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Traditional image recognition algorithms often face problems such as low recognition accuracy and
insufficient robustness when facing complex scenes and multi-class image data. To this end, a hierarchical
discriminant analysis (HDA)-based image recognition algorithm was proposed, which effectively
improves image recognition performance by constructing a multi-scale feature extraction module,
principal component analysis (PCA) dimensionality reduction, attention mechanism, and dynamic
hierarchical adjustment strategy combined with a hierarchical feature extraction and discrimination
model. The experiment was conducted on three public datasets: CIFAR-10, ImageNet subset (selecting
100 categories with a total of 150000 images, based on covering common object categories and moderate
data volume for fair validation of algorithm performance), and MNIST. The performance was compared
with models such as VGG16, ResNet50, SVM, KNN, Hierarchical CNN, EfficientNet, GoogLeNet, etc. The
results indicated that the proposed method had higher recognition accuracy than other comparative
algorithms on different datasets, with accuracies exceeding 90%. The proposed method performed better
in terms of mean absolute error and root mean squared error. The F1 value curve of the proposed method
was located at the top of the coordinate axis, reaching a maximum value of 92.39%, which was 14.56%
higher than the lowest value of 78.24% in the EfficientNet model. This algorithm has better recognition
accuracy than traditional algorithms on multiple public datasets, and has strong anti-interference ability
and robustness, which can provide reference for optimizing the accuracy of image recognition.

Povzetek: Clanek predlaga hierarhicni algoritem HDA za prepoznavo slik, ki zdruzi ekstrakcijo znacilk,
PCA, mehanizem pozornosti in dinamicno hierarhicno prilagajanje ter s tem izboljsa natancnost in

robustnost glede na uveljavljene modele na vec javnih naborih podatkov.

1 Introduction

In the information age, image data grows explosively;
image recognition, key for processing image info, is
widely used in security, autonomous driving, medical
imaging [1]. Traditional algorithms rely on manual
features, performing poorly in complex scenes [2]. In
recent years, Deep Learning (DL) (e.g., Convolutional
Neural Network (CNN)) boosts recognition accuracy via
automatic deep feature extraction [3]. Hierarchical
Discriminant Analysis (HDA), decomposing complex
classification into sub-problems, when combined with
DL, is expected to further improve image recognition
performance [4]. However, with increasing image data
complexity: Zhang et al. used HPLC fingerprint maps +
multi-feature  quantitative analysis, effectively
distinguishing samples from different sources [5]. Yang et
al. adopted multi-scale residual modules (capture multi-
scale features) + spatial transformation data augmentation
(increase feature diversity) + hierarchical discrimination
to solve handwritten math expression feature loss,
improving recognition accuracy [6]. Su S et al. proposed
similar sequence multi-view discriminant correlation
analysis to address traditional multi-view feature
extraction's ignorance of sample similarity and poor
intrinsic manifold capture, achieving better recognition

accuracy and robustness [7]. Radmila compared 4 ML
algorithms' classification performance on features from 11
pre-trained architectures to solve small-dataset-induced
poor classification, finding random forest and multilayer
perceptron most suitable [8].

To solve laborious, inefficient manual feature
extraction in traditional ®-OTDR vibration detection, Hu
et al. combined 2D image encoding with DL-based
vibration  recognition and adopted hierarchical
discrimination, achieving over 94.25% accuracy [9]. For
lighting-induced color deviation and low accuracy, Wu et
al. did color correction, used improved watershed and
lightweight CNN for feature extraction/fusion, integrated
hierarchical ~ discrimination,  with  fused-feature
recognition accuracy at 91% [10]. Zhang et al. proposed a
method combining layered discrete entropy and semi-
supervised local Fisher discriminant analysis, achieving
100% and 98.2% accuracy in two fault sample
identifications [11]. To address the time-consuming
sensory analysis and quality grading issues of Louis
Boissier tea in the production area, Janine C. and her team
used shortwave infrared hyperspectral imaging, combined
with partial least squares discriminant analysis and layered
modeling for classification, followed by preprocessing
and parameter optimization. The results indicated that the
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classification accuracy of the production area was 100%
[12].
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Table 0: Summary table of related works

