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This study presents a data-driven framework for predicting the punching shear resistance (Vn) associated
with failure modes (FMs) in reinforced concrete (RC) slab-column connections with shear reinforcement.
A curated database of 327 experimental tests was compiled, incorporating nine critical input parameters
related to the punching shear mechanism. The dataset was divided into training (70%), validation (15%),
and testing (15%) subsets to construct, tune, and assess the predictive models. Two machine learning
approaches—random forests (RF) and adaptive neuro-fuzzy inference system (ANFIS)—were optimized
using the Prairie Dog Algorithm (PDA) to enhance hyperparameter selection. Model performance was
evaluated using statistical indicators including the coefficient of determination (R?), root mean square
error (RMSE), and mean absolute error (MAE). Results demonstrate that both RF-PDA and ANFIS-PDA
achieved high predictive accuracy, with ANFIS-PDA marginally outperforming RF-PDA (R2 = 0.9893,
RMSE = 0.0666 on the test set) compared to RF-PDA (R2 = 0.9753, RMSE = 0.1057). Comparative
analysis against existing baseline models further confirmed the superiority of the proposed hybrid
approaches. These findings highlight the potential of metaheuristic-optimized machine learning schemes
as reliable tools for evaluating the punching shear resistance of RC slab-column connections.

Povzetek: Studija pokaze, da napredni modeli strojnega ucenja omogocajo zelo zanesljivo napoved

prebojne strizne nosilnosti armiranobetonskih ploséa—steber spojev.

1 Introduction

Smooth slabs are commonly preferred in the design and
building of Reinforced Concrete (RC) constructions
because of their economic viability and optimal
performance [1], [2]. These slabs are positioned
immediately above the pillars, obviating the necessity for
beams and facilitating a more direct transfer of bars from
the slab to the pillars. The absence of beams offers several
advantages, including reduced construction height,
seamless integration of vertical shafts, improved layout
flexibility,  optimized improvement  placement,
accelerated construction timeline, and effective form
design [3], [4]. The configuration of a smooth slab is
predominantly influenced by the structural response of
slabs and foundations to concentrated loads, leading to
shear failure near the slab and pillar's junction, resulting
from elevated shear powers. The profound incursion of
forces causes an entire decrease of shear strength at the
intersection between the slab and pillar, resulting in an
abrupt and fragile rupture of this connection [5]. This
defeat subsequently initiates a redistribution of bars onto
adjacent structural elements, potentially resulting in a
cascading chain of failures. Assessing the failure
mechanism of structural components such as slabs and

foundations subjected to shear from concentrated stresses
in smooth slabs is a complex endeavor, since it
encompasses nhumerous aspects, including excessive
reinforcement bars and inadequate cementitious
composite strength [6], insufficient slab width [7], lack of
shear enhancement [8], tiny pillar tops, and substandard
construction practices. These agents must be thoroughly
examined to accurately gauge the smooth slabs'
performance and integrity. Several experimental
techniques have been utilized to formulate technical
specifications [9]. The current experimental methods [10],
[11], [12] have been derived from empirical data through
forecasting. The efficacy of their function depends on the
particular data foundation employed to compute the
structural reaction of slabs and foundations to
concentrated loads, resulting in shear failure. The
experimental ~ methodologies  have  demonstrated
inconsistencies in their results, resulting in either the
underestimate or overestimation of the structural response
of slabs and foundations to concentrated loads,
culminating in shear failure [13]. Numerous
methodologies are available for evaluating an FM in
structural components, including slabs and foundations,
subjected to shear from concentrated loads, as well as the
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efficacy of smooth slabs; yet, these methods are
constrained to certain scenarios. Machine learning (ML)
methodologies can be utilized to address the issues
inherent in experimental approaches [14], [15], [16], [17],
[18], [19], [20], [21]. Scholars have employed artificial
neural networks (ANNs) in forecasting the loading
capability of enhanced cement-based composite
components [22], elucidating the flexible properties of
ordinary also great-resistance cement-based composite
[23], examining the constructional characteristics of slabs
[13], estimating the maximum power of beams [24],
anticipating the grooving function of asphalt
combinations with steel slag aggregates [20], and
projecting the conduct of shear fasteners in cement-based
composite [25]. ANN architectures have shown impressive
efficacy in evaluating the operational capabilities of
diverse constructional elements. ANNs have been
successfully employed to estimate the loading capability
of constructional members, such as the resistance
estimation of enhanced cement-based composite beams
[26], also pillars [27], [28], [29]. Nonetheless, ANNs face
difficulties with regional enhancement, which may
obstruct comprehensive data collection and analysis,
resulting in erroneous estimations. Improving the
performance of an artificial neural network can be
accomplished by employing heuristic methods. Heuristic
processes have substantial advantages over artificial
neural networks, including their ability to optimize
network weights through refinement and their proficiency
in circumventing local minima and managing multivariate
challenges [30].

The cohesion of RC beams has been forecasted using
a combined technique that mixed Adaptive Neuro Fuzzy
Inference System (ANFIS) with a genetic procedure and
particle congestion enhancement [31]. The integrated
technique shown enhanced accuracy in assessing
cohesiveness relative to individual procedures. A separate
research study employed a sophisticated Bat ANN to
predict the structural response of slabs and foundations to
concentrated loads, resulting in shear failure, and the
resistance of reinforced concrete smooth slabs devoid of
shear improvements [32]. The study examined 30 unique
configurations of the model to identify the most precise
estimation scheme with reduced faults and the greatest R?
quantities. Concha et al. [33] utilized a mixture of neural
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network and particle congestion enhancement to forecast
the cohesion of the iron-enhanced agent RC deep beams
[34]. The blended technique precisely estimated the
resistance of an iron-reinforced cement-based composite
deep beam, showcasing a robust correlation coefficient of
0.997. These composite forecasting approaches are
reliable for estimating structural performance and have
proven valuable in civil engineering applications. Sandeep
and colleagues [35] employed ML tactics to forecast the
cohesion of RC beams. The scholars utilized the atom
search optimizer (ASO) procedure in conjunction with a
neural network to make forecasts regarding the cohesion
of beams. The outcomes were subsequently compared
with the forecasted outcomes of different combined and
independent techniques, such as ANN, Genetic Algorithm
(GA) and Support Vector Machine (SVM).

