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The cloud computing has revolutionized the way organizations manage and store data. The cloud-based
services allow businesses and individuals to access computing resources over the Internet instead of using
local servers. As a result of this shift, flexibility, scalability, and cost-efficiency have been enhanced,
however, energy consumption has increased. As cloud computing grows, its environmental impact also
increases. The cloud infrastructure requires massive amounts of electricity supply, cooling devices, etc.
Therefore, energy consumption is one of the primary concerns of cloud computing researchers. In this
context, energy-efficient workflow allocation means allocating tasks to virtual machines (VMs) as
efficiently as possible in order to save energy, reduce time to complete tasks and lower costs. Since cloud
services operate on a pay-per-use model, where users pay based on their usage, optimizing these factors
directly benefits cloud providers and users. A systematic literature review (SLR) analyzed 49 studies
published from 2015 to 2024, chosen from an initial pool of 585 papers in major academic databases. In
this study, a comprehensive taxonomy for energy-efficient workflow allocation (EWA) in cloud computing.
It categorizes models by environment (single or multicloud), workflow type (scientific or random),
allocation approach (heuristic, meta-heuristic, or hybrid), workload type (static or dynamic), and quality
of service (QoS) objectives and constraints. The quantitative analysis shows that 33% of studies used
meta-heuristics, 39% used heuristics, and 28% used hybrid approaches. The most common optimization
objectives were energy consumption (28%), monetary cost (23%), and makespan (27%). Deadlines (46%)
were the most frequently addressed quality of service (QoS) constraint. This study helps researchers in
selecting effective energy-efficient workflow allocation (EWA) strategies and highlights open issues,
challenges, and future research directions. It serves as a valuable reference for those investigating energy

efficiency in cloud computing environments.

Povzetek:

1 Introduction

Cloud computing has transformed the usage of digital
resources by enabling on-demand access to services like
computing power, storage, and networking. The multi-
server model offers flexibility, scalability, and cost
efficiency. Users benefit from robust systems without the
need for ownership or maintenance. Cloud data centers
dynamically allocate computing resources in response to
fluctuations in user demand. There are four cloud
deployment models: public, private, community, and
hybrid. The public clouds like Amazon Web Services
(AWS) and Google Cloud Platform (GCP), operate on a
pay-as-you-go basis. The private clouds are dedicated to a
single organization, offering enhanced control and data
security. The community clouds are designed for groups of
organizations with shared objectives or regulatory
requirements, and hybrid clouds integrate private and
public resources, enabling organizations to balance
security with operational flexibility. Cloud computing has
three main service layers. Infrastructure as a Service (1aaS)

gives organizations access to virtual computing resources
like processing power, memory, and storage, so they can
set up and manage virtual machines. Platform as a Service
(PaaS) offers a ready-made environment for building and
launching applications, so users do not have to handle
hardware or middleware. Examples are Google App
Engine and Microsoft Azure. Software as a Service (SaaS)
delivers cloud-based apps, such as Google Workspace and
Dropbox, which users can access through web browsers
without installing anything or doing system maintenance.
This setup makes it easier to use and lets people connect
from any device with internet access.

A workflow-based application consists of several
connected tasks, where each task depends on the
successful completion of others. These workflows are used
in many areas, including multi-tier web systems, large-
scale data analytics, and scientific research. They are also
common in fields like healthcare, project scheduling,
logistics, image analysis, fake news detection, and genome
sequencing. Other examples include traffic forecasting,
emotion recognition from speech, facial detection,
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recommendation systems, license plate identification, and
seismic data analysis. In cloud computing, it is important
to allocate resources efficiently so tasks finish on time and
data centers use less power. This approach helps save
energy, make better use of resources, lower costs, and meet
Quality of Service (QoS) goals like reliability and cost
efficiency.

The main goal of EWA is to assign workflow tasks
efficiently to available virtual machines (VMs) while
meeting key Quality of Service (QoS) goals such as
lowering energy use, meeting deadlines, and cutting costs.
As demand for green cloud computing grows, energy-
efficient workflow allocation becomes more important for
reducing the environmental impact of data centers and
meeting user needs. This survey categorizes EWA models
based on environment, workload application and type,
services, allocation approaches, objectives, and
constraints. The primary aim is to investigate energy-
related challenges in workflow allocation problems
through a comprehensive review of state-of-the-art EWA
techniques. The major contributions are as follows:

e It presents a detailed classification of workflow
allocation components based on their main features.

e It describes the taxonomy of challenges in energy-
efficient workflow allocation, considering allocation
strategies, application categories, workload types, and
QoS goals and constraints.

e It provides a thorough review of current methods and
approaches for energy-efficient workflow allocation
in cloud environments.

e The literature review highlights current issues,

challenges, and potential future research directions in
EWA models.
The structure of the paper is as follows. Section 2
explains the research methodology, includes a related
survey, discusses the research gap, objectives, and
questions. Section 3 introduces the taxonomy of EWA
components. Section 4 describes the taxonomy of
EWA challenges and looks at energy efficiency in
cloud environments. Section 5 reviews the existing
literature, and Section 6 analyzes this literature from
several perspectives. Section 7 identifies open issues
and suggests future research directions. Section 8
provides the conclusion.
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2 Research methodology

This study uses a Systematic Literature Review (SLR)
approach, following the guidelines of Kitchenham and
Dieste, to make the process reproducible, transparent, and
thorough when identifying and analyzing research on
EWASs. The review process includes these steps: reviewing
related surveys on EWA models to find research gaps,
setting research objectives and questions, choosing
sources of information, defining search criteria, applying
inclusion and exclusion rules, and selecting studies

2.1 Related survey and research gap

A SLR is a thorough and organized assessment of studies
focused on a particular topic or research question. The
SLRs are designed to give an unbiased summary of current
evidence, highlight gaps in research, and suggest
directions for future studies. This section summarizes
literature reviews about the EWA in cloud computing, with
a comparison shown in Table 1. The earlier surveys
described EWA models by algorithm type or optimization
goal. This new taxonomy introduces analytical dimensions
that reveal, algorithmic strategies impact real-world
performance. It discusses aspects like algorithmic family,
dataset realism, real-time adaptability, and optimization
objectives. These factors together provide a picture of
EWA research trends. This study addresses a gap by
systematically reviewing 49 EWA studies from 2015 to
2024 and points out open issues such as scalability, cost-
awareness, and dynamic multi-workflow optimization to
help guide future research in sustainable and adaptive
cloud computing.

2.2 Research objective
This work has the following research objectives:

O1: Examine existing models and methods for energy-
efficient workflow allocation.

02: Classify EWA approaches by environment, workflow
type, algorithmic strategy, workload, and QoS constraints

0O3: Identify underexplored optimization goals and
emerging research trends in EWA.
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Table 1: A comparative analysis using reviews of related literature

issues in cloud using a
problem-solution approach.

Ref. Survey Key Concept Taxonomy Selection of Year Covered Open Study
Year Paper Issue Limitations
[1] 2015 Survey workflow scheduling Yes Not Specified Not Specified Yes Focus on economic,

elastic, and robust
scheduling, but not

the cloud resource model,
application model,
scheduling model, and

on EWA.
[21 2016 Survey of heuristic, meta- No Not Specified Not Specified Yes Focuses on cost and
heuristic and hybrid time efficient
algorithms. workflow
allocation, with
limited attention to
EWA.
[3] 2016 Survey various challenges of Yes Not Specified Not Specified Yes The SLR does not

address the
strengths and
weaknesses, nor

fluctuations, reducing delays
and energy consumption.

pricing model. does it focus on
EWAs.
[4] 2019 A detailed evaluation of WA Yes Not Specified Not Specified Yes The survey does
algorithms across cloud, not cover the
serverless, and fog EWA:s.
environments, highlighting
their strengths, weaknesses,
and suitability for scientific
and enterprise workflows.
[5] 2020 Categorizes workflow Yes Not Specified Not Specified Yes The survey does
scheduling methods based on not cover the
the multi-objective EWAs.
optimization algorithms
[6] 2021 Analysis based on metadata Yes Specified 2011-2020 Yes The survey is based
that focuses on structure and on metadata-driven
relationships within the analysis.
workflow scheduling
research community.
[71 2022 Analysis machine learning No Specified 2015-2020 No The survey did not
and artificial intelligence to include meta-
predict and respond to traffic heuristics

approaches with
machine learning
algorithms for
EWA:s.

