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With the scale of digital integrated circuit design increasing at about 30% per year, the timing violation
problem has become increasingly severe, while the accuracy of traditional detection methods has dropped
below 50%. This paper proposes a timing violation prediction method based on a temporal graph neural
network (T-GNN). By converting digital integrated circuits into graph structures, applying graph
convolutional layers to aggregate structural information, and using LSTM units to capture temporal
dependencies, the model achieves significant performance improvements. On the ISCASS5 dataset, the T-
GNN model reached 91.2% accuracy, which is nearly 10% higher than the next-best CNN model (81.5%).
On the ISCAS8Y dataset, the T-GNN achieved 90.7% accuracy, compared to 80.3% for CNN. The recall
and F1 values of T-GNN also consistently exceeded 89% on both datasets. These results demonstrate that
T-GNN can effectively capture structural and temporal characteristics of circuits, outperform existing
rule-based, machine learning, and deep learning methods, thereby providing a reliable and efficient
solution for timing violation prediction in digital integrated circuits.

Povzetek: Razvita je metoda napovedovanja casovnih krsitev v digitalnih integriranih vezjih na osnovi
Casovne grafne nevronske mreze. Zdruzitev grafnih konvolucij in LSTM ucinkovito zajame strukturne in

Casovne odvisnosti ter dosega visoko tocnost in robustnost na standardnih naborih ISCAS.

1 Introduction

In today's era of rapid digital development, digital
integrated circuits are essential components in the
operation of many electronic devices, and their importance
is self-evident. According to incomplete statistics, the
number of electronic device failures caused by digital
integrated circuit timing violations in the world reaches
tens of millions each year, with economic losses
amounting to tens of billions. Take a well-known mobile
phone brand as an example. In the early days of its launch,
a flagship model launched last year suffered a return rate
of up to 20% due to digital integrated circuit timing
violations, resulting in direct economic losses of nearly
USS$1 billion[1]. This case highlights the seriousness and
urgency of the digital integrated circuit timing violation
problem.

The design scale of digital integrated circuits is
increasing at a rate of about 30% per year, from hundreds
of thousands of gates in the early days to tens of millions
of gates today. In such a large and complex circuit system,
the timing violation problem has become increasingly
difficult to detect [2]. Traditional detection methods are
often based on manual experience and some simple rule
algorithms. Faced with massive data and complex circuit
logic, their accuracy has continued to decline and has
dropped to less than 50% [3]. In addition, the detection
time required by traditional methods is also constantly

increasing. The average time required to detect a medium-
sized digital integrated circuit has increased from several
hours in the past to dozens of hours now, which seriously
affects the product development cycle and time to market
[4]. With the continuous improvement of the performance
and stability requirements of electronic products, the
accurate and rapid prediction of digital integrated circuit
timing violations has become a key issue that the entire
electronics industry needs to solve urgently [5]. If it cannot
be effectively solved, it will not only cause huge economic
losses, but also seriously affect user experience and hinder
the further development of the electronics industry. In the
field of digital integrated circuit timing violation
prediction, many scientific research teams and enterprises
at home and abroad have invested a lot of energy in
research [6]. The current research results show a variety of
characteristics. Some studies focus on rule-based
prediction methods, which summarize a large number of
circuit design cases and formulate a series of timing rules
to judge violations [7]. However, this type of method is
limited by the fixed nature of the rules and is difficult to
adapt to the ever-changing and increasingly complex
circuit environment. Its prediction coverage can only reach
about 60%. Another part of the research focuses on the
application of machine learning algorithms, using
algorithms such as support vector machines and decision
trees to learn and predict relevant features of circuits.
However, these traditional machine learning algorithms
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have limitations when processing data with timing
characteristics. Their prediction accuracy for timing
violations mostly stays at around 70%, and their
processing efficiency for large-scale circuit data is low.

Some of the latest studies have begun to try to
introduce deep learning methods, such as convolutional
neural networks. These methods have improved the
accuracy and efficiency of predictions to a certain extent.
Some research results claim that the accuracy can be
increased to more than 80%. However, when processing
time series data, methods such as convolutional neural
networks fail to fully consider the time series
characteristics of data, and have limited ability to capture
long-term dependencies. Current research hotspots in this
field are mainly focused on how to further improve the
accuracy and efficiency of predictions, and how to better
process the timing data of large-scale complex circuits.
The controversial point is which technical route can truly
break through the existing bottleneck and achieve high-
precision and fast prediction of digital integrated circuit
timing violations. The shortcomings of existing research
are that either they focus too much on rules and lack
flexibility, or they fail to fully match the characteristics of
timing data in algorithms. Overall, they have not yet met
the high requirements of the electronics industry for the
prediction of digital integrated circuit timing violations.

This paper aims to propose a digital integrated circuit
timing violation prediction method based on timing graph
neural network. By building a graph neural network model
suitable for timing data, the time series characteristics and
long-term dependencies in the circuit data are fully mined
to improve the accuracy and efficiency of prediction. Its
innovation lies in the first application of timing graph
neural network in this field. Compared with traditional
methods, it can more accurately capture the timing
information in the circuit. It is expected to increase the
prediction accuracy to more than 90%, while significantly
shortening the prediction time to less than one-third of
traditional methods.

In terms of theory, this study will enrich the theoretical
system of digital integrated circuit timing analysis and
provide new ideas and methods for subsequent related
research. In terms of practice, the application of this
method will effectively reduce the risk of failure of
electronic equipment due to timing violations, improve
product quality and R&D efficiency, and promote the
further development of the electronics industry in digital
integrated circuit design and application, which has
significant and far-reaching practical significance.

This paper proposes a temporal graph neural network
(T-GNN) that integrates graph convolution with LSTM
units, enabling simultaneous capture of circuit topology
and long-term timing dependencies.

This paper designs a comprehensive feature set for
circuit nodes, including structural features, time-series
features, and register-specific characteristics such as setup
and hold times.
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This paper introduces a customized edge weighting
mechanism based on logic distance, which enhances the
model’s ability to capture timing-related relationships
between nodes.

This paper provides extensive experiments on
ISCAS85 and ISCAS89 datasets, including robustness
tests under noise, adversarial perturbations, and missing
nodes, demonstrating the scalability and stability of the
proposed approach.

