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Abstract: At present, animation generation and multi-modal interaction in virtual reality environments 

still face problems such as low generation quality, poor real-time performance and insufficient fusion 

between modes, which seriously restrict the authenticity and interaction efficiency of immersive 

experiences. A real-time synthesis and multi-modal interactive optimization method of generative 

adversarial network animation for a VR environment is proposed. In animation synthesis, a generation 

architecture with a spatiotemporal consistency adversarial training mechanism is constructed, and a 

multi-scale feature fusion strategy is combined to achieve high-quality and low-latency animation 

generation. Experiments were conducted on the VR (Virtual Reality)-Gesture-Voice dataset (60,000 

training samples, 15,000 testing samples) and benchmarked against state-of-the-art (SOTA) models 

including VideoGAN and StyleGAN3. Key results: For the isolated GAN synthesis module: average 

rendering frame rate = 23.7 FPS (58% higher than VideoGAN), synthesis delay ≤ 4.5 ms; For the end-

to-end VR system: average rendering frame rate = 85–92 FPS (meeting VR’s ≥72 FPS standard), end-to-

end latency ≤17 ms (51% lower than StyleGAN3). In the real-time synthesis test of generative adversarial 

network (GAN) animation in the VR environment, two sets of key metrics are reported to clarify different 

system scopes: For the isolated GAN animation synthesis module (excluding end-to-end transmission and 

rendering), the improved algorithm achieved an average rendering frame rate of 23.7 FPS (58% higher 

than the traditional method) and controlled the synthesis delay within 4.5 Ms. Regarding system resource 

usage, GPU (Graphics Processing Unit） memory consumption is reduced by 0.6 GB, model reasoning 

time is reduced by 49.5%, and 85% real-time rendering efficiency can still be maintained at 8K resolution. 

Povzetek: 

 

1 Introduction 
Under the increasingly mature and wide application of 

virtual reality technology, immersive experience has 

become one of the important criteria for users to evaluate 

the advantages and disadvantages of VR systems [1, 2]. 

Virtual reality is a visual simulation technology and a 

comprehensive system that emphasizes real-time and 

interactivity [3]. Generative Adversarial Networks (GANs) 

have become foundational for dynamic animation 

synthesis. Early works like VideoGAN pioneered video 

sequence generation using 3D convolutional layers to 

capture spatiotemporal features, but it suffered from high 

latency (≥42 ms) and poor adaptability to VR’s dynamic 

scenes—limitations that make it unsuitable for real-time 

interaction [4]. In key industries such as game 

entertainment, digital film and television, distance 

education, smart medical care, etc., the enabling effect of 

VR has become increasingly prominent. Users are no 

longer satisfied with the viewing or operation experience 

from a single perspective but hope to achieve a more 

natural, efficient and intelligent interactive process 

through multi-modal information interaction [5, 6]. The 

VR system still faces several technical problems that must 

be solved urgently. One of the core bottlenecks is the real-

time generation and  

 

efficient interaction of animation content [7]. Can 

spatiotemporal consistency constraints integrate into 

GANs enhance VR animation realism (e.g., reduce jitter 

and dislocation) without sacrificing real-time performance 

(e.g., increasing latency)? Can a cross-modal attention 

alignment model improve the semantic consistency 

between multi-modal inputs (gesture, voice, vision) and 

thus enhance interaction accuracy and user satisfaction? [8, 

9] 

Our method addresses these gaps by reducing GPU 

memory consumption by 0.6 GB (vs. Instant NGP) while 

maintaining 85% real-time rendering efficiency at 8K 

resolution [10, 11]. GAN (Generative Adversarial 

Networks)-based video synthesis: GANs for video 

generation, such as VideoGAN and ST-GAN, address 

temporal consistency but lack optimization for VR’s low-

latency requirements [12, 13]. The real-time animation 

synthesis technology based on the generative adversarial 

network has become a key technical path to break through 

traditional animation's bottleneck and improve the real-

time interaction ability [14]. The VideoGAN model from 

2018, evaluated on the VR-Gesture-Voice dataset, 

achieved a Fréchet Inception Distance (FID) of 45.2, an 

average frame rate (FPS) of 48, a latency of 42 

milliseconds, a temporal consistency score of 0.68, and a 
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semantic alignment accuracy of 78.5%. In 2021, 

StyleGAN3 improved these metrics on the same dataset, 

with an FID of 38.9, an average FPS of 52, a latency of 35 

milliseconds, a temporal consistency score of 0.75, and a 

semantic alignment accuracy of 81.2% [15, 16]. Speech 

signals from sensors, human posture data collected by 

motion capture devices, user facial expressions and other 

information constitute a high-dimensional and 

heterogeneous data system. On this basis, the rapid fusion 

of data and semantic unification have become the key 

factors affecting the interaction accuracy and system 

response speed [17]. 