A recent study underscores the extensive utilization of
machine learning in engineering, encompassing crack
identification in concrete via GCN — GLCM models with
an accuracy of 98.99%, as well as intrusion detection and
economic forecasting [36], [37]. Machine learning-based
surrogate models in structural analysis attained R2 values
of 0.996 with a limited number of sensors [38], [39]. These
results validate the efficacy of AI in improving accuracy
and efficiency while encouraging the implementation of
hybrid metaheuristic-optimized models such as PDA-
based RF and ANFIS in this research.

The principal objective of this project is to create and
validate a hybrid, data-driven framework for precisely
forecasting the punched shear strength of reinforced
concrete  slab-column  connections  with  shear
reinforcement. Consequently, two machine learning
algorithms, RF and ANFIS are combined with a
metaheuristic  optimizer, the PDA, to improve
hyperparameter tweaking and model efficacy. The present
research indicates that metaheuristic optimization (via
PDA) markedly enhanced the learning accuracy and
resilience of RF and ANFIS models, rendering them more
dependable instruments for forecasting punch shear
resistance. The effective depth of the slab, together with
the specifications of reinforcement and concrete strength,
are variables that influence punch shear resistance as input
factors.

Table 1. provides a summary of previous studies
related to the topic of this article.

Table 1: A comparative summary of related works

Dataset Method(s) . Lo )
Study Size Used Domain Optimization R RMSE
RC
ol Zg‘gn?;g 150 ANN design X 0.89 0.21
-( ) prediction
Faridmehr RC slabs /B
etal. (2022) 180 Bat-ANN (no Aot a 0.92 0.19
[32] reinforcement) gorithm
Steel
Concha et ANN + .
250 fiber deep v PSO 0.94 0.17
al. (2023) [33] PSO beams
Sandeep et ANN, RC beam v ASO +
al. (2023) [36] 300 SVM, PSO shear strength others 0.95 0.16
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Lietal. ANFIS- Concrete
(2023) [35] 200 GA-PSO beam shear v GA-PSO 0.9 0.15
Karimipour
et al. (2021) 120 ANN GFRP X 0.91 0.22
RC columns
[27]
RF + PDA RC slabs ..
This Study 327 / ANFIS + with shear | XI Pravie ( A,\?'fé? 0.0666
PDA reinforcement 0g Algorithm

Table. 1 presents a comparative overview of the most
pertinent prior research in the field of shear strength
estimation. Previous models have primarily concentrated
on unreinforced slabs or specialized components like
beams, with only a limited number integrating
metaheuristic optimization. Significantly, none have
incorporated the PDA algorithm with ANFIS or RF for
forecasting punching shear strength in reinforced concrete
slab-column connections. This study seeks to address this
gap by creating PDA-optimized hybrid models that exhibit
enhanced predictive performance and generalization.

1.1 Objective of the present study

Slabs supported directly on columns without beams are
known as RC slab-column connections, and they
demonstrate a straightforward construction method. To
date, relatively few publications have been created to
describe the punching shear resistance (1;,) linked to FMs
in slab-column connections with shear reinforcement
utilizing machine learning techniques. The present work
presents a data-driven model that forecasts the V, linked to
FMs in slab-column connections that include shear
reinforcement. To determine the 1;, several machine
learning methods that drew inspiration from fuzzy and
tree-based methods were created throughout the
investigation. The tree-based Random Forests (RF)
paradigm and the ANFIS paradigms were heavily
considered during this exploration. Two well-established
and reliable models were used for estimation: RF and
ANFIS. Employing a computational database of 327 test
results, nine input variables corresponding to the punching
shear mechanism are discovered. Throughout the
application of RF and ANFIS techniques that the
application of metaheuristic methodologies has refined,
the project seeks to provide structural engineers with a
more dependable tool for designing reinforced concrete
structures that are safer and more effective. With a greater
capacity to predict occurrences, choices about the
evaluation and design of buildings may be made more
effectively, minimizing errors and maximizing resource
use during construction.
This document is organized as follows:
e Dataset description and pre-processing are
presented in Part 2.
e Part 3 presents a description of the prairie dog
algorithm (PDA).
e In Part 4, the prediction models (Hybrid
Process and Base) are determined.
e The study's applicable indicators are
presented in Part 5.

e Outcomes and explanations are presented in
Part 6.
e Remarks are discussed in Section 7.

2 Dataset
process

The provided text presents a comprehensive analysis of
the literature exploring the punching resistance and FMs
in slab-column connections with various shear
reinforcement configurations. The study utilized a dataset
of 327 experimental data points from multiple sources to
develop comparative models that offer deeper insights into
the factors affecting the punching resistance of reinforced
concrete slabs [40], [41], [42], [43], [44], [45], [46], [47],
[48], [49], [50]. The research emphasizes the importance
of meticulous data selection and curation to guarantee the
quality and representativeness of the database. The
researchers gathered independent experimental samples of
two-way RC slabs with shear reinforcement, establishing
a reliable database for developing predictive schemes.
Incorporating high-fidelity experimental data is crucial for
creating data-driven schemes that accurately depict the
complex behavior of RC structures under punching shear.
By integrating insights from the literature review and
experimental data, the researchers successfully developed
comparative schemes highlighting the critical factors
influencing punching resistance, contributing to the
progress of civil engineering. The database of 327
laboratory tests was meticulously trained and validated to
ensure the highest data quality and reliability. The
researchers implemented a rigorous data partitioning
strategy, allocating 70% (231 data rows) for training, 15%
(48 data rows) for validation, and 15% (48 data rows) for
testing, enabling a comprehensive assessment of the
schemes' performance and generalization capabilities. The
evaluation metrics, including minimum, maximum,
standard deviation, kurtosis, range, mean, and median,
were analyzed using the non-normalized data, offering
key understandings into the statistical properties of the
database. In addition to the 70/15/15 partitioning, we
conducted a Kolmogorov—Smirnov (KS) test to
statistically confirm that the training, validation, and
testing subsets were drawn from the same underlying
distribution. This ensured that the models were evaluated
on representative and non-biased samples, thereby
reducing the risk of overfitting to specific subsets.

