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With the scale of digital integrated circuit design increasing at about 30% per year, the timing violation 

problem has become increasingly severe, while the accuracy of traditional detection methods has dropped 

below 50%. This paper proposes a timing violation prediction method based on a temporal graph neural 

network (T-GNN). By converting digital integrated circuits into graph structures, applying graph 

convolutional layers to aggregate structural information, and using LSTM units to capture temporal 

dependencies, the model achieves significant performance improvements. On the ISCAS85 dataset, the T-

GNN model reached 91.2% accuracy, which is nearly 10% higher than the next-best CNN model (81.5%). 

On the ISCAS89 dataset, the T-GNN achieved 90.7% accuracy, compared to 80.3% for CNN. The recall 

and F1 values of T-GNN also consistently exceeded 89% on both datasets. These results demonstrate that 

T-GNN can effectively capture structural and temporal characteristics of circuits, outperform existing 

rule-based, machine learning, and deep learning methods, thereby providing a reliable and efficient 

solution for timing violation prediction in digital integrated circuits. 

Povzetek: Razvita je metoda napovedovanja časovnih kršitev v digitalnih integriranih vezjih na osnovi 

časovne grafne nevronske mreže. Združitev grafnih konvolucij in LSTM učinkovito zajame strukturne in 

časovne odvisnosti ter dosega visoko točnost in robustnost na standardnih naborih ISCAS. 

 

 

1  Introduction 
In today's era of rapid digital development, digital 

integrated circuits are essential components in the 

operation of many electronic devices, and their importance 

is self-evident. According to incomplete statistics, the 

number of electronic device failures caused by digital 

integrated circuit timing violations in the world reaches 

tens of millions each year, with economic losses 

amounting to tens of billions. Take a well-known mobile 

phone brand as an example. In the early days of its launch, 

a flagship model launched last year suffered a return rate 

of up to 20% due to digital integrated circuit timing 

violations, resulting in direct economic losses of nearly 

US$1 billion[1]. This case highlights the seriousness and 

urgency of the digital integrated circuit timing violation 

problem. 

The design scale of digital integrated circuits is 

increasing at a rate of about 30% per year, from hundreds 

of thousands of gates in the early days to tens of millions 

of gates today. In such a large and complex circuit system, 

the timing violation problem has become increasingly 

difficult to detect [2]. Traditional detection methods are 

often based on manual experience and some simple rule 

algorithms. Faced with massive data and complex circuit 

logic, their accuracy has continued to decline and has 

dropped to less than 50% [3]. In addition, the detection 

time required by traditional methods is also constantly 

increasing. The average time required to detect a medium-

sized digital integrated circuit has increased from several 

hours in the past to dozens of hours now, which seriously 

affects the product development cycle and time to market 

[4]. With the continuous improvement of the performance 

and stability requirements of electronic products, the 

accurate and rapid prediction of digital integrated circuit 

timing violations has become a key issue that the entire 

electronics industry needs to solve urgently [5]. If it cannot 

be effectively solved, it will not only cause huge economic 

losses, but also seriously affect user experience and hinder 

the further development of the electronics industry. In the 

field of digital integrated circuit timing violation 

prediction, many scientific research teams and enterprises 

at home and abroad have invested a lot of energy in 

research [6]. The current research results show a variety of 

characteristics. Some studies focus on rule-based 

prediction methods, which summarize a large number of 

circuit design cases and formulate a series of timing rules 

to judge violations [7]. However, this type of method is 

limited by the fixed nature of the rules and is difficult to 

adapt to the ever-changing and increasingly complex 

circuit environment. Its prediction coverage can only reach 

about 60%. Another part of the research focuses on the 

application of machine learning algorithms, using 

algorithms such as support vector machines and decision 

trees to learn and predict relevant features of circuits. 

However, these traditional machine learning algorithms 
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have limitations when processing data with timing 

characteristics. Their prediction accuracy for timing 

violations mostly stays at around 70%, and their 

processing efficiency for large-scale circuit data is low. 

Some of the latest studies have begun to try to 

introduce deep learning methods, such as convolutional 

neural networks. These methods have improved the 

accuracy and efficiency of predictions to a certain extent. 

Some research results claim that the accuracy can be 

increased to more than 80%. However, when processing 

time series data, methods such as convolutional neural 

networks fail to fully consider the time series 

characteristics of data, and have limited ability to capture 

long-term dependencies. Current research hotspots in this 

field are mainly focused on how to further improve the 

accuracy and efficiency of predictions, and how to better 

process the timing data of large-scale complex circuits. 

The controversial point is which technical route can truly 

break through the existing bottleneck and achieve high-

precision and fast prediction of digital integrated circuit 

timing violations. The shortcomings of existing research 

are that either they focus too much on rules and lack 

flexibility, or they fail to fully match the characteristics of 

timing data in algorithms. Overall, they have not yet met 

the high requirements of the electronics industry for the 

prediction of digital integrated circuit timing violations. 

This paper aims to propose a digital integrated circuit 

timing violation prediction method based on timing graph 

neural network. By building a graph neural network model 

suitable for timing data, the time series characteristics and 

long-term dependencies in the circuit data are fully mined 

to improve the accuracy and efficiency of prediction. Its 

innovation lies in the first application of timing graph 

neural network in this field. Compared with traditional 

methods, it can more accurately capture the timing 

information in the circuit. It is expected to increase the 

prediction accuracy to more than 90%, while significantly 

shortening the prediction time to less than one-third of 

traditional methods. 

In terms of theory, this study will enrich the theoretical 

system of digital integrated circuit timing analysis and 

provide new ideas and methods for subsequent related 

research. In terms of practice, the application of this 

method will effectively reduce the risk of failure of 

electronic equipment due to timing violations, improve 

product quality and R&D efficiency, and promote the 

further development of the electronics industry in digital 

integrated circuit design and application, which has 

significant and far-reaching practical significance. 

This paper proposes a temporal graph neural network 

(T-GNN) that integrates graph convolution with LSTM 

units, enabling simultaneous capture of circuit topology 

and long-term timing dependencies. 

This paper designs a comprehensive feature set for 

circuit nodes, including structural features, time-series 

features, and register-specific characteristics such as setup 

and hold times. 

This paper introduces a customized edge weighting 

mechanism based on logic distance, which enhances the 

model’s ability to capture timing-related relationships 

between nodes. 

This paper provides extensive experiments on 

ISCAS85 and ISCAS89 datasets, including robustness 

tests under noise, adversarial perturbations, and missing 

nodes, demonstrating the scalability and stability of the 

proposed approach. 

 

2  Literature review 
2.1 Research on traditional forecasting 

methods 
In the field of digital integrated circuit timing violation 

prediction, traditional rule-based prediction methods have 

been widely studied and applied. This type of method 

mainly summarizes a large number of circuit design 

examples to form a series of timing rules for violation 

judgment [1][8]. However, it is greatly limited by the 

fixedness of the rules. As the scale of digital integrated 

circuit design increases at a rate of abouWet 30% per year, 

from hundreds of thousands of gates in the early days to 

tens of millions of gates today, the circuit environment has 

become increasingly complex and constantly changing, 

and this rule-based method is difficult to adapt [9]. 

According to relevant statistics, its prediction coverage 

can only reach about 60%. When faced with massive data 

and complex circuit logic, its accuracy continues to 

decline and has dropped to less than 50%. In addition, the 

average time required to detect a medium-sized digital 

integrated circuit has increased from several hours in the 

past to dozens of hours now, which seriously affects the 

product development cycle and time to market [10]. At the 

same time, traditional machine learning algorithms such 

as support vector machines and decision trees have also 

been applied in this field [11]. These algorithms learn and 

predict circuit-related features, but have obvious 

limitations when processing data with timing 

characteristics [12]. The accuracy of timing violation 

prediction mostly stays at around 70%, and the processing 

efficiency of large-scale circuit data is low [13]. Because 

these algorithms were not designed specifically for timing 

data, they cannot fully utilize the time series 

characteristics of the data during the processing process, 

resulting in the failure to capture the key timing 

information in the circuit during prediction, which in turn 

affects the accuracy and efficiency of the prediction [14]. 

