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The growing demand for elderly care services necessitates intelligent, efficient, and adaptive resource 

management strategies. This research presents a dynamic allocation strategy for optimizing elderly care 

resources using reinforcement learning (RL), addressing the complexity of nursing home resource 

management. This research proposes a Dynamic Honeybees Mating–tuned Resource-based Deep Q-

Network (DHBM-RDQN) for elderly care resource allocation. The approach models the care 

environment as a Markov Decision Process (MDP), where states capture patient acuity levels, staff 

availability, daily admissions, and care workload, while actions correspond to dynamic allocation of 

nursing staff and support resources. The system uses a comprehensive Elderly Care Staffing & Quality 

Dataset, comprising time-series records at daily or shift-level granularity from multiple long-term care 

facilities. Preprocessing includes Z-score normalization and missing value imputation, while feature 

extraction applies Independent Component Analysis (ICA) and Discrete Wavelet Transform (DWT) to 

capture latent health patterns and temporal fluctuations. The DHBM-RDQN employs a Deep Q-Network 

with two fully connected layers (256 and 128 neurons) and ReLU activations, trained using the Adam 

optimizer. The Honeybee Mating optimization layer dynamically tunes learning rate, exploration 

parameters, and reward weights to prevent premature convergence. Experimental evaluation were 

implemented in python. Results show 96.5% accuracy, 90.5% resource ef ficiency, 1.0 s response time, 

and an adaptability score of 0.925, demonstrating robust adaptability under fluctuating patient demand 

and staffing. This research introduces a novel RL framework combining deep learning and bio -inspired 

optimization to achieve superior performance, rapid decision-making, and improved care quality in 

dynamic long-term elderly care environments. 

Povzetek: Raziskava predstavlja dinamično strategijo razporejanja virov v domovih za starejše z 

okrepljevalnim učenjem (RL) in bio-navdihnjeno optimizacijo, ki izboljša učinkovitost, prilagodljivost ter 

kakovost oskrbe ob nihanjih povpraševanja in razpoložljivosti osebja. 

 

 

1  Introduction 
One of the major problems facing the world today is the 

aging population particularly in the developing 

countries whereby by 2050, the numbers of individuals 

aged 65 years and above are projected to have doubled. 

This demographic transition goes a long way in creating 

a high demand of efficient healthcare systems and 

facilities among the aged. To have long-term 

sustainability of the workforce and quality care delivery, 

effective nursing staffing and resources are required. 

Introducing data-driven solutions and real-time analysis 

in the context of health management may be used to 

resolve these issues and guarantee efficiency of 

resources and quality of the services [1, 2]. Besides 

addressing complex medical, emotional, and social 

needs, nursing homes and assisted living facilities are 

currently challenged by the persistent issues, including 

the rising operational costs, the shortage of staff 

members, and the growing need to provide personalized  

 

care [3]. These difficulties emphasize the necessity of 

clever, responsive solutions that would help balance the 

quality of care and optimal resources allocation [4]. 

The use of AI technology, including ML, NLP, and 

intelligent robots, by more healthcare organizations to 

improve QOC services and medical resource utilization 

is growing. Such advantages enable regular chances of 

transformation within a knowledge-oriented healthcare 

setting [5]. Information technology offers a channel 

through which the AI healthcare service resources can 

interact stakeholders be it patients, clinicians, 

pharmaceutical and insurance companies, and the 

hospital serves as the central point [6]. The field of 

healthcare has now been transformed by AI through 

such applications as DL models and rule-based 

systems. Under AI is RL, which has drawn increased 

attention to its application in medical applications. 

Better personalized medicine, better use of resources in 

hospitals, more optimizations in therapy, and accuracy 

of diagnostics can be developed with the help of AI. AI 
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algorithms have made it faster to discover diseases, 

enhanced the pace of accuracy during diagnostics, and 

offered useful information to make decisions. 

Moreover, automation, which has been facilitated by 

artificial intelligence, has enhanced administrative 

procedures and reduced practitioner workload that had 

enhanced efficiency in operations [7]. 

The latest studies have given emphasis on the 

benefits of RL to enhance operation in healthcare. RL-

based frameworks have so far been implemented to 

control hospital bed capacity, enhance surgical 

schedule, and enable emergency response planning. 

These applications were more flexible when compared 

to traditional optimization models [8]. Dynamic 

allocation models based on ML was found to enhance 

patient safety, emergency response and overall quality 

of service in the context of elderly care. These models 

are based on round the clock monitoring of the daily 

health indicators to determine the needs of care and staff 

[9]. Healthcare planners are usually presented with 

multidimensional, complex issues that present 

scheduling issues, resource allocation, and strategic 

decision-making. These problems will necessitate smart 

and flexible systems that can manage complexity and 

uncertainty in the operating environments [10]. 

1.1 Aim of the research and objective 
This research aims to develop an intelligent and 

adaptive framework for optimizing elderly care resource 

allocation in nursing homes. The objective is to 

dynamically manage nursing staff and support resources 

using a reinforcement learning-based model, DHBM-

RDQN, which integrates Deep Q-Networks with 

Honeybee Mating optimization. By modeling the 

environment as a Markov Decision Process and 

leveraging feature extraction techniques like ICA and 

DWT, the framework seeks to improve accuracy, 

resource efficiency, response time, and adaptability, 

ensuring robust and efficient care under fluctuating 

patient demand and staffing conditions. 

1.2 Key Contribution of the research 
⚫ To propose a dynamic RL method DHBM-RDQN 

to optimize elderly care service resources, 

improving staff allocation efficiency and service 

quality. 

⚫ To utilize a comprehensive elderly care staffing & 

quality dataset, consisting of time-series records 

on patient demand, staffing, operational 

constraints, and care quality outcomes from 

multiple long-term care facilities. 

⚫ To utilize preprocessing to standardize 

heterogeneous elderly care data and extract 

meaningful patterns from multi-source variables, 

improving the quality of inputs for reinforcement 

learning. 

⚫ To formulate the elderly care environment as an 

MDP, capturing patient acuity, staff availability, 

and care demands for structured state-action-

reward learning. 

⚫ To demonstrate that the proposed method 

outperforms traditional rule-based approaches, 

providing more adaptive, reliable, and effective 

resource allocation in elderly care settings. 

2  Related works 
The new ERAS in the fog environment specially 

developed to be used in healthcare was introduced [11]. 

To achieve effective resource management, ERAS 

applied prediction algorithms and current allocation of 

resources. Unlike the old algorithms, ERAS optimizes 

ARU and Level of Load Balancing and gives the 

minimal Makespan. The two primary contributions 

were the use of optimized RL for load balancing and 

resource allocation in the fog environment, as well as 

the optimization of RL hyperparameters by PSO. 

ElHealth, an IoT-focused approach that tracks 

hospital room usage by patients and modifies medical 

staff accordingly, was presented [12]. It forecasted the 

amount of space needed and suggested ways to assign 

experts by data prediction algorithms. Additionally, 

ElHealth offered proactive human resources elastic 

speedup and multi-level predictive elasticity of human 

resources to control resource utilization. Using data, the 

model was tested and demonstrated encouraging 

outcomes, lowering waiting times by as much as 

96.71%.   

System performance and efficiency were improved 

by streamlining the HRM process and lowering effort 

[13]. The HRM system model was built on a BPNN 

driven by DL algorithms. The model provided the best 

optimization effect over traditional models and 

converged the quickest. According to the results of the 

LOO approach, the model converges at 60 epochs and 

was 2.76% more accurate than other models, with an 

accuracy of 88.72%.  

