https://doi.org/10.31449/inf.v49i36.11887 Informatica 49 (2025) 185-204 185

An Engine-Driven Multi-modal Interaction Framework for Enhancing
User Immersion in 3D Virtual Scenes via Smart Gloves and MUFD
Algorithms

Xia Wang
School of Information and Intelligence Transportation, Fujian Chuanzheng Communications College, Fuzhou, 350007, China
E-mail: xiawangx@outlook.com

Keywords: engine-driven, three-dimensional virtual scenes, multi-modal interaction, user experience, augmented reality
Received: September 17, 2025

With the rapid development of virtual reality (VR), augmented reality (AR), and other technologies, the
interaction experience of three-dimensional virtual scenes has become a hot spot of research. To enhance user
immersion, this research proposes an engine-driven multi-modal interaction design for three-dimensional
virtual scenes. An interdisciplinary experiment involving 20 volunteers compared multimodal interaction
(MMI) and traditional virtual interaction. The interaction process is optimized by combining an
intention-capture algorithm, intelligent gloves, a multimodal fuzzy data understanding (MUFD) algorithm,
and an axis-aligned bounding box (AABB) collision detection algorithm. The design utilizes an intent capture
algorithm for accurately sensing the user's experimental intent, including multiple sources of information such
as vision, gesture, and eye tracking. Moreover, a smart glove is used to combine the set of intent probabilities
from different channels to more accurately capture the ambiguous or incomplete intent of the user. The results
showed that the minimum accuracy for visual interaction was 91.42%. The minimum accuracy for gesture
interaction and eye movement interaction was 92.83% and 92.75%, respectively. Compared to traditional
virtual interaction, this research method reduced response time by 41.85% and achieved system stability of
99.90%. In terms of immersion, the scores for perceived realism and emotional response were 6.25+1.70 and
5.81+1.67, respectively. Based on the Igroup Presence Questionnaire (IPQ) assessment, the multimodal
interaction group showed a 37.96% increase in perceived reality score and a 38.33% increase in emotional
response score compared to the traditional group. The study approach received minimal user experience
scores of 4.05, 4.26, and 4.84 for naturalness, simplicity of use, and ease of starting, respectively.
Furthermore, the system response time took only 120.74ms. In summary, the engine-driven multi-modal
interaction design and user immersion enhancement strategy for three-dimensional virtual scenes proposed in
this study can significantly enhance users' VR experience. Especially in complex tasks and demanding
application scenarios, it can effectively enhance user engagement and satisfaction.

Povzetek: Studija predstavi vecmodalno interakcijo za 3D VR prizore (vid + geste + sledenje ocem + pametna
rokavica), ki v primerjavi s klasicno interakcijo skrajsa odzivni cas za ~42 %, ohrani 99,9 % stabilnost ter
poveca obcutek prisotnosti in custveni odziv za ~38 %.

1 Introduction simultaneously, becoming a core bottleneck that restricts

their application in safety critical scenarios. Traditional

Virtual reality (VR) and augmented reality (AR) technology
have advanced quickly in recent years. This has led to the
increasing application of three-dimensional virtual scenes in
a variety of fields, such as gaming, education, healthcare,
architecture, and so on. Especially in safety critical fields
such as surgery and aerospace, VR/AR technology requires
extremely high real-time, stability, and accuracy of
interaction. For example, VR training for spinal surgery
requires an interaction delay of 150 ms or less to ensure
operational synchronization. Meanwhile, VR simulation for
aircraft piloting requires system stability of at least 99.5% to
prevent training interruptions. Traditional multimodal
systems often struggle to meet these requirements

interaction methods mainly focus on the visual and auditory
levels, while modern VR is gradually integrating tactile,
kinesthetic, and other perceptual modalities, forming the
trend of multi-modal interaction (MMI) [1]. However,
traditional single interaction modes are often difficult to
meet users' needs for deep immersion experiences. The
limitations of these interaction modes have become the
technical bottleneck that restricts the enhancement of VR
immersion [2]. Therefore, it is particularly important to
research and develop MMI technology. MMI can not only
provide users with richer sensory stimulation, but also by
synthesizing multiple perceptual channels. This can enhance
the immersion of the virtual scene, thus effectively
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enhancing the user's sense of participation and immersion.
Unity3D, as a mature virtual engine software, is widely used
in game development and architectural digitization [3]. It
provides the technological basis for building high-fidelity
three-dimensional scenes by virtue of its powerful real-time
rendering capability, physical simulation and cross-platform
support [4-5]. Currently, VR immersive user experience
mostly relies on head-mounted devices and controllers or
bare hands to interact with the virtual world. However, this
type of interaction mainly relies on eye perception and lacks
a sense of manipulation and realism [6]. In this context,
smart gloves, as a convenient and flexible interaction device,
provide new possibilities for MMI in virtual scenes. Smart
gloves are able to make up for the shortcomings of
traditional interaction methods through tactile and
kinesthetic feedback. Therefore, the study innovatively
proposes a MMI design that combines vision, gesture, and
eye tracking, aiming to enhance the user's immersion. The
study captures the wuser's intention and interacts in
three-dimensional virtual scenes with a view to enhancing
the coupling relationship between the user's psychological
and sensory immersion.

2 Related works

As information technology continues to advance, VR and
AR are now widely utilized in a variety of industries.
Experts and academics in the domains of healthcare,
education, and cultural heritage have given them a lot of
attention. For example, to investigate the use of VR in spine
medicine, Dargan S et al. conducted a thorough assessment
of its application in surgery, counseling, education, and
rehabilitation. The outcomes revealed that the application of
VR in spine medicine gradually accelerated with the support
of three-dimensional medical imaging, holograms, wearable
sensors, 5G technology, artificial intelligence (Al), and
head-mounted displays [7]. To increase the accessibility and
pleasure potential for users of VR, AR, and the metaverse,
Dudley J. et al. suggested the idea of inclusive immersion.
The results showed that although technologies for VR and
AR headsets were progressively becoming affordable and
effective, these technologies had not yet achieved
widespread user adoption. In particular, the needs of a wider
and diverse user community needed to be considered [8]. To
increase the realism, immersion, and overall experience of
surgical simulation, Lungu A. J. et al. suggested utilizing
VR, AR, and mixed reality (MR) technology. The results
showed that the key components of a VR surgical simulator
were visual and haptic feedback [9]. Duarte M L et al.
investigated if these cutting-edge technologies might
supplement or replace conventional anatomy teaching
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techniques in order to evaluate the efficacy of VR and AR in
anatomy education. The results demonstrated the significant
advantages of VR and AR in improving student engagement,
learning efficiency, and knowledge retention [10].

In the realm of VR and AR, MMI design is essential.
Al-Ansi AM et al. proposed a system design based on MMI
techniques in order to enhance visitor experience through
visual and audio interaction interfaces. The outcomes
showed that the interactive system was effective in evoking
visitors' natural interaction with the cultural heritage
environment and facilitating a deeper understanding of the
cultural content [11]. To increase the effectiveness of
human-machine and human-robot interactions, Sereno M. et
al. suggested an MMI technique based on the MQTT
protocol. The findings demonstrated that the design
accommodated a variety of interaction techniques, including
touch, speech, and gaze tracking. Moreover, it could
communicate effectively between multiple devices such as
computers, smartphones, tablets, etc [12]. Weitz K et al.
suggested a user MMI method based on a basic voice
recognition system to investigate the possibilities of virtual
agents in explainable artificial intelligence (XAl) interface
design. According to the findings, including virtual agents
might boost users' confidence in the XAl system [13].
Behavioral  trajectories, learning  outcomes, task
performance, teacher assistance, student engagement, and
feedback are some of the six primary objectives that Sharma
K et al. examined in an attempt to investigate the use of
multi-modal technology in education. The findings
demonstrated the great potential of multi-modal technology
to record and enhance the learning process [14].

