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Abstract: At present, animation generation and multi-modal interaction in virtual reality environments
still face problems such as low generation quality, poor real-time performance and insufficient fusion
between modes, which seriously restrict the authenticity and interaction efficiency of immersive
experiences. A real-time synthesis and multi-modal interactive optimization method of generative
adversarial network animation for a VR environment is proposed. In animation synthesis, a generation
architecture with a spatiotemporal consistency adversarial training mechanism is constructed, and a
multi-scale feature fusion strategy is combined to achieve high-quality and low-latency animation
generation. Experiments were conducted on the VR (Virtual Reality)-Gesture-Voice dataset (60,000
training samples, 15,000 testing samples) and benchmarked against state-of-the-art (SOTA) models
including VideoGAN and StyleGAN3. Key results: For the isolated GAN synthesis module: average
rendering frame rate = 23.7 FPS (58% higher than VideoGAN), synthesis delay < 4.5 ms; For the end-
to-end VR system: average rendering frame rate = 85-92 FPS (meeting VR’s >72 FPS standard), end-to-
end latency <17 ms (51% lower than StyleGAN3). In the real-time synthesis test of generative adversarial
network (GAN) animation in the VR environment, two sets of key metrics are reported to clarify different
system scopes: For the isolated GAN animation synthesis module (excluding end-to-end transmission and
rendering), the improved algorithm achieved an average rendering frame rate of 23.7 FPS (58% higher
than the traditional method) and controlled the synthesis delay within 4.5 Ms. Regarding system resource
usage, GPU (Graphics Processing Unit) memory consumption is reduced by 0.6 GB, model reasoning

time is reduced by 49.5%, and 85% real-time rendering efficiency can still be maintained at 8K resolution.

Povzetek:

1 Introduction

Under the increasingly mature and wide application of
virtual reality technology, immersive experience has
become one of the important criteria for users to evaluate
the advantages and disadvantages of VR systems [1, 2].
Virtual reality is a visual simulation technology and a
comprehensive system that emphasizes real-time and
interactivity [3]. Generative Adversarial Networks (GANs)
have become foundational for dynamic animation
synthesis. Early works like VideoGAN pioneered video
sequence generation using 3D convolutional layers to
capture spatiotemporal features, but it suffered from high
latency (>42 ms) and poor adaptability to VR’s dynamic
scenes—limitations that make it unsuitable for real-time
interaction [4]. In key industries such as game
entertainment, digital film and television, distance
education, smart medical care, etc., the enabling effect of
VR has become increasingly prominent. Users are no
longer satisfied with the viewing or operation experience
from a single perspective but hope to achieve a more
natural, efficient and intelligent interactive process
through multi-modal information interaction [5, 6]. The
VR system still faces several technical problems that must
be solved urgently. One of the core bottlenecks is the real-
time generation and

efficient interaction of animation content [7]. Can
spatiotemporal consistency constraints integrate into
GANs enhance VR animation realism (e.g., reduce jitter
and dislocation) without sacrificing real-time performance
(e.g., increasing latency)? Can a cross-modal attention
alignment model improve the semantic consistency
between multi-modal inputs (gesture, voice, vision) and
thus enhance interaction accuracy and user satisfaction? [8,
9]

Our method addresses these gaps by reducing GPU
memory consumption by 0.6 GB (vs. Instant NGP) while
maintaining 85% real-time rendering efficiency at 8K
resolution [10, 11]. GAN (Generative Adversarial
Networks)-based video synthesis: GANs for video
generation, such as VideoGAN and ST-GAN, address
temporal consistency but lack optimization for VR’s low-
latency requirements [12, 13]. The real-time animation
synthesis technology based on the generative adversarial
network has become a key technical path to break through
traditional animation's bottleneck and improve the real-
time interaction ability [14]. The VideoGAN model from
2018, evaluated on the VR-Gesture-Voice dataset,
achieved a Fréchet Inception Distance (FID) of 45.2, an
average frame rate (FPS) of 48, a latency of 42
milliseconds, a temporal consistency score of 0.68, and a



450 Informatica 49 (2025) 449-462

semantic alignment accuracy of 78.5%. In 2021,
StyleGAN3 improved these metrics on the same dataset,
with an FID of 38.9, an average FPS of 52, a latency of 35
milliseconds, a temporal consistency score of 0.75, and a
semantic alignment accuracy of 81.2% [15, 16]. Speech
signals from sensors, human posture data collected by
motion capture devices, user facial expressions and other
information  constitute a  high-dimensional and
heterogeneous data system. On this basis, the rapid fusion
of data and semantic unification have become the key
factors affecting the interaction accuracy and system
response speed [17].