Author Method Dataset Performance metrics
Zhang et Image f_eature_ maps +_mu|t|-feature quantitative analysis + | Honeysuckle origin Effective origin discrimination
al.[5] hierarchical discrimination samples
Yang et | Multi-scale residual module + data augmentation + hierarchical | Handwritten math i,
A - Improved recognition accuracy
al.[6] discrimination expressions
Su S et | Similar sequence multi-view discriminant correlation analysis . .
b : A Universal images Better accuracy & robustness

al.[7] + hierarchical discrimination
Radmila[8 | Feature extraction + classification comparison + hierarchical | Cultural  heritage | Feature extraction accuracy: 88.89%-
] discrimination images 95.56% (partial architectures)

2D image encoding + DL feature recognition + hierarchical | 6 types of OTDR | Vibration recognition accuracy
Hu etal.[9] A LIRS

discrimination vibration images >04.25%
Wu et | Color correction + improved watershed + lightweight CNN + | Stratigraphic . .

- . - L ; Post-fusion accuracy: 91%

al.[10] feature fusion + hierarchical discrimination images
Zhang et | Hierarchical discrete entropy + semi-supervised Local Fisher | 2 types of bearing | Fault recognition accuracy: 100%,
al.[11] analysis + hierarchical discrimination model fault signals 98.2%
Janine C. | Preprocessing + SWIR hyperspectral imaging + PLS-DA + | Louis Boissier tea | Origin classification & quality grading
etal.[12] hierarchical modeling SWIR images accuracy

Different teams studied diverse images: Zhang et al.
used chromatographic fingerprinting and hierarchical
discrimination to distinguish honeysuckle origin; Yang et
al. used multi-scale residuals to boost handwritten math
expression recognition accuracy but lacked complex
feature dynamic discrimination; Su et al. processed
general images via multi-view discriminant analysis
without attention mechanisms; Radmila analyzed cultural
heritage images with transfer learning, relying on pre-
trained models; Hu et al. converted 1D signals to images
for vibration event recognition without optimizing multi-
scale fusion.

Despite existing research applying hierarchical
thinking to image recognition, three key gaps remain: first,
feature extraction lacks specificity (relies on single-
scale/pre-trained models, fails to fully capture image
details, local/global features); second, fixed hierarchical
discrimination structure (no dynamic adjustment of
depth/parameters, limiting complex data accuracy); third,
insufficient integration of attention mechanisms and
dimensionality reduction (prone to redundancy or non-
critical feature interference).

To this end, a HDA-based image recognition
algorithm is proposed, which innovatively designs a
multi-scale feature extraction module to obtain
comprehensive features, combines principal component
analysis (PCA) dimensionality reduction to reduce
redundancy, introduces attention mechanism to focus on
key features, and optimizes the discrimination structure
through dynamic hierarchical adjustment strategy.
Ultimately, the recognition accuracy and robustness are
improved, laying the foundation for the engineering
application of image recognition technology.

2 Research design

2.1 HDA algorithm based on multi-scale
image feature extraction

To achieve the three major objectives of ‘improving
recognition accuracy, noise robustness, and controlling

computational complexity' as stated in the introduction,
the technical route of the research design is elaborated in
detail. Through the organic combination of multi-scale
feature extraction, PCA dimensionality reduction,
attention mechanism, and dynamic hierarchical
adjustment strategy, the core research questions are
addressed one by one to ensure that the design logic is
highly matched with the research objectives.

The study adopts the channel wise attention
mechanism without introducing spatial attention - the core
reason is that the multi-scale feature extraction module has
captured the spatial details and global information of the
image through convolution kernels of different sizes.
Channel attention can further enhance the importance
differentiation of different channel features (such as in the
MNIST dataset, where the channel weights of digital
contour features are higher), avoiding functional
redundancy between spatial attention and multi-scale
modules.

Hierarchical clustering (unsupervised) splits/merges
via sample similarity (no feature discriminators, fixed
results); this study’s HDA (supervised) uses Support
Vector Machine (SVM) discriminators (trained on
annotated samples) and dynamic structure optimization.
Multi-level convolution only does hierarchical feature
extraction (no independent discrimination, relies on single
classification head); this study’s HDA combines feature
extraction and hierarchical discrimination. In image
recognition, feature extraction quality affects the result.
Traditional feature extraction extracts only shallow
features, while DL-based single-scale feature extraction
fails to fully describe image complex structure [13]. Thus,
an HDA algorithm via multi-scale feature extraction and
hierarchical discrimination is developed to boost feature
representation, category discrimination, and recognition
accuracy/robustness [14-15]. Its multi-scale feature
extraction module wuses different-scale CKs for
convolution to get multi-scale image features (in Figure
1).

