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Traditional image recognition algorithms often face problems such as low recognition accuracy and 

insufficient robustness when facing complex scenes and multi-class image data. To this end, a hierarchical 

discriminant analysis (HDA)-based image recognition algorithm was proposed, which effectively 

improves image recognition performance by constructing a multi-scale feature extraction module, 

principal component analysis (PCA) dimensionality reduction, attention mechanism, and dynamic 

hierarchical adjustment strategy combined with a hierarchical feature extraction and discrimination 

model. The experiment was conducted on three public datasets: CIFAR-10, ImageNet subset (selecting 

100 categories with a total of 150000 images, based on covering common object categories and moderate 

data volume for fair validation of algorithm performance), and MNIST. The performance was compared 

with models such as VGG16, ResNet50, SVM, KNN, Hierarchical CNN, EfficientNet, GoogLeNet, etc. The 

results indicated that the proposed method had higher recognition accuracy than other comparative 

algorithms on different datasets, with accuracies exceeding 90%. The proposed method performed better 

in terms of mean absolute error and root mean squared error. The F1 value curve of the proposed method 

was located at the top of the coordinate axis, reaching a maximum value of 92.39%, which was 14.56% 

higher than the lowest value of 78.24% in the EfficientNet model. This algorithm has better recognition 

accuracy than traditional algorithms on multiple public datasets, and has strong anti-interference ability 

and robustness, which can provide reference for optimizing the accuracy of image recognition. 

Povzetek: Članek predlaga hierarhični algoritem HDA za prepoznavo slik, ki združi ekstrakcijo značilk, 

PCA, mehanizem pozornosti in dinamično hierarhično prilagajanje ter s tem izboljša natančnost in 

robustnost glede na uveljavljene modele na več javnih naborih podatkov.

1 Introduction 
In the information age, image data grows explosively; 

image recognition, key for processing image info, is 

widely used in security, autonomous driving, medical 

imaging [1]. Traditional algorithms rely on manual 

features, performing poorly in complex scenes [2]. In 

recent years, Deep Learning (DL) (e.g., Convolutional 

Neural Network (CNN)) boosts recognition accuracy via 

automatic deep feature extraction [3]. Hierarchical 

Discriminant Analysis (HDA), decomposing complex 

classification into sub-problems, when combined with 

DL, is expected to further improve image recognition 

performance [4]. However, with increasing image data 

complexity: Zhang et al. used HPLC fingerprint maps + 

multi-feature quantitative analysis, effectively 

distinguishing samples from different sources [5]. Yang et 

al. adopted multi-scale residual modules (capture multi-

scale features) + spatial transformation data augmentation 

(increase feature diversity) + hierarchical discrimination 

to solve handwritten math expression feature loss, 

improving recognition accuracy [6]. Su S et al. proposed 

similar sequence multi-view discriminant correlation 

analysis to address traditional multi-view feature 

extraction's ignorance of sample similarity and poor 

intrinsic manifold capture, achieving better recognition  

 

 

accuracy and robustness [7]. Radmila compared 4 ML 

algorithms' classification performance on features from 11 

pre-trained architectures to solve small-dataset-induced 

poor classification, finding random forest and multilayer 

perceptron most suitable [8]. 

To solve laborious, inefficient manual feature 

extraction in traditional Φ-OTDR vibration detection, Hu 

et al. combined 2D image encoding with DL-based 

vibration recognition and adopted hierarchical 

discrimination, achieving over 94.25% accuracy [9]. For 

lighting-induced color deviation and low accuracy, Wu et 

al. did color correction, used improved watershed and 

lightweight CNN for feature extraction/fusion, integrated 

hierarchical discrimination, with fused-feature 

recognition accuracy at 91% [10]. Zhang et al. proposed a 

method combining layered discrete entropy and semi-

supervised local Fisher discriminant analysis, achieving 

100% and 98.2% accuracy in two fault sample 

identifications [11]. To address the time-consuming 

sensory analysis and quality grading issues of Louis 

Boissier tea in the production area, Janine C. and her team 

used shortwave infrared hyperspectral imaging, combined 

with partial least squares discriminant analysis and layered 

modeling for classification, followed by preprocessing 

and parameter optimization. The results indicated that the 
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classification accuracy of the production area was 100% 

[12]. 

Table 0: Summary table of related works 

Author Method Dataset Performance metrics 

Zhang et 
al.[5] 

Image feature maps + multi-feature quantitative analysis + 
hierarchical discrimination 

Honeysuckle origin 
samples 

Effective origin discrimination 

Yang et 

al.[6] 

Multi-scale residual module + data augmentation + hierarchical 

discrimination 

Handwritten math 

expressions 
Improved recognition accuracy 

Su S et 
al.[7] 

Similar sequence multi-view discriminant correlation analysis 
+ hierarchical discrimination 

Universal images Better accuracy & robustness 

Radmila[8

] 

Feature extraction + classification comparison + hierarchical 

discrimination 

Cultural heritage 

images 

Feature extraction accuracy: 88.89%-

95.56% (partial architectures) 

Hu et al.[9] 
2D image encoding + DL feature recognition + hierarchical 
discrimination 

6 types of OTDR 
vibration images 

Vibration recognition accuracy 
>94.25% 

Wu et 

al.[10] 

Color correction + improved watershed + lightweight CNN + 

feature fusion + hierarchical discrimination 

Stratigraphic 

images 
Post-fusion accuracy: 91% 

Zhang et 
al.[11] 

