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The cloud computing has revolutionized the way organizations manage and store data. The cloud-based 

services allow businesses and individuals to access computing resources over the Internet instead of using 

local servers. As a result of this shift, flexibility, scalability, and cost-efficiency have been enhanced, 

however, energy consumption has increased. As cloud computing grows, its environmental impact also 

increases. The cloud infrastructure requires massive amounts of electricity supply, cooling devices, etc. 

Therefore, energy consumption is one of the primary concerns of cloud computing researchers. In this 

context, energy-efficient workflow allocation means allocating tasks to virtual machines (VMs) as 

efficiently as possible in order to save energy, reduce time to complete tasks and lower costs. Since cloud 

services operate on a pay-per-use model, where users pay based on their usage, optimizing these factors 

directly benefits cloud providers and users. A systematic literature review (SLR) analyzed 49 studies 

published from 2015 to 2024, chosen from an initial pool of 585 papers in major academic databases. In 

this study, a comprehensive taxonomy for energy-efficient workflow allocation (EWA) in cloud computing. 

It categorizes models by environment (single or multicloud), workflow type (scientific or random), 

allocation approach (heuristic, meta-heuristic, or hybrid), workload type (static or dynamic), and quality 

of service (QoS) objectives and constraints. The quantitative analysis shows that 33% of studies used 

meta-heuristics, 39% used heuristics, and 28% used hybrid approaches. The most common optimization 

objectives were energy consumption (28%), monetary cost (23%), and makespan (27%). Deadlines (46%) 

were the most frequently addressed quality of service (QoS) constraint. This study helps researchers in 

selecting effective energy-efficient workflow allocation (EWA) strategies and highlights open issues, 

challenges, and future research directions. It serves as a valuable reference for those investigating energy 

efficiency in cloud computing environments. 

Povzetek:  

 

 

1 Introduction 
Cloud computing has transformed the usage of digital 

resources by enabling on-demand access to services like 

computing power, storage, and networking. The multi-

server model offers flexibility, scalability, and cost 

efficiency. Users benefit from robust systems without the 

need for ownership or maintenance. Cloud data centers 

dynamically allocate computing resources in response to 

fluctuations in user demand. There are four cloud 

deployment models: public, private, community, and 

hybrid. The public clouds like Amazon Web Services 

(AWS) and Google Cloud Platform (GCP), operate on a 

pay-as-you-go basis. The private clouds are dedicated to a 

single organization, offering enhanced control and data 

security. The community clouds are designed for groups of 

organizations with shared objectives or regulatory 

requirements, and hybrid clouds integrate private and 

public resources, enabling organizations to balance 

security with operational flexibility. Cloud computing has 

three main service layers. Infrastructure as a Service (IaaS) 

gives organizations access to virtual computing resources 

like processing power, memory, and storage, so they can 

set up and manage virtual machines. Platform as a Service 

(PaaS) offers a ready-made environment for building and 

launching applications, so users do not have to handle 

hardware or middleware. Examples are Google App 

Engine and Microsoft Azure. Software as a Service (SaaS) 

delivers cloud-based apps, such as Google Workspace and 

Dropbox, which users can access through web browsers 

without installing anything or doing system maintenance. 

This setup makes it easier to use and lets people connect 

from any device with internet access. 

A workflow-based application consists of several 

connected tasks, where each task depends on the 

successful completion of others. These workflows are used 

in many areas, including multi-tier web systems, large-

scale data analytics, and scientific research. They are also 

common in fields like healthcare, project scheduling, 

logistics, image analysis, fake news detection, and genome 

sequencing. Other examples include traffic forecasting, 

emotion recognition from speech, facial detection, 
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recommendation systems, license plate identification, and 

seismic data analysis. In cloud computing, it is important 

to allocate resources efficiently so tasks finish on time and 

data centers use less power. This approach helps save 

energy, make better use of resources, lower costs, and meet 

Quality of Service (QoS) goals like reliability and cost 

efficiency. 

The main goal of EWA is to assign workflow tasks 

efficiently to available virtual machines (VMs) while 

meeting key Quality of Service (QoS) goals such as 

lowering energy use, meeting deadlines, and cutting costs. 

As demand for green cloud computing grows, energy-

efficient workflow allocation becomes more important for 

reducing the environmental impact of data centers and 

meeting user needs. This survey categorizes EWA models 

based on environment, workload application and type, 

services, allocation approaches, objectives, and 

constraints. The primary aim is to investigate energy-

related challenges in workflow allocation problems 

through a comprehensive review of state-of-the-art EWA 

techniques. The major contributions are as follows: 

• It presents a detailed classification of workflow 

allocation components based on their main features. 

• It describes the taxonomy of challenges in energy-

efficient workflow allocation, considering allocation 

strategies, application categories, workload types, and 

QoS goals and constraints. 

• It provides a thorough review of current methods and 

approaches for energy-efficient workflow allocation 

in cloud environments. 

• The literature review highlights current issues, 

challenges, and potential future research directions in 

EWA models. 

The structure of the paper is as follows. Section 2 

explains the research methodology, includes a related 

survey, discusses the research gap, objectives, and 

questions. Section 3 introduces the taxonomy of EWA 

components. Section 4 describes the taxonomy of 

EWA challenges and looks at energy efficiency in 

cloud environments. Section 5 reviews the existing 

literature, and Section 6 analyzes this literature from 

several perspectives. Section 7 identifies open issues 

and suggests future research directions. Section 8 

provides the conclusion. 

2 Research methodology 
This study uses a Systematic Literature Review (SLR) 

approach, following the guidelines of Kitchenham and 

Dieste, to make the process reproducible, transparent, and 

thorough when identifying and analyzing research on 

EWAs. The review process includes these steps: reviewing 

related surveys on EWA models to find research gaps, 

setting research objectives and questions, choosing 

sources of information, defining search criteria, applying 

inclusion and exclusion rules, and selecting studies 

 

2.1 Related survey and research gap 
A SLR is a thorough and organized assessment of studies 

focused on a particular topic or research question. The 

SLRs are designed to give an unbiased summary of current 

evidence, highlight gaps in research, and suggest 

directions for future studies. This section summarizes 

literature reviews about the EWA in cloud computing, with 

a comparison shown in Table 1. The earlier surveys 

described EWA models by algorithm type or optimization 

goal. This new taxonomy introduces analytical dimensions 

that reveal, algorithmic strategies impact real-world 

performance. It discusses aspects like algorithmic family, 

dataset realism, real-time adaptability, and optimization 

objectives. These factors together provide a picture of 

EWA research trends. This study addresses a gap by 

systematically reviewing 49 EWA studies from 2015 to 

2024 and points out open issues such as scalability, cost-

awareness, and dynamic multi-workflow optimization to 

help guide future research in sustainable and adaptive 

cloud computing. 

2.2 Research objective 
This work has the following research objectives: 

O1: Examine existing models and methods for energy-

efficient workflow allocation. 

O2: Classify EWA approaches by environment, workflow 

type, algorithmic strategy, workload, and QoS constraints 

O3: Identify underexplored optimization goals and 

emerging research trends in EWA.
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Table 1: A comparative analysis using reviews of related literature 

 

2.3 Research questions 
The formulation of research questions and the assessment 

of the current state of research on energy-efficient 

workflow allocation constitute the initial steps in the SLR. 

The research questions guiding this study are as follows: 

• RQ1: Which taxonomy dimensions, such as 

environment, workflow type, allocation strategy, and 

QoS constraint, most effectively characterize current 

EWA research? 

Ref. Survey 

Year 

Key Concept Taxonomy Selection of 

Paper 

Year Covered Open 

Issue 

Study 

Limitations 

[1] 2015 Survey workflow scheduling 

issues in cloud using a 

problem–solution approach. 

Yes Not Specified Not Specified Yes Focus on economic, 

elastic, and robust 

scheduling, but not 

on EWA. 

[2] 

 

2016 Survey of heuristic, meta-

heuristic and hybrid 

algorithms. 

No Not Specified Not Specified Yes Focuses on cost and 

time efficient 

workflow 

allocation, with 

limited attention to 

EWA. 

[3] 2016 Survey various challenges of 

the cloud resource model, 

application model, 

scheduling model, and 

pricing model. 

Yes Not Specified Not Specified Yes The SLR does not 

address the 

strengths and 

weaknesses, nor 

does it focus on 

EWAs. 

[4] 2019 A detailed evaluation of WA 

algorithms across cloud, 

serverless, and fog 

environments, highlighting 

their strengths, weaknesses, 

and suitability for scientific 

and enterprise workflows. 

Yes Not Specified Not Specified Yes 

 

The survey does 

not cover the 

EWAs. 

 

[5] 2020 Categorizes workflow 

scheduling methods based on 

the multi-objective 

optimization algorithms 

Yes Not Specified Not Specified Yes 

 

The survey does 

not cover the 

EWAs. 