In Figure 1, the input image is first standardized, and
then finite element analysis is performed using three
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convolution branches of different scales. After each
convolution branch, there are cascaded batch
normalization and ReLU activation functions to
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Figure 1: Multi-scale feature extraction module.
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Figure 2: Hierarchical discriminant model tree structure.

accelerate the convergence speed of the network and
enhance its nonlinear expression ability.

The hierarchical discrimination model achieves a
gradual discrimination of ‘coarse classification fine
classification' through a tree structure, and its specific
structure is as follows: The hierarchical discrimination
model adopts a tree structure, where each node represents
a discriminator used for classifying and discriminating
input features. The root node corresponds to the highest
level of discrimination, dividing all images into several
major categories. Each child node corresponds to the
discrimination of the next layer, and the large class divided
by its parent node is further subdivided into smaller
subclasses until the leaf node corresponds to a specific
category [16]. The schematic is shown in Figure 2.

The input image is set to be X e R"*¢, where H,
W ,and C are the height, width, and amount of channels
of the image. After the convolution operation of the k th

convolution (k =1,2,3) branch, the feature map obtained
is Fk c RHkxwkxcK ’
equation (1).
F. =ReLU(BNW, *X +b,)) (1)
In equation (1), W, and b, respectively represent the
CK and bias term of the k th convolution branch, * refers

which is calculated as shown in

to the convolution operation, BN(-) is the batch
normalization operation, and Re LU (-) means the ReLU

activation function. The features were projected in layers
to enable discrimination. For the m th subset of features in

the | th layer, the intra-class dispersion matrix s.™ is

calculated as denoted in equation (2).
Cl‘m

S\I;\;m :Z z (X_;ul,m,c)(x_:ul,m,c)T (2)

In equation (2), C,,, is the amount of categories
contained in the feature subset, the c th class sample set is
labeled as S, ., and the mean vector of the c th class

sample is labeled as g, .. [17]. The discrimination

criteria between feature layers are as follows, and the
inter-class dispersion matrix S, of the | th layer is

calculated as shown in equation (3).

S5 =2 Nyt = 1)t~ 14" ©)

In equation (3), M, means the amount of feature
subsets in the | th layer, N, = means the total amount of
samples in the m th feature subset, the mean vector of the
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Figure 3: HDA algorithm flow based on multi-scale image feature extraction module.

m th feature subset is labeled as 4 ,, and g denotes the

total mean vector of all samples in the | th layer [18].

To integrate feature information of different scales,
the feature maps obtained from the three branches are
upsampled or downsampled to make their sizes consistent,
and then channel concatenation is performed to obtain the

fused feature map F e R™¥W*(@*%*%) a5 shown in
equation (4).
F =Concat(F'F,,F,) 4)
In equation (4), F/ represents the feature map of the
k th branch after size adjustment, and Concat(-)

represents the channel concatenation operation. Because
of the high dimensionality of the fused feature map, it will
increase the computational complexity of subsequent
processing, thus requiring feature dimensionality
reduction. To preserve the main feature information, PCA
algorithm is employed to minimize the dimensionality of
the fused features. This study uses bilinear interpolation to
adjust the size of feature maps: for feature maps smaller
than the target size, bilinear interpolation is used for
upsampling - based on the grayscale values of four
adjacent pixels around the target pixel, weighting
coefficients are calculated according to the distance
between pixels, and the target pixel value is obtained by
weighted averaging.

This study chose PCA as the dimensionality reduction
method because LDA requires category labels and is
sensitive to overfitting in the ImageNet subset of this study
where there are few category samples. PCA, on the other
hand, is unsupervised and does not require labels, making
it suitable for "dimensionality reduction before
discrimination”; T-SNE and UMAP have high
computational complexity and are prone to losing global
information, while PCA has low complexity and preserves
global variance, making it more suitable for multi-level
discrimination.

Let the fused feature matrix be F € R™®, where N
refers to the amount of samples and D means the feature
dimension. The target of PCA is to find a projection matrix

PeR™ (d<D), project the high-dimensional feature
matrix F onto a low dimensional space, and obtain the

reduced dimensional feature matrix FpeRNXd . The

calculation is shown in equation (5).
Fp =FxP (5)

In equation (5), the projection matrix P is composed
of the eigenvectors corresponding to the first d largest
eigenvalues of the covariance matrix of the feature matrix
F . The calculation of covariance matrix C is shown in
equation (6).