Wang H et al. conducted a large-sample experiment to
verify the advantages of a multimodal VR anatomy teaching
system in terms of the long-term knowledge retention rate.
The aim was to study how VR teaching improves efficiency.
The results showed that students who used visual gesture
eye movement multimodal interaction had a 28% increase
in knowledge retention rate after 3 months compared to
traditional VR teaching [15]. Zhang Y et al. proposed a
multimodal interaction fusion model based on attention
mechanism to improve interaction accuracy. The model
optimizes by dynamically adjusting the weights of visual,
gesture, and speech modalities. The results showed that this
method improved the accuracy of intent recognition in
complex scenes [16]. In order to improve interaction
sensitivity, Li J et al. designed a real-time interaction
optimization scheme based on 5G edge computing for the
problem of tactile feedback delay of smart gloves. The
results showed that this method reduced the tactile feedback
delay to less than 50ms [17]. The systematic comparison of
literature review is shown in Table 1.

Table 1: Systematic comparison of literature review

Research Immersion rating

Domains applied

Limitations

Dargan S et al /

Healthcare (Spine medicine)

Lacks quantitative immersion assessment; no
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[71. multi-modal fuzzy intent processing
Dudley Jetal / VR/AR/Metaverse (inclusive No clear modality definition; fails to address
[8]. design) safety-critical scenario adaptation
LunguAlJetal o . ) No numerical immersion score; does not integrate intent
High fidelity Healthcare (surgical simulation) . .
[9]. fusion algorithms
Duarte M L et Improved i i Single-modeality dependent; no quantitative immersion
Education (anatomy teaching) .
al [10]. engagement evaluation
Al-AnsiAMet  Enhanced natural . Lacks multi-modal data fusion; ignores environmental
. . Cultural heritage . .
al [11]. interaction interference resistance
HMI/HRI . . L.
Sereno M etal . No immersion assessment; does not optimize system
/ (Human-machine/robot ]
[12]. . . real-time performance
interaction)
Weitz K et al . . . No multi-modal intent integration; limited to trust
Improved trust XAl interaction design
[13]. enhancement only
SharmaKetal . . Vague modality description; no practical scenario
/ Education (learning process) L
[14]. validation
Wang H et al / Education (VR anatomy No immersion quantification; fails to verify adaptability
[15]. teaching) in complex scenarios
Zhang Y etal Ignores fuzzy intent handling; no immersion
/ General MMI
[16]. performance assessment
. L Only optimizes haptic delay; no multi-modal data fusion
LiJetal [17]. / MMI hardware optimization

integration

As evidenced by the above comparison and existing
research, there are still many shortcomings in existing
studies. For example, the research of Zhang et al. and Wang
et al. only focuses on multimodal combinations or
single-modal optimizations. They failed to address users'
vague or incomplete intentions. These studies do not use
fuzzy reasoning to fuse uncertain data from different
modalities, resulting in poor system adaptability when user
intent expression is unclear. Almost all studies only provide
qualitative descriptions of immersion, lacking numerical
scores or standardized scales for evaluation. This makes it
impossible to conduct cross-study comparisons or
performance benchmarking. Moreover, most of the research
is limited to a single noncritical area without verifying its
effectiveness in safety-critical areas requiring high real-time
performance and low error tolerance. For example, although
Li J et al. optimizes tactile feedback delay, they did not test
the design in surgical VR scenarios where delay control is
crucial. In addition, there are few studies that combine
multimodal design with underlying interaction optimization
techniques. Unlike this study, which uses multimodal
interaction (MMI) and axis-aligned bounding boxes
(AABBs) for collision detection to reduce computational
load, existing research, such as that of Sereno et al. and
Sharma et al., rarely considers such optimization. This
results in an insufficiently smooth and stable system in
complex virtual scenes. Therefore, the proposed
engine-driven MMI design for three-dimensional virtual

scenes, which combines multiple interaction modes and
immersion enhancement strategies, can make up for the
shortcomings of existing research. This further promotes the
application of VR in a wider range of fields, meets the needs
of diverse users, and enhances their interaction experience
and immersion.

3 Engine-driven design for MMI

The study is based on the Unity3D virtual engine and
combines glove sensors to capture intent. It uses a
hierarchical enclosing box algorithm to determine if objects
are colliding, thereby optimizing interaction experiences.
Meanwhile, the smart glove is adopted as the core
interaction interface, and the MMI method of vision, gesture,
and eye tracking is designed. Moreover, the fuzzy reasoning
and multi-modal understanding of fuzzy data (MUFD)
algorithms are used to integrate the user's final intention and
enhance the user's immersion.

3.1 Intent capture and interaction optimization in
engine-driven three-dimensional virtual scenes
Unity3D, a modern game engine, is not only equipped with
real-time graphic rendering and physical simulation, but also
supports access to deep learning modules, semantic analysis
plug-ins, and external interaction devices. This provides a
technical basis for intent modeling and optimization [18-19].
To further enhance the robustness and adaptability of



188  Informatica 49 (2025) 185-204

multimodal interaction, the research introduces adaptive
control and robust control principles to construct cross
domain technology links. The study first adopts the model
reference adaptive strategy in adaptive control to monitor
the input signal-to-noise ratio and data integrity of visual,
gesture, and eye movement modalities in real time. When
the SNR of eye movement tracking drops below 30 dB due
to a change in ambient light intensity, the system
automatically adjusts the modal weight from 0.3 to 0.1.
Meanwhile, it increases the weights of the gesture and visual
modes to prevent interruption of interactions caused by a
failure of a single mode. In addition, the research also
integrates the robust control H oo control theory. By
constructing a noise suppression module, it successfully
controls the interference from sensor noise and data
transmission delays on intent recognition to within 5%. This

ensures the system's stable operation in complex
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electromagnetic environments such as aerospace VR
simulators, while also being suitable for scenarios involving
high-frequency equipment interference in surgical VR
procedures. This design fills the technical gap of “heavy
fusion, light anti-interference” in existing multimodal
systems [20-21]. Through the behavioral analysis scripts
and state machine models integrated in the engine, it is
possible to achieve in-depth understanding and prediction of
the user's operation paths, gaze points, and behavioral
sequences, thus promoting the construction of a closed-loop
interaction “from recognition to response” [22]. Therefore,
in order to achieve interaction optimization, this study
adopts an engine-driven three-dimensional virtual scenes
intent capture and interaction optimization strategy. Engine
driven intent capture and interaction optimization overall
architecture is shown in Figure 1.
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Figure 1: Engine driven intent capture and interaction optimization overall architecture

In Figure 1, in this overall architectural design, the user
wears a Leap Motion sensing device to capture hand
movements. The Unity3D virtual engine builds the virtual
scene on the computer and controls the operation of the
virtual hand. When the virtual hand makes contact with a
virtual object, the system detects the contact. Moreover, the
contact information is transmitted to the force haptic device
worn on the slave user through the serial port. The device
controls the spring and pressure plate through the servo to
simulate the feeling of a finger touching an object, thus
enabling the user at the slave end to perceive the presence of
the virtual object. Additionally, sensors on the active user's
arm collect real-time motion data and transmit it to the
exoskeleton device on the follower's arm. This guides the
arm movements and synchronizes them with the active
user's movements. Through this architectural design, user
intent capture and interaction optimization can be effectively
achieved. The Leap Motion intent capture process is shown
in Figure 2.