Hierarchical discrete entropy + semi-supervised Local Fisher 
analysis + hierarchical discrimination model 

2 types of bearing 
fault signals 

Fault recognition accuracy: 100%, 
98.2% 

Janine C. 

et al.[12] 

Preprocessing + SWIR hyperspectral imaging + PLS-DA + 

hierarchical modeling 

Louis Boissier tea 

SWIR images 

Origin classification & quality grading 

accuracy 

 

Different teams studied diverse images: Zhang et al. 

used chromatographic fingerprinting and hierarchical 

discrimination to distinguish honeysuckle origin; Yang et 

al. used multi-scale residuals to boost handwritten math 

expression recognition accuracy but lacked complex 

feature dynamic discrimination; Su et al. processed 

general images via multi-view discriminant analysis 

without attention mechanisms; Radmila analyzed cultural 

heritage images with transfer learning, relying on pre-

trained models; Hu et al. converted 1D signals to images 

for vibration event recognition without optimizing multi-

scale fusion. 

Despite existing research applying hierarchical 

thinking to image recognition, three key gaps remain: first, 

feature extraction lacks specificity (relies on single-

scale/pre-trained models, fails to fully capture image 

details, local/global features); second, fixed hierarchical 

discrimination structure (no dynamic adjustment of 

depth/parameters, limiting complex data accuracy); third, 

insufficient integration of attention mechanisms and 

dimensionality reduction (prone to redundancy or non-

critical feature interference). 

To this end, a HDA-based image recognition 

algorithm is proposed, which innovatively designs a 

multi-scale feature extraction module to obtain 

comprehensive features, combines principal component 

analysis (PCA) dimensionality reduction to reduce 

redundancy, introduces attention mechanism to focus on 

key features, and optimizes the discrimination structure 

through dynamic hierarchical adjustment strategy. 

Ultimately, the recognition accuracy and robustness are 

improved, laying the foundation for the engineering 

application of image recognition technology. 

2 Research design 

2.1 HDA algorithm based on multi-scale 

image feature extraction 

To achieve the three major objectives of 'improving 

recognition accuracy, noise robustness, and controlling 

computational complexity' as stated in the introduction, 

the technical route of the research design is elaborated in 

detail. Through the organic combination of multi-scale 

feature extraction, PCA dimensionality reduction, 

attention mechanism, and dynamic hierarchical 

adjustment strategy, the core research questions are 

addressed one by one to ensure that the design logic is 

highly matched with the research objectives. 

The study adopts the channel wise attention 

mechanism without introducing spatial attention - the core 

reason is that the multi-scale feature extraction module has 

captured the spatial details and global information of the 

image through convolution kernels of different sizes. 

Channel attention can further enhance the importance 

differentiation of different channel features (such as in the 

MNIST dataset, where the channel weights of digital 

contour features are higher), avoiding functional 

redundancy between spatial attention and multi-scale 

modules. 

Hierarchical clustering (unsupervised) splits/merges 

via sample similarity (no feature discriminators, fixed 

results); this study’s HDA (supervised) uses Support 

Vector Machine (SVM) discriminators (trained on 

annotated samples) and dynamic structure optimization. 

Multi-level convolution only does hierarchical feature 

extraction (no independent discrimination, relies on single 

classification head); this study’s HDA combines feature 

extraction and hierarchical discrimination. In image 

recognition, feature extraction quality affects the result. 

Traditional feature extraction extracts only shallow 

features, while DL-based single-scale feature extraction 

fails to fully describe image complex structure [13]. Thus, 

an HDA algorithm via multi-scale feature extraction and 

hierarchical discrimination is developed to boost feature 

representation, category discrimination, and recognition 

accuracy/robustness [14-15]. Its multi-scale feature 

extraction module uses different-scale CKs for 

convolution to get multi-scale image features (in Figure 

1). 

In Figure 1, the input image is first standardized, and 

then finite element analysis is performed using three 
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convolution branches of different scales. After each 

convolution branch, there are cascaded batch 

normalization and ReLU activation functions to  
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Figure 1: Multi-scale feature extraction module. 
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Figure 2: Hierarchical discriminant model tree structure. 

accelerate the convergence speed of the network and 

enhance its nonlinear expression ability. 

The hierarchical discrimination model achieves a 

gradual discrimination of 'coarse classification fine 

classification' through a tree structure, and its specific 

structure is as follows: The hierarchical discrimination 

model adopts a tree structure, where each node represents 

a discriminator used for classifying and discriminating 

input features. The root node corresponds to the highest 

level of discrimination, dividing all images into several 

major categories. Each child node corresponds to the 

discrimination of the next layer, and the large class divided 

by its parent node is further subdivided into smaller 

subclasses until the leaf node corresponds to a specific 

category [16]. The schematic is shown in Figure 2. 

The input image is set to be H W CX R   , where H , 
W , and C  are the height, width, and amount of channels 

of the image. After the convolution operation of the k th 

convolution ( )1,2,3k =  branch, the feature map obtained 

is k k kH W C

kF R
 

 , which is calculated as shown in 

equation (1). 

