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To meet the high-precision, fast-response, and low-energy requirements for environmental monitoring 

and device control in smart home scenarios, an intelligent control system based on the STM32F103C8T6 

was designed. Comparative experiments were conducted with a 51 microcontroller (MCU) system and 

an Arduino system, as well as with recent peer-reviewed smart home solutions (e.g., IoT-based systems 

using Raspberry Pi Pico or ESP32-C3). The system hardware adopts a four-layer "perception-control-

communication-application" architecture, integrating multiple sensors (DS18B20 for temperature, 

SHT30 for humidity, MQ-2 for air quality, BH1750 for light intensity) and control modules. The software 

uses FreeRTOS for task scheduling (with explicitly defined task priorities, scheduling intervals, and 

memory management) and a Qt host computer for data visualization and remote control. Experiments 

were performed in a constant temperature and humidity chamber (temperature control accuracy: 

±0.1°C, humidity: ±1% RH) and a simulated real-home environment (with variable lighting, Wi-Fi 

interference, and multi-device coexistence) over 24 continuous hours, with a 1-second sampling rate. 

Multiple test points were set to assess monitoring accuracy, response time, energy consumption, system 

stability under multitasking, and wireless communication reliability. The results show that the STM32 

system's maximum temperature monitoring error is 0.3°C and humidity error is 2% RH, 62.5% and 60% 

lower than the 51-chip MCU system, and 50% and 50% lower than the Arduino system, respectively. 

The automatic control response time is 0.8 s (mean ± 0.1 s) and remote control time is 1.0 s (mean ± 0.1 

s), 55.6% and 54.5% shorter than the Arduino system. The total 24-hour energy consumption is 2.88 

Wh, 40% lower than the 51-chip MCU system. Compared with a Raspberry Pi Pico-based system 

(reported in recent literature with 0.5°C temperature error and 3.5 Wh daily energy consumption), the 

STM32 system achieves 40% higher temperature monitoring accuracy and 17.7% lower energy 

consumption. Simulations and real-environment tests demonstrate that the STM32 system outperforms 

comparison systems in all metrics, meets practical application requirements of green smart homes, and 

maintains stability under network congestion and multitasking. 

Povzetek: Študija predstavi nadzorni sistem za pametne domove s štirislojno arhitekturo, večsenzorskim 

spremljanjem in FreeRTOS upravljanjem, ki zagotavlja natančno, hitro in energijsko varčno okoljsko 

merjenje ter daljinsko krmiljenje. 

 

1 Introduction 

With the deep integration of IoT technology and 

embedded systems, the smart home industry has evolved 

from single-device intelligence to whole-home scenario-

based control. According to industry reports, the global 

smart home market has an average annual growth rate 

exceeding 20% [1]. As core functions for improving living 

comfort and ensuring indoor safety, environmental 

monitoring and control have become key components of 

smart home systems. In everyday home environments, 

accurate tracking of parameters such as temperature, 

humidity, air quality, and light provides data support for 

the intelligent control of devices like air conditioners, 

humidifiers, and fresh air systems, directly impacting user 

experience and energy efficiency. Therefore, the 

performance of environmental monitoring and control  

 

modules has become a key indicator of the practicality of 

smart home systems [2]. 

However, current mainstream smart home 

environmental monitoring and control systems still have 

significant shortcomings. Some systems based on 51 

MCUs or Arduino, limited by the MCU's computing 

power, employ simple data acquisition and processing 

methods, resulting in large monitoring errors 

(temperature errors often exceeding ±0.6°C and humidity 

errors exceeding ±4% RH). Most systems lack optimized 

task scheduling mechanisms, leading to delayed device 

control responses—response times from parameter 

excursions to device startup often exceed 1.8 s. 

Furthermore, imperfect hardware power management 

design and the absence of software low-power strategies 

result in system standby power consumption exceeding 

60 mW, failing to meet green and low-carbon home  



402 Informatica 49 (2025) 401–416 R. Gao 

 

development requirements [3]. Recent studies have 

attempted to address these issues using low-power MCUs 

(e.g., Raspberry Pi Pico, ESP32-C3) or IoT frameworks 

(e.g., AWS IoT Greengrass), but many still lack  

systematic comparative testing against traditional 

platforms or fail to integrate real-time operating systems 

(RTOS) for efficient task management. For example, a 

Raspberry Pi Pico-based smart home system reported in 

Laha et al. [4] achieved a temperature monitoring error of 

0.5°C and daily energy consumption of 3.5 Wh, but it did 

not support multitasking or remote control latency 

optimization. Another ESP32-C3 system in Shi et al. [5] 

integrated AIoT functions but had higher standby power 

consumption (45 mW) due to redundant sensor modules. 

These gaps highlight the need for a low-power, high-

precision system with RTOS-based task scheduling to 

balance performance and energy efficiency. 

To address these shortcomings, this research 

designed a smart home environment monitoring and 

control system based on the STM32F103C8T6 MCU. This 

system leverages the STM32's high-performance 

computing power (72 MHz clock speed, 12-bit ADC) and 

flexible peripheral interfaces, combined with optimized 

data processing algorithms (sliding average filtering, 3σ 

outlier removal) and a low-power design (LM1117-3.3 

voltage regulator, FreeRTOS task hibernation), to improve 

monitoring accuracy and response speed while reducing 

energy consumption. To clarify the research, focus and 

scientific contribution, three specific research questions 

are proposed: 

 

1. Can the STM32F103C8T6 + FreeRTOS 

combination achieve lower monitoring errors and faster 

response times compared to traditional 51 MCU/Arduino 

systems and recent low-power IoT platforms? 

2. Does the four-layer hardware architecture 

enhance modularity, scalability, and communication 

reliability compared to common IoT models, especially 

under network congestion or multi-node expansion? 

3. Can the system be extended to integrate 

advanced control methods (e.g., adaptive fuzzy control, 

neural adaptive control) or lightweight AI, and how 

would this improve robustness and adaptability in real-

home environments? 

The core research components include: (1) hardware 

circuit design (sensor acquisition, device control, wireless 

communication modules) based on the 

STM32F103C8T6; (2) embedded software development 

(drivers, task scheduling, data filtering) based on 

FreeRTOS, with explicit configuration of task priorities, 

scheduling intervals, and memory management; (3) 

construction of an experimental platform for comparative 

testing against 51 MCU, Arduino, and recent IoT-based 

systems (Raspberry Pi Pico, ESP32-C3) to verify 

performance in lab and real-home environments; and (4) 

exploration of integrating advanced control methods (e.g., 

adaptive fuzzy control, neural adaptive control) for future 

optimization. 

A structured comparison of key existing smart home 

systems and the proposed system is provided in Table 1 

(Related Works Summary), which contextualizes the 

current study against state-of-the-art (SOTA) solutions. 

 

Table 1: Summary of key smart home environmental monitoring systems in literature

Referenc

e 

Core Platform Sensor 

Configuratio

n 

Monitoring 

Accuracy 

(Temp/Humidity

) 

Respons

e Time 

Daily Energy 

Consumptio

n 

Key 

Limitations 

Laha et al. 

[4] 

Raspberry Pi Pico Temp, 

Humidity, Air 

Quality 

±0.5°C / ±3% RH 1.2 s 3.5 Wh No RTOS, no 

multitasking 

support 

Shi et al. 

[5] 

ESP32-C3 Temp, 

Humidity, 

Light, Camera 

±0.4°C / ±2.5% 

RH 

1.0 s 4.2 Wh High standby 

power (45 

mW), no 

remote control 

optimization 

Hamdan 

[2] 

Arduino Uno Temp, 

Humidity 

±0.6°C / ±4% RH 1.8 s 4.32 Wh Simple data 

processing, no 

low-power 

strategy 

Rhee et al. 

[1] 

51 MCU 

(STC89C52RC) 

Temp, 

Humidity 

±0.8°C / ±5% RH 2.5 s 4.8 Wh Low ADC 

accuracy (8-

bit), no task 

scheduling 

Proposed 

System 

STM32F103C8T

6 + FreeRTOS 

Temp 

(DS18B20), 

Humidity 

(SHT30), Air 

Quality (MQ-

2), Light 

(BH1750) 

±0.3°C / ±2% RH 0.8 s 

(auto) / 

1.0 s 

(remote) 

2.88 Wh Limited sensor 

range (no 

PM2.5/CO₂), 

Wi-Fi-only 

communicatio

n 
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The results of this research provide a technical 

reference for optimizing smart home environment 

monitoring and control systems, promoting the 

development of low-power, high-precision smart home 

devices, and addressing gaps in existing systems such as 

limited multitasking capability, high energy consumption, 

and lack of advanced control integration. 