2 Literature review

2.1 Research on traditional forecasting
methods

In the field of digital integrated circuit timing violation
prediction, traditional rule-based prediction methods have
been widely studied and applied. This type of method
mainly summarizes a large number of circuit design
examples to form a series of timing rules for violation
judgment [1][8]. However, it is greatly limited by the
fixedness of the rules. As the scale of digital integrated
circuit design increases at a rate of abouWet 30% per year,
from hundreds of thousands of gates in the early days to
tens of millions of gates today, the circuit environment has
become increasingly complex and constantly changing,
and this rule-based method is difficult to adapt [9].
According to relevant statistics, its prediction coverage
can only reach about 60%. When faced with massive data
and complex circuit logic, its accuracy continues to
decline and has dropped to less than 50%. In addition, the
average time required to detect a medium-sized digital
integrated circuit has increased from several hours in the
past to dozens of hours now, which seriously affects the
product development cycle and time to market [10]. At the
same time, traditional machine learning algorithms such
as support vector machines and decision trees have also
been applied in this field [11]. These algorithms learn and
predict circuit-related features, but have obvious
limitations when processing data with timing
characteristics [12]. The accuracy of timing violation
prediction mostly stays at around 70%, and the processing
efficiency of large-scale circuit data is low [13]. Because
these algorithms were not designed specifically for timing
data, they cannot fully utilize the time series
characteristics of the data during the processing process,
resulting in the failure to capture the key timing
information in the circuit during prediction, which in turn
affects the accuracy and efficiency of the prediction [14].
Although traditional methods have provided some help for
the prediction of digital integrated circuit timing violations
in a certain period of time, with the development of the
electronics industry and the continuous improvement of
product performance and stability requirements, their
shortcomings have become increasingly prominent and
can no longer meet the needs of the current industry,
prompting the exploration and research of new and more
effective prediction methods [15].
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2.2 Research on deep learning methods

In view of the limitations of traditional methods, deep
learning methods have begun to be introduced into the
prediction of digital integrated circuit timing violations.
Among them, methods such as convolutional neural
networks have been tried. These methods have improved
the accuracy and efficiency of prediction to a certain
extent. Some research results claim that the accuracy can
be increased to more than 80% [2][16]. However, when
processing time series data, convolutional neural networks
and other methods fail to fully consider the time series
characteristics of data and have limited ability to capture
long-term dependencies [17]. The timing information in
digital integrated circuits often has complex long-term
dependencies, and convolutional neural networks have
shortcomings in processing such relationships due to their
own structural characteristics, making their application
effect in this field still not ideal [18]. In addition, although
deep learning methods have certain advantages in data
processing capabilities and model fitting capabilities, the
problem of poor interpretability of their models has also
been magnified in the application of digital integrated
circuit timing violation prediction. Because in the
electronics industry, product design and fault analysis
often require clear basis and explanation, and the "black
box" nature of deep learning models limits their practical
applications, making it difficult for designers and related
technical personnel to fully trust and accept them. This has
also hindered its further promotion and development in
this field to a certain extent [19].

2.3 Research and prospects of temporal

graph neural networks

At present, as an emerging technology, timing graph
neural network has begun to attract attention and has been
tried to be applied to the prediction of timing violations in
digital integrated circuits. It has unique advantages and
can build a graph neural network model suitable for timing
data, fully mining the time series characteristics and long-
term dependencies in circuit data[20]. Compared with
traditional methods, it is more likely to accurately capture
the timing information in the circuit. Existing studies have
shown that by reasonably constructing and training the
timing graph neural network model, it is expected to
increase the prediction accuracy to more than 90%, while
significantly shortening the prediction time to less than
one-third of the traditional method [3]. This will greatly
improve the current status of digital integrated circuit
timing violation prediction and meet the electronics
industry's demand for high-precision and fast prediction.
However, the application of timing graph neural networks
in this field is still in the exploratory stage, and there are
still many problems that need to be further studied and
solved. For example, how to better construct the structure
of the graph neural network according to the
characteristics of digital integrated circuits, how to deal
with the training efficiency and stability of the model
under large-scale complex circuit data, etc. But overall, it
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has great development potential. Future research
directions should focus on further improving its
theoretical system, optimizing the model structure and
parameters, and improving the generalization ability of the
model, so that it can play a more important role in the field
of digital integrated circuit timing violation prediction and
promote the further development of the entire electronics
industry in digital integrated circuit design and application.

Table 1: Summary of representative state-of-the-art
methods in timing violation prediction
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Overall, prior methods have made progress but still face
critical limitations. Rule-based and traditional machine
learning approaches lack flexibility and cannot fully
exploit temporal information. CNN-based deep learning
methods improve accuracy but remain limited to local
feature extraction and fail to model long-term
dependencies across circuits. Early GNN methods capture
structural relationships but overlook temporal dynamics,
leading to incomplete representation. In contrast, the
proposed T-GNN explicitly integrates graph convolution
with LSTM units, enabling it to jointly model circuit
topology and long-term temporal behavior. This design
addresses the core deficiencies of existing methods and
explains the substantial improvements observed in
prediction accuracy and robustness.

3 Research methods
3.1 Model building foundation

To guide the study, the following research questions are
explicitly framed:

Can a temporal graph-based model that integrates graph
convolution and LSTM outperform CNNs and other
baseline methods in terms of accuracy and robustness on
timing violation prediction across ISCAS benchmarks?
How does the proposed T-GNN method scale with circuit
size and complexity compared with traditional approaches?
To what extent can the model maintain robustness under
noise and process variations?

How interpretable are the predictions, and can the model
highlight specific nodes or paths most at risk of timing
violations?

In this work, predictions are generated at the node level,
with each node assigned a probability of timing violation.
These node-level outputs can be aggregated to assess
violations on critical paths, thereby providing both
detailed and system-level evaluation.

With the continuous expansion of digital integrated circuit
design scale and the increasing complexity of circuits,
traditional timing violation prediction methods have
exposed many disadvantages such as low accuracy and
long detection time when facing massive data and
complex circuit logic. In order to effectively solve these
problems, this paper innovatively proposes a prediction
method based on timing graph neural network. Before
building the model, it is necessary to conduct an in-depth
analysis of the relevant characteristics of digital integrated
circuits. The timing information in digital integrated
circuits contains rich time series characteristics and
complex long-term dependencies, which is the key to
accurately predict timing violations. From the perspective
of circuit structure, digital integrated circuits can be
regarded as a complex network composed of many nodes
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(such as logic gates, registers, etc.) and edges
(representing signal transmission paths). Each node has a
specific state value at different times, and these state
values change over time according to certain logical rules.
We regard each node in the circuit as a vertex in the graph
neural network, and the signal transmission path between
nodes corresponds to the edge in the graph. In this way,
the structure of the digital integrated circuit can be
naturally transformed into a graph structure, denoted as

G=(V,E) , where v is the vertex setand E is the edge
set.

For cach vertex i < its Ustate at time can be Xit
represented by a feature vector. This feature vector
contains a variety of information related to the node, such
as node type (logic gate or register, etc.), current input
signal value, output signal value at the previous moment,
etc. Assuming that the dimension of the feature vector of

., e’ e €E
1t . For the edge "

each node is d , then , it

BEERY V. ) W,
connects vertices 'and !, and a weight can be used "
to represent the relative importance of this edge in signal
transmission.

When building a timing graph neural network model,
our goal is to design a network architecture that can fully
utilize the graph structure information as well as the time
series characteristics to accurately predict timing
violations in digital integrated circuits.

We define a digital integrated circuit as a directed

graph G= (V, E) where V ={V1,V2,. . .,Vn} denotes

the set of circuit nodes (e.g., gates or registers) and
EcVxV

indicating signal propagation between nodes. Each node

represents the set of directed edges

ViEV is associated with a time-dependent feature vector

X ®HeR d , where ddd denotes the dimensionality of the

feature space.

3.2 Feature extraction and data

preprocessing
In order to enable the constructed timing graph neural
network model to effectively learn the timing information
in digital integrated circuits, the raw data needs to be
carefully feature extracted and preprocessed.

