
https://doi.org/10.31449/inf.v49i24.11427 Informatica 49 (2025) 401–416 401

A Comparative Study of an STM32F103C8T6-Based FreeRTOS

Smart Home System for Environmental Monitoring and Control

Ruimin Gao

Zijin School of Geology and Mining Fuzhou University, Fuzhou, 350158, China

E-mail: grm0112@126.com

Keywords: STM32F103C8T6, smart home, environmental monitoring, FreeRTOS, low power consumption,

response time, performance comparison

Received: September 4, 2025

To meet the high-precision, fast-response, and low-energy requirements for environmental monitoring

and device control in smart home scenarios, an intelligent control system based on the STM32F103C8T6

was designed. Comparative experiments were conducted with a 51 microcontroller (MCU) system and

an Arduino system, as well as with recent peer-reviewed smart home solutions (e.g., IoT-based systems

using Raspberry Pi Pico or ESP32-C3). The system hardware adopts a four-layer "perception-control-

communication-application" architecture, integrating multiple sensors (DS18B20 for temperature,

SHT30 for humidity, MQ-2 for air quality, BH1750 for light intensity) and control modules. The software

uses FreeRTOS for task scheduling (with explicitly defined task priorities, scheduling intervals, and

memory management) and a Qt host computer for data visualization and remote control. Experiments

were performed in a constant temperature and humidity chamber (temperature control accuracy:

±0.1°C, humidity: ±1% RH) and a simulated real-home environment (with variable lighting, Wi-Fi

interference, and multi-device coexistence) over 24 continuous hours, with a 1-second sampling rate.

Multiple test points were set to assess monitoring accuracy, response time, energy consumption, system

stability under multitasking, and wireless communication reliability. The results show that the STM32

system's maximum temperature monitoring error is 0.3°C and humidity error is 2% RH, 62.5% and 60%

lower than the 51-chip MCU system, and 50% and 50% lower than the Arduino system, respectively.

The automatic control response time is 0.8 s (mean ± 0.1 s) and remote control time is 1.0 s (mean ± 0.1

s), 55.6% and 54.5% shorter than the Arduino system. The total 24-hour energy consumption is 2.88

Wh, 40% lower than the 51-chip MCU system. Compared with a Raspberry Pi Pico-based system

(reported in recent literature with 0.5°C temperature error and 3.5 Wh daily energy consumption), the

STM32 system achieves 40% higher temperature monitoring accuracy and 17.7% lower energy

consumption. Simulations and real-environment tests demonstrate that the STM32 system outperforms

comparison systems in all metrics, meets practical application requirements of green smart homes, and

maintains stability under network congestion and multitasking.

Povzetek: Študija predstavi nadzorni sistem za pametne domove s štirislojno arhitekturo, večsenzorskim

spremljanjem in FreeRTOS upravljanjem, ki zagotavlja natančno, hitro in energijsko varčno okoljsko

merjenje ter daljinsko krmiljenje.

1 Introduction

With the deep integration of IoT technology and

embedded systems, the smart home industry has evolved

from single-device intelligence to whole-home scenario-

based control. According to industry reports, the global

smart home market has an average annual growth rate

exceeding 20% [1]. As core functions for improving living

comfort and ensuring indoor safety, environmental

monitoring and control have become key components of

smart home systems. In everyday home environments,

accurate tracking of parameters such as temperature,

humidity, air quality, and light provides data support for

the intelligent control of devices like air conditioners,

humidifiers, and fresh air systems, directly impacting user

experience and energy efficiency. Therefore, the

performance of environmental monitoring and control

modules has become a key indicator of the practicality of

smart home systems [2].

However, current mainstream smart home

environmental monitoring and control systems still have

significant shortcomings. Some systems based on 51

MCUs or Arduino, limited by the MCU's computing

power, employ simple data acquisition and processing

methods, resulting in large monitoring errors

(temperature errors often exceeding ±0.6°C and humidity

errors exceeding ±4% RH). Most systems lack optimized

task scheduling mechanisms, leading to delayed device

control responses—response times from parameter

excursions to device startup often exceed 1.8 s.

Furthermore, imperfect hardware power management

design and the absence of software low-power strategies

result in system standby power consumption exceeding

60 mW, failing to meet green and low-carbon home

402 Informatica 49 (2025) 401–416 R. Gao

development requirements [3]. Recent studies have

attempted to address these issues using low-power MCUs

(e.g., Raspberry Pi Pico, ESP32-C3) or IoT frameworks

(e.g., AWS IoT Greengrass), but many still lack

systematic comparative testing against traditional

platforms or fail to integrate real-time operating systems

(RTOS) for efficient task management. For example, a

Raspberry Pi Pico-based smart home system reported in

Laha et al. [4] achieved a temperature monitoring error of

0.5°C and daily energy consumption of 3.5 Wh, but it did

not support multitasking or remote control latency

optimization. Another ESP32-C3 system in Shi et al. [5]

integrated AIoT functions but had higher standby power

consumption (45 mW) due to redundant sensor modules.

These gaps highlight the need for a low-power, high-

precision system with RTOS-based task scheduling to

balance performance and energy efficiency.

To address these shortcomings, this research

designed a smart home environment monitoring and

control system based on the STM32F103C8T6 MCU. This

system leverages the STM32's high-performance

computing power (72 MHz clock speed, 12-bit ADC) and

flexible peripheral interfaces, combined with optimized

data processing algorithms (sliding average filtering, 3σ

outlier removal) and a low-power design (LM1117-3.3

voltage regulator, FreeRTOS task hibernation), to improve

monitoring accuracy and response speed while reducing

energy consumption. To clarify the research, focus and

scientific contribution, three specific research questions

are proposed:

1. Can the STM32F103C8T6 + FreeRTOS

combination achieve lower monitoring errors and faster

response times compared to traditional 51 MCU/Arduino

systems and recent low-power IoT platforms?

2. Does the four-layer hardware architecture

enhance modularity, scalability, and communication

reliability compared to common IoT models, especially

under network congestion or multi-node expansion?

3. Can the system be extended to integrate

advanced control methods (e.g., adaptive fuzzy control,

neural adaptive control) or lightweight AI, and how

would this improve robustness and adaptability in real-

home environments?

The core research components include: (1) hardware

circuit design (sensor acquisition, device control, wireless

communication modules) based on the

STM32F103C8T6; (2) embedded software development

(drivers, task scheduling, data filtering) based on

FreeRTOS, with explicit configuration of task priorities,

scheduling intervals, and memory management; (3)

construction of an experimental platform for comparative

testing against 51 MCU, Arduino, and recent IoT-based

systems (Raspberry Pi Pico, ESP32-C3) to verify

performance in lab and real-home environments; and (4)

exploration of integrating advanced control methods (e.g.,

adaptive fuzzy control, neural adaptive control) for future

optimization.

A structured comparison of key existing smart home

systems and the proposed system is provided in Table 1

(Related Works Summary), which contextualizes the

current study against state-of-the-art (SOTA) solutions.

Table 1: Summary of key smart home environmental monitoring systems in literature

Referenc

e

Core Platform Sensor

Configuratio

n

Monitoring

Accuracy

(Temp/Humidity

)

Respons

e Time

Daily Energy

Consumptio

n

Key

Limitations

Laha et al.

[4]

Raspberry Pi Pico Temp,

Humidity, Air

Quality

±0.5°C / ±3% RH 1.2 s 3.5 Wh No RTOS, no

multitasking

support

Shi et al.

[5]

ESP32-C3 Temp,

Humidity,

Light, Camera

±0.4°C / ±2.5%

RH

1.0 s 4.2 Wh High standby

power (45

mW), no

remote control

optimization

Hamdan

[2]

Arduino Uno Temp,

Humidity

±0.6°C / ±4% RH 1.8 s 4.32 Wh Simple data

processing, no

low-power

strategy

Rhee et al.

[1]

51 MCU

(STC89C52RC)

Temp,

Humidity

±0.8°C / ±5% RH 2.5 s 4.8 Wh Low ADC

accuracy (8-

bit), no task

scheduling

Proposed

System

STM32F103C8T

6 + FreeRTOS

Temp

(DS18B20),

Humidity

(SHT30), Air

Quality (MQ-

2), Light

(BH1750)

±0.3°C / ±2% RH 0.8 s

(auto) /

1.0 s

(remote)

2.88 Wh Limited sensor

range (no

PM2.5/CO₂),

Wi-Fi-only

communicatio

n

A Comparative Study of an STM32F103C8T6-Based … Informatica 49 (2025) 401–416 403

The results of this research provide a technical

reference for optimizing smart home environment

monitoring and control systems, promoting the

development of low-power, high-precision smart home

devices, and addressing gaps in existing systems such as

limited multitasking capability, high energy consumption,

and lack of advanced control integration.

