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This study presents a data-driven framework for predicting the punching shear resistance (Vn) associated 

with failure modes (FMs) in reinforced concrete (RC) slab-column connections with shear reinforcement. 

A curated database of 327 experimental tests was compiled, incorporating nine critical input parameters 

related to the punching shear mechanism. The dataset was divided into training (70%), validation (15%), 

and testing (15%) subsets to construct, tune, and assess the predictive models. Two machine learning 

approaches—random forests (RF) and adaptive neuro-fuzzy inference system (ANFIS)—were optimized 

using the Prairie Dog Algorithm (PDA) to enhance hyperparameter selection. Model performance was 

evaluated using statistical indicators including the coefficient of determination (R²), root mean square 

error (RMSE), and mean absolute error (MAE). Results demonstrate that both RF-PDA and ANFIS-PDA 

achieved high predictive accuracy, with ANFIS-PDA marginally outperforming RF-PDA (R² = 0.9893, 

RMSE = 0.0666 on the test set) compared to RF-PDA (R² = 0.9753, RMSE = 0.1057). Comparative 

analysis against existing baseline models further confirmed the superiority of the proposed hybrid 

approaches. These findings highlight the potential of metaheuristic-optimized machine learning schemes 

as reliable tools for evaluating the punching shear resistance of RC slab-column connections. 

Povzetek: Študija pokaže, da napredni modeli strojnega učenja omogočajo zelo zanesljivo napoved 

prebojne strižne nosilnosti armiranobetonskih plošča–steber spojev. 

 

1 Introduction 
Smooth slabs are commonly preferred in the design and 

building of Reinforced Concrete (RC) constructions 

because of their economic viability and optimal 

performance [1], [2]. These slabs are positioned 

immediately above the pillars, obviating the necessity for 

beams and facilitating a more direct transfer of bars from 

the slab to the pillars.  The absence of beams offers several 

advantages, including reduced construction height, 

seamless integration of vertical shafts, improved layout 

flexibility, optimized improvement placement, 

accelerated construction timeline, and effective form 

design [3], [4]. The configuration of a smooth slab is 

predominantly influenced by the structural response of 

slabs and foundations to concentrated loads, leading to 

shear failure near the slab and pillar's junction, resulting 

from elevated shear powers. The profound incursion of 

forces causes an entire decrease of shear strength at the 

intersection between the slab and pillar, resulting in an 

abrupt and fragile rupture of this connection [5]. This 

defeat subsequently initiates a redistribution of bars onto 

adjacent structural elements, potentially resulting in a 

cascading chain of failures. Assessing the failure 

mechanism of structural components such as slabs and  

 

foundations subjected to shear from concentrated stresses  

in smooth slabs is a complex endeavor, since it 

encompasses numerous aspects, including excessive 

reinforcement bars and inadequate cementitious 

composite strength [6], insufficient slab width [7], lack of 

shear enhancement [8], tiny pillar tops, and substandard 

construction practices. These agents must be thoroughly 

examined to accurately gauge the smooth slabs' 

performance and integrity. Several experimental 

techniques have been utilized to formulate technical 

specifications [9]. The current experimental methods [10], 

[11], [12] have been derived from empirical data through 

forecasting. The efficacy of their function depends on the 

particular data foundation employed to compute the 

structural reaction of slabs and foundations to 

concentrated loads, resulting in shear failure. The 

experimental methodologies have demonstrated 

inconsistencies in their results, resulting in either the 

underestimate or overestimation of the structural response 

of slabs and foundations to concentrated loads, 

culminating in shear failure [13]. Numerous 

methodologies are available for evaluating an FM in 

structural components, including slabs and foundations, 

subjected to shear from concentrated loads, as well as the 
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efficacy of smooth slabs; yet, these methods are 

constrained to certain scenarios. Machine learning (ML) 

methodologies can be utilized to address the issues 

inherent in experimental approaches [14], [15], [16], [17], 

[18], [19], [20], [21]. Scholars have employed artificial 

neural networks (ANNs) in forecasting the loading 

capability of enhanced cement-based composite 

components [22], elucidating the flexible properties of 

ordinary also great-resistance cement-based composite 

[23], examining the constructional characteristics of slabs 

[13], estimating the maximum power of beams [24], 

anticipating the grooving function of asphalt 
combinations with steel slag aggregates [20], and 

projecting the conduct of shear fasteners in cement-based 

composite [25]. ANN architectures have shown impressive 

efficacy in evaluating the operational capabilities of 

diverse constructional elements. ANNs have been 

successfully employed to estimate the loading capability 

of constructional members, such as the resistance 

estimation of enhanced cement-based composite beams 

[26], also pillars [27], [28], [29]. Nonetheless, ANNs face 

difficulties with regional enhancement, which may 

obstruct comprehensive data collection and analysis, 

resulting in erroneous estimations. Improving the 

performance of an artificial neural network can be 

accomplished by employing heuristic methods. Heuristic 

processes have substantial advantages over artificial 

neural networks, including their ability to optimize 

network weights through refinement and their proficiency 

in circumventing local minima and managing multivariate 

challenges [30].   

The cohesion of RC beams has been forecasted using 

a combined technique that mixed Adaptive Neuro Fuzzy 

Inference System (ANFIS) with a genetic procedure and 

particle congestion enhancement [31]. The integrated 

technique shown enhanced accuracy in assessing 

cohesiveness relative to individual procedures. A separate 

research study employed a sophisticated Bat ANN to 

predict the structural response of slabs and foundations to 

concentrated loads, resulting in shear failure, and the 

resistance of reinforced concrete smooth slabs devoid of 

shear improvements [32]. The study examined 30 unique 

configurations of the model to identify the most precise 

estimation scheme with reduced faults and the greatest R2 

quantities. Concha et al. [33] utilized a mixture of neural 

network and particle congestion enhancement to forecast 

the cohesion of the iron-enhanced agent RC deep beams 

[34]. The blended technique precisely estimated the 

resistance of an iron-reinforced cement-based composite 

deep beam, showcasing a robust correlation coefficient of 

0.997. These composite forecasting approaches are 

reliable for estimating structural performance and have 

proven valuable in civil engineering applications. Sandeep 

and colleagues [35] employed ML tactics to forecast the 

cohesion of RC beams. The scholars utilized the atom 

search optimizer (ASO) procedure in conjunction with a 

neural network to make forecasts regarding the cohesion 

of beams. The outcomes were subsequently compared 

with the forecasted outcomes of different combined and 

independent techniques, such as ANN, Genetic Algorithm 

(GA) and Support Vector Machine (SVM).  

A recent study underscores the extensive utilization of 

machine learning in engineering, encompassing crack 

identification in concrete via 𝐺𝐶𝑁 − 𝐺𝐿𝐶𝑀 models with 

an accuracy of 98.99%, as well as intrusion detection and 

economic forecasting [36], [37]. Machine learning-based 

surrogate models in structural analysis attained R² values 

of 0.996 with a limited number of sensors [38], [39]. These 

results validate the efficacy of 𝐴𝐼 in improving accuracy 

and efficiency while encouraging the implementation of 

hybrid metaheuristic-optimized models such as 𝑃𝐷𝐴-

based 𝑅𝐹 and 𝐴𝑁𝐹𝐼𝑆 in this research. 

The principal objective of this project is to create and 

validate a hybrid, data-driven framework for precisely 

forecasting the punched shear strength of reinforced 

concrete slab-column connections with shear 

reinforcement. Consequently, two machine learning 

algorithms, 𝑅𝐹 and 𝐴𝑁𝐹𝐼𝑆 are combined with a 

metaheuristic optimizer, the 𝑃𝐷𝐴, to improve 

hyperparameter tweaking and model efficacy. The present 

research indicates that metaheuristic optimization (via 

𝑃𝐷𝐴) markedly enhanced the learning accuracy and 

resilience of 𝑅𝐹 and 𝐴𝑁𝐹𝐼𝑆 models, rendering them more 

dependable instruments for forecasting punch shear 

resistance.  The effective depth of the slab, together with 

the specifications of reinforcement and concrete strength, 

are variables that influence punch shear resistance as input 

factors. 

Table 1. provides a summary of previous studies 

related to the topic of this article. 

