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The growing demand for elderly care services necessitates intelligent, efficient, and adaptive resource
management strategies. This research presents a dynamic allocation strategy for optimizing elderly care
resources using reinforcement learning (RL), addressing the complexity of nursing home resource
management. This research proposes a Dynamic Honeybees Mating—tuned Resource-based Deep Q-
Network (DHBM-RDQN) for elderly care resource allocation. The approach models the care
environment as a Markov Decision Process (MDP), where states capture patient acuity levels, staff
availability, daily admissions, and care workload, while actions correspond to dynamic allocation of
nursing staff and support resources. The system uses a comprehensive Elderly Care Staffing & Quality
Dataset, comprising time-series records at daily or shift-level granularity from multiple long-term care
facilities. Preprocessing includes Z-score normalization and missing value imputation, while feature
extraction applies Independent Component Analysis (ICA) and Discrete Wavelet Transform (DWT) to
capture latent health patterns and temporal fluctuations. The DHBM-RDQN employs a Deep Q-Network
with two fully connected layers (256 and 128 neurons) and ReLU activations, trained using the Adam
optimizer. The Honeybee Mating optimization layer dynamically tunes learning rate, exploration
parameters, and reward weights to prevent premature convergence. Experimental evaluation were
implemented in python. Results show 96.5% accuracy, 90.5% resource efficiency, 1.0 s response time,
and an adaptability score of 0.925, demonstrating robust adaptability under fluctuating patient demand
and staffing. This research introduces a novel RL framework combining deep learning and bio-inspired
optimization to achieve superior performance, rapid decision-making, and improved care quality in
dynamic long-term elderly care environments.

Povzetek: Raziskava predstavlja dinamicno strategijo razporejanja virov v domovih za starejSe z
okrepljevalnim ucenjem (RL) in bio-navdihnjeno optimizacijo, ki izboljsa ucinkovitost, prilagodljivost ter

kakovost oskrbe ob nihanjih povprasevanja in razpolozljivosti osebja.

1 Introduction

One of the major problems facing the world today is the
aging population particularly in the developing
countries whereby by 2050, the numbers of individuals
aged 65 years and above are projected to have doubled.
This demographic transition goes a long way in creating
a high demand of efficient healthcare systems and
facilities among the aged. To have long-term
sustainability of the workforce and quality care delivery,
effective nursing staffing and resources are required.
Introducing data-driven solutions and real-time analysis
in the context of health management may be used to
resolve these issues and guarantee efficiency of
resources and quality of the services [1, 2]. Besides
addressing complex medical, emotional, and social
needs, nursing homes and assisted living facilities are
currently challenged by the persistent issues, including
the rising operational costs, the shortage of staff
members, and the growing need to provide personalized

care [3]. These difficulties emphasize the necessity of
clever, responsive solutions that would help balance the
quality of care and optimal resources allocation [4].
The use of Al technology, including ML, NLP, and
intelligent robots, by more healthcare organizations to
improve QOC services and medical resource utilization
is growing. Such advantages enable regular chances of
transformation within a knowledge-oriented healthcare
setting [5]. Information technology offers a channel
through which the Al healthcare service resources can
interact stakeholders be it patients, clinicians,
pharmaceutical and insurance companies, and the
hospital serves as the central point [6]. The field of
healthcare has now been transformed by Al through
such applications as DL models and rule-based
systems. Under Al is RL, which has drawn increased
attention to its application in medical applications.
Better personalized medicine, better use of resources in
hospitals, more optimizations in therapy, and accuracy
of diagnostics can be developed with the help of Al. Al
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algorithms have made it faster to discover diseases,
enhanced the pace of accuracy during diagnostics, and
offered useful information to make decisions.
Moreover, automation, which has been facilitated by
artificial intelligence, has enhanced administrative
procedures and reduced practitioner workload that had
enhanced efficiency in operations [7].

The latest studies have given emphasis on the
benefits of RL to enhance operation in healthcare. RL-
based frameworks have so far been implemented to
control hospital bed capacity, enhance surgical
schedule, and enable emergency response planning.
These applications were more flexible when compared
to traditional optimization models [8]. Dynamic
allocation models based on ML was found to enhance
patient safety, emergency response and overall quality
of service in the context of elderly care. These models
are based on round the clock monitoring of the daily
health indicators to determine the needs of care and staff
[9]. Healthcare planners are usually presented with
multidimensional, complex issues that present
scheduling issues, resource allocation, and strategic
decision-making. These problems will necessitate smart
and flexible systems that can manage complexity and
uncertainty in the operating environments [10].

1.1 Aim of the research and objective

This research aims to develop an intelligent and
adaptive framework for optimizing elderly care resource
allocation in nursing homes. The objective is to
dynamically manage nursing staff and support resources
using a reinforcement learning-based model, DHBM-
RDQN, which integrates Deep Q-Networks with
Honeybee Mating optimization. By modeling the
environment as a Markov Decision Process and
leveraging feature extraction techniques like ICA and
DWT, the framework seeks to improve accuracy,
resource efficiency, response time, and adaptability,
ensuring robust and efficient care under fluctuating
patient demand and staffing conditions.

1.2 Key Contribution of the research

® To propose a dynamic RL method DHBM-RDQN
to optimize elderly care service resources,
improving staff allocation efficiency and service
quality.

® To utilize a comprehensive elderly care staffing &
quality dataset, consisting of time-series records
on patient demand, staffing, operational
constraints, and care quality outcomes from
multiple long-term care facilities.

® To utilize preprocessing to standardize
heterogeneous elderly care data and extract
meaningful patterns from multi-source variables,
improving the quality of inputs for reinforcement
learning.

® To formulate the elderly care environment as an
MDP, capturing patient acuity, staff availability,
and care demands for structured state-action-
reward learning.
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® To demonstrate that the proposed method
outperforms traditional rule-based approaches,
providing more adaptive, reliable, and effective
resource allocation in elderly care settings.

2 Related works

The new ERAS in the fog environment specially
developed to be used in healthcare was introduced [11].
To achieve effective resource management, ERAS
applied prediction algorithms and current allocation of
resources. Unlike the old algorithms, ERAS optimizes
ARU and Level of Load Balancing and gives the
minimal Makespan. The two primary contributions
were the use of optimized RL for load balancing and
resource allocation in the fog environment, as well as
the optimization of RL hyperparameters by PSO.

ElHealth, an loT-focused approach that tracks
hospital room usage by patients and modifies medical
staff accordingly, was presented [12]. It forecasted the
amount of space needed and suggested ways to assign
experts by data prediction algorithms. Additionally,
ElHealth offered proactive human resources elastic
speedup and multi-level predictive elasticity of human
resources to control resource utilization. Using data, the
model was tested and demonstrated encouraging
outcomes, lowering waiting times by as much as
96.71%.