2 Overall system design
2.1 System design objectives

To ensure the system's practicality and competitiveness in

smart home scenarios, the following core performance

indicators were defined:

• Environmental parameter monitoring

accuracy: Temperature error ≤ ±0.3°C, humidity

error ≤ ±2% RH, air quality (hazardous gas

concentration) error ≤ ±10 ppm, light intensity

error ≤ ±50 lux. This ensures data accurately

reflects indoor environmental conditions,

outperforming recent Raspberry Pi Pico-based

systems (±0.5°C / ±3% RH) [4].

• Device control response time: Automatic

control response time (from parameter excursion

to device startup) ≤ 0.8 s (mean ± 0.1 s); remote

control response time (from host computer

command to device activation) ≤ 1.0 s (mean ±

0.1 s). This avoids delays affecting user

experience, shorter than the ESP32-C3 system's

1.0 s automatic response [5].

• System energy consumption: Standby power

consumption (core board + communication

module) ≤ 30 mW; normal operation power

consumption (sensor acquisition + data

processing + device control) ≤ 120 mW; 24-hour

total energy consumption ≤ 2.88 Wh. This meets

green smart home requirements, 17.7% lower

than the Raspberry Pi Pico system's 3.5 Wh.

• Scalability and stability: Support for adding at

least 5 additional sensor nodes (e.g., PM2.5,

CO₂) without performance degradation; maintain

≤1.2 s response time under network congestion

(50% packet loss); stable operation in variable

environments (temperature 10–40°C, humidity

30–70% RH, Wi-Fi interference from 2+

routers).

• Extensibility for advanced control:

Hardware/software compatibility with

integrating adaptive fuzzy control, neural

adaptive control, or PID control to enhance

robustness against nonlinearities and

uncertainties in real-home environments.

2.2 Overall system architecture

The system adopts a layered architecture, achieving

functional synergy from hardware and software

perspectives. Its specific advantages over common IoT

models (e.g., three-layer "perception-network-

application") include enhanced modularity, fault

isolation, and real-time data processing, addressing

limitations of

existing designs such as poor scalability or

communication bottlenecks.

2.2.1 Hardware architecture (four layers)

• Perception layer: Comprises DS18B20

(temperature), SHT30 (humidity), MQ-2 (air

quality), and BH1750 (light) sensors. Each sensor

uses standardized interfaces (I2C, GPIO, 1-Wire)

for easy replacement/expansion. Unlike the

ESP32-C3 system, which integrates redundant

sensors leading to high power consumption, this

layer uses low-power sensors (SHT30 standby

current: 0.1 μA) to optimize energy efficiency.

• Control layer: Centered on the

STM32F103C8T6 MCU (72 MHz clock, 64 KB

Flash, 20 KB SRAM). It executes data processing,

task scheduling (via FreeRTOS), and control

command generation. Compared to the 51 MCU

(11.0592 MHz, 8-bit ADC) and Arduino (16

MHz, 10-bit ADC), its high-speed 12-bit ADC

reduces signal noise, and its support for RTOS

enables preemptive task scheduling to prioritize

critical control tasks.

• Communication layer: Integrates dual-mode

communication: ESP8266 (Wi-Fi) for long-

distance data transmission (up to 50 m in open

areas) and Bluetooth Mesh (nRF52832 module,

added for scalability) for short-range, low-power

node communication. This addresses the Wi-Fi

signal obstruction issue in complex housing

layouts (common in single-communication

systems [1, 5])—Bluetooth Mesh maintains ≤1.5

s response time in areas with weak Wi-Fi (e.g.,

basements). Under network congestion (50%

packet loss), the layer uses adaptive

retransmission (3 retries max) to ensure ≥95%

data delivery rate, outperforming Wi-Fi-only

systems (≤80% delivery rate).

• Application layer: Includes a 12864 LCD

module (local display), 4×4 keypad (manual

operation), and Qt host computer (remote

monitoring). The host computer supports data

visualization, threshold setting, and remote

control, with a user-friendly interface that reduces

operation complexity compared to AWS IoT

Greengrass-based systems [6].

2.2.2 Software architecture (four layers)

Adheres to modular design principles, with standardized

interfaces between layers to ensure scalability [7]:

• Bottom layer: FreeRTOS embedded operating

system, configured with:

o Task priorities: Device Control Task (5,

highest), Data Processing Task (4), Data

404 Informatica 49 (2025) 401–416 R. Gao

Acquisition Task (3), Wireless

Communication Task (2, lowest). This

prioritization is justified by timing

analysis: control tasks require sub-

second response to avoid environmental

damage, while communication tasks

can tolerate slight delays.

o Scheduling intervals: Data Acquisition

Task (1 s periodic trigger), Data

Processing Task (event-triggered after

acquisition), Device Control Task

(event-triggered by threshold breaches),

Wireless Communication Task (500 ms

periodic data upload) [8].

o Memory management: 4 KB stack for

each task, 2 KB shared buffer for sensor

data, dynamic memory allocation

disabled to avoid fragmentation.

• Middle layer: Device drivers for sensors

(DS18B20, SHT30, MQ-2, BH1750), relays

(ULN2003), and communication modules

(ESP8266, nRF52832) [9]. Drivers use hardware

abstraction to simplify adding new modules (e.g.,

PM2.5 sensor) with <10 lines of code

modification.

• Upper layer: Application programs, including

sliding average filtering (5-sample window for

temperature/humidity), 3σ outlier removal, and

threshold-based control logic. Future extensions

will integrate adaptive fuzzy control (to handle

nonlinear sensor errors) and neural adaptive

control (to learn user habits), referencing

methods from [10] (Adaptive fuzzy control for

fractional-order chaotic systems) and [11]

(Robust neural adaptive control for nonlinear

multivariable systems).

• Top layer: Qt host computer management

software, with SQLite database (data storage),

QCustomPlot (real-time curves), and remote

control modules. It supports historical data query

(by date range) and parameter over-limit alarms

(pop-up + sound), with a communication latency

≤100 ms (measured via round-trip time tests).

2.3 System functional module division

The system is divided into five core functional modules,

with clear division of labor and coordinated operation:

• Environmental parameter acquisition

module: Data source for the system. Converts

physical quantities (temperature, humidity, etc.)

into electrical signals via sensors, then conditions

signals (amplification, filtering) before

transmission to the control layer. Each sensor

undergoes pre-calibration using a FLUKE 8846A

multimeter and TES-1360

thermometer/hygrometer, with calibration

coefficients stored in the STM32's Flash for real-

time error compensation. For example, the

DS18B20's raw temperature data is corrected

using the formula: Corrected_T = Raw_T × 0.98

+ 0.12 (derived from 50 calibration points),

reducing inherent sensor error by 30%.

• Data processing and analysis module:

Leverages the STM32's computing power to process

raw data:

o Sliding average filtering: Computes the

average of 5 consecutive samples for

temperature/humidity to reduce random noise

(e.g., ±0.1°C fluctuations from electrical

interference).

o 3σ outlier removal: Eliminates data points

outside the range [μ - 3σ, μ + 3σ] (μ = mean, σ

= standard deviation) to exclude abnormal

values (e.g., sensor disconnection causing 0°C

readings).

o Threshold comparison: Compares processed

data with user-set thresholds (e.g., temperature

> 28°C triggers air conditioner activation).

Future integration of adaptive fuzzy control

(from [12]) will replace fixed thresholds with

fuzzy rules (e.g., "if temperature is high and

humidity is medium, activate air conditioner at

70% power") to handle nonlinear

environmental dynamics.

• Device control module: Executes control

commands via relays (on/off control for lights/air

conditioners) or PWM signals (fan speed

adjustment). The module includes a PZEM-004T-

100A power monitoring module (paired with a

current transformer) to measure real-time load

power consumption (accuracy ±0.5 W) and feed

data back to the control layer for energy

management. For example, if the air conditioner's

power consumption exceeds 1500 W (abnormal

load), the module triggers a relay shutdown to

prevent overheating.

• Wireless communication module: Dual-mode

(Wi-Fi + Bluetooth Mesh) data transmission

bridge:

o Wi-Fi (ESP8266): Uploads environmental

parameters to the host computer (115200 bps

baud rate) and receives remote commands,

with a maximum communication distance of

50 m (open area) and 15 m (indoor, 2 walls).

o Bluetooth Mesh (nRF52832): Connects

additional sensor nodes (e.g., bedroom PM2.5

sensor) to the core system, with a node-to-

node distance of up to 10 m and support for 8+

nodes in a mesh network. Under Wi-Fi

interference (e.g., 2.4 GHz router congestion),

the module automatically switches to

Bluetooth Mesh, maintaining ≤1.5 s response

time.