2 Research on optimization of
generative adversarial network
architecture in  virtual reality

environment

2.1 Construction of spatio-temporal consistency
adversarial training framework

In virtual reality environment, real-time synthesis of
animation is one of the core technologies to build
immersive experience [18]. Temporal incoherence as
shown in equations (1) and (2), At is the animation frame
generated at time step t; Xt is input data at time step t; Ht—1
is the hidden state of the previous time step; Wg is the
generated network weight; Et is the generation error. Lc is
the generation reconstruction loss; D is the discriminator
function; Al is the regularization coefficient; R is the
weight regular term function. Generative adversarial
network is widely used in virtual scene construction and
animation generation because of its excellent image
generation ability.

A =G(X,,H_ W, )+E (1)

L :i“ X, =D(G(X,,H_ W, )E +A4R(W,) (2)

i=1

Spatiotemporal consistency adversarial training
framework: Generator: 6 convolutional layers (kernel sizes
3x3, 5%5, 3x3, 3x3, 5x5, 3x3) + 2 LSTM layers (hidden
size 512) + 1 self-attention layer (8 heads). Discriminator:
4 convolutional layers (kernel sizes 4x4, stride 2) + 1 fully
connected layer (output 1 for real/fake classification).
Optimizer: Adam (f,=0.5, $,=0.999); learning rate: 0.0002,
decayed by 10% every 50 epochs.

When dealing with continuous animation sequences,
the traditional adversarial training framework often
ignores the logical coherence between timing series and
the structural consistency at the spatial level [19]. As
shown in Equation (3), Mis the mapping output between
timing frames; Fj is the timing mapping network; 6y is the
mapping parameter; A, 4,+; are adjacent animation frames.
During playback, the generated animation exhibits issues
including jitter, incoherence, and spatial misalignment.

M, =F(A.A.:0;) 3)
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Establishing a confrontation training framework with
spatiotemporal consistency constraints has become a key
path to improve the quality of VR animation generation. In
the time dimension, each frame of animation not only
needs to have independent image quality, as shown in
equation (4), L, is the consistency loss of timing cycle; M;
is the inverse mapping function; At is the original frame. It
must also be logically continuous with the frame before
and after. This coherence is the basis for simulating the
laws of real-world motion.

L[:gm_mb(mf(m)ﬁ @)

Introducing the timing loop consistency mechanism
has become a necessary means. This mechanism maps the
current frame to the next frame [20] by constructing
forward and reverse frame mapping relationships, forward
mapping as shown in equations (5) and (6), and H, is the
hidden state of the current time step; X; is the input data;
Wi, b; are the LSTM network weights and biases. S. is the
self-attention output feature; H is the hidden state matrix;
Wi, by is the self-attention weight and bias; O, K and V are
query, key and value matrix respectively; di is the scaling
factor. Then, by reverse mapping back to the original frame,
and comparing the mapping result with the initial frame, a
closed-loop supervision is formed, thus constraining the
generation model to remain coherent in the time dimension.

H, =LSTM(X H W) (5)

QK”

T e

The reconstruction loss measures the pixel-wise error
between the generated frame and the ground-truth frame to
ensure basic image fidelity. It is calculated by comparing
the generated frame with the input data using the mean
squared error.

The temporal consistency loss enforces logical
continuity between adjacent frames using optical flow
consistency. It minimizes the difference between the
predicted next frame and the actual next frame, guided by
the optical flow from the current frame to the next frame.

In order to better model the dynamic evolution
process between frames, the structure with temporal
memory function is used to model the input sequence [21].
Self-attention feature refinement as shown in equations (7)
and (8), 7, is the image frame after spatial transformation;
T is a learnable spatial transformation module; P is the
transformation parameter matrix; 4 is the position
correction vector. L is the spatial consistency loss; C'is the
structure preserving regularity term; A is the regularization
weight. A long-term short-term memory neural network
that can capture short-term changes and long-term
dependencies generates smooth and realistic dynamic
pictures.