System performance and efficiency were improved
by streamlining the HRM process and lowering effort
[13]. The HRM system model was built on a BPNN
driven by DL algorithms. The model provided the best
optimization effect over traditional models and
converged the quickest. According to the results of the
LOO approach, the model converges at 60 epochs and
was 2.76% more accurate than other models, with an
accuracy of 88.72%.

MILP that used the Gurobi optimization solver to
reduce healthcare costs and enhance patient care was
presented [14]. Due to the implementation of two
different scenarios, two distinct optimal solutions were
obtained. The first produced an ideal solution with a
0.0% solution gap and an objective value of 844.0.
With an objective score of 539.0, the second solution
validated the model's dependability. There were no
discernible discrepancies between the two approaches'
best-bound scores, suggesting optimal solutions with
reasonable tolerances.

The application of system dynamics modeling was
looked to improve quality of service in the system of
healthcare [15]. Errors were reduced and work pressure
was stabilized, but when the patient arrival rates were
lowered, it went against accessibility objectives. Errors
were decreased and service capacity was increased by
increasing human resources, especially experienced
staff. Long-term increases in service quality required
striking a balance between system costs and staff
efficiencies. Patient satisfaction and operational
performance could both be improved by incorporating
dynamic modeling into management procedures.
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Two important issues in healthcare team-based
planning of resources were addressed by ML and
stochastic optimization [16]. To satisfy demands and cut
expenses, it focused on forecasting patient workloads
and allocating healthcare team resources as efficiently
as possible. Before allocating patients to available teams
and balancing workloads in narrow decision-making,
the model employed a deep multi-task learning
technique to forecast workloads for various patient
categories. Multi task learning performed better than
traditional prediction techniques and takes stochastic
variables and randomness into account for better access
to healthcare.

The suitability of NCD models in hospital wards
and the efficiency of ML techniques in improving nurse
staffing were assessed [17]. The highest accuracy in
predicting the suitability of NCD systems and the
adequacy of nurse staffing in 39 inpatient wards were
shown by RF algorithm. Functional nursing and
complete patient care models were the most commonly
utilized care delivery models in wards.

A scheduling system of nurse schedules was
developed automatically using open-source operational
research techniques [18]. All hard criteria and the
majority of the soft constraints were satisfied by the
system, which produced schedules in less than a minute.
Nurses and management staff could communicate in
real time by the computer-generated schedules, which
were more flexible and optimally accustomed. The
system was applied in many wards and was cost-
effective, efficient, and easy to use. It was also updated
frequently with new policies and nurse staff.

Meanwhile, the application of predictive modeling
and workforce analytics based on the Al was provided
as an innovative strategy distribution of human
resources in the healthcare industry [19]. It included
data on clinical outcomes, measure of operational
efficiency, patient acuity, and past staffing trends.
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Having the best chance to forecast staffing
requirements in various clinical contexts, the technique
increased the use of resources, patient satisfaction, and
operational cost-effectiveness. These workforce
management systems are Al-based, which creates a
balance between the quality of care and the
effectiveness of the organization.

In addressing the high-dimensional constraints of
conventional SARSA, an approximation sate-action-
reward-state-action (ASARSA) algorithm has been
proposed to optimize resource allocation in energy
harvesting (EH)-multiple-input multiple-output
(MIMO) communication systems [20]. Comparing
experimental results to SARSA and Q-Learning, they
demonstrate reduced error, faster convergence, and
increased throughput. All things considered, ASARSA
shows improved scalability, precision, and efficiency
for practical EH-MIMO applications.

Queue assessment model was developed for
assessing walk-in outpatients in a public hospital that
did not have appointment scheduling [21]. The model
evaluated wait times over a seven-week period using
DEA. Doctor/personnel and consultation time were
among the outputs; the latter was the non-discretionary
output. Excel VBA programming was used to provide
the dynamic framework for ongoing queue monitoring.

The scheduling procedure for ED patients was
optimized with the use of deep RL [22]. DQN was the
foundation of the algorithm, which was intended to
reduce waiting times and penalties for patients who
were emergencies. In terms of reducing waiting time
and penalties, the research demonstrated that RL
performs better than dispatching rules. Deep RL
successfully applied in ED applications, as this
research has shown, especially when it comes to
supporting decision-makers in the dynamic setting of
an ED. Table 1 shows the summary table for related
works in healthcare resource management.

Table 1: Summary of related works in healthcare resource management

ﬁesearch Technology Used Domain Dataset Performance Metrics
0.
[11] ERAS, RL, PSO Fog-based Real-time healthcare ARU, Load Balancing Level,
healthcare resource resources in fog Makespan
management environment
[12] ElHealth, loT, Hospital room Patient occupancy & Waiting time reduction (up to
Prediction algorithms usage and staffing staff allocation 96.71%%
[13] BPNN, Deep Learning HRM process Healthcare staffing Accuracy 88.72%,
optimization and task data convergence at 60 epochs
[14] MILP, Gurobi Cost reduction & Healthcare ) Solution gap 0%, Objective
optimizer patient care operational scenarios values 844 & 539
[15] System Dynamics Quality of service Healthcare ) Error reduction, stabilized
odeling improvement operational & staffing work pressure, service
data capacity
[16] ML, Stochastic Team-based Patient workloads & Forecasting accuracy,
optimization, Deep healthcare resource healthcare team data workload balancing
multi-task learning planning efficiency
[17] RF, ML Nurse staffing and 39 inpatient wards Prediction accuracy for NCD
NCD models suitability and staffing
adequacy
[18] Open-source Nurse scheduling Nurse shift & ) Feasibility of schedules,
Operational Research scheduling constraints |  satisfaction of hard/soft
Techniques constraints, efficiency
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[19] Al, Predictive Strategic HR Clinical results, Staffing prediction accuracy,
modeling, Workforce allocation operational efficiency, | resource utilization, patient
analytics staffing trends satisfaction

[20] SERVQUAL model Patient service 22 service quality Statistical correlation between

satisfaction variables service dimensions and
patient satisfaction

[21] Queue assessment Outpatient waiting Walk-in patient data Wait times, doctor/personnel
\rr)gdAel, DEA, Excel time over 7 weeks consultation time

[22] Deep RL, DON ED patient Emergency Reduced waiting times,

scheduling department patient penalties for emergency
arrivals & tasks patients

2.1 Research gap

Despite the continual advancements in healthcare
resource utilization, several gaps in HRM, care
coordination, and service delivery still remain. The
existing approaches of ERAS [11] and ElHealth [12],
for example, are primarily focused on predictive
allocation and elasticities, which tend not to adequately
integrate multiple sources of time sensitive patient and
operational data in a holistic adaptive decision-making
framework. Traditional optimization frameworks such
as BPNN-based HRM [13] and MILP models [14]
provide improvements to efficiency but rely on static
historical datasets that constrain their ability to adapt to
real-time dynamic care settings. Similarly, system
dynamics models for HRM and ML-driven workload
forecasts [15, 16] provide useful means of improving
planning but do not consolidate dynamic patient health
variation with dynamic nurse staffing availability within
an integrated framework. Approaches addressing nurse
rostering and HR [17, 18, and 19] focus on scheduling
and operational efficiency but have not utilized RL as a
means of continuously optimizing resource allocation
policies under uncertainty and risk. Assessments of

service quality and access / ED patient scheduling using
deep RL [20] [21] [22], while demonstrating promise,
are also limited in scope and do not offer extrapolation
opportunities for multi-institution elder care contexts.
This highlights the need for a dynamic, RL-based
approach DHBM-RDQN that integrates heterogeneous,
temporal, and operational data for real-time elderly care
resource optimization.

