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To meet the high-precision, fast-response, and low-energy requirements for environmental monitoring
and device control in smart home scenarios, an intelligent control system based on the STM32F103C8T6
was designed. Comparative experiments were conducted with a 51 microcontroller (MCU) system and
an Arduino system, as well as with recent peer-reviewed smart home solutions (e.g., loT-based systems
using Raspberry Pi Pico or ESP32-C3). The system hardware adopts a four-layer "perception-control-
communication-application” architecture, integrating multiple sensors (DS18B20 for temperature,
SHT30 for humidity, MQ-2 for air quality, BH1750 for light intensity) and control modules. The software
uses FreeRTOS for task scheduling (with explicitly defined task priorities, scheduling intervals, and
memory management) and a Qt host computer for data visualization and remote control. Experiments
were performed in a constant temperature and humidity chamber (temperature control accuracy:
+0.1°C, humidity: +1% RH) and a simulated real-home environment (with variable lighting, Wi-Fi
interference, and multi-device coexistence) over 24 continuous hours, with a 1-second sampling rate.
Multiple test points were set to assess monitoring accuracy, response time, energy consumption, system
stability under multitasking, and wireless communication reliability. The results show that the STM32
system's maximum temperature monitoring error is 0.3°C and humidity error is 2% RH, 62.5% and 60%
lower than the 51-chip MCU system, and 50% and 50% lower than the Arduino system, respectively.
The automatic control response time is 0.8 s (mean + 0.1 s) and remote control time is 1.0 s (mean + 0.1
s), 55.6% and 54.5% shorter than the Arduino system. The total 24-hour energy consumption is 2.88
Wh, 40% lower than the 51-chip MCU system. Compared with a Raspberry Pi Pico-based system
(reported in recent literature with 0.5°C temperature error and 3.5 Wh daily energy consumption), the
STM32 system achieves 40% higher temperature monitoring accuracy and 17.7% lower energy
consumption. Simulations and real-environment tests demonstrate that the STM32 system outperforms
comparison systems in all metrics, meets practical application requirements of green smart homes, and
maintains stability under network congestion and multitasking.

Povzetek: Studija predstavi nadzorni sistem za pametne domove s tirislojno arhitekturo, vecsenzorskim
spremljanjem in FreeRTOS upravljanjem, ki zagotavlja natancno, hitro in energijsko varcno okoljsko
merjenje ter daljinsko krmiljenje.

1 Introduction

With the deep integration of IoT technology and
embedded systems, the smart home industry has evolved
from single-device intelligence to whole-home scenario-
based control. According to industry reports, the global
smart home market has an average annual growth rate
exceeding 20% [1]. As core functions for improving living
comfort and ensuring indoor safety, environmental
monitoring and control have become key components of
smart home systems. In everyday home environments,
accurate tracking of parameters such as temperature,
humidity, air quality, and light provides data support for
the intelligent control of devices like air conditioners,
humidifiers, and fresh air systems, directly impacting user
experience and energy efficiency. Therefore, the
performance of environmental monitoring and control

modules has become a key indicator of the practicality of
smart home systems [2].

However, current mainstream smart home
environmental monitoring and control systems still have
significant shortcomings. Some systems based on 51
MCUs or Arduino, limited by the MCU's computing
power, employ simple data acquisition and processing
methods, resulting in large monitoring errors
(temperature errors often exceeding +0.6°C and humidity
errors exceeding +4% RH). Most systems lack optimized
task scheduling mechanisms, leading to delayed device
control responses—response times from parameter
excursions to device startup often exceed 1.8 s.
Furthermore, imperfect hardware power management
design and the absence of software low-power strategies
result in system standby power consumption exceeding
60 mW, failing to meet green and low-carbon home
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development requirements [3]. Recent studies have
attempted to address these issues using low-power MCUs
(e.g., Raspberry Pi Pico, ESP32-C3) or loT frameworks
(e.g., AWS loT Greengrass), but many still lack
systematic comparative testing against traditional
platforms or fail to integrate real-time operating systems
(RTOS) for efficient task management. For example, a
Raspberry Pi Pico-based smart home system reported in
Laha et al. [4] achieved a temperature monitoring error of
0.5°C and daily energy consumption of 3.5 Wh, but it did
not support multitasking or remote control latency
optimization. Another ESP32-C3 system in Shi et al. [5]
integrated AloT functions but had higher standby power
consumption (45 mW) due to redundant sensor modules.
These gaps highlight the need for a low-power, high-
precision system with RTOS-based task scheduling to
balance performance and energy efficiency.

To address these shortcomings, this research
designed a smart home environment monitoring and
control system based on the STM32F103C8T6 MCU. This
system leverages the STM32's high-performance
computing power (72 MHz clock speed, 12-bit ADC) and
flexible peripheral interfaces, combined with optimized
data processing algorithms (sliding average filtering, 3c
outlier removal) and a low-power design (LM1117-3.3
voltage regulator, FreeRTOS task hibernation), to improve
monitoring accuracy and response speed while reducing
energy consumption. To clarify the research, focus and
scientific contribution, three specific research questions
are proposed:
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1.Can the STM32F103C8T6 + FreeRTOS
combination achieve lower monitoring errors and faster
response times compared to traditional 51 MCU/Arduino
systems and recent low-power IoT platforms?

2. Does the four-layer hardware architecture
enhance modularity, scalability, and communication
reliability compared to common loT models, especially
under network congestion or multi-node expansion?

3. Can the system be extended to integrate
advanced control methods (e.g., adaptive fuzzy control,
neural adaptive control) or lightweight Al, and how
would this improve robustness and adaptability in real-
home environments?

The core research components include: (1) hardware
circuit design (sensor acquisition, device control, wireless
communication modules) based on the
STM32F103C8T6; (2) embedded software development
(drivers, task scheduling, data filtering) based on
FreeRTOS, with explicit configuration of task priorities,
scheduling intervals, and memory management; (3)
construction of an experimental platform for comparative
testing against 51 MCU, Arduino, and recent 1oT-based
systems (Raspberry Pi Pico, ESP32-C3) to verify
performance in lab and real-home environments; and (4)
exploration of integrating advanced control methods (e.qg.,
adaptive fuzzy control, neural adaptive control) for future
optimization.

A structured comparison of key existing smart home
systems and the proposed system is provided in Table 1
(Related Works Summary), which contextualizes the
current study against state-of-the-art (SOTA) solutions.

Table 1: Summary of key smart home environmental monitoring systems in literature

Referenc | Core Platform Sensor Monitoring Respons | Daily Energy | Key
e Configuratio | Accuracy e Time Consumptio | Limitations
n (Temp/Humidity n
)
Laha et al. | Raspberry Pi Pico | Temp, +0.5°C/+3%RH | 1.2s 3.5 Wh No RTOS, no
[4] Humidity, Air multitasking
Quality support
Shi et al. | ESP32-C3 Temp, +0.4°C / £2.5% | 1.0s 4.2 Wh High standby
[5] Humidity, RH power (45
Light, Camera mW), no
remote control
optimization
Hamdan Arduino Uno Temp, +0.6°C/+4% RH | 1.8 s 4.32 Wh Simple  data
[2] Humidity processing, no
low-power
strategy
Rheeetal. | 51 MCU | Temp, +0.8°C/£5% RH | 2.5s 4.8 Wh Low ADC
[1] (STC89C52RC) Humidity accuracy (8-
bit), no task
scheduling
Proposed | STM32F103C8T | Temp +0.3°C/+2% RH | 0.8 s | 2.88 Wh Limited sensor
System 6 + FreeRTOS (DS18B20), (auto) / range (no
Humidity 1.0 S PM2.5/COz),
(SHT30), Air (remote) Wi-Fi-only
Quality (MQ- communicatio
2), Light n
(BH1750)




A Comparative Study of an STM32F103C8T6-Based ...