 

[6] 2021 Analysis based on metadata 

that focuses on structure and 

relationships within the 

workflow scheduling 

research community. 

Yes Specified 2011-2020 Yes The survey is based 

on metadata-driven 

analysis. 

[7] 

 

2022 Analysis machine learning 

and artificial intelligence to 

predict and respond to traffic 

fluctuations, reducing delays 

and energy consumption. 

No Specified 2015-2020 No The survey did not 

include meta-

heuristics 

approaches with 

machine learning 

algorithms for  

EWAs. 

[8] 2022 Examines EWA methods for 

multi-objective optimization, 

focusing on energy 

efficiency through diverse 

algorithms, scheduling 

models, resource strategies, 

and frameworks across 

computing environments. 

No Specified 2010-2021 No The survey did not 

include open issues 

related to EWAs. 

[9] 2023 Analyze various scheduling 

methods, including heuristic, 

meta-heuristic, hybrid, and 

AI/ML based approaches. 

Yes Specified 2010-2023 Yes The taxonomy is 

based on workflow 

scheduling 

approaches only. 
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• RQ2: Which quality of service (QoS) constraints, 

including deadline, budget, reliability, and energy, are 

underrepresented in existing EWA models? 

• RQ3: How do existing EWA techniques perform with 

respect to various optimization objectives, and what 

patterns or gaps are revealed through comparative 

analysis? 

2.4 Source of information 
We searched six major databases—IEEE Xplore, 

SpringerLink, ScienceDirect, ACM Digital Library, Wiley 

Online Library, and MDPI—as shown in Table 2. The 

search covered January 2015 to December 2024 to include 

recent advances in energy-efficient cloud workflow 

allocation. 

 

Table 2: Data source 

 

2.5 Search criteria 
We set our initial search criteria according to our research 

goals, choosing key terms like energy efficient workflow 

allocation and parameters in cloud and related 

environments. We used logical operators such as OR and 

AND to combine these terms into a complete search query. 

To find relevant papers, we searched several digital 

libraries. The query we used is shown below: 

 

2.6 Inclusion and exclusion criteria 
In the initial screening, papers that were unrelated to the 

study were eliminated based on titles. In the second 

screening, papers were chosen using keywords. The 

inclusion criteria were established in accordance with the 

objectives of the review: 

• Only studies published in English were included in the 

analysis. 

• The reviewed literature spans the years 2015 to 2024 

and focuses on energy-efficient workflow allocation 

within cloud computing environments. 

• The selected papers were sourced from both 

conferences and academic journals. 

In a similar manner, we developed and applied the 

following exclusion criteria to exclude unnecessary 

literature: 

• Workshop reports, unreviewed articles, and 

unfinished projects were excluded from 

consideration. 

• Papers written in languages other than English were 

excluded. 

• Articles that do not specify their data sources were 

excluded. 

• Papers that are not relevant to the search query were 

excluded. 

• Duplicate publications in various digital libraries were 

manually eliminated to prevent the inclusion of 

identical results. 

2.7 Selection strategy  
In this section, the method to choose the relevant papers 

has been described. Moreover, we have limited our search 

to only include papers published within the last ten years, 

from 2015 to 2024, on energy-constrained workflow 

allocation in cloud computing. As shown in Table 3, we 

implemented the proposed study through a four-stage 

paper selection process. 

Table 3: Study Selection 

 

We began by searching for the selected sources and found 

585 documents. Using our selection method, which 

included exclusion criteria, keywords, titles, and full 

articles, we reduced this number to 246 papers. After 

reviewing the abstracts, we chose 110 papers based on 

their content. Finally, we selected 49 studies from the 

original 585. Of these, 48 were peer-reviewed journal 

articles and one was a conference paper published on 

leading academic platforms. We carefully examined each 

paper to identify research gaps, set the boundaries of our 

study, and explain the reasons for our research. 

Data Source URL 

Springer https://link.springer.com/ 

Science 
Direct 

https://www.sciencedirect.com/ 

IEEE 
Xplore 

https://ieeexplore.ieee.org/ 

Wiley https://onlinelibrary.wiley.com/ 

ACM https://dl.acm.org/ 

MDPI https://www.mdpi.com/ 

Search String  

((workflow) OR (workflow scheduling) OR 

(workflow allocation) OR (scientific workflow) 

OR (energy-efficient) OR (minimization) OR 

(saving) OR (energy AND cost OR budget) OR 

(energy AND makespan) AND (budget, cost, 

parameters, deadline, or constraints) 

AND((approach) OR (algorithm) OR (technique) 

OR (method)) AND((cloud) OR (cloud computing) 

OR (cloud environment) OR (IaaS cloud)) 

Process Search Selection Screening Review 

Criteria Search 

String 

Title Abstract Full 

Article 

Springer 186 76 45 21 

Science 

Direct 

146 52 14 12 

IEEE  123 41 11 6 

Wiley 46 33 15 4 

ACM 62 31 17 4 

MDPI 22 13 8 2 

Total 585 246 110 49 
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2.8 Quality assurance criterion 
Quality fulfilment was assessed using a scale ranging 

from 0 to 1. Table 4 presents the evaluation standards 

utilized in this study. 

 

Table 4: Quality assessment criteria 

 

3  Taxonomy of workflow allocation 

components 
The taxonomy of cloud computing workflow allocation 

components offers a systematic framework for 

categorizing the elements involved in scheduling and 

managing activities across virtualized resources. 

Workflow models represent the automation of complex 

tasks, which are logically connected by data and control 

flow dependencies and executed on resources according to 

predefined rules. A Direct Acyclic Graph (DAG) is 

utilized to depict workflows. In mathematical terms, DAG 

is defined as Wf = (T, E), where 𝑇 = {𝑡𝑖, 1 ≤ 𝑖 ≤ N}, is set 

of tasks of workflow and E is the set of edge characterizes 

the precedence constraints between tasks. The edge 𝑡𝑖  → 

𝑡𝑗 ,indicates the precedence relation between the tasks 𝑡𝑖  

and 𝑡𝑗  in the DAG[10]. 

The classifications of workflow allocation (WA) 

components that are intended to address the research 

question RQ1 have been covered in this part, as illustrated 

in figure 1. Here’s a breakdown of the major components 

in such a taxonomy: 

 

3.1 Type of environments 
The cloud environment provides networking, 
computation, and storage services that are scalable, secure, 
efficient, cost-effective, high-quality, on-demand, 
responsive, and automatically provisioned. 

[11]. The environment is classified into two categories: 

single cloud providers and multi cloud providers. 

• Single Provider Environment: When users rely on a 

single cloud service provider (CSP), CSP manages all 

the resources required to run user applications. These 

applications are deployed on VMs provisioned by a 

single CSP[12], [13]. 

• Multi-Provider Environment: A multi-cloud 
environment uses services from several cloud 
providers to process computing needs. Instead of 
depending on a single provider, organizations run 
applications and workloads on multiple clouds. This 
approach offers more options, helps manage costs, 
and provides extra backup. Each provider offers 
different resources, configurations, and price models. 
The organizations can choose what best fits each task. 

However, working with more than one provider can 
make management and communication harder 
because teams must coordinate between them. 
 

3.2 Workflow application  
A Workflow Management System (WMS) helps make 

complex workflows easier to manage and automates their 

execution in computing environments. It keeps tasks in 

order, so each one runs only after the previous steps are 

done. Workflow applications are usually grouped as either 

random or scientific. 

• Random workflow: In such workflows do not have a 

fixed number of task edges or depth levels. This 

makes them useful for simulating workflow 

applications. 

• Scientific workflow: is used for real-world scientific 

applications like CyberShake, LIGO, Montage, 

Epigenomics, and SIPHT. Such workflows might 

need a lot of data, memory, CPU power, or 

input/output resources. 

•  

3.3 Workflow allocation approaches 
Workflow applications are dynamic, and when combined 

with precedence constraints, they become more complex. 

The QoS factors like energy efficiency, execution time, 

and cost add further challenges. It is important to optimize 

schedules while meeting these QoS standards. Researchers 

have developed several approaches, such as exact 

methods, heuristics, metaheuristics, and hybrid 

techniques, to tackle these issues. 

• Heuristic: The heuristic approach to workflow 

automation (WA) in cloud environments seeks to 

identify feasible solutions by utilizing practical 

experience and problem-specific characteristics, 

especially when finding an optimal solution is 

infeasible due to high complexity. Since WA 

problems are NP-hard, obtaining optimal solutions for 

large-scale workflows within a reasonable timeframe 

is challenging. Therefore, heuristics provide a 

practical compromise by producing sub-optimal yet 

efficient solutions, with the principal advantage being 

reduced time complexity [14],  [15], [16] , [17]. 

• Meta-heuristic: The meta-heuristic algorithms take 

inspiration from natural processes like annealing, 

particle swarm optimization, and bee colony 

optimization to solve complex optimization problems. 

