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Real-time detection and classification of mosquito larvae on mobile devices still face challenges in terms
of accuracy and efficiency. Manual identification is limited, thereby necessitating the development of deep
learning-based systems to improve both accuracy and speed in diagnosis. This study proposes a fusion
deep learning model, combining YOLOV8 for object detection and MobileNetV3-Small for mosquito
larvae classification, to enhance the accuracy and efficiency of classifying mosquito larvae into three
classes—Aedes, Culex, and an ‘Unknown’ class that captures non-Aedes/Culex larvae (e.g., Anopheles,
Toxorhynchites)—as well as to support environmental health monitoring. The methodology involves using
YOLOVS8 for object detection and MobileNetV3 for mosquito larvae classification. The dataset comprises
images of Aedes and Culex larvae and curated “Unknown” examples representing other genera. The
model was trained and evaluated using deep learning techniques, and subsequently deployed in a mobile
application to automatically detect and classify the larvae. The results indicate that the developed system
is capable of detecting and classifying mosquito larvae with high accuracy, with YOLOv8 achieving
mAP@0.5 of 0.986 and mAP@0.5:0.95 of 0.777, while MobileNetV3-Small attained a classification
accuracy of 0.962. For efficiency, the model runs in real time on mobile devices with low latency. The
model also demonstrates stable performance on unseen data, confirming its potential for environmental
health monitoring and its role in supporting more effective vector control efforts, as well as contributing

to further research in the field of entomology.
Povzetek:

1 Introduction

One of the primary challenges in vector-borne disease
control is the lack of a rapid, accurate, and efficient
method for identifying mosquito larvae that researchers or
health workers can deploy in the field. Diseases such as
dengue fever, malaria, chikungunya, Zika, and yellow
fever remain serious threats to global public health, with
reported annual mortality exceeding 700,000 cases [1][2].
The proximity of mosquito breeding sites to human
settlements  further elevates the risk of disease
transmission [3][4]. Currently, there are no specific
treatments or commercially available vaccines for most
arboviruses, making mosquito population control the only
effective preventive measure [5][6][7].

Vector control efforts have traditionally focused on
adult mosquitoes, whereas a more preventive approach

involves detecting and eliminating larvae before they
reach the infectious stage [8]. Early identification of larvae
is a crucial step in interrupting the transmission cycle.
However, conventional identification methods rely on
visual observation, are highly dependent on individual
expertise, are time-consuming, and are prone to human
error [9]. Entomological characterization is essential for
understanding mosquito species behavior, but current
identification practices remain manual and require
experienced specialists [10][11][12].

In recent years, advancements in deep learning and
computer vision have created new opportunities for
automating the detection and classification of organisms,
including mosquito larvae [13]. This approach can
improve the speed, accuracy, and scalability of vector
control programs. Several studies have proposed the use
of convolutional neural networks (CNNs) for mosquito
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larva classification [14][15]; however, challenges such as
high computational demands and hardware limitations
remain significant, particularly for field deployment on
mobile devices. Therefore, developing more efficient and
adaptable automated methods is crucial [11][16]. Given
that these diseases continue to burden many tropical
countries, vector prevention and control strategies remain
the most feasible large-scale intervention for governments
to curb the spread of arboviruses [17].

At the national level, Indonesia—a tropical country
with over 457 mosquito species from 18 genera—faces a
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This study proposes the development of a mosquito
larva detection and classification system based on deep
learning, integrating the YOLOVS architecture for object
detection and MobileNetV3 for species classification.
YOLOV8 offers real-time detection capabilities with high
accuracy under various environmental conditions [19],
while MobileNetV3 is designed for high computational
efficiency on resource-constrained devices, such as
smartphones. The integration of these two models aims to
produce a solution that is not only accurate and reliable
but also lightweight and practical for implementation in

Table 1: Comparison of related studies in mosquito larvae detection and classification.

Avrticle Detection Method Classification Advantages Limitations
. The system still
The system is capable of .
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Detection [21] Aedes and 0.77 for non-Aedes conditions and the
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The model achieves an
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Detection of Mosquito a&f:irnaif;]y )0 fg%g'l%% /f’ The system only detects
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Detection and Densenet121 Not applied larva-based disease detection conditions with a wide
Classification Using with support from Al range of environmental
Densenet121 [22] technology and drones 9 variations
The CNN-ELM model with a
Classification Of pre-trained CNN achieves an The system can only
Aedes Mosquito Larva CNN And accuracy of 98%, an F1-score classify two types of
Using Convolutional Not applied Extreme Learnin of 99% for Aedes, and an F1- larvae (Aedes and non-
Neural Networks And PP Machine 9 | score of 96% for non-Aedes, Aedes) and does not
Extreme Learning providing excellent include other mosquito
Machine [14] classification between Aedes larva species
and non-Aedes larvae
The YOLOV5 detection This study has not
Detection and method achieves 97% effectively measured
Classification of accuracy with a precision of computational time and
Mosquito Larvae 94.4%, recall of 95.7%, and resource consumption,
Bas?ed on Dee YOLOVS5, FPSnet Not applied an mAP@0.5 of 0.971, and the tasks of detection
Learning A rogch delivering better detection and classification are
?15]pp results for Aedes (99.3%), separated, requiring
Anopheles (97%), and Culex | significant computational
(97.8%) resources

high risk of vector-borne disease transmission, further
exacerbated by its humid climate and high rainfall. Three
major genera, Aedes, Culex, and Anopheles, dominate
disease transmission [18]. Hence, there is an urgent need
for a rapid, accurate, and field-accessible larval
identification system, notably to support community-
based control programs and swift responses to potential
outbreaks.