2 Research on optimization of 

generative adversarial network 

architecture in virtual reality 

environment 

2.1 Construction of spatio-temporal consistency 

adversarial training framework 

In virtual reality environment, real-time synthesis of 

animation is one of the core technologies to build 

immersive experience [18]. Temporal incoherence as 

shown in equations (1) and (2), At is the animation frame 

generated at time step t; Xt is input data at time step t; Ht−1 

is the hidden state of the previous time step; Wg is the 

generated network weight; Et is the generation error. Lc is 

the generation reconstruction loss; D is the discriminator 

function; λ1 is the regularization coefficient; R is the 

weight regular term function. Generative adversarial 

network is widely used in virtual scene construction and 

animation generation because of its excellent image 

generation ability. 
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Spatiotemporal consistency adversarial training 

framework: Generator: 6 convolutional layers (kernel sizes 

3×3, 5×5, 3×3, 3×3, 5×5, 3×3) + 2 LSTM layers (hidden 

size 512) + 1 self-attention layer (8 heads). Discriminator: 

4 convolutional layers (kernel sizes 4×4, stride 2) + 1 fully 

connected layer (output 1 for real/fake classification). 

Optimizer: Adam (β1=0.5, β2=0.999); learning rate: 0.0002, 

decayed by 10% every 50 epochs. 

When dealing with continuous animation sequences, 

the traditional adversarial training framework often 

ignores the logical coherence between timing series and 

the structural consistency at the spatial level [19]. As 

shown in Equation (3), Mf is the mapping output between 

timing frames; Fs is the timing mapping network; θf is the 

mapping parameter; At, At+1 are adjacent animation frames. 

During playback, the generated animation exhibits issues 

including jitter, incoherence, and spatial misalignment. 

 

1f s t t fM F ( A ,A ; )+=  (3) 

Establishing a confrontation training framework with 

spatiotemporal consistency constraints has become a key 

path to improve the quality of VR animation generation. In 

the time dimension, each frame of animation not only 

needs to have independent image quality, as shown in 

equation (4), Lt is the consistency loss of timing cycle; Mb 

is the inverse mapping function; At is the original frame. It 

must also be logically continuous with the frame before 

and after. This coherence is the basis for simulating the 

laws of real-world motion. 
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Introducing the timing loop consistency mechanism 

has become a necessary means. This mechanism maps the 

current frame to the next frame [20] by constructing 

forward and reverse frame mapping relationships, forward 

mapping as shown in equations (5) and (6), and Ht is the 

hidden state of the current time step; Xt is the input data; 

W1, b1 are the LSTM network weights and biases. Sc is the 

self-attention output feature; H is the hidden state matrix; 

Ws, bs is the self-attention weight and bias; Q, K and V are 

query, key and value matrix respectively; dk is the scaling 

factor. Then, by reverse mapping back to the original frame, 

and comparing the mapping result with the initial frame, a 

closed-loop supervision is formed, thus constraining the 

generation model to remain coherent in the time dimension. 

 

1t t t l lH LSTM( X ,H ;W ,b )−=  (5) 
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The reconstruction loss measures the pixel-wise error 

between the generated frame and the ground-truth frame to 

ensure basic image fidelity. It is calculated by comparing 

the generated frame with the input data using the mean 

squared error. 

The temporal consistency loss enforces logical 

continuity between adjacent frames using optical flow 

consistency. It minimizes the difference between the 

predicted next frame and the actual next frame, guided by 

the optical flow from the current frame to the next frame. 

In order to better model the dynamic evolution 

process between frames, the structure with temporal 

memory function is used to model the input sequence [21]. 

Self-attention feature refinement as shown in equations (7) 

and (8), Tp is the image frame after spatial transformation; 

T is a learnable spatial transformation module; P is the 

transformation parameter matrix; Δ is the position 

correction vector. Ls is the spatial consistency loss; C is the 

structure preserving regularity term; λ2 is the regularization 

weight. A long-term short-term memory neural network 

that can capture short-term changes and long-term 

dependencies generates smooth and realistic dynamic 

pictures. 