In cloud environments, they offer efficient ways to 

allocate workflows, especially when finding exact 

solutions is too difficult. In comparison to traditional 

heuristic methods, metaheuristics usually deliver 

better results in less time[18] , [19], [20] [21], [22]. 

• Hybrid: The heuristic methods are usually faster, but 

they often do not find the best solutions for large-scale 

optimization problems. On the other hand, meta-

heuristic algorithms search a wider range of 

possibilities, although they require more computing 

power. Combining both methods allow a system to 

use the speed of heuristics and the broad search ability 

of meta-heuristics, leading to more balanced and 

Criterion Description 

QA1 Clear problem definition 

QA2 Defined algorithmic framework 

QA3 Energy/makespan/cost metrics reported 

QA4 Relevance to EWA taxonomy 

QA5 Replicability of results 
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effective optimization results[12] [23], [24] [25],  

[26], [27] [28], [29], [30],[31][10], [32]. 

  
Figure 1: Taxonomy of workflow allocation 

components 

 

3.4 Workflow allocation objectives and 

constraints 

The following two categories apply to the workflow 

allocation objectives:  

• Single Objective: The aims of single objective 

optimization is to identify the optimal solution for a 

function that addresses only one objective, such as 

cost, makespan, energy, or utilization. 

• Multiobjective: In real-world workflow allocation, we 

often optimize objective functions with multiple goals 

at the same time. When competing objectives are 

achieved in multi-objective optimization, there is not 

a single optimal solution. Here, several compromise 

solutions known as the trade-off, nondominated, or 

Pareto-optimal solutions are calculated. 

3.5 Workflow types 

The following two categories apply to the workflow 

workload types:  

• Static: Static workload allocation refers to a scenario 

where the characteristics of tasks and resource 

requirements are known in advance. In such workflow 

tasks, their execution time, resource requirements, and 

task dependencies are predefined and do not change 

during execution. The resources (like VMs, CPU, and 

storage) are allocated before execution based on the 

predicted workload. 

• Dynamic: To deal with the lack of scheduling data, 

such as task size, execution time, communication cost, 

resource capabilities, etc., dynamic scheduling was 

created. During runtime a specific piece of 

information is obtained. After that, they allotted cloud 

resources dynamically at runtime in accordance with 

certain policies. 

4 Taxonomy of energy efficient 

workflow allocation challenges 
This section addresses research question RQ2 and presents 

a taxonomy of challenges related to energy-efficient 

workflow allocation. The first subsection identifies key 

energy requirements for developing an EWA model. 

Allocating workflow tasks to virtual machines (VMs) in a 

cloud environment while adhering to SLA and QoS 

constraints requires careful consideration of multiple 

factors. The primary objective is to ensure efficient 

resource utilization to achieve energy consumption targets 

while maintaining performance and service quality 

standards. The following detailed requirements must be 

addressed: 

• Task Characteristics: Knowing the execution time of 

tasks helps allocate resources to minimize idle time 

and ensure tasks are completed within the expected 

timeframe. 

• Workflow Characteristics: Workflow tasks often have 

dependencies where some tasks cannot start until 

others finish. DAG-based modelling of task 

dependencies helps capture these constraints and 

enables the use of algorithms such as CPM or DAG-

optimized scheduling. 

• Energy Efficiency Considerations: Each VM and 

physical host in the cloud environment consumes 

energy based on the workload. 

• Resource Provisioning and Scheduling Strategy: 

Efficient allocation involves mapping tasks so that 

each resource (CPU, memory, and storage) is used 

optimally. 

• Task Execution Time and Makespan Reduction: A 

shorter makespan leads to quicker completion and the 

earlier release of resources, thereby indirectly 

reducing energy consumption. 

• CO2 Emissions: This growing energy consumption 

contributes significantly to CO2 emissions, making 

data centers responsible for around 2% of global 

greenhouse gas emissions. To create sustainable, eco-

friendly data centers, it is crucial to implement 

strategies that reduce energy consumption and 

minimize CO2 emissions. 

•  

Workflow 
Allocation 

Components 

Types of 
Environments

Public Cloud

Private Cloud

Hybrid Cloud

Workflow
Application

Random 
Workflow

Scientific
Workflow

Workflow 
Allocation 

Approaches

Heuristic 
Approaches

Metaheuristic 
Approaches

Hybrid 
Approaches

Constraints and 
Objectives

Single Objective

Multi Objective

Workflow Type

Static Workflow

Dynamic 
Workflow

Single 

Provider 

Multi-

Provider 

Envir

onme

nt 
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4.1 Quality of service (QoS) challenges 
QoS objectives play a key role in determining the 

efficiency and effectiveness of EWA. These objectives are 

related to and contribute to the overall performance of 

cloud-based workflow systems. 

 

4.1.1 Objective challenges 

• Makespan: defined as the duration from the initiation 

of the first task to the completion of the final task. 

• Energy Consumption: refers to the total power 

consumed by computing devices in cloud systems, 

including RAM, storage disks, and network 

interfaces. This consumption increases during the 

execution of workflows on cloud infrastructure. 

• Throughput: denotes the number of tasks or 

workflows successfully completed within a specified 

time period. 

• Resource Utilization: indicates the extent to which 

allocated resources are used efficiently within the 

cloud system. 

• Response Time: refers to the amount of time it takes 

for a system to respond to user input. Basically, it 

refers to the time needed for tasks associated with 

workflow on cloud resources to be allocated. 

• Monetary Cost: The total expense incurred for 

resource usage is calculated based on the billing 

interval, typically hourly. 

• Speedup: The speedup (SP) is the ratio of the 

sequential execution time to the schedule's makespan. 

 

4.1.2 Constraints 

• Task Dependency Constraints: A workflow is often 

represented as a DAG [33], where tasks depend on 

each other. A task cannot start until its preceding task 

has been completed, since dependencies must be 

respected. 

• Deadline: the time limit for executing the 

workflow[34]. In connection with makespan as a 

scheduling goal, deadlines necessitate different 

decisions from a scheduling system.  

• Budget: Each workflow usually has a set budget. The 

total cost of using cloud resources like virtual 

machines, storage, and data transfer needs to stay 

within this limit. 

• Reliability and Fault Tolerance Constraints: Cloud 

environments are susceptible to failures, including 

virtual machine crashes and network outages[13], 

[14], [35]. Workflow scheduling may need to 

incorporate fault tolerance techniques to ensure 

reliability and prevent task failures. 

5 Literature on energy efficient 

workflow allocation models 
In this section, we systematically reviewed the energy-

efficient workflow allocation (EWA) model based on 

classification, as illustrated in figure 1. 

 

Table 5 systematically reviews key EWA models 

evaluating their strengths and weaknesses. The heuristic 

approaches viz. CEAS [15], HPEFT[17], DRAWS[16] 

and REEWS[14] good in low-overhead scheduling and 

quick convergence, making them efficient for static or 

commercial multi-cloud workloads with strict deadlines. 

The meta-heuristic models viz. C-PSO[19], NSGA-II-

ELNU[21], IWDC[22], MOGA[20] and ECMSMOO[18] 

achieve significant improvements in energy efficiency and 

makespan reduction through global search and adaptive 

learning. The hybrid model viz. HBMMO[25], GA-

PSO[26], HGAABC[27],HGALO-SCA[28], 

HCGWO[30], HEFT-ACO[29], ALPSO[31] HSMO[23] , 

EBABC-PF[24] and HAED[12], outperform single-

paradigm methods in multi-objective optimization, 

balancing energy, cost, and load with higher accuracy. 

Some methods, such as EnReal[36] ,MWSTR[37] and, 

integrate DVFS and VM-migration strategies, effectively 

reducing idle power and optimizing utilization under 

variable load. 

 

Across the surveyed EWA models several recurrent 

limitations emerge viz. limited scalability, neglect of inter-

task communication and data transfer costs, and lack of 

real-time adaptability. Many algorithms EERS[13], 

ECMSMOO[18], ALPSO[31], EnReal[36], MWSTR[37], 

RMREC[38], CAAS[39], EATTO[40], ACRR[41], 

EM_WOA[42], EVMP[43], SEPSO[60], ELSCiW[61]  

were validated on small or scientific workflows. Their 

runtime or convergence performance degrades sharply in 

large-scale scientific or multi-cloud environments. Several 

models NSGA-II-ELNU[21], GA-PSO[26], EEWS[44], 

EATTO[40] treat workflows as computation-centric while 

ignoring data transfer latency, bandwidth variability, or 

VM co-location effects. Such limitation cause 

underestimation of energy and cost in realistic distributed 

settings, particularly in data-intensive workflows. Most 

approaches HAED[12] ,CAAS[39], OWS-MRL[45] 

DCMORL[46] rely on static pre-execution optimization, 

which limits responsiveness to changing workloads, 

resource conflict, or energy constraints in heterogeneous 

cloud systems. 