• Human-computer interaction module: Enables

local and remote user interaction:

o Local interaction: 12864 LCD (real-time

display of temperature, humidity, device

A Comparative Study of an STM32F103C8T6-Based … Informatica 49 (2025) 401–416 405

status) and 4×4 keypad (manual threshold

setting, control mode switching:

auto/remote/local).

o Remote interaction: Qt host computer (data

curve display, historical records, one-click

device control). The module supports user

permission management (admin/guest roles)

to prevent unauthorized control, addressing

security gaps in existing systems [13].

3 System hardware design
This system's hardware design is built around an STM32

core control board, employing a modular architecture that

integrates environmental sensing, device control,

communication, and human-computer interaction

functions. As shown in Figure 1 (STM32 Core Control

Module), the control board serves as the central hub,

leveraging the high-performance STM32F103C8T6

chip.

Through its rich pinout (37 GPIO pins, 2 I2C interfaces,

3 USART interfaces), it interconnects various modules,

coordinating timing, processing signals, and issuing

commands. The environmental parameter acquisition

module uses calibrated sensors to capture accurate

environmental indicators; the device control module

(relays + power monitoring) enables load switching and

energy management [14]; the dual-mode communication

module (ESP8266 + nRF52832) supports remote data

exchange and multi-node expansion; the human-

computer interaction module (LCD + keypad + camera)

meets local operation and image acquisition needs. Each

module has a clear division of labor and works

collaboratively, laying a solid hardware foundation for

stable system operation and intelligent control.

Figure 1: TM32 core control Module. Notes: (1) STM32F103C8T6 core board (red box); (2) DS18B20 (temperature

sensor, yellow); (3) SHT30 (humidity sensor, green); (4) ESP8266 (Wi-Fi module, blue); (5) nRF52832 (Bluetooth

Mesh module, purple); (6) Relay module (4 channels, black); (7) 12864 LCD (gray); (8) Grove serial camera (white).

All modules connect to the core board via standardized pin headers for easy disassembly.

3.1 STM32 core control module design

The core control module in the figure is centered around

the STM32 development board. This board, equipped with

a high-performance STM32 chip and a rich set of GPIO

pins and communication interfaces, provides computing

and control capabilities for the entire system. From a

hardware perspective, signals from numerous functional

modules converge on different pins on the core board [15].

For example, the sensors in the environmental parameter

acquisition module connect to the core board via interfaces

such as I2C and GPIO. The relay drive signals in the

device control module are output via specific pins on the

core board—the wireless communication module

exchanges data with the core board via interfaces such as

the serial port. The display and buttons of the human-

machine interface module also communicate with the core

board via corresponding pins. The core board also

coordinates the operating sequence of each module,

processes input signals from different modules, and

generates control commands for each module. It serves as

the "brain" of the entire system, ensuring the smooth

operation of all components.

3.2 Environmental parameter acquisition

module design

The core control module is centered around the

STM32F103C8T6 development board, which includes:

• MCU: STM32F103C8T6 (ARM Cortex-M3

core, 72 MHz clock speed, 64 KB Flash, 20 KB

SRAM). Its 12-bit ADC (up to 16 channels)

provides higher sampling accuracy than the 51

MCU (8-bit ADC) and Arduino (10-bit ADC),

reducing sensor data error by 40–50%.

• Power supply: LM1117-3.3 voltage regulator

(input 5 V, output 3.3 V, static current 5 mA) and

1000 μF electrolytic capacitor (voltage

stabilization). This design reduces standby power

consumption to ≤30 mW, 62.5% lower than the 51

MCU system's 80 mW [16].

• Peripheral interfaces:

406 Informatica 49 (2025) 401–416 R. Gao

o I2C1: Connects SHT30 (humidity) and

BH1750 (light) sensors.

o USART1: Communicates with

ESP8266 (Wi-Fi module, TX: PA9,

RX: PA10).

o USART2: Communicates with

nRF52832 (Bluetooth Mesh module,

TX: PA2, RX: PA3).

o GPIO: Controls relays (PC0–PC3),

DS18B20 (PB0), and keypad (PB1–

PB4).

• Debugging interface: SWD (Serial Wire Debug)

for program downloading and debugging,

supporting real-time monitoring of task

execution and CPU load (via Keil MDK 5.38's

debug console).

From a hardware perspective, signals from functional

modules converge on specific pins of the core board [17].

For example:

• Sensors in the acquisition module connect via

I2C/GPIO: SHT30 (I2C1_SDA: PB7,

I2C1_SCL: PB6), DS18B20 (PB0, 1-Wire

interface).

• Relay drive signals are output via PC0–PC3: A

high level (3.3 V) triggers the ULN2003

Darlington transistor array to activate the relay (5

V load voltage).

• Communication modules exchange data via

USART: ESP8266 (USART1, 115200 bps, 8N1

parity), nRF52832 (USART2, 9600 bps, 8N1

parity).

The core board coordinates the operating sequence of each

module (e.g., sensor acquisition → data processing →

control command output) and processes input signals (e.g.,

converting 12-bit ADC values from MQ-2 to gas

concentration via a calibration curve). It serves as the

"brain" of the system, ensuring smooth operation of all

components.

3.3 Device control module design

The device control module primarily consists of a relay

module. The figure shows four relays, corresponding to

pins PC0 through PC3. The relay module enables on/off

control of external loads (lighting and ventilation

equipment). When the STM32 core board determines that

a device needs to be controlled based on the data

transmitted by the environmental parameter acquisition

module, it outputs a control signal to the corresponding

relay pin, actuating the relay to connect or disconnect the

load. In addition, the PZEM-004T-100A module,

combined with a current transformer (CT), monitors

power parameters, providing real-time information such

as load power consumption, supporting the system's

energy management. It also works with the relay module

to achieve intelligent equipment control.

3.4 Wireless communication module

design

Although a separate wireless communication module is not

directly shown in the diagram, a wireless communication

module (such as the ESP8266) can be added via the STM32

core board's serial port or other interfaces for system

functional integrity. This module

enables communication between the system and external

networks or mobile devices, uploading collected data

such as environmental parameters and device status to the

cloud or mobile app. It can also receive external control

commands for remote control. In terms of hardware

connections, the wireless communication module's TX

and RX pins are connected to the core board's serial port

pins, and the power supply can be shared with the core

board or powered independently to ensure stable and

reliable wireless communication and expand the system's

control and monitoring range.

3.5 Human-computer interaction module

design

The wireless communication module adopts a dual-mode

design (ESP8266 + nRF52832) to address the single-

communication limitation of existing systems [18]. As

shown in Figure 1, the module connects to the STM32

core board via USART interfaces:

• ESP8266 Wi-Fi module:

o Hardware connection: TX → PA10 (STM32

USART1_RX), RX → PA9 (STM32

USART1_TX), VCC → 3.3 V (shared with

core board), GND → common ground.

o Configuration: AT command-based setup

(e.g., AT+CWJAP="SSID","PASSWORD"

to connect to Wi-Fi), data transparent

transmission mode (sends processed sensor

data as JSON packets:

{"temp":25.3,"hum":50.2,"gas":150,"light":

500}).

o Performance: Maximum communication

distance of 50 m (open area), 15 m (indoor

with 2 walls), packet loss rate ≤5% at 10 m

(measured via 1000 data packets). Under

network congestion (50% packet loss), it

uses adaptive retransmission (3 retries) to

maintain ≥95% delivery rate.

• nRF52832 bluetooth mesh module:

o Hardware connection: TX → PA3 (STM32

USART2_RX), RX → PA2 (STM32

USART2_TX), VCC → 3.3 V, GND →

common ground.

o Configuration: Mesh network setup via nRF

Connect SDK, supporting 8+ nodes in a star

topology. Each node (e.g., a bedroom PM2.5

sensor) communicates with the core module

at 2 Mbps data rate, with a node-to-node

distance of up to 10 m.

o Performance: Standby power consumption

of 8 mW (10× lower than ESP8266), ideal

for battery-powered sensor nodes. In areas

A Comparative Study of an STM32F103C8T6-Based … Informatica 49 (2025) 401–416 407

with weak Wi-Fi (e.g., basements), it

maintains ≤1.5 s remote control response

time, addressing signal obstruction issues in

complex housing layouts.

The dual-mode design enhances communication

resilience: the system automatically switches to

Bluetooth Mesh if Wi-Fi signal strength drops below -70

dBm

(Measured via ESP8266's AT+CWJAP? command),

ensuring uninterrupted monitoring and control.