The parameters examined include the slab's adequate
depth, radial distance from column face to bearing point,
equivalent width of a column, ratio of flexural
reinforcements,  cross-sectional domain of shear
reinforcement within column face, concrete compression

description and pre-
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strength, yield strength of flexural reinforcement, yield
strength of shear bar, failure mode of slabs, and punching
resistance. Overall, the research presents a meticulous and
comprehensive literature analysis, emphasizing the
importance of high-quality experimental data and rigorous
data analysis for developing accurate predictive schemes
for RC structures and punching resistance. Table 2
showcases the statistical analysis of 9 inputs and one
output to project punching resistance of the slab-column
connections, such as min, max, range, average, skewness,
kurtosis, and standard deviation. As can be seen, d, a, c,
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Pt» Aswar fier fys fysw, FM and V,, are slab’s adequate
depth, radial distance from column face to the bearing
point, equivalent width of a column, ratio of flexural
reinforcements, cross-sectional domain of the shear
reinforcement within the column face d, concrete
compression strength, yield strength of the flexural
reinforcement, yield strength of the shear bar, failure
mode of the slabs (B,,, =0, P, =1, and P,,; = 2) and
punching resistance, respectively.

Table 2: Statistical descriptions of attributes introduced to models for estimating V}, as target

Attributes
Input Output
Phase | Index a d c ot Agwd fic f, fy sw FM |V,
m m m % cm? MPa MPa MPa - MN
Min. 0.0568 | 0.0825 | 0.0354 | 0.335 | 1 13.3 270 208 0 0.147
Max. 1.435 | 0.474 | 0.52 3.02 53.4 92.4 917 1100 2 3.132
Range | 1.3782 | 0.3915 | 0.4846 | 2.685 | 52.4 79.1 647 892 2 2.985
Avg. 0.861 | 0.162 | 0.237 | 1.209 | 12.859 | 34.413 | 521.608 | 481.974 | 1.048 | 0.907
St.D. 0.271 | 0.054 | 0.078 | 0.477 | 9.897 | 13.069 | 108.353 | 145.129 | 0.627 | 0.549
£ Kurt. 0.121 | 5.045 | 0.430 | 2.161 | 3.254 | 3.790 3.211 4.692 -0.451 | 1.108
= Skew. |-0.472 | 1.608 | 0.230 | 1.111 | 1.696 | 1.743 1.080 1.427 -0.035 | 1.181
Min. 0.175 | 0.1 0.106 | 0.335 | 1.56 13.9 270 280 0 0.259
Max. 1.784 | 0.469 | 0.45 3.02 101.79 | 66.15 889 900 2 3.35
Range | 1.609 | 0.369 | 0.344 | 2.685 | 100.23 | 52.25 619 620 2 3.091
Avg. 0.877 | 0.166 | 0.237 | 1.111 | 16.928 | 31.948 | 525.334 | 481.775 | 1.020 | 0.927
g St.D. 0.303 | 0.069 | 0.070 | 0.427 | 19.070 | 10.131 | 108.296 | 141.162 | 0.654 | 0.676
= Kurt. 0.835 | 7.154 | 0.459 | 7.133 | 10.759 | 2.215 1.572 -0.027 -0.605 | 3.436
S Skew. | 0.103 |2285 |0.228 | 1.645 | 2.956 | 1.279 0.595 0.627 -0.021 | 1.722
Min. 0.175 | 0.0825 | 0.0895 | 0.335 | 1.46 14.6 278 278 0 0.144
Max. 1.784 | 0.474 | 0.45 2.72 81.43 | 91.3 917 709 2 3.08
Range | 1.609 | 0.3915 | 0.3605 | 2.385 | 79.97 | 76.7 639 431 2 2.936
Avg. 0.852 | 0.181 | 0.248 | 1.089 | 15.899 | 34.015 | 563.255 | 473.916 | 0.917 | 1.014
St.D. 0.311 0.077 0.081 0.405 | 14521 | 15.229 | 121.934 | 124.029 | 0.571 0.617
- Kurt. 0.956 | 3.580 | -0.207 | 4.073 | 7.609 | 5.366 2.035 -1.110 0.133 | 1.494
it Skew. | 0.175 | 0.0825 | 0.0895 | 0.335 | 1.46 14.6 278 278 0 0.144

The provided images present a series of bar and
normal distribution charts depicting the results of an
exploration on punching shear strength of slab-column
connections, as shown in Fig. 1. These visualizations
appear to be generated from a database that was split into
three phases: train, validation, and test. The charts display
the distribution of various parameters, such as d, a, c, p,
Agw,d, fic, £y, £y 5w, FM, and Vy,, across the different phases
of the study. The color-coding and layout of the charts
indicate a comprehensive database analysis to understand
the relationships and patterns within the data. The detailed
data visualizations presented in these charts offer valuable
insights for developing estimation algorithms to project

the punching shear strength of slab-column connections.
The distributions of key parameters and their relationships
can inform the choice of suitable simulation tactics and
feature engineering strategies. The clear separation of the
data into training, validation, and testing phases further
suggests a structured approach to model development and
evaluation, which is pivotal for ensuring the robustness
and generalizability of the estimation algorithms. These
visualizations can serve as a foundation for further data
analysis, feature selection, and implementing advanced
machine learning or statistical modeling tactics to project
the punching shear strength of slab-column connections
precisely.
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Figure 1: Normal distribution plots of attributes in three phases and V}, as target

Spearman correlation is a non-parametric measure of
rank correlation that examines the monotonic link between
two variables. Unlike the Pearson correlation, which
gauges the linear link, Spearman correlation evaluates the
strength and direction of the association between
variables, drawing on their ranked positions rather than
their true values. This makes Spearman correlation more
robust to outliers and non-linear relationships. Regarding
the provided figure, it appears to be a correlation matrix
displaying the Spearman correlation coefficients between
various variables. The matrix is color-coded, with the
color and intensity indicating the strength and direction of
the correlations. Typically, a correlation coefficient varies
from -1 to 1, where -1 showcases a robust negative
correlation, 0 showcases no correlation, and 1 showcases
a robust positive correlation. The specific variables and
meanings are unclear from the image alone, but the matrix
visually showcases their links. The correlation matrix in
Fig. 2 showcases low to strong correlations that could have
significant implications for constructing a practical
artificial intelligence (AI) model. One noteworthy finding

is the strong positive correlation (0.85) between the
variables V,, and d, indicating a close relationship between
these parameters. This reveals that shifts in one variable
tend to correspond with shifts in the other, which can be
leveraged to enhance the model's predictive capabilities.
Another significant correlation is the relatively low
negative relationship (-0.35) between the variables d and
FM, indicating an inverse relationship where a rise in one
variable results in a drop in the other. Understanding this
dynamic can help the AI model capture underlying
patterns in the data, potentially leading to more accurate
predictions and a more robust model. Additionally, the
matrix reveals a moderate positive correlation (0.57)
between the variables V,, and c, suggesting that the Al
model can be utilized to enhance its understanding of the
system and improve its overall performance. By carefully
analyzing the Spearman correlation coefficient matrix,
researchers can identify the most influential variables and
their relationships, which can then be incorporated into the
design and training of the Al model to reflect the
multifaceted interactions between the metrics better and
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ultimately boost the scheme's accuracy, interpretability,
and overall effectiveness. The visual representation of the
correlation matrix provides a clear and concise way to
understand the relationships between the variables,
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making it a helpful tool for both researchers and Al model
developers to build more effective schemes.
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Figure 2: Correlation matrix values via Spearman analysis