 

Table 6 systematically categorizes EWA approaches based 

on multiple parameters, including environment type 

(single vs. multi-cloud), workflow type, allocation strategy 

(heuristic, meta-heuristic, hybrid), workload nature (static 

vs. dynamic), optimization objectives (energy, cost, 

makespan), and QoS constraints (deadline, budget, 

reliability). It reveals that prior literature mainly 

concentrated on cost, makespan and utilizations as the 

dominant objectives, while factors like energy, reliability, 

fault tolerance and response time remain underexplored.  

 

Table 7 compares EWA models across a comprehensive 

set of objectives and constraints. 

 

Acronyms are used in the tables for objectives and 

constraints, such as: 

Makespan (MK),  

Resource Utilization (RU),  
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Convergence Ratio(CR), 

Monetary Cost (MC),  

Energy Consumption (EC),  

Load Balance (LB),  

Security (SC),  

Response Time (RT),  

Fault Tolerance (FT), 

Throughput (TP),  

Deadline (D), 

Budget (B),  

Reliability (R),  

 

Acronyms are used in the tables for benchmark workflow, 

such as: 

 

Montage(M),  

SIPHIT(S),  

CyberShake(C),  

LIGO(L),  

Epigenomics(E),  

Gaussian Elimination(G),  

Fourier Transformation(F), 

 Random(R).  

 

In most existing models (e.g., CEAS, EnReal, ASFLA, 

ECMSMOO, C-PSO) strongly emphasize makespan, 

energy, and cost optimization, indicating that energy–

performance trade-offs dominate EWA research. The 

majority of frameworks fail to consistently implement 

quality of service (QoS) constraints, including deadline 

adherence, fault tolerance, and reliability. Consequently, 

their real-time adaptability remains limited. 

 

 

 

 

 

 

 

 

Table 5: Energy efficient workflow allocation models 
 

Model Strength Weakness 

CEAS [15] 

Suitable for commercial multi-cloud 
environments, as it enables energy savings 
through effective utilization of the gap between 
makespan and deadline. 

CEAS approach employs 
comprehensive coding strategies to 
achieve energy savings. 
 

DRAWS[16] 
DRAWS dynamically adjusts task priorities in 
response to changing objective weights. 

DRAWS evaluates a limited set of three 
workflows. 

EnReal[36] 
Live VM migration from an underutilized 
physical machine. 

Live migrations result in higher 
memory overhead. 

ASFLA[47] 
Resources are allocated dynamically, enabling 
scalable adjustments to meet demand and 
promote efficient utilization. 

Parameters need to be adjusted for 
best performance. 

ECMSMOO[18] 
Minimizing makespan, economic cost, and 
energy consumption.  

The performance of large-scale 
workflow applications are not 
discussed. 

C-PSO[19] 
 C-PSO demonstrated significant 
improvements in both makespan and execution 
cost for large-scale workflows. 

C-PSO is susceptible to premature 
convergence. 
 

MWSTR[37] 
The DVFS technique was employed to balance 
schedule length and energy consumption by 
reclaiming slack time. 

In MWSTR, the performance of large-
scale workflows are not considered. 

NSGA-II-
ELNU[21] 

Faster convergence to the Pareto front by 
simplifying sorting operations. 

Inter-task communication costs and 
dependencies are ignored. 

IWDC[22] 
 

IWDS demonstrates greater cost efficiency 
regardless of the workflow structure. 

Performance and the cost of 
scheduling are influenced by type of 
VM instance selected. 

MOGA[20] 

The approach manages both dependent and 
independent tasks while adhering to user-
defined budget and deadline constraints. 

In the absence of independent tasks, 
gaps are unutilized, resulting in poor 
utilization.  
 

EATS[48] 
EATS demonstrates 38% greater energy 
savings compared to DEWTS and 20.93% 
higher resource utilization than EES. 

EATS shows insignificant 
performance when the system operates 
with a small number of processors. 

SECPS[49] 
VMs are deployed using the shortest path 
based on energy consumption metrics, 

SECPS does not address the 
performance of large-scale workflow 
applications. 

HBMMO[25] 
Search and compute the non-dominated 
solutions efficiently. 

Integration of PEFT with the SOS 
increases the complexity of the 
algorithm. 

GA-PSO[26] 
GA-PSO outperforms GA by 16% (makespan), 
13% (cost), 28% (load balance), and PSO by 
4% for all metrics. 

Inter-task communication costs and 
dependencies are ignored. 



A Systematic Survey and Taxonomy of Energy-Efficient… Informatica 49 (2025) 1–22 9 

 

Qureshi B[50] 
Energy efficiency improves by 38% over 
HEFT. 

The performance of large-scale 
workflow applications are not 
discussed. 

EEWS[44] 
CPU performance is evaluated based on the 
time required to complete a task. 

The communication cost between 
tasks is not considered in this analysis. 

REEWS[14] Critical tasks are assigned the highest priority, 
thereby mitigating starvation of low priority 
tasks. 

Multiple scheduling orders are 
possible due to the topological 
arrangement of tasks 
 

HGAABC[27] The HGAABC algorithm demonstrates 
superior convergence performance compared 
to both MABC and MGA. 

HGAABC increases the algorithmic 
complexity. 
 

HPEFT[17] Execution time reduced by 5% to 16% 
compared to classical algorithms. 

Computing time of HPEFT increases 
by 50% when layers increases. 

JAYA[51] Common fitness function ensures fair 
evaluation of all optimization algorithms. 

The experimental setup and 
parameters are unknown. 

HAED[12] HAED outperforms NSGA-II and HPSO with 
higher hypervolume across workflows. 

Hybrid HAED increases the 
complexity of the algorithm. 

SERAS[35] SERAS achieves up to 96% faster execution 
and 55% lower energy than HEFT, DEWTS, 
Wu, and Safari. 

SERAS algorithm Overall complexity 
of O(n2). 

HGALO-SCA[28] Random chaos helps escape local optima and 
speeds convergence. 

HGALO-SCA does not provide 
comprehensive assessment. 

RMREC[38] It lowers task data migration, reducing 
communication energy use. 

Performance gains shown for 
Epigenomics and Gaussian 
Elimination workflows only. 

OWS-MRL[45] Significant cost and power saving compared to 
MCP and ETF. 

The resources operating at minimum 
frequency can cause transient errors. 

CAAS[39] Containers use fewer resources as they exclude 
OS images. 

Overhead associated with container 
management. 

ANFIS[52] Shows higher fault tolerance than IDE and 
ACO. 

Considers only VM faults, ignoring 
network and I/O reliability. 

I_MaOPSO[53] I_MaOPSO improves Hypervolume by up to 
71% over LEAF, 182% over MaOPSO. 

Roulette wheel leader selection fails 
with large or identical population 
values. 

EATTO[40] EATTO achieves a balanced trade-off among 
conflicting algorithmic objectives by 
employing a unified objective function. 

Inter-task communication costs and 
dependencies are ignored. 

DCMORL[46] DCMORL improved execution cost and energy 
consumption compared to IC-PCPD2, CEAS, 
S-CEDA and HPSO. 

Chebyshev scalarization function is 
not effective when one objective 
heavily outweighs the others. 

HCGWO[30] Enhance GWO convergence speed while 
reducing local optima traps. 

Chaos theory adds extra overhead 
from generating and managing chaotic 
maps. 

EAFSAIPR[54] Efficiently meets deadlines, cuts execution 
time, and optimizes budget in task replication. 

Task replication and cryptographic 
operations add extra overhead. 

HEFT-ACO[29] HEFT-ACO remains effective in both small- 
and large-scale workflow. 

The workflow characteristics, viz. 
balance or asymmetry, are not 
considered. 

EASVMC[55] WWO enables significant energy savings by 
maximizing resource utilization and reducing 
the number of VM migrations. 

The complexity of the algorithm is 
𝑂(𝑛²𝑣), also the risk of premature 
convergence during VM 
consolidation. 

EERS[13] Reduces energy consumption while 
simultaneously maximizing system reliability. 

The reliability model considers only 
those errors that are influenced by 
CPU frequency. 

ALPSO[31] It shows high convergence rate, searchability 
of ALO, and communication capacity of PSO’s 
enhance the algorithm performance. 
 

The characteristics of randomly 
generated workflow and variability in 
task numbers are not considered. 

PACS[56] PACS demonstrates superior performance 
compared to RRA,GA, PSO, and ACO. 

The performance of large-scale 
workflow applications are not 
discussed. 

ACRR[41] It shows the average execution Time is 31.162 
seconds. 

Performance improvement is 
demonstrated only CyberShake 
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workflow only. 

HSMO[23] The HSMO algorithm demonstrated superior 
performance compared to the ABC, PSO. 

The integration of SMO and BDSD in 
the hybrid HSMO increases 
complexity. 

EM_WOA[42] EM_WOA significantly outperforms both 
WOA and PSO. 

Task prioritization is not considered 
and small budgets hinder PSO and 
WOA scheduling . 