 

Table 1: A comparative summary of related works 

 

Study 
Dataset 

Size 

Method(s) 

Used 
Domain Optimization R² RMSE 

Ahmad et 

al. (2018) [22] 
150 ANN 

RC 

design 

prediction 
✘ 0.89 0.21 

Faridmehr 

et al. (2022) 

[32] 
180 Bat-ANN 

RC slabs 

(no 

reinforcement) 

✔ Bat 

Algorithm 
0.92 0.19 

Concha et 

al. (2023) [33] 
250 

ANN + 

PSO 

Steel 

fiber deep 

beams 
✔ PSO 0.94 0.17 

Sandeep et 

al. (2023) [36] 
300 

ANN, 

SVM, PSO 

RC beam 

shear strength 
✔ ASO + 

others 
0.95 0.16 
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Li et al. 

(2023) [35] 
200 

ANFIS-

GA–PSO 

Concrete 

beam shear 
✔ GA-PSO 0.96 0.15 

Karimipour 

et al. (2021) 

[27] 
120 ANN 

GFRP 

RC columns 
✘ 0.91 0.22 

This Study 327 

RF + PDA 

/ ANFIS + 

PDA 

RC slabs 

with shear 

reinforcement 

✔ Prairie 

Dog Algorithm 

0.9893 

(ANFIS) 
0.0666 

 

Table. 1 presents a comparative overview of the most 

pertinent prior research in the field of shear strength 

estimation. Previous models have primarily concentrated 

on unreinforced slabs or specialized components like 

beams, with only a limited number integrating 

metaheuristic optimization. Significantly, none have 

incorporated the PDA algorithm with ANFIS or RF for 

forecasting punching shear strength in reinforced concrete 

slab-column connections. This study seeks to address this 

gap by creating PDA-optimized hybrid models that exhibit 

enhanced predictive performance and generalization. 

1.1 Objective of the present study 

Slabs supported directly on columns without beams are 

known as 𝑅𝐶 slab-column connections, and they 

demonstrate a straightforward construction method. To 

date, relatively few publications have been created to 

describe the punching shear resistance (𝑉𝑛) linked to 𝐹𝑀s 

in slab-column connections with shear reinforcement 

utilizing machine learning techniques. The present work 

presents a data-driven model that forecasts the 𝑉𝑛 linked to 

𝐹𝑀s in slab-column connections that include shear 

reinforcement. To determine the 𝑉𝑛, several machine 

learning methods that drew inspiration from fuzzy and 

tree-based methods were created throughout the 

investigation. The tree-based Random Forests (RF) 

paradigm and the ANFIS paradigms were heavily 

considered during this exploration. Two well-established 

and reliable models were used for estimation: RF and 

ANFIS. Employing a computational database of 327 test 

results, nine input variables corresponding to the punching 

shear mechanism are discovered. Throughout the 

application of 𝑅𝐹 and 𝐴𝑁𝐹𝐼𝑆 techniques that the 

application of metaheuristic methodologies has refined, 

the project seeks to provide structural engineers with a 

more dependable tool for designing reinforced concrete 

structures that are safer and more effective. With a greater 

capacity to predict occurrences, choices about the 

evaluation and design of buildings may be made more 

effectively, minimizing errors and maximizing resource 

use during construction.  

This document is organized as follows:  

• Dataset description and pre-processing are 

presented in Part 2.  

• Part 3 presents a description of the prairie dog 

algorithm (𝑃𝐷𝐴).  

• In Part 4, the prediction models (Hybrid 

Process and Base) are determined.  

• The study's applicable indicators are 

presented in Part 5.  

• Outcomes and explanations are presented in 

Part 6.  

• Remarks are discussed in Section 7. 

2 Dataset description and pre-

process 
The provided text presents a comprehensive analysis of 

the literature exploring the punching resistance and FMs 

in slab-column connections with various shear 

reinforcement configurations. The study utilized a dataset 

of 327 experimental data points from multiple sources to 

develop comparative models that offer deeper insights into 

the factors affecting the punching resistance of reinforced 

concrete slabs [40], [41], [42], [43], [44], [45], [46], [47], 

[48], [49], [50]. The research emphasizes the importance 

of meticulous data selection and curation to guarantee the 

quality and representativeness of the database. The 

researchers gathered independent experimental samples of 

two-way RC slabs with shear reinforcement, establishing 

a reliable database for developing predictive schemes. 

Incorporating high-fidelity experimental data is crucial for 

creating data-driven schemes that accurately depict the 

complex behavior of RC structures under punching shear. 

By integrating insights from the literature review and 

experimental data, the researchers successfully developed 

comparative schemes highlighting the critical factors 

influencing punching resistance, contributing to the 

progress of civil engineering. The database of 327 

laboratory tests was meticulously trained and validated to 

ensure the highest data quality and reliability. The 

researchers implemented a rigorous data partitioning 

strategy, allocating 70% (231 data rows) for training, 15% 

(48 data rows) for validation, and 15% (48 data rows) for 

testing, enabling a comprehensive assessment of the 

schemes' performance and generalization capabilities. The 

evaluation metrics, including minimum, maximum, 

standard deviation, kurtosis, range, mean, and median, 

were analyzed using the non-normalized data, offering 

key understandings into the statistical properties of the 

database. In addition to the 70/15/15 partitioning, we 

conducted a Kolmogorov–Smirnov (𝐾𝑆) test to 

statistically confirm that the training, validation, and 

testing subsets were drawn from the same underlying 

distribution. This ensured that the models were evaluated 

on representative and non-biased samples, thereby 

reducing the risk of overfitting to specific subsets. 

The parameters examined include the slab's adequate 

depth, radial distance from column face to bearing point, 

equivalent width of a column, ratio of flexural 

reinforcements, cross-sectional domain of shear 

reinforcement within column face, concrete compression 
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strength, yield strength of flexural reinforcement, yield 

strength of shear bar, failure mode of slabs, and punching 

resistance. Overall, the research presents a meticulous and 

comprehensive literature analysis, emphasizing the 

importance of high-quality experimental data and rigorous 

data analysis for developing accurate predictive schemes 

for RC structures and punching resistance. Table 2 

showcases the statistical analysis of 9 inputs and one 

output to project punching resistance of the slab-column 

connections, such as min, max, range, average, skewness, 

kurtosis, and standard deviation. As can be seen, d, a, c, 

ρt, Asw,d, flc, fy, fy,sw, 𝐹𝑀 and Vn are slab’s adequate 

depth, radial distance from column face to the bearing 

point, equivalent width of a column, ratio of flexural 

reinforcements, cross-sectional domain of the shear 

reinforcement within the column face d, concrete 

compression strength, yield strength of the flexural 

reinforcement, yield strength of the shear bar, failure 

mode of the slabs (𝑃𝑚𝑎𝑥   = 0, 𝑃𝑐𝑠 = 1, and 𝑃𝑜𝑢𝑡  = 2) and 

punching resistance, respectively. 

Table 2: Statistical descriptions of attributes introduced to models for estimating 𝑉𝑛 as target 

