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Real-time detection and classification of mosquito larvae on mobile devices still face challenges in terms 

of accuracy and efficiency. Manual identification is limited, thereby necessitating the development of deep 

learning-based systems to improve both accuracy and speed in diagnosis. This study proposes a fusion 

deep learning model, combining YOLOv8 for object detection and MobileNetV3‑Small for mosquito 

larvae classification, to enhance the accuracy and efficiency of classifying mosquito larvae into three 

classes—Aedes, Culex, and an ‘Unknown’ class that captures non‑Aedes/Culex larvae (e.g., Anopheles, 

Toxorhynchites)—as well as to support environmental health monitoring. The methodology involves using 

YOLOv8 for object detection and MobileNetV3 for mosquito larvae classification. The dataset comprises 

images of Aedes and Culex larvae and curated “Unknown” examples representing other genera. The 

model was trained and evaluated using deep learning techniques, and subsequently deployed in a mobile 

application to automatically detect and classify the larvae. The results indicate that the developed system 

is capable of detecting and classifying mosquito larvae with high accuracy, with YOLOv8 achieving 

mAP@0.5 of 0.986 and mAP@0.5:0.95 of 0.777, while MobileNetV3‑Small attained a classification 

accuracy of 0.962. For efficiency, the model runs in real time on mobile devices with low latency. The 

model also demonstrates stable performance on unseen data, confirming its potential for environmental 

health monitoring and its role in supporting more effective vector control efforts, as well as contributing 

to further research in the field of entomology. 

Povzetek:  

 

1 Introduction 
One of the primary challenges in vector-borne disease 

control is the lack of a rapid, accurate, and efficient 

method for identifying mosquito larvae that researchers or 

health workers can deploy in the field. Diseases such as 

dengue fever, malaria, chikungunya, Zika, and yellow 

fever remain serious threats to global public health, with 

reported annual mortality exceeding 700,000 cases [1][2]. 

The proximity of mosquito breeding sites to human 

settlements further elevates the risk of disease 

transmission [3][4]. Currently, there are no specific 

treatments or commercially available vaccines for most 

arboviruses, making mosquito population control the only 

effective preventive measure [5][6][7].  

Vector control efforts have traditionally focused on 

adult mosquitoes, whereas a more preventive approach 

involves detecting and eliminating larvae before they 

reach the infectious stage [8]. Early identification of larvae 

is a crucial step in interrupting the transmission cycle. 

However, conventional identification methods rely on 

visual observation, are highly dependent on individual 

expertise, are time-consuming, and are prone to human 

error [9]. Entomological characterization is essential for 

understanding mosquito species behavior, but current 

identification practices remain manual and require 

experienced specialists [10][11][12]. 

In recent years, advancements in deep learning and 

computer vision have created new opportunities for 

automating the detection and classification of organisms, 

including mosquito larvae [13]. This approach can 

improve the speed, accuracy, and scalability of vector 

control programs. Several studies have proposed the use 

of convolutional neural networks (CNNs) for mosquito 
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larva classification [14][15]; however, challenges such as 

high computational demands and hardware limitations 

remain significant, particularly for field deployment on 

mobile devices. Therefore, developing more efficient and 

adaptable automated methods is crucial [11][16]. Given 

that these diseases continue to burden many tropical 

countries, vector prevention and control strategies remain 

the most feasible large-scale intervention for governments 

to curb the spread of arboviruses [17]. 

At the national level, Indonesia—a tropical country 

with over 457 mosquito species from 18 genera—faces a 

high risk of vector-borne disease transmission, further 

exacerbated by its humid climate and high rainfall. Three 

major genera, Aedes, Culex, and Anopheles, dominate 

disease transmission [18]. Hence, there is an urgent need 

for a rapid, accurate, and field-accessible larval 

identification system, notably to support community-

based control programs and swift responses to potential 

outbreaks. 

This study proposes the development of a mosquito 

larva detection and classification system based on deep 

learning, integrating the YOLOv8 architecture for object 

detection and MobileNetV3 for species classification. 

YOLOv8 offers real-time detection capabilities with high 

accuracy under various environmental conditions [19], 

while MobileNetV3 is designed for high computational 

efficiency on resource-constrained devices, such as 

smartphones. The integration of these two models aims to 

produce a solution that is not only accurate and reliable 

but also lightweight and practical for implementation in 

mobile applications [20]. This research is expected to 

improve environmental health management through real-

time field detection of mosquito larvae. 

2 Related studies 
The detection and classification of mosquito larvae 

have become a significant area of research due to their 

relevance in vector-borne disease control and 

 

Table 1: Comparison of related studies in mosquito larvae detection and classification. 