8] 2022 Examines EWA methods for No
multi-objective optimization,
focusing on energy
efficiency through diverse
algorithms, scheduling
models, resource strategies,
and frameworks across
computing environments.

Specified 2010-2021 No The survey did not
include open issues
related to EWAs.

[9] 2023 Analyze various scheduling Yes
methods, including heuristic,
meta-heuristic, hybrid, and
AI/ML based approaches.

Specified 2010-2023 Yes The taxonomy is
based on workflow
scheduling
approaches only.

2.3 Research questions

The formulation of research questions and the assessment
of the current state of research on energy-efficient
workflow allocation constitute the initial steps in the SLR.
The research questions guiding this study are as follows:

RQ1: Which taxonomy dimensions, such as
environment, workflow type, allocation strategy, and
QoS constraint, most effectively characterize current
EWA research?
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e RQ2: Which quality of service (QoS) constraints,
including deadline, budget, reliability, and energy, are
underrepresented in existing EWA models?

e RQ3: How do existing EWA techniques perform with
respect to various optimization objectives, and what
patterns or gaps are revealed through comparative
analysis?

2.4 Source of information

We searched six major databases—IEEE Xplore,
SpringerLink, ScienceDirect, ACM Digital Library, Wiley
Online Library, and MDPl—as shown in Table 2. The
search covered January 2015 to December 2024 to include
recent advances in energy-efficient cloud workflow
allocation.

Table 2: Data source

Data Source URL

Springer https://link.springer.com/
Science https://www.sciencedirect.com/
Direct
IEEE https://ieeexplore.ieee.org/
Xplore
Wiley https://onlinelibrary.wiley.com/
ACM https://dl.acm.org/
MDPI https://www.mdpi.com/

2.5 Search criteria

We set our initial search criteria according to our research
goals, choosing key terms like energy efficient workflow
allocation and parameters in cloud and related
environments. We used logical operators such as OR and
AND to combine these terms into a complete search query.
To find relevant papers, we searched several digital
libraries. The query we used is shown below:

Search String

((workflow) OR (workflow scheduling) OR
(workflow allocation) OR (scientific workflow)
OR (energy-efficient) OR (minimization) OR
(saving) OR (energy AND cost OR budget) OR
(energy AND makespan) AND (budget, cost,
parameters, deadline, or constraints)
AND((approach) OR (algorithm) OR (technique)
OR (method)) AND((cloud) OR (cloud computing)
OR (cloud environment) OR (IaaS cloud))

2.6 Inclusion and exclusion criteria

In the initial screening, papers that were unrelated to the
study were eliminated based on titles. In the second
screening, papers were chosen using keywords. The
inclusion criteria were established in accordance with the
objectives of the review:

e  Only studies published in English were included in the
analysis.
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e The reviewed literature spans the years 2015 to 2024
and focuses on energy-efficient workflow allocation
within cloud computing environments.

e The selected papers were sourced from both
conferences and academic journals.

In a similar manner, we developed and applied the
following exclusion criteria to exclude unnecessary
literature:

and
from

e Workshop
unfinished
consideration.

e  Papers written in languages other than English were

unreviewed articles,
were  excluded

reports,
projects

excluded.

e Atrticles that do not specify their data sources were
excluded.

e Papers that are not relevant to the search query were
excluded.

o Duplicate publications in various digital libraries were
manually eliminated to prevent the inclusion of
identical results.

2.7  Selection strategy

In this section, the method to choose the relevant papers
has been described. Moreover, we have limited our search
to only include papers published within the last ten years,
from 2015 to 2024, on energy-constrained workflow
allocation in cloud computing. As shown in Table 3, we
implemented the proposed study through a four-stage
paper selection process.

Table 3: Study Selection

Process | Search @ Selection Screening Review
Criteria = Search @ Title Abstract  Full
String Article
Springer 186 76 45 21
Science 146 52 14 12
Direct
IEEE 123 41 11 6
Wiley 46 33 15 4
ACM 62 31 17 4
MDPI 22 13 8 2
Total 585 246 110 49

We began by searching for the selected sources and found
585 documents. Using our selection method, which
included exclusion criteria, keywords, titles, and full
articles, we reduced this number to 246 papers. After
reviewing the abstracts, we chose 110 papers based on
their content. Finally, we selected 49 studies from the
original 585. Of these, 48 were peer-reviewed journal
articles and one was a conference paper published on
leading academic platforms. We carefully examined each
paper to identify research gaps, set the boundaries of our
study, and explain the reasons for our research.
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2.8 Quality assurance criterion

Quality fulfilment was assessed using a scale ranging
from O to 1. Table 4 presents the evaluation standards
utilized in this study.

Table 4: Quality assessment criteria

Criterion | Description

QAl Clear problem definition

QA2 Defined algorithmic framework

QA3 Energy/makespan/cost metrics reported
QA4 Relevance to EWA taxonomy

QA5 Replicability of results

3 Taxonomy of workflow allocation
components

The taxonomy of cloud computing workflow allocation
components offers a systematic framework for
categorizing the elements involved in scheduling and
managing activities across virtualized resources.
Workflow models represent the automation of complex
tasks, which are logically connected by data and control
flow dependencies and executed on resources according to
predefined rules. A Direct Acyclic Graph (DAG) is
utilized to depict workflows. In mathematical terms, DAG
is defined as W= (T, E), where T = {t;, 1 < i < N}, is set
of tasks of workflow and E is the set of edge characterizes
the precedence constraints between tasks. The edge t; >
t; ,indicates the precedence relation between the tasks t;
and t; in the DAG[10].

The classifications of workflow allocation (WA)
components that are intended to address the research
question RQ1 have been covered in this part, as illustrated
in figure 1. Here’s a breakdown of the major components
in such a taxonomy:

3.1 Type of environments

The cloud environment provides networking,

computation, and storage services that are scalable, secure,

efficient, cost-effective, high-quality, on-demand,
responsive, and automatically provisioned.

[11]. The environment is classified into two categories:

single cloud providers and multi cloud providers.

e Single Provider Environment: When users rely on a
single cloud service provider (CSP), CSP manages all
the resources required to run user applications. These
applications are deployed on VMs provisioned by a
single CSP[12], [13].

e  Multi-Provider  Environment: A multi-cloud
environment uses services from several cloud
providers to process computing needs. Instead of
depending on a single provider, organizations run
applications and workloads on multiple clouds. This
approach offers more options, helps manage costs,
and provides extra backup. Each provider offers
different resources, configurations, and price models.
The organizations can choose what best fits each task.
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However, working with more than one provider can
make management and communication harder
because teams must coordinate between them.

3.2  Workflow application
A Workflow Management System (WMS) helps make
complex workflows easier to manage and automates their
execution in computing environments. It keeps tasks in
order, so each one runs only after the previous steps are
done. Workflow applications are usually grouped as either
random or scientific.

e Random workflow: In such workflows do not have a
fixed number of task edges or depth levels. This
makes them useful for simulating workflow
applications.

e Scientific workflow: is used for real-world scientific
applications like CyberShake, LIGO, Montage,
Epigenomics, and SIPHT. Such workflows might
need a lot of data, memory, CPU power, or
input/output resources.