S, = SA(H W, b, ) = sottmax(

T, =T(A;P,4) (7)
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L, =ZIIT,, -AlE +4C(T,) (8)

2.2 Real-time animation synthesis mechanism for
multi-scale feature fusion

To realize high-quality and real-time animation generation
in virtual reality environment, on the one hand, it is
necessary to ensure the rich details and accurate semantics
of the composite image [22]. Hidden state as shown in
equations (9) and (10), Ladv is the adversarial loss; BCE
is a binary cross-entropy function; yreal is the real label. R
is multi-scale feature fusion loss; ¢ is a multi-scale feature
extraction function. On the other hand, it is necessary to
meet the strict requirements of VR system for interactive
response speed, and build an animation synthesis
mechanism that can efficiently fuse multi-scale features.

Ladv = Z BCE( DI( A )’yreal ) (9)

R=11(A)-HG(X, oW, DL (10)

Multi-scale feature fusion mechanism: Encoder: 5
convolutional layers (kernel sizes 7x7, 5x5,3x3,3x3,3x3;
downsampling by 2x2 stride) + batch normalization.
Decoder: 5 transposed convolutional layers (mirroring
encoder, upsampling by 2x2 stride) + skip connections
from encoder layers.

Multi-scale feature fusion can not only realize
effective linkage from global semantics to local details, but
also dynamically regulate the action intensity of different
levels of features. As shown in equation (11), Wy(k) is the
generator weight of the k-th iteration; # is the learning rate;
a, p, y are the loss weight coefficients. Make the animation
generation closer to the user's intention and meet the needs
of diversified virtual interaction scenes.

Wg(k+l) :Wg(k) —UVWg(Lc +al; +pL +yL,, ) (11)

At present, it is an effective technical path to adopt
the structure of combining encoder and decoder in
generation network. The encoder part is responsible for
extracting representative feature vectors from multi-modal
input data [23]. Adjacent animation as shown in equation
(12), Z, is the potential representation of encoder output; £
is the encoder network; W,, b. are the encoder weights and
biases. These inputs may include motion capture data,
voice commands, gesture tracks, expression recognition
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results, etc.
Zt = E( Xt ;We ’be ) (12)

Through multi-level convolution operation and
downsampling mechanism [24], as shown in equation (13),
X is the reconstructed output of the decoder; D is the
decoder network; W;, bq are the decoder weights and biases.
The encoder compresses the spatial dimensions of the
input data layer by layer, and extracts semantic features
from local to global scales.

X, =D(Z;W, b,) (13)

3 Multi-modal interactive
driven optimization method

3.1 Cross-modal attention alignment model design

In virtual reality, the user's immersive experience relies on
the synchronous stimulation of multiple senses, including
visual images, auditory sounds, action behaviors and
even tactile feedback [25, 26]. The information of these
modes together constitutes a complex interactive context,
but because each mode has obvious differences in
information structure, expression form, temporal
characteristics and semantic expression, effective fusion of
them has become a key issue in designing multi-modal
interactive systems [27, 28]. The cross-modal attention
alignment model is designed to solve this problem, ensure
semantic consistency, response consistency and timing
consistency among different modalities, and improve the
expressiveness and interactivity of animation driven by the
generative adversarial network [29, 30]. It is necessary to
build a stable and efficient multi-modal feature extraction
module so that the data of each modal can obtain a
complete representation of its semantic depth and
structural features before being sent to a unified processing
flow. A convolutional neural network with strong
representation ability is usually used to extract its spatial
structure features for visual data. This type of network can
capture key elements such as edges, textures, object shapes,
and scene layout in images. For audio modalities, deep
neural networks are widely used in spectrum analysis and
time-frequency feature modelling of audio signals, such as
extraction of Mel frequency cestrum coefficients, pitch
analysis and speech rhythm modelling. Figure 1 shows a
real-time composite graph of VR-generated adversarial
network animation. At the same time, the action data has
typical time series attributes, and its dynamic evolution
process needs to be modelled through a recurrent neural
network or Transformer structure based on an attention
mechanism.

data-
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Figure 1: Real-time composite diagram of VR generated adversarial network animation