 

p tT T( A ;P, )=  (7) 
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2.2 Real-time animation synthesis mechanism for 

multi-scale feature fusion 

To realize high-quality and real-time animation generation 

in virtual reality environment, on the one hand, it is 

necessary to ensure the rich details and accurate semantics 

of the composite image [22]. Hidden state as shown in 

equations (9) and (10), Ladv is the adversarial loss; BCE 

is a binary cross-entropy function; yreal is the real label. R 

is multi-scale feature fusion loss; ϕ is a multi-scale feature 

extraction function. On the other hand, it is necessary to 

meet the strict requirements of VR system for interactive 

response speed, and build an animation synthesis 

mechanism that can efficiently fuse multi-scale features. 
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Multi-scale feature fusion mechanism: Encoder: 5 

convolutional layers (kernel sizes 7×7, 5×5, 3×3, 3×3, 3×3; 

downsampling by 2×2 stride) + batch normalization. 

Decoder: 5 transposed convolutional layers (mirroring 

encoder, upsampling by 2×2 stride) + skip connections 

from encoder layers. 

Multi-scale feature fusion can not only realize 

effective linkage from global semantics to local details, but 

also dynamically regulate the action intensity of different 

levels of features. As shown in equation (11), Wg(k) is the 

generator weight of the k-th iteration; η is the learning rate; 

α, β, γ are the loss weight coefficients. Make the animation 

generation closer to the user's intention and meet the needs 

of diversified virtual interaction scenes. 

 
1( k ) ( k )

g g g c f s advW W w ( L L L L )   + = −  + + +  (11) 

 

At present, it is an effective technical path to adopt 

the structure of combining encoder and decoder in 

generation network. The encoder part is responsible for 

extracting representative feature vectors from multi-modal 

input data [23]. Adjacent animation as shown in equation 

(12), Zt is the potential representation of encoder output; E 

is the encoder network; We, be are the encoder weights and 

biases. These inputs may include motion capture data, 

voice commands, gesture tracks, expression recognition 

results, etc. 

 

t t e eZ E( X ;W ,b )=  (12) 

 

Through multi-level convolution operation and 

downsampling mechanism [24], as shown in equation (13), 

Xt is the reconstructed output of the decoder; D is the 

decoder network; Wd, bd are the decoder weights and biases. 

The encoder compresses the spatial dimensions of the 

input data layer by layer, and extracts semantic features 

from local to global scales. 

 

t t d dX̂ D( Z ;W ,b )=  (13) 

3 Multi-modal interactive data-

driven optimization method 

3.1 Cross-modal attention alignment model design 

In virtual reality, the user's immersive experience relies on 

the synchronous stimulation of multiple senses, including 

visual images, auditory sounds, action behaviors and 

even tactile feedback [25, 26]. The information of these 

modes together constitutes a complex interactive context, 

but because each mode has obvious differences in 

information structure, expression form, temporal 

characteristics and semantic expression, effective fusion of 

them has become a key issue in designing multi-modal 

interactive systems [27, 28]. The cross-modal attention 

alignment model is designed to solve this problem, ensure 

semantic consistency, response consistency and timing 

consistency among different modalities, and improve the 

expressiveness and interactivity of animation driven by the 

generative adversarial network [29, 30]. It is necessary to 

build a stable and efficient multi-modal feature extraction 

module so that the data of each modal can obtain a 

complete representation of its semantic depth and 

structural features before being sent to a unified processing 

flow. A convolutional neural network with strong 

representation ability is usually used to extract its spatial 

structure features for visual data. This type of network can 

capture key elements such as edges, textures, object shapes, 

and scene layout in images. For audio modalities, deep 

neural networks are widely used in spectrum analysis and 

time-frequency feature modelling of audio signals, such as 

extraction of Mel frequency cestrum coefficients, pitch 

analysis and speech rhythm modelling. Figure 1 shows a 

real-time composite graph of VR-generated adversarial 

network animation. At the same time, the action data has 

typical time series attributes, and its dynamic evolution 

process needs to be modelled through a recurrent neural 

network or Transformer structure based on an attention 

mechanism. 
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Figure 1: Real-time composite diagram of VR generated adversarial network animation 

 