mobile applications [20]. This research is expected to
improve environmental health management through real-
time field detection of mosquito larvae.

2 Related studies

The detection and classification of mosquito larvae
have become a significant area of research due to their
relevance in vector-borne disease control and
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environmental monitoring. Numerous studies have
utilized advanced techniques like deep neural network
architectures—particularly YOLOV8 and MobileNetV3—
and have investigated their implementation on portable
devices such as smartphones to facilitate real-time field
detection.

Nevertheless, existing studies face challenges,
including more representative datasets, higher larval
classification accuracy, and model optimization for
efficient operation on resource-constrained devices. Table
1 presents a comparative overview of the approaches used
in recent mosquito larva detection and classification
studies.

Based on the analysis of Table 1, most prior research
has concentrated primarily on larva detection without fully
implementing species-level larval classification. Of the
five articles reviewed, most employed detection methods
based on YOLO variants such as YOLOv3 and YOLOVS5,
as well as other CNN architectures like DenseNet121 and
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larval species. Nevertheless, the study also emphasized
that such accuracy required a large dataset and substantial
computational resources.

In contrast to previous approaches, the present study
employs the YOLOV8 architecture for object detection
and MobileNetV3 for classifying mosquito larva species.
This combination enables real-time larva detection while
efficiently classifying species on mobile devices.
MobileNetV3 is chosen for its computational efficiency
on low-resource devices, while YOLOvV8 provides
improved accuracy and speed in detection compared to
earlier versions. As such, this approach aims to bridge the
gap identified in prior studies by integrating mosquito
larvae detection and classification into a single, unified
system.

3 Methodology

This study developed a two-stage system to detect and
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Figure 1: Methodology

CNN-ELM. However, only one study integrated a
classification method using CNN and an Extreme
Learning Machine.

Several studies have demonstrated strong performance
in detection accuracy and even succeeded in deploying the
models on devices such as Raspberry Pi and drones.
However, a standard limitation was the lack of
differentiation among larval species (e.g., Aedes,
Anopheles, and Culex). This highlights a critical gap
between detection and specific species classification of
mosquito larvae—an aspect essential to support vector-
borne disease control efforts.

As a comparison, a study titled “Detection and
Classification of Mosquito Larvae Based on Deep
Learning Approach” [15] utilized YOLOv5 and FPSNet,
achieving high accuracy in detecting and classifying three

classify mosquito larvae into three operational classes:
Aedes, Culex, and an “Unknown” class. The Unknown
class is defined as non-Aedes/non-Culex larvae and, in
this study, is composed of images from the genera
Anopheles and Toxorhynchites. The Unknown class is
included to (i) prevent overconfident misassignment of
other genera to Aedes/Culex and (ii) better reflect the
taxonomic diversity that field users may encounter. Unless
otherwise noted, the same preprocessing and
augmentation pipeline was applied to all three classes to
reduce any source-dependent bias introduced by differing
image repositories.

The workflow of this study begins with the dataset
preparation process. The dataset is divided into three
subsets: training data, validation data, and testing data.
The training and validation sets are used to build and
optimize two separate models: the detection model and the
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classification model. The detection model's training data
undergo a labeling and annotation process before being
used for model training and hyperparameter tuning.
Meanwhile, the classification model is trained and fine-
tuned directly using the training data.

Once both models are fully trained, the testing phase is
carried out using the testing dataset. In this phase, the
detection model is first applied to identify larvae in the test
images, and the detection results are evaluated. Each
detected larva is cropped based on its bounding box and
passed to the classification model to determine its genus.
The classification results are then evaluated using standard
performance metrics such as accuracy, precision, and
recall. The complete research workflow is illustrated in
Figure 1.

3.1 Data acquisition

The dataset used in this study was obtained from two
primary sources. Images for the Aedes and Culex classes
were collected in-house at the Environmental Health
Engineering and Disease Control Center (BTKLPP) Class
1 Medan. To build a third class that captures
non-Aedes/non-Culex larvae encountered in practice, we
constructed an “Unknown” class composed of two
genera—Anopheles and Toxorhynchites—sourced from
publicly available repositories. After preprocessing and
quality control, each class contained 1,460 images. For
detection, images were resized to 640x640 and annotated;
for classification, cropped detections were resized to
360x360 (see 3.2 for preprocessing details). Figure 2
presents sample images from the dataset used in this study.
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Figure 2: Dataset collection

In this study, the “Unknown” class is explicitly defined
as non-Aedes/non-Culex larvae and consists of images
from two genera: Anopheles and Toxorhynchites. This
design reduces over-confident misassignment of other
genera to Aedes/Culex and better reflects field variability.