3 Prairie dog algorithm (PDA)

Prairie Dog algorithm (PDA) is an innovative method that
draws imagination from the natural conduct of grassland
dogs (Fig. 3). This strategy is designed to efficiently
ascertain the optimal resolution for a certain enhancement
issue [51]. Prairie dogs display a behavioral pattern
characterized by emerging from their burrows, traversing
to different locations, and subsequently returning to their
subterranean habitats. In the prairie dog's enhancement
strategy, a collection of probable solutions is utilized to
identify the optimal resolution for a particular issue. These
prospective resolutions are perpetually refined and
developed to ascertain the enhanced resolution.

The Prairie dog population comprises n individuals
(PDs) grouped into m cliques. Each PD operates as a
component of a collective within its designated groups.
Consequently, a vector can represent the status of the ith
PD within a specific clique. Formula (1) demonstrates the
matrix representation of the locations of all groups (CT's)
within the group.

CTy, CTy, CTyq
CTyy CTyp CT,q

CT =| .. (1)
CTyny CTpo CTma

The notation CT i; j represents the jth size of the ith
group inside the population. Formula (2) depicts the
arrangement of all the prairie dogs inside a group.

PD,, PD,, PD; 4
PD,, PD,, PD, 4

PD =] .. )
PD,, PDy,, PDp 4

P Di; j showcases the jth coordinate of the ith
grassland dog in a group, with n also m being unique
variables. The distribution of group and prairie dog
situations is achieved through a uniform allocation, as
illustrated in Formulas (1) & (2).

CT i; j = U(0,1) x (UB; — LB;) + LB; ®)
P Di; j =U(0,1) x (UB; — LB;) + LB; @)

The notations UB; & LB;are used to signify the
maximum & minimum limits of the jth size in an
improvement dilemma. The highest limit UB; is computed
as UB; /m, whereas the least limit LB; is established as
LB; /m. The notation U(0,1) signifies an accidental value
produced with an even allocation ranging from 0 to 1.

The prairie dog improvement method modifies its
approach by alternating between discovery & utilization,
drawing on four specific situations. The whole value of
repetitions is segmented into four divisions, with the first
two focused on discovery and the final two on utilization.
The investigation is additionally segmented into two
approaches, ascertained by the criteria iter < Maxiter/4
& Maxiter/4 < iter < Maxiter/2. The utilization is
likewise split into two approaches, regulated by the
criteria Maxiter/2 < iter < 3Maxiter/4 & 3Maxiter/
4 < iter < Maxiter.

Discovery stage

Assessing the typicality of potential power resources
is conducted, leading to the optimal choice for searching
purposes. The typicality of the chosen power resources
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influences the decision to construct new underground.
Formula (5) symbolizes the adjustment of situations as
part of the discovery stage in the searching method.
PD;+1,j + 1= G BEST; — eCBESTi,j X p
o ] Maxiter (5)
—CPDi,j X Levy(n)Aiter < —————

The next approach includes examining the caliber of
earlier discovered power supplies and the excavation
capability. Fresh tunnels are subsequently established
according to this excavation ability, which declines as the
count of repetitions uplifts, constraining the count of
tunnels that can be established. Formula (6) illustrates the
modification of places for the tunnel structure.

PDi+1,j + 1 = GBestj,j x rPD x DS

Maxiter Maxiter (6)

X Levy(n)A <iter <

The present optimal resolution achieved on a
universal scale is denoted as G Besti; j, whereas the
influence of the excellent resolution at present is assessed
using eC Besti; j, as illustrated in Formula (7). The power
resource alarm, labeled as g also operating at a constant
frequency of 0.1 kHz, serves as a crucial component in
the ecosystem. The situation of a particular resolution is
symbolized by rPD, while the combined impact of all
prairie dogs within the community is expressed as CPDi; j,
as outlined in Formula (8). The excavation capability of
the group, called DS, depends on the caliber of the power
supply and is stochastically established via Formula (9).
The Levy allocation, denoted as Levy(n), is deployed to
improve the thorough exploration of the issue domain with
greater performance.

eCBesti,j,j = GBesti,j X A
PDi, j x mean(PDn,m) (7
GBest x (UBj — LBj) + A
GBest i,j —rPDi,j

CPDi,j = — 8
J GBest i,j + A ®)
iter
iter 2Maxiter (9)
DS:1.5XrX(1—%>
Maxiter

The factor 'r' introduces unpredictability into the
formula, thereby promoting discovery by alternating
between -1 & 1 depending on the present repetition. When
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the repetition is odd, 'r’ takes the value of -1, whereas, for
even repetitions, 'r'is equal to 1. On the other hand, 'D’
accounts for potential variations among the grassland
dogs, despite the assumption in PDA's execution that all
prairie dogs are identical. In this context, ‘iter’ showcases
the present repetition, while '‘Maxiter’ signifies the highest
permissible value of repetitions.

Utilization stage

The objective of the utilization strategies employed by
PDO is to investigate the promising areas identified in the
discovery phase extensively. Formulas (10) & (11) outline
the two approaches used in this stage. As mentioned
earlier, PDO switches among these two strategies
depending on the situation Maxiter/2 < iter <
3 Maxiter/4 & 3Maxiter/4 < iter < Maxiter, in the
same order.