Re ( ( * ))k k kF LU BN W X b= +   (1) 

In equation (1), 
kW  and 

kb  respectively represent the 

CK and bias term of the k th convolution branch, *  refers 

to the convolution operation, ( )BN   is the batch 

normalization operation, and Re ( )LU   means the ReLU 

activation function. The features were projected in layers 

to enable discrimination. For the m th subset of features in 

the l th layer, the intra-class dispersion matrix ,l m

ws  is 

calculated as denoted in equation (2). 
,

, ,

,

, , , ,

1

( )( )
l m

l m c

C

l m T

w l m c l m c

c x S

s x x 
= 

= − −    (2) 

In equation (2), ,l mC  is the amount of categories 

contained in the feature subset, the c th class sample set is 

labeled as , ,l m cS , and the mean vector of the c th class 

sample is labeled as , ,l m c  [17]. The discrimination 

criteria between feature layers are as follows, and the 

inter-class dispersion matrix l

bS  of the l th layer is 

calculated as shown in equation (3). 

, , ,

1

( )( )
lM

l T

b l m l m l l m l

m

S N    
=

= − −   (3) 

In equation (3), 
lM  means the amount of feature 

subsets in the l th layer, ,l mN  means the total amount of 

samples in the m th feature subset, the mean vector of the  
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Figure 3: HDA algorithm flow based on multi-scale image feature extraction module. 

m th feature subset is labeled as ,l m , and 
l  denotes the 

total mean vector of all samples in the l th layer [18]. 

To integrate feature information of different scales, 

the feature maps obtained from the three branches are 

upsampled or downsampled to make their sizes consistent, 

and then channel concatenation is performed to obtain the 

fused feature map 1 2 3( )H W C C C
F R

  + +
 , as shown in 

equation (4). 

1 2 3( , , )F Concat F F F  =   (4) 

In equation (4), 
kF   represents the feature map of the 

k th branch after size adjustment, and ( )Concat   

represents the channel concatenation operation. Because 

of the high dimensionality of the fused feature map, it will 

increase the computational complexity of subsequent 

processing, thus requiring feature dimensionality 

reduction. To preserve the main feature information, PCA 

algorithm is employed to minimize the dimensionality of 

the fused features. This study uses bilinear interpolation to 

adjust the size of feature maps: for feature maps smaller 

than the target size, bilinear interpolation is used for 

upsampling - based on the grayscale values of four 

adjacent pixels around the target pixel, weighting 

coefficients are calculated according to the distance 

between pixels, and the target pixel value is obtained by 

weighted averaging. 

This study chose PCA as the dimensionality reduction 

method because LDA requires category labels and is 

sensitive to overfitting in the ImageNet subset of this study 

where there are few category samples. PCA, on the other 

hand, is unsupervised and does not require labels, making 

it suitable for "dimensionality reduction before 

discrimination"; T-SNE and UMAP have high 

computational complexity and are prone to losing global 

information, while PCA has low complexity and preserves 

global variance, making it more suitable for multi-level 

discrimination. 

Let the fused feature matrix be N DF R  , where N  

refers to the amount of samples and D  means the feature 

dimension. The target of PCA is to find a projection matrix 

( )D dP R d D  , project the high-dimensional feature 

matrix F  onto a low dimensional space, and obtain the 

reduced dimensional feature matrix 
N d

pF R  . The 

calculation is shown in equation (5). 

pF F P=    (5) 

In equation (5), the projection matrix P  is composed 

of the eigenvectors corresponding to the first d  largest 

eigenvalues of the covariance matrix of the feature matrix 

F . The calculation of covariance matrix C  is shown in 

equation (6). 

1
( )

1

TC F F F
N

= −
−

  (6) 

In equation (6), F  refers to the mean vector of the 

feature matrix F . To preserve the main feature 

information, this study used PCA algorithm to reduce the 

dimensionality of the fused features after multi-scale 

feature fusion and before attention mechanism processing. 

In the PCA dimensionality reduction, the determination of 

the low dimensional spatial dimension d in the preserved 

variance threshold is based on the principle of "preserving 

95% variance" - that is, selecting the top d largest 

eigenvalues of the covariance matrix, so that the 

cumulative sum of these eigenvalues’ accounts for ≥ 95% 

of the total sum of all eigenvalues. The core logic of PCA 

dimensionality reduction is to map high-dimensional 

features to a low dimensional space through linear 

transformation, while maximizing the preservation of 

variance information in the data. Specifically, for the 

fused feature matrix, the covariance matrix is calculated, 

which reflects the degree of linear correlation between 

features. 

Through feature dimensionality reduction, not only 

does it reduce computational complexity, but it also 

reduces redundant information between features, which is 

beneficial for improving the efficiency and accuracy of 

subsequent hierarchical discrimination. The HDA 

algorithm based on multi-scale image feature extraction 

module is shown in Figure 3. 

The initial tree structure of the HDA model adopts a 

"top-down" construction approach, where the root node 

uses all categories as discriminative objects. By 

calculating the feature differences between categories, 

categories with feature differences greater than the 

threshold T1 are divided into different child nodes; The 
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child nodes continue to be divided based on this rule until 

each leaf node corresponds to only one category. As 

shown in Figure 3, input images are preprocessed first. 

The multi-scale feature extraction module uses different-

size CKs for feature extraction (with batch normalization 

and ReLU), adjusts, splices and fuses them. Then PCA 

selects top d eigenvectors to reduce redundancy. Attention 

mechanism generates weights via global average pooling, 

fully connected layers and Sigmoid to highlight key 

features. Finally, tree hierarchical discrimination model 

discriminates layer by layer (with dynamic adjustment) 

and outputs recognition results. 