Anopheles images were obtained from the Roboflow
Universe “Mosquito Larvae Dataset” project [27] (project
page cited in References). This repository aggregates
labeled larval imagery suitable for computer-vision
training. For Toxorhynchites, no single consolidated
public larval dataset was identified. Accordingly, we
curated images from openly accessible web pages and
educational videos discovered via generic web search
(e.g., Google Images/YouTube). Because these materials
come from heterogeneous hosts and licenses, per-image
URLs were not consistently retained during early
exploratory curation.

Prediction J |L Cutput J

U Conv Conv |—»| C2f |
Conv Conv —» C2
C2f Conv —» C2f —» SPPF

[
[ car Conv l

_ Concat | | Concat | Conv

l—) Conv

c2f Conv

o

" Concat | | Concat | R

& H—*
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We include below a reproducible search procedure and
diagnostic criteria to enable reconstruction of a
comparable subset.
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transparency and replicability of the method while
respecting third-party rights. Users can reconstruct a
comparable subset by following the search procedure and
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Figure 4: MobileNetV3 architecture

We queried public web sources using combinations of
the following terms: “Toxorhynchites larva”, “elephant
mosquito  larva”,  “predatory  mosquito larva”,
“Toxorhynchites rutilus larva”, and “Toxorhynchites
amboinensis larva”. Candidate images/frames were
retained only when diagnostic larval characters (below)
were visible. Representative background literature
describing Toxorhynchites larval biology and morphology
is cited to anchor this process.

Morphological verification. Each Unknown image was
screened to genus level prior to inclusion.

e Anopheles: required absence of a respiratory siphon
and the characteristic horizontal posture parallel to
the water surface to be discernible in the image,
following identification keys/notes.

e  Toxorhynchites: required predatory-larva
morphology, including large body size and modified
lateral palatal brushes forming an anteriorly directed
“basket” during prey capture, as described in
entomological literature and inventories; comb and
pecten absent.

Ambiguous, low-quality, or non-diagnostic images
were excluded.

Harmonization to control domain shift. To limit any
cross-source domain shift introduced by mixing
institutional and public-web imagery, we applied the same
resizing and augmentation policy across Aedes, Culex,
and Unknown images (see 3.2 Data Cleaning &
Preprocessing).

Data availability and licensing note. Anopheles
materials are accessible via Roboflow Universe [27]. For
Toxorhynchites, due to heterogeneous licensing and the
absence of stable per-image URLs in the early curation,
we do not redistribute files and cannot provide a complete
URL list. Instead, we document how images were sourced
(search recipe above) and how genus identity was verified
(diagnostic criteria with citations). This preserves

verification criteria cited here.

3.2 Data cleaning & preprocessing

Data preprocessing was conducted to ensure optimal data
quality before model training. This process included data
augmentation and dataset partitioning. The applied
augmentation techniques involved converting a portion of
images to grayscale, horizontal and vertical flipping,
random rotations (90°, 180°, 270°), hue adjustments
(ranging from -10° to +10° degrees), saturation
adjustments (-10% to +10%), brightness variations (0—
5%), exposure modifications (-5% to +5%), and the
addition of noise up to 0.42%. To minimize cross-source
domain shift from using different repositories
(institutional vs public-web sources), we applied an
identical resizing and augmentation policy across Aedes,
Culex, and Unknown images.

For the classification task, images detected in the
previous stage were cropped based on their bounding
boxes and resized to 360x360 pixels. Meanwhile, images
for the detection task were resized to 640x640 pixels and
annotated using Roboflow. Following preprocessing, the
dataset was divided into three subsets: 70% for training,
15% for validation, and 15% for testing.

3.3 YOLOv8-Nano

YOLO (You Only Look Once) was introduced by
Redmon et al. (2016) as a novel object detection approach
that integrates speed and accuracy into a single prediction
stage. Over time, YOLO has undergone several
enhancements, one of which is YOLOVS, released by
Ultralytics in 2023 [23].

YOLOvV8 offers multiple model size variants to
accommodate application needs, including YOLOv8-
Nano. YOLOv8-Nano is the smallest and lightest variant
within the YOLOv8 family, explicitly designed for real-



236  Informatica 49 (2025) 231-244

time detection tasks on resource-constrained devices such
as mobile phones or edge computing platforms.

YOLOvV8-Nano retains the core architectural structure
of YOLOV8, comprising a backbone, neck, and head, but
uses fewer parameters to reduce model size and accelerate
inference speed. Despite its compact design, YOLOvVS-
Nano supports multi-scale predictions and adopts an
anchor-free approach, which enhances the detection
process's simplicity and speed.