The results of this research provide a technical
reference for optimizing smart home environment
monitoring and control systems, promoting the
development of low-power, high-precision smart home
devices, and addressing gaps in existing systems such as
limited multitasking capability, high energy consumption,
and lack of advanced control integration.

2 Overall system design
2.1 System design objectives

To ensure the system's practicality and competitiveness in
smart home scenarios, the following core performance
indicators were defined:

e Environmental parameter monitoring
accuracy: Temperature error < +0.3°C, humidity
error < 2% RH, air quality (hazardous gas
concentration) error < £10 ppm, light intensity
error < £50 lux. This ensures data accurately
reflects indoor environmental conditions,
outperforming recent Raspberry Pi Pico-based
systems (£0.5°C / +3% RH) [4].

e Device control response time: Automatic
control response time (from parameter excursion
to device startup) < 0.8 s (mean + 0.1 s); remote
control response time (from host computer
command to device activation) < 1.0 s (mean +
0.1 s). This avoids delays affecting user
experience, shorter than the ESP32-C3 system's
1.0 s automatic response [5].

e System energy consumption: Standby power
consumption (core board + communication
module) < 30 mW; normal operation power
consumption  (sensor acquisition + data
processing + device control) < 120 mW; 24-hour
total energy consumption < 2.88 Wh. This meets
green smart home requirements, 17.7% lower
than the Raspberry Pi Pico system's 3.5 Wh.

e Scalability and stability: Support for adding at
least 5 additional sensor nodes (e.g., PM2.5,
CO2) without performance degradation; maintain
<1.2 s response time under network congestion
(50% packet loss); stable operation in variable
environments (temperature 10-40°C, humidity

30-70% RH, Wi-Fi interference from 2+
routers).

e Extensibility @ for  advanced control:
Hardware/software compatibility with
integrating adaptive fuzzy control, neural

adaptive control, or PID control to enhance
robustness against nonlinearities and
uncertainties in real-home environments.

2.2 Overall system architecture

The system adopts a layered architecture, achieving
functional synergy from hardware and software
perspectives. Its specific advantages over common loT
models (e.g., three-layer "perception-network-
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application") include enhanced modularity, fault
isolation, and real-time data processing, addressing
limitations of

existing designs such as
communication bottlenecks.

poor scalability or

2.2.1 Hardware architecture (four layers)

e Perception layer: Comprises DS18B20
(temperature), SHT30 (humidity), MQ-2 (air
quality), and BH1750 (light) sensors. Each sensor
uses standardized interfaces (12C, GPIO, 1-Wire)
for easy replacement/expansion. Unlike the
ESP32-C3 system, which integrates redundant
sensors leading to high power consumption, this
layer uses low-power sensors (SHT30 standby
current: 0.1 pA) to optimize energy efficiency.

e Control layer: Centered on the
STM32F103C8T6 MCU (72 MHz clock, 64 KB
Flash, 20 KB SRAM). It executes data processing,
task scheduling (via FreeRTQOS), and control
command generation. Compared to the 51 MCU
(11.0592 MHz, 8-bit ADC) and Arduino (16
MHz, 10-bit ADC), its high-speed 12-bit ADC
reduces signal noise, and its support for RTOS
enables preemptive task scheduling to prioritize
critical control tasks.

e Communication layer: Integrates dual-mode
communication: ESP8266 (Wi-Fi) for long-
distance data transmission (up to 50 m in open
areas) and Bluetooth Mesh (nRF52832 module,
added for scalability) for short-range, low-power
node communication. This addresses the Wi-Fi
signal obstruction issue in complex housing
layouts (common in single-communication
systems [1, 5])—Bluetooth Mesh maintains <1.5
s response time in areas with weak Wi-Fi (e.g.,
basements). Under network congestion (50%
packet loss), the layer uses adaptive
retransmission (3 retries max) to ensure >95%
data delivery rate, outperforming Wi-Fi-only
systems (<80% delivery rate).

e Application layer: Includes a 12864 LCD
module (local display), 4x4 keypad (manual
operation), and Qt host computer (remote
monitoring). The host computer supports data
visualization, threshold setting, and remote
control, with a user-friendly interface that reduces
operation complexity compared to AWS loT
Greengrass-based systems [6].

2.2.2 Software architecture (four layers)

Adheres to modular design principles, with standardized
interfaces between layers to ensure scalability [7]:

e Bottom layer: FreeRTOS embedded operating
system, configured with:

o Task priorities: Device Control Task (5,
highest), Data Processing Task (4), Data
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Acquisition  Task (3), Wireless
Communication Task (2, lowest). This
prioritization is justified by timing
analysis: control tasks require sub-
second response to avoid environmental
damage, while communication tasks
can tolerate slight delays.

o Scheduling intervals: Data Acquisition
Task (1 s periodic trigger), Data
Processing Task (event-triggered after
acquisition), Device Control Task
(event-triggered by threshold breaches),
Wireless Communication Task (500 ms
periodic data upload) [8].

o Memory management: 4 KB stack for
each task, 2 KB shared buffer for sensor
data, dynamic memory allocation
disabled to avoid fragmentation.

Middle layer: Device drivers for sensors
(DS18B20, SHT30, MQ-2, BH1750), relays
(ULN2003), and communication modules
(ESP8266, nRF52832) [9]. Drivers use hardware
abstraction to simplify adding new modules (e.g.,
PM2.5 sensor) with <10 lines of code
modification.

Upper layer: Application programs, including
sliding average filtering (5-sample window for
temperature/humidity), 3o outlier removal, and
threshold-based control logic. Future extensions
will integrate adaptive fuzzy control (to handle
nonlinear sensor errors) and neural adaptive
control (to learn user habits), referencing
methods from [10] (Adaptive fuzzy control for
fractional-order chaotic systems) and [11]
(Robust neural adaptive control for nonlinear
multivariable systems).

Top layer: Qt host computer management
software, with SQLite database (data storage),
QCustomPlot (real-time curves), and remote
control modules. It supports historical data query
(by date range) and parameter over-limit alarms
(pop-up + sound), with a communication latency
<100 ms (measured via round-trip time tests).

2.3 System functional module division

The system is divided into five core functional modules,
with clear division of labor and coordinated operation:

Environmental parameter acquisition
module: Data source for the system. Converts
physical quantities (temperature, humidity, etc.)
into electrical signals via sensors, then conditions
signals  (amplification,  filtering)  before
transmission to the control layer. Each sensor
undergoes pre-calibration using a FLUKE 8846A
multimeter and TES-1360
thermometer/hygrometer,  with  calibration
coefficients stored in the STM32's Flash for real-
time error compensation. For example, the
DS18B20's raw temperature data is corrected

o Bluetooth Mesh

o Local
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using the formula: Corrected T = Raw_T x 0.98
+ 0.12 (derived from 50 calibration points),
reducing inherent sensor error by 30%.

Data processing and analysis module:

Leverages the STM32's computing power to process
raw data:

o Sliding average filtering: Computes the

average of 5 consecutive samples for
temperature/humidity to reduce random noise
(e.g., x0.1°C fluctuations from electrical
interference).

o 3o outlier removal: Eliminates data points

outside the range [1t - 35, 1 + 30] (L =mean, ¢
= standard deviation) to exclude abnormal
values (e.g., sensor disconnection causing 0°C
readings).

o Threshold comparison: Compares processed

data with user-set thresholds (e.g., temperature
> 28°C triggers air conditioner activation).
Future integration of adaptive fuzzy control
(from [12]) will replace fixed thresholds with
fuzzy rules (e.g., "if temperature is high and
humidity is medium, activate air conditioner at

70% power") to handle  nonlinear
environmental dynamics.
Device control module: Executes control

commands via relays (on/off control for lights/air
conditioners) or PWM signals (fan speed
adjustment). The module includes a PZEM-004T-
100A power monitoring module (paired with a
current transformer) to measure real-time load
power consumption (accuracy 0.5 W) and feed
data back to the control layer for energy
management. For example, if the air conditioner's
power consumption exceeds 1500 W (abnormal
load), the module triggers a relay shutdown to
prevent overheating.