Although traditional methods have provided some help for 

the prediction of digital integrated circuit timing violations 

in a certain period of time, with the development of the 

electronics industry and the continuous improvement of 

product performance and stability requirements, their 

shortcomings have become increasingly prominent and 

can no longer meet the needs of the current industry, 

prompting the exploration and research of new and more 

effective prediction methods [15]. 
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2.2 Research on deep learning methods 
In view of the limitations of traditional methods, deep 

learning methods have begun to be introduced into the 

prediction of digital integrated circuit timing violations. 

Among them, methods such as convolutional neural 

networks have been tried. These methods have improved 

the accuracy and efficiency of prediction to a certain 

extent. Some research results claim that the accuracy can 

be increased to more than 80% [2][16]. However, when 

processing time series data, convolutional neural networks 

and other methods fail to fully consider the time series 

characteristics of data and have limited ability to capture 

long-term dependencies [17]. The timing information in 

digital integrated circuits often has complex long-term 

dependencies, and convolutional neural networks have 

shortcomings in processing such relationships due to their 

own structural characteristics, making their application 

effect in this field still not ideal [18]. In addition, although 

deep learning methods have certain advantages in data 

processing capabilities and model fitting capabilities, the 

problem of poor interpretability of their models has also 

been magnified in the application of digital integrated 

circuit timing violation prediction. Because in the 

electronics industry, product design and fault analysis 

often require clear basis and explanation, and the "black 

box" nature of deep learning models limits their practical 

applications, making it difficult for designers and related 

technical personnel to fully trust and accept them. This has 

also hindered its further promotion and development in 

this field to a certain extent [19]. 

 

2.3 Research and prospects of temporal 

graph neural networks 
At present, as an emerging technology, timing graph 

neural network has begun to attract attention and has been 

tried to be applied to the prediction of timing violations in 

digital integrated circuits. It has unique advantages and 

can build a graph neural network model suitable for timing 

data, fully mining the time series characteristics and long-

term dependencies in circuit data[20]. Compared with 

traditional methods, it is more likely to accurately capture 

the timing information in the circuit. Existing studies have 

shown that by reasonably constructing and training the 

timing graph neural network model, it is expected to 

increase the prediction accuracy to more than 90%, while 

significantly shortening the prediction time to less than 

one-third of the traditional method [3]. This will greatly 

improve the current status of digital integrated circuit 

timing violation prediction and meet the electronics 

industry's demand for high-precision and fast prediction. 

However, the application of timing graph neural networks 

in this field is still in the exploratory stage, and there are 

still many problems that need to be further studied and 

solved. For example, how to better construct the structure 

of the graph neural network according to the 

characteristics of digital integrated circuits, how to deal 

with the training efficiency and stability of the model 

under large-scale complex circuit data, etc. But overall, it 

has great development potential. Future research 

directions should focus on further improving its 

theoretical system, optimizing the model structure and 

parameters, and improving the generalization ability of the 

model, so that it can play a more important role in the field 

of digital integrated circuit timing violation prediction and 

promote the further development of the entire electronics 

industry in digital integrated circuit design and application. 

 

Table 1: Summary of representative state-of-the-art 

methods in timing violation prediction 
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ion, not 

timing 

violatio

ns 

 

Overall, prior methods have made progress but still face 

critical limitations. Rule-based and traditional machine 

learning approaches lack flexibility and cannot fully 

exploit temporal information. CNN-based deep learning 

methods improve accuracy but remain limited to local 

feature extraction and fail to model long-term 

dependencies across circuits. Early GNN methods capture 

structural relationships but overlook temporal dynamics, 

leading to incomplete representation. In contrast, the 

proposed T-GNN explicitly integrates graph convolution 

with LSTM units, enabling it to jointly model circuit 

topology and long-term temporal behavior. This design 

addresses the core deficiencies of existing methods and 

explains the substantial improvements observed in 

prediction accuracy and robustness. 

 

3  Research methods 
3.1 Model building foundation 
To guide the study, the following research questions are 

explicitly framed: 

Can a temporal graph-based model that integrates graph 

convolution and LSTM outperform CNNs and other 

baseline methods in terms of accuracy and robustness on 

timing violation prediction across ISCAS benchmarks? 

How does the proposed T-GNN method scale with circuit 

size and complexity compared with traditional approaches? 

To what extent can the model maintain robustness under 

noise and process variations? 

How interpretable are the predictions, and can the model 

highlight specific nodes or paths most at risk of timing 

violations? 

In this work, predictions are generated at the node level, 

with each node assigned a probability of timing violation. 

These node-level outputs can be aggregated to assess 

violations on critical paths, thereby providing both 

detailed and system-level evaluation. 

With the continuous expansion of digital integrated circuit 

design scale and the increasing complexity of circuits, 

traditional timing violation prediction methods have 

exposed many disadvantages such as low accuracy and 

long detection time when facing massive data and 

complex circuit logic. In order to effectively solve these 

problems, this paper innovatively proposes a prediction 

method based on timing graph neural network. Before 

building the model, it is necessary to conduct an in-depth 

analysis of the relevant characteristics of digital integrated 

circuits. The timing information in digital integrated 

circuits contains rich time series characteristics and 

complex long-term dependencies, which is the key to 

accurately predict timing violations. From the perspective 

of circuit structure, digital integrated circuits can be 

regarded as a complex network composed of many nodes 

(such as logic gates, registers, etc.) and edges 

(representing signal transmission paths). Each node has a 

specific state value at different times, and these state 

values change over time according to certain logical rules. 

We regard each node in the circuit as a vertex in the graph 

neural network, and the signal transmission path between 

nodes corresponds to the edge in the graph. In this way, 

the structure of the digital integrated circuit can be 

naturally transformed into a graph structure, denoted as 

( , )G V E=
, where V is the vertex set and E is the edge 

set. 

For each vertex iv V
, its t state at time can be ,i tx

represented by a feature vector. This feature vector 

contains a variety of information related to the node, such 

as node type (logic gate or register, etc.), current input 

signal value, output signal value at the previous moment, 

etc. Assuming that the dimension of the feature vector of 

each node is d , then ,

d

i t x
. For the edge ije E

, it 

connects vertices iv
and jv

, and a weight can be used ijw

to represent the relative importance of this edge in signal 

transmission. 

When building a timing graph neural network model, 

our goal is to design a network architecture that can fully 

utilize the graph structure information as well as the time 

series characteristics to accurately predict timing 

violations in digital integrated circuits. 

We define a digital integrated circuit as a directed 

graph 
( , )G V E=

  where 
1 2{ , , , }nV v v v=    denotes 

the set of circuit nodes (e.g., gates or registers) and 

E V V     represents the set of directed edges 

indicating signal propagation between nodes. Each node 

iv V  is associated with a time-dependent feature vector 

( ) d

ix t R , where ddd denotes the dimensionality of the 

feature space. 

 

3.2 Feature extraction and data 

preprocessing 
In order to enable the constructed timing graph neural 

network model to effectively learn the timing information 

in digital integrated circuits, the raw data needs to be 

carefully feature extracted and preprocessed. 