Leap Motion

Video frame
reading
Output intention
No
Detected hands? User intent
recognition
Yes £
Fingertip analysis Position and velocity
tracking recognition

Figure 2: Leap motion intent capture process

In Figure 2, the process first utilizes Leap Motion to track
the movements of the user's hand and fingers, and transmits
the data to the computer side for video frame reading. The
system can determine whether the video frame contains
hand information. If the hand is detected, fingertip analysis
and tracking is performed.
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If the hand is not detected, the system will re-read the video
frame. The technology analyzes and tracks the user's
fingertips before determining the locations and speeds of the
fingers to detect the user's motions. The system understands
the user's objectives based on this information. In virtual
interaction, it is crucial to determine whether virtual objects
collide with each other. If efficient collision detection is not
performed, it can lead to excessive computation, which will
affect the smoothness of the screen [23]. Therefore, to

(a) Bounding sphere  (b) OBB
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improve the efficiency of collision detection and achieve
interaction optimization, the study adopts a hierarchical
enveloping box algorithm to determine whether objects
collide or not. The algorithm works by wrapping a virtual
object with a layer of slightly larger geometric shape boxes.
Then, based on the intersection of these boxes, it can
determine whether the object has collided or not [24]. The
hierarchical enclosing box algorithm is displayed in Figure

@,

(c) AABB  (d) K-DOP

Figure 3: Hierarchical bounding box algorithm

In Figure 3, the hierarchical bounding box algorithm has
several common forms of bounding balls, oriented bounding box
(OBB), AABB, and K-discrete orientation polytopes (K-DOP)
bounding boxes [25]. Among them, the rotation of the enclosing
sphere does not vary with the velocity of the object, and thus is
not applicable to collision detection of deformed objects [26].
However, OBB and K-DOP have slower and more complex
rotation following, and thus are more computationally intensive
[27]. In contrast, AABB has lower computational complexity and
is more suitable for interaction design in VVR. The wrapping box
of AABB is a polyhedron that can be constructed by describing
multiple scalars. The computational process is simpler and the
wrapped objects have smaller gaps [28]. Therefore, the study
chooses AABB for collision determination, thus achieving
efficient collision detection and interaction optimization design
while keeping the computational effort low. Equation (1) displays
AABB's mathematical expression.

Rusen = {(% Y. 2)|a, SX<a,,.b,, <y<b

max ! ~min =

<7<Cp, )

max ? Cmin

@

In Equation (1), R, denotes the enclosing box of
AABB. (x, Y, z) denotes the coordinate position of a point in

three-dimensional space. a.,, and &, denote the minimum
b

max !

and maximum values inthe x direction. Similarly, b

min ?
C..,»and c ., denote the minimum and maximum values in the
y and z directions, respectively.

2.2 Smart glove-based interaction with vision,

gesture, and eye tracking

After achieving accurate recognition of user intent and
interaction optimization at the engine layer, how to naturally
integrate these multiple input modalities into the user's operating
behavior becomes the key to further enhance the sense of
immersion. Currently, visual recognition, gesture interaction, and
eye tracking are considered as three key perception channels,

which are building a new multi-modal human-computer
interaction paradigm [29]. This system incorporates smart
glove-based fusion interaction technology as a core component of
the MMI system. This technology is highly compatible with
natural movements and can simultaneously capture haptic,
electromyographic, and motion information [30]. The smart
gloves can accurately capture the degree of bending, pressure
changes, and inertial movement trajectories of the finger joints
through the embedded sensor network. This can restore
high-fidelity hand animations in three-dimensional engine
scenes for human-like motion actuation [31]. Meanwhile,
combined with the depth camera and Al image recognition
algorithm, the system can recognize the visual features of the
user's environment in real time, such as the scene structure, object
boundaries, and surface texture, to help quickly lock the
interaction target. The YOLOvV7 algorithm is chosen over
YOLOvV5 and other lightweight models for the visual
channel because it strikes a balance between real-time
performance, detection accuracy, and computational resource
consumption requirements in VR scenes. VR interaction
requires precise positioning of virtual objects. The YOLOv7
algorithm is more accurate than the YOLOV5 algorithm,
especially when detecting small virtual targets. The higher
accuracy advantage can avoid misjudgment of interaction
intention caused by visual positioning deviation. Although
YOLOV7 has slightly higher parameter count than YOLOV5,
it optimizes feature fusion efficiency through the ELAN
structure. In this experiment, YOLOV7 achieved an inference
speed of 85 FPS for 1280X 720 virtual scene images in the
NVIDIA GeForce RTX 3090 hardware environment. This
result is only 7.6% lower than YOLOV5 and far higher than
the 30 FPS minimum threshold required for VR interaction.
If a lighter YOLO Nano structure is chosen, although the
inference speed can reach 120 FPS, the small object
detection recall rate cannot meet the high-precision
interaction requirements. In addition, YOLOv7 supports
dynamic batch inference, which automatically adjusts the
size of inference batches based on the complexity of virtual
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scenes. When the number of objects in the scene is less than
10, the inference speed increases to 98 FPS. Even when the
number of objects exceeds 30, it can maintain a frame rate of
65 FPS or higher. This avoids the sudden drop-in frame rate
that traditional fixed batch models experience in complex
VR scenes. It also ensures synchronized visual, gesture, and
eye movement multimodal interaction. This prevents
immersion interruption caused by visual delay. Eye tracking

visual channel Eye tracking channel

X. Wang

technology, as an important dimension of sight orientation, can
help the system recognize the user's current focus of attention,
thus enhancing the precision of operation and the naturalness of
interaction. Therefore, this study uses smart gloves as the core
interaction interface to realize visual, gesture, and eye tracking
interaction design. The framework of the smart glove-based
visual, gesture, and eye tracking interaction system is shown in
Figure 4.

Gesture channel Data flow

| | | .
| | yoLov7 | || voLov? Eye 1| 9 |
| | tracker | 1
| : — || Leap Motion |,
[ Target object | : IC‘ Three mode
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I »| Membership | I Calculate
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| MUFD Normalization |—>| User intent | : Output comprehensive

user intent

Figure 4: Framework for visual, gesture, and eye tracking interaction system based on smart gloves

In Figure 4, the system framework integrates three input
modalities: vision, gesture, and eye tracking. The visual channel
performs visual target object capture through the you only look
once version 7 (YOLOV7) algorithm. Gesture is realized through
smart gloves combined with Leap Motion for intent capture and
tracking. Eye tracking is combined with eye tracking for focus
capture. The target data collected through these three modalities
are synthesized using fuzzy inference based and MUFD
algorithms and the fuzzy set affiliation is calculated. After
normalizing the affiliation degree, combined with the basic trust
allocation function, the integrated user intent is finally obtained.
The intention acquisition process of vision and eye tracking is
shown in Figure 5.

Data

In Figure 5, in this process, the current environment
information is first captured by the camera and the YOLOv7
algorithm is utilized for object localization. In the visual channel,
after initializing the YOLOV7 model, the system identifies the
three-dimensional set of current objects. It also calculates the
distance change of the same object in this frame and the next
frame to derive the probability of intent under the visual channel
and normalize it. Under eye tracking, after initializing the
YOLOV7 model, the coordinates of the user's line-of-sight focus
are obtained in conjunction with the eye-tracker. The image
cropping region is determined based on the line-of-sight focus,
and the image of the region is input into the YOLOv7 model. The
confidence level of the object is obtained and this is used as the
initial intent probability. Next, the system will normalize the
confidence level and output the final set of intent probabilities.
Equation (2) displays the formula for calculating distance change.
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Figure 5 The intention acquisition process of vision and eye tracking
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D, =J(x(t+1), ~ x(t) ) + (y(t+2), - y(t))' + (2(t+1), - 2(t),)' @

In Equation (2), D, denotes the change in distance
between time steps t and t+1 for object i. x(t)., y(t),,

and z(t)i denote the three-dimensional coordinates of object

i atthe moment of t, respectively. The formula for calculating
the probability of visual intent is shown in Equation (3).

V, = D €)

X v ()] +2(1),
In Equation (3), V; denotes the visual intention probability,
i.e., the motion intention of object i between time steps t and

t+1. The focus position formula for eye tracking is shown in
Equation (4).

Pfocus = (Xfocus ! yfocus ) (4)

In Equation (4), P, denotes the focus position of the

ocus

eye tracking system. X, and Y. denote the position of

focus

the user's visual focus on the two-dimensional plane under eye
tracking, respectively [32]. The minimum and maximum visual
field coordinates are shown in Equation (5).

Xmin = Xoeus — ?' Ymin = ¥ focus _?