MILP that used the Gurobi optimization solver to 

reduce healthcare costs and enhance patient care was 

presented [14]. Due to the implementation of two 

different scenarios, two distinct optimal solutions were 

obtained. The first produced an ideal solution with a 

0.0% solution gap and an objective value of 844.0. 

With an objective score of 539.0, the second solution 

validated the model's dependability. There were no 

discernible discrepancies between the two approaches' 

best-bound scores, suggesting optimal solutions with 

reasonable tolerances. 

The application of system dynamics modeling was 

looked to improve quality of service in the system of 

healthcare [15]. Errors were reduced and work pressure 

was stabilized, but when the patient arrival rates were 

lowered, it went against accessibility objectives. Errors 

were decreased and service capacity was increased by 

increasing human resources, especially experienced 

staff. Long-term increases in service quality required 

striking a balance between system costs and staff 

efficiencies. Patient satisfaction and operational 

performance could both be improved by incorporating 

dynamic modeling into management procedures. 
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Two important issues in healthcare team-based 

planning of resources were addressed by ML and 

stochastic optimization [16]. To satisfy demands and cut 

expenses, it focused on forecasting patient workloads 

and allocating healthcare team resources as efficiently 

as possible. Before allocating patients to available teams 

and balancing workloads in narrow decision-making, 

the model employed a deep multi-task learning 

technique to forecast workloads for various patient 

categories. Multi task learning performed better than 

traditional prediction techniques and takes stochastic 

variables and randomness into account for better access 

to healthcare. 

The suitability of NCD models in hospital wards 

and the efficiency of ML techniques in improving nurse 

staffing were assessed [17]. The highest accuracy in 

predicting the suitability of NCD systems and the 

adequacy of nurse staffing in 39 inpatient wards were 

shown by RF algorithm. Functional nursing and 

complete patient care models were the most commonly 

utilized care delivery models in wards. 

A scheduling system of nurse schedules was 

developed automatically using open-source operational 

research techniques [18]. All hard criteria and the 

majority of the soft constraints were satisfied by the 

system, which produced schedules in less than a minute. 

Nurses and management staff could communicate in 

real time by the computer-generated schedules, which 

were more flexible and optimally accustomed. The 

system was applied in many wards and was cost-

effective, efficient, and easy to use. It was also updated 

frequently with new policies and nurse staff. 

Meanwhile, the application of predictive modeling 

and workforce analytics based on the AI was provided 

as an innovative strategy distribution of human 

resources in the healthcare industry [19]. It included 

data on clinical outcomes, measure of operational 

efficiency, patient acuity, and past staffing trends. 

Having the best chance to forecast staffing 

requirements in various clinical contexts, the technique 

increased the use of resources, patient satisfaction, and 

operational cost-effectiveness. These workforce 

management systems are AI-based, which creates a 

balance between the quality of care and the 

effectiveness of the organization. 

In addressing the high-dimensional constraints of 

conventional SARSA, an approximation sate-action-

reward-state-action (ASARSA) algorithm has been 

proposed to optimize resource allocation in energy 

harvesting (EH)-multiple-input multiple-output 

(MIMO) communication systems [20]. Comparing 

experimental results to SARSA and Q-Learning, they 

demonstrate reduced error, faster convergence, and 

increased throughput. All things considered, ASARSA 

shows improved scalability, precision, and efficiency 

for practical EH-MIMO applications.  

Queue assessment model was developed for 

assessing walk-in outpatients in a public hospital that 

did not have appointment scheduling [21]. The model 

evaluated wait times over a seven-week period using 

DEA. Doctor/personnel and consultation time were 

among the outputs; the latter was the non-discretionary 

output. Excel VBA programming was used to provide 

the dynamic framework for ongoing queue monitoring.  

The scheduling procedure for ED patients was 

optimized with the use of deep RL [22]. DQN was the 

foundation of the algorithm, which was intended to 

reduce waiting times and penalties for patients who 

were emergencies. In terms of reducing waiting time 

and penalties, the research demonstrated that RL 

performs better than dispatching rules. Deep RL 

successfully applied in ED applications, as this 

research has shown, especially when it comes to 

supporting decision-makers in the dynamic setting of 

an ED. Table 1 shows the summary table for related 

works in healthcare resource management. 

 

Table 1: Summary of related works in healthcare resource management 

 

Research 
No. 

Technology Used Domain Dataset Performance Metrics 

[11] ERAS, RL, PSO Fog-based 
healthcare resource 
management 

Real-time healthcare 
resources in fog 
environment 

ARU, Load Balancing Level, 
Makespan 

[12] ElHealth, IoT, 
Prediction algorithms 

Hospital room 
usage and staffing 

Patient occupancy & 
staff allocation 

Waiting time reduction (up to 
96.71%) 

[13] BPNN, Deep Learning HRM process 
optimization 

Healthcare staffing 
and task data 

Accuracy 88.72%, 
convergence at 60 epochs 

[14] MILP, Gurobi 
optimizer 

Cost reduction & 
patient care 

Healthcare 
operational scenarios 

Solution gap 0%, Objective 
values 844 & 539 

[15] System Dynamics 
Modeling 

Quality of service 
improvement 

Healthcare 
operational & staffing 
data 

Error reduction, stabilized 
work pressure, service 
capacity 

[16] ML, Stochastic 
optimization, Deep 
multi-task learning 

Team-based 
healthcare resource 
planning 

Patient workloads & 
healthcare team data 

Forecasting accuracy, 
workload balancing 
efficiency 

[17] RF, ML Nurse staffing and 
NCD models 

39 inpatient wards Prediction accuracy for NCD 
suitability and staffing 
adequacy 

[18] Open-source 
Operational Research 
Techniques 

Nurse scheduling Nurse shift & 
scheduling constraints 

Feasibility of schedules, 
satisfaction of hard/soft 
constraints, efficiency 
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[19] AI, Predictive 
modeling, Workforce 
analytics 

Strategic HR 
allocation 

Clinical results, 
operational efficiency, 
staffing trends 

Staffing prediction accuracy, 
resource utilization, patient 
satisfaction 

[20] SERVQUAL model Patient service 
satisfaction 

22 service quality 
variables 

Statistical correlation between 
service dimensions and 
patient satisfaction 

[21] Queue assessment 
model, DEA, Excel 
VBA 

Outpatient waiting 
time 

Walk-in patient data 
over 7 weeks 

Wait times, doctor/personnel 
consultation time 

[22] Deep RL, DQN ED patient 
scheduling 

Emergency 
department patient 
arrivals & tasks 

Reduced waiting times, 
penalties for emergency 
patients 

2.1 Research gap 
Despite the continual advancements in healthcare 

resource utilization, several gaps in HRM, care 

coordination, and service delivery still remain. The 

existing approaches of ERAS [11] and ElHealth [12], 

for example, are primarily focused on predictive 

allocation and elasticities, which tend not to adequately 

integrate multiple sources of time sensitive patient and 

operational data in a holistic adaptive decision-making 

framework. Traditional optimization frameworks such 

as BPNN-based HRM [13] and MILP models [14] 

provide improvements to efficiency but rely on static 

historical datasets that constrain their ability to adapt to 

real-time dynamic care settings. Similarly, system 

dynamics models for HRM and ML-driven workload 

forecasts [15, 16] provide useful means of improving 

planning but do not consolidate dynamic patient health 

variation with dynamic nurse staffing availability within 

an integrated framework. Approaches addressing nurse 

rostering and HR [17, 18, and 19] focus on scheduling 

and operational efficiency but have not utilized RL as a 

means of continuously optimizing resource allocation 

policies under uncertainty and risk. Assessments of 

service quality and access / ED patient scheduling using 

deep RL [20] [21] [22], while demonstrating promise, 

are also limited in scope and do not offer extrapolation 

opportunities for multi-institution elder care contexts. 