Article Detection Method Classification Advantages Limitations 

A YOLO-Based 

Approach for Aedes 

Aegypti Larvae 

Classification and 

Detection [21] 

YOLOv3 Not applied 

The system is capable of 

detecting Aedes larvae in real-

time on resource-constrained 

devices with an average of 6.8 

FPS and an RMSE of 0.45 for 

Aedes and 0.77 for non-Aedes 

The system still 

experiences 

misclassification, 

unstable predictions, and 

is influenced by lighting 

conditions and the 

imbalance in the test data 

Detection of Mosquito 

Larvae Using 

Convolutional Neural 

Network [8] 

Not applied 
CNN (Keras + 

TensorFlow) 

The model achieves an 

accuracy of 93.95% 

(training), 90.18% 

(validation), and a precision 

of 92.2%. It is deployable on 

a Raspberry Pi and is useful 

for mosquito larvae detection 

The system only detects 

whether an object is a 

larva or not, without 

species detection 

An Improved Transfer 

Learning Based Larvae 

Detection and 

Classification Using 

Densenet121 [22] 

Densenet121 Not applied 

The model achieves high 

accuracy and is relevant for 

larva-based disease detection 

with support from AI 

technology and drones 

Drone data is still limited, 

and the model has not 

been tested in real-world 

conditions with a wide 

range of environmental 

variations 

Classification Of 

Aedes Mosquito Larva 

Using Convolutional 

Neural Networks And 

Extreme Learning 

Machine [14] 

Not applied 

CNN And 

Extreme Learning 

Machine 

The CNN-ELM model with a 

pre-trained CNN achieves an 

accuracy of 98%, an F1-score 

of 99% for Aedes, and an F1-

score of 96% for non-Aedes, 

providing excellent 

classification between Aedes 

and non-Aedes larvae 

The system can only 

classify two types of 

larvae (Aedes and non-

Aedes) and does not 

include other mosquito 

larva species 

Detection and 

Classification of 

Mosquito Larvae 

Based on Deep 

Learning Approach 

[15] 

YOLOv5, FPSnet Not applied 

The YOLOv5 detection 

method achieves 97% 

accuracy with a precision of 

94.4%, recall of 95.7%, and 

an mAP@0.5 of 0.971, 

delivering better detection 

results for Aedes (99.3%), 

Anopheles (97%), and Culex 

(97.8%) 

This study has not 

effectively measured 

computational time and 

resource consumption, 

and the tasks of detection 

and classification are 

separated, requiring 

significant computational 

resources 
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environmental monitoring. Numerous studies have 

utilized advanced techniques like deep neural network 

architectures—particularly YOLOv8 and MobileNetV3—

and have investigated their implementation on portable 

devices such as smartphones to facilitate real-time field 

detection. 

Nevertheless, existing studies face challenges, 

including more representative datasets, higher larval 

classification accuracy, and model optimization for 

efficient operation on resource-constrained devices. Table 

1 presents a comparative overview of the approaches used 

in recent mosquito larva detection and classification 

studies. 

Based on the analysis of Table 1, most prior research 

has concentrated primarily on larva detection without fully 

implementing species-level larval classification. Of the 

five articles reviewed, most employed detection methods 

based on YOLO variants such as YOLOv3 and YOLOv5, 

as well as other CNN architectures like DenseNet121 and 

CNN-ELM. However, only one study integrated a 

classification method using CNN and an Extreme 

Learning Machine. 

Several studies have demonstrated strong performance 

in detection accuracy and even succeeded in deploying the 

models on devices such as Raspberry Pi and drones.  

However, a standard limitation was the lack of 

differentiation among larval species (e.g., Aedes, 

Anopheles, and Culex). This highlights a critical gap 

between detection and specific species classification of 

mosquito larvae—an aspect essential to support vector-

borne disease control efforts. 

As a comparison, a study titled “Detection and 

Classification of Mosquito Larvae Based on Deep 

Learning Approach” [15] utilized YOLOv5 and FPSNet, 

achieving high accuracy in detecting and classifying three 

larval species. Nevertheless, the study also emphasized 

that such accuracy required a large dataset and substantial 

computational resources. 

In contrast to previous approaches, the present study 

employs the YOLOv8 architecture for object detection 

and MobileNetV3 for classifying mosquito larva species. 

This combination enables real-time larva detection while 

efficiently classifying species on mobile devices. 

MobileNetV3 is chosen for its computational efficiency 

on low-resource devices, while YOLOv8 provides 

improved accuracy and speed in detection compared to 

earlier versions. As such, this approach aims to bridge the 

gap identified in prior studies by integrating mosquito 

larvae detection and classification into a single, unified 

system. 

3 Methodology 
This study developed a two‑stage system to detect and 

classify mosquito larvae into three operational classes: 

Aedes, Culex, and an “Unknown” class. The Unknown 

class is defined as non‑Aedes/non‑Culex larvae and, in 

this study, is composed of images from the genera 

Anopheles and Toxorhynchites. The Unknown class is 

included to (i) prevent overconfident misassignment of 

other genera to Aedes/Culex and (ii) better reflect the 

taxonomic diversity that field users may encounter. Unless 

otherwise noted, the same preprocessing and 

augmentation pipeline was applied to all three classes to 

reduce any source‑dependent bias introduced by differing 

image repositories.  

The workflow of this study begins with the dataset 

preparation process. The dataset is divided into three 

subsets: training data, validation data, and testing data. 

The training and validation sets are used to build and 

optimize two separate models: the detection model and the 

 

 

Figure 1: Methodology 



234 Informatica 49 (2025) 231–244                                                                                                                    M.F. Syahputra et al. 

 

classification model. The detection model's training data 

undergo a labeling and annotation process before being 

used for model training and hyperparameter tuning. 

Meanwhile, the classification model is trained and fine-

tuned directly using the training data. 

Once both models are fully trained, the testing phase is 

carried out using the testing dataset. In this phase, the 

detection model is first applied to identify larvae in the test 

images, and the detection results are evaluated. Each 

detected larva is cropped based on its bounding box and 

passed to the classification model to determine its genus. 