When these modal features are extracted separately,
alignment and fusion problems remain. Since different
modalities express different perspectives of the same
interaction semantics, it is necessary to correlate and
weight them dynamically at the feature level. The cross-
modal attention mechanism is introduced, which becomes
a bridge connecting various modes. The model calculates
the similarity matrix between any two modes and obtains
the most critical modal contribution degree in the current
context by analyzing the correlation degree between
features. In order to enhance the modelling ability, the
bilinear attention mechanism is adopted to weigh the
features of one mode based on the features of another
mode. The features of auditory data are used as query
vectors and matched with visual data as key-value vectors,

thus guiding the model to recognize the direct correlation
between voice commands and image animations. In
human-computer interaction, this mechanism can help the
model accurately respond to the animation actions
indicated by voice commands, thereby improving the
intuition and response accuracy of the interaction. In order
to more comprehensively explore the latent semantic
connections between different modes, introducing a multi-
head attention mechanism has also become one of the
important designs. Figure 2isa cross-modal attention
alignment model training diagram. This mechanism allows
the model to model the correspondence between
modalities in parallel from multiple angles, from multiple
angles such as spatial concerns, temporal keyframes, and
semantic domain labels. Feature cross-comparison.
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Figure 2: Training diagram of cross-modal attention alignment model

Many current strategies based on transfer learning
also demonstrate the powerful capabilities of pre-trained
models in multi-modal feature extraction and
representation. Using visual network models pre-trained
on large data sets of images, such as VGG, AlexNet, or

ResNet, can directly migrate their feature extraction
capabilities when processing visual parts in VR animations.
Table 1 is a feature comparison table of multi-modal data
sets in a VR environment. For audio and action modes, you
can also rely on large-scale public data sets for pre-training
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and then fine-tune specific tasks through a small number
of labelled samples to achieve the model in specific

Informatica 49 (2025) 449-462 453

scenarios. Efficient adaptation in scenarios.

Table 1: Comparison table of characteristics of multi-modal data sets in VR environment

Component

Structure and Parameters

Generator

6 Convolutional Layers (kernel sizes: 3x3, 5x5, 3x3, 3x3, 5x5, 3x3; activation: ReLU)2 LSTM
Layers (hidden size: 512; dropout rate: 0.2)1 Self-Attention Layer (8 heads; scaling factor dk=V512)

Discriminator

4 Convolutional Layers (kernel size: 4x4; stride: 2; activation: LeakyReLU, 0=0.2)1 Fully
Connected Layer (output dimension: 1; activation: Sigmoid)

Optimizer

Adam Optimizer (31=0.5, p2=0.999) Learning Rate: 0.0002 (decayed by 10% every 50 epochs)

3.2 Interaction delay optimization for cognitive
load perception

In virtual reality interaction, interaction delay has a
particularly significant impact on user experience. In a
highly immersive interactive environment, delay will
destroy the user's sense of continuity and reality of the
virtual world and cause dizziness, dizziness, and other
symptoms of discomfort. More importantly, interaction
delay will also significantly impact users' cognitive load,
increase their pressure to process information and reduce
interaction efficiency and experience satisfaction. In the
real-time synthesis framework of VR animation with the
generative adversarial network as the core, introducing
cognitive load perception mechanism and optimizing
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interaction delay has become an important direction in
system design. In order to realize the interactive
optimization of cognitive load perception, it is necessary
to establish a model that can dynamically perceive the
current cognitive state of users. This model should be
based on multi-source  perception data  and
comprehensively analyze the physiological signals and
behavioral feedback generated by users in a VR
environment. Figure 3 shows the quality evaluation
diagram of adversarial network animation generated in a
VR environment. Eye movement data is important for
evaluating users' attention and thinking burden.
Relationship between anomaly detection threshold (x-axis,
range: 0.5-2.5) and animation structural consistency score
(y-axis, range: 1.7-2.4; higher = better continuity).
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Figure 3: Quality evaluation diagram of generated adversarial network animation in VR environment