This highlights the need for a dynamic, RL-based 

approach DHBM-RDQN that integrates heterogeneous, 

temporal, and operational data for real-time elderly care 

resource optimization. 

3 Methodology 
The proposed methodology for dynamic allocation of 

elderly care resources was detailed in this section. It 

covers dataset characteristics, preprocessing steps 

including Z-score normalization and missing value 

imputation, feature extraction via ICA and DWT, and 

MDP formulation for RL-based decision making. The 

hybrid DHBM-RDQN algorithm combines resource 

based deep Q-learning (RDQN) and Dynamic 

Honeybee Mating optimization (DHBM), which can be 

used to find efficient, adaptive, and robust resource 

allocation given real-time changes in patient demand 

and staff availability. The general way of flow of the 

methodology is provided in Figure 1.

 

Figure 1: Methodology flow for RL based dynamic allocation of elderly care resources 
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3.1 Dataset 

The elderly care staffing & quality dataset from Kaggle 

(https://www.kaggle.com/datasets/zara2099/elderly-

care-staffing-and-quality-dataset/data) comprises time-

series data collected from multiple long-term care 

facilities, capturing comprehensive information on 

staffing, workload, operational constraints, and care 

quality outcomes. The data is also organized on a daily 

or shift level, which allows examining the dynamic 

resource distribution and efficiency of operations. It 

contains both continuous and discrete attributes, which 

capture the patient demand, nurse supply, time factors, 

cost of operations, and quality indicators, which makes 

it appropriate in RL-based optimization of resources in 

the elderly care setting. The most important 

characteristics of the dataset are provided in Table 2. 

Table 2: Key features of elderly care dataset 

 

Category Feature Examples 

Demand / Workload Daily resident census, admissions, discharges, transfers, care minutes index, patient acuity scores, 
unplanned events (falls, rapid response calls, wound care) 

Supply / Staffing Staff headcount by role: Registered Nurse (RN) , Licensed Practical Nurse (LPN), CAN (Certified 
Nursing Assistant) and skill mix percentages, overtime/agency/float pool hours, staff absences, 
planned leave 

Temporal & 
Context 

Shift type, day of week, month, season, holiday indicators, pay cycle flags, outbreak flags, extreme 
weather conditions 

Operational 
Constraints & Costs 

Staffing ratios, maximum hours per staff, hourly wages, overtime/agency premiums, budget caps 

Quality & Outcomes Pressure-injury cases, medication errors, readmissions, complaints, satisfaction scores 

3.2 Preprocessing of Elderly care data for 
RL 
Preprocessing is a critical step in preparing the elderly 

care dataset for RL, ensuring that raw, heterogeneous 

data is transformed into a consistent and reliable format 

suitable for modeling. By applying the below two 

techniques, the dataset becomes standardized, complete, 

and free from distortions. This preprocessing step 

ultimately enhances the stability, accuracy, and 

generalizability of the proposed RL framework for 

dynamic elderly care resource allocation. 

1) Z-score Normalization: Z-score normalization for 

preprocessing of heterogeneous variables such as patient 

health indicators, staffing schedules, and emergency 

response times was utilized to achieve uniform scaling. 

The goal of Z-score normalization is to put the variables 

onto a standardized scale to better stabilize the 

reinforcement learning algorithm during convergence. 

Unlike Min–Max scaling, this technique centers data on 

zero and scales it based on Standard deviation. This 

means that when learning a policy, attributes like patient 

BP, which span a higher numeric range, will not be relied 

upon more than attributes like staff-to-patient ratios, 

which span a smaller range. The Z-score for a given 

variable xi is calculated using Equation (1). 

Zi =
xi−μ

σ
 (1) 

Where  xi  represents the original values, μ  is the 

mean of the variable, σ  denotes Standard deviation. 

Following normalization, all variables are on a common 

scale with a mean of zero and unit variance, easing the 

comparison of features in the state-action-reward space 

of the MDP. 

 

 

 

 

2) Missing Value Imputation (MVI): In real world 

elderly care data, missing data points are unavoidable 

due to missing staff logs, unrecorded evaluation of 

patient health signs, or delayed documentation of 

emergency situations. If not handled appropriately, these 

untreated missing values can introduce bias and diminish 

the robustness of RL outcomes. To mitigate this issue, 

the research decorates and applies MVI methods that are 

relevant to the data type, for example, a mean 

substitution for continuous variables (i.e., response time, 

physiological measures, HR, BP etc.,), median 

substitution for skewed measures, and mode imputation 

for the variable types of staff roles, shift types, and 

service ratings. This method would help to substitute the 

missing information with statistically representative 

values and maintain the variations in the data distribution 

to not bias the patterns that are needed for effective 

policy discovery. By systematically imputing missing 

values, the dataset remains complete and coherent.  

The dataset contained missing values ranging from 

2.8% to 11.4% across different features, with staffing 

logs and emergency records having the highest gaps. 

Missing values in time-series sequences were handled 

using forward-fill and backward-fill interpolation to 

maintain temporal continuity and avoid abrupt gaps in 

data flow, ensuring realistic sequential patterns for RL 

training. Additionally, a bias evaluation was performed 

by comparing statistical properties (mean, variance, and 

range) before and after imputation, and the results 

showed no significant deviation, confirming that the 

imputation strategy did not distort the dataset. 
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Algorithm 1: Data preprocessing  

# Step 1: Load Dataset 

dataset = load_csv("elderly_care_dataset.csv")   

# Step 2: Z-score Normalization 

for feature in continuous_features:      mean_val = mean(dataset[feature]) 

    std_val = std(dataset[feature]) 

    dataset[feature] = (dataset[feature] - mean_val) / std_val 

 

# Step 3: Missing Value Imputation (MVI) 

for feature in dataset.columns: 

    missing_percentage = calculate_missing_percentage(dataset[feature]) 

     

    if missing_percentage > 0: 

        if feature in continuous_features: 

            dataset[feature].fillna(mean(dataset[feature]), inplace=True) 

        elif feature in skewed_features: 

dataset[feature].fillna(median(dataset[feature]), inplace=True) 

        elif feature in categorical_features: 

            dataset[feature].fillna(mode(dataset[feature]), inplace=True) 

 

# Step 4: Time-series Continuity Handling 

for feature in time_series_features: 

    dataset[feature] = forward_fill(dataset[feature])      dataset[feature] = backward_fill(dataset[feature])    

# Step 5: Bias Evaluation 

for feature in dataset.columns: 

    compare_statistics(original_data[feature], dataset[feature])   

# Step 6: Output Preprocessed Dataset 

save_csv(dataset,  

"preprocessed_elderly_care_dataset.csv") 

3.3 Feature extraction  
Elderly care data are important per se since they unveil 

concealed correlations, and temporal dynamics, which 

can be used in the reinforcement learning process. ICA 

isolates independent latent signals among several 

correlated variables of health and workload, whereas 

Discrete Wavelet Transform (DWT) detects multi-

resolution temporal variations which enhance state-

space descriptions and facilitate the learning of policies 

around the dynamic allocation of resources. 