Wireless communication module: Dual-mode
(Wi-Fi + Bluetooth Mesh) data transmission
bridge:

o Wi-Fi (ESP8266): Uploads environmental

parameters to the host computer (115200 bps
baud rate) and receives remote commands,
with a maximum communication distance of
50 m (open area) and 15 m (indoor, 2 walls).

(nRF52832):  Connects
additional sensor nodes (e.g., bedroom PM2.5
sensor) to the core system, with a node-to-
node distance of up to 10 m and support for 8+
nodes in a mesh network. Under Wi-Fi
interference (e.g., 2.4 GHz router congestion),
the module automatically switches to
Bluetooth Mesh, maintaining <1.5 s response
time.

Human-computer interaction module: Enables
local and remote user interaction:

interaction: 12864 LCD (real-time
display of temperature, humidity, device
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status) and 4x4 keypad (manual threshold
setting, control mode switching:
auto/remote/local).

o Remote interaction: Qt host computer (data
curve display, historical records, one-click
device control). The module supports user
permission management (admin/guest roles)
to prevent unauthorized control, addressing
security gaps in existing systems [13].

3 System hardware design

This system's hardware design is built around an STM32
core control board, employing a modular architecture that
integrates environmental sensing, device control,
communication, and human-computer interaction
functions. As shown in Figure 1 (STM32 Core Control
Module), the control board serves as the central hub,

PZEM-004T-100A
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leveraging the high-performance STM32F103C8T6
chip.

Through its rich pinout (37 GPIO pins, 2 12C interfaces,
3 USART interfaces), it interconnects various modules,
coordinating timing, processing signals, and issuing
commands. The environmental parameter acquisition
module uses calibrated sensors to capture accurate
environmental indicators; the device control module
(relays + power monitoring) enables load switching and
energy management [14]; the dual-mode communication
module (ESP8266 + nRF52832) supports remote data
exchange and multi-node expansion; the human-
computer interaction module (LCD + keypad + camera)
meets local operation and image acquisition needs. Each
module has a clear division of labor and works
collaboratively, laying a solid hardware foundation for
stable system operation and intelligent control.

Air Quality Sensor

Schematic Diagram

Grove Serial Camera

Figure 1: TM32 core control Module. Notes: (1) STM32F103C8T6 core board (red box); (2) DS18B20 (temperature
sensor, yellow); (3) SHT30 (humidity sensor, green); (4) ESP8266 (Wi-Fi module, blue); (5) nRF52832 (Bluetooth
Mesh module, purple); (6) Relay module (4 channels, black); (7) 12864 LCD (gray); (8) Grove serial camera (white).
All modules connect to the core board via standardized pin headers for easy disassembly.

3.1  STM32 core control module design

The core control module in the figure is centered around
the STM32 development board. This board, equipped with
a high-performance STM32 chip and a rich set of GPIO
pins and communication interfaces, provides computing
and control capabilities for the entire system. From a
hardware perspective, signals from numerous functional
modules converge on different pins on the core board [15].
For example, the sensors in the environmental parameter
acquisition module connect to the core board via interfaces
such as 12C and GPIO. The relay drive signals in the
device control module are output via specific pins on the
core board—the wireless communication module
exchanges data with the core board via interfaces such as
the serial port. The display and buttons of the human-
machine interface module also communicate with the core
board via corresponding pins. The core board also
coordinates the operating sequence of each module,
processes input signals from different modules, and
generates control commands for each module. It serves as
the "brain" of the entire system, ensuring the smooth

operation of all components.

3.2 Environmental parameter acquisition
module design

The core control module is centered around the
STM32F103C8T6 development board, which includes:

e MCU: STM32F103C8T6 (ARM Cortex-M3
core, 72 MHz clock speed, 64 KB Flash, 20 KB
SRAM). Its 12-bit ADC (up to 16 channels)
provides higher sampling accuracy than the 51
MCU (8-bit ADC) and Arduino (10-bit ADC),
reducing sensor data error by 40-50%.

e Power supply: LM1117-3.3 voltage regulator
(input 5 V, output 3.3 V, static current 5 mA) and
1000 puF electrolytic  capacitor  (voltage
stabilization). This design reduces standby power
consumption to <30 mW, 62.5% lower than the 51
MCU system's 80 mW [16].

e Peripheral interfaces:
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o 12C1: Connects SHT30 (humidity) and
BH1750 (light) sensors.

o USARTI: Communicates with
ESP8266 (Wi-Fi module, TX: PAJ9,
RX: PA10).

o USART2: Communicates with

nRF52832 (Bluetooth Mesh module,
TX: PA2, RX: PA3).

o GPIO: Controls relays (PCO-PC3),
DS18B20 (PBO0), and keypad (PB1-
PB4).

e Debugging interface: SWD (Serial Wire Debug)
for program downloading and debugging,
supporting  real-time monitoring of task
execution and CPU load (via Keil MDK 5.38's
debug console).

From a hardware perspective, signals from functional
modules converge on specific pins of the core board [17].
For example:

e Sensors in the acquisition module connect via

I2C/GPIO:  SHT30  (I12C1_SDA: PB7,
I2C1_SCL: PB6), DS18B20 (PBO, 1-Wire
interface).

e Relay drive signals are output via PCO-PC3: A
high level (3.3 V) triggers the ULN2003
Darlington transistor array to activate the relay (5
V load voltage).

e Communication modules exchange data via
USART: ESP8266 (USART1, 115200 bps, 8N1
parity), nRF52832 (USARTZ2, 9600 bps, 8N1
parity).

The core board coordinates the operating sequence of each
module (e.g., sensor acquisition — data processing —
control command output) and processes input signals (e.g.,
converting 12-bit ADC values from MQ-2 to gas
concentration via a calibration curve). It serves as the
"brain" of the system, ensuring smooth operation of all
components.

3.3 Device control module design

The device control module primarily consists of a relay
module. The figure shows four relays, corresponding to
pins PCO through PC3. The relay module enables on/off
control of external loads (lighting and ventilation
equipment). When the STM32 core board determines that
a device needs to be controlled based on the data
transmitted by the environmental parameter acquisition
module, it outputs a control signal to the corresponding
relay pin, actuating the relay to connect or disconnect the
load. In addition, the PZEM-004T-100A module,
combined with a current transformer (CT), monitors
power parameters, providing real-time information such
as load power consumption, supporting the system's
energy management. It also works with the relay module
to achieve intelligent equipment control.

3.4  Wireless communication module

design
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Although a separate wireless communication module is not
directly shown in the diagram, a wireless communication
module (such as the ESP8266) can be added via the STM32
core board's serial port or other interfaces for system
functional integrity. This module

enables communication between the system and external
networks or mobile devices, uploading collected data
such as environmental parameters and device status to the
cloud or mobile app. It can also receive external control
commands for remote control. In terms of hardware
connections, the wireless communication module's TX
and RX pins are connected to the core board's serial port
pins, and the power supply can be shared with the core
board or powered independently to ensure stable and
reliable wireless communication and expand the system's
control and monitoring range.