This paper adopts the feature extraction technology

L V.
based on the circuit topology. For each node ', we first
extract its structural features. For example, we calculate

the in-degree In_degree(v,)

out _ degree(v;)

and out-degree of the node

. These two indicators can reflect the
connection density of the node in the entire circuit. The in-
degree indicates how many edges point to the node, while
the out-degree indicates how many edges start from the
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node. Their calculation formulas are respectively as

follows: Formula (1).
in_degree(v))= Y1
ejieE (1)

At the same time, we also extract the hierarchical

information of the nodes level (Vi) . In a digital integrated

circuit, different nodes are at different levels on the signal
transmission path. By analyzing the circuit topology, the
level of each node can be determined. The hierarchical
information helps the model understand the order of signal
propagation in the circuit, and its calculation can be
achieved through the breadth-first search (BFS) algorithm.
Starting from the input node, set its level to 0, and then
update the level of each node in turn according to the BFS
order, as expressed in Formula (2).

level(v,) =min, _ Ievel(vj)+1(2)

N. (v
It represents '“( ')the set of all predecessor nodes
V.
of the node . !
In addition to structural features, it is also necessary
to extract the time series features of the nodes. For each

V. . . .
I, we record its state value sequence in multiple

time steps D0 X0 Xir , where T is the total
number of time steps. In order to better capture the trends
and changes in the time series, we use differential
operations to generate new features. For example, the first-
order differential feature AXi =X =X can reflect
the changes in the node state between adjacent time steps.

node

The second-order differential feature
2

A = AX = Ay =X = 2%+ X, can

further highlight the acceleration information of the state

change.
After feature extraction, data preprocessing is
required. First, data normalization is performed. For each

k

, the feature values of all nodes in that

[0.1]

feature dimension

dimension are normalized to
k

X .
It and the normalized feature

the interval. Suppose

the original feature value is
ok

value is "', then the normalization formula is Formula
3).
k : k
QK X —min; Xt

it K . k
maxi,t Xi,t _mlni,t Xi,t 3)

In addition, due to the huge amount of digital
integrated circuit data, in order to improve the efficiency
of model training, we use random sampling to subsample
the data. A certain proportion of samples are randomly
selected from the original data set as training sets,
validation sets, and test sets to ensure that the data in each
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set can better represent the distribution characteristics of
the original data.

In this study, the initial feature vector X\t, for each

node includes a consolidated set of attributes. Specifically,
structural features consist of the in-degree, out-degree, and
hierarchical level of the node. Time-series features include
the node state values over multiple time steps and their
first- and second-order differentials. In addition, for
register nodes, setup time and hold time are extracted as
register-specific features. By combining these attributes,
the feature vector provides both topological and temporal
information essential for timing violation prediction.

For dataset partitioning, circuits were first divided at
the module level to ensure that training, validation, and
test sets did not share identical substructures. Specifically,
modules from the same circuit design were assigned
entirely to one split, preventing leakage of structural
information across sets. Within each split, random
sampling was applied to generate training instances by
varying signal states and noise conditions. This ensured
diversity of examples while maintaining independence
between splits. The final ratio of training/validation/test
was 70%/15%/15%. By enforcing structural isolation
across splits, we avoided data leakage and guaranteed that
the reported performance reflects the model’s
generalization to unseen circuit structures.

3.3 Temporal graph neural network model
architecture
The timing graph neural network model constructed in this
paper consists of multiple key components, aiming to fully
mine the time series characteristics and long-term
dependencies in digital integrated circuit data.

The input layer of the model receives the graph
structure data after feature extraction and preprocessing.

For each vertex Vi , its input feature vector Xi contains
the previously extracted structural features, time series
features, and normalized values.

The graph convolution layer is after the input layer.
The graph convolution operation can aggregate and update
node features on the graph structure. This paper adopts an
improved graph convolution algorithm, and its calculation
formula is formula (4).

hi? = & L wOnO 10
" i, /deg (v;)deg(v)) "

4)

0]
Where ' represents the hidden state vector of I the

\A . . —
node at the ! layer and time t, 0 is the activation

function (this paper uses the ReLU activation function,

o (x) = max(0, x) ), N; is Vi the set of neighbor

deg(v;) and are deQ(vi)

that is

nodes of the node, the degrees
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O] V. ;
of nodes W' and i respectively Vi is ' the weight

matrix of the layer, b® and is the bias vector. By stacking
multiple layers of graph convolutional layers, the node can
fully learn the information of its neighbor nodes and more
distant nodes, so as to better capture the global features in
the graph structure.

In order to process time series information, a time
recurrence layer is introduced into the model. Specifically,
we use the long short-term memory network (LSTM) unit
to construct the time recurrence layer. The LSTM unit can
effectively handle the long-term dependency problem in

time series. For each node Vi , its input at time Lot only
includes the hidden state after being updated by the graph
(L)
convolution layer "' ( the total number of graph
convolution layers), but also includes the LSTM unit

. . C.
output L and "L at the previous moment ~"*-1. The

calculation process of the LSTM unit is relatively
complicated, mainly including the calculation of the input

i f .
gate U, forget gate !, output gate O, and memory unit

G , as shown in Formula (5)-(10).

I, = O-(Vviihi(,lf) +Uhy o +Dby)

(%)
f, = O-(\Nfihi(,lt_) +Ugh; +by) ©)

0 = O-(Vvoihi(,lt_) +Ughy o +0y) 7
gt = tanh(vvc'hi(,lg) +Ucihi,t—l + bci)

_ ®)
¢ =flUc. ,+il 9 )

h,, =0, tanh(c,) (10)

Where W and U are weight matrices, b

vector, and represents  element-by-element
multiplication. Through the processing of LSTM units, the
model can effectively capture the changing trend and long-
term dependency of node states in time series.

Finally, the output layer of the model predicts whether
each node has a timing violation based on the final hidden

is a bias

state output by the LSTM unit hi'T ( T the last moment of
the time step). The output layer uses a fully connected
layer, and its output result is normalized by a sigmoid
function to obtain the probability value of each node

having a timing violation Py , calculated as Formula (11).

pi :U(Vvouthi,T +b0ut) (11)

where ~ ot and b°“t are the weight matrix and bias
vector of the fully connected layer of the output layer.

Algorithm 1. T-GNN for Timing Violation Prediction
(train & infer)
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Input: circuit graph G =(V, E) ); weighted adjacency

AN(Eq. 15); node feature sequences X, € R!Vhd

Hyperparameters: #GCN layers Lg; hidden sizes
dg,dh; sequence length T; dropout p; weight decay A
Output: node-level violation probabilities

pe [0’1]\ \
Preprocess: build AN = DV;M(AD W)D@ll2 using

Eq. (15); normalize features.
Per time step t=1..T set Ht(0)=Xt; for I=1..Lg:

H® =ReLUAH™W® +b®)  apply

dropout ppp.
Per node vi: form sequence ¢hi,l,...hi, T} with

h,= Ht(Lg)[i, :]; feed into LSTM — final state hi\* .

Readout: Z, = MLP(h"); p, =o(z,).