1 _

In equation (6), F refers to the mean vector of the
feature matrix F . To preserve the main feature
information, this study used PCA algorithm to reduce the
dimensionality of the fused features after multi-scale
feature fusion and before attention mechanism processing.
In the PCA dimensionality reduction, the determination of
the low dimensional spatial dimension d in the preserved
variance threshold is based on the principle of "preserving
95% variance" - that is, selecting the top d largest
eigenvalues of the covariance matrix, so that the
cumulative sum of these eigenvalues’ accounts for > 95%
of the total sum of all eigenvalues. The core logic of PCA
dimensionality reduction is to map high-dimensional
features to a low dimensional space through linear
transformation, while maximizing the preservation of
variance information in the data. Specifically, for the
fused feature matrix, the covariance matrix is calculated,
which reflects the degree of linear correlation between
features.

Through feature dimensionality reduction, not only
does it reduce computational complexity, but it also
reduces redundant information between features, which is
beneficial for improving the efficiency and accuracy of
subsequent hierarchical discrimination. The HDA
algorithm based on multi-scale image feature extraction
module is shown in Figure 3.

The initial tree structure of the HDA model adopts a
"top-down" construction approach, where the root node
uses all categories as discriminative objects. By
calculating the feature differences between categories,
categories with feature differences greater than the
threshold T1 are divided into different child nodes; The
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child nodes continue to be divided based on this rule until
each leaf node corresponds to only one category. As
shown in Figure 3, input images are preprocessed first.
The multi-scale feature extraction module uses different-
size CKs for feature extraction (with batch normalization
and ReLU), adjusts, splices and fuses them. Then PCA
selects top d eigenvectors to reduce redundancy. Attention
mechanism generates weights via global average pooling,
fully connected layers and Sigmoid to highlight key
features. Finally, tree hierarchical discrimination model
discriminates layer by layer (with dynamic adjustment)
and outputs recognition results.

2.2 Image recognition algorithm based on

HDA algorithm

Multi-scale feature extraction module yields rich image
features, which  become low-dimensional and
representative after dimensionality reduction. Yet
effective use of these features for recognition is key. Thus,
an HDA-based image recognition model is built,
decomposing recognition into sub-tasks via feature
hierarchy and category relationships to narrow scope and
boost accuracy [19-20]. For example, in the MNIST
dataset (10 handwritten digit categories), the root node
first calculates the feature difference between the 10
categories, and divides the categories with a
difference>0.6 into three primary sub nodes (such as
{0,1,2}, {3.4,5}, {6,7,8,9}). Each primary sub node is then
divided into secondary sub nodes according to the same
rules, ultimately forming a tree structure with leaf nodes
corresponding to a single digit category.

The category set of images is C ={c,C,,...,Cy} .
where M means the total amount of categories. Based on
the semantic relationships and feature similarities between
categories, the category set C is divided into K, major

categories C;,C;,...,Cy_. Each major category C/ can be

further divided into K, subcategories Cg,Cj,...,.Ci ;

And so on, until it is assigned to a specific category. For
each discriminative node, a SVM is used as the
discriminator. SVM can effectively classify data in high-
dimensional space by finding the optimal classification
hyperplane. If the training sample feature of a

discrimination node is x, e R" and the corresponding
category label is y, €{0,1,...,K} (K is the number of

categories that the node needs to be classified into), then
the objective function of SVM is shown in equation (7).

min,,, . % Twiiz +£>&
i=1

SLY, (W-g(%) +b) 21-&,& >0

In equation (7), w and b respectively represent the
normal vector and bias term of the classification
hyperplane, ¢(x) represents the function that maps

feature x; to a high-dimensional space, & represents the

relaxation variable, and & represents the penalty
parameter [21-22].

()
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To classify and discriminate new samples, research
solves the above optimization problem to obtain the
optimal classification hyperplane. Based on the extracted
and processed hierarchical features, the study calculates
the distance between the sample and the center of each
layer category, as well as the weights of each layer for
comprehensive discrimination. For the distance between
the sample and the class centers of each layer, the class
distance of the sample in the | th layer is shown in
equation (8).

d(z,c)=(z _V|,c)T (87 (z Vi) (8)

In equation (8), z represents the sample, z
represents the projected features of the | th layer, and v,

represents the center of the cth class in that layer. The
discriminative weight w, of the | th layer is determined

based on its discriminative ability and calculated as shown
in equation (9).