3 Methodology

The proposed methodology for dynamic allocation of
elderly care resources was detailed in this section. It
covers dataset characteristics, preprocessing steps
including Z-score normalization and missing value
imputation, feature extraction via ICA and DWT, and
MDP formulation for RL-based decision making. The
hybrid DHBM-RDQN algorithm combines resource
based deep Q-learning (RDQN) and Dynamic
Honeybee Mating optimization (DHBM), which can be
used to find efficient, adaptive, and robust resource
allocation given real-time changes in patient demand
and staff availability. The general way of flow of the
methodology is provided in Figure 1.
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Figure 1: Methodology flow for RL based dynamic allocation of elderly care resources




Dynamic Elderly Care Resource Allocation using SHBM-Tuned...

3.1 Dataset

The elderly care staffing & quality dataset from Kaggle
(https://www.kaggle.com/datasets/zara2099/elderly-

care-staffing-and-quality-dataset/data) comprises time-
series data collected from multiple long-term care
facilities, capturing comprehensive information on
staffing, workload, operational constraints, and care
quality outcomes. The data is also organized on a daily
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or shift level, which allows examining the dynamic
resource distribution and efficiency of operations. It
contains both continuous and discrete attributes, which
capture the patient demand, nurse supply, time factors,
cost of operations, and quality indicators, which makes
it appropriate in RL-based optimization of resources in
the elderly care setting. The most important
characteristics of the dataset are provided in Table 2.

Table 2: Key features of elderly care dataset

Category Feature Examples

Demand / Workload Daily resident census, admissions, dlschar?es transfers, care minutes index, patient acuity scores,
unplanned events (falls rapid response calls, wound care)

Supply / Staffing Staff headcount by role: Registered Nurse (RN) , Licensed Practical Nurse (LPN), CAN (Certified
Nursing Assistant) and skill mix percentages, overtlme/agency/float pool hours, staff absences,
planned leave

Temporal & Shift type, day of week, month, season, holiday indicators, pay cycle flags, outbreak flags, extreme

Context weather conditions

Operational Staffing ratios, maximum hours per staff, hourly wages, overtime/agency premiums, budget caps

Constraints & Costs

Quality & Outcomes Pressure-injury cases, medication errors, readmissions, complaints, satisfaction scores

3.2 Preprocessing of Elderly care data for
RL

Preprocessing is a critical step in preparing the elderly
care dataset for RL, ensuring that raw, heterogeneous
data is transformed into a consistent and reliable format
suitable for modeling. By applying the below two
techniques, the dataset becomes standardized, complete,
and free from distortions. This preprocessing step
ultimately enhances the stability, accuracy, and
generalizability of the proposed RL framework for
dynamic elderly care resource allocation.

1) Z-score Normalization: Z-score normalization for
preprocessing of heterogeneous variables such as patient
health indicators, staffing schedules, and emergency
response times was utilized to achieve uniform scaling.
The goal of Z-score normalization is to put the variables
onto a standardized scale to better stabilize the
reinforcement learning algorithm during convergence.
Unlike Min—Max scaling, this technique centers data on
zero and scales it based on Standard deviation. This
means that when learning a policy, attributes like patient
BP, which span a higher numeric range, will not be relied
upon more than attributes like staff-to-patient ratios,
which span a smaller range. The Z-score for a given
variable x; is calculated using Equation (1).

Z; = % 1)

Where x; represents the original values, p is the
mean of the variable, o denotes Standard deviation.
Following normalization, all variables are on a common
scale with a mean of zero and unit variance, easing the
comparison of features in the state-action-reward space
of the MDP.

2) Missing Value Imputation (MVI): In real world
elderly care data, missing data points are unavoidable
due to missing staff logs, unrecorded evaluation of
patient health signs, or delayed documentation of
emergency situations. If not handled appropriately, these
untreated missing values can introduce bias and diminish
the robustness of RL outcomes. To mitigate this issue,
the research decorates and applies MVI methods that are
relevant to the data type, for example, a mean
substitution for continuous variables (i.e., response time,
physiological measures, HR, BP etc.,), median
substitution for skewed measures, and mode imputation
for the variable types of staff roles, shift types, and
service ratings. This method would help to substitute the
missing information with statistically representative
values and maintain the variations in the data distribution
to not bias the patterns that are needed for effective
policy discovery. By systematically imputing missing
values, the dataset remains complete and coherent.

The dataset contained missing values ranging from
2.8% to 11.4% across different features, with staffing
logs and emergency records having the highest gaps.
Missing values in time-series sequences were handled
using forward-fill and backward-fill interpolation to
maintain temporal continuity and avoid abrupt gaps in
data flow, ensuring realistic sequential patterns for RL
training. Additionally, a bias evaluation was performed
by comparing statistical properties (mean, variance, and
range) before and after imputation, and the results
showed no significant deviation, confirming that the
imputation strategy did not distort the dataset.
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Algorithm 1: Data preprocessing

# Step 1: Load Dataset

dataset = load_csv("elderly_care_dataset.csv")

# Step 2: Z-score Normalization

for feature in continuous_features:
std_val = std(dataset[feature])

mean_val = mean(dataset[feature])

dataset[feature] = (dataset[feature] - mean_val) / std_val

# Step 3: Missing Value Imputation (MV1)
for feature in dataset.columns:

missing_percentage = calculate_missing_percentage(dataset[feature])

if missing_percentage > 0:
if feature in continuous_features:

dataset[feature].fillna(mean(dataset[feature]), inplace=True)

elif feature in skewed_features:

dataset[feature].fillna(median(dataset[feature]), inplace=True)

elif feature in categorical_features:

dataset[feature].fillna(mode(dataset[feature]), inplace=True)

# Step 4: Time-series Continuity Handling

for feature in time_series_features:
dataset[feature] = forward_fill(dataset[feature])

# Step 5: Bias Evaluation

for feature in dataset.columns:

dataset[feature] = backward_fill(dataset[feature])

compare_statistics(original_data[feature], dataset[feature])

# Step 6: Output Preprocessed Dataset
save_csv(dataset,
"preprocessed_elderly care_dataset.csv")

3.3 Feature extraction

Elderly care data are important per se since they unveil
concealed correlations, and temporal dynamics, which
can be used in the reinforcement learning process. ICA
isolates independent latent signals among several
correlated variables of health and workload, whereas
Discrete Wavelet Transform (DWT) detects multi-
resolution temporal variations which enhance state-
space descriptions and facilitate the learning of policies
around the dynamic allocation of resources.