2 Overall system design 
2.1 System design objectives 

To ensure the system's practicality and competitiveness in 

smart home scenarios, the following core performance 

indicators were defined: 

• Environmental parameter monitoring 

accuracy: Temperature error ≤ ±0.3°C, humidity 

error ≤ ±2% RH, air quality (hazardous gas 

concentration) error ≤ ±10 ppm, light intensity 

error ≤ ±50 lux. This ensures data accurately 

reflects indoor environmental conditions, 

outperforming recent Raspberry Pi Pico-based 

systems (±0.5°C / ±3% RH) [4]. 

• Device control response time: Automatic 

control response time (from parameter excursion 

to device startup) ≤ 0.8 s (mean ± 0.1 s); remote 

control response time (from host computer 

command to device activation) ≤ 1.0 s (mean ± 

0.1 s). This avoids delays affecting user 

experience, shorter than the ESP32-C3 system's 

1.0 s automatic response [5]. 

• System energy consumption: Standby power 

consumption (core board + communication 

module) ≤ 30 mW; normal operation power 

consumption (sensor acquisition + data 

processing + device control) ≤ 120 mW; 24-hour 

total energy consumption ≤ 2.88 Wh. This meets 

green smart home requirements, 17.7% lower 

than the Raspberry Pi Pico system's 3.5 Wh. 

• Scalability and stability: Support for adding at 

least 5 additional sensor nodes (e.g., PM2.5, 

CO₂) without performance degradation; maintain 

≤1.2 s response time under network congestion 

(50% packet loss); stable operation in variable 

environments (temperature 10–40°C, humidity 

30–70% RH, Wi-Fi interference from 2+ 

routers). 

• Extensibility for advanced control: 

Hardware/software compatibility with 

integrating adaptive fuzzy control, neural 

adaptive control, or PID control to enhance 

robustness against nonlinearities and 

uncertainties in real-home environments. 

 

2.2 Overall system architecture 

The system adopts a layered architecture, achieving 

functional synergy from hardware and software 

perspectives. Its specific advantages over common IoT 

models (e.g., three-layer "perception-network- 

application") include enhanced modularity, fault 

isolation, and real-time data processing, addressing 

limitations of  

existing designs such as poor scalability or 

communication bottlenecks. 

2.2.1 Hardware architecture (four layers) 

• Perception layer: Comprises DS18B20 

(temperature), SHT30 (humidity), MQ-2 (air 

quality), and BH1750 (light) sensors. Each sensor 

uses standardized interfaces (I2C, GPIO, 1-Wire) 

for easy replacement/expansion. Unlike the 

ESP32-C3 system, which integrates redundant 

sensors leading to high power consumption, this 

layer uses low-power sensors (SHT30 standby 

current: 0.1 μA) to optimize energy efficiency. 

• Control layer: Centered on the 

STM32F103C8T6 MCU (72 MHz clock, 64 KB 

Flash, 20 KB SRAM). It executes data processing, 

task scheduling (via FreeRTOS), and control 

command generation. Compared to the 51 MCU 

(11.0592 MHz, 8-bit ADC) and Arduino (16 

MHz, 10-bit ADC), its high-speed 12-bit ADC 

reduces signal noise, and its support for RTOS 

enables preemptive task scheduling to prioritize 

critical control tasks. 

• Communication layer: Integrates dual-mode 

communication: ESP8266 (Wi-Fi) for long-

distance data transmission (up to 50 m in open 

areas) and Bluetooth Mesh (nRF52832 module, 

added for scalability) for short-range, low-power 

node communication. This addresses the Wi-Fi 

signal obstruction issue in complex housing 

layouts (common in single-communication 

systems [1, 5])—Bluetooth Mesh maintains ≤1.5 

s response time in areas with weak Wi-Fi (e.g., 

basements). Under network congestion (50% 

packet loss), the layer uses adaptive 

retransmission (3 retries max) to ensure ≥95% 

data delivery rate, outperforming Wi-Fi-only 

systems (≤80% delivery rate). 

• Application layer: Includes a 12864 LCD 

module (local display), 4×4 keypad (manual 

operation), and Qt host computer (remote 

monitoring). The host computer supports data 

visualization, threshold setting, and remote 

control, with a user-friendly interface that reduces 

operation complexity compared to AWS IoT 

Greengrass-based systems [6]. 

2.2.2 Software architecture (four layers) 

Adheres to modular design principles, with standardized 

interfaces between layers to ensure scalability [7]: 

• Bottom layer: FreeRTOS embedded operating 

system, configured with: 

o Task priorities: Device Control Task (5, 

highest), Data Processing Task (4), Data 
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Acquisition Task (3), Wireless 

Communication Task (2, lowest). This 

prioritization is justified by timing 

analysis: control tasks require sub-

second response to avoid environmental 

damage, while communication tasks 

can tolerate slight delays. 

o Scheduling intervals: Data Acquisition 

Task (1 s periodic trigger), Data 

Processing Task (event-triggered after 

acquisition), Device Control Task 

(event-triggered by threshold breaches), 

Wireless Communication Task (500 ms 

periodic data upload) [8]. 

o Memory management: 4 KB stack for 

each task, 2 KB shared buffer for sensor 

data, dynamic memory allocation 

disabled to avoid fragmentation. 

• Middle layer: Device drivers for sensors 

(DS18B20, SHT30, MQ-2, BH1750), relays 

(ULN2003), and communication modules 

(ESP8266, nRF52832) [9]. Drivers use hardware 

abstraction to simplify adding new modules (e.g., 

PM2.5 sensor) with <10 lines of code 

modification. 

• Upper layer: Application programs, including 

sliding average filtering (5-sample window for 

temperature/humidity), 3σ outlier removal, and 

threshold-based control logic. Future extensions 

will integrate adaptive fuzzy control (to handle 

nonlinear sensor errors) and neural adaptive 

control (to learn user habits), referencing 

methods from [10] (Adaptive fuzzy control for 

fractional-order chaotic systems) and [11] 

(Robust neural adaptive control for nonlinear 

multivariable systems). 

• Top layer: Qt host computer management 

software, with SQLite database (data storage), 

QCustomPlot (real-time curves), and remote 

control modules. It supports historical data query 

(by date range) and parameter over-limit alarms 

(pop-up + sound), with a communication latency 

≤100 ms (measured via round-trip time tests). 

2.3 System functional module division 

The system is divided into five core functional modules, 

with clear division of labor and coordinated operation: 

• Environmental parameter acquisition 

module: Data source for the system. Converts 

physical quantities (temperature, humidity, etc.) 

into electrical signals via sensors, then conditions 

signals (amplification, filtering) before 

transmission to the control layer. Each sensor 

undergoes pre-calibration using a FLUKE 8846A 

multimeter and TES-1360 

thermometer/hygrometer, with calibration 

coefficients stored in the STM32's Flash for real-

time error compensation. For example, the 

DS18B20's raw temperature data is corrected 

using the formula: Corrected_T = Raw_T × 0.98 

+ 0.12 (derived from 50 calibration points), 

reducing inherent sensor error by 30%. 

• Data processing and analysis module:  

Leverages the STM32's computing power to process 

raw data: 

o Sliding average filtering: Computes the 

average of 5 consecutive samples for 

temperature/humidity to reduce random noise 

(e.g., ±0.1°C fluctuations from electrical 

interference). 

o 3σ outlier removal: Eliminates data points 

outside the range [μ - 3σ, μ + 3σ] (μ = mean, σ 

= standard deviation) to exclude abnormal 

values (e.g., sensor disconnection causing 0°C 

readings). 

o Threshold comparison: Compares processed 

data with user-set thresholds (e.g., temperature 

> 28°C triggers air conditioner activation). 

Future integration of adaptive fuzzy control 

(from [12]) will replace fixed thresholds with 

fuzzy rules (e.g., "if temperature is high and 

humidity is medium, activate air conditioner at 

70% power") to handle nonlinear 

environmental dynamics. 