3.3 Workflow allocation approaches
Workflow applications are dynamic, and when combined
with precedence constraints, they become more complex.
The QoS factors like energy efficiency, execution time,
and cost add further challenges. It is important to optimize
schedules while meeting these QoS standards. Researchers
have developed several approaches, such as exact
methods, heuristics, metaheuristics, and hybrid
techniques, to tackle these issues.

e Heuristic: The heuristic approach to workflow
automation (WA) in cloud environments seeks to
identify feasible solutions by utilizing practical
experience and problem-specific characteristics,
especially when finding an optimal solution is
infeasible due to high complexity. Since WA
problems are NP-hard, obtaining optimal solutions for
large-scale workflows within a reasonable timeframe
is challenging. Therefore, heuristics provide a
practical compromise by producing sub-optimal yet
efficient solutions, with the principal advantage being
reduced time complexity [14], [15], [16], [17].

e  Meta-heuristic: The meta-heuristic algorithms take
inspiration from natural processes like annealing,
particle swarm optimization, and bee colony
optimization to solve complex optimization problems.
In cloud environments, they offer efficient ways to
allocate workflows, especially when finding exact
solutions is too difficult. In comparison to traditional
heuristic methods, metaheuristics usually deliver
better results in less time[18] , [19], [20] [21], [22].

e Hybrid: The heuristic methods are usually faster, but
they often do not find the best solutions for large-scale
optimization problems. On the other hand, meta-
heuristic algorithms search a wider range of
possibilities, although they require more computing
power. Combining both methods allow a system to
use the speed of heuristics and the broad search ability
of meta-heuristics, leading to more balanced and
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effective optimization results[12] [23], [24] [25],
[26], [27] [28], [29], [30],[31][10], [32].
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Figure 1: Taxonomy of workflow allocation
components

3.4 Workflow allocation objectives and
constraints

The following two categories apply to the workflow
allocation objectives:

e Single Objective: The aims of single objective
optimization is to identify the optimal solution for a
function that addresses only one objective, such as
cost, makespan, energy, or utilization.

e Multiobjective: In real-world workflow allocation, we
often optimize objective functions with multiple goals
at the same time. When competing objectives are
achieved in multi-objective optimization, there is not
a single optimal solution. Here, several compromise
solutions known as the trade-off, nondominated, or
Pareto-optimal solutions are calculated.

3.5 Workflow types

The following two categories apply to the workflow
workload types:
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Static: Static workload allocation refers to a scenario
where the characteristics of tasks and resource
requirements are known in advance. In such workflow
tasks, their execution time, resource requirements, and
task dependencies are predefined and do not change
during execution. The resources (like VMs, CPU, and
storage) are allocated before execution based on the
predicted workload.

Dynamic: To deal with the lack of scheduling data,
such as task size, execution time, communication cost,
resource capabilities, etc., dynamic scheduling was
created. During runtime a specific piece of
information is obtained. After that, they allotted cloud
resources dynamically at runtime in accordance with
certain policies.

4 Taxonomy of energy efficient
workflow allocation challenges

This section addresses research question RQ2 and presents
a taxonomy of challenges related to energy-efficient
workflow allocation. The first subsection identifies key
energy requirements for developing an EWA model.
Allocating workflow tasks to virtual machines (VMs) in a
cloud environment while adhering to SLA and QoS
constraints requires careful consideration of multiple
factors. The primary objective is to ensure efficient
resource utilization to achieve energy consumption targets
while maintaining performance and service quality
standards. The following detailed requirements must be
addressed:

Task Characteristics: Knowing the execution time of
tasks helps allocate resources to minimize idle time
and ensure tasks are completed within the expected
timeframe.

Workflow Characteristics: Workflow tasks often have
dependencies where some tasks cannot start until
others finish. DAG-based modelling of task
dependencies helps capture these constraints and
enables the use of algorithms such as CPM or DAG-
optimized scheduling.

Energy Efficiency Considerations: Each VM and
physical host in the cloud environment consumes
energy based on the workload.

Resource Provisioning and Scheduling Strategy:
Efficient allocation involves mapping tasks so that
each resource (CPU, memory, and storage) is used
optimally.

Task Execution Time and Makespan Reduction: A
shorter makespan leads to quicker completion and the
earlier release of resources, thereby indirectly
reducing energy consumption.

CO2 Emissions: This growing energy consumption
contributes significantly to CO2 emissions, making
data centers responsible for around 2% of global
greenhouse gas emissions. To create sustainable, eco-
friendly data centers, it is crucial to implement
strategies that reduce energy consumption and
minimize CO2 emissions.
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4.1 Quality of service (QoS) challenges

QoS objectives play a key role in determining the
efficiency and effectiveness of EWA. These objectives are
related to and contribute to the overall performance of
cloud-based workflow systems.

4.1.1 Objective challenges

e Makespan: defined as the duration from the initiation
of the first task to the completion of the final task.

e Energy Consumption: refers to the total power
consumed by computing devices in cloud systems,
including RAM, storage disks, and network
interfaces. This consumption increases during the
execution of workflows on cloud infrastructure.

e Throughput: denotes the number of tasks or
workflows successfully completed within a specified
time period.

e Resource Utilization: indicates the extent to which
allocated resources are used efficiently within the
cloud system.

e Response Time: refers to the amount of time it takes
for a system to respond to user input. Basically, it
refers to the time needed for tasks associated with
workflow on cloud resources to be allocated.

e Monetary Cost: The total expense incurred for
resource usage is calculated based on the billing
interval, typically hourly.

e Speedup: The speedup (SP) is the ratio of the
sequential execution time to the schedule's makespan.

4.1.2 Constraints

e Task Dependency Constraints: A workflow is often
represented as a DAG [33], where tasks depend on
each other. A task cannot start until its preceding task
has been completed, since dependencies must be
respected.

o Deadline: the time Ilimit for executing the
workflow[34]. In connection with makespan as a
scheduling goal, deadlines necessitate different
decisions from a scheduling system.

e Budget: Each workflow usually has a set budget. The
total cost of using cloud resources like virtual
machines, storage, and data transfer needs to stay
within this limit.

e Reliability and Fault Tolerance Constraints: Cloud
environments are susceptible to failures, including
virtual machine crashes and network outages[13],
[14], [35]. Workflow scheduling may need to
incorporate fault tolerance techniques to ensure
reliability and prevent task failures.

5 Literature on energy efficient
workflow allocation models

In this section, we systematically reviewed the energy-
efficient workflow allocation (EWA) model based on
classification, as illustrated in figure 1.
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Table 5 systematically reviews key EWA models
evaluating their strengths and weaknesses. The heuristic
approaches viz. CEAS [15], HPEFT[17], DRAWS[16]
and REEWS[14] good in low-overhead scheduling and
quick convergence, making them efficient for static or
commercial multi-cloud workloads with strict deadlines.
The meta-heuristic models viz. C-PSO[19], NSGA-II-
ELNU[21], IWDCJ22], MOGA[20] and ECMSMOO[18]
achieve significant improvements in energy efficiency and
makespan reduction through global search and adaptive
learning. The hybrid model viz. HBMMOJ[25], GA-
PSO[26], HGAABC[27],HGALO-SCA[28],
HCGWOI30], HEFT-ACO[29], ALPSO[31] HSMOI[23],
EBABC-PF[24] and HAED[12], outperform single-
paradigm methods in multi-objective optimization,
balancing energy, cost, and load with higher accuracy.
Some methods, such as EnReal[36] ,MWSTR[37] and,
integrate DVFS and VM-migration strategies, effectively
reducing idle power and optimizing utilization under
variable load.