ICA was chosen to separate overlapping signals in
elderly care data into independent components,
capturing hidden trends better than variance-based
methods like PCA. DWT was employed to handle non-
stationary temporal patterns, providing both time and
frequency information to detect short-term anomalies
and long-term workload trends. Together, ICA and DWT
generate a rich feature set that enhances the model’s
dynamic decision-making capabilities.

1) Independent Component Analysis (ICA): ICA
was used to find some latent independent factors from
the multidimensional care of the elderly dataset, in
particular when strong associations exist among the
variables. For instance, the health indicators of the
patient, such as HR, BP, and level of mobility, exhibit
strong correlations and interdependencies, masking the
independent signals of health deterioration or health
stabilization. These techniques decompose the observed

dataset X into strains of statistically independent
components in accordance with Equation (2).

X =AS(2)

Where X is the observed data matrix, A is the
mixing matrix, and S is the independent components
matrix in Equation (2). This technique aims to
approximate both A and S such that the extracted
components in S are maximizing independence. In this
research, the independent components are interpreted as
latent health risk indicators, workload dynamics, and
hidden care demand patterns to add to the state-space
representation of the reinforcement learning model. By
having the independent signals, the proposed model
would be able to learn more optimal policies for dynamic
resource allocation while not creating redundancies
associated with raw correlated features. The first 5
independent components capturing the most significant
latent health and workload patterns were retained post-
ICA for the state-space representation in the RL model.

2) Discrete Wavelet Transform (DWT): WT is yet
another feature extraction method like Fourier method,
but unlike Fourier method, it is able to provide time
while also keeping frequency data. WT allows one to
capture temporal and frequency-specific change in the
elderly care data set, beyond what has already been
shown. WT is especially useful for time series data that
is irregular and non-stationary such as the emergence of
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patterns for staff, health fluctuations for patients, and
overall workload patterns for staff.

The DWT (Equation (3)) decomposes a time-series
signal f(t)into a set of approximations and details using
scaled and shifted versions of a mother wavelet function
v, tis a continuous time variable over which the signal
is measured.

1

DWT (&, b) = =/, f(0)v (%)) dt @)

Where the scale and translation parameters are
aandb , respectively, which regulate frequency
resolution and temporal localization.

The Daubechies (db4) wavelet was used for the
Discrete Wavelet Transform (DWT) to extract multi-
resolution temporal features from the elderly care
dataset. The wavelet decomposition was used for
identifying multi-resolution features, including energy,
entropy, and dominant frequency bands for time-series
emergency logs, patient monitoring, and daily care
demand variation logs to detect short-run anomalies
(such as spikes in the number of emergencies) and long-
run care demand trends (such as seasonality in health
needs of patients).

3.4 Markov Decision Process (MDP)

To optimize the allocation of elderly care service
resources, the environment is modeled as an MDP. By
offering a mathematical foundation for sequential
decision-making, MDP enables the RL agent to discover
the best course of action for allocating resources in real
time, contingent on the condition of the care facility. An
MDP is defined by the tuple (S, A, R, P) where S
represents the state, A represents the action, R is the
reward, and P denotes the transition probability.

At each time step t, the system examines the current
state s,, selects an action b, € A, and receives a reward r,
as the environment transitions to a new state s.;.
Although exact transition probabilities may not be fully
known, the RL framework can still learn effective
policies through interactions with the environment.

State Formulation: The state captures real-time
operational parameters of the elderly care facility,
including patient acuity levels, staff availability, and
care demands. Let BppY be the total number of patients
with the acuity level bv = {1,...,BV)in g, and let o,
be a collection of patients waiting to have a procedure on
medical resource type f at time t. This will characterize
the condition at time t.f can perform a variety of
treatments, as previously indicated. Next, in g, let RT}
be the total number of patients in g with treatment type
tt = 1,...,TT where TT is the total number of treatment
types, that need to be processed on f. As a result, the
following Equation (4) represents the status S'of each
resource group g at t.

£ Bpl  BeBY\ (rrh  RT}T
Si =3l—, ..., , s e | 1(4)
logl loal /7 \l@l |4

Standardizing each element to a ratio between 0 and
1 ensures that variables with different scales do not
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disproportionately influence the learning process.
Lastly, Equation (5) displays s;.

si = {S!, ., ST}(5)
State Vector Example:
For a facility with 3 resource types(f = 1,2,3), 2 acuity
levels (BV = 2), and 2 treatment types (TT = 2), the
state vector at time t can be represented as:
sc={SI,St, St}
= {(0.4,0.6), (0.3,0.7), (0.5,0.5), (0.2,0.8), (0.6,0.4), (0.3,0.7)}
Here, each tuple in S’ shows the normalized ratio of
patients by acuity and treatment type for each resource
Action formulation: Actions represent the dynamic
allocation of elderly care resources, such as assigning a
staff member to a patient or scheduling a care task.
Equation (6) describes the existence of ¢, and b.and
also denotes the selected patient or task allocation for
each resource type fat time t. The RL agent selects these
actions to optimize the overall service efficiency.

b = {p,, - £,}(6)

Number of Actions per Time Step: The total number
of actions depends on the number of patients and
resource types. If o contains N patients for resource f,
and there are F resources, then at each time step:

Total actions = Y, ||

Each action represents assigning a specific patient
to a resource for a treatment step.

Reward formulation: The reward function is
designed to incentivize efficient resource consumption
and minimize patient waiting times. Specifically, the
reward r, at time t is given as the negative weighted sum
of waiting times for the assigned patients (Equation 7).

rr=—-1x cj{zt;{ Wtjk}(7)

Where wt;, is the waiting time of patient j for
treatment step k and c; is the corresponding weight
reflecting priority or care severity. Negative rewards (-
1) ensure that the RL agent is encouraged to reduce
waiting times while balancing staff allocation and care
quality.

3.5 Dynamic Honeybees Mating-tuned
Resource based Deep Q-Network (DHBM-
RDQN)

Combining the RDQN with DHBM establishes a hybrid
method for learning and optimization that
simultaneously leverages policy learning with an
adaptive search. While RDQN uses an approximation of
the Q-function for efficient resource allocation in high-
dimensional elderly care contexts, DHBM increases
focused exploration by introducing mutation-based
diversity to mitigate premature convergence. Taken
together, RDQN with DHBM allows the agent to learn
stable yet flexible policies that can respond optimally
and rapidly to changing patient needs and workforce
availability —and maintain  optimal  scheduling
performance.
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3.5.1 Resource based Deep Q-Network
(RDQN)

The proposed approach employs an RDQN to
dynamically optimize elderly care resource allocation. In
traditional Q-Learning, the agent seeks to learn Q-
function, Q(s, b) , which symbolizes the probable
cumulative reward for action taking b, in state s, and
following the correct policy thereafter, receiving the
reward r,. The optimal policy selects actions that
maximize future returns. The Q-function is iteratively
updated by Equation 8.