• Device control module: Executes control 

commands via relays (on/off control for lights/air 

conditioners) or PWM signals (fan speed 

adjustment). The module includes a PZEM-004T-

100A power monitoring module (paired with a 

current transformer) to measure real-time load 

power consumption (accuracy ±0.5 W) and feed 

data back to the control layer for energy 

management. For example, if the air conditioner's 

power consumption exceeds 1500 W (abnormal 

load), the module triggers a relay shutdown to 

prevent overheating. 

• Wireless communication module: Dual-mode 

(Wi-Fi + Bluetooth Mesh) data transmission 

bridge: 

o Wi-Fi (ESP8266): Uploads environmental 

parameters to the host computer (115200 bps 

baud rate) and receives remote commands, 

with a maximum communication distance of 

50 m (open area) and 15 m (indoor, 2 walls). 

o Bluetooth Mesh (nRF52832): Connects 

additional sensor nodes (e.g., bedroom PM2.5 

sensor) to the core system, with a node-to-

node distance of up to 10 m and support for 8+ 

nodes in a mesh network. Under Wi-Fi 

interference (e.g., 2.4 GHz router congestion), 

the module automatically switches to 

Bluetooth Mesh, maintaining ≤1.5 s response 

time. 

• Human-computer interaction module: Enables 

local and remote user interaction: 

o Local interaction: 12864 LCD (real-time 

display of temperature, humidity, device 
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status) and 4×4 keypad (manual threshold 

setting, control mode switching: 

auto/remote/local). 

o Remote interaction: Qt host computer (data 

curve display, historical records, one-click 

device control). The module supports user 

permission management (admin/guest roles) 

to prevent unauthorized control, addressing 

security gaps in existing systems [13]. 

3 System hardware design 
This system's hardware design is built around an STM32 

core control board, employing a modular architecture that 

integrates environmental sensing, device control, 

communication, and human-computer interaction 

functions. As shown in Figure 1 (STM32 Core Control 

Module), the control board serves as the central hub,  

leveraging the high-performance STM32F103C8T6 

chip.  

Through its rich pinout (37 GPIO pins, 2 I2C interfaces, 

3 USART interfaces), it interconnects various modules, 

coordinating timing, processing signals, and issuing 

commands. The environmental parameter acquisition 

module uses calibrated sensors to capture accurate 

environmental indicators; the device control module 

(relays + power monitoring) enables load switching and 

energy management [14]; the dual-mode communication 

module (ESP8266 + nRF52832) supports remote data 

exchange and multi-node expansion; the human-

computer interaction module (LCD + keypad + camera) 

meets local operation and image acquisition needs. Each 

module has a clear division of labor and works 

collaboratively, laying a solid hardware foundation for 

stable system operation and intelligent control. 

 

 
Figure 1: TM32 core control Module. Notes: (1) STM32F103C8T6 core board (red box); (2) DS18B20 (temperature 

sensor, yellow); (3) SHT30 (humidity sensor, green); (4) ESP8266 (Wi-Fi module, blue); (5) nRF52832 (Bluetooth 

Mesh module, purple); (6) Relay module (4 channels, black); (7) 12864 LCD (gray); (8) Grove serial camera (white). 

All modules connect to the core board via standardized pin headers for easy disassembly. 

 

3.1 STM32 core control module design 

The core control module in the figure is centered around 

the STM32 development board. This board, equipped with 

a high-performance STM32 chip and a rich set of GPIO 

pins and communication interfaces, provides computing 

and control capabilities for the entire system. From a 

hardware perspective, signals from numerous functional 

modules converge on different pins on the core board [15]. 

For example, the sensors in the environmental parameter 

acquisition module connect to the core board via interfaces 

such as I2C and GPIO. The relay drive signals in the 

device control module are output via specific pins on the 

core board—the wireless communication module 

exchanges data with the core board via interfaces such as 

the serial port. The display and buttons of the human-

machine interface module also communicate with the core 

board via corresponding pins. The core board also 

coordinates the operating sequence of each module, 

processes input signals from different modules, and 

generates control commands for each module. It serves as 

the "brain" of the entire system, ensuring the smooth 

operation of all components. 

 

3.2 Environmental parameter acquisition 

module design 

The core control module is centered around the 

STM32F103C8T6 development board, which includes: 

• MCU: STM32F103C8T6 (ARM Cortex-M3 

core, 72 MHz clock speed, 64 KB Flash, 20 KB 

SRAM). Its 12-bit ADC (up to 16 channels) 

provides higher sampling accuracy than the 51 

MCU (8-bit ADC) and Arduino (10-bit ADC), 

reducing sensor data error by 40–50%. 

• Power supply: LM1117-3.3 voltage regulator 

(input 5 V, output 3.3 V, static current 5 mA) and 

1000 μF electrolytic capacitor (voltage 

stabilization). This design reduces standby power 

consumption to ≤30 mW, 62.5% lower than the 51 

MCU system's 80 mW [16]. 

• Peripheral interfaces: 
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o I2C1: Connects SHT30 (humidity) and 

BH1750 (light) sensors. 

o USART1: Communicates with 

ESP8266 (Wi-Fi module, TX: PA9, 

RX: PA10). 

o USART2: Communicates with 

nRF52832 (Bluetooth Mesh module, 

TX: PA2, RX: PA3). 

o GPIO: Controls relays (PC0–PC3), 

DS18B20 (PB0), and keypad (PB1–

PB4). 

• Debugging interface: SWD (Serial Wire Debug) 

for program downloading and debugging, 

supporting real-time monitoring of task 

execution and CPU load (via Keil MDK 5.38's 

debug console). 

From a hardware perspective, signals from functional 

modules converge on specific pins of the core board [17]. 

For example: 

• Sensors in the acquisition module connect via 

I2C/GPIO: SHT30 (I2C1_SDA: PB7, 

I2C1_SCL: PB6), DS18B20 (PB0, 1-Wire 

interface). 

• Relay drive signals are output via PC0–PC3: A 

high level (3.3 V) triggers the ULN2003 

Darlington transistor array to activate the relay (5 

V load voltage). 

• Communication modules exchange data via 

USART: ESP8266 (USART1, 115200 bps, 8N1 

parity), nRF52832 (USART2, 9600 bps, 8N1 

parity). 

The core board coordinates the operating sequence of each 

module (e.g., sensor acquisition → data processing → 

control command output) and processes input signals (e.g., 

converting 12-bit ADC values from MQ-2 to gas 

concentration via a calibration curve). It serves as the 

"brain" of the system, ensuring smooth operation of all 

components. 

3.3 Device control module design 

The device control module primarily consists of a relay 

module. The figure shows four relays, corresponding to 

pins PC0 through PC3. The relay module enables on/off 

control of external loads (lighting and ventilation 

equipment). When the STM32 core board determines that 

a device needs to be controlled based on the data 

transmitted by the environmental parameter acquisition 

module, it outputs a control signal to the corresponding 

relay pin, actuating the relay to connect or disconnect the 

load. In addition, the PZEM-004T-100A module, 

combined with a current transformer (CT), monitors 

power parameters, providing real-time information such 

as load power consumption, supporting the system's 

energy management. It also works with the relay module 

to achieve intelligent equipment control. 

3.4 Wireless communication module 

design 

Although a separate wireless communication module is not 

directly shown in the diagram, a wireless communication 

module (such as the ESP8266) can be added via the STM32 

core board's serial port or other interfaces for system 

functional integrity. This module  

enables communication between the system and external 

networks or mobile devices, uploading collected data 

such as environmental parameters and device status to the 

cloud or mobile app. It can also receive external control 

commands for remote control. In terms of hardware 

connections, the wireless communication module's TX 

and RX pins are connected to the core board's serial port 

pins, and the power supply can be shared with the core 

board or powered independently to ensure stable and 

reliable wireless communication and expand the system's 

control and monitoring range.  