Phase  Index 

Attributes 

Input Output 

𝑎 𝑑  𝑐  ρt  Asw,d  flc fy  fy,sw  𝐹𝑀 Vn  

𝑚 𝑚 𝑚 % 𝑐𝑚2 𝑀𝑃𝑎 𝑀𝑃𝑎 𝑀𝑃𝑎 − 𝑀𝑁 

T
ra

in
 

𝑀𝑖𝑛.  0.0568 0.0825 0.0354 0.335 1 13.3 270 208 0 0.147 

𝑀𝑎𝑥. 1.435 0.474 0.52 3.02 53.4 92.4 917 1100 2 3.132 

𝑅𝑎𝑛𝑔𝑒  1.3782 0.3915 0.4846 2.685 52.4 79.1 647 892 2 2.985 

𝐴𝑣𝑔.  0.861 0.162 0.237 1.209 12.859 34.413 521.608 481.974 1.048 0.907 

𝑆𝑡. 𝐷. 0.271 0.054 0.078 0.477 9.897 13.069 108.353 145.129 0.627 0.549 

𝐾𝑢𝑟𝑡.  0.121 5.045 0.430 2.161 3.254 3.790 3.211 4.692 -0.451 1.108 

𝑆𝑘𝑒𝑤.  -0.472 1.608 0.230 1.111 1.696 1.743 1.080 1.427 -0.035 1.181 

V
al

id
at

e 

𝑀𝑖𝑛.  0.175 0.1 0.106 0.335 1.56 13.9 270 280 0 0.259 

𝑀𝑎𝑥. 1.784 0.469 0.45 3.02 101.79 66.15 889 900 2 3.35 

𝑅𝑎𝑛𝑔𝑒  1.609 0.369 0.344 2.685 100.23 52.25 619 620 2 3.091 

𝐴𝑣𝑔.  0.877 0.166 0.237 1.111 16.928 31.948 525.334 481.775 1.020 0.927 

𝑆𝑡. 𝐷. 0.303 0.069 0.070 0.427 19.070 10.131 108.296 141.162 0.654 0.676 

𝐾𝑢𝑟𝑡.  0.835 7.154 0.459 7.133 10.759 2.215 1.572 -0.027 -0.605 3.436 

𝑆𝑘𝑒𝑤.  0.103 2.285 0.228 1.645 2.956 1.279 0.595 0.627 -0.021 1.722 

T
es

t 

𝑀𝑖𝑛.  0.175 0.0825 0.0895 0.335 1.46 14.6 278 278 0 0.144 

𝑀𝑎𝑥. 1.784 0.474 0.45 2.72 81.43 91.3 917 709 2 3.08 

𝑅𝑎𝑛𝑔𝑒  1.609 0.3915 0.3605 2.385 79.97 76.7 639 431 2 2.936 

𝐴𝑣𝑔.  0.852 0.181 0.248 1.089 15.899 34.015 563.255 473.916 0.917 1.014 

𝑆𝑡. 𝐷. 0.311 0.077 0.081 0.405 14.521 15.229 121.934 124.029 0.571 0.617 

𝐾𝑢𝑟𝑡.  0.956 3.580 -0.207 4.073 7.609 5.366 2.035 -1.110 0.133 1.494 

𝑆𝑘𝑒𝑤.  0.175 0.0825 0.0895 0.335 1.46 14.6 278 278 0 0.144 

The provided images present a series of bar and 

normal distribution charts depicting the results of an 

exploration on punching shear strength of slab-column 

connections, as shown in Fig. 1. These visualizations 

appear to be generated from a database that was split into 

three phases: train, validation, and test. The charts display 

the distribution of various parameters, such as d, a, c, ρt, 

Asw,d, flc, fy, fy,sw, 𝐹𝑀, and Vn, across the different phases 

of the study. The color-coding and layout of the charts 

indicate a comprehensive database analysis to understand 

the relationships and patterns within the data. The detailed 

data visualizations presented in these charts offer valuable 

insights for developing estimation algorithms to project 

the punching shear strength of slab-column connections. 

The distributions of key parameters and their relationships 

can inform the choice of suitable simulation tactics and 

feature engineering strategies. The clear separation of the 

data into training, validation, and testing phases further 

suggests a structured approach to model development and 

evaluation, which is pivotal for ensuring the robustness 

and generalizability of the estimation algorithms. These 

visualizations can serve as a foundation for further data 

analysis, feature selection, and implementing advanced 

machine learning or statistical modeling tactics to project 

the punching shear strength of slab-column connections 

precisely.
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(𝐼7) (𝐼8) 

  
(𝐼9) (𝑇𝑎𝑟𝑔𝑒𝑡) 

Figure 1: Normal distribution plots of attributes in three phases and 𝑉𝑛 as target

Spearman correlation is a non-parametric measure of 

rank correlation that examines the monotonic link between 

two variables. Unlike the Pearson correlation, which 

gauges the linear link, Spearman correlation evaluates the 

strength and direction of the association between 

variables, drawing on their ranked positions rather than 

their true values. This makes Spearman correlation more 

robust to outliers and non-linear relationships. Regarding 

the provided figure, it appears to be a correlation matrix 

displaying the Spearman correlation coefficients between 

various variables. The matrix is color-coded, with the 

color and intensity indicating the strength and direction of 

the correlations. Typically, a correlation coefficient varies 

from -1 to 1, where -1 showcases a robust negative 

correlation, 0 showcases no correlation, and 1 showcases 

a robust positive correlation. The specific variables and 

meanings are unclear from the image alone, but the matrix 

visually showcases their links. The correlation matrix in 

Fig. 2 showcases low to strong correlations that could have 

significant implications for constructing a practical 

artificial intelligence (𝐴𝐼) model. One noteworthy finding 

is the strong positive correlation (0.85) between the 

variables Vn and 𝑑, indicating a close relationship between 

these parameters. This reveals that shifts in one variable 

tend to correspond with shifts in the other, which can be 

leveraged to enhance the model's predictive capabilities. 

Another significant correlation is the relatively low 

negative relationship (-0.35) between the variables 𝑑 and 

𝐹𝑀, indicating an inverse relationship where a rise in one 

variable results in a drop in the other. Understanding this 

dynamic can help the 𝐴𝐼 model capture underlying 

patterns in the data, potentially leading to more accurate 

predictions and a more robust model. Additionally, the 

matrix reveals a moderate positive correlation (0.57) 

between the variables Vn and 𝑐, suggesting that the 𝐴𝐼 

model can be utilized to enhance its understanding of the 

system and improve its overall performance. By carefully 

analyzing the Spearman correlation coefficient matrix, 

researchers can identify the most influential variables and 

their relationships, which can then be incorporated into the 

design and training of the AI model to reflect the 

multifaceted interactions between the metrics better and 
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ultimately boost the scheme's accuracy, interpretability, 

and overall effectiveness. The visual representation of the 

correlation matrix provides a clear and concise way to 

understand the relationships between the variables, 

making it a helpful tool for both researchers and 𝐴𝐼 model 

developers to build more effective schemes.

 

Figure 2: Correlation matrix values via Spearman analysis

3 Prairie dog algorithm (𝑷𝑫𝑨) 
Prairie Dog algorithm (PDA) is an innovative method that 

draws imagination from the natural conduct of grassland 

dogs (Fig. 3). This strategy is designed to efficiently 

ascertain the optimal resolution for a certain enhancement 

issue [51]. Prairie dogs display a behavioral pattern 

characterized by emerging from their burrows, traversing 

to different locations, and subsequently returning to their 

subterranean habitats. In the prairie dog's enhancement 

strategy, a collection of probable solutions is utilized to 

identify the optimal resolution for a particular issue. These 

prospective resolutions are perpetually refined and 

developed to ascertain the enhanced resolution. 

The Prairie dog population comprises n individuals 

(𝑃𝐷𝑠) grouped into m cliques.  Each 𝑃𝐷 operates as a 

component of a collective within its designated groups. 

Consequently, a vector can represent the status of the ith 

𝑃𝐷 within a specific clique.  Formula (1) demonstrates the 

matrix representation of the locations of all groups (𝐶𝑇𝑠) 

within the group. 

𝐶𝑇 =

[
 
 
 
 
𝐶𝑇1,1 𝐶𝑇1,2 … … … 𝐶𝑇1,𝑑

𝐶𝑇2,1 𝐶𝑇2,2 … … … 𝐶𝑇2,𝑑

… … … … … …
… … … … … …

𝐶𝑇𝑚,1 𝐶𝑇𝑚,2 … … … 𝐶𝑇𝑚,𝑑]
 
 
 
 

 (1) 

The notation 𝐶𝑇 𝑖;  𝑗 represents the 𝑗𝑡ℎ size of the 𝑖𝑡ℎ 

group inside the population. Formula (2) depicts the 

arrangement of all the prairie dogs inside a group. 

𝑃𝐷 =

[
 
 
 
 
𝑃𝐷1,1 𝑃𝐷1,2 … … … 𝑃𝐷1,𝑑

𝑃𝐷2,1 𝑃𝐷2,2 … … … 𝑃𝐷2,𝑑

… … … … … …
… … … … … …

𝑃𝐷𝑚,1 𝑃𝐷𝑚,2 … … … 𝑃𝐷𝑚,𝑑]
 
 
 
 

 (2) 

P Di;  j showcases the jth coordinate of the ith 

grassland dog in a group, with n also m being unique 

variables. The distribution of group and prairie dog 

situations is achieved through a uniform allocation, as 

illustrated in Formulas (1) & (2).  