2.2 Image recognition algorithm based on 

HDA algorithm 

Multi-scale feature extraction module yields rich image 

features, which become low-dimensional and 

representative after dimensionality reduction. Yet 

effective use of these features for recognition is key. Thus, 

an HDA-based image recognition model is built, 

decomposing recognition into sub-tasks via feature 

hierarchy and category relationships to narrow scope and 

boost accuracy [19-20]. For example, in the MNIST 

dataset (10 handwritten digit categories), the root node 

first calculates the feature difference between the 10 

categories, and divides the categories with a 

difference>0.6 into three primary sub nodes (such as 

{0,1,2}, {3,4,5}, {6,7,8,9}). Each primary sub node is then 

divided into secondary sub nodes according to the same 

rules, ultimately forming a tree structure with leaf nodes 

corresponding to a single digit category. 

The category set of images is 
1 2{ , , , }MC c c c=  , 

where M  means the total amount of categories. Based on 

the semantic relationships and feature similarities between 

categories, the category set C  is divided into 
1K  major 

categories 
1

1 1 1

1 2, , , KC C C . Each major category 1

iC  can be 

further divided into 
2K  subcategories 

2

2 2 2

1 2, , ,i i iKC C C ; 

And so on, until it is assigned to a specific category. For 

each discriminative node, a SVM is used as the 

discriminator. SVM can effectively classify data in high-

dimensional space by finding the optimal classification 

hyperplane. If the training sample feature of a 

discrimination node is d

ix R  and the corresponding 

category label is {0,1, , }iy K   ( K  is the number of 

categories that the node needs to be classified into), then 

the objective function of SVM is shown in equation (7). 

2

, ,

1

1
min

2

. . ( ( ) ) 1 , 0

n

w b i

i

i i i i

w

s t y w x b

  

  

=

+

 +  − 

‖ ‖
  (7) 

In equation (7), w  and b  respectively represent the 

normal vector and bias term of the classification 

hyperplane, ( )ix  represents the function that maps 

feature 
ix  to a high-dimensional space, 

i  represents the 

relaxation variable, and   represents the penalty 

parameter [21-22]. 

To classify and discriminate new samples, research 

solves the above optimization problem to obtain the 

optimal classification hyperplane. Based on the extracted 

and processed hierarchical features, the study calculates 

the distance between the sample and the center of each 

layer category, as well as the weights of each layer for 

comprehensive discrimination. For the distance between 

the sample and the class centers of each layer, the class 

distance of the sample in the l th layer is shown in 

equation (8). 
1

, ,( , ) ( ) ( ) ( )T l

l l l c l cw ld z c z S z −= − −   (8) 

In equation (8), z  represents the sample, 
lz  

represents the projected features of the l th layer, and 
,l c  

represents the center of the c th class in that layer. The 

discriminative weight 
lw  of the l th layer is determined 

based on its discriminative ability and calculated as shown 

in equation (9). 

1

( ) ( )

( ) ( )

l kL
b b

l l k
kw w

tr S tr S

tr S tr S


=

 
=  
 

   (9) 

In equation (9), 
lw  represents the discriminative 

weight, L  denotes the total amount of layers, and ( )tr  

denotes the trace of the matrix. The comprehensive 

discrimination score ( ),Score z c  for sample z  belonging 

to category c  is the weighted result of the distance 

between each layer, as shown in equation (10). 

1

( , ) ( , )
L

l l

l

Score z c d z c
=

= −   (10) 

In equation (10), ( ),Score z c  represents the 

comprehensive discrimination score of sample z  

belonging to category c . In addition, to enhance the 

adaptability and accuracy of the hierarchical 

discrimination model, a dynamic hierarchical adjustment 

strategy is proposed. This strategy dynamically adjusts the 

hierarchical structure and discriminator parameters based 

on the classification accuracy of each discriminative node 

and the feature differences between categories. The 

dynamically adjusted classification accuracy threshold is 

set to 85%, and the category feature difference threshold 

is set to 0.3; The frequency of structural updates is only 

dynamically adjusted during the model training phase, 

triggered once every 10 rounds of training; The 

computational cost mainly comes from retraining the 

discriminator (SVM) after node splitting/merging. The 

mechanism is shown in Figure 4. 

Dynamic adjustment is performed every 10 rounds 

during the training phase. The adjustment logic is as 

follows: when the classification accuracy AcCi of a 

discriminative node is less than the threshold T2, the node 

is "split and adjusted" - the corresponding category of the 

node is re divided into 2 new child nodes based on feature 

differences, and an SVM discriminator is trained for the 

new node; When the feature difference between adjacent 

child nodes is less than T3 and the merged classification 

accuracy is greater than or equal to T2, perform "merging 

adjustment" - merge the two child nodes into one node and 

retrain the SVM discriminator.  
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Figure 4: Dynamic layered adjustment strategy. 

During the adjustment process, the computational cost can 

be offset by parallel training of the sub node discriminator, 

without affecting the overall training efficiency. In Figure 

4, during the model training, the classification accuracy 

iAcc  of each discriminative node is calculated. When 

iAcc  is lower than the preset threshold, it indicates that 

the classification performance of the node is poor and the 

corresponding hierarchical structure needs to be adjusted. 

Meanwhile, based on the feature difference degree ijD  

between categories (utilized to measure the feature 

difference between category i  and category j ), the 

parameters of the discriminator are optimized to improve 

its ability to distinguish categories with significant 

differences. The calculation of feature difference ijD  is 

shown in equation (11). 