The classification results are then evaluated using standard 

performance metrics such as accuracy, precision, and 

recall. The complete research workflow is illustrated in 

Figure 1. 

3.1 Data acquisition 

The dataset used in this study was obtained from two 

primary sources. Images for the Aedes and Culex classes 

were collected in‑house at the Environmental Health 

Engineering and Disease Control Center (BTKLPP) Class 

1 Medan. To build a third class that captures 

non‑Aedes/non‑Culex larvae encountered in practice, we 

constructed an “Unknown” class composed of two 

genera—Anopheles and Toxorhynchites—sourced from 

publicly available repositories. After preprocessing and 

quality control, each class contained 1,460 images. For 

detection, images were resized to 640×640 and annotated; 

for classification, cropped detections were resized to 

360×360 (see 3.2 for preprocessing details). Figure 2 

presents sample images from the dataset used in this study. 

 

Figure 2: Dataset collection 

In this study, the “Unknown” class is explicitly defined 

as non‑Aedes/non‑Culex larvae and consists of images 

from two genera: Anopheles and Toxorhynchites. This 

design reduces over‑confident misassignment of other 

genera to Aedes/Culex and better reflects field variability. 

Anopheles images were obtained from the Roboflow 

Universe “Mosquito Larvae Dataset” project [27] (project 

page cited in References). This repository aggregates 

labeled larval imagery suitable for computer‑vision 

training. For Toxorhynchites, no single consolidated 

public larval dataset was identified. Accordingly, we 

curated images from openly accessible web pages and 

educational videos discovered via generic web search 

(e.g., Google Images/YouTube). Because these materials 

come from heterogeneous hosts and licenses, per‑image 

URLs were not consistently retained during early 

exploratory curation.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: YOLOv8 architecture 
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We include below a reproducible search procedure and 

diagnostic criteria to enable reconstruction of a 

comparable subset. 

We queried public web sources using combinations of 

the following terms: “Toxorhynchites larva”, “elephant 

mosquito larva”, “predatory mosquito larva”, 

“Toxorhynchites rutilus larva”, and “Toxorhynchites 

amboinensis larva”. Candidate images/frames were 

retained only when diagnostic larval characters (below) 

were visible. Representative background literature 

describing Toxorhynchites larval biology and morphology 

is cited to anchor this process. 

Morphological verification. Each Unknown image was 

screened to genus level prior to inclusion. 

• Anopheles: required absence of a respiratory siphon 

and the characteristic horizontal posture parallel to 

the water surface to be discernible in the image, 

following identification keys/notes. 

• Toxorhynchites: required predatory‑larva 

morphology, including large body size and modified 

lateral palatal brushes forming an anteriorly directed 

“basket” during prey capture, as described in 

entomological literature and inventories; comb and 

pecten absent. 

Ambiguous, low‑quality, or non‑diagnostic images 

were excluded. 

Harmonization to control domain shift. To limit any 

cross‑source domain shift introduced by mixing 

institutional and public‑web imagery, we applied the same 

resizing and augmentation policy across Aedes, Culex, 

and Unknown images (see 3.2 Data Cleaning & 

Preprocessing). 

Data availability and licensing note. Anopheles 

materials are accessible via Roboflow Universe [27]. For 

Toxorhynchites, due to heterogeneous licensing and the 

absence of stable per‑image URLs in the early curation, 

we do not redistribute files and cannot provide a complete 

URL list. Instead, we document how images were sourced 

(search recipe above) and how genus identity was verified 

(diagnostic criteria with citations). This preserves 

transparency and replicability of the method while 

respecting third‑party rights. Users can reconstruct a 

comparable subset by following the search procedure and 

verification criteria cited here. 

3.2 Data cleaning & preprocessing 

Data preprocessing was conducted to ensure optimal data 

quality before model training. This process included data 

augmentation and dataset partitioning. The applied 

augmentation techniques involved converting a portion of 

images to grayscale, horizontal and vertical flipping, 

random rotations (90°, 180°, 270°), hue adjustments 

(ranging from -10° to +10° degrees), saturation 

adjustments (-10% to +10%), brightness variations (0–

5%), exposure modifications (-5% to +5%), and the 

addition of noise up to 0.42%. To minimize cross‑source 

domain shift from using different repositories 

(institutional vs public‑web sources), we applied an 

identical resizing and augmentation policy across Aedes, 

Culex, and Unknown images. 

For the classification task, images detected in the 

previous stage were cropped based on their bounding 

boxes and resized to 360×360 pixels. Meanwhile, images 

for the detection task were resized to 640×640 pixels and 

annotated using Roboflow. Following preprocessing, the 

dataset was divided into three subsets: 70% for training, 

15% for validation, and 15% for testing. 

3.3 YOLOv8-Nano 

YOLO (You Only Look Once) was introduced by 

Redmon et al. (2016) as a novel object detection approach 

that integrates speed and accuracy into a single prediction 

stage. Over time, YOLO has undergone several 

enhancements, one of which is YOLOv8, released by 

Ultralytics in 2023 [23]. 

YOLOv8 offers multiple model size variants to 

accommodate application needs, including YOLOv8-

Nano. YOLOv8-Nano is the smallest and lightest variant 

within the YOLOv8 family, explicitly designed for real-

 

 
Figure 4: MobileNetV3 architecture 
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time detection tasks on resource-constrained devices such 

as mobile phones or edge computing platforms. 