EVMP[43] It reduces execution delays by decreasing both 
transfer time and VM creation time. 

Performance improvements are 
demonstrated only for the Pan-
STARRS workflows. 

BDCE, BDD[57] BDCE and BDD achieve highest success rate 
for both budget and deadline constraint 
workflow for DVFS and non-DVFS resources. 

The simulation task set considered is 
for medium workflow only. 

EBABC-PF[24] EBABC-PF outperforms HEFT, DHEFT, and 
NSGA-II by maximizing utilization while 
reducing makespan and processing cost across 
all benchmark workflows. 

The performance of EBABC-PF can 
be affected by changing one or more 
of the parameters. 

COSA[58] By leveraging the global search capability of 
NSGA-II and the rapid convergence of OSA, 
COSA achieves an effective balance between 
exploration and exploitation. 
 

The performance multiobjective 
optimization of large-scale workflow 
applications are not discussed. 

Choudhary et 
al.[59] 

Clustering techniques significantly reduce data 
transmission costs .  
 

The algorithm shows high time 
complexity. 

EIS[60] EIS allocates workflow slack time among tasks 
based on each task's optimal execution time, 
conserving energy through voltage and 
frequency adjustments. 

The algorithm exhibits high 
computational time complexity. 
 

PMWS-HC[61] MSIA shows superior balance among solution 
diversity, convergence, execution time, and the 
number of leased public cloud VMs. 
 

The execution of privacy-sensitive 
tasks on a private cloud can result in 
inefficient utilization and increased 
execution time. 

SEPSO[62] SEPSO dynamic scheduling framework assigns 
tasks to either private or public cloud 
resources. 

Performance improvements are 
demonstrated exclusively for the 
CyberShake and Montage workflows. 

ELSCiW[63] achieves a reduction in energy consumption 
ranging from 4.71% to 11.19%, and a decrease 
in latency between 5.35% and 12.92%. 

The performance of large-scale 
workflow applications are not 
discussed. 

 

 

Table 6: Classification of EWA Models 
 

Ref Year Environment Workflow WA Model Workload Type 

  S M 
Random 

Scientific 

 
 

H 

 

MH HB Static Dynamic 

S M S M 

[15] 2015 × ✓ × × ✓ × ✓ × × ✓ × 

[16] 2015 ✓ × × × ✓ × ✓ × × ✓ × 

[36] 2016 × ✓ × × ✓ × ✓ × × ✓ × 

[47] 2016 ✓ × ✓ × ✓ × × ✓ × ✓ × 

[18] 2016 ✓ × × × ✓ × × ✓ × ✓ × 

[19] 2016 ✓ × × × ✓ × × ✓ × ✓ × 

[37] 2017 ✓ × × ✓ × × ✓ × × ✓ × 

[21] 2017 ✓ × ✓ × × × × ✓ × ✓ × 

[22] 2017 ✓ × × × ✓ × × ✓ × ✓ × 

[20] 2018 ✓ × ✓ × × × × ✓ × ✓ × 

[48] 2018 ✓ × ✓ × × × ✓ × × ✓ × 

[49] 2018 ✓ × ✓ × × × ✓ × × ✓ × 

[25] 2018 ✓ × × × ✓ × × × ✓ ✓ × 
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 [26] 2018 ✓ × × × ✓ × × × ✓ ✓ × 

[50] 2018 ✓ × × × ✓ × ✓ × × ✓ × 

[44] 2019 ✓ × × × ✓ × × × ✓ ✓ × 

[14] 2019 ✓ × ✓ × × × ✓ × × ✓ × 

[27] 2019 ✓ × × × × ✓ × × ✓ ✓ × 

[17] 2019 ✓ × × ✓ × × ✓ × × ✓ × 

[51] 2019 ✓ × × × ✓ × × ✓ × ✓ × 

[12] 2020 ✓ × × × ✓ × × × ✓ ✓ × 

[35] 2020 ✓ × × × ✓ × ✓ × × ✓ × 

[28] 2020 ✓ × × × ✓ × × × ✓ ✓ × 

[38] 2020 ✓ × × × ✓ × ✓ × × ✓ × 

[45] 2020 ✓ × × × ✓ × ✓ × × ✓ × 

[39] 2020 ✓ × ✓ × × × ✓ × × ✓ × 

[52] 2020 ✓ × × × ✓ × × × ✓ ✓ × 

 [53] 2020 ✓ × × × ✓ × × ✓ × ✓ × 

[40] 2020 ✓ × ✓ × × × × ✓ × ✓ × 

[46] 2020 ✓ × × × ✓ × × × ✓ × ✓ 

[30] 2020 ✓ × × × ✓ × × × ✓ ✓ × 

[54] 2021 ✓ × × × ✓ × × ✓ × ✓ × 

[29] 2021 × ✓ × × ✓ × × × ✓ ✓ × 

[55] 2021 ✓ × × × ✓ × × ✓ × ✓ × 

[13] 2021 ✓ × × × ✓ × ✓ × × ✓ × 

[31] 2021 ✓ × ✓ × × × × × ✓ ✓ × 

[56] 2021 ✓ × ✓ × × × ✓ × × ✓ × 

[41] 2021 ✓ × × × ✓ × ✓ × × ✓ × 

[23] 2021 ✓ × × × ✓ × × × ✓ ✓ × 

[42] 2022 ✓ × × × ✓ × × ✓ × ✓ × 

[43] 2022 ✓ × ✓ × × × ✓ × × ✓ × 

[57] 2022 ✓ × × × ✓ × ✓ × × ✓ × 

[24] 2022 ✓ × × × ✓ × × × ✓ ✓ × 

[58] 2022 ✓ × × × × ✓ × × ✓ ✓ × 

[59] 2022 ✓ × × × ✓ × × ✓ × ✓ × 

[60] 2023 ✓ × × × ✓ × × ✓ × ✓ × 

[61] 2023 × ✓ × × × ✓ ✓ × × ✓ × 

[62] 2023 × ✓ × × × ✓ × ✓ × ✓ × 

[63] 2024 ✓ × ✓ × × × × ✓ × ✓ × 
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Table 7: Comparison based on objective, constraints and benchmark workflow of EWA Model 

 

Ref Objectives Constraints Benchmark Workflow 

 MK RU CR MC EC LB SC RT FT TP D B R 

 

M 

 

S 

 

C 

 

L 

 

E 

 

G 

 

F 

 

R 

[15] × × × ✓ ✓ × × × 
× × 

✓ 
× 

× ✓ ✓ ✓ ✓ 
× × × × 

[16] ✓ × × ✓ ✓ × × × 
× × 

✓ 
× 

✓ ✓ × ✓ ✓ × × × × 

[36] × ✓ × × ✓ × × × 
× × 

× × × × ✓ × × ✓ × × × 

[47] × × × ✓ × × × × 
× × 

✓ × × ✓ × ✓ ✓ × × × ✓ 

[18] ✓ × × ✓ ✓ × × × 
× × 

× × × ✓ × × × ✓ × × × 

[19] ✓ × × ✓ × × × × 
× × 

✓ × × ✓ × ✓ ✓ ✓ × × × 

[37] ✓ × × × ✓ × × × × 
× × 

× × × × × × × ✓ 
✓ ✓ 

[21] ✓ × × × ✓ × × × 
× × 

× × ✓ × × × × × 
✓ ✓ ✓ 

[22] ✓ × × ✓ × × × × × × × × × ✓ ✓ ✓ ✓ ✓ × × × 

[20] ✓ × × ✓ ✓ × × × × × ✓ ✓ × × × × × × × × 
✓ 

[48] ✓ ✓ × × ✓ × × × × × ✓ × × × × × × × × × 
✓ 

[49] ✓ × × × ✓ × × × × × × × × × × × × × × × √ 

[25] ✓ ✓ × ✓ × × × × × × × × × ✓ ✓ ✓ ✓ ✓ × × × 

[26] ✓ × × ✓ × ✓ × × × × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × × × 