This paper adopts the feature extraction technology 

based on the circuit topology. For each node iv
, we first 

extract its structural features. For example, we calculate 

the in-degree 
_ ( )idegree vin

and out-degree of the node 

_ ( )idegreet vou
. These two indicators can reflect the 

connection density of the node in the entire circuit. The in-

degree indicates how many edges point to the node, while 

the out-degree indicates how many edges start from the 
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node. Their calculation formulas are respectively as 

follows: Formula (1). 

_ ( ) 1
ji

i

e E

vi degreen


= 
(1) 

At the same time, we also extract the hierarchical 

information of the nodes 
)( ilevel v

. In a digital integrated 

circuit, different nodes are at different levels on the signal 

transmission path. By analyzing the circuit topology, the 

level of each node can be determined. The hierarchical 

information helps the model understand the order of signal 

propagation in the circuit, and its calculation can be 

achieved through the breadth-first search (BFS) algorithm. 

Starting from the input node, set its level to 0, and then 

update the level of each node in turn according to the BFS 

order, as expressed in Formula (2). 

( )) min ( ) 1(
j in ii v N v jll level eve vv = +

(2) 

It represents 
( )in iN v

the set of all predecessor nodes 

of the node . iv
 

In addition to structural features, it is also necessary 

to extract the time series features of the nodes. For each 

node iv
 , we record its state value sequence in multiple 

time steps ,1 ,2 ,{ , , , }i i i Tx x x
 , where T  is the total 

number of time steps. In order to better capture the trends 

and changes in the time series, we use differential 

operations to generate new features. For example, the first-

order differential feature , , , 1i t i t i t− = −x x x
 can reflect 

the changes in the node state between adjacent time steps. 

The second-order differential feature 
2

, , , 1 , , 1 , 22i t i t i t i t i t i t− − − =  − = − +x x x x x x
 can 

further highlight the acceleration information of the state 

change. 

After feature extraction, data preprocessing is 

required. First, data normalization is performed. For each 

feature dimension k , the feature values of all nodes in that 

dimension are normalized to 
[0,1]

the interval. Suppose 

the original feature value is ,

k

i tx
and the normalized feature 

value is ,
ˆ k

i tx
, then the normalization formula is Formula 

(3). 

, , ,

,

, , , ,

min
ˆ

max min

k k

i t i t i tk

i t k k

i t i t i t i t

x x
x

x x

−
=

−
(3) 

 

In addition, due to the huge amount of digital 

integrated circuit data, in order to improve the efficiency 

of model training, we use random sampling to subsample 

the data. A certain proportion of samples are randomly 

selected from the original data set as training sets, 

validation sets, and test sets to ensure that the data in each 

set can better represent the distribution characteristics of 

the original data. 

In this study, the initial feature vector 
t

vx
  
for each 

node includes a consolidated set of attributes. Specifically, 

structural features consist of the in-degree, out-degree, and 

hierarchical level of the node. Time-series features include 

the node state values over multiple time steps and their 

first- and second-order differentials. In addition, for 

register nodes, setup time and hold time are extracted as 

register-specific features. By combining these attributes, 

the feature vector provides both topological and temporal 

information essential for timing violation prediction. 

For dataset partitioning, circuits were first divided at 

the module level to ensure that training, validation, and 

test sets did not share identical substructures. Specifically, 

modules from the same circuit design were assigned 

entirely to one split, preventing leakage of structural 

information across sets. Within each split, random 

sampling was applied to generate training instances by 

varying signal states and noise conditions. This ensured 

diversity of examples while maintaining independence 

between splits. The final ratio of training/validation/test 

was 70%/15%/15%. By enforcing structural isolation 

across splits, we avoided data leakage and guaranteed that 

the reported performance reflects the model’s 

generalization to unseen circuit structures. 

 

3.3 Temporal graph neural network model 

architecture 
The timing graph neural network model constructed in this 

paper consists of multiple key components, aiming to fully 

mine the time series characteristics and long-term 

dependencies in digital integrated circuit data. 

The input layer of the model receives the graph 

structure data after feature extraction and preprocessing. 

For each vertex iv
, its input feature vector ,i tx

contains 

the previously extracted structural features, time series 

features, and normalized values. 

The graph convolution layer is after the input layer. 

The graph convolution operation can aggregate and update 

node features on the graph structure. This paper adopts an 

improved graph convolution algorithm, and its calculation 

formula is formula (4). 

( 1) ( ) ( ) ( )

, ,

1

( ) ( )
j i

l l l l

i t j t

v N i j

W b
deg v deg v

+



 
 = +
 
 
h h

(4) 

 

Where 

( )

,

l

i th
represents the hidden state vector of l the 

node at the iv
 layer and time t  ,   is the activation 

function (this paper uses the ReLU activation function, 

that is 
( ) max(0, )x x =

), iN
is iv

the set of neighbor 

nodes of the node, 
deg( )iv

and are 
deg( )jv

the degrees 
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of nodes 
( )lW  and jv

 respectively , iv
 is l  the weight 

matrix of the layer, 
( )lb and is the bias vector. By stacking 

multiple layers of graph convolutional layers, the node can 

fully learn the information of its neighbor nodes and more 

distant nodes, so as to better capture the global features in 

the graph structure. 

In order to process time series information, a time 

recurrence layer is introduced into the model. Specifically, 

we use the long short-term memory network (LSTM) unit 

to construct the time recurrence layer. The LSTM unit can 

effectively handle the long-term dependency problem in 

time series. For each node iv
, its input at time t not only 

includes the hidden state after being updated by the graph 

convolution layer 

( )

,

L

i th
 ( the total number of graph 

convolution layers), but also includes the LSTM unit 

output L  and , 1i t−h
 at the previous moment , 1i t−c

 . The 

calculation process of the LSTM unit is relatively 

complicated, mainly including the calculation of the input 

gate ti  , forget gate tf  , output gate to
 and memory unit 

tc
, as shown in Formula (5)-(10). 

( )

, , 1( )L

t ii i t ii i t iii W U b −= + +h h
(5) 

( )

, , 1( )L

t fi i t fi i t fif W U b −= + +h h
(6) 

( )

, , 1( )L

t oi i t oi i t oio W U b −= + +h h
(7) 

( )

, , 1tanh( )L

t ci i t ci i t cig W U b−= + +h h
(8) 

, 1t t i t t tc f c i g−= +
(9) 

, tanh( )i t t to c=h
(10) 

Where W  and U  are weight matrices, b  is a bias 

vector, and  represents element-by-element 

multiplication. Through the processing of LSTM units, the 

model can effectively capture the changing trend and long-

term dependency of node states in time series. 

Finally, the output layer of the model predicts whether 

each node has a timing violation based on the final hidden 

state output by the LSTM unit ,i Th
( T the last moment of 

the time step). The output layer uses a fully connected 

layer, and its output result is normalized by a sigmoid 

function to obtain the probability value of each node 

having a timing violation ip
, calculated as Formula (11). 

,( )i out i T outp W b= +h
(11) 

where outW
 and outb

 are the weight matrix and bias 

vector of the fully connected layer of the output layer. 

Algorithm 1. T-GNN for Timing Violation Prediction 

(train & infer) 

Input: circuit graph ( , )G V E=  )  weighted adjacency 

wA (Eq. 15)  node feature sequences 
1:

V d

TX  ∣ ∣R
 

Hyperparameters: #GCN layers Lg  hidden sizes 

dg,dh  sequence length T  dropout p  weight decay λ 

Output: node-level violation probabilities 

[0,1] Vp ∣ ∣
 

Preprocess: build 
1/2 1/2( )w w wA D A W D− −=  using 

Eq. (15)  normalize features. 

Per time step t=1..T set Ht(0)=Xt  for l=1..Lg: 

  
( ) ( 1) ( ) ( )ReLU( )l l l l

t w tH A H W b−= +    apply 

dropout ppp. 