3.5 Human-computer interaction module
design

The wireless communication module adopts a dual-mode
design (ESP8266 + nRF52832) to address the single-
communication limitation of existing systems [18]. As
shown in Figure 1, the module connects to the STM32
core board via USART interfaces:

e ESP8266 Wi-Fi module:

o Hardware connection: TX — PA10 (STM32
USARTI RX), RX — PA9 (STM32
USART1_TX), VCC — 3.3 V (shared with
core board), GND — common ground.

o Configuration: AT command-based setup
(e.g., AT+CWJAP="SSID","PASSWORD"
to connect to Wi-Fi), data transparent
transmission mode (sends processed sensor

data as JSON packets:
{"temp":25.3,"hum":50.2,"gas":150,"light":
500}).

o Performance: Maximum communication
distance of 50 m (open area), 15 m (indoor
with 2 walls), packet loss rate <5% at 10 m
(measured via 1000 data packets). Under
network congestion (50% packet loss), it
uses adaptive retransmission (3 retries) to
maintain >95% delivery rate.

e nRF52832 bluetooth mesh module:

o Hardware connection: TX — PA3 (STM32
USART2 RX), RX — PA2 (STM32
USART2 TX), VCC — 3.3 V, GND —
common ground.

o Configuration: Mesh network setup via nRF
Connect SDK, supporting 8+ nodes in a star
topology. Each node (e.g., a bedroom PM2.5
sensor) communicates with the core module
at 2 Mbps data rate, with a node-to-node
distance of up to 10 m.

o Performance: Standby power consumption
of 8 mW (10x lower than ESP8266), ideal
for battery-powered sensor nodes. In areas
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with weak Wi-Fi (e.g., basements), it
maintains <1.5 s remote control response
time, addressing signal obstruction issues in
complex housing layouts.

The dual-mode design enhances communication
resilience: the system automatically switches to
Bluetooth Mesh if Wi-Fi signal strength drops below -70
dBm

(Measured via ESP8266's AT+CWJAP? command),
ensuring uninterrupted monitoring and control.

4 System software design

4.1 Embedded software design

The embedded software is based on FreeRTOS
(v10.4.3) and ported using STM32CubeMX (v6.9.1). Key
configurations and implementations are detailed below to
address reproducibility concerns:

e System clock configuration: 72 MHz system
clock (HSE: 8 MHz crystal oscillator, PLL multiplier:
9), peripheral clocks enabled:

o  USARTL1 (ESP8266): 36 MHz APB2
clock.

o  USART2 (nRF52832): 36 MHz APB2
clock.

o  12C1 (sensors): 36 MHz APBL1 clock.

o ADC1 (MQ-2): 12 MHz APB2 clock
(12-bit resolution, sampling time: 28.5 cycles).

o  Tick timer (SysTick): 1 ms interrupt
period, serving as the FreeRTOS time base.

o Device driver layer (modular development):

o DS18B20 driver: Implements 1-

System initialization process
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Wire initialization (PBO), temperature reading
(converts 16-bit raw data to °C: Temp =
Raw_Data x 0.0625), and error checking
(validates data range: -55°C to 125°C).

o SHT30 driver:  Parses
communication (address  0x44), sends
measurement commands (0x2C06 for high
precision), and calculates humidity (Hum =
Raw_Hum x 100 / 65535) and temperature (Temp
= Raw_Temp x 175/ 65535 - 45).

o MQ-2 driver: Reads analog signals
via ADC1 (PAQ), applies 10-sample average
filtering, and converts to gas concentration (ppm)
using a calibration curve: Concentration = 2.3 x
ADC_Value - 150 (derived from testing with
standard formaldehyde gas).

o Relay driver: Controls ULN2003 via
GPIO pins (PCO-PC3): High level (3.3 V)
activates the relay, low level (0 V) deactivates it.
Includes overcurrent protection (reads PZEM-
004T data; shuts down relay if current > 10 A).

o ESP8266/nRF52832 driver:
Encapsulates USART transmit/receive functions
(e.g., USART_SendData(USARTL, data, len)),
AT command parsing (e.g., parses "+IPD," prefix
for received data), and data transparent
transmission.

As shown in Figure 2 (Embedded Software Design), four
core tasks are created after system initialization, with
priorities and synchronization mechanisms justified by
real-time requirements:

12C

Core task scheduling process

Priority from high to low: Centrol (§) — Processing (4) —

Acquisition (3) — Communication (2)

System power-on startup [

STM32CubeMX
configuration loading

FreeRTOS Kernel

Compares data with thresholds and generates control

Device Control Task (Priority §)

instructions

initialization

Flag Peripheral clock and

Event
GPIO configuration ‘
Group

Filtering, calibration, and outlier removal

Data processing tasks (priority 4)

Device driver
initialization

Data collection task (priority 3)
Reads sensor data every 1 second

Create core tasks

Shared data buffer

II

Start Task Scheduler ‘

Wireless communication task (priority 2)
Data upload and command reception

Figure 2: Embedded software design. Notes: (1) System initialization flow: Power-on — STM32CubeMX
configuration loading — FreeRTOS kernel initialization — Peripheral/driver initialization — Task creation — Start
scheduler. (2) Task priority order: Device Control Task (5) > Data Processing Task (4) > Data Acquisition Task (3) >
Wireless Communication Task (2). (3) Synchronization: Data Acquisition Task releases a semaphore (xAcqSem) after
completion, triggering Data Processing Task; Device Control Task uses an event flag group (xControlEvent) to

receive threshold breach signals.

e  Low-power strategy:

o Task hibernation: When no tasks
are active (e.g., all parameters within
thresholds), the Wireless Communication
Task calls vTaskSuspend() to hibernate, and
the core board enters STOP mode (power

consumption <10 mW) via
HAL_PWR_EnterSTOPMode(). The SysTick
timer wakes the system every 1 s to check for
task resumption.

o  Peripheral power gating: Sensors
(e.g., MQ-2) are powered off via GPIO-
controlled transistors when not sampling
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(reduces power consumption by 15 mwW
Host computer management software
design
The host computer was developed using Qt 5.14, with the

interface built on the QMainWindow framework. The
development environment was configured with Qt
Creator 4.11 and the MinGW 7.3.0 compiler. Wireless

serial communication with the ESP8266 was established
using the QSerialPort library, with a baud rate of
115200bps. The data storage module used a SQLite
database, creating an "environment" table to store fields
such as timestamps, temperature, humidity, air quality,
and light intensity. The QSqglQuery class was used to
insert, delete, and query data, supporting filtering of
history records by date range [19]. After the system starts,
it automatically scans and connects to the specified Wi-Fi
hotspot and establishes a communication connection with
the slave computer through the TCP protocol. The data
receiving thread (independent of the Ul thread) parses the
JSON format data packet sent by the slave computer in
real time, updates the memory buffer, and triggers
database storage. The Ul layer uses the QCustomPlot
control to draw real-time temperature and humidity curves
(with a sampling interval of 1s and a cache of 1000
historical points). The table control displays the latest 10
monitoring data. The remote control module provides
button and slider components. After the user clicks the
control command, the software encapsulates the command
into a data packet in a specific format and sends it down
[20]. At the same time, it receives device status feedback
from the slave computer and updates the interface. The
parameter over-limit alarm module compares the
monitoring data with the user-set threshold in real time. A
pop-up prompt and sound alarm are triggered if the range
is exceeded. Manual alarm closure and threshold
adjustment are supported.

4.2

4.3 Host computer management software
design

The host computer was developed using Qt 5.14 (Qt
Creator 4.11, MinGW 7.3.0 compiler), with a user-
friendly interface and robust functionality:

4.3.1 Communication module

e Establishes wireless serial communication with
ESP8266 via QSerialPort library: Baud rate
115200 bps, data bits 8, stop bit 1, parity none,
flow control none.

e Connects to the core system via TCP protocol
(after ESP8266 connects to Wi-Fi hotspot: SSID
"SmartHome_AP", password "12345678");
automatically reconnects if the connection is lost
(retry interval 3 s).

e Independent data receiving thread (QThread):
Parses JSON data packets (e.q.,
{"temp":25.3,"hum":50.2}) in real time, updates
a memory buffer (1000 data points), and triggers
database storage (avoids Ul thread blocking).
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during standby).
4.3.2 Data storage and visualization:

e SQL.ite database: Creates an "environment" table
with fields: timestamp (TEXT, e.g., "2024-05-20
14:30:00"), temperature (REAL), humidity
(REAL), air_quality (INTEGER, ppm),
light_intensity (INTEGER, lux). Uses QSqglQuery
for CRUD operations (e.g., "INSERT INTO
environment VALUES (datetime('now’), 25.3,
50.2, 150, 500)"); supports filtering historical
records by date range (e.g., "SELECT * FROM
environment WHERE timestamp BETWEEN
'2024-05-20' AND '2024-05-21").

e Real-time visualization: Uses QCustomPlot to
draw temperature/humidity curves (sampling
interval 1 s, cache 1000 historical points). Curves
are color-coded (red for temperature, blue for
humidity) with axis labels (X: Time, Y:
Temperature (°C) / Humidity (% RH)) and grid
lines for clarity. A table control displays the latest
10 monitoring data points (timestamp, all
parameters) with alternating row colors for
readability.