When these modal features are extracted separately, 

alignment and fusion problems remain. Since different 

modalities express different perspectives of the same 

interaction semantics, it is necessary to correlate and 

weight them dynamically at the feature level. The cross-

modal attention mechanism is introduced, which becomes 

a bridge connecting various modes. The model calculates 

the similarity matrix between any two modes and obtains 

the most critical modal contribution degree in the current 

context by analyzing the correlation degree between 

features. In order to enhance the modelling ability, the 

bilinear attention mechanism is adopted to weigh the 

features of one mode based on the features of another 

mode. The features of auditory data are used as query 

vectors and matched with visual data as key-value vectors, 

thus guiding the model to recognize the direct correlation 

between voice commands and image animations. In 

human-computer interaction, this mechanism can help the 

model accurately respond to the animation actions 

indicated by voice commands, thereby improving the 

intuition and response accuracy of the interaction. In order 

to more comprehensively explore the latent semantic 

connections between different modes, introducing a multi-

head attention mechanism has also become one of the 

important designs. Figure 2 is a cross-modal attention 

alignment model training diagram. This mechanism allows 

the model to model the correspondence between 

modalities in parallel from multiple angles, from multiple 

angles such as spatial concerns, temporal keyframes, and 

semantic domain labels. Feature cross-comparison. 

 

 

Figure 2: Training diagram of cross-modal attention alignment model 

 

Many current strategies based on transfer learning 

also demonstrate the powerful capabilities of pre-trained 

models in multi-modal feature extraction and 

representation. Using visual network models pre-trained 

on large data sets of images, such as VGG, AlexNet, or 

ResNet, can directly migrate their feature extraction 

capabilities when processing visual parts in VR animations. 

Table 1 is a feature comparison table of multi-modal data 

sets in a VR environment. For audio and action modes, you 

can also rely on large-scale public data sets for pre-training 
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and then fine-tune specific tasks through a small number 

of labelled samples to achieve the model in specific 

scenarios. Efficient adaptation in scenarios. 

 

Table 1: Comparison table of characteristics of multi-modal data sets in VR environment 

Component Structure and Parameters 

Generator 
6 Convolutional Layers (kernel sizes: 3×3, 5×5, 3×3, 3×3, 5×5, 3×3; activation: ReLU)2 LSTM 

Layers (hidden size: 512; dropout rate: 0.2)1 Self-Attention Layer (8 heads; scaling factor dk=√512) 

Discriminator 
4 Convolutional Layers (kernel size: 4×4; stride: 2; activation: LeakyReLU, α=0.2)1 Fully 

Connected Layer (output dimension: 1; activation: Sigmoid) 

Optimizer Adam Optimizer (β1=0.5, β2=0.999) Learning Rate: 0.0002 (decayed by 10% every 50 epochs) 

3.2 Interaction delay optimization for cognitive 

load perception 

In virtual reality interaction, interaction delay has a 

particularly significant impact on user experience. In a 

highly immersive interactive environment, delay will 

destroy the user's sense of continuity and reality of the 

virtual world and cause dizziness, dizziness, and other 

symptoms of discomfort. More importantly, interaction 

delay will also significantly impact users' cognitive load, 

increase their pressure to process information and reduce 

interaction efficiency and experience satisfaction. In the 

real-time synthesis framework of VR animation with the 

generative adversarial network as the core, introducing 

cognitive load perception mechanism and optimizing 

interaction delay has become an important direction in 

system design. In order to realize the interactive 

optimization of cognitive load perception, it is necessary 

to establish a model that can dynamically perceive the 

current cognitive state of users. This model should be 

based on multi-source perception data and 

comprehensively analyze the physiological signals and 

behavioral feedback generated by users in a VR 

environment. Figure 3 shows the quality evaluation 

diagram of adversarial network animation generated in a 

VR environment. Eye movement data is important for 

evaluating users' attention and thinking burden. 

Relationship between anomaly detection threshold (x-axis, 

range: 0.5–2.5) and animation structural consistency score 

(y-axis, range: 1.7–2.4; higher = better continuity). 

 

 

Figure 3: Quality evaluation diagram of generated adversarial network animation in VR environment 

 

Training Hardware: NVIDIA RTX 4090 GPU (24 GB 

VRAM), AMD Ryzen 9 7950X CPU (16 cores), 64 GB 

DDR5 RAM, 2 TB SSD. Software: Ubuntu 22.04 LTS, 

CUDA 12.2, CUDNN 8.9.4. Cross-Attention: Linear 

projection dropout = 0.1; bilinear kernel initialization = He 

normal. Compression Model: Latent code entropy coding 

= arithmetic coding; perceptual loss layer = VGG-16 

conv4_3. However, when the user's cognitive load is 

detected to increase, the system needs to adjust the strategy 

appropriately; instead of unthinkingly pursuing the lowest 

delay, it adopts the delay tolerance strategy to avoid 

increasing the user's burden due to too high information 

density or too fast feedback frequency. In animation 

synthesis, the feedback action can be moderately 
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simplified and unnecessary high-frequency rendering can 

be reduced. In the process of voice command response, the 

rhythm and content richness of the system response are 

controlled to make it more in line with the user's 

processing ability to achieve a dynamic balance between 

interaction efficiency and the user's cognitive tolerance. 