Across the surveyed EWA models several recurrent
limitations emerge viz. limited scalability, neglect of inter-
task communication and data transfer costs, and lack of
real-time adaptability. Many algorithms EERS[13],
ECMSMOQ[18], ALPSO[31], EnReal[36], MWSTR][37],
RMREC[38], CAAS[39], EATTO[40], ACRRJ[41],
EM_WOA[42], EVMP[43], SEPSO[60], ELSCiW[61]
were validated on small or scientific workflows. Their
runtime or convergence performance degrades sharply in
large-scale scientific or multi-cloud environments. Several
models NSGA-II-ELNU[21], GA-PSO[26], EEWS[44],
EATTO[40] treat workflows as computation-centric while
ignoring data transfer latency, bandwidth variability, or
VM co-location effects. Such limitation cause
underestimation of energy and cost in realistic distributed
settings, particularly in data-intensive workflows. Most
approaches HAED[12] ,CAAS[39], OWS-MRL[45]
DCMORL[46] rely on static pre-execution optimization,
which limits responsiveness to changing workloads,
resource conflict, or energy constraints in heterogeneous
cloud systems.

Table 6 systematically categorizes EWA approaches based
on multiple parameters, including environment type
(single vs. multi-cloud), workflow type, allocation strategy
(heuristic, meta-heuristic, hybrid), workload nature (static
vs. dynamic), optimization objectives (energy, cost,
makespan), and QoS constraints (deadline, budget,
reliability). It reveals that prior literature mainly
concentrated on cost, makespan and utilizations as the
dominant objectives, while factors like energy, reliability,
fault tolerance and response time remain underexplored.

Table 7 compares EWA models across a comprehensive
set of objectives and constraints.

Acronyms are used in the tables for objectives and
constraints, such as:

Makespan (MK),

Resource Utilization (RU),
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Convergence Ratio(CR),
Monetary Cost (MC),
Energy Consumption (EC),
Load Balance (LB),
Security (SC),

Response Time (RT),
Fault Tolerance (FT),
Throughput (TP),
Deadline (D),

Budget (B),

Reliability (R),
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Gaussian Elimination(G),
Fourier Transformation(F),
Random(R).

In most existing models (e.g., CEAS, EnReal, ASFLA,
ECMSMOOQO, C-PSO) strongly emphasize makespan,
energy, and cost optimization, indicating that energy—
performance trade-offs dominate EWA research. The
majority of frameworks fail to consistently implement
quality of service (QoS) constraints, including deadline
adherence, fault tolerance, and reliability. Consequently,

their real-time adaptability remains limited.

Acronyms are used in the tables for benchmark workflow,

such as:

Montage(M),
SIPHIT(S),
CyberShake(C),
LIGO(L),
Epigenomics(E),

Table 5: Energy efficient workflow allocation models

Model Strength Weakness
Suitable for commercial multi-cloud CEAS approach employs
CEAS [15] environments, as it enables energy savings comprehensive coding strategies to
through effective utilization of the gap between | achieve energy savings.
makespan and deadline.
DRAWS[16] DRAWS dynamically adjusts task priorities in | DRAWS evaluates a limited set of three
response to changing objective weights. workflows.
EnReal[36] Live VM migration from an underutilized Live migrations result in higher
physical machine. memory overhead.
Resources are allocated dynamically, enabling .
ASFLA[47] scalable adjustments to meet demand and E:;?m:rtg?rgaeﬁgeto be adjusted for
promote efficient utilization. P )
S . The performance of large-scale
Minimizing makespan, economic cost, and A
ECMSMOOQ[18] : workflow applications are not
energy consumption. discussed.
C-PSO demonstrated significant C-PSO is susceptible to premature
C-PSO[19] improvements in both makespan and execution convergence.
cost for large-scale workflows.
The DVFS technique was employed to balance In MWSTR. the )
: , the performance of large
MWSTR[37] ?g?&?mfngegggkaggq:hergy consumption by scale workflows are not considered.
NSGA-I11- Faster convergence to the Pareto front by Inter-task communication costs and
ELNU[21] simplifying sorting operations. dependencies are ignored.
IWDCJ[22] IWDS demonstrates greater cost efficiency E;?;%ngcgrgr}ﬂftlzir?ggé %fy type of
regardless of the workflow structure. VM instance selected.
The approach manages both dependent and In the absence of independent tasks,
MOGA[20] independent tasks while adhering to user- gaps are unutilized, resulting in poor
defined budget and deadline constraints. utilization.
EATS demonstrates 38% greater energy EATS shows insignificant
EATS[48] savings compared to DEWTS and 20.93% performance when the system operates
higher resource utilization than EES. with a small number of processors.
VMs are deployed using the shortest path SECPS does not address the
SECPS[49] based on energy consumption metrics, performance of large-scale workflow
applications.
Search and compute the non-dominated Integration of PEFT with the SOS
HBMMO[25] solutions efficiently. increases the complexity of the
algorithm.
GA-PSO outperforms GA by 16% (makespan), Inter-task communication costs and
GA-PSO[26] 13% (cost), 28% (load balance), and PSO by dependencies are ignored.
4% for all metrics.
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Qureshi B[50]

Energy efficiency improves by 38% over
HEFT.

The performance of large-scale
workflow applications are not
discussed.

CPU performance is evaluated based on the

The communication cost between

and 55% lower energy than HEFT, DEWTS,
Wu, and Safari.

EEWS[44] time required to complete a task. tasks is not considered in this analysis.
REEWS[14] Critical tasks are assigned the highest priority, Multiple scheduling orders are
thereby mitigating starvation of low priority possible due to the topological
tasks. arrangement of tasks
HGAABC[27] The HGAABC algorithm demonstrates HGAABC increases the algorithmic
superior convergence performance compared complexity.
to both MABC and MGA.
HPEFT[17] Execution time reduced by 5% to 16% Computing time of HPEFT increases
compared to classical algorithms. by 50% when layers increases.
JAYAJ51] Common fitness function ensures fair The experimental setup and
evaluation of all optimization algorithms. parameters are unknown.
HAED[12] HAED outperforms NSGA-11 and HPSO with Hybrid HAED increases the
higher hypervolume across workflows. complexity of the algorithm.
SERAS[35] SERAS achieves up to 96% faster execution SERAS algorithm Overall complexity

of O(n?).

HGALO-SCA[28]

Random chaos helps escape local optima and
speeds convergence.

HGALO-SCA does not provide
comprehensive assessment.

RMREC[38]

It lowers task data migration, reducing
communication energy use.

Performance gains shown for
Epigenomics and Gaussian
Elimination workflows only.

OWS-MRL[45]

Significant cost and power saving compared to
MCP and ETF.

The resources operating at minimum
frequency can cause transient errors.

reducing local optima traps.

CAAS[39] Containers use fewer resources as they exclude Overhead associated with container
OS images. management.

ANFIS[52] Shows higher fault tolerance than IDE and Considers only VM faults, ignoring
ACO. network and 1/O reliability.

I_MaOPSO[53] I_MaOPSO improves Hypervolume by up to Roulette wheel leader selection fails
71% over LEAF, 182% over MaOPSO. with large or identical population

values.

EATTO[40] EATTO achieves a balanced trade-off among Inter-task communication costs and
conflicting algorithmic objectives by dependencies are ignored.
employing a unified objective function.

DCMORL[46] DCMORL improved execution cost and energy | Chebyshev scalarization function is
consumption compared to IC-PCPD2, CEAS, not effective when one objective
S-CEDA and HPSO. heavily outweighs the others.

HCGWOI30] Enhance GWO convergence speed while Chaos theory adds extra overhead

from generating and managing chaotic
maps.

EAFSAIPR[54]

Efficiently meets deadlines, cuts execution
time, and optimizes budget in task replication.

Task replication and cryptographic
operations add extra overhead.

HEFT-ACO[29]

HEFT-ACO remains effective in both small-
and large-scale workflow.