Per node vi: form sequence {hi,1,...,hi,T} with 
( )

, [ ,:]gL

i t th H i=   feed into LSTM → final state \*hi . 

Readout:
\*MLP( ) ( )i i i iz h p z= =； . 

Loss: weighted BCE + L2 regularization  optimize 

with Adam  early stopping on validation F1. 

Inference: output pi for all nodes  optional path risk 

aggregation 
path

1 (1 )ii
p


− − . 

Complexity (sparse): 

( )2( )O Lg E dg V dg V Tdh+ +∣∣ ∣ ∣ ∣ ∣   — approx. 

linear in ∣E∣ and ∣V∣. 
The design of incorporating an LSTM layer at the 

node level is motivated by the nature of timing violations, 

which are strongly dependent on long-term sequential 

signal propagation across registers and gates. While 

temporal graph models such as T-GCN and T-GAT can 

capture temporal information globally, they often couple 

temporal and spatial updates in a way that may dilute fine-

grained node-level timing variations. By contrast, 

applying an LSTM directly at each node allows the model 

to preserve detailed sequential dependencies for that 

node’s state evolution, and then aggregate these refined 

temporal features through graph convolution for circuit-

level prediction. 

To validate this choice, we performed comparison 

experiments where the GCN layer was combined with T-

GCN and T-GAT architectures. Results on ISCAS85 

showed that T-GCN achieved 87.3% accuracy and T-GAT 

achieved 88.1%, both lower than the 91.2% accuracy of 

our LSTM-enhanced GCN (T-GNN). Similar trends were 

observed on ISCAS89, confirming that node-level LSTM 

modeling provides stronger predictive power than 

temporal graph models in this application. 

In the context of timing violation prediction, the input 

gate controls how much new timing information enters the 

memory cell, the forget gate determines which past 

information should be discarded, and the output gate 

regulates how much of the memory state contributes to the 

current prediction. This design allows the model to 

selectively retain critical timing dependencies while 

filtering out irrelevant signals, thereby capturing long-
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term relationships in digital integrated circuits more 

effectively. 

 

3.4 Model training and optimization 
After completing the model architecture design, the model 

needs to be trained to determine the optimal model 

parameters. 

We use the cross-entropy loss function to measure the 

difference between the model prediction result and the true 

label. For a N digital integrated circuit graph containing 

nodes, L the calculation formula of the cross-entropy loss 

function is formula (12). 

1

1
log( ) (1 ) log(1 )

N

i i i i

i

L y p y p
N =

+= −− −
(12) 

 

Where iy
 is the true label of the node iv

 , 
1iy =

indicates that the node has a timing violation, 
0iy =

indicates that there is no timing violation, ip
 and is the 

probability value of the node predicted by the model to 

have a timing violation. 

In order to minimize the loss function, we use the 

stochastic gradient descent (SGD) algorithm to update the 

model parameters. In each round of training, a small batch 

of data samples is randomly selected from the training set, 

the gradient of the small batch of samples is calculated, 

and the weight parameters of the model are updated 

according to the gradient. Let the parameter set of the 

model be   , at k  the iteration, the parameter update 

formula is formula (13). 
( 1) ( ) ( )( )k k kL   + = − 

(13) 

Where  is the learning rate, which controls the step 

size of each parameter update, 
( )( )kL 

 and is the 

gradient of the loss function L  with respect to the 

parameters 
( )k . 

During the training process, in order to prevent the 

model from overfitting, we used the L2 regularization 

method. That is, a regularization term is added to the loss 

function. The modified loss function is Formula (14).. 
2

2reg

W

LL W





= + ‖ ‖
(14) 

 

Where   is the regularization coefficient, 
2

2W‖ ‖

which represents the square of the Frobenius norm of the 

weight matrix W . Through L2 regularization, the weight 

parameters of the model can be constrained to prevent 

them from being too large, thereby improving the 

generalization ability of the model. 

During the training process, we also set up an early 

stopping mechanism. That is, when the performance of the 

model on the validation set (such as accuracy, F1 value, 

etc.) has not improved for multiple epochs in a row, the 

training is stopped to avoid overfitting of the model on the 

training set. At the same time, we will regularly save the 

model parameters so that we can select the model with the 

best performance for testing and application after the 

training is completed. 

 

3.5 Model details 
When building a digital integrated circuit timing violation 

prediction model based on timing graph neural network, 

many details have a key impact on the model performance. 

3.5.1 Graph Convolutional Layer Parameter 

Setting 
The graph convolution layer plays an important role in 

aggregating node neighborhood information in the model. 

In the actual construction, we set up multiple layers of 

graph convolution layers. After a lot of experimental 

tuning, we determined that L 5 layers is more appropriate 

for the graph convolution layer. If the number of layers is 

too small, the nodes cannot fully learn the information of 

distant neighbors and it is difficult to capture the global 

features in the graph structure  if the number of layers is 

too large, it is easy to cause overfitting and waste of 

computing resources. 

For the weight matrix 
( )lW  , its dimension setting 

needs to be determined based on the input feature 

dimension d  and the desired output hidden state 

dimension. In this model, the input feature dimension of 

each layer of graph convolution is after feature extraction 

32d = . We set the hidden state dimension of each layer 

of graph convolution output to , so 
64hiddend =

 the 

dimension of hidden dd 
the weight matrix is 

( )lW , that 

is 64 32  . The dimension of the bias vector 
( )lb  is 

consistent with the hidden state dimension, which is 64 . 

With this parameter setting, the graph convolution layer 

can effectively update and aggregate node features at a 

reasonable computational complexity. 

3.5.2 LSTM unit hyperparameter adjustment 
The LSTM unit is responsible for processing time series 

information, and the selection of its hyperparameters is 

crucial. The weight matrix W and dimension setting in the 

LSTM unit are closely related to the input and output 

dimensions. The dimensions of the weight matrices, , U , 

oiW
of the input gate, forget gate, output gate, and memory 

unit input iiW
are fiW

all ciW
, lstm inputdd 

where inputd

is the feature dimension input to the LSTM unit, here is 

the hidden state dimension output by the graph 

convolution layer 64 , and is the dimension of the hidden 

state inside the LSTM unit, which is set to after 

experimental optimization. Similarly, the dimensions of 
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the weight matrices lstmd 128 , fiU
, oiU

, ciU
connected 

to the hidden state at the previous moment iiU
 are 

lstm lstmd d
 , that is 128 128  . The dimensions of the 

bias vectors iib
, fib

, oib
, cib

are all lstmd
, that is 128 . 

In addition, the forget gate bias of the LSTM unit is 

usually given a large positive value (such as 0.1) during 

initialization, which helps the LSTM unit retain more past 

memory information in the early stages of training, avoids 

forgetting key time series features too early, and thus better 

captures long-term dependencies. 

3.5.3 Customized Design for Digital Integrated 

Circuit Characteristics 
Considering the directionality of signal propagation in 

digital integrated circuits and the differences in the impact 

of different node types on timing violations, we have 

designed the model specifically. When constructing the 

graph structure, the weights of the edges ijw
 are not 

simply set to equal weights. If ije
the node connected to 

the edge iv
is a logic gate with strong driving capability 

and its output signal jv
has a greater impact on the timing 

of the downstream node, it ijw
 will be assigned a 

relatively large value  conversely, if the impact is small, 

the ijw
 value will be smaller. The specific weight 

calculation will take into account factors such as the node's 

driving strength, signal transmission delay, etc., and is 

calculated as shown in Formula(15). 