©)
W H
Xmax = Xfocus + ?’ Ymax = Yioeus T ?

In Equation (5), W and H denote the width and height
of the field of view, respectively. The confidence expression for
the object category is shown in Equation (6).

C)i =(C|’S|)(6)

In Equation (6), O, denotes the confidence level of the

object category i . C, denotes the confidence value of the

object. S; denotes the categorization score of the object. The
mathematical expression for the set of intentional probabilities is
shown in Equation (7).
S
P= TIS ™
i=1%i

In Equation (7), P, denotes the probability of intent for

each object category i . n denotes the number of object
categories. The flow of intention understanding based on MUFD
algorithm is shown in Figure 6.

MUFD
ST T T = T T T T T
| |
|
Vision : = [
|
|
| s
OITLipce X —»: Visual Fuzzy  Blurre ! (" Trustallocation Output
Input Gesture | setof  dsetof function fuzzy intent
blur set |
: hands eyes |
|
I |
Eye | |
movementl |
|

Weight of modal intent

Figure 6: Intention understanding process based on MUFD algorithm

In Figure 6, in this process, multi-modal intent data from
vision, gesture, eye movement, etc. are first input. Then, the fuzzy
set corresponding to each modality is calculated, and the
affiliation degree of each modality is also obtained. Next, the
fuzzy intent trust distribution of each modality is calculated to
obtain the weight of each modal intent. Finally, the final fuzzy
intention of the user is obtained by constructing the trust
distribution function and synthesizing the information of each
modality. The mathematical expression for the set of intention
probabilities is shown in Equation (8).

|« MAG (Vi ) )

In Equation (8), | denotes the final set of user's intentions.

V. . denotes multi-modal input. MAG denotes multi-modal

input

aggregation [33]. The formula for the affiliation degree is shown
in Equation (9).

(-a)
207

u(x)=e * (9
In Equation (9), u; (X;) is the affiliation of the input data

X, . is the center of the fuzzy set of i object. o denotes

the variance of this fuzzy set. The normalization process is shown
in Equation (10).
u (%)

u, (xi ) e
z 1<i<nui (Xi )
The normalization operation by Equation (10) ensures that

the sum of all fuzzy affiliations is 1. The reliability distribution is
shown in Equation (11).

(10)
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CF =u;"(x)(12)
In Equation (11), CF represents the credibility

distribution, which indicates the credibility of each modal
intention. The weighting formula is shown in Equation (12).

w(xi ) = B + A0 (12)
In Equation (12), () denotes the final weight of the
input data X; . @, denotes the initial weights. Aw denotes

the increment adjusted according to the modal trust distribution.
The basic trust distribution function is shown in Equation (13).

m(i)= (X )xu; (x)(13)
Equation (13), m(i) denotes the trust allocation function

for modality i, i.e., the initial trust value for the modality. The
combined trust allocation function is shown in Equation (14).

m(A)=—— 3 []m(i)A=o (14
1-k AA=Al<i<3
In Equation (14), m(A) denotes the integrated trust

allocation function, i.e., the trust allocation after the synthesis of
all modalities. A denotes the set of all modalities. k denotes
the constant used to adjust the overall trust allocation. [ | m(i)
1<i<3
denotes the product operation of the trust allocation function
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m(i) for all modalities. The final fuzzy intent is shown in
Equation (15).
V =maxm(A) (15)

In Equation (15), V represents the final fuzzy intent of the
user. That is, the maximum value is chosen to determine the most
plausible modality to arrive at the final decision or intention of the
system. To further clarify the mathematical logic of the
MUFD algorithm and improve reproducibility, the study first
uses the construction of fuzzy sets based on Gaussian fuzzy
functions. Then, it makes the calculation of the trust
allocation function satisfy the normalization condition

Z m ( i ) =1 The constraint condition

D lo(x ) ()] =1 is set for the basic trust allocation
function to ensure that the weight allocation of trust values in
each modality is reasonable. Finally, in calculating the
comprehensive trust allocation function m(A) the value of

1

[1—Zi<jm(i)-m(j)}
which is used to correct conflict terms in the multimodal
information fusion process. This helps to avoid bias in

judgments caused by contradictions in the data between
modalities. The pseudocode of MUFD is shown in Table 2.

constant k is based on k=

Table 2: MUFD pseudocode

Input:

P_v: Visual intent probability vector

P_g: Gesture intent probability vector

P_e: Eye-tracking intent probability vector

p_i: Mean of fuzzy set for each object

o_i: Std of fuzzy set for each object
Output:

Final_intent: Index of object with highest fused intent probability
/I Step 1: Calculate fuzzy membership degree (Gaussian function)

For each object i:

p v(i) = exp(-(P_v(i) - n_i)*/ (2*c_i?)) // Vision membership
p_g(i) =exp(-(P_g(i) - n_i)*/ 2*c_i?)) // Gesture membership
p_e(i)=exp(-(P_e(i) - p_i*/ (2*c_i?)) // Eye-tracking membership

/I Step 2: Normalize membership degrees (sum = 1)
W v_norm=p v/sum(p v)
H_g norm=p_g/sum(y_g)
p_e norm=p _e/sum(y e)
/I Step 3: Dynamic weight assignment (trust-based)

total max =p v norm.max() + 1 g norm.max() + |._e norm.max()

® v=0.3*(u v _norm.max() / total max) // Vision weight (base=0.3)

o g=04*(u g normmax()/total max) // Gesture weight (base=0.4, primary)

® e=03*(u e normmax() / total_max) // Eye-tracking weight (base=0.3)

/I Step 4: Fuse intent probabilities
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Fused prob(i)=o v*u v norm(i)+ o g*u g norm(i) + @ _e*p e norm(i)

/I Step 5: Determine final intent
Final_intent = argmax(Fused_prob)
Return Final_intent

3 Engine-driven validation of MMI

designs

After building the experimental environment, the study
validates the performance of MMI in three-dimensional virtual
scenes. Moreover, the effect of user's immersion experience is
evaluated.

3.1 Experimental environment setup

The trials employ a high-performance computing platform
and software setup to verify the engine-driven MMI based
design's performance. This ensures that the system is able to
process multi-modal data and optimize the interaction experience
in real-time. The experiments use the Ubuntu 20.04 operating
system with an Intel Core i9-11900K CPU, NVIDIA GeForce
RTX 3090 GPU, and 64GB of RAM. In addition, the virtual
engine used for the experiments is Unity3D, which supports
real-time graphics rendering and physics simulation features. The
deep learning framework is TensorFlow 26 and the
programming language is Python 3.8. To ensure efficient data
processing and interaction response, the experiments set the
learning rate to 0.001 and the batch size to 32. The smart glove,
the Manus Prime |1 data glove, is the core interactive device
used in the experiment. Its core parameters include 16
high-precision inertial measurement units (IMUs) and finger
joint bending sensors. The device adopts USB-C wired
connection with a sampling rate of up to 1000 Hz. The eye
tracking device uses Tobii Pro Spectrum eye tracker. The
device uses the 9-point calibration method with a sampling
rate of 300 Hz to track eye movements, including rapid ones
such as scanning and gaze switching. The tracking range is
+35° for the horizontal viewing angle and +20° for the
vertical viewing angle. It supports a sitting distance of 50-80
cm. In the experiment, the eye tracker is fixed at a distance of
60 cm from the headset and adapted to VR headsets. The
dataset used includes indoor virtual scenes and gesture data.
The datasets used include indoor virtual scenes and gesture data,
which are constructed by Unity3D and the gesture data are
captured by smart gloves and Leap Motion. The experimental
data are pre-processed and divided into training and testing sets in
the ratio of 7:3. The size of the indoor virtual scene dataset is 10
indoor scenes, each containing 8 types of core interactive objects.
A total of 40,000 image frames are collected for each object,
captured from 500 different angles and under varying lighting
conditions. The image resolution is 1280x720 and the format is
RGB-D. It is mainly used for training the YOLOV7 visual object
detection model. The scale of the multimodal gesture interaction
dataset is collected from 20 volunteers using Manus Prime II
smart gloves and Leap Motion Ultra. This includes four core
interactive gestures, including grabbing, releasing, rotating, and
clicking. Each volunteer performs 50 repetitions of each gesture

type, resulting in 4,000 valid samples in total. Each set of samples
contains joint angle data at a sampling rate of 1,000 Hz, along
with corresponding intent labels. Considering that this experiment
involves human subjects, all experimental procedures have been
approved by the ethics review committee and fully comply with
the ethical guidelines for human subject research in the Helsinki
Declaration of the World Medical Association. Table 3 displays
the experimental environment's precise setup.