2

1

i j

ij

x c y ci j

D x y
n n  

= − ‖ ‖   (11) 

In equation (11), 
in  and jn  express the sample sizes 

of category i  and category j , respectively, and 
2‖ ‖  

represents the L2 norm. By dynamically adjusting the 

layering strategy, the model can adaptively optimize the 

layering structure and discriminator based on the 

characteristics of the data, thereby improving the accuracy 

of image recognition. 

The calculation of inter-layer class distance, 

discriminant weight, comprehensive score, and feature 

difference degree refers to the specific formulas in 

Appendix A (Equations A8–A11), and the core logic is as 

follows: the inter-layer distance reflects the similarity 

between samples and category centers, the discriminant 

weight is determined by the discriminative ability of each 

layer, the comprehensive score is the weighted sum of 

inter-layer distances, and the feature difference degree 

measures the distinction between different categories. 

To make the model pay more attention to key regions 

in the image and improve the targeting of features, 

attention mechanism is introduced after feature extraction. 

The feature map obtained through feature extraction and 

dimensionality reduction is referred to as 
H W d

pF   , 

and the calculation process of the attention mechanism is 

as follows. Firstly, a global average pooling operation on 

the feature map pF  is performed to obtain the global 

feature vector g , as shown in equation (12). 

1 1

1
( , , )

H W

p

i j

g F i j
H W = =

= 


   (12) 

Then, the attention weight a  is calculated using a 

fully connected layer and Sigmoid activation function, as 

shown in equation (13). 

( )a aa Sigmoid W g b= +   (13) 

In equation (13), 
aW  and 

ab  represent the weights 

and bias terms of the fully connected layer, respectively. 

Finally, the attention weights are multiplied with the 

feature map pF  channel by channel to obtain the weighted 

feature map, as shown in equation (14). 

( , , ) ( , , ) ( )a pF i j t F i j t a t=    (14) 

In equation (14), t  represents the feature channel 

index. The feature map processed by the attention module 

(Equation 14) is first transformed into a 1×1×C feature 

vector (C is the number of feature channels) through 

global average pooling, and then input into the SVM 

discriminator of each node in the tree structure. For 

example, in the second level sub nodes (corresponding to 

categories {3,4,5}) of the MNIST dataset, the feature 

vector with a dimension of 1×1×256 is obtained by 

pooling the F_att, which serves as the input feature for 

SVM to distinguish between categories 3, 4, and 5. By 

introducing attention mechanism, the model can pay more 

attention to key features in the image, enhancing the 

discriminative ability of the features. During the iteration 

process, the feature subset of the l th layer is updated 

based on the recognition results. For misclassified samples 

x , their feature 
lz  is adjusted as shown in equation (15). 

ˆ,( )l l l c lz z z  = + −   (15) 

In equation (15),   denotes the learning rate, and ˆ,l c  

denotes the center of the predicted category ĉ  in the l th 

layer. 

3 Results and analyses 

3.1 Experimental preparation and setup 

To test the effect of the designed algorithm, three publicly 

available image datasets were used for experiments, 

namely the CIFAR-10 dataset, which includes10 

categories of color images with 6000 images per category. 

The image size ess 32 × 32. To verify the effectiveness of 

the proposed combination strategy of 'multi-scale feature 

extraction+PCA dimensionality reduction+attention 
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mechanism+dynamic hierarchical adjustment', it first 

clarified the context of the experimental design and related 

research: current image recognition experiments mostly 

use CIFAR-10 (small-sized color images) and MNIST 

(handwritten digits) to verify basic accuracy, and use 

ImageNet subsets to verify complex category adaptability. 

The experiment selected 100 categories from the 

ImageNet dataset (covering 6 common objects such as 

animals, plants, and transportation, with category numbers 

n01440764-n01443537, n01629819-n01630670, etc.), 

and selected 1500 images for each category (1200 in the 

training set and 300 in the testing set), for a total of 150000 

images. The reasons for choosing this subset are: firstly, it 

covers multiple image types, which can verify the 

generality of the algorithm; The second is to have a 

moderate amount of data to avoid the training cycle being 

too long due to a large amount of data, or overfitting the 

model due to a small amount of data. 

Although the maximum training epochs in this study 

were set to 100, an Early Stopping strategy was also 

introduced to avoid overfitting and optimize training 

efficiency. The validation set loss (cross entropy loss) was 

used as the monitoring metric, and when the validation set 

loss did not decrease for 5 consecutive epochs (i.e., the 

loss value fluctuation was ≤ 0.001), the training was 

automatically stopped and the current optimal model 

parameters were saved. 

The control variable settings for the ablation 

experiment: except for 'whether attention mechanism is 

enabled', all other parameters (multi-scale feature 

extraction convolution kernel size, PCA dimensionality 

reduction preserving 95% variance, SVM discriminator 

parameters) are completely consistent to ensure that the 

experimental results are only caused by whether attention 

mechanism is enabled, and to verify the rigor of the 

conclusions. The adjustment of the strategy only occurred 

during the training phase, and no structural updates were 

performed during the inference phase, which affects real-

time processing. Under the current design, although the 

training phase increased the total time by 8%, the 

inference phase only took 0.03 seconds for single sample 

recognition due to fixed structure (based on the 

configuration in Table 1). Compared with ResNet50 (0.04 

seconds/sample) and Hierarchical CNN (0.05 

seconds/sample), it still has real-time advantages and can 

be adapted to conventional real-time scenarios (such as 

security monitoring image capture recognition, which 

requires single frame processing time<0.1 seconds). 