4 System software design
4.1 Embedded software design

The embedded software is based on FreeRTOS

(v10.4.3) and ported using STM32CubeMX (v6.9.1). Key

configurations and implementations are detailed below to

address reproducibility concerns:

• System clock configuration: 72 MHz system

clock (HSE: 8 MHz crystal oscillator, PLL multiplier:

9), peripheral clocks enabled:

o USART1 (ESP8266): 36 MHz APB2

clock.

o USART2 (nRF52832): 36 MHz APB2

clock.

o I2C1 (sensors): 36 MHz APB1 clock.

o ADC1 (MQ-2): 12 MHz APB2 clock

(12-bit resolution, sampling time: 28.5 cycles).

o Tick timer (SysTick): 1 ms interrupt

period, serving as the FreeRTOS time base.

• Device driver layer (modular development):

o DS18B20 driver: Implements 1-

Wire initialization (PB0), temperature reading

(converts 16-bit raw data to °C: Temp =

Raw_Data × 0.0625), and error checking

(validates data range: -55°C to 125°C).

o SHT30 driver: Parses I2C

communication (address 0x44), sends

measurement commands (0x2C06 for high

precision), and calculates humidity (Hum =

Raw_Hum × 100 / 65535) and temperature (Temp

= Raw_Temp × 175 / 65535 - 45).

o MQ-2 driver: Reads analog signals

via ADC1 (PA0), applies 10-sample average

filtering, and converts to gas concentration (ppm)

using a calibration curve: Concentration = 2.3 ×

ADC_Value - 150 (derived from testing with

standard formaldehyde gas).

o Relay driver: Controls ULN2003 via

GPIO pins (PC0–PC3): High level (3.3 V)

activates the relay, low level (0 V) deactivates it.

Includes overcurrent protection (reads PZEM-

004T data; shuts down relay if current > 10 A).

o ESP8266/nRF52832 driver:

Encapsulates USART transmit/receive functions

(e.g., USART_SendData(USART1, data, len)),

AT command parsing (e.g., parses "+IPD," prefix

for received data), and data transparent

transmission.

As shown in Figure 2 (Embedded Software Design), four

core tasks are created after system initialization, with

priorities and synchronization mechanisms justified by

real-time requirements:

Figure 2: Embedded software design. Notes: (1) System initialization flow: Power-on → STM32CubeMX

configuration loading → FreeRTOS kernel initialization → Peripheral/driver initialization → Task creation → Start

scheduler. (2) Task priority order: Device Control Task (5) > Data Processing Task (4) > Data Acquisition Task (3) >

Wireless Communication Task (2). (3) Synchronization: Data Acquisition Task releases a semaphore (xAcqSem) after

completion, triggering Data Processing Task; Device Control Task uses an event flag group (xControlEvent) to

receive threshold breach signals.

• Low-power strategy:

o Task hibernation: When no tasks

are active (e.g., all parameters within

thresholds), the Wireless Communication

Task calls vTaskSuspend() to hibernate, and

the core board enters STOP mode (power

consumption ≤10 mW) via

HAL_PWR_EnterSTOPMode(). The SysTick

timer wakes the system every 1 s to check for

task resumption.

o Peripheral power gating: Sensors

(e.g., MQ-2) are powered off via GPIO-

controlled transistors when not sampling

408 Informatica 49 (2025) 401–416 R. Gao

(reduces power consumption by 15 mW during standby).

4.2 Host computer management software

design

The host computer was developed using Qt 5.14, with the

interface built on the QMainWindow framework. The

development environment was configured with Qt

Creator 4.11 and the MinGW 7.3.0 compiler. Wireless

serial communication with the ESP8266 was established

using the QSerialPort library, with a baud rate of

115200bps. The data storage module used a SQLite

database, creating an "environment" table to store fields

such as timestamps, temperature, humidity, air quality,

and light intensity. The QSqlQuery class was used to

insert, delete, and query data, supporting filtering of

history records by date range [19]. After the system starts,

it automatically scans and connects to the specified Wi-Fi

hotspot and establishes a communication connection with

the slave computer through the TCP protocol. The data

receiving thread (independent of the UI thread) parses the

JSON format data packet sent by the slave computer in

real time, updates the memory buffer, and triggers

database storage. The UI layer uses the QCustomPlot

control to draw real-time temperature and humidity curves

(with a sampling interval of 1s and a cache of 1000

historical points). The table control displays the latest 10

monitoring data. The remote control module provides

button and slider components. After the user clicks the

control command, the software encapsulates the command

into a data packet in a specific format and sends it down

[20]. At the same time, it receives device status feedback

from the slave computer and updates the interface. The

parameter over-limit alarm module compares the

monitoring data with the user-set threshold in real time. A

pop-up prompt and sound alarm are triggered if the range

is exceeded. Manual alarm closure and threshold

adjustment are supported.

4.3 Host computer management software

design

The host computer was developed using Qt 5.14 (Qt

Creator 4.11, MinGW 7.3.0 compiler), with a user-

friendly interface and robust functionality:

4.3.1 Communication module

• Establishes wireless serial communication with

ESP8266 via QSerialPort library: Baud rate

115200 bps, data bits 8, stop bit 1, parity none,

flow control none.

• Connects to the core system via TCP protocol

(after ESP8266 connects to Wi-Fi hotspot: SSID

"SmartHome_AP", password "12345678");

automatically reconnects if the connection is lost

(retry interval 3 s).

• Independent data receiving thread (QThread):

Parses JSON data packets (e.g.,

{"temp":25.3,"hum":50.2}) in real time, updates

a memory buffer (1000 data points), and triggers

database storage (avoids UI thread blocking).

4.3.2 Data storage and visualization:

• SQLite database: Creates an "environment" table

with fields: timestamp (TEXT, e.g., "2024-05-20

14:30:00"), temperature (REAL), humidity

(REAL), air_quality (INTEGER, ppm),

light_intensity (INTEGER, lux). Uses QSqlQuery

for CRUD operations (e.g., "INSERT INTO

environment VALUES (datetime('now'), 25.3,

50.2, 150, 500)"); supports filtering historical

records by date range (e.g., "SELECT * FROM

environment WHERE timestamp BETWEEN

'2024-05-20' AND '2024-05-21'").

• Real-time visualization: Uses QCustomPlot to

draw temperature/humidity curves (sampling

interval 1 s, cache 1000 historical points). Curves

are color-coded (red for temperature, blue for

humidity) with axis labels (X: Time, Y:

Temperature (°C) / Humidity (% RH)) and grid

lines for clarity. A table control displays the latest

10 monitoring data points (timestamp, all

parameters) with alternating row colors for

readability.

4.3.3 Remote control and alarm:

• Remote control: Provides button components

(e.g., "Turn On Air Conditioner", "Adjust Fan

Speed") and sliders (e.g., fan speed 0–100%).

When a user clicks a button, the software

encapsulates the command into a structured

packet (e.g.,

"CMD=AC_ON,TS=20240520143000") and

sends it via USART/TCP. It receives device status

feedback (e.g., "AC_STATUS=ON") and updates

the UI in real time.

• Parameter over-limit alarm: Compares real-

time data with user-set thresholds (e.g., temp >

28°C) every 100 ms. If exceeded, it triggers a pop-

up prompt (QMessageBox) and a 2-second sound

alarm (QSound). Users can manually close the

alarm or adjust thresholds via a settings dialog.

4.3.4 Performance optimization:

• Database write optimization: Uses batch inserts

(10 data points per transaction) to reduce I/O

operations, improving write speed by 40% (from

5 ms/point to 3 ms/point).

• UI rendering optimization: Updates curves and

tables in the UI thread via

QMetaObject::invokeMethod() to avoid lag,

ensuring smooth display even with 1000+ data

points.

5 Experimental simulation and

performance analysis
5.1 Experimental environment setup

To ensure reproducibility and comprehensiveness,

A Comparative Study of an STM32F103C8T6-Based … Informatica 49 (2025) 401–416 409

experiments were conducted in two environments (lab

and simulated real-home) with detailed

hardware/software configurations:

• Hardware platform:

o Proposed system: STM32F103C8T6 core

board, DS18B20 (temp), SHT30

(humidity), MQ-2 (air quality), BH1750

(light), 4-channel relay module, ESP8266

(Wi-Fi), nRF52832 (Bluetooth Mesh),

12864 LCD, 4×4 keypad, PZEM-004T-

100A (power monitoring). Powered by a

DC regulated power supply (5 V/2 A, Mean

Well RD-15-5).

o Comparison systems:

a. 51 MCU System: STC89C52RC core

board, same sensor model as proposed

system, no OS, powered by 5 V/1 A supply.

b. Arduino System: Arduino Uno

(ATmega328P), same sensor configuration,

developed via Arduino IDE (v2.2.1),

powered by 5 V/1 A supply.

c. Raspberry Pi Pico System: Based on Laha

et al. [4], RP2040 core, same sensors,

MicroPython firmware, powered by 3.3 V/2

A supply.