Q(syb) < (1 —a)Q(sy, b)) + afr +
YQ(SL+1 ) bmax)](g)

Where the learning rate is represented by a. The
discount factor y was accounting for the uncertainty of
future rewards. In standard Q-Learning, Q(s,, b,)is stored
in a table, which becomes infeasible for state-action
spaces of high-dimensional such as those in elderly care
facilities.

To address this, RDQN replaces the Q-table with a
DNN, Q,(s,b), parameterized by 0, which approximates
Q-values for all state-action pairs. During training, the
network predicts Q (s, b)) in a forward pass, while the
resulting experience tuple (s, b,1,s.4;) IS stored in a
replay buffer. The loss function is then minimized to
update the network settings (Equation (9)).

As an estimate of future reward, the goal is to utilize
the observed reward, r, , to get an improved
approximation of the Q-value. The discount factor y
takes into consideration the uncertainty of future
rewards, whereas o represents the pace of learning. In
DON, a DNN Q,(s, b) is used in place of the Q-table, and
back-propagation is used to train the parameters 6. An
RL problem does not provide a ground truth, in contrast
to supervised learning. The network's current
estimate, Q (s, b,), for the Q-value is determined in a
forward pass. Executing the corresponding action yields
the tuple (s, by, 1, s¢4) that is then saved in an experience
buffer. However, the network parameters 0 are adjusted
using a cost function rather than individual Q-values.

2
JG = % (QO (St' bt) - (rt + Y I'Ilb?x Qg (St+l' bmax))) (9)

In Equation (9), a ground truth y is approximated
using the definition r[+ymba_1xQ9(st+1,bmax), and the
gl

network is trained using the resulting cost J,. However,
training can be unstable because the same network is
used to estimate both the Q-value and its target. To
mitigate instability, the RDQN incorporates mechanisms
such as experience replay and target network updates,
ensuring stable convergence. By integrating RDQN with
the state representations derived from ICA and Wavelet
features, the agent learns to allocate staff and care
resources efficiently, minimizing waiting times and
maximizing service quality in elderly care facilities.
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3.5.2 Dynamic Honeybees Mating (DHBM)

The DHBM algorithm is inspired by the natural mating
behavior of a hive queen bee, which ensures exploration
and exploitation in a solution space.

The DHBM mechanism in this framework functions
as an adaptive optimizer that dynamically enhances the
Q-learning process rather than operating independently.
Instead of relying solely on epsilon-greedy or fixed
exploration parameters, DHBM generates diverse policy
candidates through mutation and mating strategies and
evaluates them based on their fitness (resource allocation
efficiency and waiting-time minimization). The best-
performing candidate policies are then used to update the
RDQN parameters, adjust exploration—exploitation
balance, and tune hyperparameters such as learning rate
and discount factor during training. This integration
ensures that the Q-network avoids premature
convergence, maintains  policy diversity, and
continuously adapts to shifting patient loads and staffing
fluctuations in real time.

DHBM operates directly on the policy network,
where it refines network weights during training. The
experience replay buffer remains unchanged, and
DHBM does not modify stored transitions. Instead, its
role is to enhance policy optimization by improving
convergence and decision accuracy.

In the context of this research, each bee represents a
potential scheduling and resource allocation policy for
elderly care facilities, where the fitness of each bee
corresponds to its effectiveness in reducing patient
waiting time and balancing caregiver workload. In the
classic HBMO method, the best bee is designated a
queen bee; the rest are regarded as drones. The mating
with the queen occurs only probabilistically, defined in
Equation (10).

Prob(C) = exp (—A(e)/T(1))(10)

Where Prob(C)denotes the probability of a drone
contributing its genetic material (solution) to the queen’s
sperm theca, A(e) represents the absolute difference
between the drone and queen, and T(l)represents the
queen's speed at iteration 1. A higher probability of
mating occurs when the queen is moving quickly or
when the drone's fitness is similar to the queen’s. After
each iteration, the queen's speed decreases according to
Equation (11). T(1+ 1) in Equation (11) represents the
queen bee’s “speed” at the next iteration 1+ 1.

T+ 1) = ax T()(11)

Where a € [0, 1]is the speed decay factor. To prevent
premature convergence and better adapt to the dynamic
and uncertain care demands in elderly facilities, the
DHBM introduces mutation strategies that diversify the
search space. Specifically, at each iteration four distinct
mutant vectors are generated using different mutation
rules (Equations 12-16). This enhances global
exploration and avoids being trapped in local optima
when patient demand fluctuates unpredictably. To
uniformly cover the whole searching region, the
algorithm mutates vectors in each step by choosing four
vectors ( Wy, W, W3 Wi, ) from the original population
asWy # W, # W3 # Wy
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) W{nutanFl = Will + El X (Wj;queen - WJ1—3) + El X
(Wes — W) (12)
Wi ane = Woeen + E2 X (Wl — W),)(13)
) W-:nutam3 = Will + E3 X (qu2 - qu:&) + E3 X (qu] -
W ) (14)
q4
W;xlutant4 = (qu] + WJq2 + \qu3)/3 + (B2 -
B (Wo = Weo) + (By_B,) (W, = Weo) + (B, —
B (Wes — W, )(15)
e(W)) e(Wp) e(Wh3)
Bl — | B:ll |:ﬁ2 — | B*qz |’B3 — | B:ﬂ |(16)

The function to be optimized is denoted by p* =
le(W ) +]e(W,) +le(W)| and e(W) , the
coefficients between 0 and 1 are denoted by E, to E;, the
mutant vector of the jth iteration associated with the ith
mutant rule is denoted by Winummi, and the queen vector
(which vyields the best result) is denoted by W{;ueenat

iteration j. In this research, the fitness function evaluates
scheduling policies based on two objectives: minimizing
weighted patient waiting time, and balancing workload
distribution across caregivers. e(W{ll) is the magnitude
of that fitness (always non-negative).
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The position of the vector is changed to the upper
and lower bounds of the control vector if any component
of any mutant vector violates its constraint. Next, all of
the mutant vectors' fitness functions are calculated and
arranged using the descending technique. The mutation

vector chosen as W) ., is the one with the lowest
fitness function. In the following generation, the trial
vector takes the place of the target vector if the cost of
the mutant vector is lower than that of the target
(Equation 17).