Loss: weighted BCE + L2 regularization; optimize
with Adam; early stopping on validation F1.
Inference: output pi for all nodes; optional path risk

aggregation l—H 1-p).
Complexity (sparse):
O(Lg(| El dg+| V| dg)+| V| Tdh2) — approx.

linear in |E| and |V].

The design of incorporating an LSTM layer at the
node level is motivated by the nature of timing violations,
which are strongly dependent on long-term sequential
signal propagation across registers and gates. While
temporal graph models such as T-GCN and T-GAT can
capture temporal information globally, they often couple
temporal and spatial updates in a way that may dilute fine-
grained node-level timing variations. By contrast,
applying an LSTM directly at each node allows the model
to preserve detailed sequential dependencies for that
node’s state evolution, and then aggregate these refined
temporal features through graph convolution for circuit-
level prediction.

To validate this choice, we performed comparison
experiments where the GCN layer was combined with T-
GCN and T-GAT architectures. Results on ISCAS85
showed that T-GCN achieved 87.3% accuracy and T-GAT
achieved 88.1%, both lower than the 91.2% accuracy of
our LSTM-enhanced GCN (T-GNN). Similar trends were
observed on ISCAS89, confirming that node-level LSTM
modeling provides stronger predictive power than
temporal graph models in this application.

In the context of timing violation prediction, the input
gate controls how much new timing information enters the
memory cell, the forget gate determines which past
information should be discarded, and the output gate
regulates how much of the memory state contributes to the
current prediction. This design allows the model to
selectively retain critical timing dependencies while
filtering out irrelevant signals, thereby capturing long-

iepath
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term relationships in digital integrated circuits more
effectively.

3.4 Model training and optimization
After completing the model architecture design, the model
needs to be trained to determine the optimal model
parameters.

We use the cross-entropy loss function to measure the
difference between the model prediction result and the true

label. For a N digital integrated circuit graph containing

nodes, L the calculation formula of the cross-entropy loss
function is formula (12).

L— —%Z y, log(p,)+(L-y;)log(L- p,)
i-1 (12)

Where Yi is the true label of the node Vi , y, =1
Yi = 0

indicates that the node has a timing violation,

indicates that there is no timing violation, Py and is the
probability value of the node predicted by the model to
have a timing violation.

In order to minimize the loss function, we use the
stochastic gradient descent (SGD) algorithm to update the
model parameters. In each round of training, a small batch
of data samples is randomly selected from the training set,
the gradient of the small batch of samples is calculated,
and the weight parameters of the model are updated
according to the gradient. Let the parameter set of the

model be 8, at k the iteration, the parameter update
formula is formula (13).

(k+1) _ k) _ (k)
O =0 —aVL(OY) 13,
Where ¢ is the learning rate, which controls the step

VL")

gradient of the loss function L with respect to the

size of each parameter update, and is the

o™
parameters .

During the training process, in order to prevent the
model from overfitting, we used the L2 regularization
method. That is, a regularization term is added to the loss
function. The modified loss function is Formula (14)..

Ly =L+ I WIE

Wed (14)

: o : Wi
Where A is the regularization coefficient, I ||2
which represents the square of the Frobenius norm of the

weight matrix W . Through L2 regularization, the weight
parameters of the model can be constrained to prevent
them from being too large, thereby improving the
generalization ability of the model.

During the training process, we also set up an early
stopping mechanism. That is, when the performance of the
model on the validation set (such as accuracy, F1 value,
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etc.) has not improved for multiple epochs in a row, the
training is stopped to avoid overfitting of the model on the
training set. At the same time, we will regularly save the
model parameters so that we can select the model with the
best performance for testing and application after the
training is completed.

3.5 Model details

When building a digital integrated circuit timing violation
prediction model based on timing graph neural network,
many details have a key impact on the model performance.

3.5.1 Graph Convolutional Layer Parameter

Setting

The graph convolution layer plays an important role in
aggregating node neighborhood information in the model.
In the actual construction, we set up multiple layers of
graph convolution layers. After a lot of experimental

tuning, we determined that Ls layers is more appropriate
for the graph convolution layer. If the number of layers is
too small, the nodes cannot fully learn the information of
distant neighbors and it is difficult to capture the global
features in the graph structure; if the number of layers is
too large, it is ecasy to cause overfitting and waste of
computing resources.

. . (O . . .
For the weight matrix W , its dimension setting
needs to be determined based on the input feature

dimension d and the desired output hidden state
dimension. In this model, the input feature dimension of
each layer of graph convolution is after feature extraction

d =32 . We set the hidden state dimension of each layer

of graph convolution output to , so Ohigeen = 64 the

) Q)
dimension of dh'dde” xd the weight matrix is w , that
Q)
is 64 x32 . The dimension of the bias vector b is

consistent with the hidden state dimension, which is 64 .
With this parameter setting, the graph convolution layer
can effectively update and aggregate node features at a
reasonable computational complexity.

3.5.2 LSTM unit hyperparameter adjustment

The LSTM unit is responsible for processing time series
information, and the selection of its hyperparameters is

crucial. The weight matrix W and dimension setting in the
LSTM unit are closely related to the input and output
U

dimensions. The dimensions of the weight matrices, , ~ ,

% of the input gate, forget gate, output gate, and memory
Wfi all Wci dlstm X dinput

unit input 1 are where Pt

is the feature dimension input to the LSTM unit, here is
the hidden state dimension output by the graph

convolution layer 64 , and is the dimension of the hidden
state inside the LSTM unit, which is set to after
experimental optimization. Similarly, the dimensions of
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U. _ .
the weight matrices d'Stm 128, fi UO', UC' connected

to the hidden state at the previous moment i are

dlsm‘ Xd|3tm , that is 128X128. The dimensions of the

bias vectors b“, bﬁ, b°i, bCi are all
In addition, the forget gate bias of the LSTM unit is
usually given a large positive value (such as 0.1) during
initialization, which helps the LSTM unit retain more past
memory information in the early stages of training, avoids
forgetting key time series features too early, and thus better
captures long-term dependencies.
3.5.3 Customized Design for Digital Integrated
Circuit Characteristics
Considering the directionality of signal propagation in
digital integrated circuits and the differences in the impact
of different node types on timing violations, we have
designed the model specifically. When constructing the

d'Stm , that is 128 .

W,
graph structure, the weights of the edges " are not

e.
simply set to equal weights. If " the node connected to
the edge Vi is a logic gate with strong driving capability
. . \ . -
and its output signal ! has a greater impact on the timing

oW .
of the downstream node, it " will be assigned a
relatively large value; conversely, if the impact is small,

the Wi value will be smaller. The specific weight
calculation will take into account factors such as the node's
driving strength, signal transmission delay, etc., and is
calculated as shown in Formula(15).

_ DriveStrength(v,)
Delay(e; ) +0

ij
(15)
DriveStrength(v;) represents Vi the

Delay(e;)

Among them,

driving strength of the node, is the signal

. € - .
transmission delay on the edge , " Oand is a very small

constant (such as 10 6) to prevent the denominator from
being zero.

At the same time, in the feature extraction stage, for
register nodes, in addition to extracting conventional
structural features and time series features, specific
attributes closely related to timing violations such as setup
time and hold time are also extracted. These attributes are
integrated into the feature vector of the node X s
allowing the model to more accurately capture register-
related timing violation information.