PDi+1,j+ 1= GBesti,j —eCBesti,j X ¢

o Maxiter
—CPDi,j X randA3 ———— < iter (10)
Maxiter
4
PDi+1,j+ 1 = GBesti,j
Maxiter ] (11)
—PE X randA3 ——— < iter < Maxiter

In this scenario, G Besti; j showcases the present
ideal resolution discovered, also eCBesti; j implies the
influence of the present best resolution obtained.
According to Formula (10), € showcases the goodness of
the nourishment resource, whereas CPDi; j is the
cumulative impact of all grassland dogs in the group, as
explained in Formula (11). The hunter impact, explained
in Formula (12), is denoted by PE, also rand is an
accidentally generated value ranging from 0 to 1.

iter

iter ) Maxiter (12)

PE =15 (1 -

Maxiter

The recent repetition is represented by 'iter’, while the

highest value of repetitions permitted is represented
as 'Maxiter’.

The pseudocode of the PDO algorithm is presented in
Algorithm 1.

Algorithm 1. Pseudocode of the PDO algorithm

Setting up
Adjust the PDO variables: n,m,p, €
Adjust Gbest and Cbest as ¢
Setting up the applicant answers CT and PD
While iter < Max;;,, do

For (i =1tom) do

For (i =1ton)do
Determine the fitness of PD

Revise (Gbest)

PE X randv3% < iter < Max;ie,

Maxiter

Find the ideal answer so far (Chest)

Revise DS and PE using formulas: CPD;; =

Revise CPD; ; using formula: eCbest; ; = Gbest; ; X A +

If (iter < T) then (searching behaviour)

Gbestl—j—rPDil-
=——=——and PD;,; ;;; = Gbest; ; X
Gbesti,j+A i+1,j+1 2

PD; jxmean(PDm )

+A
Gbest; jx(UBj—LBj)




Hybrid ANFIS and Random Forest Algorithms Optimized...

Informatica 49 (2025) 351-368 359

PDi,q,j4+1 = Gbest;; — eCbest;; X p — CPD; j X levy(n)
Else if (%) < iter < (%) then (burrowing behaviour)
PDj,,j+1 = Gbest; j — eCbest; j X DS X levy(n)

Else if (% < iter < 3%) then (power supply alert)
PDi,q,j41 = Gbest; j — eCbest; ; X e — CPD; ; X rand
Else (antipredation alert)
PDiyq,j41 = Gbest; j X PE X rand

End if
End for
End for
Iter=iter+1
End while
Return ideal answer (Gbest)
End
=
/ﬁb\' Coteria 9 b’\)
\%J looking for g’
A 4 food in the
~a predator into
alert burrows

4  atthe
ali source of
burrow Sfood

(a) Exploration

Coteria Predators at
Jforaging and the burrow
searching entry being

JSor predators

(b) Exploitation

Figure 3: Strategies of PDA during optimization

4 Prediction schemes
hybrid process)

(base and

4.1 RF analysis

RF is an ML tool that utilizes variance for quantitative
learning and simulation. Breiman introduced it [52] RF is
based on a flowchart-like structure used to make decisions
or predictions, consisting of multiple independently
constructed DTs. Consequently, the categorization
outcomes of the input data are influenced by numerous
random values within the forest. The description of a sub-
decision tree in the RF method is outlined below:
flx,00),k=12,..,n (13)

x showcases the entrance vector, f(x, d,) showcases
the fundamental categorizer of a sub-choice tree, and 9,
comprises a collection of k uncorrelated specimens.

The RF method is comprised of four distinct stages:

A) Packing theory involves randomly selecting the
main data collection to create several specimen
collections. Initially, training specimens are randomly

chosen using the packing method, and then the main data
collection is subdivided to produce multiple sub-
collections of training data. Training collections are
created by randomly selecting small specimens from
various classes and combining them each time. This
process involves extracting data from large specimens
within each class. Numerous training collections and
methods can be obtained through this approach through
multiple repetitions. As a result, the RF method can
effectively address the issue of uneven data dispersion.

B) Every training sub-collection is utilized for
categorizer training. If the specimen has M properties, M
properties are chosen accidentally from all attributes while
training the DT, and the tree is split based on the least Gini
substandard rule. The least Gini substandard rule is
defined as:

m
xp=1- Z p(D)?
i=1

The ratio of data specimens belonging to class-i in the
training data collection is denoted by p(i). Also, m is the
number of classes in the same node.

(14)
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C) The forecast outcomes have been acquired. The
procedure above is repeated K times until K DTs are
produced and also merged to create an RF, with a mix of
techniques (like voting also weighted voting) utilized to
produce categorization forecast outcomes.

D) The outcomes of the forecast are evaluated. The
result of an accidental forest model is decided through
either the maximum voting or averaging.

The accidental forest method offers robust accretion
to tackle the issue of imbalanced specimens data.

The aim of creating an RF analysis scheme is to
supply a strong and adaptable ML approach that can
reliably and precisely perform tasks related to
classification and regression. Improving feature important
prediction precision and managing missing data, along
with scalability and flexibility, are some of the key
purposes of deploying RF. Either the trial-and-error or
enhancement tactics may be deployed to adjust the RF
framework hyperparameters, which are significantly
affect their efficacy. The following steps are involved in
adjusting an RF scheme's hyperparameters:

A. It was found that n_estimators, MaXqeptn,
and max_features were the hyperparameters
that could be altered. Each individual's range was
set utilizing data from the RF library and
research findings.

B. A 70/15/15 split separated the database into
learning, validation, and assessment subgroups.

C. Subsequently, a tuning approach based on
enhancement tactics was considered. The current
endeavor sought to optimize hyperparameters via
the combination of RF and a recently created
optimization method, PDA.

D. Learning databases were then introduced to
develop the first schemes. Various mixtures of
hyperparameters will be used to train many
schemes, and every model's efficacy will be
assessed.

E. The ideal hyperparameters were identified by
analyzing the search outcomes after it was
finished, considering the RMSE values as the
objective function.

F. The final scheme's performance on an
independent evaluation set was reviewed to
identify its applicability to unobserved data.

4.2 ANFIS

Jang pioneered the implementation of the adjustment
based on network fuzzy inference technology,
representing a noteworthy computational intelligence
framework that amalgamates the learning aptitudes of
artificial neural networks (ANNSs) with the logical
reasoning abilities of fuzzy logic [53]. ANFIS
demonstrates  superior investigation abilities and
showcases a more effective method for tackling
curvilinear complex issues with enhanced accuracy [54].
By employing input-result pairs and a sequence of IF —
THEN fuzzy laws, ANFIS integrates the human — esque
reasoning approach of systems of fuzzy inference (FIS).
ANFIS is an enhanced version of FIS that addresses the

Y. Lietal.

limitation of adaptability to changing foreign
surroundings. While FIS contains organized science with
each fuzzy law defining the system's native conduct,
ANFIS incorporates neural network (NN) learning tactics
to enhance its compatibility. This integration of NN
learning tactics allows ANFIS to dynamically adjust its
conduct based on the changing foreign surroundings,
making it a more robust and versatile system. Returned
diffusion, which is the fundamental learning method of the
network, aims to minimize the forecasting issue. ANFIS,
on the other hand, mixes the learning abilities of an NN
with the reasoning capabilities of fuzzy logic, as explained
earlier. The ANFIS approach has shown significant
effectiveness in numerous engineering fields, particularly
when dealing with inconsistent or curvilinear data that
traditional schemes struggle to handle due to complexity.
Several modifications were implemented to enhance the
efficiency of the ANFIS method and minimize fault
margins.