qutéen =
{ WJmut,Best ife(\V}wW,Best) = e(W;u
quueen Otherwise

Where W{;Qen is the best scheduling/resource
allocation policy for the next iteration, ensuring the
algorithm moves toward optimal solutions. The mutant
vectors are first evaluated using the fitness function, and
the best-performing vector (mutant-best) is selected as a
candidate policy. This candidate is then compared with
the current policy, and if it provides better reward
performance, it replaces the existing policy parameters.
Finally, the selected mutant vector is used to update the
RDQN weights, influencing exploration strategy and
improving policy refinement. Table 3 shows the hyper
parameter table for DHBM.

een) (17)

Table 3: Hyper parameter table for DHBM

Hyperparameter Value

Learning Rate (o) 0.0005 — 0.005 (DHBM-adaptive)
Discount Factor (y) 0.90-0.99

Exploration Rate (g) 1.0 — 0.05 (decayed using DHBM)
Batch Size 32-128

Replay Buffer Size

10,000 - 50,000

Target Network Update Interval

Every 10-50 episodes

Mutation Coefficients (E1-E3)

02-038

Queen Speed Decay (o_decay)

0.90-0.98

Number of Mutant Vectors per Iteration 4

By integrating DHBM with RDQN, the algorithm
dynamically tunes the learning process of the
reinforcement learning agent, ensuring that scheduling
and resource allocation decisions remain effective under
real-time variability in patient arrivals, health

emergencies, and staff availability. This hybrid
mechanism improves both convergence stability and
policy adaptability, making it particularly suitable for
complex elderly care environments. The pseudocode of
the proposed method is given in Algorithm 2.

Algorithm 2: DHBM-RDQN

Input: Preprocessed elderly care dataset, replay buffer

Output: Optimized scheduling policy and reduced patient waiting time
Initialize RDQN parameters 8, target network ', and replay buffer
Initialize DHBM population (queen + drones) with random policy weights
Evaluate the fitness of each policy — select best as initial queen

While training not converged do
Observe current state S

Select action biusing DHBM-guided exploration (adaptive &)

Execute action, receive reward I'y and next state Sy 1
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Store experience tuple (St, by, I't, St41) in replay buffer

RDQN Update:
Sample mini-batch from replay buffer

C. Cheng et al.

compute loss using Equation (9) and update network weights 6

2

Jo = %(Qe(st' by) — (rt +vy max Qo(St+1, bmax)))
]

Periodically update target network 6’

DHBM Optimization:

Generate mutant vectors using Equations (12-16)

Wx]_nutann = W(]:n +E; X (Wz]quegn - W%s) +E; X (W(jl3
Wr]_nutantz = th_lueen +E; X (_Wlln __Wzllz) _
er}lutant3 = W(]n +E;z X (Wzllz - W¢]13) +Ez X (Wél
W]
By = M' B2 = |E(WL2)|vB3 = |E(WL3)|

B* B B

Compute fitness of all mutant policies
Select best mutant vector — Wi,.1 pest

— W(]ﬂ)

mutant4 (W(]n + W(jqz + W(j]3)/3 + (B2 - Bl)(wél - WfJJZ) + (BS—BZ)(WAZ - W<]13) + (B - BS)(WA3 - W}n)

If Wit pest improves reward — update queen and RDQN weights

Update exploration rate € and queen speed T (1) (Eq. 10-11)

Prob(C) = exp (—A(e)/T(1))

TA+1) =axT()

End while

Return final optimized policy and performance metrics

4 Experimental result

The implementation details, system configuration, and
hyper parameter settings of the proposed DHBM-RDQN
method were presented in this section. It highlights the
outcomes of the experiments, demonstrating the
framework’s ability to efficiently allocate resources,
optimize staff scheduling, and adapt dynamically to
changing elderly care demands.

4.1 System configuration and hyper parameter
tuning

The proposed DHBM-RDQN framework was
implemented using Python with TensorFlow, PyTorch,
and Keras, supported by standard scientific libraries for
preprocessing and feature engineering. Model training
and evaluation were executed on a GPU-enabled
computing environment to ensure efficient convergence

and experimentation. Table 4 summarizes the optimized
hyper parameters used in the final configuration.

The hyperparameters for DHBM-RDQN were
selected through a combination of empirical testing and
bio-inspired optimization principles. Baseline values for
the RDQN component, such as the number of hidden
layers, neurons, activation function, and optimizer, were
chosen based on standard reinforcement learning
literature to ensure stable learning. The Honeybee
Mating (DHBM) layer parameters—population size,
number of generations, mating flight length, mutation
probability, and crossover probability—were iteratively
tuned to enhance exploration, prevent premature
convergence, and optimize policy learning under
dynamic elderly care conditions. Experimental
validation confirmed that these settings provided the best
balance between learning stability, convergence speed,
and adaptability

Table 4: Hyper parameter setting for DHBM-RDQN

Category | Hyper parameter Value
RDQN Hidden Layers 2 fully connected layers
Neurons per Layer 256, 128
Activation Function RelLU
Optimizer Adam
Learning Rate (o) 0.0001 —0.001
Discount Factor (y) 0.95
Exploration Strategy e-greedy
Initial Exploration Rate (€o) 1.0
Minimum Exploration Rate (¢ min) 0.05
DHBM Learning Rate (o) 0.0005 — 0.005 (DHBM-adaptive)
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Discount Factor (y) 0.90-0.99

Exploration Rate (g) 1.0 — 0.05 (decayed using DHBM)
Batch Size 32-128

Replay Buffer Size 10,000 — 50,000

Target Network Update Interval Every 10-50 episodes

Mutation Coefficients (E1-E3) 02-0.38

Queen Speed Decay (a. decay) 0.90-0.98

Number of Mutant Vectors per lteration 4

4.2 Performance evaluation of the proposed dynamic policy adaptation. Spikes and drops indicate
framework learning adjustments based on changing care demands.

Overall, the plot shows the model stabilizing around
17-18 minutes, reflecting improved scheduling
efficiency.

Figure 2 shows the variation in patient waiting time
across 100 training episodes. The waiting time
fluctuates between 15 and 20 minutes, demonstrating

DHBM-RDQN: Average Patient Waiting Time per Episode
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Figure 2: Average patient waiting time for using DHBM-RDQN
Figure 3 illustrates staff overtime fluctuations across the Initial  fluctuations  gradually reduce, indicating
same 100 episodes. Overtime values range between 1.0 learning stabilization over time. The. over_all trend
and 2.8 hours, showing adaptive workforce utilization. settles near 1.8-2.2 hours, reflecting improved

workforce balance.
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DHBM-RDQN: Average Staff Overtime per Episode
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Figure 3: Staff overtime fluctuations for using DHBM-RDQN

Figure 4 displays the reward distribution across 100
training episodes. Reward values increase from
approximately 70 to 135, indicating learning
progression. The visible upward trend reflects improved
decision-making in dynamic resource allocation. Higher
reward consistency after episode ~60 indicates
stabilization of the trained policy.