In this study, YOLOv8-Nano was selected for its
favorable balance of high inference speed, compact model
size (approximately 3.2 million parameters), and low
resource consumption. These characteristics make it
particularly suitable for implementing mosquito larva
detection on mobile devices, where real-time performance
and computational efficiency are essential.

Figure 3 illustrates the YOLOv8-Nano architecture,
highlighting its key real-time detection components: the
backbone for feature extraction, the neck for multi-scale
feature fusion, and the head for bounding box prediction
and classification.

3.4 MobileNetV3 small

Google first developed MobileNet in 2017 as an efficient
convolutional neural network architecture designed for
mobile and embedded systems [24]. MobileNet utilizes
depthwise separable convolution, which separates the
filtering and feature combination processes. This
significantly reduces the number of parameters and
accelerates inference time [25].

MobileNetV3, proposed by [26], is an improvement
over its predecessors, introducing several key innovations
such as hard-swish activation, squeeze-and-excitation
blocks, and a hierarchical block design. MobileNetV3
employs a novel non-linear activation function known as
hard-swish  (h-swish), a computationally efficient
modification of the swish function to reduce
computational load and energy consumption while
enhancing overall performance. The hard-swish activation
function is defined as shown in Equation 1 and is used to
minimize the number of training parameters and reduce
model complexity and size.

h — swish(x) = x - a(x)

ReLU6(x + 3) M)

6

Where a(x) represents the piecewise linear hard analog
function.

MobileNetV3 is available in two variants: Large and
Small. In this study, MobileNetVV3 Small was chosen due
to its lightweight nature and optimization for resource-
constrained devices. MobileNetVV3 Small combines high
computational efficiency with competitive accuracy,
making it well-suited for mosquito larva classification
tasks on mobile devices.

The MobileNetV3 architecture, depicted in Figure 4,
serves as the basis for the classification stage. This process
involves feature extraction through convolutional and
bottleneck layers, which are key in recognizing visual
patterns in larval images. The final output of this process

ax) =
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is a class label prediction, such as Aedes, Culex, or
Unknown.

3.5 Evaluation measures

Model evaluation is a critical phase in developing object
detection and classification systems, including in this
study, which employs YOLOv8 for mosquito larvae
detection and MobileNetV3 Small for mosquito larvae
classification. Evaluation is conducted to assess the
model's performance in accurately and efficiently
recognizing objects. The evaluation metrics used in this
study are described as follows:

Accuracy is employed to evaluate the performance of
the mosquito larvae classification model using
MobileNetV3 Small. This metric measures the proportion
of correct predictions (both positive and negative) relative
to the total number of predictions made.

(TP + TN) )
(TP + TN + FP + FN)

accuracy =

Precision measures the proportion of true positive
predictions out of all positive predictions generated by the
model. Precision is used in evaluating both the
classification model (MobileNetV3 Small) and the object
detection model (YOLOvS8).

_TP @3)
TP + FP

Recall assesses the model’s ability to identify all
actual positive instances in the data. Similar to precision,
recall is utilized in the evaluation of both classification and
detection models.

Precision =

_TP (4)
TP + FN

F1-Score is the harmonic mean of precision and recall
and is used to evaluate the balance between the two. This
metric is applied in assessing the performance of both
classification and detection tasks.
Precision X Recall (5)

Recall =

F1 — Score =2 X

Precision + Recall

In addition, for the mosquito larvae detection model
implemented using YOLOVS8, an evaluation metric known
as Mean Average Precision (mAP) is employed. This
metric is essential for measuring the model's overall
performance in object detection, as it considers both the
accuracy of bounding box predictions and object
classification. The mAP value is derived from the average
of the Average Precision (AP) scores across all classes,
providing a comprehensive overview of the model's

detection accuracy.
N

1 TP 6
mApz—ZAPi=— (6)
N L TP + FP
i=

4 Experimental results

This section presents and analyzes the experimental
results obtained from the implementation of mosquito
larvae detection and classification methods using the
YOLOv8 and MobileNetv3 Small models. This
experiment aims to evaluate the effectiveness of both
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models in detecting and classifying mosquito larvae based
on image data, targeting three specific classes: Aedes,
Culex, and Unknown.

4.1 Detection stage with YOLOv8

4.1.1 Model training and hyperparameter
tuning

At this stage, the YOLOvV8 model was employed to detect
mosquito larvae in images with a resolution of 640x640
pixels. The training process involved tuning several key
hyperparameters, including the initial learning rate (Ir0),
the final learning rate (Irf), and the number of epochs. The
results of this process are presented in Table 2. The model
was evaluated using precision, recall, mAP@0.5, and
MAP@0.5:0.95 as performance metrics.