Training Hardware: NVIDIA RTX 4090 GPU (24 GB
VRAM), AMD Ryzen 9 7950X CPU (16 cores), 64 GB
DDRS5 RAM, 2 TB SSD. Software: Ubuntu 22.04 LTS,
CUDA 12.2, CUDNN 8.9.4. Cross-Attention: Linear
projection dropout = 0.1; bilinear kernel initialization = He
normal. Compression Model: Latent code entropy coding
= arithmetic coding; perceptual loss layer = VGG-16

conv4 3. However, when the user's cognitive load is
detected to increase, the system needs to adjust the strategy
appropriately; instead of unthinkingly pursuing the lowest
delay, it adopts the delay tolerance strategy to avoid
increasing the user's burden due to too high information
density or too fast feedback frequency. In animation
synthesis, the feedback action can be moderately
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simplified and unnecessary high-frequency rendering can
be reduced. In the process of voice command response, the
rhythm and content richness of the system response are
controlled to make it more in line with the user's
processing ability to achieve a dynamic balance between
interaction efficiency and the user's cognitive tolerance.
Figure 4 is a multi-modal interactive data alignment
accuracy evaluation diagram. In addition to the adjustment
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at the interactive level, a multi-modal data transmission
strategy with service quality as the core also needs to be
introduced into the network transmission mechanism.
Since VR systems usually need to transmit information in
multiple modes, including visual images, audio speech,
tactile feedback and action data, different modes have
significantly different transmission delays and bandwidth
requirements.

= Codii]
== Codit2

N
[}
—

g
o

[
—
—
T 1
T
—
1

Energy Consumption-Mnw2
—
2 !

—_
o0

1.7 JAREE
05 1.0 15 20 25 3.0 35 40 45
Cross-Modal Alignment Error

Figure 4: Multi-modal interactive data alignment accuracy evaluation diagram

Interactive delay optimization of cognitive load
awareness also involves resource scheduling and
intelligent allocation of computing resources. The system
needs to dynamically allocate computing resources such as
CPU and GPU according to the user's current interaction
complexity and cognitive load level, priorities ensuring the
processing capabilities of key interaction links, and avoid
wasting resources on low-priority tasks. When the user is
focused on performing a complex task, the system can
temporarily reduce the priority of background audio
processing and focus computing resources on the real-time

response of animation synthesis and motion capture. Table
2 is a performance comparison table of multi-modal
interactive optimization methods in a VR environment.
This resource scheduling mechanism based on the
cognitive state can significantly improve system operating
efficiency and delay experience. A 10-minute session with
three standardized tasks: (1) Gesture control (adjusting
virtual object position via 5 predefined gestures, e.g.,
pinch/swipe); (2) Voice command response (executing 8
commands, e.g., "rotate animation"); (3) Tactile interaction
(responding to collision-induced vibration).

Table 2: Performance comparison of multi-modal interactive optimization methods in VR environment

Method FID (lower Temporal Consistency | Gesture Recognition | Voice Response
better) (higher better) Acc (%) Time (ms)

Baseline GAN 45.2 0.68 78.5 35

Ours (w/o cross-attention) 38.7 0.75 82.3 28

Ours 29.1 0.89 92.3 11
: . unified semantic space. A mechanism is needed to
4 MUItIm_Od_aI da_ta_ f_USIOn and transform this heterogeneous information into a unified
transmission optimization semantic space to facilitate subsequent joint processing
L s and efficient response. Designing a cross-modal feature

4.1 Cross-modal characteristic  distillation

network design

In virtual reality, realizing the effective fusion of multi-
modal information is an important technical link to
promote the improvement of real-time synthesis quality of
generative adversarial network animation. Multi-modal
data (images, speech, action trajectories) differ in
perceptual form and semantic expression, requiring

distillation network has become a key step. Its core goal is
to integrate deep features extracted from different modes
through a unified semantic representation to improve the
relevance and interpretability of multi-modal information.
The basic architecture of a cross-modal feature distillation
network usually includes two main parts: the teacher and
student networks. Teacher networks are constructed for
different modes, and the existing pre-trained models are
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used to extract high-quality deep-level feature information.

Figure 5 is an evaluation diagram of time series motion
capture data feature changes. Residual network models or
visual Transformer structures trained on large-scale image
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data sets can be selected for visual modal data. They show
strong perception and context modelling capabilities in
image recognition and semantic segmentation tasks.
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Figure 5: Evaluation diagram of time series characteristic change of motion capture data