Figure 4 is a multi-modal interactive data alignment 

accuracy evaluation diagram. In addition to the adjustment 

at the interactive level, a multi-modal data transmission 

strategy with service quality as the core also needs to be 

introduced into the network transmission mechanism. 

Since VR systems usually need to transmit information in 

multiple modes, including visual images, audio speech, 

tactile feedback and action data, different modes have 

significantly different transmission delays and bandwidth 

requirements. 

 

 

Figure 4: Multi-modal interactive data alignment accuracy evaluation diagram 

 

Interactive delay optimization of cognitive load 

awareness also involves resource scheduling and 

intelligent allocation of computing resources. The system 

needs to dynamically allocate computing resources such as 

CPU and GPU according to the user's current interaction 

complexity and cognitive load level, priorities ensuring the 

processing capabilities of key interaction links, and avoid 

wasting resources on low-priority tasks. When the user is 

focused on performing a complex task, the system can 

temporarily reduce the priority of background audio 

processing and focus computing resources on the real-time 

response of animation synthesis and motion capture. Table 

2 is a performance comparison table of multi-modal 

interactive optimization methods in a VR environment. 

This resource scheduling mechanism based on the 

cognitive state can significantly improve system operating 

efficiency and delay experience. A 10-minute session with 

three standardized tasks: (1) Gesture control (adjusting 

virtual object position via 5 predefined gestures, e.g., 

pinch/swipe); (2) Voice command response (executing 8 

commands, e.g., "rotate animation"); (3) Tactile interaction 

(responding to collision-induced vibration). 

 

Table 2: Performance comparison of multi-modal interactive optimization methods in VR environment 

Method 
FID (lower 

better) 

Temporal Consistency 

(higher better) 

Gesture Recognition 

Acc (%) 

Voice Response 

Time (ms) 

Baseline GAN 45.2 0.68 78.5 35 

Ours (w/o cross-attention) 38.7 0.75 82.3 28 

Ours 29.1 0.89 92.3 11 

4 Multimodal data fusion and 

transmission optimization 

4.1 Cross-modal characteristic distillation 

network design 

In virtual reality, realizing the effective fusion of multi-

modal information is an important technical link to 

promote the improvement of real-time synthesis quality of 

generative adversarial network animation. Multi-modal 

data (images, speech, action trajectories) differ in 

perceptual form and semantic expression, requiring 

unified semantic space. A mechanism is needed to 

transform this heterogeneous information into a unified 

semantic space to facilitate subsequent joint processing 

and efficient response. Designing a cross-modal feature 

distillation network has become a key step. Its core goal is 

to integrate deep features extracted from different modes 

through a unified semantic representation to improve the 

relevance and interpretability of multi-modal information. 

The basic architecture of a cross-modal feature distillation 

network usually includes two main parts: the teacher and 

student networks. Teacher networks are constructed for 

different modes, and the existing pre-trained models are 
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used to extract high-quality deep-level feature information. 

Figure 5 is an evaluation diagram of time series motion 

capture data feature changes. Residual network models or 

visual Transformer structures trained on large-scale image 

data sets can be selected for visual modal data. They show 

strong perception and context modelling capabilities in 

image recognition and semantic segmentation tasks. 

 

 

Figure 5: Evaluation diagram of time series characteristic change of motion capture data 

 

The design of the student network emphasizes the 

ability of cross-modal feature fusion. In terms of structure 

arrangement, the student network usually adopts a multi-

branch input structure; each branch corresponds to a modal 

input, and the basic feature representation is obtained by 

parallel processing. In the feature fusion layer, the cross-

connection mechanism is introduced so that the 

information between different modes can penetrate each 

other to a certain extent. The spatial structure information 

in image features can be combined with the action logic in 

text descriptions to form more expressive compound 

semantic features. In order to guide students' networks to 

effectively learn the knowledge of teachers' networks, a 

knowledge distillation mechanism is introduced in the 

training process. Distillation loss not only requires the 

student network to be close to the results of the teacher 

network on the individual output of each modal but also 

requires its fused multimodal output to be consistent with 

the output of the teacher network, ensuring semantic 

alignment. Figure 6 is a performance evaluation diagram 

of compression coding under different bandwidth 

conditions. In order to enhance the network's ability 

to model latent semantic connections between modes, a 

comparative distillation strategy is further introduced. For 

the proposed GAN method, PSNR increases from 31.2 dB 

(1 Mbps) to 39.7 dB (10 Mbps), with a marginal gain of 

0.8 dB when bandwidth exceeds 8 Mbps—indicating 

saturation at high bandwidth. In contrast, H.265’s PSNR

（Peak Signal-to-Noise Ratio） only reaches 36.8 dB (10 

Mbps), 2.9 dB lower than the proposed method. 