(10D ) /4t
a"_(tr(s'w)j ;tr(s;) ©)

In equation (9), w, represents the discriminative

weight, L denotes the total amount of layers, and tr(C)

denotes the trace of the matrix. The comprehensive
discrimination score Score(z,c) for sample z belonging

to category c is the weighted result of the distance
between each layer, as shown in equation (10).

Score(z,c) = —ZL:a),dl (z,0) (10)

In equation (10), Score(z,c) represents the

comprehensive discrimination score of sample z
belonging to category c . In addition, to enhance the
adaptability and accuracy of the hierarchical
discrimination model, a dynamic hierarchical adjustment
strategy is proposed. This strategy dynamically adjusts the
hierarchical structure and discriminator parameters based
on the classification accuracy of each discriminative node
and the feature differences between categories. The
dynamically adjusted classification accuracy threshold is
set to 85%, and the category feature difference threshold
is set to 0.3; The frequency of structural updates is only
dynamically adjusted during the model training phase,
triggered once every 10 rounds of training; The
computational cost mainly comes from retraining the
discriminator (SVM) after node splitting/merging. The
mechanism is shown in Figure 4.

Dynamic adjustment is performed every 10 rounds
during the training phase. The adjustment logic is as
follows: when the classification accuracy AcCi of a
discriminative node is less than the threshold T2, the node
is "split and adjusted" - the corresponding category of the
node is re divided into 2 new child nodes based on feature
differences, and an SVM discriminator is trained for the
new node; When the feature difference between adjacent
child nodes is less than T3 and the merged classification
accuracy is greater than or equal to T2, perform "merging
adjustment" - merge the two child nodes into one node and
retrain the SVM discriminator.
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During the adjustment process, the computational cost can 1 Y .
be offset by parallel training of the sub node discriminator, 9= W 22 R0 (12)

without affecting the overall training efficiency. In Figure
4, during the model training, the classification accuracy
Acc, of each discriminative node is calculated. When
Acc, is lower than the preset threshold, it indicates that
the classification performance of the node is poor and the
corresponding hierarchical structure needs to be adjusted.
Meanwhile, based on the feature difference degree D,
between categories (utilized to measure the feature
difference between category i and category j ), the
parameters of the discriminator are optimized to improve
its ability to distinguish categories with significant
differences. The calculation of feature difference D is

shown in equation (11).
1
D; :n—nZZII x—yl,
i'lj Xeq yec;
In equation (11), n; and n; express the sample sizes

(11)

of category i and category j, respectively, and Il -Il,

represents the L2 norm. By dynamically adjusting the
layering strategy, the model can adaptively optimize the
layering structure and discriminator based on the
characteristics of the data, thereby improving the accuracy
of image recognition.

The calculation of inter-layer class distance,
discriminant weight, comprehensive score, and feature
difference degree refers to the specific formulas in
Appendix A (Equations A8-A11), and the core logic is as
follows: the inter-layer distance reflects the similarity
between samples and category centers, the discriminant
weight is determined by the discriminative ability of each
layer, the comprehensive score is the weighted sum of
inter-layer distances, and the feature difference degree
measures the distinction between different categories.

To make the model pay more attention to key regions
in the image and improve the targeting of features,
attention mechanism is introduced after feature extraction.
The feature map obtained through feature extraction and

dimensionality reduction is referred to as F, el ™",

and the calculation process of the attention mechanism is
as follows. Firstly, a global average pooling operation on
the feature map F, is performed to obtain the global

feature vector g, as shown in equation (12).

i=1 j=1
Then, the attention weight a is calculated using a
fully connected layer and Sigmoid activation function, as
shown in equation (13).
a = Sigmoid (W, g +b,) (13)
In equation (13), W, and b, represent the weights

and bias terms of the fully connected layer, respectively.
Finally, the attention weights are multiplied with the
feature map F, channel by channel to obtain the weighted

feature map, as shown in equation (14).