Table 2: Hyperparameter Tuning Results of YOLOv8

No. Ir0 Epoch g’g‘z g‘?g?&; P R
1. 0.0005 50 98.6 7.7 95.8 96.0
2. 0.00001 30 44.2 30.1 38.1 69.9
3. 0.00001 60 49.2 35.4 39.5 60.9
4. 0.00001 100 75.1 55.8 67.1 69.3

Based on the hyperparameter tuning results, the
configuration with a learning rate (Ir0) of 0.0005 and 50
epochs provided the best performance due to the balanced
convergence speed and stability, as indicated by achieving
the highest mAP50 (98.6%) and mAP50-95 (77.7%).
Lower learning rates required significantly longer training
and yielded lower performance.

4.1.2  Annotation distribution analysis

To ensure the quality of annotation distribution within the
dataset, an analysis of bounding box distribution was
conducted using a label collegram visualization, as shown
in Figure 5. This graph illustrates the distribution of
annotation parameter pairs: X, y, width, and height. The
visualization results indicate that most objects are located
near the center of the image (x = 0.5, y = 0.5), with a
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relatively wide variation in size. This suggests that the
dataset provides good coverage regarding object position
and dimensions and is not biased toward specific
locations.
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Figure 5: Label Correlogram illustrating annotation
distributions within the dataset, highlighting the
concentration and variations in object positioning and
dimensions. This visualization indicates good coverage
and reduces the risk of positional bias

4.1.3 Model training performance evaluation

Figure 6 illustrates the stable downward trend in various
loss metrics—such as box loss, classification loss, and
distribution focal loss (DFL loss)—indicating that the
model has become increasingly proficient in recognizing
patterns and minimizing detection errors during training.
In addition, evaluation metrics such as precision, recall,
and mean Average Precision (mAP) exhibit consistent
upward trends, particularly in mAP50 and mAP50-95,
which approach optimal values. These results suggest that
the YOLOvV8 model has been effectively trained and
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Figure 6: Detection model performance graph
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demonstrates strong performance
classifying mosquito larvae.

in detecting and

4.1.4 Detection evaluation using confusion
matrix

To evaluate the classification performance of the mosquito
larvae detection model, a confusion matrix was employed,
as illustrated in Figure 7. This matrix depicts the
distribution of the model’s predictions relative to the
actual labels across four classes: Aedes, Culex, Unknown,
and Background. The main diagonal values represent the
number of correct predictions, whereas the off-diagonal
values indicate misclassifications between classes.

Confusion Matrix

Aedes Culex unknown background

Figure 7: Confusion matrix for the detection stage
(YOLOv8-Nano) on the test set. Rows = True class;
columns = Predicted class; classes: Aedes, Culex,
Unknown, Background

The model performed reasonably well in recognizing
larvae from the Aedes class, accurately classifying 146
instances. However, misclassifications occurred: 10
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instances were predicted as Culex, 9 as Unknown, and 55
as Background. This suggests a degree of ambiguity
between the object and the background in specific
samples.

For the Culex class, the model successfully identified
161 instances. Misclassifications included 19 instances
labeled Aedes, 3 as Unknown, and 42 as Background.
Despite the relatively high accuracy, the misclassification
into the background remains a challenge that requires
further optimization.

The best performance was observed in the Unknown
class, with 211 instances correctly classified. The
misclassified instances were relatively low: 15 as Aedes,
5 as Culex, and 31 as Background. This indicates that the
model possesses a strong discriminative capability toward
the Unknown class, which may include larvae with
atypical morphological features.

Meanwhile, a few false positives were observed in the
Background class, where 3 instances were incorrectly
classified as Unknown. This suggests that although the
model can generally distinguish between objects and
background, further efforts are needed to mitigate
detection errors that may lead to over-detection in real-
world implementations, particularly in systems with
limited computational resources such as mobile devices.

The confusion matrix indicates that the model can
perform object classification satisfactorily, particularly for
classes with strong data representation. Nonetheless,
background  filtering and inter-class  balancing
improvements are still warranted to further enhance the
model's robustness.

Background misclassification analysis. The relatively
high number of predictions assigned to the Background
class (e.g., 55 for Aedes, 42 for Culex, and 31 for
Unknown) suggests several recurring failure modes. First,
larvae often appear in low-contrast scenes (e.g., parallel to
the water surface) where edges fade into the substrate;
second, visual clutter such as detritus, air bubbles,
specular reflections, and container boundaries can mimic
larval contours; third, small or partially occluded larvae

Comparison of Maximum Detection Confidence Scores among YOLOv6, YOLOv7, and YOLOv8
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may occupy few pixels after resizing to 640x640; and
fourth, mild blur caused by water motion reduces fine
texture cues. To address these issues, future work will (i)
enrich training with hard negatives and background-rich
crops, (ii) emphasize small-object sensitivity via larger
input resolution or tiling and adopt contrast-focused
augmentation (e.g., CLAHE/gamma) in place of heavy
de-colorization, (iii) refine ambiguous labels through
targeted re-annotation/quality control, and (iv) evaluate a
light segmentation/refinement head to better separate
larvae from complex water backgrounds. Collectively,
these steps are expected to reduce false “Background”
assignments while preserving precision.