DriveStrength( )

Delay( )

i
ij

ij

w
v

e
=

+ò
(15) 

Among them, 
DriveStrength( )iv

represents iv
the 

driving strength of the node, 
Delay( )ije

 is the signal 

transmission delay on the edge , ije òand is a very small 

constant (such as 
610−

) to prevent the denominator from 

being zero. 

At the same time, in the feature extraction stage, for 

register nodes, in addition to extracting conventional 

structural features and time series features, specific 

attributes closely related to timing violations such as setup 

time and hold time are also extracted. These attributes are 

integrated into the feature vector of the node ,i tx
 , 

allowing the model to more accurately capture register-

related timing violation information. 

3.5.4 Connection between the output layer and 

the overall model 

This dimension setting is to ,i Th
map the final hidden state 

output by the LSTM unit to a single probability value ip
, 

indicating iv
 the possibility of a timing violation at the 

node. 

The overall connection mode of the model is as follows: 

the input layer passes the graph structure data after feature 

extraction and preprocessing to the graph convolution 

layer, the graph convolution layer updates the node hidden 

state layer by layer, and outputs the hidden state of the 

final layer to the LSTM unit. The LSTM unit processes the 

input at each time step to capture the time series features, 

and finally passes the output of the last time step to the 

output layer. The output layer calculates the timing 

violation probability of each node through full connection 

and sigmoid function. This connection mode closely 

combines the structure of digital integrated circuits with 

the characteristics of time series to form an organic whole, 

ensuring that the model can efficiently and accurately 

predict timing violations. 

 

4  Experimental evaluation 
4.1 Experimental design 
In order to rigorously verify the effectiveness of the digital 

integrated circuit timing violation prediction method 

based on the timing graph neural network, this experiment 

has constructed a comprehensive and detailed comparative 

analysis system. The internationally used ISCAS85 and 

ISCAS89 digital integrated circuit standard test sets are 

used as the source of experimental data. These data sets 

cover circuit examples of various scales and complexities, 

which can highly simulate complex situations in actual 

applications. The experiment focuses on comparing the 

performance of different prediction models, and divides 

the data set into training set, validation set and test set at a 

ratio of 70%, 15% and 15% to ensure the scientific nature 

of model training, optimization and evaluation. 

The experiment selected accuracy, recall, F1 value 

and precision as the main evaluation indicators. Accuracy 

reflects the proportion of samples correctly predicted by 

the model to the total samples  recall reflects the 

proportion of samples that actually have timing violations 

and are successfully detected by the model  F1 value 

comprehensively considers accuracy and recall to 

comprehensively evaluate model performance  precision 

measures the proportion of samples that are predicted by 

the model as timing violations and are correctly predicted 

to the samples predicted by the model as violations. 

The experimental group is the prediction model based 

on the time series graph neural network (T-GNN) proposed 

in this paper. The control group includes the traditional 

rule-based prediction method (Rule-based Method, R-BM) 

[21], the method based on the support vector machine 

(SVM) [22], the method based on the decision tree 
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(Decision Tree, DT) [13] and the method based on the 

convolutional neural network (Convolutional Neural 

Network, CNN) [14]. Each comparison model has been 

used in previous studies. By comparing with them, the 

advantages and characteristics of the T-GNN model can be 

clearly demonstrated. 

The model was trained for 150 epochs with a batch 

size of 64. The Adam optimizer was used with an initial 

learning rate of 0.001 and weight decay parameter 
45 10 −=   . Hyperparameters such as learning rate, 

hidden dimension size, and λ\lambdaλ were selected via 

grid search on the validation set. Specifically, learning 

rates {1 2,5 3,1 3,5 4}e e e e− − − − , hidden dimensions 

{32,64,128}  , and 1 3,5 4, 4{ }1e e e − − −   were 

tested, with the final configuration chosen based on the 

highest validation F1-score. Dropout with rate 0.5 was 

applied to prevent overfitting, and early stopping with 

patience of 20 epochs was employed. 

 

4.2 Experimental evaluation 

 
 

Figure 1: Performance comparison of different models in terms of accuracy, recall, and F1-score on the ISCAS85 

dataset. 

 

As shown in Figure 1, on the ISCAS85 dataset, the 

performance of each model varies significantly. The R-

BM model has an accuracy of only 45.3%, a recall of 

48.7%, an F1 value of 46.9%, a precision of 43.5%, and 

an average false alarm rate of 32.1%. This is due to the 

fixed nature of its rules, which makes it difficult to adapt 

to complex and changing circuit environments, and its 

ability to capture new circuit structures and timing 

characteristics is extremely limited, resulting in a large 

number of prediction errors and frequent false alarms. The 

SVM model has an accuracy of 68.2%, a recall of 70.5%, 

an F1 value of 69.3%, a precision of 66.8%, and an 

average false alarm rate of 18.6%. Traditional machine 

learning algorithms have inherent defects in processing 

time series characteristic data and cannot deeply mine time 

series features, resulting in limited performance 

improvements. The DT model has similar indicators to the 

SVM and is also limited by its ability to process time series 

characteristics. The CNN model has an accuracy of 81.5%, 

a recall of 80.1%, an F1 value of 80.8%, a precision of 

82.3%, and an average false alarm rate of 10.4%. Although 

the convolution operation can extract some local features, 

it has shortcomings in processing long-term dependencies 

in digital integrated circuits. The T-GNN model performs 

excellently, with an accuracy of 91.2%, a recall of 90.5%, 

an F1 value of 90.8%, a precision of 91.6%, and an 

average false alarm rate as low as 5.3%. T-GNN uses the 

graph structure to effectively aggregate node information 

and uses LSTM units to accurately capture time series 

features and long-term dependencies, significantly 

improving prediction accuracy and reducing the 

probability of false alarms.  

R - BM SVM DT CNN T - GNN

Accuracy (%) Recall (%)

F1 - score (%) Precision (%)

Average False Alarm Rate (%)
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Figure 2: Performance comparison of different models in terms of accuracy, recall, and F1-score on the ISCAS89 

dataset. 

 

Observing the model performance data of the 

ISCAS89 dataset in Figure 2, the performance of the R-

BM model further declined, with an accuracy of 43.1%, a 

recall of 46.2%, an F1 value of 44.6%, a precision of 

40.8%, and an average false negative rate of 35.4%. This 

shows that in the face of the more complex ISCAS89 

dataset, the limitations of its rules are magnified, and a 

large number of samples with time series violations are not 

detected. The performance of the SVM and DT models has 

limited improvement. When processing complex data, the 

disadvantages of traditional machine learning algorithms 

become more prominent. On the ISCAS89 dataset, the 

CNN model has an accuracy of 80.3%, a recall of 78.9%, 

an F1 value of 79.6%, a precision of 81.1%, and an average 

false negative rate of 12.5%. Although it can still maintain 

a certain performance on complex data, it is significantly 

lower than the 90.7% accuracy, 89.8% recall, 90.2% F1 

value, 91.0% precision and 7.1% average false negative 

rate of the T-GNN model. The T-GNN model maintains 

high accuracy on complex data sets, effectively reduces 

false negatives, and demonstrates strong adaptability by 

virtue of its deep mining capabilities for complex graph 

structures and time series information.  
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Figure 3: Accuracy comparison of different models across circuit subsets of varying scales on the ISCAS85 

dataset. 

 

Figure 3 focuses on the accuracy comparison of 

different scale circuit subsets in the ISCAS85 dataset. On 

small-scale circuits (<100 gates), the R-BM model has an 

accuracy of 48.6%. As the circuit scale increases, the 

accuracy drops sharply, and is only 42.1% on large-scale 

circuits (>500 gates). The average accuracy is 45.3%, and 

the standard deviation is 3.2. This shows that its 

performance is greatly affected by the circuit scale, and its 

prediction ability for large-scale complex circuits is 

seriously insufficient. The SVM and DT models have 

relatively high accuracy on small-scale circuits, but as the 

scale increases, the performance also drops significantly. 