YOLOv8-Nano retains the core architectural structure 

of YOLOv8, comprising a backbone, neck, and head, but 

uses fewer parameters to reduce model size and accelerate 

inference speed. Despite its compact design, YOLOv8-

Nano supports multi-scale predictions and adopts an 

anchor-free approach, which enhances the detection 

process's simplicity and speed. 

In this study, YOLOv8-Nano was selected for its 

favorable balance of high inference speed, compact model 

size (approximately 3.2 million parameters), and low 

resource consumption. These characteristics make it 

particularly suitable for implementing mosquito larva 

detection on mobile devices, where real-time performance 

and computational efficiency are essential. 

Figure 3 illustrates the YOLOv8-Nano architecture, 

highlighting its key real-time detection components: the 

backbone for feature extraction, the neck for multi-scale 

feature fusion, and the head for bounding box prediction 

and classification. 

3.4 MobileNetV3 small 

Google first developed MobileNet in 2017 as an efficient 

convolutional neural network architecture designed for 

mobile and embedded systems [24]. MobileNet utilizes 

depthwise separable convolution, which separates the 

filtering and feature combination processes. This 

significantly reduces the number of parameters and 

accelerates inference time [25]. 

MobileNetV3, proposed by [26], is an improvement 

over its predecessors, introducing several key innovations 

such as hard-swish activation, squeeze-and-excitation 

blocks, and a hierarchical block design. MobileNetV3 

employs a novel non-linear activation function known as 

hard-swish (h-swish), a computationally efficient 

modification of the swish function to reduce 

computational load and energy consumption while 

enhancing overall performance. The hard-swish activation 

function is defined as shown in Equation 1 and is used to 

minimize the number of training parameters and reduce 

model complexity and size. 

h − swish(x) = x ∙ α(x) 

(1) 

 α(x) =  
ReLU6(x + 3)

6
 

Where α(x) represents the piecewise linear hard analog 

function. 

MobileNetV3 is available in two variants: Large and 

Small. In this study, MobileNetV3 Small was chosen due 

to its lightweight nature and optimization for resource-

constrained devices. MobileNetV3 Small combines high 

computational efficiency with competitive accuracy, 

making it well-suited for mosquito larva classification 

tasks on mobile devices. 

The MobileNetV3 architecture, depicted in Figure 4, 

serves as the basis for the classification stage. This process 

involves feature extraction through convolutional and 

bottleneck layers, which are key in recognizing visual 

patterns in larval images. The final output of this process 

is a class label prediction, such as Aedes, Culex, or 

Unknown. 

3.5 Evaluation measures 

Model evaluation is a critical phase in developing object 

detection and classification systems, including in this 

study, which employs YOLOv8 for mosquito larvae 

detection and MobileNetV3 Small for mosquito larvae 

classification. Evaluation is conducted to assess the 

model's performance in accurately and efficiently 

recognizing objects. The evaluation metrics used in this 

study are described as follows: 

Accuracy is employed to evaluate the performance of 

the mosquito larvae classification model using 

MobileNetV3 Small. This metric measures the proportion 

of correct predictions (both positive and negative) relative 

to the total number of predictions made. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(TP + TN)

(TP + TN + FP + FN)
 (2) 

 

Precision measures the proportion of true positive 

predictions out of all positive predictions generated by the 

model. Precision is used in evaluating both the 

classification model (MobileNetV3 Small) and the object 

detection model (YOLOv8). 

Precision =  
TP

TP + FP
 (3) 

 

Recall assesses the model’s ability to identify all 

actual positive instances in the data. Similar to precision, 

recall is utilized in the evaluation of both classification and 

detection models. 

Recall =  
TP

TP + FN
 (4) 

 

F1-Score is the harmonic mean of precision and recall 

and is used to evaluate the balance between the two. This 

metric is applied in assessing the performance of both 

classification and detection tasks. 

F1 − Score = 2 ×  
Precision × Recall

Precision + Recall
 (5) 

 

In addition, for the mosquito larvae detection model 

implemented using YOLOv8, an evaluation metric known 

as Mean Average Precision (mAP) is employed. This 

metric is essential for measuring the model's overall 

performance in object detection, as it considers both the 

accuracy of bounding box predictions and object 

classification. The mAP value is derived from the average 

of the Average Precision (AP) scores across all classes, 

providing a comprehensive overview of the model's 

detection accuracy. 

mAP =  
1

N
∑ APi

N

i=1

=  
TP

TP + FP
 (6) 

 

4 Experimental results  
This section presents and analyzes the experimental 

results obtained from the implementation of mosquito 

larvae detection and classification methods using the 

YOLOv8 and MobileNetV3 Small models. This 

experiment aims to evaluate the effectiveness of both 
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models in detecting and classifying mosquito larvae based 

on image data, targeting three specific classes: Aedes, 

Culex, and Unknown. 

4.1 Detection stage with YOLOv8 

4.1.1 Model training and hyperparameter 

tuning 

At this stage, the YOLOv8 model was employed to detect 

mosquito larvae in images with a resolution of 640×640 

pixels. The training process involved tuning several key 

hyperparameters, including the initial learning rate (lr0), 

the final learning rate (lrf), and the number of epochs. The 

results of this process are presented in Table 2. The model 

was evaluated using precision, recall, mAP@0.5, and 

mAP@0.5:0.95 as performance metrics. 