𝐶𝑇 𝑖;  𝑗 = 𝑈(0,1) × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝐿𝐵𝑗  (3) 

𝑃 𝐷𝑖;  𝑗 = 𝑈(0,1) × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝐿𝐵𝑗  (4) 

The notations 𝑈𝐵𝑗  & 𝐿𝐵𝑗  are used to signify the 

maximum & minimum limits of the jth size in an 

improvement dilemma. The highest limit 𝑈𝐵𝑗  is computed 

as 𝑈𝐵𝑗  /𝑚, whereas the least limit 𝐿𝐵𝑗  is established as 

𝐿𝐵𝑗  /𝑚. The notation 𝑈(0,1) signifies an accidental value 

produced with an even allocation ranging from 0 to 1. 

The prairie dog improvement method modifies its 

approach by alternating between discovery & utilization, 

drawing on four specific situations. The whole value of 

repetitions is segmented into four divisions, with the first 

two focused on discovery and the final two on utilization. 

The investigation is additionally segmented into two 

approaches, ascertained by the criteria iter <  Maxiter/4 

& Maxiter/4 <  iter <  Maxiter/2. The utilization is 

likewise split into two approaches, regulated by the 

criteria Maxiter/2 <  iter <  3Maxiter/4 & 3Maxiter/
4 <  iter <  Maxiter.  

Discovery stage 

Assessing the typicality of potential power resources 

is conducted, leading to the optimal choice for searching 

purposes. The typicality of the chosen power resources 
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influences the decision to construct new underground. 

Formula (5) symbolizes the adjustment of situations as 

part of the discovery stage in the searching method.  

𝑃𝐷𝑖 + 1, 𝑗 + 1 = 𝐺 𝐵𝐸𝑆𝑇𝑗 − 𝑒𝐶𝐵𝐸𝑆𝑇𝑖, 𝑗 × 𝑝 

−𝐶𝑃𝐷𝑖, 𝑗 × 𝐿𝑒𝑣𝑦(𝑛)𝐴𝑖𝑡𝑒𝑟 <
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
 

(5) 

The next approach includes examining the caliber of 

earlier discovered power supplies and the excavation 

capability. Fresh tunnels are subsequently established 

according to this excavation ability, which declines as the 

count of repetitions uplifts, constraining the count of 

tunnels that can be established. Formula (6) illustrates the 

modification of places for the tunnel structure. 

𝑃𝐷𝑖 + 1, 𝑗 + 1 = 𝐺𝐵𝑒𝑠𝑡𝑗, 𝑗 × 𝑟𝑃𝐷 × 𝐷𝑆 

× 𝐿𝑒𝑣𝑦(𝑛)𝐴
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
≤ 𝑖𝑡𝑒𝑟 ≤

𝑀𝑎𝑥𝑖𝑡𝑒𝑟

2
 

(6) 

The present optimal resolution achieved on a 

universal scale is denoted as G Besti;  j, whereas the 

influence of the excellent resolution at present is assessed 

using eC Besti;  j, as illustrated in Formula (7). The power 

resource alarm, labeled as q also operating at a constant 

frequency of 0.1 kHz, serves as a crucial component in 

the ecosystem. The situation of a particular resolution is 

symbolized by 𝑟𝑃𝐷, while the combined impact of all 

prairie dogs within the community is expressed as CPDi;  j, 
as outlined in Formula (8). The excavation capability of 

the group, called 𝐷𝑆, depends on the caliber of the power 

supply and is stochastically established via Formula (9). 

The Levy allocation, denoted as Levy(n), is deployed to 

improve the thorough exploration of the issue domain with 

greater performance.  

𝑒𝐶𝐵𝑒𝑠𝑡 𝑖, 𝑗, 𝑗 = 𝐺𝐵𝑒𝑠𝑡 𝑖, 𝑗 × ∆

+
𝑃𝐷𝑖, 𝑗 × 𝑚𝑒𝑎𝑛(𝑃𝐷𝑛,𝑚)

𝐺𝐵𝑒𝑠𝑡 × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + ∆
 

(7) 

𝐶𝑃𝐷𝑖, 𝑗 =
𝐺𝐵𝑒𝑠𝑡 𝑖, 𝑗 − 𝑟𝑃𝐷𝑖, 𝑗

𝐺𝐵𝑒𝑠𝑡 𝑖, 𝑗 + ∆
 (8) 

𝐷𝑆 = 1.5 × 𝑟 × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

2
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
 (9) 

The factor ′r′ introduces unpredictability into the 

formula, thereby promoting discovery by alternating 

between -1 & 1 depending on the present repetition. When 

the repetition is odd, ′r′ takes the value of -1, whereas, for 

even repetitions, ′r′is equal to 1. On the other hand, ′D′ 
accounts for potential variations among the grassland 

dogs, despite the assumption in 𝑃𝐷𝐴's execution that all 

prairie dogs are identical. In this context, ′iter′ showcases 

the present repetition, while ′Maxiter′ signifies the highest 

permissible value of repetitions.  

Utilization stage 

The objective of the utilization strategies employed by 

PDO is to investigate the promising areas identified in the 

discovery phase extensively. Formulas (10) & (11) outline 

the two approaches used in this stage. As mentioned 

earlier, PDO switches among these two strategies 

depending on the situation Maxiter/2 ≤  iter <
 3 Maxiter/4 & 3Maxiter/4 ≤  iter ≤  Maxiter, in the 

same order. 

𝑃𝐷𝑖 + 1, 𝑗 + 1 = 𝐺𝐵𝑒𝑠𝑡𝑖, 𝑗 − 𝑒𝐶𝐵𝑒𝑠𝑡 𝑖, 𝑗 × 𝜀 

−𝐶𝑃𝐷𝑖, 𝑗 × 𝑟𝑎𝑛𝑑𝐴3
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
≤ 𝑖𝑡𝑒𝑟 

< 3
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
 

(10) 

𝑃𝐷𝑖 + 1, 𝑗 + 1 = 𝐺𝐵𝑒𝑠𝑡𝑖, 𝑗 

−𝑃𝐸 × 𝑟𝑎𝑛𝑑𝐴3
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
≤ 𝑖𝑡𝑒𝑟 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 

(11) 

In this scenario, G Besti;  j showcases the present 

ideal resolution discovered, also eCBesti;  j implies the 

influence of the present best resolution obtained. 

According to Formula (10), ε showcases the goodness of 

the nourishment resource, whereas CPDi;  j is the 

cumulative impact of all grassland dogs in the group, as 

explained in Formula (11). The hunter impact, explained 

in Formula (12), is denoted by PE, also rand is an 

accidentally generated value ranging from 0 to 1.  

𝑃𝐸 = 1.5 (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

2
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
 (12) 

The recent repetition is represented by ′iter′, while the 

highest value of repetitions permitted is represented 

as ′Maxiter′.  
The pseudocode of the PDO algorithm is presented in 

Algorithm 1.

  

Algorithm 1. Pseudocode of the PDO algorithm 

Setting up 

Adjust the PDO variables: n,m,𝜌, 𝜀 

Adjust Gbest and Cbest as 𝜑 

Setting up the applicant answers CT and PD 

While 𝑖𝑡𝑒𝑟 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟  do 

           For (𝑖 = 1 𝑡𝑜 𝑚) do 

                    For (𝑖 = 1 𝑡𝑜 𝑛) do 

                           Determine the fitness of PD 

                           Find the ideal answer so far (Cbest) 

                           Revise (Gbest) 

                           Revise DS and PE using formulas: 𝐶𝑃𝐷𝑖,𝑗 =
𝐺𝑏𝑒𝑠𝑡𝑖,𝑗−𝑟𝑃𝐷𝑖,𝑗

𝐺𝑏𝑒𝑠𝑡𝑖,𝑗+∆
 and 𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝑏𝑒𝑠𝑡𝑖,𝑗 ×

𝑃𝐸 × 𝑟𝑎𝑛𝑑∀3
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
≤ 𝑖𝑡𝑒𝑟 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟  

                           Revise 𝐶𝑃𝐷𝑖,𝑗 using formula: 𝑒𝐶𝑏𝑒𝑠𝑡𝑖,𝑗 = 𝐺𝑏𝑒𝑠𝑡𝑖,𝑗 × ∆ +
𝑃𝐷𝑖,𝑗×𝑚𝑒𝑎𝑛(𝑃𝐷𝑚,𝑛)