ICA was chosen to separate overlapping signals in 

elderly care data into independent components, 

capturing hidden trends better than variance-based 

methods like PCA. DWT was employed to handle non-

stationary temporal patterns, providing both time and 

frequency information to detect short-term anomalies 

and long-term workload trends. Together, ICA and DWT 

generate a rich feature set that enhances the model’s 

dynamic decision-making capabilities.  

1) Independent Component Analysis (ICA): ICA 

was used to find some latent independent factors from 

the multidimensional care of the elderly dataset, in 

particular when strong associations exist among the 

variables. For instance, the health indicators of the 

patient, such as HR, BP, and level of mobility, exhibit 

strong correlations and interdependencies, masking the 

independent signals of health deterioration or health 

stabilization. These techniques decompose the observed 

dataset X into strains of statistically independent 

components in accordance with Equation (2). 

X = AS (2) 

Where X  is the observed data matrix, A  is the 

mixing matrix, and S  is the independent components 

matrix in Equation (2). This technique aims to 

approximate both A  and S  such that the extracted 

components in S are maximizing independence. In this 

research, the independent components are interpreted as 

latent health risk indicators, workload dynamics, and 

hidden care demand patterns to add to the state-space 

representation of the reinforcement learning model. By 

having the independent signals, the proposed model 

would be able to learn more optimal policies for dynamic 

resource allocation while not creating redundancies 

associated with raw correlated features. The first 5 

independent components capturing the most significant 

latent health and workload patterns were retained post-

ICA for the state-space representation in the RL model. 

2) Discrete Wavelet Transform (DWT): WT is yet 

another feature extraction method like Fourier method, 

but unlike Fourier method, it is able to provide time 

while also keeping frequency data. WT allows one to 

capture temporal and frequency-specific change in the 

elderly care data set, beyond what has already been 

shown. WT is especially useful for time series data that 

is irregular and non-stationary such as the emergence of 
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patterns for staff, health fluctuations for patients, and 

overall workload patterns for staff. 

The DWT (Equation (3)) decomposes a time-series 

signal f(t)into a set of approximations and details using 

scaled and shifted versions of a mother wavelet function 

ψ, t is a continuous time variable over which the signal 

is measured. 

DWT (a, b) = 
1

√|a|
∫ f(t)ψ (

t−b

a
)

∞

−∞
dt (3) 

Where the scale and translation parameters are 

a and b , respectively, which regulate frequency 

resolution and temporal localization. 

The Daubechies (db4) wavelet was used for the 

Discrete Wavelet Transform (DWT) to extract multi-

resolution temporal features from the elderly care 

dataset. The wavelet decomposition was used for 

identifying multi-resolution features, including energy, 

entropy, and dominant frequency bands for time-series 

emergency logs, patient monitoring, and daily care 

demand variation logs to detect short-run anomalies 

(such as spikes in the number of emergencies) and long-

run care demand trends (such as seasonality in health 

needs of patients). 

3.4 Markov Decision Process (MDP) 
To optimize the allocation of elderly care service 

resources, the environment is modeled as an MDP. By 

offering a mathematical foundation for sequential 

decision-making, MDP enables the RL agent to discover 

the best course of action for allocating resources in real 

time, contingent on the condition of the care facility. An 

MDP is defined by the tuple (S, A, R, P) where S 

represents the state, A represents the action, R is the 

reward, and P denotes the transition probability.   

At each time step t, the system examines the current 

state st, selects an action bt ∈ A, and receives a reward rt 

as the environment transitions to a new state st+1. 

Although exact transition probabilities may not be fully 

known, the RL framework can still learn effective 

policies through interactions with the environment. 

 State Formulation: The state captures real-time 

operational parameters of the elderly care facility, 

including patient acuity levels, staff availability, and 

care demands.  Let B℘
ft
BV be the total number of patients 

with the acuity level bv = {1, … , BV) in ℘
ft
, and let ℘

ft
 

be a collection of patients waiting to have a procedure on 

medical resource type f at time t. This will characterize 

the condition at time t . f  can perform a variety of 

treatments, as previously indicated. Next, in ℘
ft
, let RTft

tt  

be the total number of patients in ℘
ft
with treatment type 

tt = 1, … , TT where TT is the total number of treatment 

types, that need to be processed on f. As a result, the 

following Equation (4) represents the status St
f
of each 

resource group g at t. 

St
f = {(

B℘ft
1

|℘
ft

|
, … ,

B℘
ft
BV

|℘
ft

|
) , (

RTft
1

|℘
ft

|
, … ,

RTft
TT

|℘
ft

|
)}(4) 

Standardizing each element to a ratio between 0 and 

1 ensures that variables with different scales do not 

disproportionately influence the learning process. 

Lastly, Equation (5) displays st. 

st = {St
1, … , St

f}(5) 

State Vector Example:  

For a facility with 3 resource types(f =  1,2,3), 2 acuity 

levels (BV =  2), and 2 treatment types (TT =  2), the 

state vector at time t can be represented as: 

st = {St
1, St

2, St
3}

= {(0.4,0.6), (0.3,0.7), (0.5,0.5), (0.2,0.8), (0.6,0.4), (0.3,0.7)} 

Here, each tuple in St
f
 shows the normalized ratio of 

patients by acuity and treatment type for each resource 

Action formulation: Actions represent the dynamic 

allocation of elderly care resources, such as assigning a 

staff member to a patient or scheduling a care task. 

Equation (6) describes the existence of ℘
ft

 and bt and 

also denotes the selected patient or task allocation for 

each resource type 𝑓at time t. The RL agent selects these 

actions to optimize the overall service efficiency. 

bt = {℘
1t

, … , ℘
ft

}(6) 

Number of Actions per Time Step: The total number 

of actions depends on the number of patients and 

resource types. If ℘
ft

 contains N patients for resource f, 

and there are F resources, then at each time step: 

Total actions = ∑ |℘
ft

|F
f=1    

Each action represents assigning a specific patient 

to a resource for a treatment step. 

Reward formulation: The reward function is 

designed to incentivize efficient resource consumption 

and minimize patient waiting times. Specifically, the 

reward rt at time t is given as the negative weighted sum 

of waiting times for the assigned patients (Equation 7).  

rt = −1 × cj{∑ wtjk
k−1
k=1 }(7) 

Where wtjk  is the waiting time of patient j  for 

treatment step k  and cj  is the corresponding weight 

reflecting priority or care severity. Negative rewards (-

1) ensure that the RL agent is encouraged to reduce 

waiting times while balancing staff allocation and care 

quality. 

3.5 Dynamic Honeybees Mating-tuned 
Resource based Deep Q-Network (DHBM-
RDQN) 
Combining the RDQN with DHBM establishes a hybrid 

method for learning and optimization that 

simultaneously leverages policy learning with an 

adaptive search. While RDQN uses an approximation of 

the Q-function for efficient resource allocation in high-

dimensional elderly care contexts, DHBM increases 

focused exploration by introducing mutation-based 

diversity to mitigate premature convergence. Taken 

together, RDQN with DHBM allows the agent to learn 

stable yet flexible policies that can respond optimally 

and rapidly to changing patient needs and workforce 

availability and maintain optimal scheduling 

performance. 
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3.5.1 Resource based Deep Q-Network 
(RDQN) 
The proposed approach employs an RDQN to 

dynamically optimize elderly care resource allocation. In 

traditional Q-Learning, the agent seeks to learn Q-

function, Q(st, bt) , which symbolizes the probable 

cumulative reward for action taking  bt  in state st  and 

following the correct policy thereafter, receiving the 

reward rt . The optimal policy selects actions that 

maximize future returns. The Q-function is iteratively 

updated by Equation 8. 