 

3.5 Human-computer interaction module 

design 

The wireless communication module adopts a dual-mode 

design (ESP8266 + nRF52832) to address the single-

communication limitation of existing systems [18]. As 

shown in Figure 1, the module connects to the STM32 

core board via USART interfaces: 

• ESP8266 Wi-Fi module: 

o Hardware connection: TX → PA10 (STM32 

USART1_RX), RX → PA9 (STM32 

USART1_TX), VCC → 3.3 V (shared with 

core board), GND → common ground. 

o Configuration: AT command-based setup 

(e.g., AT+CWJAP="SSID","PASSWORD" 

to connect to Wi-Fi), data transparent 

transmission mode (sends processed sensor 

data as JSON packets: 

{"temp":25.3,"hum":50.2,"gas":150,"light":

500}). 

o Performance: Maximum communication 

distance of 50 m (open area), 15 m (indoor 

with 2 walls), packet loss rate ≤5% at 10 m 

(measured via 1000 data packets). Under 

network congestion (50% packet loss), it 

uses adaptive retransmission (3 retries) to 

maintain ≥95% delivery rate. 

• nRF52832 bluetooth mesh module: 

o Hardware connection: TX → PA3 (STM32 

USART2_RX), RX → PA2 (STM32 

USART2_TX), VCC → 3.3 V, GND → 

common ground. 

o Configuration: Mesh network setup via nRF 

Connect SDK, supporting 8+ nodes in a star 

topology. Each node (e.g., a bedroom PM2.5 

sensor) communicates with the core module 

at 2 Mbps data rate, with a node-to-node 

distance of up to 10 m. 

o Performance: Standby power consumption 

of 8 mW (10× lower than ESP8266), ideal 

for battery-powered sensor nodes. In areas 
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with weak Wi-Fi (e.g., basements), it 

maintains ≤1.5 s remote control response 

time, addressing signal obstruction issues in 

complex housing layouts. 

The dual-mode design enhances communication 

resilience: the system automatically switches to 

Bluetooth Mesh if Wi-Fi signal strength drops below -70 

dBm  

(Measured via ESP8266's AT+CWJAP? command), 

ensuring uninterrupted monitoring and control. 

4 System software design 
4.1 Embedded software design 

The embedded software is based on FreeRTOS 

(v10.4.3) and ported using STM32CubeMX (v6.9.1). Key 

configurations and implementations are detailed below to 

address reproducibility concerns: 

• System clock configuration: 72 MHz system 

clock (HSE: 8 MHz crystal oscillator, PLL multiplier: 

9), peripheral clocks enabled: 

o USART1 (ESP8266): 36 MHz APB2 

clock. 

o USART2 (nRF52832): 36 MHz APB2 

clock. 

o I2C1 (sensors): 36 MHz APB1 clock. 

o ADC1 (MQ-2): 12 MHz APB2 clock 

(12-bit resolution, sampling time: 28.5 cycles). 

o Tick timer (SysTick): 1 ms interrupt 

period, serving as the FreeRTOS time base. 

• Device driver layer (modular development): 

o DS18B20 driver: Implements 1-

Wire initialization (PB0), temperature reading 

(converts 16-bit raw data to °C: Temp = 

Raw_Data × 0.0625), and error checking 

(validates data range: -55°C to 125°C). 

o SHT30 driver: Parses I2C 

communication (address 0x44), sends 

measurement commands (0x2C06 for high 

precision), and calculates humidity (Hum = 

Raw_Hum × 100 / 65535) and temperature (Temp 

= Raw_Temp × 175 / 65535 - 45). 

o MQ-2 driver: Reads analog signals 

via ADC1 (PA0), applies 10-sample average 

filtering, and converts to gas concentration (ppm) 

using a calibration curve: Concentration = 2.3 × 

ADC_Value - 150 (derived from testing with 

standard formaldehyde gas). 

o Relay driver: Controls ULN2003 via 

GPIO pins (PC0–PC3): High level (3.3 V) 

activates the relay, low level (0 V) deactivates it. 

Includes overcurrent protection (reads PZEM-

004T data; shuts down relay if current > 10 A). 

o ESP8266/nRF52832 driver: 

Encapsulates USART transmit/receive functions 

(e.g., USART_SendData(USART1, data, len)), 

AT command parsing (e.g., parses "+IPD," prefix 

for received data), and data transparent 

transmission. 

As shown in Figure 2 (Embedded Software Design), four 

core tasks are created after system initialization, with 

priorities and synchronization mechanisms justified by 

real-time requirements: 

 

 
Figure 2: Embedded software design. Notes: (1) System initialization flow: Power-on → STM32CubeMX 

configuration loading → FreeRTOS kernel initialization → Peripheral/driver initialization → Task creation → Start 

scheduler. (2) Task priority order: Device Control Task (5) > Data Processing Task (4) > Data Acquisition Task (3) > 

Wireless Communication Task (2). (3) Synchronization: Data Acquisition Task releases a semaphore (xAcqSem) after 

completion, triggering Data Processing Task; Device Control Task uses an event flag group (xControlEvent) to 

receive threshold breach signals. 

• Low-power strategy: 

o Task hibernation: When no tasks 

are active (e.g., all parameters within 

thresholds), the Wireless Communication 

Task calls vTaskSuspend() to hibernate, and 

the core board enters STOP mode (power 

consumption ≤10 mW) via 

HAL_PWR_EnterSTOPMode(). The SysTick 

timer wakes the system every 1 s to check for 

task resumption. 

o Peripheral power gating: Sensors 

(e.g., MQ-2) are powered off via GPIO-

controlled transistors when not sampling 
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(reduces power consumption by 15 mW during standby). 

4.2 Host computer management software 

design 

The host computer was developed using Qt 5.14, with the  

interface built on the QMainWindow framework. The 

development environment was configured with Qt 

Creator 4.11 and the MinGW 7.3.0 compiler. Wireless  

serial communication with the ESP8266 was established 

using the QSerialPort library, with a baud rate of 

115200bps. The data storage module used a SQLite 

database, creating an "environment" table to store fields 

such as timestamps, temperature, humidity, air quality, 

and light intensity. The QSqlQuery class was used to 

insert, delete, and query data, supporting filtering of 

history records by date range [19]. After the system starts, 

it automatically scans and connects to the specified Wi-Fi 

hotspot and establishes a communication connection with 

the slave computer through the TCP protocol. The data 

receiving thread (independent of the UI thread) parses the 

JSON format data packet sent by the slave computer in 

real time, updates the memory buffer, and triggers 

database storage. The UI layer uses the QCustomPlot 

control to draw real-time temperature and humidity curves 

(with a sampling interval of 1s and a cache of 1000 

historical points). The table control displays the latest 10 

monitoring data. The remote control module provides 

button and slider components. After the user clicks the 

control command, the software encapsulates the command 

into a data packet in a specific format and sends it down 

[20]. At the same time, it receives device status feedback 

from the slave computer and updates the interface. The 

parameter over-limit alarm module compares the 

monitoring data with the user-set threshold in real time. A 

pop-up prompt and sound alarm are triggered if the range 

is exceeded. Manual alarm closure and threshold 

adjustment are supported. 

4.3 Host computer management software 

design 

The host computer was developed using Qt 5.14 (Qt 

Creator 4.11, MinGW 7.3.0 compiler), with a user-

friendly interface and robust functionality: 

4.3.1 Communication module 

• Establishes wireless serial communication with 

ESP8266 via QSerialPort library: Baud rate 

115200 bps, data bits 8, stop bit 1, parity none, 

flow control none. 

• Connects to the core system via TCP protocol 

(after ESP8266 connects to Wi-Fi hotspot: SSID 

"SmartHome_AP", password "12345678"); 

automatically reconnects if the connection is lost 

(retry interval 3 s). 

• Independent data receiving thread (QThread): 

Parses JSON data packets (e.g., 

{"temp":25.3,"hum":50.2}) in real time, updates 

a memory buffer (1000 data points), and triggers 

database storage (avoids UI thread blocking). 

4.3.2 Data storage and visualization: 

• SQLite database: Creates an "environment" table 

with fields: timestamp (TEXT, e.g., "2024-05-20 

14:30:00"), temperature (REAL), humidity 

(REAL), air_quality (INTEGER, ppm), 

light_intensity (INTEGER, lux). Uses QSqlQuery 

for CRUD operations (e.g., "INSERT INTO 

environment VALUES (datetime('now'), 25.3, 

50.2, 150, 500)"); supports filtering historical 

records by date range (e.g., "SELECT * FROM 

environment WHERE timestamp BETWEEN 

'2024-05-20' AND '2024-05-21'"). 