𝐺𝑏𝑒𝑠𝑡𝑖,𝑗×(𝑈𝐵𝑗−𝐿𝐵𝑗)
+ ∆ 

                           If (𝑖𝑡𝑒𝑟 <
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
) then (searching behaviour) 
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𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑒𝐶𝑏𝑒𝑠𝑡𝑖,𝑗 × 𝜌 − 𝐶𝑃𝐷𝑖,𝑗 × 𝑙𝑒𝑣𝑦(𝑛) 

                           Else if (
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
) ≤ 𝑖𝑡𝑒𝑟 < (

𝑀𝑎𝑥𝑖𝑡𝑒𝑟

2
) then (burrowing behaviour) 

                                         𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑒𝐶𝑏𝑒𝑠𝑡𝑖,𝑗 × 𝐷𝑆 ×  𝑙𝑒𝑣𝑦(𝑛) 

                           Else if (
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

2
≤ 𝑖𝑡𝑒𝑟 < 3

𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
) then  (power supply alert) 

                                        𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑒𝐶𝑏𝑒𝑠𝑡𝑖,𝑗 × 𝜀 − 𝐶𝑃𝐷𝑖,𝑗 × 𝑟𝑎𝑛𝑑 

                            Else    (antipredation alert) 

                                        𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝑏𝑒𝑠𝑡𝑖,𝑗 × 𝑃𝐸 × 𝑟𝑎𝑛𝑑 

                            End if 

                    End for 

               End for 

           Iter=iter+1 

End while 

Return ideal answer (Gbest) 

End  

 

  
(a) Exploration (b) Exploitation 

Figure 3: Strategies of 𝑃𝐷𝐴 during optimization 

4 Prediction schemes (base and 

hybrid process) 

4.1 𝑹𝑭 analysis 

RF is an ML tool that utilizes variance for quantitative 

learning and simulation. Breiman introduced it [52] RF is 

based on a flowchart-like structure used to make decisions 

or predictions, consisting of multiple independently 

constructed DTs. Consequently, the categorization 

outcomes of the input data are influenced by numerous 

random values within the forest. The description of a sub-

decision tree in the RF method is outlined below: 

𝑓(𝑥, 𝜕𝑘), 𝑘 = 1,2, … , 𝑛 (13) 

𝑥 showcases the entrance vector, 𝑓(𝑥, 𝜕𝑘) showcases 

the fundamental categorizer of a sub-choice tree, and 𝜕𝑘 

comprises a collection of 𝑘 uncorrelated specimens.  

The RF method is comprised of four distinct stages: 

A)  Packing theory involves randomly selecting the 

main data collection to create several specimen 

collections. Initially, training specimens are randomly 

chosen using the packing method, and then the main data 

collection is subdivided to produce multiple sub-

collections of training data. Training collections are 

created by randomly selecting small specimens from 

various classes and combining them each time. This 

process involves extracting data from large specimens 

within each class. Numerous training collections and 

methods can be obtained through this approach through 

multiple repetitions. As a result, the RF method can 

effectively address the issue of uneven data dispersion. 

B) Every training sub-collection is utilized for 

categorizer training. If the specimen has 𝑀 properties, 𝑀 

properties are chosen accidentally from all attributes while 

training the DT, and the tree is split based on the least Gini 
substandard rule. The least Gini substandard rule is 

defined as: 

𝑥𝑖 = 1 − ∑ 𝑝(𝑖)2

𝑚

𝑖=1

 (14) 

The ratio of data specimens belonging to class-𝑖 in the 

training data collection is denoted by 𝑝(𝑖). Also, m is the 

number of classes in the same node. 
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C) The forecast outcomes have been acquired. The 

procedure above is repeated 𝐾 times until 𝐾 DTs are 

produced and also merged to create an RF, with a mix of 

techniques (like voting also weighted voting) utilized to 

produce categorization forecast outcomes. 

D) The outcomes of the forecast are evaluated. The 

result of an accidental forest model is decided through 

either the maximum voting or averaging. 

The accidental forest method offers robust accretion 

to tackle the issue of imbalanced specimens data. 

The aim of creating an 𝑅𝐹 analysis scheme is to 

supply a strong and adaptable ML approach that can 

reliably and precisely perform tasks related to 

classification and regression. Improving feature important 

prediction precision and managing missing data, along 

with scalability and flexibility, are some of the key 

purposes of deploying 𝑅𝐹. Either the trial-and-error or 

enhancement tactics may be deployed to adjust the 𝑅𝐹 

framework hyperparameters, which are significantly 

affect their efficacy.  The following steps are involved in 

adjusting an 𝑅𝐹 scheme's hyperparameters:  

A. It was found that 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠, 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ, 

and 𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 were the hyperparameters 

that could be altered. Each individual's range was 

set utilizing data from the 𝑅𝐹 library and 

research findings.  

B. A 70/15/15 split separated the database into 

learning, validation, and assessment subgroups.  

C. Subsequently, a tuning approach based on 

enhancement tactics was considered. The current 

endeavor sought to optimize hyperparameters via 

the combination of 𝑅𝐹 and a recently created 

optimization method, 𝑃𝐷𝐴. 

D. Learning databases were then introduced to 

develop the first schemes. Various mixtures of 

hyperparameters will be used to train many 

schemes, and every model's efficacy will be 

assessed.  

E. The ideal hyperparameters were identified by 

analyzing the search outcomes after it was 

finished, considering the 𝑅𝑀𝑆𝐸 values as the 

objective function. 

F. The final scheme's performance on an 

independent evaluation set was reviewed to 

identify its applicability to unobserved data. 

4.2 ANFIS 

Jang pioneered the implementation of the adjustment 

based on network fuzzy inference technology, 

representing a noteworthy computational intelligence 

framework that amalgamates the learning aptitudes of 

artificial neural networks (ANNs) with the logical 

reasoning abilities of fuzzy 𝑙𝑜gic [53]. ANFIS 

demonstrates superior investigation abilities and 

showcases a more effective method for tackling 

curvilinear complex issues with enhanced accuracy [54]. 

By employing input-result pairs and a sequence of IF −
THEN fuzzy laws, ANFIS integrates the human − esque 

reasoning approach of systems of fuzzy inference (FIS). 

ANFIS is an enhanced version of FIS that addresses the 

limitation of adaptability to changing foreign 

surroundings. While FIS contains organized science with 

each fuzzy law defining the system's native conduct, 

ANFIS incorporates neural network (NN) learning tactics 

to enhance its compatibility. This integration of NN 

learning tactics allows ANFIS to dynamically adjust its 

conduct based on the changing foreign surroundings, 

making it a more robust and versatile system. Returned 

diffusion, which is the fundamental learning method of the 

network, aims to minimize the forecasting issue. ANFIS, 

on the other hand, mixes the learning abilities of an NN 

with the reasoning capabilities of fuzzy logic, as explained 

earlier. The ANFIS approach has shown significant 

effectiveness in numerous engineering fields, particularly 

when dealing with inconsistent or curvilinear data that 

traditional schemes struggle to handle due to complexity. 

Several modifications were implemented to enhance the 

efficiency of the ANFIS method and minimize fault 

margins.  

The ANFIS architecture consists of multiple layers, as 

depicted in Fig. 4. This chart illustrates the ANFIS 

framework with two inputs and one result, comprising 

four membership subordinates and four laws. Based on the 

ANFIS framework depicted in Fig. 4, the layer 

arrangement of ANFIS is elaborated as follows. The initial 

layer is the fuzzy transformation layer, which utilizes 

membership subordinates to produce fuzzy sets from input 

quantities. The 2nd layer in the system is known as the law 

layer, where the discharge forces of the laws are computed 

based on the membership quantities obtained from the 

fuzzy transformation layer. Following this, the 3rd, 

normalizing layer determines the standardized discharge 

forces associated with each law. The standardized number 

is calculated as the ratio of the ith law discharge resistance 

to the total discharge resistance. The fuzzy transformation 

layer, the 4th layer, is where weighted quantities of laws 

are computed in each node. Following this, the 5th layer, 

the many layer, is responsible for summing the outcomes 

attained for each law in the fuzzy transformation layer to 

derive the real result of ANFIS.  

Three crucial steps are involved in creating 

𝐴𝑁𝐹𝐼𝑆 schemes: preparing the data, doing simulated 

learning, and adjusting the hyperparameters. Finding the 

hyperparameters with the greatest potential advantages 

may be accomplished by using the 𝐴𝑁𝐹𝐼𝑆 optimization 

approach to increase the simulation's efficacy. 