Q(st, bt) ← (1 − α)Q(st, bt) + α[rt +
γQ(st+1, bmax)](8) 

Where the learning rate is represented by α. The 

discount factor γ was accounting for the uncertainty of 

future rewards. In standard Q-Learning, Q(st, bt)is stored 

in a table, which becomes infeasible for state-action 

spaces of high-dimensional such as those in elderly care 

facilities. 

To address this, RDQN replaces the Q-table with a 

DNN, Q
θ
(s, b), parameterized by θ, which approximates 

Q-values for all state-action pairs. During training, the 

network predicts Q
θ
(st, bt) in a forward pass, while the 

resulting experience tuple (st, bt, rt, st+1)  is stored in a 

replay buffer. The loss function is then minimized to 

update the network settings (Equation (9)). 

As an estimate of future reward, the goal is to utilize 

the observed reward, rt , to get an improved 

approximation of the Q-value. The discount factor γ 

takes into consideration the uncertainty of future 

rewards, whereas α represents the pace of learning.  In 

DQN, a DNN Q
θ
(s, b) is used in place of the Q-table, and 

back-propagation is used to train the parameters θ. An 

RL problem does not provide a ground truth, in contrast 

to supervised learning. The network's current 

estimate,Q
θ
(st, bt), for the Q-value is determined in a 

forward pass. Executing the corresponding action yields 

the tuple (st, bt, rt, st+1) that is then saved in an experience 

buffer. However, the network parameters θ are adjusted 

using a cost function rather than individual Q-values. 

Jθ =
1

2
(Q

θ
(st, bt) − (rt + γ max

bj

Q
θ
(st+1, bmax)))

2

  (9) 

In Equation (9), a ground truth γ is approximated 

using the definition rt + γ max
bj

Q
θ
(st+1, bmax) , and the 

network is trained using the resulting cost Jθ.  However, 

training can be unstable because the same network is 

used to estimate both the Q-value and its target. To 

mitigate instability, the RDQN incorporates mechanisms 

such as experience replay and target network updates, 

ensuring stable convergence. By integrating RDQN with 

the state representations derived from ICA and Wavelet 

features, the agent learns to allocate staff and care 

resources efficiently, minimizing waiting times and 

maximizing service quality in elderly care facilities.  

 

 

3.5.2 Dynamic Honeybees Mating (DHBM) 
The DHBM algorithm is inspired by the natural mating 

behavior of a hive queen bee, which ensures exploration 

and exploitation in a solution space.  

The DHBM mechanism in this framework functions 

as an adaptive optimizer that dynamically enhances the 

Q-learning process rather than operating independently. 

Instead of relying solely on epsilon-greedy or fixed 

exploration parameters, DHBM generates diverse policy 

candidates through mutation and mating strategies and 

evaluates them based on their fitness (resource allocation 

efficiency and waiting-time minimization). The best-

performing candidate policies are then used to update the 

RDQN parameters, adjust exploration–exploitation 

balance, and tune hyperparameters such as learning rate 

and discount factor during training. This integration 

ensures that the Q-network avoids premature 

convergence, maintains policy diversity, and 

continuously adapts to shifting patient loads and staffing 

fluctuations in real time. 

DHBM operates directly on the policy network, 

where it refines network weights during training. The 

experience replay buffer remains unchanged, and 

DHBM does not modify stored transitions. Instead, its 

role is to enhance policy optimization by improving 

convergence and decision accuracy. 

In the context of this research, each bee represents a 

potential scheduling and resource allocation policy for 

elderly care facilities, where the fitness of each bee 

corresponds to its effectiveness in reducing patient 

waiting time and balancing caregiver workload. In the 

classic HBMO method, the best bee is designated a 

queen bee; the rest are regarded as drones. The mating 

with the queen occurs only probabilistically, defined in 

Equation (10). 

Prob(C) = exp (−∆(e)/T(l))(10) 

Where Prob(C)denotes the probability of a drone 

contributing its genetic material (solution) to the queen’s 

sperm theca, ∆(e) represents the absolute difference 

between the drone and queen, and T(l) represents the 

queen's speed at iteration l .  A higher probability of 

mating occurs when the queen is moving quickly or 

when the drone's fitness is similar to the queen’s. After 

each iteration, the queen's speed decreases according to 

Equation (11). T(l + 1) in Equation (11) represents the 

queen bee’s “speed” at the next iteration l + 1. 

T(l + 1) = α × T(l)(11) 

Where α ϵ [0, 1]is the speed decay factor.  To prevent 

premature convergence and better adapt to the dynamic 

and uncertain care demands in elderly facilities, the 

DHBM introduces mutation strategies that diversify the 

search space. Specifically, at each iteration four distinct 

mutant vectors are generated using different mutation 

rules (Equations 12–16). This enhances global 

exploration and avoids being trapped in local optima 

when patient demand fluctuates unpredictably. To 

uniformly cover the whole searching region, the 

algorithm mutates vectors in each step by choosing four 

vectors ( Wq1, Wq2,Wq3,Wq4,) from the original population 

as Wq1 ≠  Wq2 ≠ Wq3 ≠ Wq4.   
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Wmutant1

j
= Wq1

j
+ E1 × (Wqueen

j − Wr3

j
) + E1 ×

(Wq3

j
−  Wq4

j
)(12) 

Wmutant2

j
= Wqueen

j + E2 × (Wq1

j
− Wq2

j
)(13) 

Wmutant3

j
= Wq1

j
+ E3 × (Wq2

j
− Wq3

j
) + E3 × (Wq1

j
−

Wq4

j
)(14) 

Wmutant4

j
= (Wq1

j
+ Wq2

j
+ Wq3

j
)/3 + (β

2
−

β
1
)(Wq1

j
− Wq2

j
) + (β

3−
β

2
)(Wq2

j
− Wq3

j
) + (β

1
−

β
3
)(Wq3

j
− Wq1

j
)(15) 

β
1

=
|e(Wq1

j
)|

β
∗ , β

2
=

|e(Wq2
j

)|

β
∗ , β

3
=

|e(Wq3
j

)|

β
∗ (16) 

The function to be optimized is denoted by β
∗  =

|e (Wq1

j
) + |e (Wq2

j
) + |e (Wq3

j
)|  and e(W) , the 

coefficients between 0 and 1 are denoted by E1 to E3, the 

mutant vector of the jth iteration associated with the ith 

mutant rule is denoted by Wmutant i
j

, and the queen vector 

(which yields the best result) is denoted by Wqueen
j at 

iteration j. In this research, the fitness function evaluates 

scheduling policies based on two objectives: minimizing 

weighted patient waiting time, and balancing workload 

distribution across caregivers. e(Wq1

j
) is the magnitude 

of that fitness (always non-negative). 

The position of the vector is changed to the upper 

and lower bounds of the control vector if any component 

of any mutant vector violates its constraint. Next, all of 

the mutant vectors' fitness functions are calculated and 

arranged using the descending technique. The mutation 

vector chosen as  Wmut,Best

j
 is the one with the lowest 

fitness function. In the following generation, the trial 

vector takes the place of the target vector if the cost of 

the mutant vector is lower than that of the target 

(Equation 17). 