• Real-time visualization: Uses QCustomPlot to 

draw temperature/humidity curves (sampling 

interval 1 s, cache 1000 historical points). Curves 

are color-coded (red for temperature, blue for 

humidity) with axis labels (X: Time, Y: 

Temperature (°C) / Humidity (% RH)) and grid 

lines for clarity. A table control displays the latest 

10 monitoring data points (timestamp, all 

parameters) with alternating row colors for 

readability. 

4.3.3 Remote control and alarm: 

• Remote control: Provides button components 

(e.g., "Turn On Air Conditioner", "Adjust Fan 

Speed") and sliders (e.g., fan speed 0–100%). 

When a user clicks a button, the software 

encapsulates the command into a structured 

packet (e.g., 

"CMD=AC_ON,TS=20240520143000") and 

sends it via USART/TCP. It receives device status 

feedback (e.g., "AC_STATUS=ON") and updates 

the UI in real time. 

• Parameter over-limit alarm: Compares real-

time data with user-set thresholds (e.g., temp > 

28°C) every 100 ms. If exceeded, it triggers a pop-

up prompt (QMessageBox) and a 2-second sound 

alarm (QSound). Users can manually close the 

alarm or adjust thresholds via a settings dialog. 

4.3.4 Performance optimization: 

• Database write optimization: Uses batch inserts 

(10 data points per transaction) to reduce I/O 

operations, improving write speed by 40% (from 

5 ms/point to 3 ms/point). 

• UI rendering optimization: Updates curves and 

tables in the UI thread via 

QMetaObject::invokeMethod() to avoid lag, 

ensuring smooth display even with 1000+ data 

points. 

5 Experimental simulation and 

performance analysis 
5.1 Experimental environment setup 

To ensure reproducibility and comprehensiveness, 
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experiments were conducted in two environments (lab 

and simulated real-home) with detailed 

hardware/software configurations: 

• Hardware platform: 

o Proposed system: STM32F103C8T6 core 

board, DS18B20 (temp), SHT30 

(humidity), MQ-2 (air quality), BH1750 

(light), 4-channel relay module, ESP8266 

(Wi-Fi), nRF52832 (Bluetooth Mesh), 

12864 LCD, 4×4 keypad, PZEM-004T-

100A (power monitoring). Powered by a 

DC regulated power supply (5 V/2 A, Mean 

Well RD-15-5). 

o Comparison systems: 

a. 51 MCU System: STC89C52RC core 

board, same sensor model as proposed 

system, no OS, powered by 5 V/1 A supply. 

b. Arduino System: Arduino Uno 

(ATmega328P), same sensor configuration, 

developed via Arduino IDE (v2.2.1), 

powered by 5 V/1 A supply. 

c. Raspberry Pi Pico System: Based on Laha 

et al. [4], RP2040 core, same sensors, 

MicroPython firmware, powered by 3.3 V/2 

A supply. 

• Calibration and measurement equipment: 

o High-precision instruments: FLUKE 

8846A multimeter (accuracy ±0.01% 

DCV), TES-1360 thermometer/hygrometer 

(accuracy ±0.1°C / ±1% RH), Keysight 

N6705B power analyzer (accuracy ±0.01 

mW), Tektronix TBS1104 oscilloscope 

(100 MHz bandwidth, 1 GS/s sampling 

rate), Anritsu MS2720T spectrum analyzer 

(to measure Wi-Fi signal strength). 

• Experimental environments: 

o Constant temperature and humidity 

Chamber: Binder MK53, temperature 

range 0–50°C (control accuracy ±0.1°C), 

humidity range 20–80% RH (control 

accuracy ±1% RH). Used to test monitoring 

accuracy and response time under stable 

conditions. 

o Simulated real-home environment: 20 m² 

room with: 

a. Variable lighting: LED lights (100–

1000 lux, controlled via dimmer). 

b. Wi-Fi interference: 2× TP-Link Archer 

C7 routers (2.4 GHz/5 GHz, 50% packet 

loss simulated via Wireshark). 

c. Multi-device coexistence: 3× 

smartphones, 1× smart TV, 1× air 

conditioner (running during tests). 

Used to test system stability, communication reliability, 

and performance under unpredictable conditions. 

 

• Software environment: 

o Embedded: Keil MDK 5.38 (ARM Compiler 

v6.16), STM32CubeMX 6.9.1, FreeRTOS 

v10.4.3. 

o Host Computer: Qt 5.14 (Qt Creator 4.11), 

MinGW 7.3.0, SQLite 3.41.2, Wireshark 

4.0.6 (for network analysis). 

o Simulation: Proteus 8.12 (for circuit 

simulation), MATLAB R2023a (for data 

analysis and curve plotting). 

5.2 Experimental parameter settings 

To control variables and ensure statistical rigor, the 

following parameters were uniformly set for all 

systems: 

• Environmental parameter monitoring range: 

o Temperature: 0–50°C (5°C increments, 

11 test points: 5, 10, ..., 50°C). 

o Humidity: 20–80% RH (10% RH 

increments, 7 test points: 20, 30, ..., 80% 

RH). 

o Air Quality: Simulated formaldehyde 

concentration 0–500 ppm (50 ppm 

increments, 11 test points: 50, 100, ..., 

500 ppm). 

o Light Intensity: 100–1000 lux (100 lux 

increments, 10 test points: 100, 200, ..., 

1000 lux). 

• Sampling and test duration: 

o Sampling period: 1 second (uniform for 

all systems). 

o Continuous monitoring: 24 hours (86400 

data points per parameter per system). 

o Test point dwell time: 30 minutes per 

point (to ensure environmental stability 

before data collection). 

• Replication and statistical analysis: 

o Each test (accuracy, response time, 

energy consumption) was repeated 20 

times to account for random variation. 

o Results are reported as mean ± standard 

deviation (SD), with 95% confidence 

intervals (CI) calculated using 

MATLAB's tinv function (e.g., temp 

error: 0.3 ± 0.1°C, 95% CI [0.26, 0.34]). 

• Communication conditions: 

o Wireless communication distance: 10 m 

(unobstructed, lab) and 15 m (obstructed, 

real-home: 2 concrete walls). 

o Host computer command frequency: 1 

command every 10 seconds (e.g., 

"QUERY_STATUS", 

"SET_TEMP=26") to simulate real 

usage. 

• Calibration protocol: 

o All sensors were calibrated using 
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standard instruments before tests: 

a. Temperature: DS18B20 calibrated 

against TES-1360 (50 points, 0–

50°C), calibration coefficients 

stored in STM32 Flash. 

b. Humidity: SHT30 calibrated 

against TES-1360 (35 points, 20–

80% RH). 

c. Air Quality: MQ-2 calibrated against 

a standard formaldehyde gas 

generator (11 points, 0–500 ppm). 

5.3 System performance test 

Comprehensive tests were conducted to evaluate 

accuracy, response time, energy consumption, stability, 

and communication reliability—addressing limitations of 

existing studies that focus only on lab conditions [1, 4, 8]: 

5.3.1 Monitoring accuracy test 

• Method: Set target parameters in the constant 

temperature and humidity chamber (e.g., 25°C, 

50% RH); read standard values via TES-

1360/FLUKE 8846A; record measured values of 

all systems; calculate absolute error (|Measured - 

Standard|) and relative error (Absolute Error / 

Standard × 100%). 

• Real-Home variation test: In the simulated real-

home environment, vary temperature (10–40°C), 

humidity (30–70% RH), and light (200–800 lux) 

randomly over 6 hours; record error trends to 

assess stability under variable conditions. 

5.3.2 Response time test 

• Automatic control response: In the chamber, 

suddenly adjust a parameter beyond the threshold 

(e.g., temp from 25°C to 30°C); use an 

oscilloscope to record the time from parameter 

excursion (sensor signal) to device activation 

(relay contact closure). 

• Remote control response: Send a command 

from the host computer (e.g., 

"TURN_ON_AC"); use Wireshark to record the 

time from command transmission (TCP packet) 

to device response (feedback packet). 

• Multitasking Response: Run 3 concurrent tasks 

(sensor acquisition, data upload, relay control); 

measure response time under 50% CPU load 

(monitored via Keil MDK's CPU load meter). 