The workflow characteristics, viz.
balance or asymmetry, are not
considered.

seconds.

EASVMC[55] WWO enables significant energy savings by The complexity of the algorithm is
maximizing resource utilization and reducing 0(n?v), also the risk of premature
the number of VM migrations. convergence during VM
consolidation.
EERS[13] Reduces energy consumption while The reliability model considers only
simultaneously maximizing system reliability. those errors that are influenced by
CPU frequency.
ALPSO[31] It shows high convergence rate, searchability The characteristics of randomly
of ALO, and communication capacity of PSO’s | generated workflow and variability in
enhance the algorithm performance. task numbers are not considered.
PACS[56] PACS demonstrates superior performance The performance of large-scale
compared to RRA,GA, PSO, and ACO. workflow applications are not
discussed.
ACRR[41] It shows the average execution Time is 31.162 Performance improvement is

demonstrated only CyberShake
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workflow only.

HSMO[23] The HSMO algorithm demonstrated superior The integration of SMO and BDSD in
performance compared to the ABC, PSO. the hybrid HSMO increases
complexity.
EM_WOA[42] EM_WOA significantly outperforms both Task prioritization is not considered
WOA and PSO. and small budgets hinder PSO and
WOA scheduling .
EVMP[43] It reduces execution delays by decreasing both Performance improvements are

transfer time and VM creation time.

demonstrated only for the Pan-
STARRS workflows.

BDCE, BDD[57]

BDCE and BDD achieve highest success rate
for both budget and deadline constraint
workflow for DVFS and non-DVFS resources.

The simulation task set considered is
for medium workflow only.

EBABC-PF[24]

EBABC-PF outperforms HEFT, DHEFT, and
NSGA-II by maximizing utilization while
reducing makespan and processing cost across
all benchmark workflows.

The performance of EBABC-PF can
be affected by changing one or more
of the parameters.

COSA[58] By leveraging the global search capability of The performance multiobjective
NSGA-II and the rapid convergence of OSA, optimization of large-scale workflow
COSA achieves an effective balance between applications are not discussed.
exploration and exploitation.

Choudhary et Clustering techniques significantly reduce data The algorithm shows high time

al.[59] transmission costs . complexity.

EIS[60] EIS allocates workflow slack time among tasks | The algorithm exhibits high

based on each task's optimal execution time,
conserving energy through voltage and
frequency adjustments.

computational time complexity.

PMWS-HC[61]

MSIA shows superior balance among solution
diversity, convergence, execution time, and the
number of leased public cloud VMs.

The execution of privacy-sensitive
tasks on a private cloud can result in
inefficient utilization and increased
execution time.

SEPSO[62] SEPSO dynamic scheduling framework assigns | Performance improvements are
tasks to either private or public cloud demonstrated exclusively for the
resources. CyberShake and Montage workflows.
ELSCiWI[63] achieves a reduction in energy consumption The performance of large-scale
ranging from 4.71% to 11.19%, and a decrease workflow applications are not
in latency between 5.35% and 12.92%. discussed.
Table 6: Classification of EWA Models
Ref Year Environment Workflow WA Model Workload Type
Random Scientific . _
S M H MH | HB | Static | Dynamic
M S M
[15] 2015 x v x x v x v x x v x
[16] 2015 v x x x v x v x x v x
[36] 2016 X v x x v x v x x v x
[47] 2016 v x v x v x x v x v x
[18] 2016 4 X X X v X X v X v X
[19] 2016 4 X X X v X X v X v X
[37] 2017 v x x v x x v x x v x
[21] 2017 v x v x x x x v x v x
[22] 2017 4 X X X 4 X X 4 X 4 X
[20] 2018 v x v x x x x v x v x
[48] 2018 4 x v X X X v X X v x
[49] 2018 v x v x x x v x x v x
[25] 2018 v X X X v x x x v x
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[26] 2018 v X X X 4 X X X 4 4 X
[50] 2018 v X X X 4 X v X X 4 X
[44] 2019 v X x x v X x x v v x
[14] 2019 4 X v x x x v x X v x
[27] 2019 v x x x x v x X v v x
[17] 2019 v X X 4 X X v x x v x
[51] 2019 v X X X v X X v X v x
[12] 2020 v X X X 4 X X X 4 4 X
[35] 2020 v X X X v x v x x v x
[28] 2020 v x X X v X X X v v X
[38] 2020 v X x x v x v x x v x
[45] 2020 v X x x v x v x x v x
[39] 2020 v x v x x x v x x v x
[52] 2020 v X X X '4 X X X 4 4 X
[53] 2020 v X X X v X X 4 X 4 X
[40] 2020 v X v X X X x v x v X
[46] 2020 v X X X v X X x v x v
[30] 2020 v x x x v x x x v v x
[54] 2021 v X X x v x X v X v X
[29] 2021 X v X X v x X X v v x
[55] 2021 v X x x v x x v x v x
[13] 2021 v X X x v x v X x v x
[31] 2021 v X v X X X X X v v X
[56] 2021 v X v X X X v X X v X
[41] 2021 v x x x v x v x x v x
[23] 2021 v X x X v X X X v v x
[42] 2022 v x x x v x x v x v x
[43] 2022 v x v x x x v x x v x
[57] 2022 v x x x v x v x x v X
[24] 2022 v x x x v x x x v v x
[58] 2022 v x x x x v x x v v x
[59] 2022 v x X x v x x v x v x
[60] 2023 v x X x 4 x x v x v x
[61] 2023 x v x x x v v x x v x
[62] 2023 x v x x x v x v x v x
[63] 2024 v X v X X X X v X v X
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Table 7: Comparison based on objective, constraints and benchmark workflow of EWA Model

Ref Objectives Constraints Benchmark Workflow

MK | RU | CR | MC | EC LB | SC | RT | FT | TP D B R M S|C|L|E|G|F|R
[15] X X X v v X X X X X v X X v V|V |V X x X
[16] v X X v v X X X x x v X v v x | v | v | x X x | x
[36] x v x x v x x x x x x X X X Vi x| x| v | x| x|x
[47] X X X v X X X X X X v X X v x | vV | v | x X x | vV
[18] v x x v v x x x % % x X X 4 x| x | x| v | x| x|x
[19] v X X v X x X X X X v X X v x| vV | Vv | v | x x | x
[37] v X X X v X X X X x X X X X x x X X v Y
[21] 4 X X X v X X X % % X X v x x | x | x X VYT
[22] v X X X X X X X X X X X v VIV o« % %
[20] v X X v X X X X X v X X x | x | x x X x | v
[48] v v X X v X X X X X X X X x | x| x| x X x |
[49] v X X X v X X X X X X X X X x | x| x X X x|y
[25] v v X X x X x X x X x x X X X
[26] v X X X v X X X X v v X v vViv I v ]|v ]| x X X
[50] < v X X v X X X X X X X X X x| vl x!|v] % x | x
[44] v X X X X X X X X v X X v Vi ivi iv]|v ]| x X | x
[14] % X X X v X X X X X v X v X x | x | x < vV x|V
[27] v X X v % X X X X X X X X v VIV« X X X
[17] v X X X X X X X X X v X X X X X X X X x | vV
[51] v X 4 X X X X x x x X X v v v < X X | x
[12] v X X v X X X X x X X v v | x v | x X | x
[35] v X X X v X X X X X X v v VIV | x| Vv ] x X X
[28] v X X v v X X X X v X X X v Vi |Ix | v |V ] x x | x
[38] X X X v v X X X x x X 4 X X x | x| x| v |V | x| x
[45] v X v v X X x x X v X X X vVIv|v| x X X | x
[39] v X X v X X X v v v X X X X X X x X x | vV
52] v X X v X X X 4 X v X X v x | v |V |V ]| x X X
53] v X X 4 X X X X X v X v X X X X X
[40] v X X X v X X X X 4 X X X X X x X x X x | vV
[46] X X X v v X X X X X v X X v v | v | x X X X
[30] v X X v v X X X X X X X X v < | V|V X X X
[54] v v X v X 3 v 3 X 3 v 3 X v v | v I|v ]| x X X X
[29] v x x v x x x x x x x x x v < | Y1 v x x x x
[55] X v x x v X X X X X x X X v viI|iviv|v X X X
[13] X v X X v X X X X X X X v v < V| ox X X X X




A Systematic Survey and Taxonomy of Energy-Efficient...