 

 

Figure 6: Compression coding performance evaluation diagram under different bandwidth conditions 

 

4.2 Bandwidth-sensitive data compression coding 

In virtual reality, the system must process and transmit 

much data from different modes, including vision, audio, 

speech, motion capture, tactile feedback and other 

information. However, these modes differ significantly in 

data structure, transmission frequency, real-time 

requirements and compression sensitivity. Due to the 

limitation of bandwidth resources, especially in mobile or 

remote collaborative VR scenarios, efficient compression 
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and accurate transmission of multi-modal data have 

become the key to system performance optimization. 

Bandwidth-sensitive data compression coding technology 

came into being. Its goal is to minimize data redundancy, 

improve network resource utilization efficiency, and 

provide a stable data foundation for real-time animation 

synthesis and multi-modal interaction without sacrificing 

user experience. Visual modal data, video streams, and 3D 

models, the most informative parts of VR scenes, have 

extremely high data density. Freezed layers: 70% of the 

pretrained generator layers (to preserve motion generation 

ability); only cross-attention and cognitive load modules 

were fine-tuned. Convergence criterion: Cross-modal 

alignment error (mean absolute error between gesture and 

voice features) stabilized within ±0.005 for 3 consecutive 

epochs. Figure 7 is the convergence evaluation diagram of 

spatiotemporal consistency adversarial training error. 

Introducing deep learning methods and video compression 

models based on generative adversarial networks has 

become an effective alternative. At epoch 100, all three 

losses stabilize (variance < 0.01), confirming the 

spatiotemporal framework’s convergence. 

 

 

Figure 7: Convergence evaluation diagram of spatiotemporal consistency adversarial training error 

 

Regarding audio modality, because VR systems have 

high requirements for spatial sound effects and presence, 

it is difficult to meet the dual requirements of real-time and 

spatial positioning only by relying on traditional 

compression algorithms such as MP3 or AAC. The audio 

compression method of neural networks with attention 

mechanisms has become a hot spot in current research. 

This method dynamically captures representative 

important frequency components in audio signals through 

the attention mechanism. It suppresses redundant 

background noise and unimportant timing characteristics 

so that the compressed audio retains semantic integrity and 

reduces the amount of transmitted data. Encoder: 4 

convolutional layers (kernel size 3×3, stride 2, output 

channels 64→128→256→512) + batch normalization + 

ReLU; outputs a 128-dim latent code (compression ratio 

~32:1 for 1080p frames). Decoder: 4 transposed 

convolutional layers (kernel size 3×3, stride 2, output 

channels 512→256→128→3) + batch normalization + 

tanh; reconstructs the original frame from the latent code. 

Discriminator: 5 convolutional layers (kernel size 4×4, 

stride 2, output channels 64→128→256→512→1) + 

LeakyReLU (α=0.2); distinguishes between "real original 

frames" and "reconstructed frames." Figure 8 is a 

comparative evaluation diagram of the multi-scale feature 

fusion effect. Haptic feedback data and user operation 

instructions are highly timely, and their delay sensitivity is 

extremely high. Any packet loss or delay may directly 

affect the user's interaction continuity, so it should be 

encoded as high-priority data packets, prioritizing the 

occupation of bandwidth resources for real-time 

transmission. 
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Figure 8: Comparison and evaluation diagram of multi-scale feature fusion effect 

 

5 Experimental analysis 
Hardware and measurement setup: GPU: NVIDIA RTX 

4090; CPU: AMD Ryzen 9 7950X; VR HMD: Oculus 

Quest Pro. Measurement method: End-to-end latency was 

recorded using frame-time histograms (resolution 1ms) 

and per-stage timings (encoder: ~3ms, generator: ~8ms, 

decoder: ~4ms, rendering: ~2ms). 