• Calibration and measurement equipment:

o High-precision instruments: FLUKE

8846A multimeter (accuracy ±0.01%

DCV), TES-1360 thermometer/hygrometer

(accuracy ±0.1°C / ±1% RH), Keysight

N6705B power analyzer (accuracy ±0.01

mW), Tektronix TBS1104 oscilloscope

(100 MHz bandwidth, 1 GS/s sampling

rate), Anritsu MS2720T spectrum analyzer

(to measure Wi-Fi signal strength).

• Experimental environments:

o Constant temperature and humidity

Chamber: Binder MK53, temperature

range 0–50°C (control accuracy ±0.1°C),

humidity range 20–80% RH (control

accuracy ±1% RH). Used to test monitoring

accuracy and response time under stable

conditions.

o Simulated real-home environment: 20 m²

room with:

a. Variable lighting: LED lights (100–

1000 lux, controlled via dimmer).

b. Wi-Fi interference: 2× TP-Link Archer

C7 routers (2.4 GHz/5 GHz, 50% packet

loss simulated via Wireshark).

c. Multi-device coexistence: 3×

smartphones, 1× smart TV, 1× air

conditioner (running during tests).

Used to test system stability, communication reliability,

and performance under unpredictable conditions.

• Software environment:

o Embedded: Keil MDK 5.38 (ARM Compiler

v6.16), STM32CubeMX 6.9.1, FreeRTOS

v10.4.3.

o Host Computer: Qt 5.14 (Qt Creator 4.11),

MinGW 7.3.0, SQLite 3.41.2, Wireshark

4.0.6 (for network analysis).

o Simulation: Proteus 8.12 (for circuit

simulation), MATLAB R2023a (for data

analysis and curve plotting).

5.2 Experimental parameter settings

To control variables and ensure statistical rigor, the

following parameters were uniformly set for all

systems:

• Environmental parameter monitoring range:

o Temperature: 0–50°C (5°C increments,

11 test points: 5, 10, ..., 50°C).

o Humidity: 20–80% RH (10% RH

increments, 7 test points: 20, 30, ..., 80%

RH).

o Air Quality: Simulated formaldehyde

concentration 0–500 ppm (50 ppm

increments, 11 test points: 50, 100, ...,

500 ppm).

o Light Intensity: 100–1000 lux (100 lux

increments, 10 test points: 100, 200, ...,

1000 lux).

• Sampling and test duration:

o Sampling period: 1 second (uniform for

all systems).

o Continuous monitoring: 24 hours (86400

data points per parameter per system).

o Test point dwell time: 30 minutes per

point (to ensure environmental stability

before data collection).

• Replication and statistical analysis:

o Each test (accuracy, response time,

energy consumption) was repeated 20

times to account for random variation.

o Results are reported as mean ± standard

deviation (SD), with 95% confidence

intervals (CI) calculated using

MATLAB's tinv function (e.g., temp

error: 0.3 ± 0.1°C, 95% CI [0.26, 0.34]).

• Communication conditions:

o Wireless communication distance: 10 m

(unobstructed, lab) and 15 m (obstructed,

real-home: 2 concrete walls).

o Host computer command frequency: 1

command every 10 seconds (e.g.,

"QUERY_STATUS",

"SET_TEMP=26") to simulate real

usage.

• Calibration protocol:

o All sensors were calibrated using

410 Informatica 49 (2025) 401–416 R. Gao

standard instruments before tests:

a. Temperature: DS18B20 calibrated

against TES-1360 (50 points, 0–

50°C), calibration coefficients

stored in STM32 Flash.

b. Humidity: SHT30 calibrated

against TES-1360 (35 points, 20–

80% RH).

c. Air Quality: MQ-2 calibrated against

a standard formaldehyde gas

generator (11 points, 0–500 ppm).

5.3 System performance test

Comprehensive tests were conducted to evaluate

accuracy, response time, energy consumption, stability,

and communication reliability—addressing limitations of

existing studies that focus only on lab conditions [1, 4, 8]:

5.3.1 Monitoring accuracy test

• Method: Set target parameters in the constant

temperature and humidity chamber (e.g., 25°C,

50% RH); read standard values via TES-

1360/FLUKE 8846A; record measured values of

all systems; calculate absolute error (|Measured -

Standard|) and relative error (Absolute Error /

Standard × 100%).

• Real-Home variation test: In the simulated real-

home environment, vary temperature (10–40°C),

humidity (30–70% RH), and light (200–800 lux)

randomly over 6 hours; record error trends to

assess stability under variable conditions.

5.3.2 Response time test

• Automatic control response: In the chamber,

suddenly adjust a parameter beyond the threshold

(e.g., temp from 25°C to 30°C); use an

oscilloscope to record the time from parameter

excursion (sensor signal) to device activation

(relay contact closure).

• Remote control response: Send a command

from the host computer (e.g.,

"TURN_ON_AC"); use Wireshark to record the

time from command transmission (TCP packet)

to device response (feedback packet).

• Multitasking Response: Run 3 concurrent tasks

(sensor acquisition, data upload, relay control);

measure response time under 50% CPU load

(monitored via Keil MDK's CPU load meter).

5.3.3 Energy consumption test

• Measurement equipment: Keysight N6705B

power analyzer (sampling rate 10 Hz, test

duration 24 hours).

• Modes tested:

o Standby mode: Only core board +

communication module operating

(sensors/relays off).

o Normal operation: Sensor acquisition +

data processing + device control (relays

on 50% of the time).

o Communication-only mode: Core board

+ communication module uploading data

every 500 ms.

• Module-level breakdown: Measure power

consumption of individual modules (STM32 core,

ESP8266, sensors, relays) to identify energy-

saving opportunities.

5.3.4 Stability and communication reliability test

• Multitasking stability: Run 5 concurrent tasks

(acquisition, processing, control, Wi-Fi upload,

Bluetooth Mesh upload) for 24 hours; record task

crashes, data loss, or response time degradation.

• Network congestion test: Simulate 30–70% Wi-

Fi packet loss via Wireshark; measure data

delivery rate and response time; test automatic

switch to Bluetooth Mesh.

• Real-home durability: Operate the system in the

simulated real-home environment for 72 hours;

record parameter monitoring continuity, device

control success rate, and communication

interruptions.

5.3.5 Advanced control feasibility test

• Adaptive fuzzy control simulation: In

MATLAB, implement the adaptive fuzzy control

method from [11] (Adaptive fuzzy control for

fractional-order chaotic systems) to adjust air

conditioner power based on temperature/humidity

trends; compare stability and energy efficiency

with threshold-based control.

• Neural adaptive control preliminary test:

Integrate a lightweight neural network (1 hidden

layer, 8 neurons) into the STM32 system to

predict user cooling/heating preferences (trained

on 1 week of user data); test prediction accuracy

(target: ≥85%).

5.4 Experimental results and analysis

5.4.1 Comparison of monitoring accuracy

The monitoring errors of the four systems under lab

and real-home conditions are shown in Table 2

(Environmental Parameter Monitoring Errors) and Figure

3 (Temperature Monitoring Error Variation) / Figure 4

(Humidity Monitoring Error Variation).

The monitoring errors of the three systems under

different parameters are shown in Table 2. The table

includes the absolute, relative, and full-scale maximum

errors for each test point, providing rich data. As shown

in the table, this system achieves minimal error across the

entire parameter range: the maximum absolute

temperature error is 0.3°C (at a 25°C test point), with a

A Comparative Study of an STM32F103C8T6-Based … Informatica 49 (2025) 401–416 411

relative error of 1.2%, representing a 62.5% reduction

compared to the 51 MCU system (maximum error 0.8°C,

relative error 3.2%) and a 50% reduction compared to

the Arduino system (maximum error 0.6°C, relative

error 2.4%). The maximum absolute humidity error is

2% RH (at a 50% RH test point), with a relative error of

4%, representing 60% and 50% reductions, respectively,

compared to the comparison systems. This is due to the

STM32's high-speed ADC sampling (12-bit accuracy)

and sliding average filtering algorithm, which reduces

signal noise. However, the limited sampling accuracy and

data processing capabilities of the 51 MCU (8-bit ADC)

and Arduino (10-bit ADC) result in larger errors.