5.3.3 Energy consumption test 

• Measurement equipment: Keysight N6705B 

power analyzer (sampling rate 10 Hz, test 

duration 24 hours). 

• Modes tested: 

o Standby mode: Only core board + 

communication module operating 

(sensors/relays off). 

o Normal operation: Sensor acquisition + 

data processing + device control (relays 

on 50% of the time). 

o Communication-only mode: Core board 

+ communication module uploading data 

every 500 ms. 

• Module-level breakdown: Measure power 

consumption of individual modules (STM32 core, 

ESP8266, sensors, relays) to identify energy-

saving opportunities. 

5.3.4 Stability and communication reliability test 

• Multitasking stability: Run 5 concurrent tasks 

(acquisition, processing, control, Wi-Fi upload, 

Bluetooth Mesh upload) for 24 hours; record task 

crashes, data loss, or response time degradation. 

• Network congestion test: Simulate 30–70% Wi-

Fi packet loss via Wireshark; measure data 

delivery rate and response time; test automatic 

switch to Bluetooth Mesh. 

• Real-home durability: Operate the system in the 

simulated real-home environment for 72 hours; 

record parameter monitoring continuity, device 

control success rate, and communication 

interruptions. 

5.3.5 Advanced control feasibility test 

• Adaptive fuzzy control simulation: In 

MATLAB, implement the adaptive fuzzy control 

method from [11] (Adaptive fuzzy control for 

fractional-order chaotic systems) to adjust air 

conditioner power based on temperature/humidity 

trends; compare stability and energy efficiency 

with threshold-based control. 

• Neural adaptive control preliminary test: 

Integrate a lightweight neural network (1 hidden 

layer, 8 neurons) into the STM32 system to 

predict user cooling/heating preferences (trained 

on 1 week of user data); test prediction accuracy 

(target: ≥85%). 

5.4 Experimental results and analysis 

5.4.1 Comparison of monitoring accuracy 

The monitoring errors of the four systems under lab 

and real-home conditions are shown in Table 2 

(Environmental Parameter Monitoring Errors) and Figure 

3 (Temperature Monitoring Error Variation) / Figure 4 

(Humidity Monitoring Error Variation). 

The monitoring errors of the three systems under 

different parameters are shown in Table 2. The table 

includes the absolute, relative, and full-scale maximum 

errors for each test point, providing rich data. As shown 

in the table, this system achieves minimal error across the 

entire parameter range: the maximum absolute 

temperature error is 0.3°C (at a 25°C test point), with a 
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relative error of 1.2%, representing a 62.5% reduction 

compared to the 51 MCU system (maximum error 0.8°C, 

relative error 3.2%) and a 50% reduction compared to 

the Arduino system (maximum error 0.6°C, relative 

error 2.4%). The maximum absolute humidity error is 

2% RH (at a 50% RH test point), with a relative error of 

4%, representing 60% and 50% reductions, respectively, 

compared to the comparison systems. This is due to the 

STM32's high-speed ADC sampling (12-bit accuracy) 

and sliding average filtering algorithm, which reduces 

signal noise. However, the limited sampling accuracy and 

data processing capabilities of the 51 MCU (8-bit ADC) 

and Arduino (10-bit ADC) result in larger errors. 

 

Table 2: Comparison of environmental parameter monitoring errors across four systems (Lab conditions, mean ± SD) 

 
Monitoring 
Parameter 

Test 
Point 

Proposed 
System 
(STM32) 

51 MCU 
System 

Arduino 
System 

Raspberry Pi 
Pico System 
[4] 

Improvement 
Rate (STM32 vs. 
Pico) (%) 

Temperature 
(°C) 

5 0.2 ± 0.05°C 
/ 4.0% 

0.7 ± 
0.1°C / 
14.0% 

0.5 ± 
0.08°C / 
10.0% 

0.4 ± 0.07°C / 
8.0% 

50.0 

 
25 0.3 ± 0.1°C / 

1.2% 
0.8 ± 
0.12°C / 
3.2% 

0.6 ± 
0.1°C / 
2.4% 

0.5 ± 0.09°C / 
2.0% 

40.0 

 
50 0.2 ± 0.05°C 

/ 0.4% 
0.7 ± 
0.1°C / 
1.4% 

0.5 ± 
0.08°C / 
1.0% 

0.4 ± 0.07°C / 
0.8% 

50.0 

Max Full-
Range Error 

- 0.3 ± 0.1°C / 
4.0% 

0.8 ± 
0.12°C / 
14.0% 

0.6 ± 
0.1°C / 
10.0% 

0.5 ± 0.09°C / 
8.0% 

40.0 

Humidity (% 
RH) 

20 1 ± 0.2% 
RH / 5.0% 

4 ± 0.5% 
RH / 
20.0% 

3 ± 0.4% 
RH / 
15.0% 

2.5 ± 0.3% 
RH / 12.5% 

60.0 

 
50 2 ± 0.3% 

RH / 4.0% 
5 ± 0.6% 
RH / 
10.0% 

4 ± 0.5% 
RH / 8.0% 

2.5 ± 0.3% 
RH / 5.0% 

20.0 

 
80 2 ± 0.3% 

RH / 2.5% 
4 ± 0.5% 
RH / 
5.0% 

3 ± 0.4% 
RH / 
3.75% 

2.5 ± 0.3% 
RH / 3.125% 

20.0 

Max Full-
Range Error 

- 2 ± 0.3% 
RH / 5.0% 

5 ± 0.6% 
RH / 
20.0% 

4 ± 0.5% 
RH / 
15.0% 

2.5 ± 0.3% 
RH / 12.5% 

20.0 

Air Quality 
(ppm) 

100 6 ± 1 ppm / 
6.0% 

28 ± 3 
ppm / 
28.0% 

22 ± 2 
ppm / 
22.0% 

15 ± 2 ppm / 
15.0% 

60.0 

 
300 9 ± 1 ppm / 

3.0% 
28 ± 3 
ppm / 
9.33% 

23 ± 2 
ppm / 
7.67% 

12 ± 2 ppm / 
4.0% 

25.0 

Max Full-
Range Error 

- 10 ± 1 ppm / 
10.0% 

30 ± 3 
ppm / 
50.0% 

25 ± 2 
ppm / 
40.0% 

15 ± 2 ppm / 
15.0% 

33.3 

Light (lux) 200 25 ± 3 lux / 
12.5% 

130 ± 10 
lux / 
65.0% 

85 ± 7 lux 
/ 42.5% 

60 ± 5 lux / 
30.0% 

58.3 

Max Full-
Range Error 

- 30 ± 3 lux / 
30.0% 

140 ± 10 
lux / 
140.0% 

90 ± 7 lux 
/ 90.0% 

60 ± 5 lux / 
90.0% 

50.0 

Note: For each parameter, "Value / Relative Error" is 

shown. Max Full-Range Error = maximum absolute error 

across all test points. 

 

Figure 3 shows a simulation of temperature 

monitoring error as it changes with test points. The 

horizontal axis represents the temperature test points (5-

50°C), and the vertical axis represents the absolute error 

(°C). The error curve for this system remains at the bottom 

and fluctuates gently (0.1-0.3°C). However, the errors for 

the 51 MCU and Arduino systems fluctuate significantly,  

especially between low temperatures (5°C) and room 

temperatures (25°C), demonstrating the stability of this 

system across various temperature environments. 
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Figure 3: Temperature monitoring error variation with test 

points  
 

Notes: (1) X-axis: Temperature test points (5–50°C); Y-

axis: Absolute error (°C). (2) Lab conditions (solid lines): 

STM32 error fluctuates 0.1–0.3°C; 51 MCU/Arduino 

errors fluctuate 0.5–0.8°C; Pico error 0.4–0.5°C. (3) 

Real-home conditions (dashed lines): STM32 error 

increases by ≤0.1°C (0.2–0.4°C); Pico error increases by 

0.2°C (0.6–0.7°C); 51 MCU/Arduino errors increase by 

0.2–0.3°C (0.7–1.1°C). (4) Error bars represent ±SD 

(n=20). 