4.3.3 Remote control and alarm:

e Remote control: Provides button components
(e.g., "Turn On Air Conditioner", "Adjust Fan
Speed™) and sliders (e.g., fan speed 0-100%).
When a user clicks a button, the software
encapsulates the command into a structured
packet (e.q.,
"CMD=AC_ON,TS=20240520143000") and
sends it via USART/TCP. It receives device status
feedback (e.g., "AC_STATUS=0N") and updates
the Ul in real time.

e Parameter over-limit alarm: Compares real-
time data with user-set thresholds (e.g., temp >
28°C) every 100 ms. If exceeded, it triggers a pop-
up prompt (QMessageBox) and a 2-second sound
alarm (QSound). Users can manually close the
alarm or adjust thresholds via a settings dialog.

4.3.4 Performance optimization:

e Database write optimization: Uses batch inserts
(10 data points per transaction) to reduce 1/O
operations, improving write speed by 40% (from
5 ms/point to 3 ms/point).

e Ul rendering optimization: Updates curves and
tables in the ul thread via
QMetaObject::invokeMethod() to avoid lag,
ensuring smooth display even with 1000+ data
points.

5 Experimental simulation and
performance analysis
5.1 Experimental environment setup

To ensure reproducibility and comprehensiveness,
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experiments were conducted in two environments (lab

and simulated

real-home) with detailed

hardware/software configurations:
e Hardware platform:

(o]

Proposed system: STM32F103C8T6 core
board, @ DS18B20  (temp), SHT30
(humidity), MQ-2 (air quality), BH1750
(light), 4-channel relay module, ESP8266
(Wi-Fi), nRF52832 (Bluetooth Mesh),
12864 LCD, 4x4 keypad, PZEM-004T-
100A (power monitoring). Powered by a
DC regulated power supply (5 V/2 A, Mean
Well RD-15-5).

Comparison systems:

51 MCU System: STC89C52RC core
board, same sensor model as proposed
system, no OS, powered by 5 V/1 A supply.

Arduino System: Arduino Uno
(ATmega328P), same sensor configuration,
developed via Arduino IDE (v2.2.1),
powered by 5 V/1 A supply.

Raspberry Pi Pico System: Based on Laha
et al. [4], RP2040 core, same sensors,
MicroPython firmware, powered by 3.3 V/2
A supply.

e Calibration and measurement equipment:

(o]

High-precision  instruments:  FLUKE
8846A multimeter (accuracy +0.01%
DCV), TES-1360 thermometer/hygrometer
(accuracy +0.1°C / +1% RH), Keysight
N6705B power analyzer (accuracy +0.01
mW), Tektronix TBS1104 oscilloscope
(100 MHz bandwidth, 1 GS/s sampling
rate), Anritsu MS2720T spectrum analyzer
(to measure Wi-Fi signal strength).

e Experimental environments:

(o]

Constant temperature and humidity
Chamber: Binder MK53, temperature
range 0-50°C (control accuracy +0.1°C),
humidity range 20-80% RH (control
accuracy +1% RH). Used to test monitoring
accuracy and response time under stable
conditions.

Simulated real-home environment: 20 m2
room with:

a. Variable lighting: LED lights (100-
1000 lux, controlled via dimmer).

b. Wi-Fi interference: 2x TP-Link Archer
C7 routers (2.4 GHz/5 GHz, 50% packet
loss simulated via Wireshark).

c. Multi-device coexistence: 3%
smartphones, 1x smart TV, 1x air
conditioner (running during tests).

Used to test system stability, communication reliability,
and performance under unpredictable conditions.
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Software environment:

(e]

Embedded: Keil MDK 5.38 (ARM Compiler
v6.16), STM32CubeMX 6.9.1, FreeRTOS
v10.4.3.

Host Computer: Qt 5.14 (Qt Creator 4.11),
MinGW 7.3.0, SQLite 3.41.2, Wireshark
4.0.6 (for network analysis).
Simulation: Proteus 8.12 (for circuit
simulation), MATLAB R2023a (for data
analysis and curve plotting).

5.2 Experimental parameter settings

To control variables and ensure statistical rigor, the
following parameters were uniformly set for all

systems:

Environmental parameter monitoring range:

o Temperature: 0-50°C (5°C increments,
11 test points: 5, 10, ..., 50°C).

o Humidity: 20-80% RH (10% RH
increments, 7 test points: 20, 30, ..., 80%
RH).

o Air Quality: Simulated formaldehyde
concentration 0-500 ppm (50 ppm
increments, 11 test points: 50, 100, ...,
500 ppm).

o Light Intensity: 100-1000 lux (100 lux
increments, 10 test points: 100, 200, ...,
1000 lux).

Sampling and test duration:

o Sampling period: 1 second (uniform for
all systems).

o Continuous monitoring: 24 hours (86400
data points per parameter per system).

o Test point dwell time: 30 minutes per
point (to ensure environmental stability
before data collection).

Replication and statistical analysis:

o [Each test (accuracy, response time,
energy consumption) was repeated 20
times to account for random variation.

o Results are reported as mean * standard
deviation (SD), with 95% confidence
intervals  (Cl)  calculated  using
MATLAB's tinv function (e.g., temp
error: 0.3+ 0.1°C, 95% CI [0.26, 0.34]).

Communication conditions:

o  Wireless communication distance: 10 m
(unabstructed, lab) and 15 m (obstructed,
real-home: 2 concrete walls).

o Host computer command frequency: 1
command every 10 seconds (e.g.,
"QUERY_STATUS",

"SET _TEMP=26") to simulate real
usage.

Calibration protocol:

o All sensors were calibrated using
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standard instruments before tests:

a. Temperature: DS18B20 calibrated
against TES-1360 (50 points, 0-
50°C), calibration coefficients
stored in STM32 Flash.

b. Humidity: SHT30 calibrated
against TES-1360 (35 points, 20—
80% RH).

c. AirQuality: MQ-2 calibrated against
a standard formaldehyde gas
generator (11 points, 0-500 ppm).
5.3  System performance test

Comprehensive tests were conducted to evaluate
accuracy, response time, energy consumption, stability,
and communication reliability—addressing limitations of
existing studies that focus only on lab conditions [1, 4, 8]:

5.3.1 Monitoring accuracy test

e Method: Set target parameters in the constant
temperature and humidity chamber (e.g., 25°C,
50% RH); read standard values via TES-
1360/FLUKE 8846A, record measured values of
all systems; calculate absolute error (|Measured -
Standard|) and relative error (Absolute Error /
Standard x 100%).

e Real-Home variation test: In the simulated real-
home environment, vary temperature (10-40°C),
humidity (30-70% RH), and light (200-800 lux)
randomly over 6 hours; record error trends to
assess stability under variable conditions.