[50] × 
✓ × × ✓ × × × × × × × × × × 

✓ × ✓ × × × 

[44] ✓ × × × 
✓ × × × × × 

✓ × × ✓ ✓ ✓ ✓ ✓ × × × 

[14] × × × × 
✓ × × × × × 

✓ × ✓ × × × × × ✓ × ✓ 

[27] ✓ × × ✓ 
× × × × × × × × × ✓ ✓ ✓ ✓ × × × × 

[17] ✓ × × × × × × × × × ✓ × × × × × × × × × ✓ 

[51] ✓ × ✓ ✓ × × × × × × × × × ✓ ✓ ✓ ✓ × × × × 

[12] ✓ × × ✓ ✓ × × × × × ✓ × × ✓ ✓ × ✓ ✓ × × × 

[35] ✓ × × × ✓ × × × × × ✓ × ✓ ✓ ✓ ✓ × ✓ × × × 

[28] ✓ × × ✓ ✓ × × × × ✓ × × × ✓ ✓ × ✓ ✓ × × × 

[38] × × × ✓ ✓ × × × × × × ✓ × × × × × ✓ ✓ × × 

[45] 
✓ ✓ × ✓ ✓ × × × × × ✓ × × × ✓ ✓ ✓ × × × × 

[39] 
✓ ✓ × × ✓ × × × ✓ ✓ ✓ × × × × × × × × × ✓ 

[52] 
✓ × × ✓ ✓ × × × ✓ × ✓ × × ✓ × ✓ ✓ ✓ × × × 

[53] 
✓ × × ✓ ✓ × × × × × ✓ × ✓ ✓ × ✓ × ✓ × × × 

[40] 
✓ × × × ✓ × × × × ✓ × × × × × × × × × × ✓ 

[46] × × × ✓ ✓ × × × × × ✓ × × ✓ ✓ ✓ × ✓ × × × 

[30] 
✓ × × ✓ ✓ × × × × × × × × 

✓ × ✓ ✓ ✓ × × × 

[54] ✓ ✓ × ✓ × × ✓ × × × ✓ × × ✓ ✓ ✓ ✓ × × × × 

[29] ✓ × × ✓ × × × × × × × × × 
✓ × ✓ ✓ × × × × 

[55] × ✓ × × ✓ × × × × × × × × ✓ ✓ ✓ ✓ ✓ × × × 

[13] × ✓ × × ✓ × × × × × × × ✓ 
✓ × ✓ × × × × × 
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 Table 8: Comparison based on taxonomy dimensions and research implications 

[31] ✓ × × ✓ ✓ ✓ ✓ × × × × × ✓ × × × × × × × ✓ 

[56] ✓ × × ✓ ✓ × × ✓ × × × × × × × × × × × × ✓ 

[41] ✓ × × ✓ ✓ × × × ✓ ✓ × × ✓ × × ✓ × × × × × 

[23] ✓ × × ✓ × × × × × × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × × × 

[42] × × × × ✓ × × × × × × ✓ × × × × × ✓ ✓ × × 

[43] ✓ ✓ × × ✓ × × × × × ✓ × × × × × × × × × ✓ 

[57] ✓ ✓ × × ✓ × × × × × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × × × 

[24] ✓ ✓ × ✓ × × × × × × × × × ✓ ✓ ✓ ✓ ✓ × × × 

[58] ✓ × × ✓ ✓ × × × × × ✓ ✓ × ✓ × × ✓ ✓ × × × 

[59] × × × ✓ ✓ × × × × × ✓ × × ✓ ✓ ✓ ✓ × × × × 

[60] × × × × ✓ × × × × × ✓ × × ✓ ✓ ✓ ✓ ✓ × × × 

[61] × × × ✓ ✓ × × × × × ✓ × × ✓ ✓ ✓ ✓ ✓ × × × 

[62] ✓ ✓ × ✓ ✓ × × × × × ✓ ✓ × ✓ × ✓ × × × × × 

[63] × ✓ ✓ × ✓ ✓ × × × × ✓ × × × × × × × × × ✓ 

Dimension Description Observed Model Range Research Implication 

Algorithmic 
Family 

Heuristic, Meta-heuristic, 
Hybrid 

Clear dominance of heuristic 
models (≈ 39%) 

Emphasizes need for 
multi-objective trade-off 

handling 
Runtime 

Complexity 
Computational overhead 

per iteration or population 
Heuristic models→ Low 

Meta-heuristic→ Medium 
Hybrid / AI- models → High 

Hybrid models are 
computationally heavier; 
trade-offs with accuracy 

Dataset 
Realism 

Type of workflow dataset 
(Scientific, real) 

Mostly Scientific benchmarks 
(Montage, SIPHIT, 

CyberShake) 

Necessity for real or 
hybrid IoT datasets 

Real-Time 
Adaptability 

Dynamic response 
capability 

Present in ML/RL hybrids (≈ 
10%) 

Sustainable and intelligent 
EWA: emerging 

directions 
Optimization 

Objectives 
Energy, Cost, Makespan, 

Utilization, Reliability 
Multi-objective dominance; 

imbalance across metrics 
Integrates energy, 

reliability, and 
sustainability goals 

 

 

Table 8 illustrates the relationship between algorithmic 

categories and operational contexts. A heuristic model, 

comprising about 39% of the sample, is the most common 

because it requires less computational power. 

The balance between exploration and exploitation is 

achieved with metaheuristics, but their sensitivity to 

parameters makes them difficult to use. In contrast, hybrid 

approaches achieve a better balance across multiple 

objectives but are more computationally intensive. 

Furthermore, the prevalence of scientific datasets (e.g., 

Montage, SIPHT, CyberShake) underscores a persistent 

gap in dataset realism, emphasizing the need for mixed or 

IoT-based benchmarks. The traditional EWA models 

remain static, optimizing only before execution, while the 

new taxonomy exposes the need for intelligent, self-

adjusting systems that can react to changing cloud 

conditions. This study addresses the limits of earlier 

surveys and provides a basis for designing scalable, 

adaptive, and energy-aware workflow scheduling models 

for future cloud environments. 

6 Discussion 
In figure 2 percentage of the workflow applications that 

are used for implementing and validating of different 

workflow allocation approaches to optimize conflicting 

objectives. As shown in this figure, single workflow has 

been used more by authors. Figure 3 exhibits percentage 

of number workflows that used for implementing different 

workflow allocation approaches to optimize conflicting 

objectives. As shown in this figure only fewer schemes 

MWSTR[37], HPEFT[17], HEFT-ACO[29], PMWS-

HC[61], SEPSO[62] have focused on multiple workflows  

and most author prefer to single workflow for allocation, 

and in this context multiple workflow allocation can be 

considered an active research area in the green cloud 

computing. In figure 4 exhibits percentage of workflow 
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allocation objectives considered by different literature. As 

shown in this figure, most of the approaches studied 

multiobjective optimization, only fewer algorithms 

ASFLA[47], REEWS[14], HPEFT[17], EM_WOA[42] 

have employed single objective. Figure 6 shows 

percentage of QoS objectives used for optimization. Most 

of the studies used energy consumption (28%), makespan 

(27%), monetary cost (23%), and resource utilization 

(11%) for optimization criterion. These challenges pertain 

to EWAs, a feature that is highly prioritized by CSPs and 

frequently requested by users. 

As shown in this figure, the objectives viz. load balancing 

(2%), response time, security (2%), throughput (3%), fault 

tolerance (2%) and convergence ration (1%) are 

considered in fewer studies. The researchers reported the 

percentage workflow allocation constraints in figure 7. As 

shown in this figure most the studied used deadline (46%) 

as optimization constraint, viz., 

EEWS[44],HAED[12],REEWS[14],CEAS [15],DRAWS

[16],CPSO[19],MOGA[20],GA_PSO[26],ACRR[41],EM

_WOA[42],EATS[48],COSA[58],EIS[60],SEPSO[62]. 

The figure 5 illustrates the distribution of workflow 

allocation approaches, including heuristic, metaheuristic, 

and hybrid methods, over the past nine years. The 

metaheuristic techniques have been the primary focus, 

accounting for (33%) of research in EWA challenges, 

while heuristic approaches have attracted (39%) of studies. 

In comparison, hybrid approaches have received minimal 

attention, with only (28%) of papers addressing the EWA 

problem HBMMO[25], GA-PSO[26], EEWS[44], 

HAED[12], HGALO-SCA[28], ANFIS[52], 

DCMORL[46], HCGWO[30], HEFT-ACO[29], 

ALPSO[31], HSMO[23], EBABC-PF[24],COSA [58]. 

 
Figure 2: The frequency of workflow applications 

 

 

Figure 3: The frequency of workflows 

 

 

Figure 4: The frequency of Objectives 

 

 

 
Figure 5: The frequency of WA approaches 

 

 

 
Figure 6: The frequency of QoS objectives 

 
Figure 7: The frequency of QoS constraints 
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11%
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2%

Thoroughput
3%

Security
2%

Fault 
Tolerence

2%

Deadline
46%

Budget
14%

Reliabiltiy
14%

No 
constraint

26%



A Systematic Survey and Taxonomy of Energy-Efficient… Informatica 49 (2025) 1–22 15 

 

6.1 Analysis of EWA models 
The comparative analysis of EWA models addresses RQ3 

and reveals significant variation in performance depending 

on algorithmic design, workflow type, and environmental 

conditions as shown in Table 9. According to taxonomy, 

EWA techniques can be broadly grouped into heuristic, 

meta-heuristic, and hybrid approaches, each excelling 

under different operational constraints. These 

categorizations provide deeper insight into algorithm 

suitability across heterogeneous cloud environments.  