The activities carried out in preparing the incoming 

database included handling missing values and adding 

details about coding classes. The data collection process 

produced many learning, validating, and evaluating 

subsets to assess the methodology's effectiveness. Once it 

was discovered that more modifications were needed, 

many hyperparameters, including the overall count of 

membership functions (𝑀𝐹s) and the count of fuzzy rules 

were determined to need modification. An effective 

objective measure for assessing productivity was the 

𝑅𝑀𝑆𝐸 metric. The shift may be upward or downward 

based on the hyperparameters under consideration. When 

setting the hyperparameters, a method called the 𝑃𝐷𝐴 

performed well. With the help of the whole learning 
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database and the optimal hyperparameters, we created 

𝐴𝑁𝐹 − 𝑃𝐷𝑂 model. The ultimate model's suitability for 

data never seen before was determined by evaluating its 

effectiveness on several independent assessments. 

The 𝑃𝐷𝑂 was chosen for hyperparameter tuning 

because to its benefits over 𝐺𝐴 and 𝑃𝑆𝑂. While successful 

in global search, 𝐺𝐴 sometimes has sluggish convergence 

rates and premature stalling in local optima in high-

dimensional or nonlinear parameter spaces. 𝑃𝑆𝑂 explores 

efficiently early on but converges and loses variety later 

on, making it difficult to fine-tune complicated model 

structures like 𝐴𝑁𝐹𝐼𝑆. In contrast, 𝑃𝐷𝑂 balances 

exploration with exploitation like prairie dog foraging and 

digging. Alternating methods and stochastic variability 

help it avoid local minima and converge efficiently. PDO's 

dual capabilities allows it to develop 𝐴𝑁𝐹𝐼𝑆 and 𝑅𝐹 

systems better than 𝐺𝐴 or 𝑃𝑆𝑂, narrowing error 

distributions and improving generalization. This research 

found that 𝑃𝐷𝑂 not only expedited the search for ideal 

hyperparameters but also provided more stable and 

resilient solutions, making it a good alternative for the 

challenge at hand.  

Table 3 presents the details of hyperparameter 

optimization for the developed models. 

Table 3: Hyperparameter optimization details for 

developed models 

Hybrid model Parameters  Values 

𝑃𝐷𝑂 𝑅ℎ𝑜  0.005 

𝑒𝑝𝑠𝑃𝐷   0.1 

𝑏𝑒𝑡𝑎   [1-2] 

Iterations 100 

Populations 50 

𝐴𝑁𝐹 − 𝑃𝐷𝑂  Fuzzy rules 20 

𝑀𝐹s 35 

Epoch 40 

Type of 𝑀𝐹 𝑡𝑟𝑖𝑚𝑓 

𝑅𝐹 − 𝑃𝐷𝑂 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠  42 

𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ  27 

𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡  2 

𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  19 

5 Indicators  
To examine the efficiency of the 𝑅𝐹, and 𝐴𝑁𝐹𝐼𝑆 schemes 

that were developed, a great number of factors were taken 

into consideration and computed. Every single one of the 

following measurements was included in these 

measurements: 𝑅2, 𝑅𝑀𝑆𝐸, 𝑅𝐴𝐸, Root relative square 

error (𝑅𝑅𝑆𝐸), 𝑀𝐴𝐸, Symmetric Mean Absolute 

Percentage Error (𝑆𝑀𝐴𝑃𝐸), Mean Absolute Scaled Error 

(𝑀𝐴𝑆𝐸), Mean Squared Logarithmic Error (𝑀𝑆𝐿𝐸), and 

Mean Relative Error (𝑀𝑅𝐸). 

𝑅2 =

(

 
∑ (𝑁𝑖 − 𝑁)(𝑆𝑖 − 𝑆̅)𝑚

𝑖=1

√[∑ (𝑁𝑖 − 𝑁)2𝑚
𝑖=1 ][∑ (𝑆𝑖 − 𝑆̅)2𝑚

𝑖=1 ]
)

  (15) 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑆𝑖 − 𝑁𝑖)

2

𝑚

𝑖=1

 (16) 

𝑅𝐴𝐸 =
∑ |𝑁𝑖 − 𝑆𝑖|

𝑚
𝑖=1

∑ |𝑁𝑖 − 𝑁|𝑚
𝑖=1

 (17) 

𝑅𝑅𝑆𝐸 = √
∑ (𝑁𝑖 − 𝑆𝑖)

2𝑚
𝑖=1

∑ (𝑁𝑖 − 𝑁)2𝑚
𝑖=1

 (18) 

𝑀𝐴𝐸 =
1

𝑚
∑|𝑆𝑖 − 𝑁𝑖|

𝑚

𝑖=1

 (19) 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑚
∑

|𝑁𝑖 − 𝑆𝑖|

(|𝑁𝑖| + |𝑆𝑖|)
2

𝑚

𝑖=1

× 100 (20) 

𝑀𝐴𝑆𝐸 =

1
𝑚

∑ |𝑁𝑖 − 𝑆𝑖|
𝑚
𝑖=1

1
𝑚 − 1

∑ |𝑁𝑖 − 𝑁𝑖−1|
𝑚
𝑖=2

 (21) 

𝑀𝑆𝐿𝐸 =
1

𝑚
∑(𝐼𝑛(𝑁𝑖 + 1)) − 𝐼𝑛(𝑆𝑖 + 1)2

𝑚

𝑖=1

 (22) 

𝑀𝑅𝐸 =
1

𝑚
∑|

𝑁𝑖 − 𝑆𝑖

𝑁𝑖

|

𝑚

𝑖=1

 (23) 

The introduced values are the overall count of 

observations (𝑚), the value that was anticipated (𝑆𝑖), and 

the average of the amount that was anticipated (𝑆̅). The 

average of the real 𝑉𝑛 is displayed by 𝑁, while the real 𝑉𝑛 is 

displayed by 𝑁𝑖. 

6 Results and justifications  
It was possible to gauge the punching 𝑉𝑛 by integrating the 

𝑅𝐹 and 𝐴𝑁𝐹𝐼𝑆 methods with the 𝑃𝐷𝐴 approach. These 

methods are also referred to as 𝑅𝐹 − 𝑃𝐷𝑂 and 𝐴𝑁𝐹 −
𝑃𝐷𝑂, respectively. For the 𝑅𝐹 − 𝑃𝐷𝑂 and 𝐴𝑁𝐹 − 𝑃𝐷𝑂 

approaches, the observed and predicted 𝑉𝑛 values are 

displayed in Fig. 4. These values were obtained 

throughout the experiment's validation, learning, and 

assessment phases. As an additional feature, it showcases 

the projected measured 𝑉𝑛 ratio for each participant 

throughout the length of the inquiry. Table 4 showcases 

the findings from evaluating the constructions attained via 

training, validating, and evaluating the product 

development approach. Furthermore, the present research 

provided the variance percentage for every single scheme 

at every phase to boost the precision of the integrated 

schemes. 𝑋𝐺𝐵 and 𝑊𝑂𝐴 − 𝑋𝐺𝐵 [55] were considered to 

appraise the schemes' reliability and strength. The 

outcomes of the present inquiry on the produced schemes 

were also compared with the research results that were 

previously available to appraise the schemes' reliability 

and strength. 

Based on the data, it is very likely both of which 𝑅𝐹 −
𝑃𝐷𝑂 and 𝐴𝑁𝐹 − 𝑃𝐷𝑂 can accurately estimate the 𝑉𝑛. 

𝐴𝑁𝐹 − 𝑃𝐷𝑂 is a distinct technique which is thus more 

precise and trustworthy than 𝑅𝐹 − 𝑃𝐷𝑂, as evidenced by 

computed measurements for performance analysis. 𝑅𝐹 −
𝑃𝐷𝑂 can achieve lesser values (0.9731, 0.9755, and 

0.9753) for the learn, validate, and assess phases, yet 
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𝐴𝑁𝐹 − 𝑃𝐷𝑂 can attain the greatest 𝑅2 values (0.9869, 

0.9938, and 0.9893).  