Table 2: Comparison of environmental parameter monitoring errors across four systems (Lab conditions, mean ± SD)

Monitoring
Parameter

Test
Point

Proposed
System
(STM32)

51 MCU
System

Arduino
System

Raspberry Pi
Pico System
[4]

Improvement
Rate (STM32 vs.
Pico) (%)

Temperature
(°C)

5 0.2 ± 0.05°C
/ 4.0%

0.7 ±
0.1°C /
14.0%

0.5 ±
0.08°C /
10.0%

0.4 ± 0.07°C /
8.0%

50.0

25 0.3 ± 0.1°C /

1.2%
0.8 ±
0.12°C /
3.2%

0.6 ±
0.1°C /
2.4%

0.5 ± 0.09°C /
2.0%

40.0

50 0.2 ± 0.05°C

/ 0.4%
0.7 ±
0.1°C /
1.4%

0.5 ±
0.08°C /
1.0%

0.4 ± 0.07°C /
0.8%

50.0

Max Full-
Range Error

- 0.3 ± 0.1°C /
4.0%

0.8 ±
0.12°C /
14.0%

0.6 ±
0.1°C /
10.0%

0.5 ± 0.09°C /
8.0%

40.0

Humidity (%
RH)

20 1 ± 0.2%
RH / 5.0%

4 ± 0.5%
RH /
20.0%

3 ± 0.4%
RH /
15.0%

2.5 ± 0.3%
RH / 12.5%

60.0

50 2 ± 0.3%

RH / 4.0%
5 ± 0.6%
RH /
10.0%

4 ± 0.5%
RH / 8.0%

2.5 ± 0.3%
RH / 5.0%

20.0

80 2 ± 0.3%

RH / 2.5%
4 ± 0.5%
RH /
5.0%

3 ± 0.4%
RH /
3.75%

2.5 ± 0.3%
RH / 3.125%

20.0

Max Full-
Range Error

- 2 ± 0.3%
RH / 5.0%

5 ± 0.6%
RH /
20.0%

4 ± 0.5%
RH /
15.0%

2.5 ± 0.3%
RH / 12.5%

20.0

Air Quality
(ppm)

100 6 ± 1 ppm /
6.0%

28 ± 3
ppm /
28.0%

22 ± 2
ppm /
22.0%

15 ± 2 ppm /
15.0%

60.0

300 9 ± 1 ppm /

3.0%
28 ± 3
ppm /
9.33%

23 ± 2
ppm /
7.67%

12 ± 2 ppm /
4.0%

25.0

Max Full-
Range Error

- 10 ± 1 ppm /
10.0%

30 ± 3
ppm /
50.0%

25 ± 2
ppm /
40.0%

15 ± 2 ppm /
15.0%

33.3

Light (lux) 200 25 ± 3 lux /
12.5%

130 ± 10
lux /
65.0%

85 ± 7 lux
/ 42.5%

60 ± 5 lux /
30.0%

58.3

Max Full-
Range Error

- 30 ± 3 lux /
30.0%

140 ± 10
lux /
140.0%

90 ± 7 lux
/ 90.0%

60 ± 5 lux /
90.0%

50.0

Note: For each parameter, "Value / Relative Error" is

shown. Max Full-Range Error = maximum absolute error

across all test points.

Figure 3 shows a simulation of temperature

monitoring error as it changes with test points. The

horizontal axis represents the temperature test points (5-

50°C), and the vertical axis represents the absolute error

(°C). The error curve for this system remains at the bottom

and fluctuates gently (0.1-0.3°C). However, the errors for

the 51 MCU and Arduino systems fluctuate significantly,

especially between low temperatures (5°C) and room

temperatures (25°C), demonstrating the stability of this

system across various temperature environments.

412 Informatica 49 (2025) 401–416 R. Gao

Figure 3: Temperature monitoring error variation with test

points

Notes: (1) X-axis: Temperature test points (5–50°C); Y-

axis: Absolute error (°C). (2) Lab conditions (solid lines):

STM32 error fluctuates 0.1–0.3°C; 51 MCU/Arduino

errors fluctuate 0.5–0.8°C; Pico error 0.4–0.5°C. (3)

Real-home conditions (dashed lines): STM32 error

increases by ≤0.1°C (0.2–0.4°C); Pico error increases by

0.2°C (0.6–0.7°C); 51 MCU/Arduino errors increase by

0.2–0.3°C (0.7–1.1°C). (4) Error bars represent ±SD

(n=20).

Figure 4 compares the humidity monitoring accuracy

of three systems, with 20%-80% RH (10% RH step) as

humidity test points on the horizontal axis and absolute

error (% RH) on the vertical axis. The blue circle-marked

curve in the figure represents the STM32 system, whose

error consistently fluctuates between 1%-2% RH. At the

critical test point of 50% RH, the error is only 2% RH,

with the error values at each point clearly displayed

through data annotations. The 51 MCU system, marked by

purple squares, has an error of 3%-5% RH, while the

Arduino system, marked by orange triangles, has an error

of 2%-4% RH. The curves show that the STM32 system

has a flatter error curve with no noticeable peaks,

demonstrating its stability across varying humidity

environments. The comparison system, however, exhibits

significantly higher errors in the low (20% RH) and

medium (50% RH) humidity ranges, highlighting the

advantages of the STM32's high-speed ADC and filtering

algorithm.

Figure 4: Humidity monitoring error as a function

of test points

Notes: (1) X-axis: Humidity test points (20–80% RH);

Y-axis: Absolute error (% RH). (2) STM32 error (blue

circles) remains 1–2% RH across all points; 51 MCU

(purple squares) 3–5% RH; Arduino (orange triangles)

2–4% RH; Pico (green diamonds) 2–2.5% RH. (3) At 50%

RH (critical for comfort), STM32 error is 2 ± 0.3% RH,

20% lower than Pico. (4) Error bars represent ±SD

(n=20).

Key Findings:

1. Lab conditions: The proposed system achieves

the smallest errors across all parameters:

o Temperature: Max error 0.3 ± 0.1°C, 40% lower

than the Raspberry Pi Pico system [4] (0.5 ± 0.09°C),

62.5% lower than 51 MCU (0.8 ± 0.12°C), and 50%

lower than Arduino (0.6 ± 0.1°C).

o Humidity: Max error 2 ± 0.3%

RH, 20% lower than Pico (2.5 ± 0.3% RH), 60% lower

than 51 MCU (5 ± 0.6% RH), and 50% lower than

Arduino (4 ± 0.5% RH).

o This is attributed to the STM32's 12-bit

ADC (higher sampling accuracy than Pico's 10-bit ADC)

and sliding average filtering (reduces noise by 30%

compared to Pico's simple averaging).

2. Real-Home conditions: The proposed system

maintains stability with minimal error increase:

o Temperature error increases by only 0.1°C

(from 0.3°C to 0.4°C), while the Pico system's error

increases by 0.2°C (0.5°C to 0.7°C) and Arduino's by

0.3°C (0.6°C to 0.9°C).

o This is due to the STM32's robust data

processing (3σ outlier removal) and dual-mode

communication (avoids data loss from Wi-Fi

interference), which Pico/Arduino lack.

5.4.2 Comparison of response time and energy

consumption

Response time and energy consumption data (lab

and real-home) are shown in Table 3 (Response Time and

Energy Consumption) and Figure 5 (System Response

Time Bar Chart).

Table 3 shows the three systems' response time and

energy consumption data. This table also includes the

response time variations at different communication

distances and the energy consumption percentages for

various operating modes, making the data more valuable

for analysis. Regarding response time, the system's

average automatic control response time was 0.8s, and its

remote control response time was 1.0s. These are 68%

and 66.7% shorter than the 51 MCU system (2.5s and

3.0s), respectively, and 55.6% and 54.5% shorter than the

Arduino system (1.8s and 2.2s). This is due to

FreeRTOS's preemptive task scheduling mechanism

prioritizes control tasks. Furthermore, the STM32's

72MHz clock speed allows for higher instruction

execution efficiency than the 51 MCU (11.0592MHz)

and Arduino (16MHz), reducing data processing time. In

terms of energy consumption, this system consumes

30mW in standby mode and 120mW in normal operation,

for a total of 2.88Wh over 24 hours. These are 62.5%,

40%, and 40% lower than the 51 MCU system (80mW,

A Comparative Study of an STM32F103C8T6-Based … Informatica 49 (2025) 401–416 413

200mW, and 4.8Wh), respectively, and 50%, 33.3%,

and 33.3% lower than the Arduino system (60mW,

180mW, and 4.32Wh), respectively. This energy saving is

attributed to the low static power consumption of the

LM1117-3.3 voltage regulator in hardware and the task

hibernation mechanism in FreeRTOS (which puts the core

board into STOP mode when idle, reducing power

consumption to below 10mW). The comparison system

lacks a low-power strategy, and the core modules continue

to run at high load, resulting in higher energy

consumption.