Wqueen
j+1 =

{
Wmut,Best  

j
  if e(Wnew,Best

l ) ≤ e(Wqueen
l )

Wqueen
j           Otherwise                               

(17) 

Where Wqueen
j+1 is the best scheduling/resource 

allocation policy for the next iteration, ensuring the 

algorithm moves toward optimal solutions. The mutant 

vectors are first evaluated using the fitness function, and 

the best-performing vector (mutant-best) is selected as a 

candidate policy. This candidate is then compared with 

the current policy, and if it provides better reward 

performance, it replaces the existing policy parameters. 

Finally, the selected mutant vector is used to update the 

RDQN weights, influencing exploration strategy and 

improving policy refinement. Table 3 shows the hyper 

parameter table for DHBM. 

 

Table 3: Hyper parameter table for DHBM 

 

Hyperparameter Value 

Learning Rate (α) 0.0005 – 0.005 (DHBM–adaptive) 

Discount Factor (γ) 0.90 – 0.99 

Exploration Rate (ε) 1.0 → 0.05 (decayed using DHBM) 

Batch Size 32 – 128 

Replay Buffer Size 10,000 – 50,000 

Target Network Update Interval Every 10–50 episodes 

Mutation Coefficients (E1–E3) 0.2 – 0.8 

Queen Speed Decay (α_decay) 0.90 – 0.98 

Number of Mutant Vectors per Iteration 4 

 

By integrating DHBM with RDQN, the algorithm 

dynamically tunes the learning process of the 

reinforcement learning agent, ensuring that scheduling 

and resource allocation decisions remain effective under 

real-time variability in patient arrivals, health 

emergencies, and staff availability. This hybrid 

mechanism improves both convergence stability and 

policy adaptability, making it particularly suitable for 

complex elderly care environments. The pseudocode of 

the proposed method is given in Algorithm 2. 

 

Algorithm 2: DHBM-RDQN 

Input: Preprocessed elderly care dataset, replay buffer 

Output: Optimized scheduling policy and reduced patient waiting time 

Initialize RDQN parameters 𝜃, target network 𝜃′, and replay buffer 

Initialize DHBM population (queen + drones) with random policy weights 

Evaluate the fitness of each policy → select best as initial queen 

While training not converged do 

Observe current state st 

Select action btusing DHBM-guided exploration (adaptive ε) 

Execute action, receive reward rt and next state st+1 
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Store experience tuple (st, bt, rt, st+1) in replay buffer 

RDQN Update: 

Sample mini-batch from replay buffer 

compute loss using Equation (9) and update network weights 𝜃 

Jθ =
1

2
(Qθ(st, bt) − (rt + γ max

bj

Qθ(st+1, bmax)))

2

  

Periodically update target network 𝜃′ 
DHBM Optimization: 

Generate mutant vectors using Equations (12–16) 

Wmutant1
j

= Wq1
j

+ E1 × (Wqueen
j

− Wr3
j

) + E1 × (Wq3
j

−  Wq4
j

)  

Wmutant2
j

= Wqueen
j

+ E2 × (Wq1
j

− Wq2
j

)  

Wmutant3
j

= Wq1
j

+ E3 × (Wq2
j

− Wq3
j

) + E3 × (Wq1
j

− Wq4
j

)  

Wmutant4
j

= (Wq1
j

+ Wq2
j

+ Wq3
j

)/3 + (β2 − β1)(Wq1
j

− Wq2
j

) + (β3−β2)(Wq2
j

− Wq3
j

) + (β1 − β3)(Wq3
j

− Wq1
j

)  

β1 =
|e(Wq1

j
)|

β∗ , β2 =
|e(Wq2

j
)|

β∗ , β3 =
|e(Wq3

j
)|

β∗   

Compute fitness of all mutant policies 

Select best mutant vector → W𝑚𝑢𝑡,𝑏𝑒𝑠𝑡 

If W𝑚𝑢𝑡,𝑏𝑒𝑠𝑡 improves reward → update queen and RDQN weights 

Update exploration rate ε and queen speed 𝑇(𝑙) (Eq. 10–11) 

Prob(C) = exp (−∆(e)/T(l))  
T(l + 1) = α × T(l)  

End while 

Return final optimized policy and performance metrics 

4  Experimental result 
The implementation details, system configuration, and 

hyper parameter settings of the proposed DHBM-RDQN 

method were presented in this section. It highlights the 

outcomes of the experiments, demonstrating the 

framework’s ability to efficiently allocate resources, 

optimize staff scheduling, and adapt dynamically to 

changing elderly care demands. 

 

4.1 System configuration and hyper parameter 

tuning 

The proposed DHBM-RDQN framework was 

implemented using Python with TensorFlow, PyTorch, 

and Keras, supported by standard scientific libraries for 

preprocessing and feature engineering. Model training 

and evaluation were executed on a GPU-enabled 

computing environment to ensure efficient convergence 

and experimentation. Table 4 summarizes the optimized 

hyper parameters used in the final configuration. 

The hyperparameters for DHBM-RDQN were 

selected through a combination of empirical testing and 

bio-inspired optimization principles. Baseline values for 

the RDQN component, such as the number of hidden 

layers, neurons, activation function, and optimizer, were 

chosen based on standard reinforcement learning 

literature to ensure stable learning. The Honeybee 

Mating (DHBM) layer parameters—population size, 

number of generations, mating flight length, mutation 

probability, and crossover probability—were iteratively 

tuned to enhance exploration, prevent premature 

convergence, and optimize policy learning under 

dynamic elderly care conditions. Experimental 

validation confirmed that these settings provided the best 

balance between learning stability, convergence speed, 

and adaptability

Table 4: Hyper parameter setting for DHBM-RDQN 

 

Category Hyper parameter Value  

RDQN Hidden Layers 2 fully connected layers 

Neurons per Layer 256, 128 

Activation Function ReLU 

Optimizer Adam 

 Learning Rate (α) 0.0001 – 0.001 

 Discount Factor (γ) 0.95 

 Exploration Strategy ε-greedy 

 Initial Exploration Rate (ε₀) 1.0 

 Minimum Exploration Rate (ε_min) 0.05 

DHBM Learning Rate (α) 0.0005 – 0.005 (DHBM–adaptive) 
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Discount Factor (γ) 0.90 – 0.99 

Exploration Rate (ε) 1.0 → 0.05 (decayed using DHBM) 

Batch Size 32 – 128 

Replay Buffer Size 10,000 – 50,000 

 Target Network Update Interval Every 10–50 episodes 

 Mutation Coefficients (E1–E3) 0.2 – 0.8 

 Queen Speed Decay (α_decay) 0.90 – 0.98 

 Number of Mutant Vectors per Iteration 4 

 

4.2 Performance evaluation of the proposed 
framework 

Figure 2 shows the variation in patient waiting time 

across 100 training episodes. The waiting time 

fluctuates between 15 and 20 minutes, demonstrating 

dynamic policy adaptation. Spikes and drops indicate 

learning adjustments based on changing care demands. 

Overall, the plot shows the model stabilizing around 

17–18 minutes, reflecting improved scheduling 

efficiency. 

 

Figure 2: Average patient waiting time for using DHBM-RDQN 

 

Figure 3 illustrates staff overtime fluctuations across the 

same 100 episodes. Overtime values range between 1.0 

and 2.8 hours, showing adaptive workforce utilization. 