A comparison of the 𝐴𝑁𝐹 − 𝑃𝐷𝑂 model with another 

model led to the discovery of this outcome. The 𝐴𝑁𝐹 −
𝑃𝐷𝑂 produced the lowest 𝑅𝑅𝑆𝐸 index values for learning, 

validating, and evaluation; the corresponding values were 

0.117, 0.0839, and 0.1079. Compared to the numbers 

0.1769, 0.1806, and 0.1713 that 𝑅𝐹 − 𝑃𝐷𝑂 obtained in 

learning, validating, and evaluation, respectively, these 

figures displayed lower precision. The differences in 

percentages of the two schemes, which were created for 

these measures, are at least 31%; in some instances, the 

disparity is dropped by 68%, showcasing the potential of 

the 𝐴𝑁𝐹 − 𝑃𝐷𝑂 to project competence and dependability. 

Both schemes are accurate and reliable, with 𝐴𝑁𝐹 − 𝑃𝐷𝑂 

being slightly better, as displayed by reasoning and 

evaluation metrics. 

A full comparison with the current body study that 

considers the schemes 𝑋𝐺𝐵 and 𝑊𝑂𝐴 − 𝑋𝐺𝐵 is 

performed [55] to establish the reliability of the schemes. 

This makes it possible to determine whether or not the 

schemes are reliable. After carefully examining Table 4, it 

is evident that 𝐴𝑁𝐹 − 𝑃𝐷𝑂 put out in this investigation 

yielded better results than those obtained by previous 

research that was part of the body of work being provided 

here. This conclusion was accomplished by using 

comparable measures, namely 𝑅2, 𝑀𝐴𝐸, and 𝑅𝑀𝑆𝐸, 

produced from the learning and evaluation data phase, 

respectively. Results that are produced by the superior 

model (𝐴𝑁𝐹 − 𝑃𝐷𝑂) are more dependable and resilient 

than those that are produced by 𝑋𝐺𝐵 and 𝑊𝑂𝐴 − 𝑋𝐺𝐵. 

This is because the 𝐴𝑁𝐹 − 𝑃𝐷𝑂 model is more accurate. 

One may see this by observing the higher 𝑅2 values as 

well as the decreased 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 values that are 

presented in [55]. For example, 𝑀𝐴𝐸 reduction for 𝑋𝐺𝐵 

[55] during learning from 0.125 to 0.0451 and assessment 

from 0.149 to 0.0488. Furthermore, metrics calculated 

from the error based on 𝑅𝑀𝑆𝐸 measurements dropped 

from 0.203 to 0.0643 during the learning phase and from 

0.242 to 0.0666 during the evaluation phase. An in-depth 

comparison between 𝐴𝑁𝐹 − 𝑃𝐷𝑂 and 𝑊𝑂𝐴 − 𝑋𝐺𝐵 [55] 

could be formed by looking at the results in the learning, 

validating, and assessing datasets, where substantial gains 

were observed by boosting 𝑅2 and reducing 𝑅𝑀𝑆𝐸 and 

𝑀𝐴𝐸. 

The 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝐷𝑂 model outperformed the 𝑅𝐹 −
𝑃𝐷𝑂 framework in training, validation, and testing. 

Several variables explain this advantage. First, the 𝐴𝑁𝐹𝐼𝑆 

design automatically blends neural network learning with 

fuzzy inference system rule-based reasoning to capture 

extremely nonlinear and complicated relationships 

between the nine input parameters and punching shear 

resistance. This hybrid structure allows for more 

flexibility in approximating nonlinear mappings, which 

tree-based approaches like 𝑅𝐹 struggle with. 𝑅𝐹 can 

handle noisy datasets and provide baseline predictions, but 

its piecewise structure restricts its capacity to capture 

intricate nonlinear connections compared to adaptive 

fuzzy rules in 𝐴𝑁𝐹𝐼𝑆. 

Integrating the Prairie Dog Optimization (𝑃𝐷𝑂) 

algorithm refined hyperparameters beyond trial-and-error 

procedures, improving performance. The optimization 

approach reduced overfitting and enhanced convergence. 

𝐴𝑁𝐹𝐼𝑆 − 𝑃𝐷𝑂 had shorter residual plot ranges and lower 

𝑅𝑀𝑆𝐸 values across all subgroups, indicating better error 

distributions. It seems that 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝐷𝑂 generalizes 

better to unknown data, lowering prediction variance and 

improving performance across slab-column 

configurations. 

In comparison to past research, 𝑅𝐹 − 𝑃𝐷𝑂 and 

𝐴𝑁𝐹𝐼𝑆 − 𝑃𝐷𝑂 improved significantly. Early methods 

used empirical formulations or traditional machine 

learning models with little optimization, which 

underestimated or overestimated punching shear 

resistance. The suggested models not only improved R² 

values but also decreased error dispersion. Sensitivity 

research confirmed that slab depth, reinforcing 

characteristics, and concrete compressive strength 

strongly affect forecast accuracy. Because of its 

flexibility, 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝐷𝑂 could dynamically alter rule 

sets to changes in these factors, giving it a slight but 

constant advantage over 𝑅𝐹 − 𝑃𝐷𝑂. 

Fig. 4 illustrates the ratio of measured 𝑉𝑛 to projected 

𝑉𝑛, which is monitored during learning, validation, and 

assessment. To assess the scheme's resilience, we provide 

a smaller distribution with a prominent peak and tightly 

restricted upper and lower boundaries below the central 

figure. The outcomes unequivocally showcase that 

𝐴𝑁𝐹 − 𝑃𝐷𝑂 consistently beat the 𝑅𝐹 − 𝑃𝐷𝑂 scheme in 

every step. This is shown by a more conspicuous summit 

and well-defined limits, especially when the ratio is one

Table 4: The workability of the generated frameworks and comparison with the literature 

Indicators Sub-section  

Created schemes Publications Eurocode 

2 

ACI 318-

19 

𝑅𝐹 − 𝑃𝐷𝑂 
𝐴𝑁𝐹
− 𝑃𝐷𝑂 

Differences 

(%) 

𝑋𝐺𝐵 

[55] 

𝑊𝑂𝐴 −
𝑋𝐺𝐵 

[55] 

𝑅2  Train 0.9731 0.9869 1.418 0.884 0.994 0.81 0.67 

 Validation 0.9755 0.9938 1.876     

 Test 0.9753 0.9893 1.435 0.8682 0.9642   

𝑅𝑀𝑆𝐸 Train 0.0972 0.0643 -33.848 0.203 0.045 0.26 0.53 

 Validation 0.1226 0.057 -53.507     

 Test 0.1057 0.0666 -36.991 0.242 0.125   

𝑅𝐴𝐸 Train 0.0749 0.0499 -33.378     

 Validation 0.0812 0.0434 -46.552     
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 Test 0.07 0.0481 -31.286     

𝑅𝑅𝑆𝐸 Train 0.1769 0.117 -33.861     

 Validation 0.1806 0.0839 -53.544     

 Test 0.1713 0.1079 -37.011     

 𝑀𝐴𝐸 Train 0.0678 0.0451 -33.481 0.125 0.033 0.17 0.41 

 Validation 0.0761 0.0407 -46.518     

 Test 0.071 0.0488 -31.268 0.149 0.087   

𝑆𝑀𝐴𝑃𝐸 Train 8.1302 5.2544 -35.372     

 Validation 7.5509 4.5664 -39.525     

 Test 7.337 4.9681 -32.287     

𝑀𝐴𝑆𝐸 Train 0.1096 0.073 -33.394     

 Validation 0.1239 0.0662 -46.570     

 Test 0.129 0.0887 -31.240     

𝑀𝑆𝐿𝐸 
Train 0.0019 

8.49E-

04 
-55.316   

  

 
Validation 0.0021 

6.62E-

04 
-68.476   

  

 
Test 0.0018 

8.20E-

04 
-54.444   

  

𝑀𝑅𝐸 Train 8.4911 5.3393 -37.119     

 Validation 7.7529 4.6555 -39.952     

  Test 7.7008 5.0154 -34.872     

 

 
 

(a) 
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(b) 

 
 

(c) 

Figure 4: The workability of generated schemes, a) Train phase, b) Validation phase, c) Test phase

A technique used in machine learning to identify how 

diverse input parameters and variables affect the output 

and effectiveness of the network is called sensitivity 

analysis. Several schemes were developed utilizing 

diverse input variables, and these schemes were included 

in the best-performing model (𝐴𝑁𝐹 − 𝑃𝐷𝑂) in the current 

study. 𝑀𝐴𝑆𝐸, 𝑀𝑆𝐿𝐸, and 𝑀𝑅𝐸 metrics were generated 

and compared utilizing 𝐴𝑁𝐹 − 𝑃𝐷𝑂 to appraise the 

effects of diverse inputs (Table 5). The greater the impact 

of missing items on productivity, the greater the disparities 

for metrics. The outcomes underscore the significance of 

all attributes in projecting 𝑉𝑛, since most input factors hurt 

outcomes when compared to 𝐴𝑁𝐹 − 𝑃𝐷𝑂. Most notably, 

when the 𝑑 and 𝜌𝑡 variables are taken out of the input 

group, there is a discernible gain in 𝑀𝐴𝑆𝐸, 𝑀𝑆𝐿𝐸, and 

𝑀𝑅𝐸 metrics. The removal of the 𝑑 throughout the 

training phase resulted in a rise in the 𝑀𝑅𝐸 values from 

5.3393 to 8.7804, 4.6555 to 9.8099 throughout the 

validating phase, and 5.0154 to 8.1239 throughout the 

evaluation phase. The outcomes imply that erasing every 

attribute parameter may lessen the schemes' dependability 

and comprehensiveness.  