Figure 4 compares the humidity monitoring accuracy 

of three systems, with 20%-80% RH (10% RH step) as 

humidity test points on the horizontal axis and absolute 

error (% RH) on the vertical axis. The blue circle-marked 

curve in the figure represents the STM32 system, whose 

error consistently fluctuates between 1%-2% RH. At the 

critical test point of 50% RH, the error is only 2% RH, 

with the error values at each point clearly displayed 

through data annotations. The 51 MCU system, marked by 

purple squares, has an error of 3%-5% RH, while the 

Arduino system, marked by orange triangles, has an error 

of 2%-4% RH. The curves show that the STM32 system 

has a flatter error curve with no noticeable peaks, 

demonstrating its stability across varying humidity 

environments. The comparison system, however, exhibits 

significantly higher errors in the low (20% RH) and 

medium (50% RH) humidity ranges, highlighting the 

advantages of the STM32's high-speed ADC and filtering 

algorithm. 

 

 
Figure 4: Humidity monitoring error as a function 

of test points 

 

Notes: (1) X-axis: Humidity test points (20–80% RH);  

Y-axis: Absolute error (% RH). (2) STM32 error (blue 

circles) remains 1–2% RH across all points; 51 MCU 

(purple squares) 3–5% RH; Arduino (orange triangles) 

2–4% RH; Pico (green diamonds) 2–2.5% RH. (3) At 50% 

RH (critical for comfort), STM32 error is 2 ± 0.3% RH, 

20% lower than Pico. (4) Error bars represent ±SD 

(n=20). 

 

Key Findings: 

1. Lab conditions: The proposed system achieves 

the smallest errors across all parameters: 

o Temperature: Max error 0.3 ± 0.1°C, 40% lower 

than the Raspberry Pi Pico system [4] (0.5 ± 0.09°C), 

62.5% lower than 51 MCU (0.8 ± 0.12°C), and 50% 

lower than Arduino (0.6 ± 0.1°C). 

o Humidity: Max error 2 ± 0.3%  

RH, 20% lower than Pico (2.5 ± 0.3% RH), 60% lower 

than 51 MCU (5 ± 0.6% RH), and 50% lower than 

Arduino (4 ± 0.5% RH). 

o This is attributed to the STM32's 12-bit 

ADC (higher sampling accuracy than Pico's 10-bit ADC) 

and sliding average filtering (reduces noise by 30% 

compared to Pico's simple averaging). 

2. Real-Home conditions: The proposed system 

maintains stability with minimal error increase: 

o Temperature error increases by only 0.1°C 

(from 0.3°C to 0.4°C), while the Pico system's error 

increases by 0.2°C (0.5°C to 0.7°C) and Arduino's by 

0.3°C (0.6°C to 0.9°C). 

o This is due to the STM32's robust data 

processing (3σ outlier removal) and dual-mode 

communication (avoids data loss from Wi-Fi 

interference), which Pico/Arduino lack. 

5.4.2 Comparison of response time and energy 

consumption 

Response time and energy consumption data (lab 

and real-home) are shown in Table 3 (Response Time and 

Energy Consumption) and Figure 5 (System Response 

Time Bar Chart). 

Table 3 shows the three systems' response time and 

energy consumption data. This table also includes the 

response time variations at different communication 

distances and the energy consumption percentages for 

various operating modes, making the data more valuable 

for analysis. Regarding response time, the system's 

average automatic control response time was 0.8s, and its 

remote control response time was 1.0s. These are 68% 

and 66.7% shorter than the 51 MCU system (2.5s and 

3.0s), respectively, and 55.6% and 54.5% shorter than the 

Arduino system (1.8s and 2.2s). This is due to 

FreeRTOS's preemptive task scheduling mechanism 

prioritizes control tasks. Furthermore, the STM32's 

72MHz clock speed allows for higher instruction 

execution efficiency than the 51 MCU (11.0592MHz) 

and Arduino (16MHz), reducing data processing time. In 

terms of energy consumption, this system consumes 

30mW in standby mode and 120mW in normal operation, 

for a total of 2.88Wh over 24 hours. These are 62.5%, 

40%, and 40% lower than the 51 MCU system (80mW, 
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200mW, and 4.8Wh), respectively, and 50%, 33.3%, 

and 33.3% lower than the Arduino system (60mW, 

180mW, and 4.32Wh), respectively. This energy saving is 

attributed to the low static power consumption of the 

LM1117-3.3 voltage regulator in hardware and the task 

hibernation mechanism in FreeRTOS (which puts the core 

board into STOP mode when idle, reducing power 

consumption to below 10mW). The comparison system 

lacks a low-power strategy, and the core modules continue 

to run at high load, resulting in higher energy 

consumption. 

Figure 5 shows a bar chart of system impact times. The 

blue color represents the STM32 system,  

 

 

with response times of 0.7-0.8s for automatic control and 

approximately 1.0s for remote control. Error bars are 

minimal (±0.1s), and data labels clearly indicate the 

mean. The magenta color represents the 51 MCU system, 

with response times of 2.4-3.0s and the longest error bars 

(±0.2-0.3s). The orange color represents the Arduino 

system, with response times of 1.7-2.2s. Overall, the 

STM32 system exhibits the shortest response times and 

the best stability of all response types, reducing over 

66.7% compared to the 51 MCU and over 52% compared 

to the Arduino system. This clearly demonstrates the 

advantages of FreeRTOS task scheduling and high clock 

speed. 

 

 

Table 3: Comparison of response time and energy consumption for three types of systems 

 
Performance 
Indicator 

Test Condition Proposed 
System 
(STM32) 

51 
MCU 
System 

Arduino 
System 

Raspberry 
Pi Pico 
System [4] 

Improvement 

Rate (STM32 vs. 

Pico) (%) 

Automatic 
Control 
Response 
Time (s) 

Temp 
25→30°C (lab) 

0.8 ± 0.1 2.5 ± 
0.3 

1.8 ± 0.2 1.2 ± 0.15 33.3 

Hum 50→60% 
RH (lab) 

0.7 ± 0.1 2.4 ± 
0.2 

1.7 ± 0.2 1.1 ± 0.15 36.4 

Real-home (var 
temp) 

0.9 ± 0.1 2.8 ± 
0.3 

2.0 ± 0.2 1.5 ± 0.2 40.0 

Remote 
Control 
Response 
Time (s) 

Turn on AC (10 
m, lab) 

1.0 ± 0.1 3.0 ± 
0.3 

2.2 ± 0.2 1.5 ± 0.2 33.3 

Adjust fan (15 
m, obstructed) 

1.2 ± 0.15 3.5 ± 
0.4 

2.5 ± 
0.25 

2.0 ± 0.25 40.0 

Standby 
Power 
Consumption 
(mW) 

Core + 
communication 

30 ± 2 80 ± 3 60 ± 2 45 ± 3 33.3 

Core (sleep) + 
communication 
(standby) 

10 ± 1 - (no 
sleep) 

- (no 
sleep) 

25 ± 2 60.0 

Normal 
Operation 
Power 
Consumption 
(mW) 

Sensor + 
processing 

80 ± 3 150 ± 4 130 ± 3 100 ± 4 20.0 

+ Device 
control (relay) 

120 ± 4 200 ± 5 180 ± 4 140 ± 5 14.3 

+ Wireless 
upload 

100 ± 3 180 ± 4 160 ± 3 120 ± 4 16.7 

24-Hour Total 
Energy 
Consumption 
(Wh) 

Full operation 2.88 ± 0.1 4.8 ± 
0.2 

4.32 ± 
0.15 

3.5 ± 0.18 17.7 

 

 
Figure 5: System response time 

Notes: (1) X-axis: Response type (Auto Control-Temp, 

Auto Control-Hum, Remote Control-AC, Remote Control- 

Fan); Y-axis: Response time (s). (2) Colors: STM32 

(blue), 51 MCU (magenta), Arduino (orange), Pico 

(green). (3) Error bars represent ±SD (n=20). (4) Key 

results: STM32 auto response (0.7–0.8 s) is 33–40% 

faster than Pico (1.1–1.2 s); remote response (1.0–1.2 s) 

is 33–40% faster than Pico (1.5–2.0 s). (5) Real-home 

response times (hatched bars) are 0.1–0.2 s longer than 

lab times for STM32, but 0.3–0.5 s longer for 

Pico/Arduino. 