Table 3: Experimental environment configuration

Environment Configuration
Operating system Ubuntu20.04 LTS

CPU Intel Core i9-11900K
GPU NVIDIA GeForce RTX 3090

Random access memory 64GB

Virtual engine platform Unity3D

Deep learning framework TensorFlow 2.6

CUDA 11.2
Programming language Python 3.8

3.2 Performance validation of MMI in

three-dimensional virtual scenes

To validate the effect of engine-driven MMI based design
on user immersion, the experiment invites 20 volunteers ranging
from 22 to 27 years old with an average age of 24.5 years old. All
participants have not been exposed to VR. Moreover, during the
experiment, the attention span of the volunteers is controlled
within 90 minutes. In the experiment, volunteers are randomly
divided into two groups. 32 VR scenes are used in this
experiment, and these scenes are divided into two scene banks
based on a two-dimensional emotion model of potency-arousal.
Each scene bank contains 16 different scenes. The order of scene
playback is randomly assigned to minimize the interference of
order effects on the experimental results. Before the start of the
experiment, all participants need fill out an informed consent
form to confirm that they are in good mental health and able to
complete the experimental tasks independently. During the
experiment, each volunteer is required to remain in a seated
position, watch the VR scene and perform emotional
self-assessment. To avoid fatigue caused by prolonged viewing,
participants take a 20-minute break after completing part of the
task. The initial sample size for this experiment is set to 20.
Although the sample size is small, the selection criteria are as
follows: 1 Based on the preliminary experimental results, the
coefficient of variation (CV) of the core indicator of the
multimodal interaction system in this study is <15%.
According to the formula calculation, this value meets the
statistical power required to detect differences between two
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groups. 2. Considering the characteristic of dizziness caused
by long-term wearing in VR experiments, a large sample size
may lead to fatigue bias in the subjects. Therefore, priority
should be given to ensuring sample homogeneity to control
errors. 3. Subsequently, the sample size will be expanded to
100 for confirmatory experiments, and the results of this
study can serve as a preliminary empirical basis. Volunteer
recruitment is an open recruitment process conducted
through university research volunteer recruitment platforms
and local technology communities. It uses a voluntary
registration and screening model without offering any
material rewards. It only provides explanations of the
experimental process and feedback on the results. The
inclusion criteria are individuals aged between 18-30 years
old, without visual or auditory impairments, without a history
of motion sickness, and who have not participated in similar
VR experiments. Exclusion criteria include individuals with
a history of mental illness or underlying conditions such as
hypertension or heart disease. Those who experienced
physical discomfort on the day of the experiment are also
excluded. The demographic distribution is a male to female
ratio of 6:4, with an age range of 24.5+1.4. The experiment
uses a completely randomized design. 20 volunteers are
assigned to experimental groups (EGs) 1 and 2 using an
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Excel random number table, with 10 people in each group.
After randomization, baseline balance test is conducted: there
are no significant differences (p>0.05) in gender (y>=0.21,
p=0.646), age (t=0.53, p=0.602), and basic cognitive ability
(t=0.38, p=0.707) between the two groups. This ensures that
the initial conditions of the two groups are consistent and
eliminating the interference of baseline differences on the
experimental results. 32 VR scenes are used in the
experiment. It is divided into two scene libraries, each with
16 scenes, based on valence and arousal. It is not randomly
constructed, but rather based on a validated database.
Pre-experiments are conducted to verify its emotional
valence and arousal effectiveness.

To evaluate the response accuracy of the system under the
three interaction modes of gesture recognition, speech recognition,
and eye tracking, the experiments are conducted to test the visual,
gesture, and eye tracking interactions respectively. The specific
tests are as follows: visual interaction triggers the interaction by
gazing at a specific target or interface element. Gesture
interactions include gestures such as opening the palm of the hand,
making a fist, and sliding. Eye-movement interactions are
triggered by gazing at a target point for 2 s. The MMI accuracy
test results of the volunteers in the two EGs are shown in Figure 7.

Eye movement
interaction

o2 1
L
90 =
=
gg L, HY i =2 I ==
A0l A02 A03 A04 A05 A06 A07 A08 A09 Al0
Volunteer ID
(a) Test results of multimodal interaction accuracy
for Experimental Group 1
100 r Visual Gesture Eye movement
interaction interaction interaction
S 98 ] £l
= — | —
& =
=% 1] |
& | & =
594 | || B
E BRIl
892 = =
£ el
90 | = | E
88 = = I
8

BO1

B02 B03 B04 BO5 B06 BO7 BO

B09 B10

Volunteer ID
(b) Test results of multimodal interaction accuracy

for Experimental Group 2

Figure 7: MMI accuracy test results
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In Figure 7(a), the visual interaction accuracy rates of EG 1
are all above 91%. Among them, the volunteer numbered A03
has the lowest visual interaction accuracy rate, which is also
91.42%. The lowest accuracy rates of gesture interaction and eye
movement interaction are 92.83% and 92.75%, respectively. In
Figure 7(b), the volunteers in EG 2 has the lowest accuracy rates
of 91.58%, 92.97%, and 92.63% for visual, gestural, and
eye-movement interactions, respectively. After independent
sample t-test verification, there is no significant difference in
visual interaction accuracy (t=0.32, p=0.752), gesture
interaction accuracy (t=0.41, p=0.685), and eye movement
interaction accuracy (t=0.28, p=0.782) between the two
groups of volunteers. This indicates that the recognition
accuracy stability of the multimodal interaction design in this
study is not affected by grouping, and the overall accuracy
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level (both >91%) has reliable statistical support. To
summarize, the interaction accuracy of all participants is above
91%. It shows that the engine-driven MMI based design can
achieve high recognition and interaction accuracy in
three-dimensional virtual scenes.

To verify whether MMI is consistent with the user's natural
behavioral patterns, participants will be required to perform the
task 10 times for each interaction mode. After the tasks are
completed, participants will fill out a questionnaire to assess the
naturalness, ease of use, and intuitive operation of each interaction
mode. Scores range from 1 to 5. A score of 1 indicates that it is not
at all natural or easy to use, while a score of 5 indicates that it is
very natural or very easy to use. The results of the naturalness and
ease of use evaluation of MM are shown in Figure 8.

50;
90 0 0 o o O@ 0 G’09 o o
45 @ @ oo )
. X © o ® 0®
Saol ® ©
35F | Naturalness  Usability . Difficulty rating for |
© wing  © nting © getingsired !

0 1 1 1 1 1 1 1 1 1 I
A01 A02 AO03 A04 A05 A06 AO7 A08 A09 A10

Volunteer ID
(a) Naturalness and usability evaluation results of Experimental

Group 1

5.0

45t © 0O

Score

35t o Naturalness

____________ 1
|

Usability

Difficulty rating for

rating rating getting started ,I

0 B01 B02 B03 B04 B05 B06 BO7 B08 B09 B10
Volunteer ID

(b) Naturalness and usability evaluation results of Experimental
Group 2

Figure 8: Assessment results of naturalness and usability of MMI

In Figure 8(a), EG 1 has the lowest naturalness score, ease of
use score, and difficulty of getting started score of 4.05, 4.26, and
4.84, respectively. In Figure 8(b), EG 2 has the lowest naturalness
score, ease of use score, and difficulty of getting started score of
4.12, 4.31, and 4.80, respectively. According to paired sample
t-test analysis, there is no significant difference between the
two groups in terms of naturalness (t=0.57, p=0.573), ease of
use (t=0.48, p=0.635), and difficulty in getting started (t=0.39,

p=0.699) scores, and all scores are > 4.0. Based on the t-test
results (p>0.05), it can be inferred that the naturalness and
ease of use of the multimodal interaction mode in this study
are consistent across samples and are not the result of
individual differences. In summary, the evaluation results of
both EGs show that the MIMI approach has better performance in
terms of naturalness and ease of use. The overall interaction
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experience is more intuitive and conforms to the user's natural
behavioral pattern.