Informatica 49 (2025) 1-22 13

[31] 4 X X v v v X X X X X v X x | x | x| x X X

[56] v X X v 3 X v X X X X X X X X X X X X

[41] v X X v X X X v v X X v X X x | x X x | x
[23] v X X v X X X X X X v X v v v X X X
[42] X X X X v X X X 3 X X v X X X X X v X X
[43] v v X X v X X X X X X X X x | x | x| x X x | v
[57] v v X x v X x X X X v v X v v | v X X X
[24] v v X v X X X X X X 3 X X v viv i v | v X X X
[58] v X X v v X X X X X v v X v X x | v | v | x X X
[59] X X X v v 3 X X X X v X X v viiv |V X X X X
[60] X X X X v X X X X X v X X v vViv I v ]|v ]| x X | x
[61] X X X v X X X X X v X X v viiv |V X X X
[62] v v X v X X X X X v v X v x | v | x| x X x | x
[63] 3 v v X v v X X X X v X X X X X X X X X v

Table 8: Comparison based on taxonomy dimensions and research implications

Dimension Description Observed Model Range Research Implication
Algorithmic Heuristic, Meta-heuristic, Clear dominance of heuristic Emphasizes need for
Family Hybrid models (= 39%) multi-objective trade-off
handling
Runtime Computational overhead Heuristic models— Low Hybrid models are
Complexity per iteration or population Meta-heuristic— Medium computationally heavier;
Hybrid / Al- models — High trade-offs with accuracy
Dataset Type of workflow dataset Mostly Scientific benchmarks Necessity for real or
Realism (Scientific, real) (Montage, SIPHIT, hybrid loT datasets
CyberShake)
Real-Time Dynamic response Present in ML/RL hybrids (= Sustainable and intelligent
Adaptability capability 10%) EWA: emerging
directions
Optimization Energy, Cost, Makespan, Multi-objective dominance; Integrates energy,
Obijectives Utilization, Reliability imbalance across metrics reliability, and

Table 8 illustrates the relationship between algorithmic
categories and operational contexts. A heuristic model,
comprising about 39% of the sample, is the most common
because it requires less computational power.

The balance between exploration and exploitation is
achieved with metaheuristics, but their sensitivity to
parameters makes them difficult to use. In contrast, hybrid
approaches achieve a better balance across multiple
objectives but are more computationally intensive.
Furthermore, the prevalence of scientific datasets (e.g.,
Montage, SIPHT, CyberShake) underscores a persistent
gap in dataset realism, emphasizing the need for mixed or
loT-based benchmarks. The traditional EWA models
remain static, optimizing only before execution, while the
new taxonomy exposes the need for intelligent, self-
adjusting systems that can react to changing cloud
conditions. This study addresses the limits of earlier
surveys and provides a basis for designing scalable,

sustainability goals

adaptive, and energy-aware workflow scheduling models
for future cloud environments.

6 Discussion

In figure 2 percentage of the workflow applications that
are used for implementing and validating of different
workflow allocation approaches to optimize conflicting
objectives. As shown in this figure, single workflow has
been used more by authors. Figure 3 exhibits percentage
of number workflows that used for implementing different
workflow allocation approaches to optimize conflicting
objectives. As shown in this figure only fewer schemes
MWSTR[37], HPEFT[17], HEFT-ACO[29], PMWS-
HC[61], SEPSO[62] have focused on multiple workflows
and most author prefer to single workflow for allocation,
and in this context multiple workflow allocation can be
considered an active research area in the green cloud
computing. In figure 4 exhibits percentage of workflow
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allocation objectives considered by different literature. As
shown in this figure, most of the approaches studied
multiobjective optimization, only fewer algorithms
ASFLA[47], REEWS[14], HPEFT[17], EM_WOA[42]
have employed single objective. Figure 6 shows
percentage of QoS objectives used for optimization. Most
of the studies used energy consumption (28%), makespan
(27%), monetary cost (23%), and resource utilization
(11%) for optimization criterion. These challenges pertain
to EWASs, a feature that is highly prioritized by CSPs and
frequently requested by users.

As shown in this figure, the objectives viz. load balancing
(2%), response time, security (2%), throughput (3%), fault
tolerance (2%) and convergence ration (1%) are
considered in fewer studies. The researchers reported the
percentage workflow allocation constraints in figure 7. As
shown in this figure most the studied used deadline (46%)
as optimization constraint, viz.,
EEWS[44],HAED[12],REEWS[14],CEAS [15],DRAWS
[16],CPSO[19],MOGA[20],GA_PSO[26], ACRR[41],EM
_WOA[42],EATS[48],COSA[58],EIS[60],SEPSO[62].
The figure 5 illustrates the distribution of workflow
allocation approaches, including heuristic, metaheuristic,
and hybrid methods, over the past nine years. The
metaheuristic techniques have been the primary focus,
accounting for (33%) of research in EWA challenges,
while heuristic approaches have attracted (39%) of studies.
In comparison, hybrid approaches have received minimal
attention, with only (28%) of papers addressing the EWA

problem HBMMO[25], GA-PSO[26], EEWS[44],
HAED[12], HGALO-SCA[28], ANFIS[52],
DCMORL[46],  HCGWOI[30],  HEFT-ACO[29],

ALPSO[31], HSMO[23], EBABC-PF[24],COSA [58].

Both
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6.1 Analysis of EWA models

The comparative analysis of EWA models addresses RQ3
and reveals significant variation in performance depending
on algorithmic design, workflow type, and environmental
conditions as shown in Table 9. According to taxonomy,
EWA techniques can be broadly grouped into heuristic,
meta-heuristic, and hybrid approaches, each excelling
under different operational constraints.  These
categorizations provide deeper insight into algorithm
suitability across heterogeneous cloud environments.

The heuristic models are effective in static, small-scale
environments where task dependencies and workload
characteristics remain predictable. Their simplicity and
low computational cost make them suitable for cost-driven
or deadline-bound scenarios. However, they exhibit
limited adaptability to dynamic workloads and fluctuating
resource availability, leading to sub-optimal energy
utilization in real-time or multi-workflow contexts.

In contrast, meta-heuristic models achieve a more effective
balance between exploration and exploitation, which
facilitates improved convergence toward Pareto-optimal
solutions across multiple objectives. Their adaptability and
diverse stochastic search strategies enhance resilience in
dynamic and uncertain environments.

The hybrid models leverage both deterministic and
probabilistic algorithm strengths to achieve the best trade-
off between energy consumption, cost, and makespan.
However, they also incur higher computational
complexity, limiting their scalability for large, data-
intensive workflows unless adaptive parameter tuning or
reinforcement learning mechanisms are incorporated.