Initial fluctuations gradually reduce, indicating 

learning stabilization over time. The overall trend 

settles near 1.8–2.2 hours, reflecting improved 

workforce balance. 
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Figure 3: Staff overtime fluctuations for using DHBM-RDQN 

 

Figure 4 displays the reward distribution across 100 

training episodes. Reward values increase from 

approximately 70 to 135, indicating learning 

progression. The visible upward trend reflects improved 

decision-making in dynamic resource allocation. Higher 

reward consistency after episode ~60 indicates 

stabilization of the trained policy.  

This cumulative reward chart highlights learning 

improvement over time. Values steadily increase from 

0 to over 10,000, demonstrating continuous gain in 

performance. The smooth upward slope indicates 

consistent learning without policy collapse. By episode 

100, the cumulative reward reflects a successfully 

converged and optimized RL model. 

 

 

Figure 4: Reward and cumulative reward fluctuations  

Figure 5 shows how the proposed DHBM-RDQN 

responds in a high-demand scenario. The model assigns 

80% priority for high patient acuity and 70% allocation 

when staff availability demonstrating strong 

adaptability. It also allocates 75% for nurse assignment, 

65% for care assistants, and gives 85% priority to 

urgent task completion, showing improved 

responsiveness and smarter resource distribution. 

Overall, DHBM-RDQN demonstrates stronger 

adaptability and more efficient resource allocation. 
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Figure 5: The proposed DHBM-RDQN and Baseline RDQN performance evaluation 
 

The SHAP summary Figure 6 shows the impact of 

different features on the DHBM-RDQN model’s 

predictions for dynamic elderly care resource allocation. 

Features like complaint_count, satisfaction_score, and 

high_acuity_pct have the strongest influence, 

highlighting the importance of patient feedback and 

acuity in staffing decisions. Color coding indicates 

feature values, with red representing high values and 

blue low values, showing how feature magnitude 

affects the model output. Operational variables such as 

avg_hourly_wage_lpn, lpn_headcount, and budget_cap 

also contribute to resource allocation decisions. 

Overall, the plot identifies key factors driving the 

model’s dynamic allocation strategy to optimize elderly 

care quality and efficiency. 

 

Figure 6: SHAP summary plot for the impact of different features on the DHBM-RDQN model’s 
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The experimental evaluation using five-fold cross-

validation demonstrates clear performance differences 

among DHBM, RDQN, and the hybrid DHBM-RDQN 

model. The hybrid model consistently achieved the 

highest accuracy, precision, recall, and F1-score with 

minimal performance variance, indicating improved 

generalization and stability. RDQN showed moderate 

improvement over DHBM, while DHBM exhibited the 

lowest performance but remained stable. Statistical 

significance analysis confirmed that the performance 

gains of DHBM-RDQN were not random and were 

highly significant (p < 0.01). 

 
Table 5: 5-fold cross validation 

  

Model Accuracy 
(Mean ± SD) 

95% 
CI 

Precision 
(Mean ± 
SD) 

Recall 
(Mean ± 
SD) 

F1-Score 
(Mean ± 
SD) 

Significance 

DHBM 0.87 ± 0.012 [0.85–
0.89] 

0.85 ± 0.015 0.84 ± 
0.017 

0.85 ± 
0.013 

Baseline 

RDQN 0.90 ± 0.010 [0.89–
0.92] 

0.89 ± 0.012 0.88 ± 
0.014 

0.88 ± 
0.011 

↑ Significant vs 
DHBM (p < 0.05) 

DHBM-
RDQN 
(Proposed) 

0.95 ± 0.008 [0.94–
0.97] 

0.94 ± 0.010 0.95 ± 
0.009 

0.95 ± 
0.008 

↑↑ Highly Significant 
vs DHBM & RDQN 
(p < 0.01) 

The Table 5 shows that the proposed DHBM-RDQN 

model achieved the highest overall performance, 

reaching an accuracy of 0.95 ± 0.008, precision of 0.94 

± 0.010, recall of 0.95 ± 0.009, and an F1-score of 0.95 

± 0.008, outperforming both DHBM and RDQN. The 

confidence interval (0.94–0.97) and low standard 

deviation highlight strong model reliability. In 

comparison, DHBM achieved the lowest scores, while 

RDQN demonstrated moderate improvements with 

statistically significant gains relative to DHBM. 

4.3 Performance comparison with existing 
method 
To validate the effectiveness of the proposed DHBM-

RDQN method, its performance was compared against 

three benchmark approaches: a Time Series Analysis 

framework [23] (which integrates hybrid time series 

forecasting with mathematical programming using 

optimization-based hyperparameter tuning), a 

traditional RNN model [23] and an LSTM-based 

architecture [23].. The evaluation was carried out across 

four key metrics, such as accuracy, resource efficiency, 

response time, and adaptability score, to 

comprehensively assess predictive reliability, optimal 

resource allocation, real-time responsiveness, and 

adaptability to dynamic elderly care environments. 

Adaptability score: Adaptability score measures 

how well the system adjusts resource allocation when 

patient conditions or staffing levels change. It reflects 

the ratio of successful adaptive decisions to total 

decision events. Equation (18) shows the adaptability 

score mathematical representation:  

Adaptability score= Adaptive  decision corretly  

executedTotal Adaptive Descision Events           (18) 

Response time:  Response time indicates how 

quickly the model reacts to changes in care demand and 

reallocates resources. It is measured as the average time 

taken by the system to output a decision after receiving 

new state input. The formula of response time is shown 

in Equation (19):  

Response time= i=1nDecision  Output time−Input 

timestampn             (19) 

Resource efficiency: Resource efficiency 

measures how effectively available staff and services 

are allocated without overuse or underutilization. It 

compares the optimal resource usage to the actual usage 

determined by the model. The mathematical 

representation of resource efficiency is shown in 

Equation (20): 

Resource Efficiency=Optimal Resource 

UtilizationActual Resource Utilization×100%          (20) 

Accuracy: Accuracy reflects how many allocation 

decisions made by the system match the expected or 

expert-approved optimal allocation. 

It is computed as the ratio of correct decisions to 

total decisions. Accuracy formula is shown in Equation 

(21):  

Accuracy= Correct Allocation DecisionsTotal 

Allocation Decisions×100%                                     (21) 

 Table 6 gives the comparative evaluation of the 

proposed method with baseline approaches. Figure 7 

illustrates the accuracy comparison among the 

proposed DHBM-RDQN model and existing 

approaches, including LSTM-based, Traditional RNN, 

and the Time Series Analysis framework. As seen, the 

DHBM-RDQN achieves the highest accuracy (96.5%), 

outperforming all baselines, which highlights its 

effectiveness in capturing complex temporal 

dependencies and decision-making dynamics. Figure 7 

also shows the comparison of resource efficiency 

across the models. The DHBM-RDQN demonstrates 

superior efficiency (90.5%) compared to LSTM and 

Traditional RNN, while also superior to the Time Series 

Analysis framework. This indicates that the proposed 

method utilizes computational resources more 

effectively, making it highly suitable for real-time and 

large-scale applications.
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Figure 7: Accuracy and Resource efficiency performance of proposed vs. existing models  

 

Figure 8 presents a joint comparison of response time 

and adaptability score. The DHBM-RDQN achieves the 

lowest response time (1.0s) and the highest adaptability 

score, proving its robustness and faster decision-making 

capabilities under dynamic conditions. Compared to 

traditional baselines, LSTM and Traditional RNN, and 

also the Time Series Analysis framework, this 

improvement highlights the adaptability and efficiency 

of the proposed approach in rapidly changing 

environments. 