 

Table 2: Hyperparameter Tuning Results of YOLOv8 

No. lr0 Epoch 
mAP 

@0.5 
mAP@ 

0.5:0.95 
P R 

1. 0.0005 50 98.6 77.7 95.8 96.0 
2. 0.00001 30 44.2 30.1 38.1 69.9 
3. 0.00001 60 49.2 35.4 39.5 60.9 
4. 0.00001 100 75.1 55.8 67.1 69.3 

 

Based on the hyperparameter tuning results, the 

configuration with a learning rate (lr0) of 0.0005 and 50 

epochs provided the best performance due to the balanced 

convergence speed and stability, as indicated by achieving 

the highest mAP50 (98.6%) and mAP50-95 (77.7%). 

Lower learning rates required significantly longer training 

and yielded lower performance. 

4.1.2 Annotation distribution analysis 

To ensure the quality of annotation distribution within the 

dataset, an analysis of bounding box distribution was 

conducted using a label collegram visualization, as shown 

in Figure 5. This graph illustrates the distribution of 

annotation parameter pairs: x, y, width, and height. The 

visualization results indicate that most objects are located 

near the center of the image (x ≈ 0.5, y ≈ 0.5), with a 

relatively wide variation in size. This suggests that the 

dataset provides good coverage regarding object position 

and dimensions and is not biased toward specific 

locations. 

 

Figure 5: Label Correlogram illustrating annotation 

distributions within the dataset, highlighting the 

concentration and variations in object positioning and 

dimensions. This visualization indicates good coverage 

and reduces the risk of positional bias 

4.1.3 Model training performance evaluation 

Figure 6 illustrates the stable downward trend in various 

loss metrics—such as box loss, classification loss, and 

distribution focal loss (DFL loss)—indicating that the 

model has become increasingly proficient in recognizing 

patterns and minimizing detection errors during training. 

In addition, evaluation metrics such as precision, recall, 

and mean Average Precision (mAP) exhibit consistent 

upward trends, particularly in mAP50 and mAP50-95, 

which approach optimal values. These results suggest that 

the YOLOv8 model has been effectively trained and 

 

 

Figure 6: Detection model performance graph 
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demonstrates strong performance in detecting and 

classifying mosquito larvae. 

4.1.4 Detection evaluation using confusion 

matrix 

To evaluate the classification performance of the mosquito 

larvae detection model, a confusion matrix was employed, 

as illustrated in Figure 7. This matrix depicts the 

distribution of the model’s predictions relative to the 

actual labels across four classes: Aedes, Culex, Unknown, 

and Background. The main diagonal values represent the 

number of correct predictions, whereas the off-diagonal 

values indicate misclassifications between classes. 

 

 

Figure 7: Confusion matrix for the detection stage 

(YOLOv8‑Nano) on the test set. Rows = True class; 

columns = Predicted class; classes: Aedes, Culex, 

Unknown, Background 

The model performed reasonably well in recognizing 

larvae from the Aedes class, accurately classifying 146 

instances. However, misclassifications occurred: 10 

instances were predicted as Culex, 9 as Unknown, and 55 

as Background. This suggests a degree of ambiguity 

between the object and the background in specific 

samples. 

For the Culex class, the model successfully identified 

161 instances. Misclassifications included 19 instances 

labeled Aedes, 3 as Unknown, and 42 as Background. 

Despite the relatively high accuracy, the misclassification 

into the background remains a challenge that requires 

further optimization. 

The best performance was observed in the Unknown 

class, with 211 instances correctly classified. The 

misclassified instances were relatively low: 15 as Aedes, 

5 as Culex, and 31 as Background. This indicates that the 

model possesses a strong discriminative capability toward 

the Unknown class, which may include larvae with 

atypical morphological features. 

Meanwhile, a few false positives were observed in the 

Background class, where 3 instances were incorrectly 

classified as Unknown. This suggests that although the 

model can generally distinguish between objects and 

background, further efforts are needed to mitigate 

detection errors that may lead to over-detection in real-

world implementations, particularly in systems with 

limited computational resources such as mobile devices. 

The confusion matrix indicates that the model can 

perform object classification satisfactorily, particularly for 

classes with strong data representation. Nonetheless, 

background filtering and inter-class balancing 

improvements are still warranted to further enhance the 

model's robustness. 

Background misclassification analysis. The relatively 

high number of predictions assigned to the Background 

class (e.g., 55 for Aedes, 42 for Culex, and 31 for 

Unknown) suggests several recurring failure modes. First, 

larvae often appear in low‑contrast scenes (e.g., parallel to 

the water surface) where edges fade into the substrate; 

second, visual clutter such as detritus, air bubbles, 

specular reflections, and container boundaries can mimic 

larval contours; third, small or partially occluded larvae 

 

 

Figure 8: Scatter plot comparing maximum detection confidence scores per test image among YOLOv6, YOLOv7, and 

YOLOv8 models. The x-axis represents test image samples, while the y-axis indicates detection confidence scores, 

demonstrating YOLOv8's superior consistency and robustness 
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may occupy few pixels after resizing to 640×640; and 

fourth, mild blur caused by water motion reduces fine 

texture cues. To address these issues, future work will (i) 

enrich training with hard negatives and background‑rich 

crops, (ii) emphasize small‑object sensitivity via larger 

input resolution or tiling and adopt contrast‑focused 

augmentation (e.g., CLAHE/gamma) in place of heavy 

de‑colorization, (iii) refine ambiguous labels through 

targeted re‑annotation/quality control, and (iv) evaluate a 

light segmentation/refinement head to better separate 

larvae from complex water backgrounds. Collectively, 

these steps are expected to reduce false “Background” 

assignments while preserving precision. 