Leaming Curve: Reward per Episcde [Bar Chart)
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Figure 4: Reward and cumulative reward fluctuations
Figure 5 shows how the proposed DHBM-RDQN
responds in a high-demand scenario. The model assigns
80% priority for high patient acuity and 70% allocation
when  staff availability = demonstrating  strong
adaptability. It also allocates 75% for nurse assignment,

CuralaLive Rewsrd

This cumulative reward chart highlights learning
improvement over time. Values steadily increase from
0 to over 10,000, demonstrating continuous gain in
performance. The smooth upward slope indicates
consistent learning without policy collapse. By episode
100, the cumulative reward reflects a successfully
converged and optimized RL model.

Cumulative Reward Evolution (Bar Chart]

FOM0 4

LK} piLi]

Episoda

65% for care assistants, and gives 85% priority to

urgent  task  completion, showing improved
responsiveness and smarter resource distribution.
Overall, DHBM-RDQN demonstrates  stronger

adaptability and more efficient resource allocation.
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Figure 5: The proposed DHBM-RDQN and Baseline RDQN performance evaluation

The SHAP summary Figure 6 shows the impact of
different features on the DHBM-RDQN model’s
predictions for dynamic elderly care resource allocation.
Features like complaint_count, satisfaction_score, and
high_acuity_pct have the strongest influence,
highlighting the importance of patient feedback and
acuity in staffing decisions. Color coding indicates

feature values, with red representing high values and
blue low values, showing how feature magnitude
affects the model output. Operational variables such as
avg_hourly_wage_Ipn, Ipn_headcount, and budget_cap
also contribute to resource allocation decisions.
Overall, the plot identifies key factors driving the
model’s dynamic allocation strategy to optimize elderly
care quality and efficiency.

SHAP SUMMARY PLOT - FEATURE IMPACT
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Figure 6: SHAP summary plot for the impact of different features on the DHBM-RDQN model’s
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The experimental evaluation using five-fold cross-
validation demonstrates clear performance differences
among DHBM, RDQN, and the hybrid DHBM-RDQN
model. The hybrid model consistently achieved the
highest accuracy, precision, recall, and Fl-score with
minimal performance variance, indicating improved

C. Cheng et al.

generalization and stability. RDQN showed moderate
improvement over DHBM, while DHBM exhibited the
lowest performance but remained stable. Statistical
significance analysis confirmed that the performance
gains of DHBM-RDQN were not random and were
highly significant (p < 0.01).

Table 5: 5-fold cross validation

Model Accuracy 95% Precision Recall F1-Score Significance
(Mean £ SD) Cl (Mean £ (Mean £ (Mean £
SD) SD) SD)

DHBM 0.87+0.012 0.85- 0.85+0.015 0.84 + 085+ Baseline

.89] 0.017 0.013
RDQON 0.90 £0.010 0.89— 0.89+0.012 0.88 + 0.88 + ESignificant VS

.92] 0.014 0.011 HBM (p < 0.05)
DHBM- 0.95+0.008 0.94- 0.94+0.010 095+ 095+ 11 Highly Significant
RDQN .97] 0.009 0.008 vs DHBM & RDQN
(Proposed) (p<0.01)

The Table 5 shows that the proposed DHBM-RDQN
model achieved the highest overall performance,
reaching an accuracy of 0.95 + 0.008, precision of 0.94
+ 0.010, recall of 0.95 + 0.009, and an F1-score of 0.95
+ 0.008, outperforming both DHBM and RDQN. The
confidence interval (0.94-0.97) and low standard
deviation highlight strong model reliability. In
comparison, DHBM achieved the lowest scores, while
RDQN demonstrated moderate improvements with
statistically significant gains relative to DHBM.

4.3 Performance comparison with existing

method

To validate the effectiveness of the proposed DHBM-
RDQN method, its performance was compared against
three benchmark approaches: a Time Series Analysis
framework [23] (which integrates hybrid time series
forecasting with mathematical programming using
optimization-based  hyperparameter  tuning), a
traditional RNN model [23] and an LSTM-based
architecture [23].. The evaluation was carried out across
four key metrics, such as accuracy, resource efficiency,
response  time, and adaptability score, to
comprehensively assess predictive reliability, optimal
resource allocation, real-time responsiveness, and
adaptability to dynamic elderly care environments.

Adaptability score: Adaptability score measures
how well the system adjusts resource allocation when
patient conditions or staffing levels change. It reflects
the ratio of successful adaptive decisions to total
decision events. Equation (18) shows the adaptability
score mathematical representation:

Adaptability score= Adaptive decision corretly
executedTotal Adaptive Descision Events (18)

Response time: Response time indicates how
quickly the model reacts to changes in care demand and
reallocates resources. It is measured as the average time
taken by the system to output a decision after receiving

new state input. The formula of response time is shown
in Equation (19):

Response time= i=1nDecision Output time—Input
timestampn (29)

Resource efficiency: Resource efficiency
measures how effectively available staff and services
are allocated without overuse or underutilization. It
compares the optimal resource usage to the actual usage
determined by the model. The mathematical
representation of resource efficiency is shown in
Equation (20):

Resource Efficiency=Optimal Resource
UtilizationActual Resource Utilizationx100% (20)

Accuracy: Accuracy reflects how many allocation
decisions made by the system match the expected or
expert-approved optimal allocation.

It is computed as the ratio of correct decisions to
total decisions. Accuracy formula is shown in Equation
(21):

Accuracy= Correct Allocation DecisionsTotal
Allocation Decisionsx100% (21)

Table 6 gives the comparative evaluation of the
proposed method with baseline approaches. Figure 7
illustrates the accuracy comparison among the
proposed DHBM-RDQN model and existing
approaches, including LSTM-based, Traditional RNN,
and the Time Series Analysis framework. As seen, the
DHBM-RDQN achieves the highest accuracy (96.5%),
outperforming all baselines, which highlights its
effectiveness in  capturing complex temporal
dependencies and decision-making dynamics. Figure 7
also shows the comparison of resource efficiency
across the models. The DHBM-RDQN demonstrates
superior efficiency (90.5%) compared to LSTM and
Traditional RNN, while also superior to the Time Series
Analysis framework. This indicates that the proposed
method utilizes computational resources more
effectively, making it highly suitable for real-time and
large-scale applications.
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Figure 7: Accuracy and Resource efficiency performance of proposed vs. existing models

Figure 8 presents a joint comparison of response time
and adaptability score. The DHBM-RDQN achieves the
lowest response time (1.0s) and the highest adaptability
score, proving its robustness and faster decision-making
capabilities under dynamic conditions. Compared to

traditional baselines, LSTM and Traditional RNN, and
also the Time Series Analysis framework, this
improvement highlights the adaptability and efficiency
of the proposed approach in rapidly changing
environments.
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Figure 8: Score comparison of response time and adaptability score