The 𝑆𝐻𝐴𝑃 summary plot (Fig. 5) shows that the 

variable 𝑑 has the strongest influence on the model’s 

output, with both positive and negative impacts depending 

on its value. Other important features include 𝜌𝑡, 𝐴𝑠𝑤,𝑑, 

and 𝑐, which also display considerable variation in their 

contributions. Features such as 𝑓𝑐
′, 𝑓𝑦, 𝑎, and 𝑓𝑦,𝑠𝑤  have 

relatively smaller but still notable effects. Overall, the 

analysis highlights 𝑑 as the dominant predictor, while the 

remaining variables provide secondary contributions to 

the model's decision-making. 

Table 5: The sensitivity analysis of different scenarios on 𝐴𝑁𝐹 − 𝑃𝐷𝑂 

Index  Base model Removed attribute  
𝐴𝑁𝐹
− 𝑃𝐷𝑂 

𝑎 𝑑 𝑐 𝜌𝑡 𝐴𝑠𝑤,𝑑   𝑓𝑙𝑐 𝑓𝑦 𝑓𝑦,𝑠𝑤 𝐹𝑀 

Train database 

𝑀𝐴𝑆𝐸  0.073 0.0794 0.1172 0.0898 0.0928 0.0921 0.0852 0.0797 0.0808 0.0859 

𝑀𝑆𝐿𝐸  8.49E-04 0.001 0.0023 0.0015 0.0015 0.0014 0.0011 9.6E-04 0.0011 0.0012 

𝑀𝑅𝐸  5.3393 5.8292 8.7804 6.5658 7.3135 6.4722 6.4381 5.9261 6.0575 6.1774 

Validation database 

𝑀𝐴𝑆𝐸  0.0662 0.0766 0.1354 0.08 0.0981 0.0835 0.0833 0.0723 0.0717 0.0729 

𝑀𝑆𝐿𝐸  6.62E-04 9.7E-04 0.0043 0.0012 0.0016 8.9E-04 0.0011 7.5E-04 7.3E-04 7.5E-04 

𝑀𝑅𝐸  4.6555 5.5702 9.8099 6.0404 8.2436 5.3198 6.0478 4.9832 5.0006 5.0447 

Test database 

𝑀𝐴𝑆𝐸  0.0887 0.092 0.1346 0.1027 0.1244 0.0891 0.0913 0.1078 0.0969 0.0848 

𝑀𝑆𝐿𝐸  8.20E-04 8.8E-04 0.0027 0.0011 0.0018 8.0E-04 9.0E-04 0.0018 9.6E-04 8.0E-04 

𝑀𝑅𝐸  5.0154 5.1404 8.1239 5.8218 7.7325 5.2199 5.0963 6.4097 5.6103 4.9549 
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Figure 5: The 𝑆𝐻𝐴𝑃 value to assess the impact of 

each model 

7 Remarks   
The purpose of this research is to recognize and 

examine the tree-based, fuzzy-based, and ML methods 

that have been demonstrated to be the most effective in 

lowering 𝑉𝑛 of slab-column connections with shear 

reinforcement. This will be done to achieve the goal of 

reducing shear resistance. 𝐴𝑁𝐹𝐼𝑆 and Random forests 

analysis (𝑅𝐹𝐴) are two pieces of software that were 

employed to achieve this objective. During this inquiry, 

the metaheuristic optimization techniques that were used 

included the Prairie dog algorithm, also known as 𝑃𝐷𝐴. 

𝑅𝐹 and 𝐴𝑁𝐹𝐼𝑆 analyses were included in these methods 

to recognize the proper values for the parameters being 

considered for decision-making processes. 

The Spearman correlation coefficient matrix reveals 

that the parameters have not shown considerable 

monotonic correlations, suggesting the variables are 

relatively independent and may not have strong non-linear 

relationships. This indicates the need for an AI model that 

can effectively capture complex, non-linear interactions to 

achieve accurate predictions, as the variables do not 

appear to have strong associations based on their ranked 

positions. 

The data show that all qualities predict 𝑉𝑛, as most 

input parameters negatively affect outcomes compared to 

𝐴𝑁𝐹 − 𝑃𝐷𝑂. Removing the 𝑑 and 𝑝𝑡  parameters from the 

input group lead to significant improvements in 𝑀𝐴𝑆𝐸, 

𝑀𝑆𝐿𝐸, and 𝑀𝑅𝐸 measures. The elimination of the 𝑑 

during training increased 𝑀𝑅𝐸 values from 5.3393 to 

8.7804, 4.6555 to 9.8099 when validating, and 5.0154 to 

8.1239 during evaluating. The data suggest that erasing all 

attribute parameters may drop the scheme’s reliability and 

comprehensiveness. 

The results suggested that both 𝑅𝐹 − 𝑃𝐷𝑂 and 

𝐴𝑁𝐹 − 𝑃𝐷𝑂 can properly predict 𝑉𝑛. Efficiency study 

computations show that 𝐴𝑁𝐹 − 𝑃𝐷𝑂 is more accurate and 

reliable than 𝑅𝐹 − 𝑃𝐷𝑂. Although 𝑅𝐹 − 𝑃𝐷𝑂 achieves 

lower values (0.9731, 0.9755, and 0.9753) throughout the 

learn, validate, and evaluate stages, 𝐴𝑁𝐹 − 𝑃𝐷𝑂 achieves 

the highest 𝑅2 values (0.9869, 0.9938, and 0.9893).  

The 𝐴𝑁𝐹 − 𝑃𝐷𝑂 has the minimum training, 

validation, and evaluation 𝑅𝑅𝑆𝐸 index values of 0.117, 

0.0839, and 0.1079. These measurements were 

more accurate than 𝑅𝐹 − 𝑃𝐷𝑂's 0.1769, 0.1806, and 

0.1713 in the training, validating, and appraisal stages. 

The 𝐴𝑁𝐹 − 𝑃𝐷𝑂 can forecast competence and reliability 

since the two schemes for these measures vary by at least 

31%, and in certain cases, 68%. Reasoning and assessment 

metrics show that 𝐴𝑁𝐹 − 𝑃𝐷𝑂 is marginally more 

accurate and dependable. 

This result was reached utilizing equivalent 

measurements (𝑅2, 𝑀𝐴𝐸, and 𝑅𝑀𝑆𝐸) from the learn and 

assessment phases. 𝑋𝐺𝐵 and 𝑊𝑂𝐴 − 𝑋𝐺𝐵 adopted from 

the literature gives less reliable and robust results than 

𝐴𝑁𝐹 − 𝑃𝐷𝑂. Since the 𝐴𝑁𝐹 − 𝑃𝐷𝑂 model is more 

precise. The increased 𝑅2 values and lower 𝑅𝑀𝑆𝐸 and 

𝑀𝐴𝐸 values demonstrate this. For 𝑋𝐺𝐵, 𝑀𝐴𝐸 reduced 

from 0.125 to 0.0451 during learning and from 0.149 to 

0.0488 during evaluation. 𝑅𝑀𝑆𝐸-based error measures 

reduced from 0.203 to 0.0643 during learning and from 

0.242 to 0.0666 during assessment. 
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