Table 9: Comparative analysis of algorithm

Algorithm Representative Key
Type Models Obsgrvation
Heuristic [13], [14], [15], Stable and fast
[[31;5]][[221] [[?ég]] [[?:161]] but limited
» Leol, 1991, 1%, daptability t
[43], [45], [48], [49]. a %pyzaHité' °
[501. [3€1. 1371, [61] workloads
Meta- [18] [19] [20] , [21], Good trade-offs;
Heuristic [22], [40] , [42] [47], scalable but
[51], [53] ,[54], [55], sensitive to
[59], [60], [62], [63] parameters
Hybrid [44], [12] , [23] , Best multi-
[24] .[25], [26], [27], objective
[28], [29], [30] , performance;
[31] ,[46] ,[52], [58] handles
dynamic
workflows
efficiently

7 Open issues, challenges, and future
trends

This section examines open issues, emerging trends, and
key challenges associated with the EWA model in cloud
computing systems.
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7.1 Open issues

Here are some open issues related to energy-efficient
workflow allocation in cloud environments, compiled
based on recent research advancements. The following are
a few important open issues:

7.1.1

Implementing energy-saving mechanisms, such as VM
migration EASVMC[55] , CAAS[39] ,OWS-MRL[45],
EnReal[36], RMREC[38], or dynamic voltage and
frequency scaling (DVFS) MWSTR[37], EATS[48],
BDCE, BDD[57], ACRR[41], COSA[58] can introduce
additional overhead, which may offset the energy savings.
Inefficient allocation strategies can lead to underutilized or
overutilized resources, causing energy wastage or
performance degradation. Many meta-heuristic algorithms
suffer from slow convergence, particularly in high
dimensional or complex problem spaces.

7.1.2

The research indicates that the monetary cost for workflow
execution in the laaS cloud environment is a significant
issue DRAWS[16], ASFLA[47], ECMSMOOQJ[18], C-
PSO[19], IWDC[22], MOGA [20], HBMMO[25], GA-
PSO [26], HGAABC [27], HAED[12], HGALO-SCA[28],
RMREC]38], OWS-MRL[45], ANFIS[52],
I_MaOPSO[53], DCMORL[46], HCGWOI30],
EAFSAIPR[54], HEFT-ACO[29], PACS[56], ACRR[41],
HSMO[23], EBABC-PF [24], COSAI[58], PMWS-
HC[61], SEPSO[62]. The CSPs offer different
configurations, capacities, and pricing structures for VMs.
It is important to consider workflow requirements, VM
characteristics, and associated pricing models when
selecting an optimal service. Consequently, monetary cost
represents an important factor in practical workflow
processing.

7.1.3

Energy-aware resource allocation

Monetary cost

Energy optimization in data-intensive
workflows

In the studied literature data-intensive workflows are
characterized by substantial data generation, processing,
transfer, and storage requirements, making them common
in fields such as big data analytics, scientific simulations
and loT applications IWDC[22],HBMMO[25],GA-
PSO[26], EEWS[44],
SERAS[35],ANFIS[52],DCMORL[46],HCGWOI[30],EA
SVMC [55], HSMOJ23], BDCE,BDD [57], EBABC-
PF[24],E1S[60],PMWS-HCI[61]. According to the existing
literature, data-intensive workflows across domains such
as big data analytics, scientific modelling, and Internet of
Things (1oT) applications involve handling large volumes
of data throughout their generation, processing, transfer,
and storage. The energy consumption optimizing for these
workflows is crucial, as their high resource demands can
lead to significant power usage and operational costs.

7.1.4 Security aware resource allocation

Security remains a significant challenge in energy-
efficient workflow allocation, particularly regarding data
access, storage, and placement in cloud-based workflow



16 Informatica 49 (2025) 1-22

systems EAFSAIPR[54], ALPSO[31], GA-PSO [26],
ELSCiW[63]. The security remains a significant challenge
in energy-efficient workflow allocation, particularly
regarding data access, storage, and placement in cloud-
based workflow systems. The risk of cyberattacks
targeting critical data such as real-time workflow
applications,  financial  transactions,  e-commerce
platforms, government computing systems, and healthcare
electronics requires stronger security frameworks.

There are issues related to trust, data privacy, and secure
data transmission that remain major obstacles in
developing efficient and secure workflow allocation
models, and addressing these challenges is important in
achieving a balance between energy efficiency and robust
security in cloud-based workflow scheduling.

7.1.5 Meta-Heuristic and hybrid optimization

According to the studied literature in cloud computing and
workflow  scheduling, meta-heuristic  optimization
techniques and hybrid optimization techniques have
shown promise in resolving challenging optimization
issues as shown in figure 5. However, challenges related
to convergence speed, solution quality, and adaptability
persist EATTOJ[40], C-PSO[19], EASVMCI55],
HCGWOI[30], CAAS[39]. The hybrid optimization
techniques combine the strengths of multiple algorithms.
These methods are highly adaptable to diverse problem
domains and effectively address complex constraints and
large-scale datasets.

7.2 Challenges

The EWA in cloud environments has emerged as a
significant research focus, driven by the growing need for
sustainable and cost-effective computing solutions. The
literature identifies several key challenges in this domain:

7.2.1 Balancing energy efficiency and
performance

The energy optimization measures often cause trade-offs
in critical performance metrics, such as delayed execution
time, increased latency, reduced throughput, or slower
response times. This becomes even more critical in
environments were user experience and SLA compliance,
as shown in figure 6. The delayed task execution, missed
deadlines, and unsatisfactory service quality can directly
affect user satisfaction and trust in cloud services. The
algorithms designed for energy-efficient workflow
allocation must take a multi-objective optimization
approach DRAWSJ[16] , ECMSMOO [18], HAED[12],
HGALO-SCA [28], RMREC[38] ,OWS-MRL[45],
ALPSO[31], PACS[56], ACRR [41].

M. Nezami et al.

7.2.2 Multi/Hybrid-Cloud environment
optimization

Cloud computing has shifted from single cloud systems to
multi-cloud and hybrid cloud setups. These newer models
use both private and public resources or work with several
providers, such as CEAS [15], EnReal[36] , HEFT-
ACOJ[29],PMWS-HC[61], ELSCiW [63]. Although these
environments offer cost savings, scalability, and
flexibility, it is still challenging to optimize process
allocation in these diverse and changing environments.

7.2.3 Dynamic environment

Cloud environments are always changing, with workloads,
resource needs, and energy use shifting all the time. Data-
intensive workflows can also have unpredictable data
volumes and processing needs, which makes static energy
optimization less effective. In addition, VM migration and
DVFS techniques can add operational overhead that limits
efficiency gains, as shown in studies like EASVMC[55] ,
CAAS[39] ,OWS-MRL[45], EnReal[36], RMREC]38].

7.2.4 Scientific workflow application

Scientific  workflow applications have complex
dependencies and need a lot of resources, which makes it
hard to allocate energy efficiently in cloud computing as
shown in figure 2 and figure 3. Many such workflows
involve heavy data processing and transfer across
distributed cloud resources, which can significantly
increase energy consumption. Scientific workflows often
have fluctuating resource requirements, making it difficult
to predict and allocate resources efficiently. Scientific
workflows require high reliability to ensure the accuracy
of results DRAWS[16] ,SERAS [35], EERS [13], ACRR
[41]. Moreover, it must meet stringent QoS parameters,
including reliability, security, and execution deadlines,
while optimizing energy efficiency. Scientific workflows
often have fluctuating resource requirements, making it
difficult to predict and allocate resources efficiently.

7.2.5 Multi-Objective optimization

The reviewed literature makes it clear that while some QoS
constraints of EWA for systems were considered, others
were not. In certain models, for instance, deadline and
budget (MOGA [20], GA-PSO [26], HSMO [23], BDCE,
BDD [57], COSA[58] , SEPSO[62]), as well as deadline
and reliability DRAWS[16] , REEWS[14], SERAS [35],
I_MaOPSO[53]), are carefully considered, whereas other
QoS constraints are disregarded as shown in figure 7.
Therefore, the optimal method that considers many
objectives to balance different QoS factors in EWA for
cloud computing may still be challenging.
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7.3 Future trends

This section presents potential future opportunities and
research directions for EWA models within computing
environments. Future trends are categorized according to
the literature, with relevant factors including workflow-as-
a-service, many-objective optimization, fog and edge
computing, and green computing.