MNIST dataset: contains handwritten digit images of 10 

categories, with 6000-7000 images per category, and 

image sizes of 28 × 28. In the experiment, baseline models 

such as VGG16, ResNet50, EfficientNet, GoogLeNet, etc. 

were all based on PyTorch's official open-source 

implementation (version 1.12.0) and trained under the 

same experimental conditions as the algorithm in this 

paper (learning rate of 0.001, batch size of 64, no data 

augmentation, and 100 training epochs); SVM and KNN 

models were implemented based on the Scikit learn 

library, and the input features were consistent with the 

PCA reduced features of our algorithm, ensuring fairness 

in comparison. 

This study did not use data augmentation for two 

reasons: first, to verify the algorithm's own feature 

extraction and discrimination ability, eliminate 

augmentation interference, and ensure results reflect core 

module effectiveness; second, future augmentation 

experiments (random flipping, cropping, color jitter) will 

verify generalization. This study focuses on basic 

performance verification, so augmentation is temporarily 

not introduced. All dataset results underwent t-test (95% 

confidence level): on CIFAR-10, p-value for our 

algorithm-ResNet50 accuracy difference (1.8%) was 

0.021<0.05; on ImageNet subset, p-value for 3.3% 

difference was 0.015<0.05, showing significant accuracy 

improvement. All results are averages of 5 independent 

trainings, with standard deviation <1.2%, proving model 

stability. 

All noise experiment results used 95% confidence 

intervals (from 5 independent data): For CIFAR-10 

(Gaussian noise variance 0.1), this algorithm’s accuracy 

interval was [88.7%, 89.7%], ResNet50 [83.9%, 85.1%], 

Hierarchical CNN [83.1%, 84.5%]; For ImageNet subset 

(variance 0.1), this algorithm’s interval was [79.6%, 

81.0%], while compared algorithms (e.g., ResNet50 

[74.3%, 75.9%]) has wider intervals. This proves the 

algorithm has smaller performance fluctuations and more 

stable robustness under noise. 

Using real-world noise datasets, this algorithm 

achieved an accuracy of 91.7%, which was 4.5% higher 

than ResNet50 (87.2%) and 6.4% higher than XGBoost 

ensemble model (85.3%), demonstrating its robustness in 

non synthetic noise real-world scenarios. Considering the 

privacy requirements of research data and technical details 

(such as engineering optimization parameters of algorithm 

core modules and customized processing logic adapted to 

specific scenarios), the experimental code of this study 

was not yet fully open sourced. 

The specific retention dimensions d for different 

datasets are as follows: the feature dimension of the 

CIFAR-10 dataset after fusion was 2048, and according to 

the 95% variance retention principle, the first d=512 

principal components were selected, and the projection 

matrix P dimension was 2048 × 512; After the fusion of 

ImageNet subsets, the feature dimension was 4096. The 

first d=1024 principal components were selected, and the 

projection matrix P dimension was 4096 × 1024; After the 

fusion of the MNIST dataset, the feature dimension was 

784. The first d=256 principal components were selected, 

and the projection matrix P dimension was 784 × 256. The 

weights and biases of the fully connected layer in the 

attention mechanism were initialized as follows: the 

weights of the first fully connected layer were initialized 

using He normal state, and the biases were initialized to 0; 

The weights of the second fully connected layer were 

initialized using Xavier normal and the bias was initialized 

to 0; After initialization, the initial value of attention 

weight a was calculated using  
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Table 1: Recognition accuracy (%) of different algorithms on various datasets. 

Algorithm CIFAR-10 ImageNet subset MNIST 

VGG16 89.2 78.5 98.3 

ResNet50 92.5 82.3 99.1 

SVM 78.6 65.2 97.5 

KNN 75.3 60.8 96.8 

Hierarchical CNN 90.1 79.8 98.7 

ViT-B/16 93.1 84.2 99.3 

Swin-T 93.7 84.8 99.4 

Proposed method 94.3 85.6 99.5 
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Figure 5: Recognition accuracy under different noise intensities (MNIST dataset,%). 
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Figure 6: Comparison of MAE and RMSE for different recognition algorithms on different datasets. 

Sigmoid, and the initial mean was controlled at around 0.5 

to avoid training instability caused by initial weights that 

are too large or too small. In this study, the SVM 

discriminators all used radial basis kernel functions, with 

the kernel function parameter γ set to 1/d, and were 

implemented using the SVC class in the Scikit learn 

library. The key threshold and determination method for 

dynamic adjustment are as follows: Node classification 

accuracy threshold of 85%: determined on the validation 

set through 5-fold cross validation, with a testing threshold 

range of 80%-90%. 

3.2 Analysis of verification results of image 

recognition methods 

The recognition accuracy of the designed algorithm 

compared to other comparative algorithms on three 

datasets is shown in Table 1. On three datasets, the 

recognition accuracy of the proposed algorithm was 

higher than that of other compared algorithms, at 94.3%, 

85.6%, and 99.5%, respectively. On the CIFAR-10 

dataset, the recognition accuracy of the proposed method 

was 1.8% higher than that of ResNet50, 3.3% higher on 

the ImageNet subset, and 0.4% higher on the MNIST 

dataset. 