The CNN model performs relatively stably on circuits of 

different scales, with an accuracy of 85.2% for small-scale 

circuits, 78.4% for large-scale circuits, an average 

accuracy of 81.5%, and a standard deviation of 3.4. The T-

GNN model performs well on circuits of all scales, with 

an accuracy of 93.5% for small-scale circuits, 91.8% for 

medium-scale circuits, and 89.9% for large-scale circuits. 

The average accuracy is 91.2%, and the standard deviation 

is only 1.8. This shows that the T-GNN model is not 

limited by the circuit scale and can effectively handle the 

timing violation prediction of circuits of different scales 

with stable and reliable performance.  
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Figure 4: Recall comparison of different models across circuit subsets of varying complexity on the ISCAS89 dataset. 

 

From the comparison of recall rates of different 

complexity circuit subsets of the ISCAS89 dataset in 

Figure 4, it can be seen that the recall rate of the R-BM 

model on low-complexity circuits is 50.1%. As the 

complexity increases, the recall rate drops significantly, 

and it is only 42.5% on high-complexity circuits. The 

average recall rate is 46.2%, and the coefficient of 

variation is 7.9, indicating that its timing violation 

detection ability for complex circuits is extremely weak 

and its performance fluctuates greatly. The SVM and DT 

models perform well on low-complexity circuits, but the 

recall rate decreases significantly when the complexity 

increases. The recall rate of the CNN model on circuits of 

different complexities is relatively stable, 82.7% for low-

complexity circuits, 75.8% for high-complexity circuits, 

78.9% on average, and the coefficient of variation is 4.4. 

The T-GNN model performs well on circuits of all 

complexities, with a recall rate of 92.4% for low-

complexity circuits, 90.1% for medium-complexity 

circuits, and 87.8% for high-complexity circuits. The 

average recall rate is 89.8%, and the coefficient of 

variation is only 2.6. This shows that the T-GNN model 

can effectively handle timing violation detection of 

circuits of different complexity, with stable and 

comprehensive performance.  

To ensure statistical rigor, each experiment was 

repeated five times with different random seeds, and the 

mean values along with standard deviations are reported in 

Tables 2–4. In addition, 95% confidence intervals were 

calculated to quantify the stability of the results. Beyond 

accuracy, recall, and F1, we also evaluated the area under 

the ROC curve (AUC-ROC) to provide a more 

comprehensive view of classification performance. The 

results show that T-GNN achieved an AUC-ROC of 0.95 

on ISCAS85 and 0.96 on ISCAS89, which are consistently 

higher than CNN (0.89 and 0.90, respectively) and other 

baseline methods. These findings confirm not only the 

superiority but also the stability and robustness of the 

proposed method across multiple trials. 
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Figure 5: Comparison of F1-scores of different models under Gaussian noise perturbation (σ = 0.05) on the ISCAS85 

dataset 
 

Figure 5 shows the changes in F1 values of different 

models when the ISCAS85 dataset is interfered with by 

different noises. In a noise-free environment, the 

performance of each model is different. As the noise 

increases, the F1 value of the R-BM model drops sharply, 

from 46.9% in noise-free to 36.5% in high noise, with an 

average F1 value of 41.6%, indicating that its anti-

interference ability is extremely poor. The SVM and DT 

models are also greatly affected, and their performance has 

declined significantly. The performance of the CNN model 

is relatively stable in a noisy environment, dropping from 

80.8% in noise-free to 70.3% in high noise, with an 

average F1 value of 75.6%. The T-GNN model performs 

best, with an F1 value of 90.8% in noise-free, 83.0% in 

high noise, and an average F1 value of 86.9%. This shows 

that the T-GNN model has a strong ability to resist noise 

interference, and can maintain high performance more 

stably in actual application scenarios where noise may 

exist.  

To evaluate robustness, Gaussian noise was injected 

into the signal values of selected nodes. Specifically, zero-

mean Gaussian noise with standard deviation 0.05 =  

relative to the normalized signal range was added to the 

input feature vectors. For each training instance, a subset 

of nodes (20%) was randomly chosen, and their state 

values ( )is t  were perturbed as ( ) ( )i is t s t= +ò , where 

)0,( 2N ò . This design simulates real-world process 

variations in timing behavior. Noise was not added to 

graph topology or structural features, to preserve circuit 

connectivity. 

Following Figure 5, we further evaluated the 

robustness of the proposed model under adversarial noise 

and missing nodes. For adversarial noise, we applied the 

fast gradient sign method (FGSM) with perturbation 

magnitude ϵ=0.03 to the node features. Under this setting, 

the accuracy of T-GNN on ISCAS85 decreased slightly 

from 91.2% to 89.5%, whereas CNN dropped more 

significantly from 81.5% to 75.8%. In the missing-node 

scenario, 10% of non-critical nodes were randomly 

removed from the circuit graph. T-GNN still achieved 88.9% 

accuracy, while CNN fell to 73.4%. These results 

demonstrate that T-GNN remains robust not only under 

Gaussian noise (Figure 5) but also when facing adversarial 

perturbations and incomplete graph structures. 
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Figure 6: Accuracy trends of models over training epochs (up to 150 rounds) on ISCAS85 dataset 

 
As shown in Figure 6, the accuracy of each model on 

the ISCAS85 dataset changes with the number of training 

rounds. Due to the fixed rules, the accuracy of the R-BM 

model is close to the final value at the beginning of training, 

and the subsequent growth is extremely slow, from 42.5% 

in the 10th round to only 45.3% in the 150th round. The 

accuracy of the SVM and DT models gradually increases 

with the number of training rounds, but the increase is 

limited. SVM increases from 60.3% in the 10th round to 

68.2% in the 150th round, and DT increases from 58.9% 

in the 10th round to 65.8% in the 150th round. The 

accuracy of the CNN model increases relatively quickly, 

and it can learn data features well during training, but there 

is still a gap with T-GNN. The T-GNN model has a high 

accuracy at the beginning of training, and continues to 

improve rapidly with the increase in the number of training 

rounds, showing a strong learning ability, and can more 

efficiently mine effective information from the data to 

improve the prediction accuracy.  

 

 

 

 

 

 

Table 1: Comparison of the accuracy of different 

models for different types of timing violations (setup 

time violation, hold time violation) on the ISCAS89 

dataset 

 
Model Setup time 

violation 

accuracy 

(%) 

Hold time 

violation 

accuracy 

(%) 

Average 

accuracy 

(%) 

R - BM 41.8 44.4 43.1 

SVM 64.5 69.1 66.8 

DT 62.3 66.1 64.2 

CNN 78.6 82.0 80.3 

T - GNN 89.4 92.0 90.7 
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Table 1 shows the prediction accuracy of different 

models for two common types of timing violations, setup 

time violation and hold time violation, on the ISCAS89 

dataset. The R-BM model has an accuracy of 41.8% for 

setup time violation and 44.4% for hold time violation, 

with an average accuracy of 43.1%. Its rules are difficult 

to accurately adapt to the complex characteristics of 

different types of timing violations, resulting in poor 

prediction results. The SVM and DT models have different 

accuracies for different types of violations, but the overall 

improvement is limited. The CNN model performs 

relatively well in dealing with different types of timing 

violations, but its ability is still limited for complex timing 

violation situations. The T-GNN model shows high 

accuracy for both setup time violation and hold time 

violation, which are 89.4% and 92.0% respectively, with 

an average accuracy of 90.7%. This shows that the T-GNN 

model can effectively capture the complex characteristics 

contained in different types of timing violations and has 

significant advantages in predicting various types of 

timing violations. 