7.3.1 Workflow-as-a-Service

Workflow-as-a-Service (WaaS) has gained attention as a
scalable approach to managing multiple workflow
instances under dynamic workloads[1]. WaaS manages
multiple workflow requests with varying arrival patterns,
requiring efficient task scheduling and resource
management. These workflows, often represented as
DAGs and the services must be allocated to cloud
resources dynamically. The system dynamically adjusts
resource allocation in response to workload fluctuations,
incorporating cost-effective virtual machine leasing
strategies. Although WaaS has been increasingly adopted
in areas such as online batch processing, supply chain
management, and e-commerce, current research
demonstrates limited advancement in EWA models for
multiple  workflow  applications  within  cloud
environments. Furthermore, only a small number of
models have been proposed for workflow scheduling in
cloud computing.

7.3.2 Many objective optimization

In cloud computing, optimizing many conflicting
objectives such as energy efficiency, security, and budget
constraints while ensuring workflow execution within
given constraints remains a critical challenge[53]. To
achieve an optimal trade-off among these objectives, it is
essential to determine the values of all decision variables
effectively. Many objectives optimization, particularly in
the context of evolutionary algorithms, relies on Pareto
dominance to evaluate potential solutions. However, as the
number of objectives increases, maintaining a balance
between convergence and diversity becomes increasingly
difficult CAAS[39], ANFIS[52] , EAFSAIPR[54],
ALPSO[31] , ACRR[41].

7.3.3 Fog/Edge computing

Fog computing moves cloud capabilities closer to where
data is created by allowing processing at the edge of the
network. This setup means less data needs to travel to
central data centers, which lowers both delays and energy
use. It also reduces the load on main servers and makes the
whole system more energy efficient. Edge computing
works in a similar way, handling data processing and
storage near where the data is generated. These methods
help systems respond faster and save significant energy.
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7.3.4 Green computing

As adoption of cloud services growing quickly, adopting
Green Cloud Computing (GCC) has become important for
long-term sustainability. The data centers use a lot of
electricity and are major sources of global carbon
emissions. It focuses on making cloud systems more
energy efficient and environmentally responsible by
improving infrastructure, cutting power use, and using
renewable energy. The sustainability strategies include
efficient scheduling, virtualization, and resource
optimization to lower the carbon footprint. Because of
these challenges, researchers working on cloud scheduling
algorithms need to find solutions that support greener
computing.

7.3.5 AI & ML-driven energy optimization

Cloud computing is moving toward using Atrtificial
Intelligence (Al) and Machine Learning (ML) to boost
energy efficiency, make better use of resources, and
support sustainability. With Al and ML, workflow
scheduling gets smarter, allowing for more flexible
resource use and saving energy. As a result, the right
resources are available at the right time, which helps
manage energy use.

7.3.6 Integrating Adaptive Control concepts into
EWA

Recent developments in adaptive control theory, such
as adaptive fuzzy control, neural adaptive control, and
backstepping control, are helping to improve EWA in
cloud systems. Fuzzy control uses logical rules to estimate
the relationship between workload and energy use,
allowing self-adjusting resource management. Neural
adaptive control uses learning techniques to dynamically
modify task scheduling based on feedback such as VM
load and energy data. When these adaptive methods are
combined with meta-heuristic optimization and feedback
learning, EWA systems can automatically balance energy
efficiency, performance, and reliability as conditions
change.

8 Conclusion

Energy-efficient workflow allocation (EWA) in cloud
computing plays a key role in optimizing resource
utilization and minimizing power consumption. Although
there has been a lot of progress, persistent challenges
remain, including load balancing, performance
optimization, security, economic cost, and energy
efficiency in cloud environments. This paper surveys
recent work on energy-efficient workflow scheduling,
reviews EWA challenges, and discusses open issues and
future research. The study begins by analyzing the
fundamental components of workflow allocation,
including workflow models, key definitions, deployment
environments, application domains, workflow approaches,
workload classifications, and QoS objectives and
constraints. We first surveyed recent related survey papers
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for the EWA to find research gaps. Secondly, we discuss
workflow allocation components, including the
deployment model, workflow application and models,
EWA approach, workload types, QoS objectives, and
constraints, followed by a general problem statement of
EWA. A taxonomy of EWA challenges in cloud
environments is presented, along with an allocation
framework for the EWA model to enhance understanding
of the problem. Finally, the paper discusses open issues,
challenges, and future research directions to support the
development of advanced EWA approaches. Finally, the
various open issues, challenges, and future directions for
further research are discussed to help the researchers
develop EWA approaches in the domain. The analysis of
energy-efficient workflow allocation indicates that energy
consumption (28%), makespan (27%), and monetary cost
(23%) are the primary concerns in current research. In
contrast, aspects such as fault tolerance, response time, and
convergence ratio receive considerably less attention. As
current studies focus most on QoS factors like task
deadlines, which make up 46% of the research. In contrast,
budget and reliability are each considered in only about
14% of studies. Future research should focus on scalable,
communication-aware, and adaptive multiobjective
optimization methods that can improve energy efficiency,
performance, security, and cost at the same time. Using
hybrid meta-heuristic strategies will also be important for
more effective and balanced workflow scheduling. This
study aims to provide valuable insights into energy-
efficient  workflow allocation, guiding  future
advancements in sustainable, high-performance cloud
computing infrastructure.
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Abbreviations

The list of abbreviations used in this study is given in alphabetical order below.

Abbreviation Full form Abbreviation Full form
ABC Artificial Bee Colony GWO Grey Wolf Optimization
Hybrid Approach for Energy-Aware
ACO Ant Colony Optimization HAED Scheduling of Deadline-Constrained
Workflows
ACRR Adaptive Cloud Re;ource HEFT Heterogenous Earliest Finish Time
Reconfigurability
ALO Ant Loin Optimization HPEFT Heterogeneous Predecessor Earliest
Finish Time
ASFLA Shuffled Frog Leaping Algorithm IDE Improved Differential Evolution
BDCE Budget Deadllnivcvgrlstralned Energy- IWD Intelligent Water Drops
BDD Budget Deadline DVFS-enabled MCP Modified Critical Path
Energy-aware
BDSD Budget Deadline Sensitive Dynamic MOGA Multiobjective Genetic Algorithm
CEAS Cost and Energy Aware Scheduling MSIA MUI“ObJeCtlve. Salp Swarm
Algorithm
C-PSO Catfish Particle Swarm Optimization | MWSTR Multiple Workflow Slack Time
Reclamation
CPED Critical Path Fast Duplication NSGA-II Nondominated Sorting Genetic
Algorithm 11
CPM Critical Path Method PACS Power-Aware Cloudlet Scheduling
CsoO Cat Swarm Optimization PSO Particle Swarm Optimization
DES Data Encryption Standard QoS Quality of Service
. . Reliability and Energy Efficient
DVFS Dynamic Voltage Frequency Scaling REEWS Workflow Scheduling
EAFSA Enhanced Artificial Fish Swarm SERAS Smart Energy and Reliability Aware
Scheduling
Energy Aware Workflow Scheduling
EASVMC System for Cloud Computing with VM SFLA Shuffled Frog-Leaping Algorithm
Consolidation
Endocrine-based Coevolutionary
ECMSMOO Multi-Swarm for Multi-Objective SLA Service Level Agreement
Optimization
Energy-Efficient and Reliability Strength Pareto Evolutionary
EERS Aware Workflow Task Scheduling SPEAZ Algorithm 2
EEWS Energy Efficient Workflow Scheduling TDS Task Duplication-based Scheduling
EnReal Energy-aware Resource Allocation WWO Water Wave Optimization
EVMP Energy-aware Virtual Machine WOA Whale Optimization Algorithm
Placement