The ANFIS architecture consists of multiple layers, as
depicted in Fig. 4. This chart illustrates the ANFIS
framework with two inputs and one result, comprising
four membership subordinates and four laws. Based on the
ANFIS framework depicted in Fig. 4, the layer
arrangement of ANFIS is elaborated as follows. The initial
layer is the fuzzy transformation layer, which utilizes
membership subordinates to produce fuzzy sets from input
quantities. The 2nd layer in the system is known as the law
layer, where the discharge forces of the laws are computed
based on the membership quantities obtained from the
fuzzy transformation layer. Following this, the 3rd,
normalizing layer determines the standardized discharge
forces associated with each law. The standardized number
is calculated as the ratio of the ith law discharge resistance
to the total discharge resistance. The fuzzy transformation
layer, the 4th layer, is where weighted quantities of laws
are computed in each node. Following this, the 5th layer,
the many layer, is responsible for summing the outcomes
attained for each law in the fuzzy transformation layer to
derive the real result of ANFIS.

Three crucial steps are involved in creating
ANFIS schemes: preparing the data, doing simulated
learning, and adjusting the hyperparameters. Finding the
hyperparameters with the greatest potential advantages
may be accomplished by using the ANFIS optimization
approach to increase the simulation's efficacy.

The activities carried out in preparing the incoming
database included handling missing values and adding
details about coding classes. The data collection process
produced many learning, validating, and evaluating
subsets to assess the methodology's effectiveness. Once it
was discovered that more modifications were needed,
many hyperparameters, including the overall count of
membership functions (M Fs) and the count of fuzzy rules
were determined to need modification. An effective
objective measure for assessing productivity was the
RMSE metric. The shift may be upward or downward
based on the hyperparameters under consideration. When
setting the hyperparameters, a method called the PDA
performed well. With the help of the whole learning
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database and the optimal hyperparameters, we created
ANF — PDO model. The ultimate model's suitability for
data never seen before was determined by evaluating its
effectiveness on several independent assessments.

The PDO was chosen for hyperparameter tuning
because to its benefits over GA and PSO. While successful
in global search, GA sometimes has sluggish convergence
rates and premature stalling in local optima in high-
dimensional or nonlinear parameter spaces. PSO explores
efficiently early on but converges and loses variety later
on, making it difficult to fine-tune complicated model
structures like ANFIS. In contrast, PDO balances
exploration with exploitation like prairie dog foraging and
digging. Alternating methods and stochastic variability
help it avoid local minima and converge efficiently. PDO's
dual capabilities allows it to develop ANFIS and RF
systems better than GA or PSO, narrowing error
distributions and improving generalization. This research
found that PDO not only expedited the search for ideal
hyperparameters but also provided more stable and
resilient solutions, making it a good alternative for the
challenge at hand.

Table 3 presents the details of hyperparameter
optimization for the developed models.

Table 3: Hyperparameter optimization details for
developed models

Hybrid model | Parameters Values
PDO Rho 0.005
epsPD 0.1
beta [1-2]
Iterations 100
Populations 50
ANF — PDO | Fuzzy rules 20
MFs 35
Epoch 40
Type of MF trimf
RF — PDO n_estimators 42
max_depth 27
min_samples_split 2
max_features 19

5 Indicators

To examine the efficiency of the RF, and ANFIS schemes
that were developed, a great number of factors were taken
into consideration and computed. Every single one of the
following measurements was included in these
measurements: R?, RMSE, RAE, Root relative square
error (RRSE), MAE, Symmetric Mean Absolute
Percentage Error (SMAPE), Mean Absolute Scaled Error
(MASE), Mean Squared Logarithmic Error (MSLE), and
Mean Relative Error (MRE).

EiN = NS = 5)

R? =
JIZ = NRIIEE G5 - 572

(15)

Informatica 49 (2025) 351-368 361

m
1
RMSE = EZ(SL- — N;)? (16)
i=1
Z?iﬂNi - 5i|
RAE =21t o0 17)
;11 |Ni - Nl
m (N; — S,)?
RRSE = ;;1(%_‘)2 (18)
L‘=1(Ni - N)
1 m
i=1
m
smape =L Ne=Sil 0 (20)
m £ (INg] + 1S
i=1 T
1m
LN ;]
MASE = — =" — 1)
mZﬁlei - Ni—1|
1 m
MSLE = —Z(ln(N,- +1)) = In(S; + 1)? 22)
mrin=1
MRE = iz Ni— S"| (23)
m = Ni

The introduced values are the overall count of
observations (m), the value that was anticipated (S;), and
the average of the amount that was anticipated (S). The
average of the real V, is displayed by N, while the real , is
displayed by N;.

6 Results and justifications

It was possible to gauge the punching V;, by integrating the
RF and ANFIS methods with the PDA approach. These
methods are also referred to as RF — PDO and ANF —
PDO, respectively. For the RF — PDO and ANF — PDO
approaches, the observed and predicted 1, values are
displayed in Fig. 4. These values were obtained
throughout the experiment's validation, learning, and
assessment phases. As an additional feature, it showcases
the projected measured 1V, ratio for each participant
throughout the length of the inquiry. Table 4 showcases
the findings from evaluating the constructions attained via
training, validating, and evaluating the product
development approach. Furthermore, the present research
provided the variance percentage for every single scheme
at every phase to boost the precision of the integrated
schemes. XGB and WOA — XGB [55] were considered to
appraise the schemes' reliability and strength. The
outcomes of the present inquiry on the produced schemes
were also compared with the research results that were
previously available to appraise the schemes' reliability
and strength.