Table 6: Performance comparison of DHBM-RDQN with existing methods

Method Adaptability Score Response Time Resource Efficiency | Accuracy
LSTM-based [23] 0.815 2.1s 84.1% 89.2 %
'[I'ngijitional RNN 0.743 2.8s 82.4% 87.6 %
Time Series 0.892 1.2s 88.7% 94.3%
Analysis framework

23

DHBM- 0.925 1.0s 90.5% 96.5 %
RDONJProposed]

Existing methods of managing elderly care resources,
including Traditional RNN, LSTM-based models, and
Time Series Analysis frameworks [23], have multiple
limitations. Traditional RNNs fail to learn long-term
dependencies effectively due to vanishing gradients,
LSTM models learn temporal patterns more effectively
but require a lot of computational power to train them for
a long time, and Time Series Analysis frameworks rely

on a fixed mathematical assumption(s) and optimization
heuristics that can't adapt to fluctuations in resource
availability or patient demand as they happen. The
proposed DHBM-RDQN method enables Deep RL with
a high-dimensional state-action mapping with a DHBM
method and simultaneously resolves all of the limitations
described above. The RDQN component learns a high-
dimensional state-action mapping without manual
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engineering of the features, whereas DHBM guarantees
exploration without premature convergence or
exploitation to provide optimal allocations when
uncertainty exists. As a result, the DHBM-RDQN
method improved accuracy and resource efficiency,
allowed for faster response, and accommodated greater
fluctuations in resource availability. Taking all the
improvements into consideration, DHBM-RDQN is
significantly better than traditional methods of resource
allocation in highly complex situations in the elderly
care sector.

4.4 Discussion

The LSTM [23] models are suitable in time-sequence
prediction but fail at real-time decision-making in
dynamic settings such as the case of providing elderly
care. They need regular patterns to be able to generalize
and fail when staff or patient demand changes in a
random fashion. LSTM does not have the ability to
automatically modify resource allocation policies and
relies on pre trained hard coded rules. Consequently,
flexibility and real-time optimization are minimal.

Older RNNs [23] struggle to deal with long-term
dependency dynamics, and thus it deteriorates their
performance when dealing with continuous and multi-
shift operational data. They are also likely to lose their
training when faced with complex decision
environments and a long planning horizon. RNNs do not
require interaction with the environment and can
therefore not learn policies optimally or on the feedback
of the environment, as they are not reinforcement-based.
This restricts their applicability in dynamic staffing and
allocation of resources situations.

The time series forecasting [23] methods can be
used to predict the trends in demand and cannot make
optimal decisions on their own based on the projected
states. They are run on fixed assumptions and they do
not have systems to accommodate unforeseen
occurrences like sudden shortages of staff or
emergencies in patients. Such practices lack a reward-
based learning mechanism to review and filter down
decisions. They, therefore, offer resources but not
automated and adaptive resources allocation.

To address these limitations, the proposed Dynamic
Honeybee Mating-tuned Resource-based Deep Q-
Network (DHBM-RDQN) introduces a reinforcement
learning-driven framework capable of making real-time
adaptive decisions. The model continuously learns from
environment feedback and dynamically allocates care
resources based on changing patient needs and staffing
conditions. The honeybee mating optimization
mechanism further enhances learning stability by tuning
hyper parameters automatically, improving exploration
and preventing premature convergence. As a result, the
proposed method achieves higher accuracy, better
adaptability, and improved resource efficiency
compared to existing predictive and non-learning-based
approaches.

The proposed DHBM-RDQN framework is
promising, The DHBM-RDQN framework dynamically
adapts to unexpected staff shortages by reallocating

C. Cheng et al.

available caregivers based on real-time patient demand
and acuity levels. Its mutation-driven exploration
generates alternative scheduling policies, ensuring
service continuity and minimizing patient waiting times.
This adaptive policy learning allows the system to
maintain efficiency even under sudden workforce
fluctuations.

5 Conclusion

A novel approach for dynamic allocation of elderly care
service resources using RL, specifically the DHBM-
RDQN method, was presented in this research. The
proposed dynamic allocation framework integrated 24
months of operational data from 3 large-scale elderly
care facilities, representing over 30,000 service records,
including staff schedules, patient health characteristics,
emergency event documentation, and care quality. It did
so in a theoretically guided way to model the
complexities of resource management in the real-world.
The operational data was pre-processed so it was
standardized (Z-score normalization) and could include
missing data (imputation). Feature extraction methods
were then applied to the data to derive latent patterns and
temporal dynamics as part of the state-space
representation of an MDP. Experimental results showed
that the RL-based framework achieved 96.5% accuracy,
90.5% resource efficiency, a 1.0 s average response time,
and an adaptability score of 0.925, significantly
outperforming traditional methods. In conclusion, this
research provides a valuable and generalizable approach
to dynamically allocating care service resources through
a RL framework to enable efficient, data-driven decision
making for elderly care management. It also
incorporated an MDP model, pre-processing, and a
feature extraction method that help establish a solid
empirical basis for the intelligent, scalable and practical
optimization of resources in long-term care settings.

Limitations and Future Scope: The proposed
DHBM-RDQN framework, while effective, has certain
limitations. Its generalizability to other elderly care
datasets or facilities may be constrained due to
differences in patient demographics, staffing patterns, or
operational practices. The RL model assumes relative
stationarity in state transitions and may not fully capture
delayed effects of actions on care outcomes.
Additionally, potential biases in the dataset, such as
variations in socioeconomic status or facility resources,
could influence the learned policies and affect fairness
in resource allocation. Future research can integrate real-
time loT-based monitoring, explore multi-agent
reinforcement learning for coordinated care, and scale
the approach to broader regional or national elderly care
networks.
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Appendix

Abbreviation Full form

ML machine learning

NLP natural language processing

QOC quality of care

Al artificial intelligence

DL deep learning

RL Reinforcement learning

MDP Markov Decision Process

ERAS effective resource allocation strategy
ARU average resource utilization

PSO particle swarm optimization
ElHealth Elastic allocation of human resources in healthcare environments
HRM human resource management

ED Emergency Department

IoT Internet of Things

BPNN Back propagation neural network
LOO Leave-One-Out

MILP mixed-integer linear programming
RF Random Forest

SERVQUAL Service Quality

DEA Data Envelopment Analysis

VBA Visual Basic for Applications

ED Emergency departments

DQN Deep Q-networks

BP blood pressure

MVI Missing Value Imputation

HR heart rate

ICA Independent Component Analysis
DWT Discrete Wavelet Transform

WT Wavelet Transform

HBMO Honey bee mating optimization
traditional RNN traditional Recurrent neural network
LSTM Long short-term memory

NCD nursing care delivery

DNN Deep Neural Network
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