The design of the student network emphasizes the
ability of cross-modal feature fusion. In terms of structure
arrangement, the student network usually adopts a multi-
branch input structure; each branch corresponds to a modal
input, and the basic feature representation is obtained by
parallel processing. In the feature fusion layer, the cross-
connection mechanism is introduced so that the
information between different modes can penetrate each
other to a certain extent. The spatial structure information
in image features can be combined with the action logic in
text descriptions to form more expressive compound
semantic features. In order to guide students' networks to
effectively learn the knowledge of teachers' networks, a
knowledge distillation mechanism is introduced in the
training process. Distillation loss not only requires the
student network to be close to the results of the teacher
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network on the individual output of each modal but also
requires its fused multimodal output to be consistent with
the output of the teacher network, ensuring semantic
alignment. Figure 6 is a performance evaluation diagram
of compression coding under different bandwidth
conditions. In order to enhance the network's ability
to model latent semantic connections between modes, a
comparative distillation strategy is further introduced. For
the proposed GAN method, PSNR increases from 31.2 dB
(1 Mbps) to 39.7 dB (10 Mbps), with a marginal gain of
0.8 dB when bandwidth exceeds 8 Mbps—indicating
saturation at high bandwidth. In contrast, H.265’s PSNR

(Peak Signal-to-Noise Ratio) only reaches 36.8 dB (10
Mbps), 2.9 dB lower than the proposed method.
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Figure 6: Compression coding performance evaluation diagram under different bandwidth conditions

4.2 Bandwidth-sensitive data compression coding

In virtual reality, the system must process and transmit
much data from different modes, including vision, audio,
speech, motion capture, tactile feedback and other

information. However, these modes differ significantly in
data structure, transmission frequency, real-time
requirements and compression sensitivity. Due to the
limitation of bandwidth resources, especially in mobile or
remote collaborative VR scenarios, efficient compression
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and accurate transmission of multi-modal data have
become the key to system performance optimization.
Bandwidth-sensitive data compression coding technology
came into being. Its goal is to minimize data redundancy,
improve network resource utilization efficiency, and
provide a stable data foundation for real-time animation
synthesis and multi-modal interaction without sacrificing
user experience. Visual modal data, video streams, and 3D
models, the most informative parts of VR scenes, have
extremely high data density. Freezed layers: 70% of the
pretrained generator layers (to preserve motion generation
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ability); only cross-attention and cognitive load modules
were fine-tuned. Convergence criterion: Cross-modal
alignment error (mean absolute error between gesture and
voice features) stabilized within £0.005 for 3 consecutive
epochs. Figure 7 is the convergence evaluation diagram of
spatiotemporal consistency adversarial training error.
Introducing deep learning methods and video compression
models based on generative adversarial networks has
become an effective alternative. At epoch 100, all three
losses stabilize (variance < 0.01), confirming the
spatiotemporal framework’s convergence.
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Figure 7: Convergence evaluation diagram of spatiotemporal consistency adversarial training error

Regarding audio modality, because VR systems have
high requirements for spatial sound effects and presence,
it is difficult to meet the dual requirements of real-time and
spatial positioning only by relying on traditional
compression algorithms such as MP3 or AAC. The audio
compression method of neural networks with attention
mechanisms has become a hot spot in current research.
This method dynamically captures representative
important frequency components in audio signals through
the attention mechanism. It suppresses redundant
background noise and unimportant timing characteristics
so that the compressed audio retains semantic integrity and
reduces the amount of transmitted data. Encoder: 4
convolutional layers (kernel size 3x3, stride 2, output
channels 64—128—256—512) + batch normalization +
ReLU; outputs a 128-dim latent code (compression ratio

~32:1 for 1080p frames). Decoder: 4 transposed
convolutional layers (kernel size 3%3, stride 2, output
channels 512—256—128—3) + batch normalization +
tanh; reconstructs the original frame from the latent code.
Discriminator: 5 convolutional layers (kernel size 4x4,
stride 2, output channels 64—128—256—512—1) +
LeakyReLU (0=0.2); distinguishes between "real original
frames" and '"reconstructed frames." Figure 8 is a
comparative evaluation diagram of the multi-scale feature
fusion effect. Haptic feedback data and user operation
instructions are highly timely, and their delay sensitivity is
extremely high. Any packet loss or delay may directly
affect the user's interaction continuity, so it should be
encoded as high-priority data packets, prioritizing the
occupation of bandwidth resources for real-time
transmission.
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Figure 8: Comparison and evaluation diagram of multi-scale feature fusion effect

5 Experimental analysis

Hardware and measurement setup: GPU: NVIDIA RTX
4090; CPU: AMD Ryzen 9 7950X; VR HMD: Oculus
Quest Pro. Measurement method: End-to-end latency was
recorded using frame-time histograms (resolution 1ms)
and per-stage timings (encoder: ~3ms, generator: ~8ms,
decoder: ~4ms, rendering: ~2ms).