Figure 5 shows the recognition accuracy under 

different noise intensities (MNIST dataset,%). In Figure 5 

(a), in a Gaussian noise scene, when the noise variance 

increased from 0.01 to 0.1, the accuracy of the proposed 

method decreased from 99.2% to 95.3%, with a decay 

amplitude of only 3.9%. However, the decay amplitudes 

of ResNet50 and Hierarchical CNN reached 6.6% and 

6.8%, respectively. When the variance of Gaussian noise 

was 0.1, the accuracy of the proposed method was 95.3%, 

while ResNet50 and Hierarchical CNN were 92.1% and 

91.5%, respectively. In Figure 5 (b), in a salt and pepper 

noise scene, the accuracy of the proposed method was 

92.7% when the noise variance was 0.1, which was 4.4% 

higher than ResNet50 and 5.1% higher than Hierarchical 

CNN, and its attenuation rate was significantly lower than 

ResNet50 and Hierarchical CNN. 

The experiment selected Mean Absolute Error (MAE) 

and Root Mean Squared Error (RMSE) as evaluation 

metrics, and the experimental outcomes are denoted in 

Figure 6. In Figures 6 (a)-6 (b), compared to VGG16, 



A Multi-Scale Feature Extraction and Hierarchical Discriminant…                                            Informatica 49 (2025) 319–330  327                                                                                                                                      

 

SVM, and Hierarchical CNN on CIFAR-10, ImageNet, 

Category, and MNIST datasets, the proposed method  

 

 

 

F
1

v
al

u
e（

%
）

20 40 60 100 120 140 160
0.00

20.00

40.00

60.00

80.00

100.00

800 180

(a) F1value
Iterations

L
o

ss
 

20 40 60 100 120 140 160
0.00

0.40

0.80

1.20

1.60

800 180

(b) Loss 
Iterations

2.00

Research method EfficientNet
GoogLeNet Traditional VGG

Research method EfficientNet
GoogLeNet Traditional VGG

91.47%
89.56%

80.77%
77.41%

 

Figure 7: Performance comparison of different image recognition models. 

Table 2: Multi dataset evaluation under different methods. 

Dataset 
Evaluation 

metrics 
Proposed algorithm 

Comparative 

algorithms 

The relative improvement of the 

proposed algorithm 
/ 

CIFAR-10 Precision 0.941 ResNet50（92.3%） 0.018 / 

CIFAR-10 Recall 0.945 ResNet50（92.7%） 0.018 / 

ImageNet 
subset 

Precision 0.853 
EfficientNet（ 81.2%

） 
0.041 / 

ImageNet 

subset 
Recall 0.859 

EfficientNet（ 80.9%

） 
0.05 / 

MNIST Precision 0.994 
Hierarchical CNN（

98.6%） 
0.008 / 

MNIST Recall 0.996 
Hierarchical CNN（

98.8%） 
0.008 / 

Dataset 
Confused 

categories 
The misjudgment rate 

Comparative 

algorithms 

Comparison algorithm 

misjudgment rate 

The reduction in 

false positive rate 

CIFAR-10 Airplane - Bird 1.2%-1.5% VGG16 3.8%-4.2% ＞65% 

CIFAR-10 Car Truck 1.2%-1.5% VGG16 3.8%-4.2% ＞65% 

ImageNet 

subset 

Dog wolf, cat 

tiger 
0.032 RobustCNN 0.058 0.448 

 

performed better in terms of MAE and RMSE (Figure 6 

(b)). The overall deviation of the box line indicates that 

the error value was smaller and the fluctuation was 

narrow. For example, on the MNIST dataset, the MAE of 

the proposed method was 0.021, which was 45.9% lower 

than VGG16 (0.039) and 31.0% lower than ResNet50 

(0.030); the RMSE was 0.053, which was 38.8% lower 

than VGG16 (0.087) and 27.4% lower than ResNet50 

(0.073). This data showed that the Research Algorithm 

had smaller deviations between predicted and true values 

and higher stability in image recognition across different 

datasets. 

The performance of research method was compared 

with existing advanced image recognition models, 

including traditional CNN VGG, image classification 

models EfficientNet, and GoogLeNet. The F1 value and 

loss curve of the models were used as evaluation 

indicators, and the average test results of different datasets 

are denoted in Figure 7. The Loss Function (LF) is called 

Cross Entropy Loss, which is used to measure the 

difference between the predicted values of the model and 

the true labels. The smaller the value, the better the fitting 

effect of the model. In Figure 7 (a), the F1 value curve of 

the research method was located at the top of the 

coordinate axis, reaching a maximum value of 92.39%, 

which was 14.56% higher than the lowest value of 78.24% 

in the EfficientNet model. The F1 values of the other two 

image recognition models were within the range of 80-

90%. Figure 7 (a) shows different models’ LF curves. The 

proposed method’s LF curve converges to the minimum, 

with a steady decline and the fastest convergence. LF 

reflects prediction-true value consistency; smaller LF 

means better fitting, so the method has better 

comprehensive performance. 

Table 2 shows multi-dataset evaluation of different 

methods, where the proposed algorithm performed better. 

On CIFAR-10, its accuracy (94.1%) and recall (94.5%) 

were both 1.8% higher than ResNet50. On ImageNet 

subset, accuracy (85.3%) and recall (85.9%) were 4.1% 

and 5.0% higher than EfficientNet, respectively. On 

MNIST, accuracy (99.4%) and recall (99.6%) were each 

0.8% higher than Hierarchical CNN. 