 

Table 2: Comparison of F1 values of different models 

on the ISCAS85 dataset as the amount of data changes 

 
Model 20% 

data 

volume 

F1 value 

(%) 

40% 

data 

volume 

F1 value 

(%) 

60% 

data 

volume 

F1 value 

(%) 

80% 

data 

volume 

F1 value 

(%) 

100% 

data 

volume 

F1 value 

(%) 

R - BM 38.2 42.5 45.1 46.5 46.9 

SVM 55.6 62.4 67.1 68.9 69.3 

DT 52.8 60.2 64.7 66.1 66.5 

CNN 70.3 76.5 80.1 80.6 80.8 

T - GNN 80.5 86.7 89.4 90.3 90.8 

 
Table 2 shows the changes in F1 values of different 

models on the ISCAS85 dataset as the amount of data 

gradually increases. The R-BM model has its limitations 

when the amount of data is small due to its reliance on 

fixed rules, and its F1 value is only 38.2%. Even if the 

amount of data increases to 100%, the F1 value only 

increases to 46.9%, indicating that its utilization efficiency 

of the amount of data is extremely low. The F1 values of 

the SVM and DT models increase to a certain extent as the 

amount of data increases, but the amplitude is limited, 

reflecting that the traditional machine learning algorithm 

is not capable of learning features when processing a small 

amount of data, and the performance improvement is 

relatively slow as the amount of data increases. The F1 

value of the CNN model increases relatively significantly 

as the amount of data changes, from 70.3% at 20% of the 

data to 80.8% at 100% of the data, indicating that it is more 

sensitive to the increase in data volume and can learn 

richer features with more data. The T-GNN model 

performed the best, with an F1 value of 80.5% at 20% of 

the data volume, and maintained a high F1 value as the 

data volume increased, reaching 90.8% at 100% of the data 

volume. This reflects the powerful learning ability of the 

T-GNN model, which can effectively mine useful 

information in the data under different data volume 

conditions, and can achieve good prediction performance 

even with limited data volume.  

 

Table 3: Comparison of recall rates of different models 

on ISCAS89 dataset for different critical paths (long 

critical path, short critical path) 

 

Model Long critical 

path recall 

rate (%) 

Short critical 

path recall 

rate (%) 

Average 

recall (%) 

R - BM 39.6 52.8 46.2 

SVM 62.3 75.9 69.1 

DT 59.7 71.9 65.8 

CNN 76.4 81.4 78.9 

T - GNN 87.1 92.5 89.8 

 
Table 3 compares the recall rates of different models 

for long and short critical paths on the ISCAS89 dataset. 

Due to the long signal transmission delay and many 

interference factors, it is difficult to detect timing 

violations on long critical paths  short critical paths are 

relatively simple, but the model also needs to have 

accurate detection capabilities. The recall rate of the R-BM 

model for long critical paths is only 39.6%, and the recall 

rate for short critical paths is 52.8%, with an average recall 

rate of 46.2%. Its rules are difficult to cover the complex 

timing conditions on the critical paths, resulting in a large 

number of timing violation samples being missed. The 

recall rates of the SVM and DT models on long critical 

paths are 62.3% and 59.7%, respectively, and they perform 

slightly better on short critical paths, but the overall 

average recall rate is limited. The recall rate of the CNN 

model on long critical paths is 76.4%, and on short critical 

paths is 81.4%, showing that it has certain capabilities in 

processing critical path-related timing information, but 

there are still deficiencies. The recall rate of the T-GNN 

model in the long critical path is 87.1%, the recall rate of 

the short critical path is as high as 92.5%, and the average 
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recall rate is 89.8%. This shows that the T-GNN model can 

effectively analyze the timing characteristics of different 

types of critical paths, whether it is a complex long critical 

path or a relatively simple short critical path, it can 

accurately detect samples with timing violations, greatly 

improving the detection performance of the critical path.  

To evaluate the effect of the customized edge 

weighting in Formula (15), we conducted an ablation 

study by replacing the adaptive weight 

1

( , )
uvw

d u v
=   with uniform weights ( 1uvw = ). The 

results are summarized in Table X. On the ISCAS85 

dataset, T-GNN with customized edge weighting achieved 

91.2% accuracy and 90.5% recall, compared with 88.7% 

accuracy and 87.9% recall under uniform weights. On 

ISCAS89, the accuracy decreased from 90.7% to 88.2% 

without customized weighting. These results confirm that 

edge weighting contributes an improvement of about 2–3% 

in both accuracy and recall, demonstrating its importance 

in effectively capturing timing-related structural 

information. 

 

Table 4: Comparison of the generalization ability of 

different models on cross-datasets (from ISCAS85 to 

ISCAS89) (taking accuracy as an example) 

 
Model Accuracy (%) 

after training on 

ISCAS85 and 

testing on 

ISCAS89 

Accuracy (%) 

after training 

on ISCAS89 

and testing on 

ISCAS85 

Average 

accuracy 

(%) 

R - BM 41.2 44.0 42.6 

SVM 64.5 68.0 66.2 

DT 62.1 66.3 64.2 

CNN 78.3 82.3 80.3 

T - GNN 88.9 92.5 90.7 

Table 4 reflects the generalization ability of different 

models in cross-dataset scenarios, and evaluates them with 

accuracy as an indicator. In practical applications, the 

generalization ability of the model is crucial, that is, the 

performance of the model on unseen data. Due to the lack 

of flexibility in the rules, the R-BM model has an accuracy 

of only 41.2% in the ISCAS89 test after ISCAS85 training, 

and 44.0% in the ISCAS85 test after ISCAS89 training, 

with an average accuracy of 42.6%, indicating that its 

generalization ability is extremely poor and it is difficult 

to adapt to the differences of different data sets. Although 

the accuracy of the SVM and DT models has improved in 

the cross-dataset test, the increase is not large, with an 

average accuracy of 66.2% and 64.2% respectively, 

indicating that traditional machine learning algorithms 

have certain limitations in generalization. The CNN model 

performed relatively well in the cross-dataset test, with an 

average accuracy of 80.3%, showing a certain 

generalization ability. The T-GNN model showed 

excellent generalization ability, with an accuracy of 88.9% 

in the ISCAS89 test after ISCAS85 training, and 92.5% in 

the ISCAS85 test after ISCAS89 training, with an average 

accuracy of 90.7%. This means that the T-GNN model can 

learn the universal features in the prediction of digital 

integrated circuit timing violations, is not limited to the 

characteristics of a specific data set, and has good 

transferability between different data sets, providing a 

strong guarantee for processing diverse digital integrated 

circuit data in practical applications. 

In the generalization tests summarized in Table 4, the 

model was directly applied to unseen circuits without any 

transfer learning or fine-tuning, ensuring that the results 

strictly reflect out-of-distribution generalization capability. 

Each experiment was repeated five times with different 

random seeds, and the mean values with standard 

deviations are reported. To confirm the reliability of the 

performance improvements, paired t-tests were conducted 

between T-GNN and the strongest baseline (CNN). Results 

show that the accuracy and recall improvements of T-GNN 

are statistically significant (p < 0.01) on both ISCAS85 

and ISCAS89 datasets. These findings verify that the 

observed gains are not due to random fluctuations but 

represent consistent, statistically validated improvements 

in generalization. 



Timing Violation Prediction in Digital Integrated Circuits…                                                      Informatica 49 (2025) 235–254    251 

 

 
Figure 7: Simulated timing violation data of different modules over 10 consecutive days (used for evaluating T-GNN 

prediction performance). 

 

Figure 7. Simulated timing violation counts of five 

representative modules (ALU, Register File, Control Unit, 

Memory Interface, and Clock Tree) over 10 consecutive 

days (March 1–10, 2025). The dataset was synthetically 

generated for evaluating T-GNN prediction performance. 