The heuristic models are effective in static, small-scale 

environments where task dependencies and workload 

characteristics remain predictable. Their simplicity and 

low computational cost make them suitable for cost-driven 

or deadline-bound scenarios. However, they exhibit 

limited adaptability to dynamic workloads and fluctuating 

resource availability, leading to sub-optimal energy 

utilization in real-time or multi-workflow contexts. 

In contrast, meta-heuristic models achieve a more effective 

balance between exploration and exploitation, which 

facilitates improved convergence toward Pareto-optimal 

solutions across multiple objectives. Their adaptability and 

diverse stochastic search strategies enhance resilience in 

dynamic and uncertain environments. 

The hybrid models leverage both deterministic and 

probabilistic algorithm strengths to achieve the best trade-

off between energy consumption, cost, and makespan. 

However, they also incur higher computational 

complexity, limiting their scalability for large, data-

intensive workflows unless adaptive parameter tuning or 

reinforcement learning mechanisms are incorporated. 

 

Table 9: Comparative analysis of algorithm 

 

7 Open issues, challenges, and future 

trends 
This section examines open issues, emerging trends, and 

key challenges associated with the EWA model in cloud 

computing systems. 

7.1 Open issues 
Here are some open issues related to energy-efficient 

workflow allocation in cloud environments, compiled 

based on recent research advancements. The following are 

a few important open issues: 

7.1.1 Energy-aware resource allocation 

Implementing energy-saving mechanisms, such as VM 

migration EASVMC[55] , CAAS[39] ,OWS-MRL[45], 

EnReal[36], RMREC[38], or dynamic voltage and 

frequency scaling (DVFS) MWSTR[37], EATS[48], 

BDCE, BDD[57], ACRR[41], COSA[58] can introduce 

additional overhead, which may offset the energy savings. 

Inefficient allocation strategies can lead to underutilized or 

overutilized resources, causing energy wastage or 

performance degradation. Many meta-heuristic algorithms 

suffer from slow convergence, particularly in high 

dimensional or complex problem spaces. 

7.1.2 Monetary cost 

The research indicates that the monetary cost for workflow 

execution in the IaaS cloud environment is a significant 

issue DRAWS[16], ASFLA[47], ECMSMOO[18], C-

PSO[19], IWDC[22], MOGA [20], HBMMO[25], GA-

PSO [26], HGAABC [27], HAED[12], HGALO-SCA[28], 

RMREC[38], OWS-MRL[45], ANFIS[52], 

I_MaOPSO[53], DCMORL[46], HCGWO[30], 

EAFSAIPR[54], HEFT-ACO[29], PACS[56], ACRR[41], 

HSMO[23], EBABC-PF [24], COSA[58], PMWS-

HC[61], SEPSO[62]. The CSPs offer different 

configurations, capacities, and pricing structures for VMs. 

It is important to consider workflow requirements, VM 

characteristics, and associated pricing models when 

selecting an optimal service. Consequently, monetary cost 

represents an important factor in practical workflow 

processing. 

7.1.3 Energy optimization in data-intensive 

workflows 

In the studied literature data-intensive workflows are 

characterized by substantial data generation, processing, 

transfer, and storage requirements, making them common 

in fields such as big data analytics, scientific simulations 

and IoT applications IWDC[22],HBMMO[25],GA-

PSO[26], EEWS[44], 

SERAS[35],ANFIS[52],DCMORL[46],HCGWO[30],EA

SVMC [55], HSMO[23], BDCE,BDD [57], EBABC-

PF[24],EIS[60],PMWS-HC[61]. According to the existing 

literature, data-intensive workflows across domains such 

as big data analytics, scientific modelling, and Internet of 

Things (IoT) applications involve handling large volumes 

of data throughout their generation, processing, transfer, 

and storage. The energy consumption optimizing for these 

workflows is crucial, as their high resource demands can 

lead to significant power usage and operational costs. 

7.1.4 Security aware resource allocation 

Security remains a significant challenge in energy-

efficient workflow allocation, particularly regarding data 

access, storage, and placement in cloud-based workflow 

Algorithm 

Type 

Representative 

Models 

Key 
Observation 

Heuristic [13], [14],  [15] , 
[16],[17], [35], [36], 

[37], [38], [39], [41], 

[43], [45], [48], [49], 
[50], [56], [57], [61] 

Stable and fast 
but limited 

adaptability to 
dynamic 

workloads 

Meta-

Heuristic 

[18] ,[19] [20] , [21] , 

[22] , [40] , [42] ,[47], 

[51], [53] ,[54], [55], 

[59], [60], [62], [63] 

Good trade-offs; 
scalable but 
sensitive to 
parameters 

Hybrid [44] , [12] , [23] , 

[24] ,[25], [26], [27], 

[28], [29], [30] , 

[31] ,[46] ,[52], [58] 

Best multi-
objective 

performance; 
handles 
dynamic 

workflows 
efficiently 
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systems EAFSAIPR[54], ALPSO[31], GA-PSO [26], 

ELSCiW[63]. The security remains a significant challenge 

in energy-efficient workflow allocation, particularly 

regarding data access, storage, and placement in cloud-

based workflow systems. The risk of cyberattacks 

targeting critical data such as real-time workflow 

applications, financial transactions, e-commerce 

platforms, government computing systems, and healthcare 

electronics requires stronger security frameworks.  

There are issues related to trust, data privacy, and secure 

data transmission that remain major obstacles in 

developing efficient and secure workflow allocation 

models, and addressing these challenges is important in 

achieving a balance between energy efficiency and robust 

security in cloud-based workflow scheduling. 

 

7.1.5 Meta-Heuristic and hybrid optimization 

According to the studied literature in cloud computing and 

workflow scheduling, meta-heuristic optimization 

techniques and hybrid optimization techniques have 

shown promise in resolving challenging optimization 

issues as shown in figure 5. However, challenges related 

to convergence speed, solution quality, and adaptability 

persist EATTO[40], C-PSO[19], EASVMC[55], 

HCGWO[30], CAAS[39]. The hybrid optimization 

techniques combine the strengths of multiple algorithms. 

These methods are highly adaptable to diverse problem 

domains and effectively address complex constraints and 

large-scale datasets. 

 

7.2 Challenges 

The EWA in cloud environments has emerged as a 

significant research focus, driven by the growing need for 

sustainable and cost-effective computing solutions. The 

literature identifies several key challenges in this domain: 

 

7.2.1 Balancing energy efficiency and 

performance 

The energy optimization measures often cause trade-offs 

in critical performance metrics, such as delayed execution 

time, increased latency, reduced throughput, or slower 

response times. This becomes even more critical in 

environments were user experience and SLA compliance, 

as shown in figure 6. The delayed task execution, missed 

deadlines, and unsatisfactory service quality can directly 

affect user satisfaction and trust in cloud services. The 

algorithms designed for energy-efficient workflow 

allocation must take a multi-objective optimization 

approach DRAWS[16] , ECMSMOO [18], HAED[12], 

HGALO-SCA [28], RMREC[38] ,OWS-MRL[45], 

ALPSO[31], PACS[56], ACRR [41].  

 

 

 

 7.2.2   Multi/Hybrid-Cloud environment 

optimization 

Cloud computing has shifted from single cloud systems to 

multi-cloud and hybrid cloud setups. These newer models 

use both private and public resources or work with several 

providers, such as CEAS [15], EnReal[36] , HEFT-

ACO[29],PMWS-HC[61], ELSCiW [63]. Although these 

environments offer cost savings, scalability, and 

flexibility, it is still challenging to optimize process 

allocation in these diverse and changing environments. 

 

7.2.3 Dynamic environment 

Cloud environments are always changing, with workloads, 

resource needs, and energy use shifting all the time. Data-

intensive workflows can also have unpredictable data 

volumes and processing needs, which makes static energy 

optimization less effective. In addition, VM migration and 

DVFS techniques can add operational overhead that limits 

efficiency gains, as shown in studies like EASVMC[55] , 

CAAS[39] ,OWS-MRL[45], EnReal[36], RMREC[38]. 

 

7.2.4 Scientific workflow application 

Scientific workflow applications have complex 

dependencies and need a lot of resources, which makes it 

hard to allocate energy efficiently in cloud computing as 

shown in figure 2 and figure 3. Many such workflows 

involve heavy data processing and transfer across 

distributed cloud resources, which can significantly 

increase energy consumption. Scientific workflows often 

have fluctuating resource requirements, making it difficult 

to predict and allocate resources efficiently. Scientific 

workflows require high reliability to ensure the accuracy 

of results DRAWS[16] ,SERAS [35], EERS [13], ACRR 

[41]. Moreover, it must meet stringent QoS parameters, 

including reliability, security, and execution deadlines, 

while optimizing energy efficiency. Scientific workflows 

often have fluctuating resource requirements, making it 

difficult to predict and allocate resources efficiently. 
 