For the end-to-end VR system (integrating the 

proposed GAN animation synthesis module, real-time 

rendering, multi-modal data transmission, and interaction 

response), the improved algorithm achieved an average 

rendering frame rate of 85–92 FPS (meeting VR real-time 

standards of ≥72 FPS) and an end-to-end latency of ≤17 

ms (below the 20 ms threshold for immersive VR 

experiences). For comparison, the isolated GAN animation 

synthesis module (excluding transmission and rendering) 

achieved 23.7 FPS (58% higher than traditional methods) 

and a synthesis delay of ≤4.5 ms, consistent with the 

metrics reported in the abstract. Figure 9 is the cognitive 

load perception interaction delay and user experience 

evaluation diagram. A series of animation segments are 

generated by training the basic generation model without 

an optimization mechanism and the improved model with 

an optimization mechanism. 

 

 

Figure 9: Cognitive load perception interaction delay and user experience evaluation diagram 

 

Compared with strong baselines: StyleGAN3 (52 FPS, 

35 ms latency) and VideoGAN (48 FPS, 42 ms latency), 

our method shows 63% and 71% higher frame rates, with 

51% and 59% lower latency, respectively. Figure 10 is a 

cross-modal attention weight distribution evaluation 

diagram. By accurately calculating multi-modal alignment 

and semantic consistency indicators, the robustness and 

sensitivity of the model in dealing with semantic 

relationships between different modes are verified. This 

confirms that the model prioritizes semantic correlation 

between gesture trajectory and voice direction 

commands—explaining the 92.3% gesture recognition 

accuracy. 
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Figure 10: Cross-modal attention weight distribution evaluation diagram 

 

A within-subjects design was adopted, where each 

participant tested three systems: (1) Baseline (VideoGAN), 

(2) Ours w/o cross-attention, (3) Full proposed model. The 

order of systems was randomized to reduce learning 

effects. Each test session lasted 15 minutes (5 minutes per 

system). 

Reduced to 95 ms. User experience implication: This 

value is below the 100 ms threshold for “seamless 

interaction” (per VR user experience standards), with 90% 

of participants reporting “no perceived delay” in the user 

study. The practicability and performance of cross-modal 

feature distillation networks and bandwidth-sensitive 

compression coding strategies are evaluated in multi-

modal data fusion and transmission optimization 

experiments. The contribution of each core component 

was verified through an ablation study, with results 

summarized in Table 3. 

 

Table 3: Ablation study results of the proposed model 

Model Variant 

FID 

(Lower 

Better) 

Temporal 

Consistency 

(Higher 

Better) 

PSNR 

(dB, 

Higher 

Better) 

Full Proposed 

Model (Ours) 
29.1 0.89 35.2 

Ours w/o 

Spatiotemporal 

Loss 

41.4 

(+12.3) 
0.68 (-0.21) 

32.5 (-

2.7) 

Ours w/o Multi-

Scale Fusion 

33.5 

(+4.4) 
0.85 (-0.04) 

30.1 (-

5.1) 

Ours w/o Cross-

Modal Attention 

38.7 

(+9.6) 
0.75 (-0.14) 

31.8 (-

3.4) 

 

Controlled to 12.34 ms. User experience implication: 

Low tactile delay reduces “action-feedback 

asynchrony”—only 5% of participants reported “vibration 

mismatch” (vs. 32% for VideoGAN). Table 4 presents a 

comprehensive ablation study of all core components, 

including metrics requested by the reviewer (FID, gesture 

accuracy, FPS, voice latency). 

Table 4: Performance Comparison of Model Variants 

Method 

Variant 

FID 

(Lower 

Better) 

Gesture 

Recognition 

Acc (%) 

Avg. 

FPS 

(Higher 

Better) 

Baseline 

(VideoGAN) 
45.2 78.5 48 

Ours w/o 

Spatiotemporal 

Loss 

41.4 

(+12.3) 
89.7 (-2.6) 

90 

(+42) 

Ours w/o 

Multi-Scale 

Fusion 

33.5 

(+4.4) 
90.2 (-2.1) 

92 

(+44) 

Ours w/o 

Cross-

Attention 

38.7 

(+9.6) 
76.5 (-15.8) 

89 

(+41) 

Ours w/o 

Cognitive-

Load Ctrl 

31.2 

(+2.1) 
91.5 (-0.8) 

87 

(+39) 

Full Proposed 

Model 
29.1 92.3 

88 

(+40) 

 

Figure 11 shows a real-time monitoring and 

evaluation diagram of the VR animation generation frame 

rate. Removing spatiotemporal consistency loss: FID 

increased by 12.3, temporal consistency dropped by 0.21. 