 

 

Figure 8: Score comparison of response time and adaptability score 

 

Table 6: Performance comparison of DHBM-RDQN with existing methods 

Method Adaptability Score Response Time Resource Efficiency Accuracy 

LSTM-based [23] 0.815 2.1s 84.1 % 89.2 % 

Traditional RNN 
[23] 

0.743 2.8s 82.4 % 87.6 % 

Time Series 
Analysis framework 
[23] 

0.892 1.2s 88.7 % 94.3 % 

DHBM-
RDQN[Proposed] 

0.925 1.0s 90.5 % 96.5 % 

 

Existing methods of managing elderly care resources, 

including Traditional RNN, LSTM-based models, and 

Time Series Analysis frameworks [23], have multiple 

limitations. Traditional RNNs fail to learn long-term 

dependencies effectively due to vanishing gradients, 

LSTM models learn temporal patterns more effectively 

but require a lot of computational power to train them for 

a long time, and Time Series Analysis frameworks rely 

on a fixed mathematical assumption(s) and optimization 

heuristics that can't adapt to fluctuations in resource 

availability or patient demand as they happen. The 

proposed DHBM-RDQN method enables Deep RL with 

a high-dimensional state-action mapping with a DHBM 

method and simultaneously resolves all of the limitations 

described above. The RDQN component learns a high-

dimensional state-action mapping without manual 
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engineering of the features, whereas DHBM guarantees 

exploration without premature convergence or 

exploitation to provide optimal allocations when 

uncertainty exists. As a result, the DHBM-RDQN 

method improved accuracy and resource efficiency, 

allowed for faster response, and accommodated greater 

fluctuations in resource availability. Taking all the 

improvements into consideration, DHBM-RDQN is 

significantly better than traditional methods of resource 

allocation in highly complex situations in the elderly 

care sector. 

4.4 Discussion 
The LSTM [23] models are suitable in time-sequence 

prediction but fail at real-time decision-making in 

dynamic settings such as the case of providing elderly 

care. They need regular patterns to be able to generalize 

and fail when staff or patient demand changes in a 

random fashion. LSTM does not have the ability to 

automatically modify resource allocation policies and 

relies on pre trained hard coded rules. Consequently, 

flexibility and real-time optimization are minimal. 

Older RNNs [23] struggle to deal with long-term 

dependency dynamics, and thus it deteriorates their 

performance when dealing with continuous and multi-

shift operational data. They are also likely to lose their 

training when faced with complex decision 

environments and a long planning horizon. RNNs do not 

require interaction with the environment and can 

therefore not learn policies optimally or on the feedback 

of the environment, as they are not reinforcement-based. 

This restricts their applicability in dynamic staffing and 

allocation of resources situations. 

The time series forecasting [23] methods can be 

used to predict the trends in demand and cannot make 

optimal decisions on their own based on the projected 

states. They are run on fixed assumptions and they do 

not have systems to accommodate unforeseen 

occurrences like sudden shortages of staff or 

emergencies in patients. Such practices lack a reward-

based learning mechanism to review and filter down 

decisions. They, therefore, offer resources but not 

automated and adaptive resources allocation. 

To address these limitations, the proposed Dynamic 

Honeybee Mating–tuned Resource-based Deep Q-

Network (DHBM-RDQN) introduces a reinforcement 

learning-driven framework capable of making real-time 

adaptive decisions. The model continuously learns from 

environment feedback and dynamically allocates care 

resources based on changing patient needs and staffing 

conditions. The honeybee mating optimization 

mechanism further enhances learning stability by tuning 

hyper parameters automatically, improving exploration 

and preventing premature convergence. As a result, the 

proposed method achieves higher accuracy, better 

adaptability, and improved resource efficiency 

compared to existing predictive and non-learning-based 

approaches. 

The proposed DHBM-RDQN framework is 

promising, The DHBM-RDQN framework dynamically 

adapts to unexpected staff shortages by reallocating 

available caregivers based on real-time patient demand 

and acuity levels. Its mutation-driven exploration 

generates alternative scheduling policies, ensuring 

service continuity and minimizing patient waiting times. 

This adaptive policy learning allows the system to 

maintain efficiency even under sudden workforce 

fluctuations.  

5  Conclusion 
A novel approach for dynamic allocation of elderly care 

service resources using RL, specifically the DHBM-

RDQN method, was presented in this research. The 

proposed dynamic allocation framework integrated 24 

months of operational data from 3 large-scale elderly 

care facilities, representing over 30,000 service records, 

including staff schedules, patient health characteristics, 

emergency event documentation, and care quality. It did 

so in a theoretically guided way to model the 

complexities of resource management in the real-world. 

The operational data was pre-processed so it was 

standardized (Z-score normalization) and could include 

missing data (imputation). Feature extraction methods 

were then applied to the data to derive latent patterns and 

temporal dynamics as part of the state-space 

representation of an MDP. Experimental results showed 

that the RL-based framework achieved 96.5% accuracy, 

90.5% resource efficiency, a 1.0 s average response time, 

and an adaptability score of 0.925, significantly 

outperforming traditional methods. In conclusion, this 

research provides a valuable and generalizable approach 

to dynamically allocating care service resources through 

a RL framework to enable efficient, data-driven decision 

making for elderly care management. It also 

incorporated an MDP model, pre-processing, and a 

feature extraction method that help establish a solid 

empirical basis for the intelligent, scalable and practical 

optimization of resources in long-term care settings. 

Limitations and Future Scope: The proposed 

DHBM-RDQN framework, while effective, has certain 

limitations. Its generalizability to other elderly care 

datasets or facilities may be constrained due to 

differences in patient demographics, staffing patterns, or 

operational practices. The RL model assumes relative 

stationarity in state transitions and may not fully capture 

delayed effects of actions on care outcomes. 

Additionally, potential biases in the dataset, such as 

variations in socioeconomic status or facility resources, 

could influence the learned policies and affect fairness 

in resource allocation. Future research can integrate real-

time IoT-based monitoring, explore multi-agent 

reinforcement learning for coordinated care, and scale 

the approach to broader regional or national elderly care 

networks. 
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Appendix 

 

Abbreviation Full form 

ML machine learning 

NLP natural language processing  

QOC quality of care 

AI artificial intelligence 

DL deep learning 

RL Reinforcement learning 

MDP Markov Decision Process 

ERAS effective resource allocation strategy 

ARU average resource utilization  

PSO particle swarm optimization  

ElHealth Elastic allocation of human resources in healthcare environments 

HRM human resource management 

ED Emergency Department 

IoT Internet of Things 

BPNN Back propagation neural network  

LOO Leave-One-Out  

MILP mixed-integer linear programming 

RF Random Forest  

SERVQUAL Service Quality 

DEA Data Envelopment Analysis 

VBA Visual Basic for Applications 

ED Emergency departments 

DQN Deep Q-networks 

BP blood pressure 

MVI Missing Value Imputation 

HR heart rate 

ICA Independent Component Analysis 

DWT Discrete Wavelet Transform 

WT Wavelet Transform 

HBMO Honey bee mating optimization 

traditional RNN traditional Recurrent neural network 

LSTM Long short-term memory 

NCD nursing care delivery 

DNN Deep Neural Network 
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