An algorithm with a time complexity of O 

(H×W×C×K²+D³+N×d×L) was proposed, which includes 

multi-scale feature extraction, PCA dimensionality 

reduction, and hierarchical discrimination. Compared to 

LDA, although multi-scale convolution increased 

complexity by 15%, PCA dimensionality reduction 

reduced d by 60% and reduced training time for millions 

of samples by 22%; Compared to ResNet50, due to the 
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lack of deep stacking, the complexity was reduced by 35% 

and the training time for millions of samples was reduced 

by 40 minutes. 

In the ImageNet full dataset (1.5M samples) test, the 

algorithm dynamically merged redundant nodes, occupied 

32GB → 24GB of memory, supported single GPU 

training, and reduced resource requirements by 50% 

compared to VGG16. When the sample size ranged from 

100000 to 1 million, the algorithm accuracy only decayed 

by 1.2%, far better than SVM's 4.5% decay, demonstrating 

the advantage of large-scale data scalability. 

In the hyperparameter sensitivity experiment of the 

CIFAR-10 dataset, the impact of key parameters on 

accuracy was controllable: the accuracy was optimal 

(94.3%) when the depth of the hierarchy L was 5, and the 

fluctuation of ± 1 was less than 1.5%; After PCA retained 

variance>95%, the accuracy remained stable with 

fluctuations<0.3%; The SVM penalty parameter C=1.0 

had the highest accuracy, and overfitting was greater than 

1.0 but the variation was less than 2%. Under the 

adjustment of key parameters by ± 20%, the accuracy 

fluctuation was less than 2%, and the convergence cycle 

change was less than 5 cycles. The model has strong 

stability and is suitable for multiple data scenarios. 

4 Discussion and conclusion 

4.1 Discussion 

The study’s HDA-based image recognition algorithm 

boosts performance via multi-scale feature extraction, 

PCA, attention mechanism, and dynamic hierarchical 

adjustment; its advantages and innovation are clarified by 

comparing with related research. In accuracy: it hits 

94.3% (CIFAR-10), 85.6% (ImageNet subset), 99.5% 

(MNIST) — higher than comparison algorithms. 

Compared to Yang et al. [6] (lacks dynamic adjustment), 

its multi-scale feature extraction (1×1,3×3,5×5 CKs) 

captures richer features, plus dynamic adjustment suits 

complex data; Compared to Su et al. [7] (no attention), it 

uses attention to focus on key features and PCA to reduce 

redundancy, enhancing discriminability. In robustness: 

under Gaussian/salt-and-pepper noise, performance 

degradation is smaller. E.g., Gaussian noise variance 0.1: 

its accuracy 95.3% vs ResNet50’s 92.1%, Hierarchical 

CNN’s 91.5%. This addresses gaps of Zhang et al. [5] (no 

interference robustness verification) and Hu et al. [9] (no 

multi-scale fusion optimization), highlighting practical 

value in complex scenarios. 

Analogous backstepping and output feedback control 

are used to extract multi-scale features in response to its 

hierarchical design. Through hierarchical discrimination 

and subdivision of categories, the recognition accuracy is 

improved from 88.5% to 94.3%; Analogous to nonlinear 

optimal control and pursuing the optimal goal, through 

multi module collaborative optimization, the F1 value 

reaches 92.39% and the MAE/RMSE is lower than the 

comparison algorithm. 

4.2 Conclusion 

For salt and pepper noise, the accuracy advantage of the 

proposed method was more obvious under the same 

intensity. The research method made the model focus 

more on the key areas of the image, reducing the impact 

of noise on non key areas. However, there are two 

limitations to the algorithm in this article: firstly, the 

computational complexity is relatively high on large-scale 

datasets, mainly due to the need to train SVM 

discriminators for each node, and subsequent optimization 

through parallel training or lightweight SVM; The second 

issue is insufficient real-time performance, as the dynamic 

hierarchy adjustment process increases training time by 

about 5%, making it temporarily unsuitable for high-speed 

real-time recognition scenarios. The consideration of 

image recognition in multiple scenarios is not sufficient, 

so future research will apply this algorithm to a wider 

range of practical scenarios, such as video image 

recognition, infrared image recognition, etc., to further 

verify its effectiveness and applicability. The studied 

HDA image recognition algorithm, with advantages of 

multi-scale feature extraction, noise robustness and 

dynamic adjustment, can be extended to multiple fields: 

real-time recognition (0.03s single-image inference, high 

accuracy in complex scenes like distinguishing 3 target 

types in mall security); medical imaging diagnosis 

(captures lesion details and global structure to boost 

accuracy, reduce misdiagnosis); video stream recognition 

(realizes target classification/tracking, optimizes traffic 

flow statistics via keyframe extraction and hierarchical 

discrimination). 

Infrared image recognition, using thermal radiation 

without visible light, serves nighttime security and power 

fault detection. Traditional algorithms, hindered by 

thermal noise and blurred edges, have <85% accuracy in 

power inspection thermal anomaly detection. This 

algorithm uses multi-scale features and noise robustness, 

with FLIR ADAS dataset and Faster R-CNN as baseline, 

aiming to enhance accuracy from 82% to over 90%. It will 

also pilot substation night inspections with manufacturers, 

integrating into infrared cameras. Video image 

recognition for traffic flow and anomaly monitoring faces 

frame blurring and occlusion, with traditional algorithms 

having >10% vehicle counting errors. This algorithm uses 

dynamic adjustment and attention mechanism, with 

UCF101 dataset and 3D CNN as comparison, aiming to 

boost action recognition accuracy from 88% to 95%. It 

will also pilot on main roads with smart city platforms. 
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