To verify the comprehensive performance of the
engine-driven MMI based design, the study analyzes it in
comparison with the traditional virtual interaction methods. The
study uses a Keysight U2722A power analyzer to measure
energy and resource consumption. The analyzer collects
real-time instantaneous power during System operation,
records data every five minutes, and monitors continuously
for two hours. Then, it calculates the average power
consumption. The Ubuntu system's built-in htop tool
measures resource consumption by calculating CPU usage,
GPU memory usage, and memory usage. The average value
during the experimental period is used as the evaluation
indicator. The difference between energy and resource
consumption is verified through an independent sample t-test
(p<0.05), ensuring that the difference between the two sets of
data is statistically significant. Table 4 compares the
performance of several approaches.

Table 4: Performance comparison of different methods

MM Traditional virtual
Index . .
| interaction
. 120.
Response time/ms 24 207.67
System smoothness 4.8/5 355
. 99.9
System stability/% 0 95.23
Device compatibility High Medium
Energy consumption and
v P Low High
resource use
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In Table 4, the response time of the studied MMI method is
only 120.74ms, which is 41.85% lower than the traditional virtual
interaction method. In terms of system fluency, the fluency score
of the research method is 4.8/5, which is very smooth. In contrast,
the fluency score of the traditional virtual interaction method is
3.5/5, with occasional lagging. The system stability of the
research method is 99.90%. In comparison, the system stability of
the traditional virtual interaction method is only 95.23%. In terms
of device compatibility, the research method has high
compatibility and supports a wide range of devices. In contrast,
the traditional virtual interaction method has low device
compatibility and supports a limited variety of devices. Finally,
the research method performs better in terms of energy and
resource consumption, which is a significant advantage over the
high energy and resource consumption of traditional virtual
interaction methods. Through independent sample t-test
verification, the differences in response time (t=12.63,
p<0.001) and system stability (t=8.92, p<0.001) between
multimodal and traditional virtual interactions in this study
are statistically significant (p<0.001). This proves that the
performance improvement is not a random fluctuation, but
rather an inevitable result of multimodal design and engine
optimization. In summary, the engine-driven MMI based design
outperforms traditional virtual interaction methods in terms of
response time, smoothness, system stability, device compatibility,
and energy efficiency.

To verify the effect of interaction optimization, the study
conducts confounding experiments on the perceptual judgments
of different virtual objects. In the experiment, the virtual objects
comprised four shapes: sphere, cube, cylinder, and pyramid.
\olunteers randomly contacts a virtual object and make
perceptual judgments. A total of 10 virtual object contacts are
made in each experiment. The results of the volunteers' judgment
accuracy in the confusion experiment are shown in Figure 9.
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Figure 9: Confusion experiment judgment accuracy results

In Figure 9(a), the volunteers in EG 1 have judgment
accuracy of 0.99, 0.96, 0.95, and 0.96 for virtual objects such as
sphere, cube, cylinder, and pyramid, respectively. In Figure 9(b),
the judgment accuracy of volunteers in EG 2 for the same virtual

objects are 0.99, 0.97, 0.95, and 0.96, respectively. In summary,
volunteers in both EGs shows high accuracy in the perceptual
judgment of virtual objects, and the difference between the two
groups is small. In summary, the engine-driven MMI design
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based on the engine-driven MMI design realizes the interaction
optimization design with high accuracy.

3.3 Validation of the effect of user immersion
experience

To verify the effect of engine-driven MMI design on user
immersion, the study adopts a standardized scale (Igroup
presence questionnaire (IPQ)) to assess user immersion. The IPQ
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scale mainly evaluates the user's perceived realism, emotional
response, and other dimensions. The higher the score, the stronger
the user's immersion experience. In the experiment, volunteers in
EG 1 are designed by engaging in an engine-driven MMI based
design. Wolunteers in EG 2 uses traditional virtual interaction
methods. The study compares the scores of the two groups on
each dimension of immersion. The results are shown in Figure
10.

@ Experimental Group 2
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Group 1 Group 2 Group 1

Perceived Reality Emotional response

Experimental ' Experimental IE><perimental ' Experimental IExperimentalI Experimental IE)(perimentalI Experimental '
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Group 1 Group 2 Group 1 Group 2
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Figure 10: Comparison of scores in immersion dimensions between two groups

In Figure 10, EG 1 scores 6.25+1.70 on the dimension of
perceived realism, while EG 2 scores 4.53+1.62 on this
dimension. EG 1's score improves by 37.96% compared to EG 2.
In the emotional response dimension, the scores of EG 1 and EG
2 are 5.81+167 and 4.20£1.59, respectively. There is an
improvement of 38.33% in the score of EG 1 as compared to EG
2. In the dimension of sense of control, the scores of EG 1 and EG
2 are 6.04+1.21 and 4.83+1.19, respectively. EG 1 improves by
25.05% compared to EG 2. In terms of participation, the scores of
EG 1 and EG 2 are 6.46+1.83 and 4.61+1.87, respectively. EG 1
improves by 40.13% over EG 2. According to independent
sample t-test analysis, EG 1 scores significantly higher than
EG 2 in four dimensions: perceived reality (t=3.87, p<0.001),
emotional response (t=3.65, p<0.001), sense of control
(t=2.98, p=0.005), and participation (t=4.12, p<0.001). The
differences in all dimensions are statistically significant (p <
0.01), proving that the multimodal interaction design used in
this study reliably improves user immersion and is not due to

differences in the random sample. In summary, the scores of
EG 1 are significantly higher than that of EG 2 in all dimensions.
It shows that the engine-driven MMlI-based design can
significantly enhance the user's immersive experience.

To further validate the immersion effect, the study compares
the scores of participating in an engine-driven MMI based design
and a traditional virtual interaction approach in terms of emotion
evocation using a two-dimensional emotion model of
potency-arousal. The 32 VR scenes used in the experiment are
not randomly constructed, but are designed based on
Russell's Circular Model of Affect (1980) [34]. The efficacy
and arousal are evaluated subjectively using the Self
Assessment Manikin (SAM) scale. In the study, ‘emotional
valence/arousal' is a subjective experiential assessment that
complements objective physiological responses collected
through sensors such as heart rate and brainwaves. The
emotion evocation scores for both groups are shown in Table 5.