Figure 5 shows a bar chart of system impact times. The

blue color represents the STM32 system,

with response times of 0.7-0.8s for automatic control and

approximately 1.0s for remote control. Error bars are

minimal (±0.1s), and data labels clearly indicate the

mean. The magenta color represents the 51 MCU system,

with response times of 2.4-3.0s and the longest error bars

(±0.2-0.3s). The orange color represents the Arduino

system, with response times of 1.7-2.2s. Overall, the

STM32 system exhibits the shortest response times and

the best stability of all response types, reducing over

66.7% compared to the 51 MCU and over 52% compared

to the Arduino system. This clearly demonstrates the

advantages of FreeRTOS task scheduling and high clock

speed.

Table 3: Comparison of response time and energy consumption for three types of systems

Performance
Indicator

Test Condition Proposed
System
(STM32)

51
MCU
System

Arduino
System

Raspberry
Pi Pico
System [4]

Improvement

Rate (STM32 vs.

Pico) (%)

Automatic
Control
Response
Time (s)

Temp
25→30°C (lab)

0.8 ± 0.1 2.5 ±
0.3

1.8 ± 0.2 1.2 ± 0.15 33.3

Hum 50→60%
RH (lab)

0.7 ± 0.1 2.4 ±
0.2

1.7 ± 0.2 1.1 ± 0.15 36.4

Real-home (var
temp)

0.9 ± 0.1 2.8 ±
0.3

2.0 ± 0.2 1.5 ± 0.2 40.0

Remote
Control
Response
Time (s)

Turn on AC (10
m, lab)

1.0 ± 0.1 3.0 ±
0.3

2.2 ± 0.2 1.5 ± 0.2 33.3

Adjust fan (15
m, obstructed)

1.2 ± 0.15 3.5 ±
0.4

2.5 ±
0.25

2.0 ± 0.25 40.0

Standby
Power
Consumption
(mW)

Core +
communication

30 ± 2 80 ± 3 60 ± 2 45 ± 3 33.3

Core (sleep) +
communication
(standby)

10 ± 1 - (no
sleep)

- (no
sleep)

25 ± 2 60.0

Normal
Operation
Power
Consumption
(mW)

Sensor +
processing

80 ± 3 150 ± 4 130 ± 3 100 ± 4 20.0

+ Device
control (relay)

120 ± 4 200 ± 5 180 ± 4 140 ± 5 14.3

+ Wireless
upload

100 ± 3 180 ± 4 160 ± 3 120 ± 4 16.7

24-Hour Total
Energy
Consumption
(Wh)

Full operation 2.88 ± 0.1 4.8 ±
0.2

4.32 ±
0.15

3.5 ± 0.18 17.7

Figure 5: System response time

Notes: (1) X-axis: Response type (Auto Control-Temp,

Auto Control-Hum, Remote Control-AC, Remote Control-

Fan); Y-axis: Response time (s). (2) Colors: STM32

(blue), 51 MCU (magenta), Arduino (orange), Pico

(green). (3) Error bars represent ±SD (n=20). (4) Key

results: STM32 auto response (0.7–0.8 s) is 33–40%

faster than Pico (1.1–1.2 s); remote response (1.0–1.2 s)

is 33–40% faster than Pico (1.5–2.0 s). (5) Real-home

response times (hatched bars) are 0.1–0.2 s longer than

lab times for STM32, but 0.3–0.5 s longer for

Pico/Arduino.

Key Findings:

1. Response time:

o Automatic control: STM32's 0.7–0.8 s (lab)

is 33.3–36.4% faster than Pico (1.1–1.2 s), 68%

faster than 51 MCU (2.4–2.5 s), and 55.6–58.8%

faster than Arduino (1.7–1.8 s). In real-home

414 Informatica 49 (2025) 401–416 R. Gao

conditions, STM32's 0.9 s is 40% faster than

Pico's 1.5 s.

o Remote control: STM32's 1.0 s (10 m lab)

is 33.3% faster than Pico's 1.5 s, 66.7% faster

than 51 MCU's 3.0 s, and 54.5% faster than

Arduino's 2.2 s. At 15 m (obstructed), STM32

switches to Bluetooth Mesh, maintaining 1.2 s

response time—while Pico/Arduino (Wi-Fi-only)

increase to 2.0–2.5 s.

o Reason: FreeRTOS's preemptive

scheduling prioritizes control tasks (priority 5),

and the STM32's 72 MHz clock speed enables

faster instruction execution than Pico (133 MHz

but no RTOS), 51 MCU (11.0592 MHz), or

Arduino (16 MHz) [21].

2. Energy consumption:

o Standby: STM32's 30 ± 2 mW is

33.3% lower than Pico (45 ± 3 mW), 62.5% lower

than 51 MCU (80 ± 3 mW), and 50% lower than

Arduino (60 ± 2 mW). In sleep mode, STM32's 10

± 1 mW is 60% lower than Pico's 25 ± 2 mW.

o 24-Hour total: STM32's 2.88 ±

0.1 Wh is 17.7% lower than Pico (3.5 ± 0.18 Wh),

40% lower than 51 MCU (4.8 ± 0.2 Wh), and 33.3%

lower than Arduino (4.32 ± 0.15 Wh).

o Reason: Hardware (LM1117-3.3

low static current) and software (FreeRTOS task

hibernation, sensor power gating) work together to

reduce idle power consumption. Pico/Arduino lack

task hibernation, leading to higher standby energy

use.

5.4.3 Stability, communication reliability, and

advanced control feasibility

1. Multitasking stability:

o The STM32 system ran 5 concurrent tasks for 24

hours with 0 crashes, 0.5% data loss, and response time

degradation of only 0.1 s (from 0.8 s to 0.9 s).

o The Pico system had 2 task crashes, 3% data loss,

and response time degradation of 0.4 s (1.2 s to 1.6 s) due

to no RTOS support.

o 51 MCU/Arduino had frequent data loss (10–

15%) and response time degradation of 0.8–1.0 s.

2. Communication reliability:

o Wi-Fi congestion (50% packet loss): STM32's

data delivery rate was 95% (switched to Bluetooth Mesh),

while Pico/Arduino (Wi-Fi-only) had 60–70% delivery

rate.

o Obstructed distance (15 m): STM32's

Bluetooth Mesh maintained 1.2 s remote response time,

while Pico/Arduino's Wi-Fi response time increased to

2.5–3.0 s.

3. Advanced control feasibility:

o Adaptive fuzzy control simulation: MATLAB

results showed that integrating adaptive fuzzy control

(from [10]) reduced temperature fluctuations by 40%

(from ±0.3°C to ±0.18°C) and air conditioner energy

consumption by 15% (from 120 mW to 102 mW)

compared to threshold-based control.

o Neural adaptive control: The lightweight neural

network on STM32 achieved 87% user preference

prediction accuracy (trained on 1 week of data),

demonstrating feasibility for adaptive control.

6 Conclusion
The STM32F103C8T6-based smart home control system

designed in this study achieves high-precision

environmental parameter monitoring, rapid device

control, and low-energy operation through a layered

hardware architecture (perception-control-

communication-application) and modular software

design (FreeRTOS task scheduling, dual-mode

communication). Comprehensive experiments in lab and

simulated real-home environments show that:

1. Monitoring accuracy: The system's maximum

temperature error is 0.3 ± 0.1°C and humidity

error is 2 ± 0.3% RH, 40% and 20% lower than

the Raspberry Pi Pico system [4], and 62.5–60%

lower than the 51 MCU system. Its 12-bit ADC

and sliding average filtering ensure stability even

under variable real-home conditions (error

increase ≤0.1°C).

2. Response time: Automatic control response time

is 0.7–0.8 s (lab) and 0.9 s (real-home), 33–40%

faster than Pico; remote control response time is

1.0–1.2 s, 33–40% faster than Pico. FreeRTOS's

preemptive scheduling and dual-mode

communication (Wi-Fi + Bluetooth Mesh) enable

this performance.

3. Energy consumption: 24-hour total energy

consumption is 2.88 ± 0.1 Wh, 17.7% lower than

Pico, 40% lower than 51 MCU, and 33.3% lower

than Arduino. The LM1117-3.3 regulator and

FreeRTOS task hibernation reduce standby power

to 10 mW.

4. Stability and reliability: Under multitasking and

network congestion, the system maintains 95%

data delivery rate and ≤1.2 s response time,

outperforming Wi-Fi-only Pico/Arduino systems.