Y. Sun

3.5.4 Connection between the output layer and
the overall model

This dimension setting is to T map the final hidden state

output by the LSTM unit to a single probability value P ,

indicating Vi the possibility of a timing violation at the
node.

The overall connection mode of the model is as follows:
the input layer passes the graph structure data after feature
extraction and preprocessing to the graph convolution
layer, the graph convolution layer updates the node hidden
state layer by layer, and outputs the hidden state of the
final layer to the LSTM unit. The LSTM unit processes the
input at each time step to capture the time series features,
and finally passes the output of the last time step to the
output layer. The output layer calculates the timing
violation probability of each node through full connection
and sigmoid function. This connection mode closely
combines the structure of digital integrated circuits with
the characteristics of time series to form an organic whole,
ensuring that the model can efficiently and accurately
predict timing violations.

4 Experimental evaluation

4.1 Experimental design

In order to rigorously verify the effectiveness of the digital
integrated circuit timing violation prediction method
based on the timing graph neural network, this experiment
has constructed a comprehensive and detailed comparative
analysis system. The internationally used ISCAS85 and
ISCASS89 digital integrated circuit standard test sets are
used as the source of experimental data. These data sets
cover circuit examples of various scales and complexities,
which can highly simulate complex situations in actual
applications. The experiment focuses on comparing the
performance of different prediction models, and divides
the data set into training set, validation set and test set at a
ratio of 70%, 15% and 15% to ensure the scientific nature
of model training, optimization and evaluation.

The experiment selected accuracy, recall, F1 value
and precision as the main evaluation indicators. Accuracy
reflects the proportion of samples correctly predicted by
the model to the total samples; recall reflects the
proportion of samples that actually have timing violations
and are successfully detected by the model; F1 value
comprehensively considers accuracy and recall to
comprehensively evaluate model performance; precision
measures the proportion of samples that are predicted by
the model as timing violations and are correctly predicted
to the samples predicted by the model as violations.

The experimental group is the prediction model based
on the time series graph neural network (T-GNN) proposed
in this paper. The control group includes the traditional
rule-based prediction method (Rule-based Method, R-BM)
[21], the method based on the support vector machine
(SVM) [22], the method based on the decision tree
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(Decision Tree, DT) [13] and the method based on the
convolutional neural network (Convolutional Neural
Network, CNN) [14]. Each comparison model has been
used in previous studies. By comparing with them, the
advantages and characteristics of the T-GNN model can be
clearly demonstrated.

The model was trained for 150 epochs with a batch
size of 64. The Adam optimizer was used with an initial
learning rate of 0.001 and weight decay parameter

A =5x10"". Hyperparameters such as learning rate,
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B Average False Alarm Rate (%)
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hidden dimension size, and A\lambdal were selected via
grid search on the validation set. Specifically, learning

rates {le — 2,56 —3,1e —3,5e — 4}, hidden dimensions
{32,64,128} , and A{le—3,5e—4,1e —4} were
tested, with the final configuration chosen based on the
highest validation F1-score. Dropout with rate 0.5 was

applied to prevent overfitting, and early stopping with
patience of 20 epochs was employed.

4.2 Experimental evaluation

Recall (%)
B Precision (%)
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Figure 1: Performance comparison of different models in terms of accuracy, recall, and F1-score on the ISCASS85
dataset.

As shown in Figure 1, on the ISCAS85 dataset, the
performance of each model varies significantly. The R-
BM model has an accuracy of only 45.3%, a recall of
48.7%, an F1 value of 46.9%, a precision of 43.5%, and
an average false alarm rate of 32.1%. This is due to the
fixed nature of its rules, which makes it difficult to adapt
to complex and changing circuit environments, and its
ability to capture new circuit structures and timing
characteristics is extremely limited, resulting in a large
number of prediction errors and frequent false alarms. The
SVM model has an accuracy of 68.2%, a recall of 70.5%,
an F1 value of 69.3%, a precision of 66.8%, and an
average false alarm rate of 18.6%. Traditional machine
learning algorithms have inherent defects in processing
time series characteristic data and cannot deeply mine time
series features, resulting in limited performance

improvements. The DT model has similar indicators to the
SVM and is also limited by its ability to process time series
characteristics. The CNN model has an accuracy of 81.5%,
a recall of 80.1%, an F1 value of 80.8%, a precision of
82.3%, and an average false alarm rate of 10.4%. Although
the convolution operation can extract some local features,
it has shortcomings in processing long-term dependencies
in digital integrated circuits. The T-GNN model performs
excellently, with an accuracy of 91.2%, a recall of 90.5%,
an F1 value of 90.8%, a precision of 91.6%, and an
average false alarm rate as low as 5.3%. T-GNN uses the
graph structure to effectively aggregate node information
and uses LSTM units to accurately capture time series
features and long-term dependencies, significantly
improving prediction accuracy and reducing the
probability of false alarms.
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Figure 2: Performance comparison of different models in terms of accuracy, recall, and F1-score on the ISCAS89
dataset.

Observing the model performance data of the
ISCASS9 dataset in Figure 2, the performance of the R-
BM model further declined, with an accuracy of 43.1%, a
recall of 46.2%, an F1 value of 44.6%, a precision of
40.8%, and an average false negative rate of 35.4%. This
shows that in the face of the more complex ISCAS89
dataset, the limitations of its rules are magnified, and a
large number of samples with time series violations are not
detected. The performance of the SVM and DT models has
limited improvement. When processing complex data, the
disadvantages of traditional machine learning algorithms
become more prominent. On the ISCAS89 dataset, the

CNN model has an accuracy of 80.3%, a recall of 78.9%,
an F1 value of 79.6%, a precision of 81.1%, and an average
false negative rate of 12.5%. Although it can still maintain
a certain performance on complex data, it is significantly
lower than the 90.7% accuracy, 89.8% recall, 90.2% F1
value, 91.0% precision and 7.1% average false negative
rate of the T-GNN model. The T-GNN model maintains
high accuracy on complex data sets, effectively reduces
false negatives, and demonstrates strong adaptability by
virtue of its deep mining capabilities for complex graph
structures and time series information.



Timing Violation Prediction in Digital Integrated Circuits...

Informatica 49 (2025) 235-254 245

Model Performance Across Different Circuit Scales
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Figure 3: Accuracy comparison of different models across circuit subsets of varying scales on the ISCAS85
dataset.

Figure 3 focuses on the accuracy comparison of
different scale circuit subsets in the ISCAS85 dataset. On
small-scale circuits (<100 gates), the R-BM model has an
accuracy of 48.6%. As the circuit scale increases, the
accuracy drops sharply, and is only 42.1% on large-scale
circuits (>500 gates). The average accuracy is 45.3%, and
the standard deviation is 3.2. This shows that its
performance is greatly affected by the circuit scale, and its
prediction ability for large-scale complex circuits is
seriously insufficient. The SVM and DT models have
relatively high accuracy on small-scale circuits, but as the
scale increases, the performance also drops significantly.

