the risk of interrupting 

interactions in safety scenarios. In the results of the user 

questionnaire, the research methodology scored 6.25±0.82, 

6.48±0.72, 6.59±0.61, and 6.30±0.91 for pleasure, authenticity, 

interactivity, and immersion, respectively. All of them showed a 

high level of user satisfaction. In summary, the study significantly 

improves user interaction and immersion through engine-driven 

MMI design of three-dimensional virtual scenes. However, the 

study do not address the effects of different devices and individual 

user differences on the experience. Future research can further 

optimize the interaction and improve the adaptability to various 

devices. Moreover, the study will explore the individual needs of 

different user groups to further enhance the user experience of 

virtual scenes. 
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