4.1.5 Analysis of detection confidence scores 

Figure 8 presents a scatter plot illustrating the maximum 

detection confidence score obtained from each test image 

using YOLOv6, YOLOv7, and YOLOv8. Each point in 

the plot represents the highest confidence assigned by the 

respective YOLO model to detected objects within a 

single test image. 

The visualization clearly demonstrates that YOLOv8 

achieves the highest and most consistent confidence 

scores, with the majority of points positioned close to the 

maximum confidence value of 1.0. This indicates a robust 

and highly reliable detection capability across the entire 

test dataset. In comparison, YOLOv7 exhibits moderate 

variability in confidence scores, typically ranging between 

approximately 0.5 and 0.9, reflecting somewhat less stable 

detections. On the other hand, YOLOv6, while 

competitive, displays lower consistency and several 

notable outliers below a confidence score of 0.7, 

indicating lower detection reliability for specific cases. 

This comparative analysis emphasizes the superior 

robustness and detection certainty provided by YOLOv8. 

Such high and stable confidence levels are crucial for 

minimizing ambiguous detections and false positives, 

particularly critical for real-time mobile deployment in 

practical vector surveillance systems. Therefore, based on 

these results, YOLOv8 is selected as the primary object 

detection model for deployment in this study. 

4.1.6 Comparison of YOLO versions for 

optimization 

To determine the most optimal detection model for this 

study, a comparative analysis was conducted between 

several versions of YOLO, namely YOLOv6, YOLOv7, 

and YOLOv8. The comparison included evaluations of 

accuracy (mAP@0.5), training duration, and model size. 

This evaluation assessed each model’s effectiveness and 

efficiency for mobile deployment. The comparative 

results are presented in Table 3. 

Table 3: Comparison YOLOv6, YOLOv7, and YOLOv8 

No. Model Map@0.5 
Training 

Time 
Model 

Size 
1. YOLOv6 0.985 1.5 hours 16.9 MB 
2. YOLOv7 0.984 1.8 hours 139 MB 
3. YOLOv8 0.986 0.9 hours 10.7 MB 

Based on Table 3, YOLOv8 demonstrated the best 

performance with an mAP@0.5 score of 0.986, the fastest 

training time of 0.9 hours, and the smallest model size of 

10.7 MB. Although the differences in accuracy among the 

three models were relatively minor, YOLOv8’s efficiency 

in training time and model size make it the most suitable 

choice for a mobile-based mosquito larvae detection 

system. The compact model size facilitates easier 

integration into devices with limited memory and 

computational resources. 

4.2 Classification stage with MobileNetV3-

small 

4.2.1 Larvae classification process 

After the detection stage is performed using the YOLOv8 

model, each detected larvae is marked with a bounding 

box on the original image. The area enclosed by this 

bounding box is then cropped to separate the larvae from 

the background. The cropped result is then used as input 

for the classification process. 

The MobileNetV3-Small model is employed in the 

classification stage to classify mosquito larvae species into 

three classes: Aedes, Culex, and Unknown. MobileNetV3-

Small was selected based on its lightweight architectural 

efficiency and optimal operational capability on mobile 

devices with limited resources. 

 

 

Figure 9: Illustration of the mosquito larvae detection 

and classification input process. The left image shows the 

detection result with a bounding box using YOLOv8, and 

the right image shows the cropped region used as input 

for classification with MobileNetV3-Small 

Figure 9 illustrates the flow of the detection results, 

where the bounding boxes are applied, and then cropped 

to create the larvae images, ready to be used as input for 

the classification stage. 

4.2.2 Tuning hyperparameter 

To optimize classification performance, tuning was 

performed on several key hyperparameters: the learning 

rate and the number of epochs. Evaluation was carried out 

using accuracy (Accuracy), precision (P), recall (R), and 

F1-score metrics. The results of the experiments are 

presented in Table 4. 
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Table 3: Hyperparameter tuning results of MobileNetV3 

No. lr Epoch Accuracy P R 
F1-

Score 

1. 0.0001 30 96.2 99.5 99.0 99.2 

2. 0.00001 30 69.1 91.4 91.9 91.6 

3. 0.00001 60 80.9 98.0 96.6 97.3 

Based on the results shown in Table 4, the combination 

of a learning rate of 0.0001 and 30 epochs was selected as 

optimal because it delivered superior accuracy (96.2%) 

and maintained a balanced trade-off between training 

speed and classification precision compared to lower 

learning rates and increased epochs, which showed no 

significant performance improvement. 

4.2.3 Classification evaluation using confusion 

matrix 

An analysis was conducted using the confusion matrix, as 

shown in Figure 10 to evaluate the classification model's 

performance more comprehensively. This matrix 

represents the distribution of the model's predictions 

against the actual labels for the three target classes: Aedes, 

Culex, and Unknown. 

The evaluation results indicate that the model performs 

excellent classification with a low error rate. For the Aedes 

class, 208 out of 210 samples were correctly classified, 

while the remaining two samples were mistakenly 

predicted as Culex. For the Culex class, 209 out of 210 

samples were accurately identified, and one sample was 

classified as Aedes. For the Unknown class, 208 out of 210 

samples were correctly identified, with two 

misclassifications into the Culex class. 