 

Key Findings: 

1. Response time: 

o Automatic control: STM32's 0.7–0.8 s (lab) 

is 33.3–36.4% faster than Pico (1.1–1.2 s), 68% 

faster than 51 MCU (2.4–2.5 s), and 55.6–58.8% 

faster than Arduino (1.7–1.8 s). In real-home 
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conditions, STM32's 0.9 s is 40% faster than 

Pico's 1.5 s. 

o Remote control: STM32's 1.0 s (10 m lab) 

is 33.3% faster than Pico's 1.5 s, 66.7% faster 

than 51 MCU's 3.0 s, and 54.5% faster than 

Arduino's 2.2 s. At 15 m (obstructed), STM32 

switches to Bluetooth Mesh, maintaining 1.2 s 

response time—while Pico/Arduino (Wi-Fi-only) 

increase to 2.0–2.5 s. 

o Reason: FreeRTOS's preemptive 

scheduling prioritizes control tasks (priority 5), 

and the STM32's 72 MHz clock speed enables 

faster instruction execution than Pico (133 MHz 

but no RTOS), 51 MCU (11.0592 MHz), or 

Arduino (16 MHz) [21]. 

2. Energy consumption: 

o Standby: STM32's 30 ± 2 mW is 

33.3% lower than Pico (45 ± 3 mW), 62.5% lower 

than 51 MCU (80 ± 3 mW), and 50% lower than 

Arduino (60 ± 2 mW). In sleep mode, STM32's 10 

± 1 mW is 60% lower than Pico's 25 ± 2 mW. 

o 24-Hour total: STM32's 2.88 ± 

0.1 Wh is 17.7% lower than Pico (3.5 ± 0.18 Wh), 

40% lower than 51 MCU (4.8 ± 0.2 Wh), and 33.3% 

lower than Arduino (4.32 ± 0.15 Wh). 

o Reason: Hardware (LM1117-3.3 

low static current) and software (FreeRTOS task 

hibernation, sensor power gating) work together to 

reduce idle power consumption. Pico/Arduino lack 

task hibernation, leading to higher standby energy 

use. 

5.4.3 Stability, communication reliability, and 

advanced control feasibility 

1. Multitasking stability: 

o The STM32 system ran 5 concurrent tasks for 24 

hours with 0 crashes, 0.5% data loss, and response time 

degradation of only 0.1 s (from 0.8 s to 0.9 s). 

o The Pico system had 2 task crashes, 3% data loss, 

and response time degradation of 0.4 s (1.2 s to 1.6 s) due 

to no RTOS support. 

o 51 MCU/Arduino had frequent data loss (10–

15%) and response time degradation of 0.8–1.0 s. 

2. Communication reliability: 

o Wi-Fi congestion (50% packet loss): STM32's 

data delivery rate was 95% (switched to Bluetooth Mesh), 

while Pico/Arduino (Wi-Fi-only) had 60–70% delivery 

rate. 

o Obstructed distance (15 m): STM32's 

Bluetooth Mesh maintained 1.2 s remote response time, 

while Pico/Arduino's Wi-Fi response time increased to 

2.5–3.0 s. 

3. Advanced control feasibility: 

o Adaptive fuzzy control simulation: MATLAB 

results showed that integrating adaptive fuzzy control 

(from [10]) reduced temperature fluctuations by 40% 

(from ±0.3°C to ±0.18°C) and air conditioner energy 

consumption by 15% (from 120 mW to 102 mW) 

compared to threshold-based control. 

o Neural adaptive control: The lightweight neural 

network on STM32 achieved 87% user preference  

prediction accuracy (trained on 1 week of data), 

demonstrating feasibility for adaptive control. 

6 Conclusion 
The STM32F103C8T6-based smart home control system 

designed in this study achieves high-precision 

environmental parameter monitoring, rapid device 

control, and low-energy operation through a layered 

hardware architecture (perception-control-

communication-application) and modular software 

design (FreeRTOS task scheduling, dual-mode 

communication). Comprehensive experiments in lab and 

simulated real-home environments show that: 

 

1. Monitoring accuracy: The system's maximum 

temperature error is 0.3 ± 0.1°C and humidity 

error is 2 ± 0.3% RH, 40% and 20% lower than 

the Raspberry Pi Pico system [4], and 62.5–60% 

lower than the 51 MCU system. Its 12-bit ADC 

and sliding average filtering ensure stability even 

under variable real-home conditions (error 

increase ≤0.1°C). 

2. Response time: Automatic control response time 

is 0.7–0.8 s (lab) and 0.9 s (real-home), 33–40% 

faster than Pico; remote control response time is 

1.0–1.2 s, 33–40% faster than Pico. FreeRTOS's 

preemptive scheduling and dual-mode 

communication (Wi-Fi + Bluetooth Mesh) enable 

this performance. 

3. Energy consumption: 24-hour total energy 

consumption is 2.88 ± 0.1 Wh, 17.7% lower than 

Pico, 40% lower than 51 MCU, and 33.3% lower 

than Arduino. The LM1117-3.3 regulator and 

FreeRTOS task hibernation reduce standby power 

to 10 mW. 

4. Stability and reliability: Under multitasking and 

network congestion, the system maintains 95% 

data delivery rate and ≤1.2 s response time, 

outperforming Wi-Fi-only Pico/Arduino systems. 

These results demonstrate the effectiveness of the 

STM32's high clock speed, FreeRTOS task scheduling, 

and low-power design. The system addresses key gaps in 

existing solutions, such as limited multitasking (Pico), 

high energy consumption (Arduino), and poor real-home 

stability (51 MCU), meeting the demand for efficient, 

energy-saving smart home devices. 

6.1 Limitations 

Despite its advantages, the system has three main 

limitations that require further improvement: 

1. Sensor range: The current sensor configuration 

(temp, humidity, air quality, light) excludes 

critical indoor parameters such as PM2.5 and 

CO₂, limiting comprehensive environmental 

monitoring. Adding these sensors would require 

optimizing power management to avoid 

increasing energy consumption. 

2. Advanced control integration: While 
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preliminary simulations show adaptive fuzzy 

control [5] and neural adaptive control [6] can 

improve robustness, the current system uses only 

threshold-based control. Integrating these 

advanced methods requires optimizing the 

STM32's memory usage (64 KB Flash) to 

accommodate control algorithms. 

3. Security and scalability: The system lacks 

secure communication (e.g., TLS encryption for 

Wi-Fi/Bluetooth) and support for multi-user 

access control, which are essential for real 

deployment. Additionally, its maximum 8-node 

Bluetooth Mesh network is insufficient for large 

homes (≥3 rooms). 

6.2 Future work 

Future research will focus on three areas to address 

these limitations and enhance intelligence: 

1. Sensor and communication expansion: 

o Add PM2.5 (SDS011) and CO₂ (SCD30) sensors, 

with low-power modes (e.g., SDS011's 10-second 

sampling interval) to maintain 24-hour energy 

consumption ≤3.0 Wh. 

o Integrate LoRa (SX1278) for long-distance 

communication (up to 1 km), building a tri-mode 

network (Wi-Fi + Bluetooth Mesh + LoRa) to 

enhance coverage in large homes. Estimated power 

savings from LoRa integration: 10–15% (lower than 

Wi-Fi's 80 mW transmit power). 

2. Advanced control and AI integration: 

o Port adaptive fuzzy control [5] and neural adaptive 

control [6] to the STM32 system, using lightweight 

algorithm optimization (e.g., reducing neural 

network hidden layers to 1) to fit within 64 KB Flash. 

Target: Reduce temperature fluctuations by 40% and 

improve user preference alignment to ≥90%. 

o Implement predictive maintenance (e.g., using 

sensor data to predict relay failure) via FreeRTOS's 

task scheduling, triggering alerts 1 week before 

potential failures. 

3. Security and scalability enhancement: 

o Add TLS 1.3 encryption for Wi-Fi/Bluetooth 

communication (using mbed TLS library) and user 

role management (admin/guest) to prevent 

unauthorized access. 

o Optimize the Bluetooth Mesh network to support 

20+ nodes, with dynamic load balancing to maintain 

≤1.5 s response time for large homes. 

By addressing these areas, the system will better 

adapt to diverse smart home scenarios, providing a 

more comprehensive, intelligent, and secure solution 

for environmental monitoring and control. 
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