The x-axis denotes time (days), and the y-axis denotes the 

number of violations. 

Figure 7 shows the visualization of the timing 

violation prediction results of different modules in a digital 

integrated circuit (Digital IC) over a period of time. By 

showing the number of timing violations of each module 

over time, it helps us to intuitively understand the 

performance and potential risks of these modules. The data 

simulates the timing violations of multiple key modules in 

digital integrated circuits for 10 consecutive days starting 

from March 1, 2025. This provides a data basis for us to 

analyze the stability and performance changes of these 

modules in the short term. There are five key modules 

involved in the figure, namely the arithmetic logic unit 

(ALU), register file, control unit, memory interface and 

clock tree. These modules play a vital role in digital 

integrated circuits, and their timing violations will directly 

affect the performance and stability of the entire circuit. 

 

4.3 Experimental discussion 
The experimental results strongly support the research 

hypothesis that the digital integrated circuit timing 

violation prediction method based on the timing graph 

neural network can significantly improve the prediction 

performance. The T-GNN model significantly surpasses 

the traditional rule-based and traditional machine learning 

methods, as well as the convolutional neural network 

method in all indicators. Its advantages come from the 

unique graph structure design and the LSTM unit’s 

effective capture of time series and long-term 

dependencies, which enables the model to have a deeper 

understanding of the complex timing information in digital 

integrated circuits. 

To better situate our approach within existing research, 

Table 1 in Section 2 summarized prior methods. Compared 

with rule-based and machine learning approaches, T-GNN 

achieves over 20% higher accuracy because it avoids rigid 

timing rules and instead leverages graph structures to 

flexibly encode circuit topology. Compared with CNN-

based methods, T-GNN improves accuracy by nearly 10% 

on ISCAS benchmarks. This gap arises because CNN 

captures only local spatial patterns, whereas T-GNN 

captures both global topological relationships and long-

term dependencies through its LSTM integration. 

Compared with earlier GNN studies that model topology 

without temporal features, T-GNN achieves superior recall 

and robustness by explicitly modeling sequential timing 

states. 

A deeper analysis of generalization shows that T-GNN 

consistently maintains accuracy above 90% across 

different circuit sizes, from small modules with fewer than 

100 gates to large-scale circuits with thousands of gates. 

This scalability comes from the graph convolution’s 

ability to aggregate multi-hop neighborhood information 

without requiring a fixed grid structure, combined with the 

LSTM’s ability to retain critical timing sequences over 

long propagation paths. Consequently, T-GNN not only 

performs well on the ISCAS85 and ISCAS89 datasets but 

also demonstrates promising adaptability for modern, 

much larger integrated circuits. 

The superior performance of the T-GNN model 

compared to CNN and other feature-based methods can be 

explained by its ability to jointly capture circuit topology 

and temporal dynamics. While CNN can extract local 
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spatial features, it treats the circuit as grid-like data and 

cannot fully represent the irregular connections between 

logic gates and registers. By contrast, the graph structure 

directly encodes the true circuit topology, allowing more 

precise aggregation of node information. Furthermore, the 

integration of LSTM units enables the model to learn long-

term dependencies in timing sequences, which traditional 

CNN or decision tree methods fail to capture. This 

combination of structural awareness and temporal 

modeling is the key reason why the T-GNN achieves 

consistently higher accuracy and recall in predicting 

timing violations. 

In terms of scalability, the proposed T-GNN method is 

designed to handle large and complex circuits by 

leveraging efficient graph convolution operations and 

parallelized LSTM computations. Although training 

requires more memory than traditional models due to 

storing hidden states, the time complexity grows 

approximately linearly with the number of nodes and 

edges, which makes the approach feasible for large-scale 

circuits. Compared with CNN-based methods, T-GNN 

reduces redundant computation by operating directly on 

the circuit graph rather than transforming it into a grid, 

leading to faster convergence. In our experiments, the 

training time per epoch for T-GNN was about 1.3 times 

that of CNN, but the inference phase was only marginally 

slower (within 10%) while delivering much higher 

accuracy. Memory requirements are manageable on 

standard GPU devices with 24 GB memory, and sampling 

strategies can further reduce resource consumption. These 

results suggest that the T-GNN model is scalable and 

practical for predicting timing violations in modern large-

scale integrated circuits. 

Beyond scalability, robustness and adaptability are 

also important for practical deployment. Traditional 

control methods, such as adaptive fuzzy control, robust 

neural adaptive control, backstepping strategies, and 

nonlinear optimal control, have been widely applied to 

handle uncertainty and complexity in nonlinear dynamic 

systems. Inspired by these methods, the T-GNN approach 

could be further strengthened by integrating adaptive 

mechanisms to adjust prediction thresholds dynamically, 

or by incorporating fuzzy logic to improve tolerance 

against process variations and noise. Similarly, principles 

from nonlinear optimal control could help balance 

accuracy and computational efficiency in very large-scale 

circuits. These directions point to promising opportunities 

for enhancing the robustness of T-GNN and broadening its 

applicability in industrial scenarios. 

From the perspective of external validity and 

generalizability, this experiment uses an internationally 

accepted standard test set, covering circuit examples of 

various scales and complexities, and is tested in simulated 

real-world scenarios such as different noise interference. 

The T-GNN model has shown strong performance in these 

diverse scenarios, which indicates promising 

generalization and suggests potential for application in the 

design and deployment of digital integrated circuits. 

However, the experiment also has certain limitations. For 

example, although the experimental data set is 

representative, digital integrated circuits in actual 

applications may have more complex structures and noise 

environments, and the performance of the model in 

extremely complex situations remains to be further 

verified. In addition, the computational complexity of the 

model is relatively high, and further optimization may be 

required to improve computational efficiency when 

dealing with ultra-large-scale circuits. Future research can 

focus on expanding the diversity of data sets, introducing 

adaptive or fuzzy enhancements, and exploring more 

efficient model optimization strategies to further improve 

performance and adaptability in practical applications. 

In terms of robustness, the experimental results under 

different noise levels (Figure 5) demonstrate that the T-

GNN maintains high accuracy and recall, showing 

stronger resistance to noise interference compared with 

traditional models. This indicates that the method is 

relatively stable under process variations and can 

generalize well to circuits with different levels of 

uncertainty. Regarding interpretability, the node-level 

prediction mechanism allows the model to assign timing 

violation probabilities to individual components such as 

registers, logic gates, or critical paths. By visualizing these 

probability distributions, designers can identify which 

parts of the circuit are most likely to encounter violations 

and prioritize them in optimization. This feature provides 

not only accurate prediction but also actionable insights 

for practical circuit design and debugging. 

 

5 Conclusion 
In today's digital age, digital integrated circuits are the 

core of many electronic devices, and the continuous 

expansion of their design scale has led to increasingly 

serious timing violation problems. This issue can cause 

widespread device malfunctions and significant economic 

losses. Traditional prediction methods can no longer meet 

the requirements due to fixed rules and limited capability 

to process time series data. This paper proposes a 

prediction model based on a temporal graph neural 

network, which abstracts circuits into graph structures, 

extracts both structural and temporal features, and applies 

graph convolution layers combined with LSTM units for 

accurate prediction. Experimental results on the ISCAS85 

and ISCAS89 datasets show that the proposed method 

achieves accuracy above 90%, significantly outperforming 

rule-based, traditional machine learning, and CNN 

methods. At the theoretical level, this study enriches 

digital integrated circuit timing analysis, and at the 

practical level, it offers a feasible way to reduce device 

failure risks, improve product quality, and enhance R&D 

efficiency in digital integrated circuit design and 

application. 
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