4.1.5 Analysis of detection confidence scores

Figure 8 presents a scatter plot illustrating the maximum
detection confidence score obtained from each test image
using YOLOv6, YOLOv7, and YOLOvVS. Each point in
the plot represents the highest confidence assigned by the
respective YOLO model to detected objects within a
single test image.

The visualization clearly demonstrates that YOLOV8
achieves the highest and most consistent confidence
scores, with the majority of points positioned close to the
maximum confidence value of 1.0. This indicates a robust
and highly reliable detection capability across the entire
test dataset. In comparison, YOLOv7 exhibits moderate
variability in confidence scores, typically ranging between
approximately 0.5 and 0.9, reflecting somewhat less stable
detections. On the other hand, YOLOv6, while
competitive, displays lower consistency and several
notable outliers below a confidence score of 0.7,
indicating lower detection reliability for specific cases.

This comparative analysis emphasizes the superior
robustness and detection certainty provided by YOLOVS.
Such high and stable confidence levels are crucial for
minimizing ambiguous detections and false positives,
particularly critical for real-time mobile deployment in
practical vector surveillance systems. Therefore, based on
these results, YOLOVS is selected as the primary object
detection model for deployment in this study.

4.1.6 Comparison of YOLO versions for
optimization

To determine the most optimal detection model for this
study, a comparative analysis was conducted between
several versions of YOLO, namely YOLOv6, YOLOV7,
and YOLOv8. The comparison included evaluations of
accuracy (MAP@0.5), training duration, and model size.
This evaluation assessed each model’s effectiveness and
efficiency for mobile deployment. The comparative
results are presented in Table 3.

Table 3: Comparison YOLOv6, YOLOv7, and YOLOv8

Training Model
No. Model Map@0.5 Time Size
1. YOLOv6 0.985 1.5 hours 16.9 MB
2. YOLOv7 0.984 1.8 hours 139 MB
3. YOLOv8 0.986 0.9 hours 10.7 MB
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Based on Table 3, YOLOv8 demonstrated the best
performance with an mAP@0.5 score of 0.986, the fastest
training time of 0.9 hours, and the smallest model size of
10.7 MB. Although the differences in accuracy among the
three models were relatively minor, YOLOVS’s efficiency
in training time and model size make it the most suitable
choice for a mobile-based mosquito larvae detection
system. The compact model size facilitates easier
integration into devices with limited memory and
computational resources.

4.2 Classification stage with MobileNetV3-
small

4.2.1 Larvae classification process

After the detection stage is performed using the YOLOvV8
model, each detected larvae is marked with a bounding
box on the original image. The area enclosed by this
bounding box is then cropped to separate the larvae from
the background. The cropped result is then used as input
for the classification process.

The MobileNetV3-Small model is employed in the
classification stage to classify mosquito larvae species into
three classes: Aedes, Culex, and Unknown. MobileNetV3-
Small was selected based on its lightweight architectural
efficiency and optimal operational capability on mobile
devices with limited resources.

Before Cropping (Detection
with Bounding Box)

Aiter Cropping
(Classification Input)

Figure 9: Illustration of the mosquito larvae detection
and classification input process. The left image shows the
detection result with a bounding box using YOLOVS8, and

the right image shows the cropped region used as input
for classification with MobileNetV3-Small

Figure 9 illustrates the flow of the detection results,
where the bounding boxes are applied, and then cropped
to create the larvae images, ready to be used as input for
the classification stage.

4.2.2 Tuning hyperparameter

To optimize classification performance, tuning was
performed on several key hyperparameters: the learning
rate and the number of epochs. Evaluation was carried out
using accuracy (Accuracy), precision (P), recall (R), and
Fl-score metrics. The results of the experiments are
presented in Table 4.



240  Informatica 49 (2025) 231-244

Table 3: Hyperparameter tuning results of MobileNetV3

F1-
No. | Ir Epoch | Accuracy | P R Score
1. 0.0001 | 30 96.2 99.5 | 99.0 | 99.2
2. 0.00001 | 30 69.1 914 |1 919 | 916
3. 0.00001 | 60 80.9 98.0 | 96.6 | 97.3

M.F. Syahputra et al.

while the remaining two samples were mistakenly
predicted as Culex. For the Culex class, 209 out of 210
samples were accurately identified, and one sample was
classified as Aedes. For the Unknown class, 208 out of 210
samples were correctly identified, with two
misclassifications into the Culex class.

Based on the results shown in Table 4, the combination
of a learning rate of 0.0001 and 30 epochs was selected as
optimal because it delivered superior accuracy (96.2%)
and maintained a balanced trade-off between training
speed and classification precision compared to lower
learning rates and increased epochs, which showed no
significant performance improvement.

4.2.3 Classification evaluation using confusion
matrix

An analysis was conducted using the confusion matrix, as
shown in Figure 10 to evaluate the classification model's
performance more comprehensively. This matrix
represents the distribution of the model's predictions
against the actual labels for the three target classes: Aedes,
Culex, and Unknown.