For the end-to-end VR system (integrating the
proposed GAN animation synthesis module, real-time
rendering, multi-modal data transmission, and interaction
response), the improved algorithm achieved an average
rendering frame rate of 85-92 FPS (meeting VR real-time
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Figure 9: Cognitive load perception interaction delay and user experience evaluation diagram

2.5

Compared with strong baselines: StyleGAN3 (52 FPS,
35 ms latency) and VideoGAN (48 FPS, 42 ms latency),
our method shows 63% and 71% higher frame rates, with
51% and 59% lower latency, respectively. Figure 10 is a
cross-modal attention weight distribution evaluation
diagram. By accurately calculating multi-modal alignment
and semantic consistency indicators, the robustness and

standards of >72 FPS) and an end-to-end latency of <17
ms (below the 20 ms threshold for immersive VR
experiences). For comparison, the isolated GAN animation
synthesis module (excluding transmission and rendering)
achieved 23.7 FPS (58% higher than traditional methods)
and a synthesis delay of <4.5 ms, consistent with the
metrics reported in the abstract. Figure 9 is the cognitive
load perception interaction delay and user experience
evaluation diagram. A series of animation segments are
generated by training the basic generation model without
an optimization mechanism and the improved model with
an optimization mechanism.
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sensitivity of the model in dealing with semantic
relationships between different modes are verified. This
confirms that the model prioritizes semantic correlation
between gesture trajectory and voice direction
commands—explaining the 92.3% gesture recognition
accuracy.
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Figure 10: Cross-modal attention weight distribution evaluation diagram

A within-subjects design was adopted, where each Table 4: Performance Comparison of Model Variants

participant tested three systems: (1) Baseline (VideoGAN)),
(2) Ours w/o cross-attention, (3) Full proposed model. The
order of systems was randomized to reduce learning
effects. Each test session lasted 15 minutes (5 minutes per
system).

Reduced to 95 ms. User experience implication: This
value is below the 100 ms threshold for “seamless
interaction” (per VR user experience standards), with 90%
of participants reporting “no perceived delay” in the user
study. The practicability and performance of cross-modal
feature distillation networks and bandwidth-sensitive
compression coding strategies are evaluated in multi-
modal data fusion and transmission optimization
experiments. The contribution of each core component
was verified through an ablation study, with results
summarized in Table 3.

Table 3: Ablation study results of the proposed model

FID Temporal PSNR
Model Variant (Lower Cons_lstency (.dB’
Better) (Higher Higher
Better) Better)
Full Proposed
Model (Ours) 29.1 0.89 35.2
Ours w/o
. 41.4 325 (-
Spatiotemporal (+12.3) 0.68 (-0.21) 2.7)
Loss
Ours w/o Multi- 335 30.1 (-
Scale Fusion (+4.4) 0.85(-0.04) 5.1)
Ours w/o Cross- 38.7 31.8 (-
Modal Attention | (+9.6) | 27° (014) | "5y

Controlled to 12.34 ms. User experience implication:
Low  tactile delay  reduces “action-feedback
asynchrony”—only 5% of participants reported “vibration
mismatch” (vs. 32% for VideoGAN). Table 4 presents a
comprehensive ablation study of all core components,
including metrics requested by the reviewer (FID, gesture
accuracy, FPS, voice latency).

Avg.
Method FID | Gesture | "opg
Variant (Lower | Recognition (Higher
0,
Better) Acc (%) Better)
Baseline
(VideoGAN) | 40?2 785 48
Ours w/o
. 41.4 90
Spatiotemporal (+12.3) 89.7 (-2.6) (+42)
Loss
Ours w/o
. 335 92
Multi-Scale 90.2 (-2.1)
Fusion (+4.4) (+44)
Ours w/o
Cross- (f’_g'g) 76.5 (-15.8) ( +8fl)
Attention '
Ours w/o
Cognitive- (f’_;i) 91.5 (-0.8) (+8379)
Load Ctrl '
Full Proposed 88
Model 29.1 923 (+40)
Figure 11 shows a real-time monitoring and