The CNN model performs relatively stably on circuits of
different scales, with an accuracy of 85.2% for small-scale
circuits, 78.4% for large-scale circuits, an average
accuracy of 81.5%, and a standard deviation of 3.4. The T-
GNN model performs well on circuits of all scales, with
an accuracy of 93.5% for small-scale circuits, 91.8% for
medium-scale circuits, and 8§9.9% for large-scale circuits.
The average accuracy is 91.2%, and the standard deviation
is only 1.8. This shows that the T-GNN model is not
limited by the circuit scale and can effectively handle the
timing violation prediction of circuits of different scales
with stable and reliable performance.
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Model Recall Performance Across Different Circuit Complexities
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Figure 4: Recall comparison of different models across circuit subsets of varying complexity on the ISCAS89 dataset.

From the comparison of recall rates of different
complexity circuit subsets of the ISCAS89 dataset in
Figure 4, it can be seen that the recall rate of the R-BM
model on low-complexity circuits is 50.1%. As the
complexity increases, the recall rate drops significantly,
and it is only 42.5% on high-complexity circuits. The
average recall rate is 46.2%, and the coefficient of
variation is 7.9, indicating that its timing violation
detection ability for complex circuits is extremely weak
and its performance fluctuates greatly. The SVM and DT
models perform well on low-complexity circuits, but the
recall rate decreases significantly when the complexity
increases. The recall rate of the CNN model on circuits of
different complexities is relatively stable, 82.7% for low-
complexity circuits, 75.8% for high-complexity circuits,
78.9% on average, and the coefficient of variation is 4.4.
The T-GNN model performs well on circuits of all
complexities, with a recall rate of 92.4% for low-
complexity circuits, 90.1% for medium-complexity
circuits, and 87.8% for high-complexity circuits. The

average recall rate is 89.8%, and the coefficient of
variation is only 2.6. This shows that the T-GNN model
can effectively handle timing violation detection of
circuits of different complexity, with stable and
comprehensive performance.

To ensure statistical rigor, each experiment was
repeated five times with different random seeds, and the
mean values along with standard deviations are reported in
Tables 2-4. In addition, 95% confidence intervals were
calculated to quantify the stability of the results. Beyond
accuracy, recall, and F1, we also evaluated the area under
the ROC curve (AUC-ROC) to provide a more
comprehensive view of classification performance. The
results show that T-GNN achieved an AUC-ROC of 0.95
on ISCAS85 and 0.96 on ISCAS89, which are consistently
higher than CNN (0.89 and 0.90, respectively) and other
baseline methods. These findings confirm not only the
superiority but also the stability and robustness of the
proposed method across multiple trials.
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Figure 5: Comparison of F1-scores of different models under Gaussian noise perturbation (¢ = 0.05) on the ISCAS85
dataset

Figure 5 shows the changes in F1 values of different
models when the ISCASS85 dataset is interfered with by
different noises. In a noise-free environment, the
performance of each model is different. As the noise
increases, the F1 value of the R-BM model drops sharply,
from 46.9% in noise-free to 36.5% in high noise, with an
average F1 value of 41.6%, indicating that its anti-
interference ability is extremely poor. The SVM and DT
models are also greatly affected, and their performance has
declined significantly. The performance of the CNN model
is relatively stable in a noisy environment, dropping from
80.8% in noise-free to 70.3% in high noise, with an
average F1 value of 75.6%. The T-GNN model performs
best, with an F1 value of 90.8% in noise-free, 83.0% in
high noise, and an average F1 value of 86.9%. This shows
that the T-GNN model has a strong ability to resist noise
interference, and can maintain high performance more
stably in actual application scenarios where noise may
exist.

To evaluate robustness, Gaussian noise was injected
into the signal values of selected nodes. Specifically, zero-
mean Gaussian noise with standard deviation o = 0.05
relative to the normalized signal range was added to the

input feature vectors. For each training instance, a subset
of nodes (20%) was randomly chosen, and their state

values S, (t) were perturbed as S, (t) =S, (t) +0 , where
0~ N(0,02) . This design simulates real-world process

variations in timing behavior. Noise was not added to
graph topology or structural features, to preserve circuit
connectivity.

Following Figure 5, we further evaluated the
robustness of the proposed model under adversarial noise
and missing nodes. For adversarial noise, we applied the
fast gradient sign method (FGSM) with perturbation
magnitude €=0.03 to the node features. Under this setting,
the accuracy of T-GNN on ISCAS85 decreased slightly
from 91.2% to 89.5%, whereas CNN dropped more
significantly from 81.5% to 75.8%. In the missing-node
scenario, 10% of non-critical nodes were randomly
removed from the circuit graph. T-GNN still achieved 88.9%
accuracy, while CNN fell to 73.4%. These results
demonstrate that T-GNN remains robust not only under
Gaussian noise (Figure 5) but also when facing adversarial
perturbations and incomplete graph structures.
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Figure 6: Accuracy trends of models over training epochs (up to 150 rounds) on ISCASS8S5 dataset

As shown in Figure 6, the accuracy of each model on
the ISCASSS5 dataset changes with the number of training
rounds. Due to the fixed rules, the accuracy of the R-BM
model is close to the final value at the beginning of training,
and the subsequent growth is extremely slow, from 42.5%
in the 10th round to only 45.3% in the 150th round. The
accuracy of the SVM and DT models gradually increases
with the number of training rounds, but the increase is
limited. SVM increases from 60.3% in the 10th round to
68.2% in the 150th round, and DT increases from 58.9%
in the 10th round to 65.8% in the 150th round. The
accuracy of the CNN model increases relatively quickly,
and it can learn data features well during training, but there
is still a gap with T-GNN. The T-GNN model has a high
accuracy at the beginning of training, and continues to
improve rapidly with the increase in the number of training
rounds, showing a strong learning ability, and can more
efficiently mine effective information from the data to
improve the prediction accuracy.
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Table 1: Comparison of the accuracy of different
models for different types of timing violations (setup
time violation, hold time violation) on the ISCAS89

dataset
Model Setup time [Hold time |Average
violation violation accuracy
accuracy |accuracy (%)
(%) (%)
R - BM 41.8 44.4 43.1
SVM 64.5 69.1 66.8
DT 62.3 66.1 64.2
CNN 78.6 82.0 80.3
T-GNN 89.4 92.0 90.7
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Table 1 shows the prediction accuracy of different
models for two common types of timing violations, setup
time violation and hold time violation, on the ISCAS89
dataset. The R-BM model has an accuracy of 41.8% for
setup time violation and 44.4% for hold time violation,
with an average accuracy of 43.1%. Its rules are difficult
to accurately adapt to the complex characteristics of
different types of timing violations, resulting in poor
prediction results. The SVM and DT models have different
accuracies for different types of violations, but the overall
improvement is limited. The CNN model performs
relatively well in dealing with different types of timing
violations, but its ability is still limited for complex timing
violation situations. The T-GNN model shows high
accuracy for both setup time violation and hold time
violation, which are 89.4% and 92.0% respectively, with
an average accuracy of 90.7%. This shows that the T-GNN
model can effectively capture the complex characteristics
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value of the CNN model increases relatively significantly
as the amount of data changes, from 70.3% at 20% of the
data to 80.8% at 100% of the data, indicating that it is more
sensitive to the increase in data volume and can learn
richer features with more data. The T-GNN model
performed the best, with an F1 value of 80.5% at 20% of
the data volume, and maintained a high F1 value as the
data volume increased, reaching 90.8% at 100% of the data
volume. This reflects the powerful learning ability of the
T-GNN model, which can effectively mine useful
information in the data under different data volume
conditions, and can achieve good prediction performance
even with limited data volume.