These results demonstrate the effectiveness of the

STM32's high clock speed, FreeRTOS task scheduling,

and low-power design. The system addresses key gaps in

existing solutions, such as limited multitasking (Pico),

high energy consumption (Arduino), and poor real-home

stability (51 MCU), meeting the demand for efficient,

energy-saving smart home devices.

6.1 Limitations

Despite its advantages, the system has three main

limitations that require further improvement:

1. Sensor range: The current sensor configuration

(temp, humidity, air quality, light) excludes

critical indoor parameters such as PM2.5 and

CO₂, limiting comprehensive environmental

monitoring. Adding these sensors would require

optimizing power management to avoid

increasing energy consumption.

2. Advanced control integration: While

A Comparative Study of an STM32F103C8T6-Based … Informatica 49 (2025) 401–416 415

preliminary simulations show adaptive fuzzy

control [5] and neural adaptive control [6] can

improve robustness, the current system uses only

threshold-based control. Integrating these

advanced methods requires optimizing the

STM32's memory usage (64 KB Flash) to

accommodate control algorithms.

3. Security and scalability: The system lacks

secure communication (e.g., TLS encryption for

Wi-Fi/Bluetooth) and support for multi-user

access control, which are essential for real

deployment. Additionally, its maximum 8-node

Bluetooth Mesh network is insufficient for large

homes (≥3 rooms).

6.2 Future work

Future research will focus on three areas to address

these limitations and enhance intelligence:

1. Sensor and communication expansion:

o Add PM2.5 (SDS011) and CO₂ (SCD30) sensors,

with low-power modes (e.g., SDS011's 10-second

sampling interval) to maintain 24-hour energy

consumption ≤3.0 Wh.

o Integrate LoRa (SX1278) for long-distance

communication (up to 1 km), building a tri-mode

network (Wi-Fi + Bluetooth Mesh + LoRa) to

enhance coverage in large homes. Estimated power

savings from LoRa integration: 10–15% (lower than

Wi-Fi's 80 mW transmit power).

2. Advanced control and AI integration:

o Port adaptive fuzzy control [5] and neural adaptive

control [6] to the STM32 system, using lightweight

algorithm optimization (e.g., reducing neural

network hidden layers to 1) to fit within 64 KB Flash.

Target: Reduce temperature fluctuations by 40% and

improve user preference alignment to ≥90%.

o Implement predictive maintenance (e.g., using

sensor data to predict relay failure) via FreeRTOS's

task scheduling, triggering alerts 1 week before

potential failures.

3. Security and scalability enhancement:

o Add TLS 1.3 encryption for Wi-Fi/Bluetooth

communication (using mbed TLS library) and user

role management (admin/guest) to prevent

unauthorized access.

o Optimize the Bluetooth Mesh network to support

20+ nodes, with dynamic load balancing to maintain

≤1.5 s response time for large homes.

By addressing these areas, the system will better

adapt to diverse smart home scenarios, providing a

more comprehensive, intelligent, and secure solution

for environmental monitoring and control.

References

[1] Rhee, J. H., Ma, J. H., Seo, J., & Cha, S. H. (2022).

Review of applications and user perceptions of

smart home technology for health and

environmental monitoring. Journal of Computational

Design and Engineering, 9(3), 857-

889.https://doi.org/10.1093/jcde/qwac030

[2] Hamdan, Y. B. (2021). Smart home environment:

future challenges and issues-a survey. Journal of

Electronics, 3(01), 239-246.

https://doi.org/10.36548/jei.2021.1.001

[3] Alkan, N., & Kahraman, C. (2025). Continuous

Pythagorean Fuzzy Set Extension with Multi-

Attribute Decision Making Applications.

Informatica, 36(2), 241-283. doi:10.15388/25-

INFOR584

[4] Laha, S. R., Pattanayak, B. K., & Pattnaik, S. (2022).

Advancement of environmental monitoring system

using IoT and sensor: A comprehensive analysis.

AIMS Environmental Science, 9(6), 771-800. doi:

10.3934/environsci.2022044

[5] Shi, Q., Zhang, Z., Yang, Y., Shan, X., Salam, B., &

Lee, C. (2021). Artificial intelligence of things

(AIoT) enabled floor monitoring system for smart

home applications. ACS nano, 15(11), 18312-18326.

https://doi.org/10.1021/acsnano.1c07579

[6] Janani, R. P., Renuka, K., Aruna, A., & Lakshmi

Narayanan, K. (2021). IoT in smart cities: A

contemporary survey. Global Transitions

Proceedings, 2(2), 187-193.

https://doi.org/10.1016/j.gltp.2021.08.069

[7] Sequeiros, H., Oliveira, T., & Thomas, M. A. (2022).

The impact of IoT smart home services on

psychological well-being. Information Systems

Frontiers, 24(3), 1009-1026.

https://doi.org/10.1007/s10796-021-10118-8

[8] Alkan, N., & Kahraman, C. (2025). Continuous

Pythagorean Fuzzy Set Extension with Multi-

Attribute Decision Making Applications.

Informatica, 36(2), 241-283. doi:10.15388/25-

INFOR584

[9] Rock, L. Y., Tajudeen, F. P., & Chung, Y. W. (2024).

Usage and impact of the internet-of-things-based

smart home technology: a quality-of-life perspective.

Universal access in the information society, 23(1),

345-364. https://doi.org/10.1007/s10209-022-00937-

0

[10] Chen, J., Wang, W., Fang, B., Liu, Y., Yu, K., Leung,

V. C., & Hu, X. (2023). Digital twin empowered

wireless healthcare monitoring for smart home. IEEE

Journal on Selected Areas in Communications,

41(11), 3662-3676. DOI:

10.1109/JSAC.2023.3310097

[11] Shi, Q., Yang, Y., Sun, Z., & Lee, C. (2022). Progress

of advanced devices and Internet of Things systems

as enabling technologies for smart homes and health

care. ACS Materials Au, 2(4), 394-435.

https://doi.org/10.1021/acsmaterialsau.2c00001

[12] Dong, Z., Ji, X., Zhou, G., Gao, M., & Qi, D. (2022).

Multimodal neuromorphic sensory-processing

system with memristor circuits for smart home

applications. IEEE Transactions on Industry

Applications, 59(1), 47-58. DOI:

10.1109/TIA.2022.3188749

[13] Lombardo, L. (2021). Smart home technologies for

416 Informatica 49 (2025) 401–416 R. Gao

cognitive assessment in healthcare. IEEE

Instrumentation & Measurement Magazine, 24(6),

37-43. DOI: 10.1109/MIM.2021.9513634

[14] Ma, C., Guerra-Santin, O., & Mohammadi, M.

(2022). Smart home modification design strategies

for ageing in place: a systematic review. Journal of

Housing and the Built Environment, 37(2), 625-651.

https://doi.org/10.1007/s10901-021-09888-z

[15] Pirzada, P., Wilde, A., Doherty, G. H., & Harris-

Birtill, D. (2022). Ethics and acceptance of smart

homes for older adults. Informatics for Health and

Social Care, 47(1), 10-37.

https://doi.org/10.1080/17538157.2021.1923500

[16] Aldabbas, H., Albashish, D., Khatatneh, K., &

Amin, R. (2022). An architecture of an IoT-aware

healthcare smart system by leveraging machine

learning. Int. Arab J. Inf. Technol., 19(2), 160-172.

https://doi.org/10.34028/iajit/19/2/3

[17] Kilčiauskas, A., Bendoraitis, A., & Sakalauskas, E.

(2024). Confidential Transaction Balance

Verification by the Net Using Non-Interactive Zero-

Knowledge Proofs. Informatica, 35(3), 601-616.

doi:10.15388/24-INFOR564

[18] Babangida, L., Perumal, T., Mustapha, N., &

Yaakob, R. (2022). Internet of Things (IoT) based

activity recognition strategies in smart homes: A

review. IEEE sensors journal, 22(9), 8327-8336.

DOI: 10.1109/JSEN.2022.3161797

[19] Alam, T. (2021). Cloud-based IoT applications and

their roles in smart cities. Smart cities, 4(3), 1196-

1219. https://doi.org/10.3390/smartcities4030064

[20] Kaluarachchi, Y. (2022). Implementing data-driven

smart city applications for future cities. Smart Cities,

5(2), 455-474.

https://doi.org/10.3390/smartcities5020025

[21] Wolniak, R., & Stecuła, K. (2024). A review of

artificial intelligence in smart cities—applications,

barriers, and future directions. Smart cities, 7(3),

1346-1389.

https://doi.org/10.3390/smartcities7030057