5.3.2 Response time test

e Automatic control response: In the chamber,
suddenly adjust a parameter beyond the threshold
(e.g., temp from 25°C to 30°C); use an
oscilloscope to record the time from parameter
excursion (sensor signal) to device activation
(relay contact closure).

e Remote control response: Send a command
from the host computer (e.q.,
"TURN_ON_AC"); use Wireshark to record the
time from command transmission (TCP packet)
to device response (feedback packet).

e Multitasking Response: Run 3 concurrent tasks
(sensor acquisition, data upload, relay control);
measure response time under 50% CPU load
(monitored via Keil MDK's CPU load meter).

5.3.3 Energy consumption test

e Measurement equipment: Keysight N6705B
power analyzer (sampling rate 10 Hz, test
duration 24 hours).

e Modes tested:

o Standby mode: Only core board +
communication  module  operating
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(sensors/relays off).

o Normal operation: Sensor acquisition +
data processing + device control (relays
on 50% of the time).

o Communication-only mode: Core board
+ communication module uploading data
every 500 ms.

e Module-level breakdown: Measure power
consumption of individual modules (STM32 core,
ESP8266, sensors, relays) to identify energy-
saving opportunities.

5.3.4 Stability and communication reliability test

e Multitasking stability: Run 5 concurrent tasks
(acquisition, processing, control, Wi-Fi upload,
Bluetooth Mesh upload) for 24 hours; record task
crashes, data loss, or response time degradation.

e Network congestion test: Simulate 30—70% Wi-
Fi packet loss via Wireshark; measure data
delivery rate and response time; test automatic
switch to Bluetooth Mesh.

e Real-home durability: Operate the system in the
simulated real-home environment for 72 hours;
record parameter monitoring continuity, device
control success rate, and communication
interruptions.

5.3.5 Advanced control feasibility test

e Adaptive fuzzy control simulation: In
MATLAB, implement the adaptive fuzzy control
method from [11] (Adaptive fuzzy control for
fractional-order chaotic systems) to adjust air
conditioner power based on temperature/humidity
trends; compare stability and energy efficiency
with threshold-based control.

e Neural adaptive control preliminary test:
Integrate a lightweight neural network (1 hidden
layer, 8 neurons) into the STM32 system to
predict user cooling/heating preferences (trained
on 1 week of user data); test prediction accuracy
(target: >85%).

5.4 Experimental results and analysis

5.4.1 Comparison of monitoring accuracy

The monitoring errors of the four systems under lab
and real-home conditions are shown in Table 2
(Environmental Parameter Monitoring Errors) and Figure
3 (Temperature Monitoring Error Variation) / Figure 4
(Humidity Monitoring Error Variation).

The monitoring errors of the three systems under
different parameters are shown in Table 2. The table
includes the absolute, relative, and full-scale maximum
errors for each test point, providing rich data. As shown
in the table, this system achieves minimal error across the
entire parameter range: the maximum absolute
temperature error is 0.3°C (at a 25°C test point), with a
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relative error of 1.2%, representing a 62.5% reduction
compared to the 51 MCU system (maximum error 0.8°C,
relative error 3.2%) and a 50% reduction compared to
the Arduino system (maximum error 0.6°C, relative
error 2.4%). The maximum absolute humidity error is
2% RH (at a 50% RH test point), with a relative error of
4%, representing 60% and 50% reductions, respectively,
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compared to the comparison systems. This is due to the
STM32's high-speed ADC sampling (12-bit accuracy)

and sliding average filtering algorithm, which reduces
signal noise. However, the limited sampling accuracy and

data processing capabilities of the 51 MCU (8-bit ADC)
and Arduino (10-bit ADC) result in larger errors.

Table 2: Comparison of environmental parameter monitoring errors across four systems (Lab conditions, mean + SD)

Monitoring Test Proposed 51 MCU Arduino Raspberry Pi Improvement
Parameter Point System System System Pico System Rate (STM32 vs.
(STM32) [4] Pico) (%)
Temperature 5 0.2+0.05°C | 0.7« 0.5+ 0.4 +£0.07°C/ 50.0
(°0) /4.0% 0.1°C/ 0.08°C/ 8.0%
14.0% 10.0%
25 03+0.1°C/| 08+ 0.6 £ 0.5+0.09°C/ 40.0
1.2% 0.12°C/ 0.1°C/ 2.0%
3.2% 2.4%
50 02+0.05°C | 0.7+ 0.5« 0.4+0.07°C/ 50.0
/0.4% 0.1°C/ 0.08°C/ 0.8%
1.4% 1.0%
Max Full- - 03+0.1°C/| 08+ 0.6 £ 0.5+0.09°C/ 40.0
Range Error 4.0% 0.12°C/ 0.1°C/ 8.0%
14.0% 10.0%
Humidity (% 20 1+£0.2% 4+0.5% 3+£0.4% 2.5+0.3% 60.0
RH) RH/5.0% RH/ RH/ RH/12.5%
20.0% 15.0%
50 2+0.3% 5+£0.6% 4+0.5% 2.5+0.3% 20.0
RH/ 4.0% RH/ RH/ 8.0% RH/5.0%
10.0%
80 2+0.3% 4+0.5% 3+£0.4% 2.5+0.3% 20.0
RH/2.5% RH/ RH/ RH/3.125%
5.0% 3.75%
Max Full- - 2+0.3% 5+0.6% 4+0.5% 2.5+0.3% 20.0
Range Error RH/5.0% RH/ RH/ RH /12.5%
20.0% 15.0%
Air Quality 100 6+ 1 ppm/ 28+3 22+£2 15+ 2 ppm/ 60.0
(ppm) 6.0% ppm / ppm / 15.0%
28.0% 22.0%
300 9+ 1 ppm/ 28+3 23 +£2 12+ 2 ppm/ 25.0
3.0% ppm / ppm / 4.0%
9.33% 7.67%
Max Full- - 10£1ppm/ | 30+£3 25+2 15+2 ppm/ 333
Range Error 10.0% ppm / ppm / 15.0%
50.0% 40.0%
Light (lux) 200 25+3lux/ 130+ 10 85+ 7 lux 60+ 5 lux / 583
12.5% lux / /42.5% 30.0%
65.0%
Max Full- - 30+ 3 lux/ 140+ 10 90 + 7 lux 60+ 5 lux / 50.0
Range Error 30.0% lux / /90.0% 90.0%
140.0%

Note: For each parameter, "Value / Relative Error" is
shown. Max Full-Range Error = maximum absolute error
across all test points.

Figure 3 shows a simulation of temperature
monitoring error as it changes with test points. The
horizontal axis represents the temperature test points (5-
50°C), and the vertical axis represents the absolute error
(°C). The error curve for this system remains at the bottom
and fluctuates gently (0.1-0.3°C). However, the errors for
the 51 MCU and Arduino systems fluctuate significantly,

especially between low temperatures (5°C) and room
temperatures (25°C), demonstrating the stability of this

system across various temperature environments.
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Va1r igtion of Temperature Monitoring Absolute Error with Test Po

0.9 —e— STM32 System
—=— 51 MCU System
—+— Arduino System

0.8
u§0_7
50.6
ut-lO,S

o
§0.4

203
o
<<
0.2 W
0.1
5 10 15 20 25 30 35 40 45 50
Temperature Test Point ('C)

Figure 3: Temperature monitoring error variation with test
points

Notes: (1) X-axis: Temperature test points (5-50°C); Y-
axis: Absolute error (°C). (2) Lab conditions (solid lines):
STM32 error fluctuates 0.1-0.3°C; 51 MCU/Arduino
errors fluctuate 0.5-0.8°C; Pico error 0.4-0.5°C. (3)
Real-home conditions (dashed lines): STM32 error
increases by <0.1°C (0.2-0.4°C); Pico error increases by
0.2°C (0.6-0.7°C); 51 MCU/Arduino errors increase by
0.2-0.3°C (0.7-1.1°C). (4) Error bars represent +SD
(n=20).