 

Figure 1: Confusion matrix for the classification stage 

(MobileNetV3‑Small) on the test set. Rows = True class; 

columns = Predicted class; classes: Aedes, Culex, 

Unknown 

 

        
a) MobileNetV1 Confidence Score                                    b) MobileNetV2 Confidence Score 

 
c) MobileNetV3 Confidence Score 

Figure 11: Scatter plot depicting the distribution of classification confidence scores for MobileNetV1, MobileNetV2, 

and MobileNetV3-Small across test images. MobileNetV3-Small shows consistently higher and more stable 

confidence scores, supporting its selection for efficient and reliable mosquito larvae classification on mobile devices 
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4.2.4 Analysis of classification confidence 

The scatter plot in Figure 11 shows the distribution of 

confidence scores generated by the three MobileNet 

variants—MobileNetV1, MobileNetV2, and 

MobileNetV3-Small—on each test image. Each point on 

the scatter plot represents the confidence score of a single 

test image, providing insights into the stability, 

consistency, and certainty of the models' classification 

predictions for mosquito larvae. 

From the visualization, it is evident that MobileNetV3-

Small consistently produces higher and more stable 

confidence scores (mostly above 90%) across the test 

dataset, with less variance compared to MobileNetV1 and 

MobileNetV2. This indicates that MobileNetV3-Small is 

not only superior in terms of parameter efficiency and 

inference speed but also delivers more stable and reliable 

predictions. In contrast, MobileNetV1 and MobileNetV2 

exhibit a wider spread of confidence scores, with several 

predictions at lower confidence levels, suggesting a higher 

degree of uncertainty in their classification decisions. 

Having high and stable confidence scores is particularly 

important for real-world deployment, especially for 

automated mosquito larvae detection and classification on 

mobile devices. A model with consistently high 

confidence reduces the risk of false positives and false 

negatives caused by uncertain predictions. These findings 

reinforce the results presented in Table 5, where 

MobileNetV3-Small achieves competitive accuracy with 

significantly fewer parameters. 

Overall, this scatter plot analysis supports the selection 

of MobileNetV3-Small as the primary classification 

model in this study, highlighting its advantages not only 

in efficiency and accuracy but also in providing 

trustworthy predictions for each test image. 

4.2.5 Comparison of MobileNet architectures 

In addition to hyperparameter tuning, a comparative study 

was conducted on three variants of the MobileNet 

architecture: MobileNet, MobileNetV2, and 

MobileNetV3-Small. The evaluation focused on four key 

aspects: validation loss, accuracy on the validation set, 

final accuracy on the test data, and the total number of 

parameters for each model. The comparison results are 

presented in Table 5. 

Table 4: Comparison of MobileNet, MobileNetV2, 

MobileNetV3 

Model 
Validation 

Loss 

Acc. on 

Validation 

Set 

Final 

Accuracy 
Total 

Parameter 

MobileNet 0.0283 0.9984 0.9676 3,4m 
MobileNet

V2 
0.0326 0.9984 0.9618 2,5m 

MobileNet

V3-Small 
0.0369 0.9984 0.9625 1m 

Although the MobileNet model achieved the highest 

accuracy (0.9676), it used a larger number of parameters 

(3.4 million). On the other hand, MobileNetV3-Small 

demonstrated competitive performance with a final 

accuracy of 0.9625, while using only 1 million parameters. 

This efficiency makes MobileNetV3-Small the most 

suitable choice for deployment on mobile devices with 

limited memory and computational power. Therefore, in 

this study, MobileNetV3-Small was chosen as the primary 

architecture for the mosquito larvae classification stage. 

4.3 Detection result 

Figure 12 illustrates the detection results of mosquito 

larvae using an object detection-based system. The image 

demonstrates that the model can detect two mosquito larva 

species, Aedes and Culex, by displaying red bounding 

boxes surrounding the detected larvae, along with class 

labels and corresponding confidence scores for each 

prediction. In the top-left image, the larva is identified as 

Aedes with a confidence level of 75.27%, whereas in the 

top-right image, the larva is classified as Culex with a 

confidence of 77.70%. Furthermore, the bottom-left image 

shows an Aedes larva with a higher confidence score of 

87.29%, and the bottom-right image detects a Culex larva 

 

Figure 12: Visualization of mosquito larvae detection results for Aedes and Culex on test images, annotated with 

bounding boxes and confidence scores. 
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with a confidence of 85.85%. These relatively high 

confidence values across all detections indicate the model 

performs well in distinguishing between mosquito larva 

species based on microscopic images. These results 

suggest that the developed system can be employed as an 

effective tool for the automatic and efficient identification 

of mosquito larvae, which is highly beneficial for vector-

borne disease surveillance and control efforts. 

4.4 On‑device deployment and real‑time 

results 

To validate real‑time feasibility on mobile hardware, we 

deployed the cascaded YOLOv8‑Nano → 

MobileNetV3‑Small pipeline in an Android app. The app 

performs on‑device detection and then classifies each 

detected larva; both outputs are rendered on screen. Figure 

13 presents three representative screenshots with aligned 

detector–classifier predictions: panels (a) and (b) show 

Culex (YOLOv8: 95.09% / 97.19%; MobileNetV3: 

91.60% / 96.73%), while panel (c) shows Aedes 

(YOLOv8: 94.73%; MobileNetV3: 82.89%). 