Table 5: Emotional induction scores for two groups

Emotional Grou  Mean pleasure Pleasure standard Average awakening Standard deviation of awakening
type p level deviation degree degree
HVHA EG1 6.85 112 7.45 0.98
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EG2 590 125

EG1 540 131
HVLA

EG2 4.75 110

EG1 4.50 120
LVHA

EG2 3.95 1.05

EG1 3.25 115
LVLA

EG2 3.00 113

6.20 112
6.75 1.05
5.80 1.03
6.40 115
5.50 1.00
5.10 125
4.83 1.04

In Table 5, in the high valence, high arousal (HVHA)
scenario, EG 1 outperforms EG 2 by 095 and 1.25 in
pleasantness and arousal, respectively. In the high valence, low
arousal (HVLA) scenario, EG 1 outperforms EG 2 by 0.65 and
0.95. In the low valence, high arousal (LVHA) type, EG 1 is 0.55
higher in pleasantness and 0.90 higher in arousal. In the low
valence, low arousal (LVLA) context, despite the relatively small
difference in mood scores between the two groups, EG 1 still has
a slight advantage in pleasure and arousal. It shows that it can still
play a certain role in mood evocation in a calmer mood state.
Repeated measures analysis of variance (ANOVA) is conducted
on the pleasure and arousal scores of two groups in different
emotional scenarios. The results are showed that in HVHA
scenario (pleasure: F=10.25, p<0.001; awakening degree:
F=14.83, p<0.001), HVLA scenario (pleasure degree: F=6.72,
p=0.012; awakening degree: F=8.35, p=0.006), L\VVHA scenario
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(pleasure degree: F=4.91, p=0.032). In the awakening degree
(F=9.07, p<0.001), the scores of EG 1 are significantly higher
than those of EG 2 (p<0.05). There is no statistically significant
difference between the two groups in the LVLA scenario alone
(pleasure level: F=2.89, p=0.095; awakening degree: F=3.12,
p=0.082). This further proves that the induction effect of this
study design in high arousal emotional scenarios is statistically
significant. In summary, the VR engine-driven MMI-based
design outperforms the traditional two-dimensional video
approach in terms of effectiveness of emotional elicitation. In
particular, it can stimulate participants' immersion and emotional
responses more significantly in high arousal situations.

To validate immersion and emotional responses more
visually, the study compares the physiological responses of the
two EGs in scenarios with different emotional types, as shown in
Figure 11.
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Figure 11: Comparison of physiological responses between two EGs

In Figure 11(a), EG 1 has the strongest physiological
response in the HVHA scenario, with a heart rate of 90.57+10.64
beats/min and brain wave activity of 12.55+3.58 pV. In contrast,
EG 1 has the weakest physiological response in the LVLA
scenario, with a heart rate of 78.64+10.69 beats/min and brain
wave activity of 9.0842.67 pV. In Figure 11(b), EG 2 also has the
strongest physiological response to the HVHA scenario, with a
heart rate of 80.42+12.93 beats per minute, which is 11.20%
lower compared to EG 1. The brainwave activity is 9.05+2.89 uV,
which is 27.88% lower compared to EG 1. In the LVLA scenario,
EG 2 has the lowest physiological response, with a heart rate of
70.62+11.28 beats per minute, which is 10.19% lower than that of
EG 1. The brain wave activity is 5.57+2.09 uV, which is 38.65%
lower than that of EG 1. Through independent sample t-test

verification, it is found that there are statistically significant
differences in heart rate (t=2.76, p=0.010) and brainwave
activity (t=3.94, p<0.001) between the two groups in the
HVHA scenario. In the LVLA scenario, the differences in
heart rate (t=2.15, p=0.038) and brainwave activity (t=4.28,
p<0.001) between the two groups are also statistically
significant. This proves that the multimodal interaction
design in this study has a significant stimulating effect on
users' physiological responses, and this effect is statistically
reliable. In summary, the virtual environment designed based on
MM has significant advantages in enhancing immersion and
emotional response.

To compare the subjective experience of the two EGs, the
study collects subjective feedback from the users through a
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questionnaire to assess the volunteers' perception of the virtual
scene. Each dimension is rated using a 1-7 rating scale, with 1
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indicating very poor and 7 indicating excellent. The findings of
the two EGs are shown in Table 6.

Table 6: Survey results of two Egs

Dimension EG1 EG2
Pleasure 6.25+0.82 4.86+1.25
Authenticity 6.4840.72 5.24+1.11
Interactivity 6.59+0.61 4.97+1.39
Illusion of immersion 6.30+0.91 5.03+£1.05

In Table 6, EG 1 scores significantly higher than EG 2 on all
dimensions. The mean rating of EG 1 on pleasure is 6.25+0.82,
which is 28.60% higher compared to EG 2. In terms of
authenticity, the mean score of EG 1 is 6.48+0.72, which is
23.66% higher compared to EG 2. In terms of interactivity, EG 1
has a rating of 6.5920.61, which is 32.59% higher than EG 2. In
terms of immersion, the average rating of EG 1 is 6.30+0.91,
which is 25.24% higher than that of EG 2. It indicates that the
design effectively improves the user's sense of immersion.
According to independent sample t-test analysis, EG 1 scores
significantly higher than EG 2 in the dimensions of pleasure
(t=3.57, p<0.001), authenticity (t=3.29, p=0.002),

interactivity (t=4.68, p<0.001), and immersion illusion
(t=3.41, p<0.001). Moreover, all dimensional differences are
statistically significant (p<0.01). This further confirms the
reliability of improving user subjective experience. In
summary, the virtual environment designed based on MMI can
significantly enhance the subjective experience of users.

To further validate the advantages of multimodal design in
research, it is compared with two mainstream multimodal
VR/AR methods from recent years: tactile systems based on
visual gesture and tactile design, and audio systems based on
visual audio and gesture design. As shown in Table 7, quantitative
analysis of response time, stability, and error handling is also
supplemented.

Table 7: Quantitative analysis of different multimodal VR/AR methods

Indicator
Response time (ms)
System stability (%)
Error recognition rate (%)
Modal failure switching delay (ms)

Multimodal interaction

Tactile system Audio system

120.74 185.57 152.43

99.9 97.54 98.14
<0.80 323 2.88
50 120 105

As shown in Table 7, this study reduces response time by
34.94% compared to the tactile system and by 20.79% compared
to the audio system. This improvement is thanks to the AABB
collision detection algorithm, which reduces collision judgment
computation by 40%. In terms of system stability, this study
improves by 2.36% compared to tactile systems and by 1.76%
compared to audio systems. This improvement is due to the
system'’s robust control and anti-interference design. In terms of
error recognition rate, the error recognition rate of <0.80% in this
study is only 24.77% of the tactile system and 27.78% of the
audio system. The core reason is that the MUFD algorithm solves

the problem of modal data conflict through fuzzy intention
credibility allocation. In terms of error handling, this study's
“modal failure redundancy switching” function only requires a
delay of 50 ms, which is much faster than the tactile system's 120
ms and the audio system’s 105 ms. This feature allows it to avoid
operational delays caused by tactile sensor failures in surgical VR.

To clarify the necessity of the MUFD algorithm, ablation
experiments are designed to compare MUFD with two
mainstream benchmark fusion techniques: simple weighted sum
fusion and rule-based fusion. The ablation experiments are shown
in Table 8.

Table 8: Ablation experiment

. Error . Average
. . Intent recognition . Accuracy in modal Accuracy when . ;
Fusion technique recognition rate . . A inference time
accuracy (%) %) conflict scenarios (%) eye-tracking fails (%) (ms)
Simple weighted 8263 587 61.25 7538 82
sum fusion
Rule-based 86.41 432 7375 80.12 115
fusion
MUFD 9237 0.78 aL5 8985 157

algorithm
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As shown in Table 8, simple weighting and fusion cannot
cope with fluctuations in modal data quality due to the use of
fixed weights. This results in an accuracy rate of only 82.63%.
The MUFD calculates the degree of membership for each mode
using a Gaussian fuzzy function. It also dynamically adjusts the
weights, improving the overall accuracy by 9.74% and reducing
the error recognition rate to 0.78%. Rule-based fusion relies on
preset logic. When faced with conflicts in eye movement gestures,
only rigid rules that prioritize gestures can be used for
decision-making. The accuracy rate of conflict scenarios is only
73.75%. MUFD quantifies the degree of modal conflict by using
fuzzy intention credibility distribution CF and comprehensive
trust allocation m (A), and selects the intention with the highest
credibility to improve the accuracy of conflict scenarios by
17.75%. Additionally, when eye movement fails, the accuracy of
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the simple weighted sum and rule-based fusion decreases to
75.38% and 80.12%, respectively. This is due to their reliance on
eye movement data or their failure to redistribute weights when
ignoring eye movement. However, the MUFD's redundancy
switching mechanism for modal failure still maintains a high
accuracy of 89.85%. This proves that its robustness in complex
scenarios is significantly better than that of the benchmark
method. In summary, the MUFD algorithm performs better in
intent recognition accuracy, error control, and robustness. This
verifies its necessity as the core algorithm for multimodal fusion
in this study.