Figure 4 compares the humidity monitoring accuracy
of three systems, with 20%-80% RH (10% RH step) as
humidity test points on the horizontal axis and absolute
error (% RH) on the vertical axis. The blue circle-marked
curve in the figure represents the STM32 system, whose
error consistently fluctuates between 1%-2% RH. At the
critical test point of 50% RH, the error is only 2% RH,
with the error values at each point clearly displayed
through data annotations. The 51 MCU system, marked by
purple squares, has an error of 3%-5% RH, while the
Arduino system, marked by orange triangles, has an error
of 2%-4% RH. The curves show that the STM32 system
has a flatter error curve with no noticeable peaks,
demonstrating its stability across varying humidity
environments. The comparison system, however, exhibits
significantly higher errors in the low (20% RH) and
medium (50% RH) humidity ranges, highlighting the
advantages of the STM32's high-speed ADC and filtering
algorithm.

Variation of Humidity Monitoring Absolute Error with Test Points

—&— STM32 System
—— 51 MCU System
—&— Arduino System

o

(% RH)
~

w

Absolute Error
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?

20 30 40 50 &0 70
Humidity Test Point (% RH)

Figure 4: Humidity monitoring error as a function
of test points

Notes: (1) X-axis: Humidity test points (20-80% RH);
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Y-axis: Absolute error (% RH). (2) STM32 error (blue
circles) remains 1-2% RH across all points; 51 MCU
(purple squares) 3-5% RH; Arduino (orange triangles)
2-4% RH; Pico (green diamonds) 2-2.5% RH. (3) At 50%
RH (critical for comfort), STM32 error is 2 + 0.3% RH,
20% lower than Pico. (4) Error bars represent £SD
(n=20).

Key Findings:
1. Lab conditions: The proposed system achieves
the smallest errors across all parameters:
o  Temperature: Max error 0.3 £ 0.1°C, 40% lower
than the Raspberry Pi Pico system [4] (0.5 + 0.09°C),
62.5% lower than 51 MCU (0.8 = 0.12°C), and 50%
lower than Arduino (0.6 + 0.1°C).

o Humidity: Max error 2 £ 0.3%
RH, 20% lower than Pico (2.5 + 0.3% RH), 60% lower
than 51 MCU (5 £ 0.6% RH), and 50% lower than
Arduino (4 £ 0.5% RH).

o This is attributed to the STM32's 12-bit
ADC (higher sampling accuracy than Pico's 10-bit ADC)
and sliding average filtering (reduces noise by 30%
compared to Pico's simple averaging).

2.Real-Home conditions: The proposed system
maintains stability with minimal error increase:

o Temperature error increases by only 0.1°C
(from 0.3°C to 0.4°C), while the Pico system's error
increases by 0.2°C (0.5°C to 0.7°C) and Arduino's by
0.3°C (0.6°C to 0.9°C).

o This is due to the STM32's robust data
processing (36 outlier removal) and dual-mode
communication (avoids data loss from Wi-Fi
interference), which Pico/Arduino lack.

5.4.2 Comparison of response time and energy
consumption

Response time and energy consumption data (lab
and real-home) are shown in Table 3 (Response Time and
Energy Consumption) and Figure 5 (System Response
Time Bar Chart).

Table 3 shows the three systems' response time and
energy consumption data. This table also includes the
response time variations at different communication
distances and the energy consumption percentages for
various operating modes, making the data more valuable
for analysis. Regarding response time, the system's
average automatic control response time was 0.8s, and its
remote control response time was 1.0s. These are 68%
and 66.7% shorter than the 51 MCU system (2.5s and
3.0s), respectively, and 55.6% and 54.5% shorter than the
Arduino system (1.8s and 2.2s). This is due to
FreeRTOS's preemptive task scheduling mechanism
prioritizes control tasks. Furthermore, the STM32's
72MHz clock speed allows for higher instruction
execution efficiency than the 51 MCU (11.0592MHz)
and Arduino (16MHz), reducing data processing time. In
terms of energy consumption, this system consumes
30mW in standby mode and 120mW in normal operation,
for a total of 2.88Wh over 24 hours. These are 62.5%,
40%, and 40% lower than the 51 MCU system (80mW,
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200mW, and 4.8Wh), respectively, and 50%, 33.3%,
and 33.3% lower than the Arduino system (60mW,
180mW, and 4.32Wh), respectively. This energy saving is
attributed to the low static power consumption of the
LM1117-3.3 voltage regulator in hardware and the task
hibernation mechanism in FreeRTOS (which puts the core
board into STOP mode when idle, reducing power
consumption to below 10mW). The comparison system
lacks a low-power strategy, and the core modules continue
to run at high load, resulting in higher energy
consumption.

Figure 5 shows a bar chart of system impact times. The
blue color represents the STM32 system,
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with response times of 0.7-0.8s for automatic control and
approximately 1.0s for remote control. Error bars are
minimal (x0.1s), and data labels clearly indicate the
mean. The magenta color represents the 51 MCU system,
with response times of 2.4-3.0s and the longest error bars
(x0.2-0.3s). The orange color represents the Arduino
system, with response times of 1.7-2.2s. Overall, the
STM32 system exhibits the shortest response times and
the best stability of all response types, reducing over
66.7% compared to the 51 MCU and over 52% compared
to the Arduino system. This clearly demonstrates the
advantages of FreeRTOS task scheduling and high clock
speed.

Table 3: Comparison of response time and energy consumption for three types of systems

Performance Test Condition Proposed 51 Arduino | Raspberry Improvement
Indicator System MCU System Pi Pico Rate (STM32 vs.
(STM32) System System [4] Pico) (%)
Automatic Temp 0.8+0.1 25+ 1.8+0.2 1.2+0.15 333
Control 25—30°C (lab) 0.3
Response Hum 50—60% 0.7+0.1 24+ 1.7+0.2 1.1 £0.15 36.4
Time (s) RH (lab) 0.2
Real-home (var 0.9+0.1 2.8+ 2.0£0.2 1.5+£0.2 40.0
temp) 0.3
Remote Turn on AC (10 1.0£0.1 3.0+ 22+0.2 1.5+£0.2 333
Control m, lab) 0.3
Response Adjust fan (15 1.2+0.15 | 3.5+ 2.5+ 2.0+0.25 40.0
Time (s) m, obstructed) 0.4 0.25
Standby Core + 30+£2 80+3 60 +2 45+3 333
Power communication
Consumption Core (sleep) + 10£1 - (no - (no 2542 60.0
(mW) communication sleep) sleep)
(standby)
Normal Sensor + 80+3 150+4 | 1303 100 +4 20.0
Operation processing
Power + Device 120+ 4 200+ 5 180+ 4 140+ 5 143
Consumption control (relay)
(mW) + Wireless 100+ 3 180+4 | 160=+3 120+ 4 16.7
upload
24-Hour Total | Full operation 2.88+0.1 48+ 432+ 3.5+0.18 17.7
Energy 0.2 0.15
Consumption
(Wh)

Comparison of Response Time for Three Systems (with Standard Deviation)

W STHIZFI03 System
W51 MCU System
Arduino System

Auto Control
(Temperature) (Humidity) (Air Gon
Response Type

Auto Control Remote Control
dition

ing)

Remote Control
(Fan)

Figure 5: System response time
Notes: (1) X-axis: Response type (Auto Control-Temp,
Auto Control-Hum, Remote Control-AC, Remote Control-

Fan); Y-axis: Response time (s). (2) Colors: STM32
(blue), 51 MCU (magenta), Arduino (orange), Pico
(green). (3) Error bars represent £SD (n=20). (4) Key
results: STM32 auto response (0.7-0.8 s) is 33-40%
faster than Pico (1.1-1.2 s); remote response (1.0-1.2 s)
is 33-40% faster than Pico (1.5-2.0 s). (5) Real-home
response times (hatched bars) are 0.1-0.2 s longer than
lab times for STM32, but 0.3-0.5 s longer for
Pico/Arduino.