5 Discussion 
The experimental results demonstrate that the 

combination of YOLOv8 and MobileNetV3-Small 

architectures can detect and classify mosquito larvae with 

high accuracy while maintaining efficiency in mobile 

deployment. Achieving a mAP@0.5 of 98.6% in the 

detection stage and classification accuracy of 96.2% 

indicates that this integrated system excels in precision 

and inference speed. 

These findings are consistent with previous studies, 

such as [15], where YOLOv5 and FPSNet were employed 

to detect and classify three types of mosquito larvae with 

high accuracy. However, the study did not explicitly 

address model efficiency in mobile environments and 

maintained a separate two-stage computational process for 

detection and classification, which entails higher resource 

demands. In contrast, this study strategically selected the 

lightweight and efficient MobileNetV3-Small architecture 

to overcome limitations while integrating detection and 

classification into a unified and mutually reinforcing 

pipeline. 

Furthermore, compared to studies [21] and [22], which 

focused solely on larvae detection (primarily Aedes) 

without specific species classification, our approach adds 

value by directly identifying Aedes and Culex at the genus 

level while assigning non‑Aedes/Culex specimens—such 

as Anopheles, Toxorhynchites—to an “Unknown” class. 

Thus, the present work provides an integrated and 

real‑time two‑stage pipeline (detection + 3‑class 

classification: Aedes, Culex, Unknown). Distinguishing 

Anopheles as a dedicated class is left for future work. 

Additionally, selecting MobileNetV3-Small as the 

classification model demonstrates that a lightweight 

architecture can still achieve competitive accuracy. As 

shown in Table 5, although the original MobileNet 

achieved a slightly higher final accuracy, its significantly 

more significant number of parameters (3.4 million) 

makes it less ideal for mobile implementation than 

   
a) Aedes (YOLOv8 94.73%; 

MobileNetV3 82.89%) 

b) Culex (YOLOv8 97.19%; 

MobileNetV3 96.73%) 

c) Culex (YOLOv8 95.09%; 

MobileNetV3 91.60%) 

Figure 13: On‑device detection (YOLOv8‑Nano) and classification (MobileNetV3‑Small) running in our mobile app. 

The app displays the detector label and a “Prediction Result” panel listing both YOLOv8 and MobileNetV3 outputs. 
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MobileNetV3-Small, which has only 1 million 

parameters. These findings support the arguments made in 

studies [15] and [8], which emphasize the importance of 

model efficiency for field applications. However, their 

approaches remain limited by the number of classes 

classified or by focusing on binary classification (larvae 

vs. non-larvae). 

These results have significant implications, particularly 

in vector‑borne disease control in endemic areas. 

Genus‑level identification of Aedes and Culex—

combined with an “Unknown” bucket that signals the 

presence of other genera (e.g., Anopheles, 

Toxorhynchites)—can assist health workers or the public 

in taking more targeted preventive actions, such as 

fogging or eliminating mosquito breeding grounds, by the 

primary disease vectors. As outlined in the Conclusion, 

adding a dedicated Anopheles class is planned as future 

work. 

In conclusion, this study offers a technically superior 

approach and makes a practical contribution by supporting 

an adaptive, mobile-friendly vector surveillance system 

that is well-suited for field deployment under resource-

constrained conditions. 

6 Conclusion 
Based on the analysis, design, implementation, and testing 

processes, this study successfully developed a mosquito 

larvae detection and classification system using YOLOv8-

Nano and MobileNetV3‑Small. The system demonstrated 

high performance, achieving a classification accuracy of 

96.2% and a mean Average Precision at Intersection over 

Union of 0.5 (mAP50) of 98.6%. MobileNetV3‑Small’s 

efficiency enables real‑time deployment on commodity 

mobile devices. The system can identify mosquito larvae 

from the Aedes and Culex genera, and recognize an 

‘Unknown’ class that, in this study, explicitly comprises 

the genera Anopheles and Toxorhynchites. 

This research's theoretical contribution lies in 

integrating the anchor-free YOLOv8 detection 

architecture with the lightweight MobileNetV3 

classification model into a unified system optimized for 

mobile platforms. This approach provides a novel 

foundation for developing multi-class object detection 

systems in environmental biology domains where high 

efficiency and precision accuracy are essential. 

Furthermore, this study enhances our understanding of 

how modern convolutional networks can utilize the spatial 

representations of mosquito larvae to enable automatic 

genus-level classification. 

From a practical perspective, the proposed system 

offers an innovative solution for supporting environmental 

health management, particularly in efforts related to 

vector surveillance and control, with increased speed and 

accuracy. By enabling automatic and real-time larvae 

detection, the system can potentially reduce reliance on 

time- and resource-intensive manual identification. Its 

field deployment could facilitate faster responses to 

potential outbreaks and improve the effectiveness of 

mosquito control programs. 

For future development, it is recommended to expand 

the diversity and quantity of training data to enhance the 

model's generalization capabilities across varying lighting 

conditions, backgrounds, and larval types. The explicit 

inclusion of the Anopheles genus as a distinct class could 

further broaden the taxonomic scope of classification. 

Employing newer versions of YOLO may also contribute 

to improved efficiency and accuracy through lighter 

architectures and advanced optimization techniques. 

Interdisciplinary collaboration with entomology experts is 

strongly advised to ensure taxonomic validity and 

maximize the system's practical utility. Lastly, integrating 

geolocation features could extend the system's benefits 

toward mapping mosquito larvae hotspots and supporting 

more comprehensive spatially driven vector control 

strategies. 
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