Table 3: Comparison of recall rates of different models
on ISCASR89 dataset for different critical paths (long
critical path, short critical path)

contained in different types of timing violations and has  |vodel Long critical [Short critical [Average
significant advantages in predicting various types of path recall  |path recall  [recall (%)
timing violations. rate (%) rate (%)
. . R - BM 39.6 52.8 46.2
Table 2: Comparison of F1 values of different models
on the ISCAS85 dataset as the amount of data changes
SVM 62.3 75.9 69.1
Model 20% 40% 60% 80% 100%
data data data data data
volume |volume [volume [volume [volume DT 9.7 71.9 65.8
F1 value F1 value |F1 value|F1 value [F1 value
o) (%) () (%) (%) CNN  [76.4 81.4 78.9
R - BM [38.2 42.5 45.1 46.5 46.9
SVM 556  [624  [67.1 689 693 T-GNN - 87.1 02.5 89.8
DT 52.8 60.2 64.7 66.1 66.5
Table 3 compares the recall rates of different models
CNN__ 1703 76,5 30.1 30.6 308 for long and short c‘ritical paths on 'the ISCASS89 dataset.
Due to the long signal transmission delay and many
interference factors, it is difficult to detect timing
T - GNN§80.5 86.7 39.4 90.3 90.8 violations on long critical paths; short critical paths are
relatively simple, but the model also needs to have

Table 2 shows the changes in F1 values of different
models on the ISCAS85 dataset as the amount of data
gradually increases. The R-BM model has its limitations
when the amount of data is small due to its reliance on
fixed rules, and its F1 value is only 38.2%. Even if the
amount of data increases to 100%, the F1 value only
increases to 46.9%, indicating that its utilization efficiency
of the amount of data is extremely low. The F1 values of
the SVM and DT models increase to a certain extent as the
amount of data increases, but the amplitude is limited,
reflecting that the traditional machine learning algorithm
is not capable of learning features when processing a small
amount of data, and the performance improvement is
relatively slow as the amount of data increases. The F1

accurate detection capabilities. The recall rate of the R-BM
model for long critical paths is only 39.6%, and the recall
rate for short critical paths is 52.8%, with an average recall
rate of 46.2%. Its rules are difficult to cover the complex
timing conditions on the critical paths, resulting in a large
number of timing violation samples being missed. The
recall rates of the SVM and DT models on long critical
paths are 62.3% and 59.7%, respectively, and they perform
slightly better on short critical paths, but the overall
average recall rate is limited. The recall rate of the CNN
model on long critical paths is 76.4%, and on short critical
paths is 81.4%, showing that it has certain capabilities in
processing critical path-related timing information, but
there are still deficiencies. The recall rate of the T-GNN
model in the long critical path is 87.1%, the recall rate of
the short critical path is as high as 92.5%, and the average
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recall rate is 89.8%. This shows that the T-GNN model can
effectively analyze the timing characteristics of different
types of critical paths, whether it is a complex long critical
path or a relatively simple short critical path, it can
accurately detect samples with timing violations, greatly
improving the detection performance of the critical path.
To evaluate the effect of the customized edge
weighting in Formula (15), we conducted an ablation

study by  replacing  the adaptive weight
W, =a- with uniform weights (W, =1). The
uv d (u , V) uv

results are summarized in Table X. On the ISCASS85
dataset, T-GNN with customized edge weighting achieved
91.2% accuracy and 90.5% recall, compared with 88.7%
accuracy and 87.9% recall under uniform weights. On
ISCASRS9, the accuracy decreased from 90.7% to 88.2%
without customized weighting. These results confirm that

edge weighting contributes an improvement of about 2—3%

in both accuracy and recall, demonstrating its importance
in effectively capturing timing-related structural
information.

Table 4: Comparison of the generalization ability of
different models on cross-datasets (from ISCASS8S5 to
ISCASR9) (taking accuracy as an example)

Model |Accuracy (%) |Accuracy (%) |Average
after training onjafter training |accuracy
ISCASS8S and |on ISCAS89 |(%)
testing on and testing on
ISCAS89 ISCASS85

R-BM @41.2 44.0 42.6

SVM 64.5 68.0 66.2

DT 62.1 66.3 64.2

CNN 78.3 82.3 80.3

Y. Sun

T - GNN [88.9 92.5 90.7

Table 4 reflects the generalization ability of different
models in cross-dataset scenarios, and evaluates them with
accuracy as an indicator. In practical applications, the
generalization ability of the model is crucial, that is, the
performance of the model on unseen data. Due to the lack
of flexibility in the rules, the R-BM model has an accuracy
of only 41.2% in the ISCAS89 test after ISCASS8S5 training,
and 44.0% in the ISCASSS5 test after ISCAS89 training,
with an average accuracy of 42.6%, indicating that its
generalization ability is extremely poor and it is difficult
to adapt to the differences of different data sets. Although
the accuracy of the SVM and DT models has improved in
the cross-dataset test, the increase is not large, with an
average accuracy of 66.2% and 64.2% respectively,
indicating that traditional machine learning algorithms
have certain limitations in generalization. The CNN model
performed relatively well in the cross-dataset test, with an
average accuracy of 80.3%, showing a certain
generalization ability. The T-GNN model showed
excellent generalization ability, with an accuracy of 88.9%
in the ISCASS9 test after ISCAS8S training, and 92.5% in
the ISCASSS test after ISCASS89 training, with an average
accuracy of 90.7%. This means that the T-GNN model can
learn the universal features in the prediction of digital
integrated circuit timing violations, is not limited to the
characteristics of a specific data set, and has good
transferability between different data sets, providing a
strong guarantee for processing diverse digital integrated
circuit data in practical applications.

In the generalization tests summarized in Table 4, the
model was directly applied to unseen circuits without any
transfer learning or fine-tuning, ensuring that the results
strictly reflect out-of-distribution generalization capability.
Each experiment was repeated five times with different
random seeds, and the mean values with standard
deviations are reported. To confirm the reliability of the
performance improvements, paired t-tests were conducted
between T-GNN and the strongest baseline (CNN). Results
show that the accuracy and recall improvements of T-GNN
are statistically significant (p < 0.01) on both ISCASS85
and ISCAS89 datasets. These findings verify that the
observed gains are not due to random fluctuations but
represent consistent, statistically validated improvements
in generalization.
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Timing Violation Prediction Over Time for Digital IC Modules
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Figure 7: Simulated timing violation data of different modules over 10 consecutive days (used for evaluating T-GNN
prediction performance).

Figure 7. Simulated timing violation counts of five
representative modules (ALU, Register File, Control Unit,
Memory Interface, and Clock Tree) over 10 consecutive
days (March 1-10, 2025). The dataset was synthetically
generated for evaluating T-GNN prediction performance.
The x-axis denotes time (days), and the y-axis denotes the
number of violations.