Key Findings:
1. Response time:
o Automatic control: STM32's 0.7-0.8 s (lab)
is 33.3-36.4% faster than Pico (1.1-1.2 s), 68%
faster than 51 MCU (2.4-2.5 s), and 55.6-58.8%
faster than Arduino (1.7-1.8 s). In real-home
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conditions, STM32's 0.9 s is 40% faster than
Pico's 1.5s.

o Remote control: STM32's 1.0 s (10 m lab)
is 33.3% faster than Pico's 1.5 s, 66.7% faster
than 51 MCU's 3.0 s, and 54.5% faster than
Arduino's 2.2 s. At 15 m (obstructed), STM32
switches to Bluetooth Mesh, maintaining 1.2 s
response time—while Pico/Arduino (Wi-Fi-only)
increase to 2.0-2.5s.

o Reason: FreeRTOS's preemptive
scheduling prioritizes control tasks (priority 5),
and the STM32's 72 MHz clock speed enables
faster instruction execution than Pico (133 MHz
but no RTOS), 51 MCU (11.0592 MHz), or
Arduino (16 MHz) [21].

2. Energy consumption:

o Standby: STM32's 30 £ 2 mW is
33.3% lower than Pico (45 £ 3 mW), 62.5% lower
than 51 MCU (80 = 3 mW), and 50% lower than
Arduino (60 = 2 mW). In sleep mode, STM32's 10
+ 1 mW is 60% lower than Pico's 25 £ 2 mW.

o 24-Hour total: STM32's 2.88
0.1 Wh is 17.7% lower than Pico (3.5 £ 0.18 Wh),

40% lower than 51 MCU (4.8 £ 0.2 Wh), and 33.3%

lower than Arduino (4.32 £ 0.15 Wh).

o Reason: Hardware (LM1117-3.3
low static current) and software (FreeRTOS task
hibernation, sensor power gating) work together to
reduce idle power consumption. Pico/Arduino lack
task hibernation, leading to higher standby energy
use.

5.4.3 Stability, communication
advanced control feasibility

1. Multitasking stability:

o The STM32 system ran 5 concurrent tasks for 24
hours with 0 crashes, 0.5% data loss, and response time
degradation of only 0.1 s (from 0.8 st0 0.9 s).

o The Pico system had 2 task crashes, 3% data loss,
and response time degradation of 0.4 s (1.2 sto 1.6 s) due
to no RTOS support.

o 51 MCU/Arduino had frequent data loss (10—
15%) and response time degradation of 0.8-1.0 s.

2. Communication reliability:

o Wi-Fi congestion (50% packet loss): STM32's
data delivery rate was 95% (switched to Bluetooth Mesh),
while Pico/Arduino (Wi-Fi-only) had 60-70% delivery
rate.

reliability, and

o Obstructed distance (15 m): STM32's
Bluetooth Mesh maintained 1.2 s remote response time,
while Pico/Arduino's Wi-Fi response time increased to
25-3.0s.

3. Advanced control feasibility:

o Adaptive fuzzy control simulation: MATLAB
results showed that integrating adaptive fuzzy control
(from [10]) reduced temperature fluctuations by 40%
(from £0.3°C to +0.18°C) and air conditioner energy
consumption by 15% (from 120 mW to 102 mW)
compared to threshold-based control.

o Neural adaptive control: The lightweight neural
network on STM32 achieved 87% user preference
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prediction accuracy (trained on 1 week of data),
demonstrating feasibility for adaptive control.

6 Conclusion

The STM32F103C8T6-based smart home control system
designed in this study achieves high-precision
environmental parameter monitoring, rapid device
control, and low-energy operation through a layered
hardware architecture (perception-control-
communication-application) and modular software
design (FreeRTOS task scheduling, dual-mode
communication). Comprehensive experiments in lab and
simulated real-home environments show that:

1. Monitoring accuracy: The system's maximum
temperature error is 0.3 £ 0.1°C and humidity
error is 2 £ 0.3% RH, 40% and 20% lower than
the Raspberry Pi Pico system [4], and 62.5-60%
lower than the 51 MCU system. Its 12-bit ADC
and sliding average filtering ensure stability even
under variable real-home conditions (error
increase <0.1°C).

2. Response time: Automatic control response time
is 0.7-0.8 s (lab) and 0.9 s (real-home), 33-40%
faster than Pico; remote control response time is
1.0-1.2 s, 33-40% faster than Pico. FreeRTOS's
preemptive  scheduling and dual-mode
communication (Wi-Fi + Bluetooth Mesh) enable
this performance.

3. Energy consumption: 24-hour total energy
consumption is 2.88 + 0.1 Wh, 17.7% lower than
Pico, 40% lower than 51 MCU, and 33.3% lower
than Arduino. The LM1117-3.3 regulator and
FreeRTOS task hibernation reduce standby power
to 10 mW.

4. Stability and reliability: Under multitasking and
network congestion, the system maintains 95%
data delivery rate and <I1.2 s response time,
outperforming Wi-Fi-only Pico/Arduino systems.

These results demonstrate the effectiveness of the
STM32's high clock speed, FreeRTOS task scheduling,
and low-power design. The system addresses key gaps in
existing solutions, such as limited multitasking (Pico),
high energy consumption (Arduino), and poor real-home
stability (51 MCU), meeting the demand for efficient,
energy-saving smart home devices.

6.1 Limitations

Despite its advantages, the system has three main
limitations that require further improvement:

1. Sensor range: The current sensor configuration
(temp, humidity, air quality, light) excludes
critical indoor parameters such as PM2.5 and
CO2, limiting comprehensive environmental
monitoring. Adding these sensors would require
optimizing power management to avoid
increasing energy consumption.

2. Advanced control integration:  While
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preliminary simulations show adaptive fuzzy
control [5] and neural adaptive control [6] can
improve robustness, the current system uses only
threshold-based control. Integrating these
advanced methods requires optimizing the
STM32's memory usage (64 KB Flash) to
accommodate control algorithms.

3. Security and scalability: The system lacks

secure communication (e.g., TLS encryption for
Wi-Fi/Bluetooth) and support for multi-user
access control, which are essential for real
deployment. Additionally, its maximum 8-node
Bluetooth Mesh network is insufficient for large
homes (=3 rooms).

Future work

Future research will focus on three areas to address
these limitations and enhance intelligence:

Sensor and communication expansion:

Add PM2.5 (SDSO011) and CO: (SCD30) sensors,
with low-power modes (e.g., SDS011's 10-second
sampling interval) to maintain 24-hour energy
consumption <3.0 Wh.

Integrate  LoRa (SX1278) for long-distance
communication (up to 1 km), building a tri-mode
network (Wi-Fi + Bluetooth Mesh + LoRa) to
enhance coverage in large homes. Estimated power
savings from LoRa integration: 10-15% (lower than
Wi-Fi's 80 mW transmit power).

Advanced control and Al integration:

Port adaptive fuzzy control [5] and neural adaptive
control [6] to the STM32 system, using lightweight
algorithm optimization (e.g., reducing neural
network hidden layers to 1) to fit within 64 KB Flash.
Target: Reduce temperature fluctuations by 40% and
improve user preference alignment to >90%.

Implement predictive maintenance (e.g., using
sensor data to predict relay failure) via FreeRTOS's
task scheduling, triggering alerts 1 week before
potential failures.

Security and scalability enhancement:

Add TLS 1.3 encryption for Wi-Fi/Bluetooth
communication (using mbed TLS library) and user
role  management (admin/guest) to prevent
unauthorized access.

Optimize the Bluetooth Mesh network to support
20+ nodes, with dynamic load balancing to maintain
<1.5 s response time for large homes.

By addressing these areas, the system will better
adapt to diverse smart home scenarios, providing a
more comprehensive, intelligent, and secure solution
for environmental monitoring and control.
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