The evaluation results indicate that the model performs
excellent classification with a low error rate. For the Aedes
class, 208 out of 210 samples were correctly classified,
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Figure 1: Confusion matrix for the classification stage
(MobileNetV3-Small) on the test set. Rows = True class;
columns = Predicted class; classes: Aedes, Culex,
Unknown
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Figure 11: Scatter plot depicting the distribution of classification confidence scores for MobileNetV1, MobileNetV2,
and MobileNetV3-Small across test images. MobileNetV3-Small shows consistently higher and more stable
confidence scores, supporting its selection for efficient and reliable mosquito larvae classification on mobile devices
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4.2.4  Analysis of classification confidence

The scatter plot in Figure 11 shows the distribution of
confidence scores generated by the three MobileNet
variants—MobileNetV1, MobileNetV2, and
MobileNetV3-Small—on each test image. Each point on
the scatter plot represents the confidence score of a single
test image, providing insights into the stability,
consistency, and certainty of the models' classification
predictions for mosquito larvae.

From the visualization, it is evident that MobileNetV3-
Small consistently produces higher and more stable
confidence scores (mostly above 90%) across the test
dataset, with less variance compared to MobileNetV1 and
MobileNetV2. This indicates that MobileNetV3-Small is
not only superior in terms of parameter efficiency and
inference speed but also delivers more stable and reliable
predictions. In contrast, MobileNetV1 and MobileNetV2
exhibit a wider spread of confidence scores, with several
predictions at lower confidence levels, suggesting a higher
degree of uncertainty in their classification decisions.

Having high and stable confidence scores is particularly
important for real-world deployment, especially for
automated mosquito larvae detection and classification on
mobile devices. A model with consistently high
confidence reduces the risk of false positives and false
negatives caused by uncertain predictions. These findings
reinforce the results presented in Table 5, where
MobileNetV3-Small achieves competitive accuracy with
significantly fewer parameters.

Overall, this scatter plot analysis supports the selection
of MobileNetV3-Small as the primary classification
model in this study, highlighting its advantages not only
in efficiency and accuracy but also in providing
trustworthy predictions for each test image.

4.2.5 Comparison of MobileNet architectures

In addition to hyperparameter tuning, a comparative study
was conducted on three variants of the MobileNet
architecture: MobileNet, MobileNetV2, and

edes (1) (75.27%)
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MobileNetV3-Small. The evaluation focused on four key
aspects: validation loss, accuracy on the validation set,
final accuracy on the test data, and the total number of
parameters for each model. The comparison results are
presented in Table 5.

Table 4: Comparison of MobileNet, MobileNetV2,

MobileNetV3
'\Validation Acc. on Final Total
Model Validation
Loss Set Accuracy | Parameter

MobileNet 0.0283 0.9984 0.9676 3,4m
MOE}'ZEN“ 0.0326 0.9984 0.9618 2,5m
MobileNet
v3-Small 0.0369 0.9984 0.9625 im

Although the MobileNet model achieved the highest
accuracy (0.9676), it used a larger number of parameters
(3.4 million). On the other hand, MobileNetV3-Small
demonstrated competitive performance with a final
accuracy of 0.9625, while using only 1 million parameters.
This efficiency makes MobileNetV3-Small the most
suitable choice for deployment on mobile devices with
limited memory and computational power. Therefore, in
this study, MobileNetV3-Small was chosen as the primary
architecture for the mosquito larvae classification stage.

4.3 Detection result

Figure 12 illustrates the detection results of mosquito
larvae using an object detection-based system. The image
demonstrates that the model can detect two mosquito larva
species, Aedes and Culex, by displaying red bounding
boxes surrounding the detected larvae, along with class
labels and corresponding confidence scores for each
prediction. In the top-left image, the larva is identified as
Aedes with a confidence level of 75.27%, whereas in the
top-right image, the larva is classified as Culex with a
confidence of 77.70%. Furthermore, the bottom-left image
shows an Aedes larva with a higher confidence score of
87.29%, and the bottom-right image detects a Culex larva

Figure 12: Visualization of mosquito larvae detection results for Aedes and Culex on test images, annotated with
bounding boxes and confidence scores.
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Figure 13: On-device detection (YOLOv8-Nano) and classification (MobileNetV3-Small) running in our mobile app.
The app displays the detector label and a “Prediction Result” panel listing both YOLOvVS and MobileNetV3 outputs.

with a confidence of 85.85%. These relatively high
confidence values across all detections indicate the model
performs well in distinguishing between mosquito larva
species based on microscopic images. These results
suggest that the developed system can be employed as an
effective tool for the automatic and efficient identification
of mosquito larvae, which is highly beneficial for vector-
borne disease surveillance and control efforts.

4.4  On-device deployment and real-time
results

To validate real-time feasibility on mobile hardware, we
deployed the cascaded YOLOv8-Nano —
MobileNetV3-Small pipeline in an Android app. The app
performs on-device detection and then classifies each
detected larva; both outputs are rendered on screen. Figure
13 presents three representative screenshots with aligned
detector—classifier predictions: panels (a) and (b) show
Culex (YOLOvVS8: 95.09% / 97.19%; MobileNetV3:
91.60% [/ 96.73%), while panel (c) shows Aedes
(YOLOVS: 94.73%; MobileNetV3: 82.89%).