To verify the construct validity of immersion assessment,
Pearson correlation analysis is conducted between the four core
sub dimensions of the IPQ scale and physiological signals. The
results of the IPQ scale are shown in Table 9.

Table 9: IPQ scale results

IPQ sub dimension

Heart rate (beats/minute)

Brain wave activity level (1 V)

Perceived reality r=0.623** r=0.715**
Emotional response r=0.587** r=0.692**
Sense of control r=0.415* r=0.483**
Participation rate r=0.591** r=0.678**

Note: r is the Pearson correlation coefficient, ** p<0.01, p<0.05.

As shown in Table 9, the correlation between perceived
reality and EEG activity is the strongest (r=0.715, p<0.01). This
indicates that the more realistic a virtual scene appears to a user,
the more active their EEG becomes. This finding aligns with the
theoretical logic of high immersion being accompanied by high
cognitive participation. The correlation between perceived control
and heart rate is r=0.415 (p<0.05), indicating that an increase in
users' sense of control over the interaction process moderately
increases physiological arousal. However, the correlation is
weaker than that of other dimensions. This may be because
perceived control depends more on interaction fluency than
emotional arousal. All subdimensions are significantly and
positively correlated with physiological signals (p<0.05). This
indicates that the subjective evaluation results of the IPQ scale are
consistent with objective physiological indicators. Thus,
subjective scoring bias is eliminated, and the effectiveness of the
immersion assessment is verified in this study.

4 Discussion

With the rapid development of VR and AR technology, the
application of 3D virtual scenes in entertainment, education,
healthcare, engineering, and other fields is becoming increasingly
widespread. To enhance users' immersion in virtual scenes, a
multimodal interaction system was designed that integrates vision,
gestures, and eye tracking for engine-driven 3D scenes. Its
performance advantages were verified through experiments.

The results showed that the lowest accuracy rates for
studying the interactions of visual, gestural, and eye movements
reached 91.42%, 92.83%, and 92.75%, respectively. These rates
achieved precise capture of user intent. However, existing

research not reported the accuracy of specific interactions in
multimodal designs. For example, Al Ansi et al. [11] and Sereno
et al. [12] described the functionality of their “‘visual+audio” and
“speech+touch+eye movement” systems, respectively, but did
not improve accuracy. The “visual+gesture+speech” system
proposed by Zhang Y et al. [16] only mentioned the improvement
of intent recognition accuracy, but does not provide specific
numerical values. Moreover, in this study, the fusion of intent
capture algorithm and MUFD algorithm stabilized the accuracy
of the three core interaction modes at over 91%. This result
provided a quantitative basis for the accuracy benchmark of
multimodal interaction and solved the problem of being unable to
verify interaction reliability due to a lack of accuracy evaluation,
as described by Sereno et al. [12]. It was especially suitable for
scenarios requiring precise recognition of instrument operation
intentions in surgical VR.

The disconnect between multimodal design and underlying
optimization is prevalent in existing research. For example, the
multimodal system proposed by Sharma K et al. [14] did not
involve the optimization of interaction delay, while Li J et al. only
optimized the tactile delay without integrating multimodal data
fusion technology. To deal with those issues, this study
achieved a response time of 120.74ms using the AABB collision
detection algorithm and the MUFD algorithm with real-time data
fusion mechanism. The multimodal system with tactile feedback
reduced by 34.94%, while the multimodal system with audio
reduced by 20.79%. At the same time, the system stability
reached 99.90%, which was significantly higher than the
qualitative  high-fidelity description of traditional virtual
interaction and Lungu AJ et al. [9] surgical simulation system.
This performance leap directly solved the core pain points of
operational deviation and lag affecting immersion caused by
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delays in safety critical scenarios. This was because the previous
model focused on weight distribution for clear intentions or
single-mode data transmission. It did not design solutions for the
fuzzy intentions commonly seen in user operations. The MUFD
algorithm used a Gaussian ambiguity function to construct a
fuzzy set, which could quantitatively characterize uncertain data
from vision, gestures, eye movements, and other modes. This
avoided the interference of deviation from a single mode of data
on the overall judgment.

The results also showed that, in the HVHA scenario, heart
rate was 90.57+10.64 beats per minute, while brainwave activity
level was 12.55+3.58 V. These values increased by 11.20% and
27.88%, respectively, compared to those of the traditional
interaction group. The reason for the significant improvement in
specific physiological indicators is that traditional virtual
interactions lack tactile and kinesthetic feedback, leading to a
disconnect in user perception. This study utilizes the force tactile
feedback and arm motion synchronization mechanisms of smart
gloves to give users a realistic tactile and kinaesthetic experience
of touch and motion synchronization in virtual scenes. At the
same time, by combining YOLOV7 target positioning, eye
tracking and other visual technologies, a multi sensory closed
loop of “‘sight touch motion eye™ has been constructed. This high
perceived reality makes it easier for users to immerse themselves

in virtual scenes, thereby triggering stronger physiological arousal.

The improvement of physiological indicators is directly related to
the smoothness of interaction. A delay or lag in the system will
interrupt the user's immersive state and weaken their
physiological response. This study used the AABB collision
detection algorithm and modal failure redundancy switching to
reduce the response time to 120.74 ms and improve system
stability to 99.9%. The smooth and seamless interaction
experience avoids immersive interruptions, allowing users to
maintain high levels of immersion and physiological indicators in
HVHA scenarios.

In summary, the performance differences between this study
and existing systems are primarily due to technological
breakthroughs in multi-device deep integration, a multi-modal
real-time fusion mechanism, and underlying interaction
optimization. However, although this study has achieved
significant improvements to existing systems, there are still
certain limitations. For example, the adaptability of different
hardware devices has not been considered. Additionally, the
sample size of users is small and does not cover different age
groups or levels of operating experience. This makes it difficult to
verify the system's ability to adapt to personalized needs. Future
research should focus on improving system compatibility and
expanding support for multiple hardware devices. Additionally,
the system's personalized adaptation capabilities should be
verified and optimized through large-scale user testing. In
addition, more advanced multimodal fusion algorithms and
interaction technologies will be further explored to continuously
enhance users' immersion and interaction experience in virtual
Scenes.
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5 Conclusion

The study designed MMI and immersion enhancement
strategies around engine-driven three-dimensional virtual scenes.
The results showed a minimum accuracy of 91.42% for visual
interactions, and 92.83% and 92.75% for gesture and
eye-movement interactions, respectively. In terms of system
performance, the response time of the studied method was only
120.74ms, which was significantly less than the conventional
method. The fluency score was scored 4.8/5, which showed a
very high fluency. Compared with existing multimodal VR/AR
methods, the core improvements of this study were reflected in
three aspects: Firstly, adaptive robust control fusion solved the
problem of the weak anti-interference ability of existing systems,
making them adaptable to safety-critical scenarios, such as
surgery and aerospace. Secondly, the combination of the AABB
and MUFD algorithms achieved the collaborative optimization of
response time and error recognition rate. Performance indicators
improved by 20%-35% compared to those of mainstream
systems. The third objective was to innovate the “modal failure
redundancy switching” mechanism, which controlled fault
response delays within 50 ms and avoided the risk of interrupting
interactions in safety scenarios. In the results of the user
questionnaire, the research methodology scored 6.25+0.82,
6.48+0.72, 6.59+0.61, and 6.30+0.91 for pleasure, authenticity,
interactivity, and immersion, respectively. All of them showed a
high level of user satisfaction. In summary, the study significantly
improves user interaction and immersion through engine-driven
MMI design of three-dimensional virtual scenes. However, the
study do not address the effects of different devices and individual
user differences on the experience. Future research can further
optimize the interaction and improve the adaptability to various
devices. Moreover, the study will explore the individual needs of
different user groups to further enhance the user experience of
virtual scenes.
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