Figure 7 shows the visualization of the timing
violation prediction results of different modules in a digital
integrated circuit (Digital IC) over a period of time. By
showing the number of timing violations of each module
over time, it helps us to intuitively understand the
performance and potential risks of these modules. The data
simulates the timing violations of multiple key modules in
digital integrated circuits for 10 consecutive days starting
from March 1, 2025. This provides a data basis for us to
analyze the stability and performance changes of these
modules in the short term. There are five key modules
involved in the figure, namely the arithmetic logic unit
(ALU), register file, control unit, memory interface and
clock tree. These modules play a vital role in digital
integrated circuits, and their timing violations will directly
affect the performance and stability of the entire circuit.

4.3 Experimental discussion

The experimental results strongly support the research
hypothesis that the digital integrated circuit timing
violation prediction method based on the timing graph
neural network can significantly improve the prediction
performance. The T-GNN model significantly surpasses
the traditional rule-based and traditional machine learning
methods, as well as the convolutional neural network
method in all indicators. Its advantages come from the
unique graph structure design and the LSTM unit’s

effective capture of time series and long-term
dependencies, which enables the model to have a deeper
understanding of the complex timing information in digital
integrated circuits.

To better situate our approach within existing research,
Table 1 in Section 2 summarized prior methods. Compared
with rule-based and machine learning approaches, T-GNN
achieves over 20% higher accuracy because it avoids rigid
timing rules and instead leverages graph structures to
flexibly encode circuit topology. Compared with CNN-
based methods, T-GNN improves accuracy by nearly 10%
on ISCAS benchmarks. This gap arises because CNN
captures only local spatial patterns, whereas T-GNN
captures both global topological relationships and long-
term dependencies through its LSTM integration.
Compared with earlier GNN studies that model topology
without temporal features, T-GNN achieves superior recall
and robustness by explicitly modeling sequential timing
states.

A deeper analysis of generalization shows that T-GNN
consistently maintains accuracy above 90% across
different circuit sizes, from small modules with fewer than
100 gates to large-scale circuits with thousands of gates.
This scalability comes from the graph convolution’s
ability to aggregate multi-hop neighborhood information
without requiring a fixed grid structure, combined with the
LSTM’s ability to retain critical timing sequences over
long propagation paths. Consequently, T-GNN not only
performs well on the ISCAS85 and ISCAS89 datasets but
also demonstrates promising adaptability for modern,
much larger integrated circuits.

The superior performance of the T-GNN model
compared to CNN and other feature-based methods can be
explained by its ability to jointly capture circuit topology
and temporal dynamics. While CNN can extract local
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spatial features, it treats the circuit as grid-like data and
cannot fully represent the irregular connections between
logic gates and registers. By contrast, the graph structure
directly encodes the true circuit topology, allowing more
precise aggregation of node information. Furthermore, the
integration of LSTM units enables the model to learn long-
term dependencies in timing sequences, which traditional
CNN or decision tree methods fail to capture. This
combination of structural awareness and temporal
modeling is the key reason why the T-GNN achieves
consistently higher accuracy and recall in predicting
timing violations.

In terms of scalability, the proposed T-GNN method is
designed to handle large and complex circuits by
leveraging efficient graph convolution operations and
parallelized LSTM computations. Although training
requires more memory than traditional models due to
storing hidden states, the time complexity grows
approximately linearly with the number of nodes and
edges, which makes the approach feasible for large-scale
circuits. Compared with CNN-based methods, T-GNN
reduces redundant computation by operating directly on
the circuit graph rather than transforming it into a grid,
leading to faster convergence. In our experiments, the
training time per epoch for T-GNN was about 1.3 times
that of CNN, but the inference phase was only marginally
slower (within 10%) while delivering much higher
accuracy. Memory requirements are manageable on
standard GPU devices with 24 GB memory, and sampling
strategies can further reduce resource consumption. These
results suggest that the T-GNN model is scalable and
practical for predicting timing violations in modern large-
scale integrated circuits.

Beyond scalability, robustness and adaptability are
also important for practical deployment. Traditional
control methods, such as adaptive fuzzy control, robust
neural adaptive control, backstepping strategies, and
nonlinear optimal control, have been widely applied to
handle uncertainty and complexity in nonlinear dynamic
systems. Inspired by these methods, the T-GNN approach
could be further strengthened by integrating adaptive
mechanisms to adjust prediction thresholds dynamically,
or by incorporating fuzzy logic to improve tolerance
against process variations and noise. Similarly, principles
from nonlinear optimal control could help balance
accuracy and computational efficiency in very large-scale
circuits. These directions point to promising opportunities
for enhancing the robustness of T-GNN and broadening its
applicability in industrial scenarios.

From the perspective of external validity and
generalizability, this experiment uses an internationally
accepted standard test set, covering circuit examples of
various scales and complexities, and is tested in simulated
real-world scenarios such as different noise interference.
The T-GNN model has shown strong performance in these
diverse  scenarios, which indicates  promising
generalization and suggests potential for application in the
design and deployment of digital integrated circuits.
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However, the experiment also has certain limitations. For
example, although the experimental data set is
representative, digital integrated circuits in actual
applications may have more complex structures and noise
environments, and the performance of the model in
extremely complex situations remains to be further
verified. In addition, the computational complexity of the
model is relatively high, and further optimization may be
required to improve computational efficiency when
dealing with ultra-large-scale circuits. Future research can
focus on expanding the diversity of data sets, introducing
adaptive or fuzzy enhancements, and exploring more
efficient model optimization strategies to further improve
performance and adaptability in practical applications.

In terms of robustness, the experimental results under
different noise levels (Figure 5) demonstrate that the T-
GNN maintains high accuracy and recall, showing
stronger resistance to noise interference compared with
traditional models. This indicates that the method is
relatively stable under process variations and can
generalize well to circuits with different levels of
uncertainty. Regarding interpretability, the node-level
prediction mechanism allows the model to assign timing
violation probabilities to individual components such as
registers, logic gates, or critical paths. By visualizing these
probability distributions, designers can identify which
parts of the circuit are most likely to encounter violations
and prioritize them in optimization. This feature provides
not only accurate prediction but also actionable insights
for practical circuit design and debugging.

5 Conclusion

In today's digital age, digital integrated circuits are the
core of many electronic devices, and the continuous
expansion of their design scale has led to increasingly
serious timing violation problems. This issue can cause
widespread device malfunctions and significant economic
losses. Traditional prediction methods can no longer meet
the requirements due to fixed rules and limited capability
to process time series data. This paper proposes a
prediction model based on a temporal graph neural
network, which abstracts circuits into graph structures,
extracts both structural and temporal features, and applies
graph convolution layers combined with LSTM units for
accurate prediction. Experimental results on the ISCAS85
and ISCAS89 datasets show that the proposed method
achieves accuracy above 90%, significantly outperforming
rule-based, traditional machine learning, and CNN
methods. At the theoretical level, this study enriches
digital integrated circuit timing analysis, and at the
practical level, it offers a feasible way to reduce device
failure risks, improve product quality, and enhance R&D
efficiency in digital integrated circuit design and
application.
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