5 Discussion

The experimental results demonstrate that the
combination of YOLOv8 and MobileNetV3-Small
architectures can detect and classify mosquito larvae with
high accuracy while maintaining efficiency in mobile
deployment. Achieving a mAP@0.5 of 98.6% in the
detection stage and classification accuracy of 96.2%

indicates that this integrated system excels in precision
and inference speed.

These findings are consistent with previous studies,
such as [15], where YOLOV5 and FPSNet were employed
to detect and classify three types of mosquito larvae with
high accuracy. However, the study did not explicitly
address model efficiency in mobile environments and
maintained a separate two-stage computational process for
detection and classification, which entails higher resource
demands. In contrast, this study strategically selected the
lightweight and efficient MobileNetV3-Small architecture
to overcome limitations while integrating detection and
classification into a unified and mutually reinforcing
pipeline.

Furthermore, compared to studies [21] and [22], which
focused solely on larvae detection (primarily Aedes)
without specific species classification, our approach adds
value by directly identifying Aedes and Culex at the genus
level while assigning non-Aedes/Culex specimens—such
as Anopheles, Toxorhynchites—to an “Unknown” class.
Thus, the present work provides an integrated and
real-time two-stage pipeline (detection + 3-class
classification: Aedes, Culex, Unknown). Distinguishing
Anopheles as a dedicated class is left for future work.

Additionally, selecting MobileNetV3-Small as the
classification model demonstrates that a lightweight
architecture can still achieve competitive accuracy. As
shown in Table 5, although the original MobileNet
achieved a slightly higher final accuracy, its significantly
more significant number of parameters (3.4 million)
makes it less ideal for mobile implementation than
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MobileNetV3-Small, which has only 1 million
parameters. These findings support the arguments made in
studies [15] and [8], which emphasize the importance of
model efficiency for field applications. However, their
approaches remain limited by the number of classes
classified or by focusing on binary classification (larvae
vs. non-larvae).

These results have significant implications, particularly
in vector-borne disease control in endemic areas.
Genus-level identification of Aedes and Culex—
combined with an “Unknown” bucket that signals the
presence  of other genera (e.g, Anopheles,
Toxorhynchites)—can assist health workers or the public
in taking more targeted preventive actions, such as
fogging or eliminating mosquito breeding grounds, by the
primary disease vectors. As outlined in the Conclusion,
adding a dedicated Anopheles class is planned as future
work.

In conclusion, this study offers a technically superior
approach and makes a practical contribution by supporting
an adaptive, mobile-friendly vector surveillance system
that is well-suited for field deployment under resource-
constrained conditions.

6 Conclusion

Based on the analysis, design, implementation, and testing
processes, this study successfully developed a mosquito
larvae detection and classification system using YOLOV8-
Nano and MobileNetV3-Small. The system demonstrated
high performance, achieving a classification accuracy of
96.2% and a mean Average Precision at Intersection over
Union of 0.5 (mAP50) of 98.6%. MobileNetV3-Small’s
efficiency enables real-time deployment on commodity
mobile devices. The system can identify mosquito larvae
from the Aedes and Culex genera, and recognize an
‘Unknown’ class that, in this study, explicitly comprises
the genera Anopheles and Toxorhynchites.

This research's theoretical contribution lies in
integrating the anchor-free  YOLOvV8 detection
architecture  with  the lightweight MobileNetV3

classification model into a unified system optimized for
mobile platforms. This approach provides a novel
foundation for developing multi-class object detection
systems in environmental biology domains where high
efficiency and precision accuracy are essential.
Furthermore, this study enhances our understanding of
how modern convolutional networks can utilize the spatial
representations of mosquito larvae to enable automatic
genus-level classification.

From a practical perspective, the proposed system
offers an innovative solution for supporting environmental
health management, particularly in efforts related to
vector surveillance and control, with increased speed and
accuracy. By enabling automatic and real-time larvae
detection, the system can potentially reduce reliance on
time- and resource-intensive manual identification. Its
field deployment could facilitate faster responses to
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potential outbreaks and improve the effectiveness of
mosquito control programs.

For future development, it is recommended to expand
the diversity and quantity of training data to enhance the
model's generalization capabilities across varying lighting
conditions, backgrounds, and larval types. The explicit
inclusion of the Anopheles genus as a distinct class could
further broaden the taxonomic scope of classification.
Employing newer versions of YOLO may also contribute
to improved efficiency and accuracy through lighter
architectures and advanced optimization techniques.
Interdisciplinary collaboration with entomology experts is
strongly advised to ensure taxonomic validity and
maximize the system's practical utility. Lastly, integrating
geolocation features could extend the system's benefits
toward mapping mosquito larvae hotspots and supporting
more comprehensive spatially driven vector control
strategies.
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