evaluation diagram of the VR animation generation frame
rate. Removing spatiotemporal consistency loss: FID
increased by 12.3, temporal consistency dropped by 0.21.
Removing multi-scale fusion: Animation detail score
(user-rated) decreased by 1.8/10, rendering time reduced
by 1.2ms. Removing cross-modal attention: Gesture-voice
alignment error increased by 35%, response time
shortened by 3ms but accuracy dropped to 76.5%.
Resampled all motion sequences to 30 FPS (uniform time
step) to align with VR display standards. Normalized
skeleton joint coordinates to [0, 1] using min-max scaling,
eliminating scale differences between subjects. Removed
invalid sequences (e.g., joint coordinate outliers, motion
discontinuities) via z-score filtering (z > 3), resulting in a
final 82,000/14,000 (Mixamo) and 60,000/17,000 (CMU)
sequences.
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Figure 11: Real-time monitoring and evaluation diagram of VR animation generation frame rate

6 Discussion

In terms of real-time performance, the proposed method
achieves 85-92 FPS (end-to-end system) and 17 ms
latency, representing a 63% FPS increase and 51% latency
reduction compared to StyleGAN3 (52 FPS, 35 ms). This
improvement stems from two key designs: (1) The
spatiotemporal consistency adversarial training framework
reduces inter-frame jitter without increasing computational
cost—unlike StyleGAN3, which relies on redundant 3D
convolutions; (2) The multi-scale feature fusion
mechanism (Section 2.2) optimizes feature extraction
efficiency, cutting decoder processing time by 1.2 ms (vs.
DRGAN’s 2.8 ms).

In animation quality, the proposed method’s FID of
29.1 is 16.1 lower than VideoGAN (45.2) and 7.4 lower
than DRGAN (36.5). This is because the temporal loop
consistency mechanism (Equation 5-6) enforces frame
coherence, while the self-attention layer in the generator
enhances  local  detail  preservation—addressing
VideoGAN’s “blurry texture” and DRGAN’s “temporal
dislocation” issues (observed in user study feedback: 81%
of participants rated the proposed method’s animation
“more realistic” than DRGAN).

7 Conclusion

Several innovative algorithm models are constructed, and
experiments verify their practicability and effectiveness.
The results show that the collaborative construction of
optimization strategies for generative adversarial networks
and multi-modal interaction mechanisms can significantly
promote VR systems' immersion, interaction naturalness
and system stability.

By constructing a spatio-temporal consistency
adversarial training framework, the problems of dynamic
blur and inter-frame jump that can easily occur in VR
animation generation with traditional GAN are solved.
This framework enhances the coherence of the generative
model in the time dimension and improves the ability to
characterize the action details. The multi-scale feature
fusion mechanism is introduced to effectively fuse
semantic information at different levels, significantly

improving the generated animation's fineness and realism.
The experimental results show that compared with the
unoptimized model, the optimized animation has obvious
improvements in structural continuity, texture fineness and
user satisfaction score.

Regarding interaction optimization, a cross-modal
attention alignment model solves the semantic differences
and alignment problems among multi-modal inputs (such
as vision, hearing, and action). The model can dynamically
adjust the feature weights according to the semantic
correlation between different modes, achieving a more
accurate multi-modal fusion effect. By introducing the
cognitive load sensing mechanism, the system
dynamically adapts its interaction response strategy based
on the user’s real-time physiological and behavioral
signals and balance the delay control and cognitive burden.
Experimental data show that this mechanism effectively
reduces the operating pressure of users in high-load
situations and improves the adaptability and fault tolerance
of VR interactive systems.

To further evaluate the comprehensive performance
of the proposed system, additional key metrics were
measured under the same hardware setup (NVIDIA RTX
4090 GPU, AMD Ryzen 9 7950X CPU, Oculus Quest Pro
HMD) and test dataset (VR-Gesture-Voice + Mixamo),
with three repeated trials to ensure statistical stability:
Overall system response time (from user input to full
interaction feedback): Reduced to 95 ms; Tactile feedback
delay (critical for VR haptic interaction): Controlled to
12.34 ms; For 67 VR animation scenes, the model
parameter compression rate reaches 33.3%, training time
is shortened to 5 days, and the PSNR of generated
animations reaches 35.2 dB (12.3% higher than the
baseline). In user experience tests, multi-modal interaction
reduces the operational error rate by 26.5%.
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