Based on the data, it is very likely both of which RF —
PDO and ANF — PDO can accurately estimate the V.
ANF — PDO is a distinct technique which is thus more
precise and trustworthy than RF — PDO, as evidenced by
computed measurements for performance analysis. RF —
PDO can achieve lesser values (0.9731, 0.9755, and
0.9753) for the learn, validate, and assess phases, yet
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ANF — PDO can attain the greatest R? values (0.9869,
0.9938, and 0.9893).

A comparison of the ANF — PDO model with another
model led to the discovery of this outcome. The ANF —
PDO produced the lowest RRSE index values for learning,
validating, and evaluation; the corresponding values were
0.117, 0.0839, and 0.1079. Compared to the numbers
0.1769, 0.1806, and 0.1713 that RF — PDO obtained in
learning, validating, and evaluation, respectively, these
figures displayed lower precision. The differences in
percentages of the two schemes, which were created for
these measures, are at least 31%; in some instances, the
disparity is dropped by 68%, showcasing the potential of
the ANF — PDO to project competence and dependability.
Both schemes are accurate and reliable, with ANF — PDO
being slightly better, as displayed by reasoning and
evaluation metrics.

A full comparison with the current body study that
considers the schemes XGB and WOA — XGB is
performed [55] to establish the reliability of the schemes.
This makes it possible to determine whether or not the
schemes are reliable. After carefully examining Table 4, it
is evident that ANF — PDO put out in this investigation
yielded better results than those obtained by previous
research that was part of the body of work being provided
here. This conclusion was accomplished by using
comparable measures, namely R?, MAE, and RMSE,
produced from the learning and evaluation data phase,
respectively. Results that are produced by the superior
model (ANF — PDO) are more dependable and resilient
than those that are produced by XGB and W0OA — XGB.
This is because the ANF — PDO model is more accurate.
One may see this by observing the higher R? values as
well as the decreased RMSE and MAE values that are
presented in [55]. For example, MAE reduction for XGB
[55] during learning from 0.125 to 0.0451 and assessment
from 0.149 to 0.0488. Furthermore, metrics calculated
from the error based on RMSE measurements dropped
from 0.203 to 0.0643 during the learning phase and from
0.242 to 0.0666 during the evaluation phase. An in-depth
comparison between ANF — PDO and WOA — XGB [55]
could be formed by looking at the results in the learning,
validating, and assessing datasets, where substantial gains
were observed by boosting R? and reducing RMSE and
MAE.

Y. Lietal.

The ANFIS — PDO model outperformed the RF —
PDO framework in training, validation, and testing.
Several variables explain this advantage. First, the ANFIS
design automatically blends neural network learning with
fuzzy inference system rule-based reasoning to capture
extremely nonlinear and complicated relationships
between the nine input parameters and punching shear
resistance. This hybrid structure allows for more
flexibility in approximating nonlinear mappings, which
tree-based approaches like RF struggle with. RF can
handle noisy datasets and provide baseline predictions, but
its piecewise structure restricts its capacity to capture
intricate nonlinear connections compared to adaptive
fuzzy rules in ANFIS.

Integrating the Prairie Dog Optimization (PDO)
algorithm refined hyperparameters beyond trial-and-error
procedures, improving performance. The optimization
approach reduced overfitting and enhanced convergence.
ANFIS — PDO had shorter residual plot ranges and lower
RMSE values across all subgroups, indicating better error
distributions. It seems that ANFIS — PDO generalizes
better to unknown data, lowering prediction variance and
improving performance across slab-column
configurations.

In comparison to past research, RF — PDO and
ANFIS — PDO improved significantly. Early methods
used empirical formulations or traditional machine
learning models with little optimization, which
underestimated or overestimated punching shear
resistance. The suggested models not only improved R?
values but also decreased error dispersion. Sensitivity
research confirmed that slab depth, reinforcing
characteristics, and concrete compressive strength
strongly affect forecast accuracy. Because of its
flexibility, ANFIS — PDO could dynamically alter rule
sets to changes in these factors, giving it a slight but
constant advantage over RF — PDO.

Fig. 4 illustrates the ratio of measured V,, to projected
., which is monitored during learning, validation, and
assessment. To assess the scheme's resilience, we provide
a smaller distribution with a prominent peak and tightly
restricted upper and lower boundaries below the central
figure. The outcomes unequivocally showcase that
ANF — PDO consistently beat the RF — PDO scheme in
every step. This is shown by a more conspicuous summit
and well-defined limits, especially when the ratio is one

Table 4: The workability of the generated frameworks and comparison with the literature

Created schemes Publications Eurocode | ACI 318-
. . . WoA—- |2 19
Indicators | Sub-section RF — PDO ANF Differences | XGB YGB
—PDO | (%) [55] [55]
R? Train 0.9731 0.9869 1.418 0.884 0.994 0.81 0.67
Validation | 0.9755 0.9938 1.876
Test 0.9753 0.9893 1.435 0.8682 0.9642
RMSE Train 0.0972 0.0643 -33.848 0.203 0.045 0.26 0.53
Validation | 0.1226 0.057 -53.507
Test 0.1057 0.0666 -36.991 0.242 0.125
RAE Train 0.0749 0.0499 -33.378
Validation | 0.0812 0.0434 -46.552
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Test 0.07 0.0481 -31.286
RRSE Train 0.1769 0.117 -33.861
Validation | 0.1806 0.0839 -53.544
Test 0.1713 0.1079 -37.011
MAE Train 0.0678 0.0451 -33.481 0.125 0.033 0.17 0.41
Validation | 0.0761 0.0407 -46.518
Test 0.071 0.0488 -31.268 0.149 0.087
SMAPE | Train 8.1302 5.2544 -35.372
Validation | 7.5509 4.5664 -39.525
Test 7.337 4.9681 -32.287
MASE Train 0.1096 0.073 -33.394
Validation | 0.1239 0.0662 -46.570
Test 0.129 0.0887 -31.240
MSLE | 1rain 00019 | 25 | 55316
validation | 0.0021 | 2075 | -68.476
Test 0.0018 ngE' -54.444
MRE Train 8.4911 5.3393 -37.119
Validation | 7.7529 4.6555 -39.952
Test 7.7008 5.0154 -34.872
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Figure 4: The workability of generated schemes, a) Train phase, b) Validation phase, c) Test phase

A technique used in machine learning to identify how
diverse input parameters and variables affect the output
and effectiveness of the network is called sensitivity
analysis. Several schemes were developed utilizing
diverse input variables, and these schemes were included
in the best-performing model (ANF — PDO) in the current
study. MASE, MSLE, and MRE metrics were generated
and compared utilizing ANF — PDO to appraise the
effects of diverse inputs (Table 5). The greater the impact
of missing items on productivity, the greater the disparities
for metrics. The outcomes underscore the significance of
all attributes in projecting V,,, since most input factors hurt
outcomes when compared to ANF — PDO. Most notably,
when the d and p, variables are taken out of the input
group, there is a discernible gain in MASE, MSLE, and
MRE metrics. The removal of the d throughout the

training phase resulted in a rise in the MRE values from
5.3393 to 8.7804, 4.6555 to 9.8099 throughout the
validating phase, and 5.0154 to 8.1239 throughout the
evaluation phase. The outcomes imply that erasing every
attribute parameter may lessen the schemes' dependability
and comprehensiveness.