7.2.5 Multi-Objective optimization 

The reviewed literature makes it clear that while some QoS 

constraints of EWA for systems were considered, others 

were not. In certain models, for instance, deadline and 

budget (MOGA [20], GA-PSO [26], HSMO [23], BDCE, 

BDD [57], COSA[58] , SEPSO[62]), as well as deadline 

and reliability DRAWS[16] , REEWS[14], SERAS [35], 

I_MaOPSO[53]), are carefully considered, whereas other 

QoS constraints are disregarded as shown in figure 7. 

Therefore, the optimal method that considers many 

objectives to balance different QoS factors in EWA for 

cloud computing may still be challenging. 
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7.3 Future trends 

This section presents potential future opportunities and 

research directions for EWA models within computing 

environments. Future trends are categorized according to 

the literature, with relevant factors including workflow-as-

a-service, many-objective optimization, fog and edge 

computing, and green computing. 

 

7.3.1 Workflow-as-a-Service 

Workflow-as-a-Service (WaaS) has gained attention as a 

scalable approach to managing multiple workflow 

instances under dynamic workloads[1]. WaaS manages 

multiple workflow requests with varying arrival patterns, 

requiring efficient task scheduling and resource 

management. These workflows, often represented as 

DAGs and the services must be allocated to cloud 

resources dynamically. The system dynamically adjusts 

resource allocation in response to workload fluctuations, 

incorporating cost-effective virtual machine leasing 

strategies. Although WaaS has been increasingly adopted 

in areas such as online batch processing, supply chain 

management, and e-commerce, current research 

demonstrates limited advancement in EWA models for 

multiple workflow applications within cloud 

environments. Furthermore, only a small number of 

models have been proposed for workflow scheduling in 

cloud computing. 

 

7.3.2 Many objective optimization  

In cloud computing, optimizing many conflicting 

objectives such as energy efficiency, security, and budget 

constraints while ensuring workflow execution within 

given constraints remains a critical challenge[53]. To 

achieve an optimal trade-off among these objectives, it is 

essential to determine the values of all decision variables 

effectively. Many objectives optimization, particularly in 

the context of evolutionary algorithms, relies on Pareto 

dominance to evaluate potential solutions. However, as the 

number of objectives increases, maintaining a balance 

between convergence and diversity becomes increasingly 

difficult CAAS[39], ANFIS[52] , EAFSAIPR[54], 

ALPSO[31] , ACRR[41]. 

7.3.3 Fog/Edge computing 

Fog computing moves cloud capabilities closer to where 

data is created by allowing processing at the edge of the 

network. This setup means less data needs to travel to 

central data centers, which lowers both delays and energy 

use. It also reduces the load on main servers and makes the 

whole system more energy efficient. Edge computing 

works in a similar way, handling data processing and 

storage near where the data is generated. These methods 

help systems respond faster and save significant energy. 

7.3.4 Green computing 

As adoption of cloud services growing quickly, adopting 

Green Cloud Computing (GCC) has become important for 

long-term sustainability. The data centers use a lot of 

electricity and are major sources of global carbon 

emissions. It focuses on making cloud systems more 

energy efficient and environmentally responsible by 

improving infrastructure, cutting power use, and using 

renewable energy. The sustainability strategies include 

efficient scheduling, virtualization, and resource 

optimization to lower the carbon footprint. Because of 

these challenges, researchers working on cloud scheduling 

algorithms need to find solutions that support greener 

computing. 

 

7.3.5 AI & ML-driven energy optimization 

Cloud computing is moving toward using Artificial 

Intelligence (AI) and Machine Learning (ML) to boost 

energy efficiency, make better use of resources, and 

support sustainability. With AI and ML, workflow 

scheduling gets smarter, allowing for more flexible 

resource use and saving energy. As a result, the right 

resources are available at the right time, which helps 

manage energy use. 

 

7.3.6 Integrating Adaptive Control concepts into 

EWA 

Recent developments in adaptive control theory, such 

as  adaptive fuzzy control, neural adaptive control, and 

backstepping control, are helping to improve EWA in 

cloud systems. Fuzzy control uses logical rules to estimate 

the relationship between workload and energy use, 

allowing self-adjusting resource management. Neural 

adaptive control uses learning techniques to dynamically 

modify task scheduling based on feedback such as VM 

load and energy data. When these adaptive methods are 

combined with meta-heuristic optimization and feedback 

learning, EWA systems can automatically balance energy 

efficiency, performance, and reliability as conditions 

change. 

8 Conclusion 
Energy-efficient workflow allocation (EWA) in cloud 

computing plays a key role in optimizing resource 

utilization and minimizing power consumption. Although 

there has been a lot of progress, persistent challenges 

remain, including load balancing, performance 

optimization, security, economic cost, and energy 

efficiency in cloud environments.  This paper surveys 

recent work on energy-efficient workflow scheduling, 

reviews EWA challenges, and discusses open issues and 

future research.  The study begins by analyzing the 

fundamental components of workflow allocation, 

including workflow models, key definitions, deployment 

environments, application domains, workflow approaches, 

workload classifications, and QoS objectives and 

constraints. We first surveyed recent related survey papers 
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for the EWA to find research gaps. Secondly, we discuss 

workflow allocation components, including the 

deployment model, workflow application and models, 

EWA approach, workload types, QoS objectives, and 

constraints, followed by a general problem statement of 

EWA. A taxonomy of EWA challenges in cloud 

environments is presented, along with an allocation 

framework for the EWA model to enhance understanding 

of the problem. Finally, the paper discusses open issues, 

challenges, and future research directions to support the 

development of advanced EWA approaches. Finally, the 

various open issues, challenges, and future directions for 

further research are discussed to help the researchers 

develop EWA approaches in the domain. The analysis of 

energy-efficient workflow allocation indicates that energy 

consumption (28%), makespan (27%), and monetary cost 

(23%) are the primary concerns in current research. In 

contrast, aspects such as fault tolerance, response time, and 

convergence ratio receive considerably less attention. As 

current studies focus most on QoS factors like task 

deadlines, which make up 46% of the research. In contrast, 

budget and reliability are each considered in only about 

14% of studies. Future research should focus on scalable, 

communication-aware, and adaptive multiobjective 

optimization methods that can improve energy efficiency, 

performance, security, and cost at the same time. Using 

hybrid meta-heuristic strategies will also be important for 

more effective and balanced workflow scheduling. This 

study aims to provide valuable insights into energy-

efficient workflow allocation, guiding future 

advancements in sustainable, high-performance cloud 

computing infrastructure. 
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Abbreviations 

The list of abbreviations used in this study is given in alphabetical order below. 

 

Abbreviation Full form Abbreviation Full form 

ABC Artificial Bee Colony GWO Grey Wolf Optimization 

ACO Ant Colony Optimization HAED 

Hybrid Approach for Energy-Aware 

Scheduling of Deadline-Constrained 

Workflows 

ACRR 
Adaptive Cloud Resource 

Reconfigurability 
HEFT Heterogenous Earliest Finish Time 

ALO Ant Loin Optimization HPEFT 
Heterogeneous Predecessor Earliest 

Finish Time 

ASFLA Shuffled Frog Leaping Algorithm IDE Improved Differential Evolution 

BDCE 
Budget Deadline Constrained Energy-

aware 
IWD Intelligent Water Drops 

BDD 
Budget Deadline DVFS-enabled 

Energy-aware 
MCP Modified Critical Path 

BDSD Budget Deadline Sensitive Dynamic MOGA Multiobjective Genetic Algorithm 

CEAS Cost and Energy Aware Scheduling MSIA 
Multiobjective Salp Swarm 

Algorithm 

C-PSO Catfish Particle Swarm Optimization MWSTR 
Multiple Workflow Slack Time 

Reclamation 

CPFD Critical Path Fast Duplication NSGA-II 
Nondominated Sorting Genetic 

Algorithm II 

CPM Critical Path Method PACS Power-Aware Cloudlet Scheduling 

CSO Cat Swarm Optimization PSO Particle Swarm Optimization 

DES Data Encryption Standard QoS Quality of Service 

DVFS Dynamic Voltage Frequency Scaling REEWS 
Reliability and Energy Efficient 

Workflow Scheduling 

EAFSA Enhanced Artificial Fish Swarm  SERAS 
Smart Energy and Reliability Aware 

Scheduling 

EASVMC 

Energy Aware Workflow Scheduling 

System for Cloud Computing with VM 

Consolidation 

SFLA Shuffled Frog-Leaping Algorithm 

ECMSMOO 

Endocrine-based Coevolutionary 

Multi-Swarm for Multi-Objective 

Optimization 

SLA Service Level Agreement 

EERS 
Energy-Efficient and Reliability 

Aware Workflow Task Scheduling 
SPEA2 

Strength Pareto Evolutionary 

Algorithm 2 

EEWS Energy Efficient Workflow Scheduling TDS Task Duplication-based Scheduling 

EnReal Energy-aware Resource Allocation WWO Water Wave Optimization 

EVMP 
Energy-aware Virtual Machine 

Placement 
WOA Whale Optimization Algorithm 

 