Removing multi-scale fusion: Animation detail score 

(user-rated) decreased by 1.8/10, rendering time reduced 

by 1.2ms. Removing cross-modal attention: Gesture-voice 

alignment error increased by 35%, response time 

shortened by 3ms but accuracy dropped to 76.5%. 

Resampled all motion sequences to 30 FPS (uniform time 

step) to align with VR display standards. Normalized 

skeleton joint coordinates to [0, 1] using min-max scaling, 

eliminating scale differences between subjects. Removed 

invalid sequences (e.g., joint coordinate outliers, motion 

discontinuities) via z-score filtering (z > 3), resulting in a 

final 82,000/14,000 (Mixamo) and 60,000/17,000 (CMU) 

sequences. 
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Figure 11: Real-time monitoring and evaluation diagram of VR animation generation frame rate 

 

6 Discussion 
In terms of real-time performance, the proposed method 

achieves 85–92 FPS (end-to-end system) and 17 ms 

latency, representing a 63% FPS increase and 51% latency 

reduction compared to StyleGAN3 (52 FPS, 35 ms). This 

improvement stems from two key designs: (1) The 

spatiotemporal consistency adversarial training framework 

reduces inter-frame jitter without increasing computational 

cost—unlike StyleGAN3, which relies on redundant 3D 

convolutions; (2) The multi-scale feature fusion 

mechanism (Section 2.2) optimizes feature extraction 

efficiency, cutting decoder processing time by 1.2 ms (vs. 

DRGAN’s 2.8 ms). 

In animation quality, the proposed method’s FID of 

29.1 is 16.1 lower than VideoGAN (45.2) and 7.4 lower 

than DRGAN (36.5). This is because the temporal loop 

consistency mechanism (Equation 5–6) enforces frame 

coherence, while the self-attention layer in the generator 

enhances local detail preservation—addressing 

VideoGAN’s “blurry texture” and DRGAN’s “temporal 

dislocation” issues (observed in user study feedback: 81% 

of participants rated the proposed method’s animation 

“more realistic” than DRGAN). 

7 Conclusion 
Several innovative algorithm models are constructed, and 

experiments verify their practicability and effectiveness. 

The results show that the collaborative construction of 

optimization strategies for generative adversarial networks 

and multi-modal interaction mechanisms can significantly 

promote VR systems' immersion, interaction naturalness 

and system stability. 

By constructing a spatio-temporal consistency 

adversarial training framework, the problems of dynamic 

blur and inter-frame jump that can easily occur in VR 

animation generation with traditional GAN are solved. 

This framework enhances the coherence of the generative 

model in the time dimension and improves the ability to 

characterize the action details. The multi-scale feature 

fusion mechanism is introduced to effectively fuse 

semantic information at different levels, significantly 

improving the generated animation's fineness and realism. 

The experimental results show that compared with the 

unoptimized model, the optimized animation has obvious 

improvements in structural continuity, texture fineness and 

user satisfaction score. 

Regarding interaction optimization, a cross-modal 

attention alignment model solves the semantic differences 

and alignment problems among multi-modal inputs (such 

as vision, hearing, and action). The model can dynamically 

adjust the feature weights according to the semantic 

correlation between different modes, achieving a more 

accurate multi-modal fusion effect. By introducing the 

cognitive load sensing mechanism, the system 

dynamically adapts its interaction response strategy based 

on the user’s real-time physiological and behavioral 

signals and balance the delay control and cognitive burden. 

Experimental data show that this mechanism effectively 

reduces the operating pressure of users in high-load 

situations and improves the adaptability and fault tolerance 

of VR interactive systems. 

To further evaluate the comprehensive performance 

of the proposed system, additional key metrics were 

measured under the same hardware setup (NVIDIA RTX 

4090 GPU, AMD Ryzen 9 7950X CPU, Oculus Quest Pro 

HMD) and test dataset (VR-Gesture-Voice + Mixamo), 

with three repeated trials to ensure statistical stability: 

Overall system response time (from user input to full 

interaction feedback): Reduced to 95 ms; Tactile feedback 

delay (critical for VR haptic interaction): Controlled to 

12.34 ms; For 67 VR animation scenes, the model 

parameter compression rate reaches 33.3%, training time 

is shortened to 5 days, and the PSNR of generated 

animations reaches 35.2 dB (12.3% higher than the 

baseline). In user experience tests, multi-modal interaction 

reduces the operational error rate by 26.5%. 
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