The SHAP summary plot (Fig. 5) shows that the
variable d has the strongest influence on the model’s
output, with both positive and negative impacts depending
on its value. Other important features include p;, Asy, 4,
and ¢, which also display considerable variation in their
contributions. Features such as f/, f,, a, and f, 5, have
relatively smaller but still notable effects. Overall, the
analysis highlights d as the dominant predictor, while the
remaining variables provide secondary contributions to
the model's decision-making.

Table 5: The sensitivity analysis of different scenarios on ANF — PDO

Index | Base model | Removed attribute
ANF a d ¢ Pt Asw,d flc fy fy,sw FM
— PDO
Train database
MASE | 0.073 0.0794 | 0.1172 | 0.0898 | 0.0928 | 0.0921 | 0.0852 0.0797 | 0.0808 | 0.0859
MSLE | 8.49E-04 0.001 0.0023 | 0.0015 | 0.0015 | 0.0014 | 0.0011 9.6E-04 | 0.0011 | 0.0012
MRE | 5.3393 5.8292 | 8.7804 | 6.5658 | 7.3135 | 6.4722 | 6.4381 5.9261 | 6.0575 | 6.1774
Validation database
MASE | 0.0662 0.0766 | 0.1354 | 0.08 0.0981 | 0.0835 | 0.0833 0.0723 | 0.0717 | 0.0729
MSLE | 6.62E-04 9.7E-04 | 0.0043 | 0.0012 | 0.0016 | 8.9E-04 | 0.0011 7.5E-04 | 7.3E-04 | 7.5E-04
MRE | 4.6555 5.5702 | 9.8099 | 6.0404 | 8.2436 | 5.3198 | 6.0478 4.9832 | 5.0006 | 5.0447
Test database
MASE | 0.0887 0.092 0.1346 | 0.1027 | 0.1244 | 0.0891 | 0.0913 0.1078 | 0.0969 | 0.0848
MSLE | 8.20E-04 8.8E-04 | 0.0027 | 0.0011 | 0.0018 | 8.0E-04 | 9.0E-04 | 0.0018 | 9.6E-04 | 8.0E-04
MRE | 5.0154 5.1404 | 8.1239 | 5.8218 | 7.7325 | 5.2199 | 5.0963 6.4097 | 5.6103 | 4.9549




Hybrid ANFIS and Random Forest Algorithms Optimized...

d «.cu*-- "o @ caNdioiamens oo
P -“*-
1sw,d e

=

c . °-’—' -
fi il
-$

4

e

{

Sy

a

f;’,sw
M

S wnon oo w2

ol n : Lo (=] (a\} ;
=) 1 & o 3 . % ! !
T (] [—] < =] — — —

SI-IIAP value (Impact on model output)

Figure 5: The SHAP value to assess the impact of
each model

7 Remarks

The purpose of this research is to recognize and
examine the tree-based, fuzzy-based, and ML methods
that have been demonstrated to be the most effective in
lowering ¥, of slab-column connections with shear
reinforcement. This will be done to achieve the goal of
reducing shear resistance. ANFIS and Random forests
analysis (RFA) are two pieces of software that were
employed to achieve this objective. During this inquiry,
the metaheuristic optimization techniques that were used
included the Prairie dog algorithm, also known as PDA.
RF and ANFIS analyses were included in these methods
to recognize the proper values for the parameters being
considered for decision-making processes.

The Spearman correlation coefficient matrix reveals
that the parameters have not shown considerable
monotonic correlations, suggesting the variables are
relatively independent and may not have strong non-linear
relationships. This indicates the need for an Al model that
can effectively capture complex, non-linear interactions to
achieve accurate predictions, as the variables do not
appear to have strong associations based on their ranked
positions.

The data show that all qualities predict 1}, as most
input parameters negatively affect outcomes compared to
ANF — PDO. Removing the d and p, parameters from the
input group lead to significant improvements in MASE,
MSLE, and MRE measures. The elimination of the d
during training increased MRE values from 5.3393 to
8.7804, 4.6555 to 9.8099 when validating, and 5.0154 to
8.1239 during evaluating. The data suggest that erasing all
attribute parameters may drop the scheme’s reliability and
comprehensiveness.

The results suggested that both RF — PDO and
ANF — PDO can properly predict V;,. Efficiency study
computations show that ANF — PDO is more accurate and
reliable than RF — PDO. Although RF — PDO achieves
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lower values (0.9731, 0.9755, and 0.9753) throughout the
learn, validate, and evaluate stages, ANF — PDO achieves
the highest R? values (0.9869, 0.9938, and 0.9893).

The ANF —PDO has the minimum training,
validation, and evaluation RRSE index values of 0.117,
0.0839, and 0.1079. These measurements were
more accurate than RF — PDO's 0.1769, 0.1806, and
0.1713 in the training, validating, and appraisal stages.
The ANF — PDO can forecast competence and reliability
since the two schemes for these measures vary by at least
31%, and in certain cases, 68%. Reasoning and assessment
metrics show that ANF — PDO is marginally more
accurate and dependable.

This result was reached utilizing equivalent
measurements (R?, MAE, and RMSE) from the learn and
assessment phases. XGB and WOA — XGB adopted from
the literature gives less reliable and robust results than
ANF — PDO. Since the ANF — PDO model is more
precise. The increased R? values and lower RMSE and
MAE values demonstrate this. For XGB, MAE reduced
from 0.125 to 0.0451 during learning and from 0.149 to
0.0488 during evaluation. RMSE-based error measures
reduced from 0.203 to 0.0643 during learning and from
0.242 to 0.0666 during assessment.
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