F.G,J,1) =F,(, j,t)xa(t) (14)

In equation (14), t represents the feature channel
index. The feature map processed by the attention module
(Equation 14) is first transformed into a 1x1xC feature
vector (C is the number of feature channels) through
global average pooling, and then input into the SVM
discriminator of each node in the tree structure. For
example, in the second level sub nodes (corresponding to
categories {3,4,5}) of the MNIST dataset, the feature
vector with a dimension of 1x1x256 is obtained by
pooling the F_att, which serves as the input feature for
SVM to distinguish between categories 3, 4, and 5. By
introducing attention mechanism, the model can pay more
attention to key features in the image, enhancing the
discriminative ability of the features. During the iteration
process, the feature subset of the | th layer is updated
based on the recognition results. For misclassified samples
X, their feature z, is adjusted as shown in equation (15).

(15)
Inequation (15), o denotes the learning rate, and v, ,

denotes the center of the predicted category ¢ in the | th
layer.

=z +a(vc-7)

3 Results and analyses

3.1 Experimental preparation and setup

To test the effect of the designed algorithm, three publicly
available image datasets were used for experiments,
namely the CIFAR-10 dataset, which includes10
categories of color images with 6000 images per category.
The image size ess 32 x 32. To verify the effectiveness of
the proposed combination strategy of 'multi-scale feature
extraction+PCA  dimensionality  reduction+attention
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mechanism+dynamic hierarchical adjustment’, it first
clarified the context of the experimental design and related
research: current image recognition experiments mostly
use CIFAR-10 (small-sized color images) and MNIST
(handwritten digits) to verify basic accuracy, and use
ImageNet subsets to verify complex category adaptability.
The experiment selected 100 categories from the
ImageNet dataset (covering 6 common objects such as
animals, plants, and transportation, with category numbers
n01440764-n01443537, n01629819-n01630670, etc.),
and selected 1500 images for each category (1200 in the
training set and 300 in the testing set), for a total of 150000
images. The reasons for choosing this subset are: firstly, it
covers multiple image types, which can verify the
generality of the algorithm; The second is to have a
moderate amount of data to avoid the training cycle being
too long due to a large amount of data, or overfitting the
model due to a small amount of data.

Although the maximum training epochs in this study
were set to 100, an Early Stopping strategy was also
introduced to avoid overfitting and optimize training
efficiency. The validation set loss (cross entropy loss) was
used as the monitoring metric, and when the validation set
loss did not decrease for 5 consecutive epochs (i.e., the
loss value fluctuation was < 0.001), the training was
automatically stopped and the current optimal model
parameters were saved.

The control variable settings for the ablation
experiment: except for 'whether attention mechanism is
enabled’, all other parameters (multi-scale feature
extraction convolution kernel size, PCA dimensionality
reduction preserving 95% variance, SVM discriminator
parameters) are completely consistent to ensure that the
experimental results are only caused by whether attention
mechanism is enabled, and to verify the rigor of the
conclusions. The adjustment of the strategy only occurred
during the training phase, and no structural updates were
performed during the inference phase, which affects real-
time processing. Under the current design, although the
training phase increased the total time by 8%, the
inference phase only took 0.03 seconds for single sample
recognition due to fixed structure (based on the
configuration in Table 1). Compared with ResNet50 (0.04
seconds/sample) and  Hierarchical CNN  (0.05
seconds/sample), it still has real-time advantages and can
be adapted to conventional real-time scenarios (such as
security monitoring image capture recognition, which
requires single frame processing time<0.1 seconds).
MNIST dataset: contains handwritten digit images of 10
categories, with 6000-7000 images per category, and
image sizes of 28 x 28. In the experiment, baseline models
such as VGG16, ResNet50, EfficientNet, GoogLeNet, etc.
were all based on PyTorch's official open-source
implementation (version 1.12.0) and trained under the
same experimental conditions as the algorithm in this
paper (learning rate of 0.001, batch size of 64, no data
augmentation, and 100 training epochs); SVM and KNN
models were implemented based on the Scikit learn
library, and the input features were consistent with the
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PCA reduced features of our algorithm, ensuring fairness
in comparison.

This study did not use data augmentation for two
reasons: first, to verify the algorithm's own feature
extraction and discrimination ability, eliminate
augmentation interference, and ensure results reflect core
module effectiveness; second, future augmentation
experiments (random flipping, cropping, color jitter) will
verify generalization. This study focuses on basic
performance verification, so augmentation is temporarily
not introduced. All dataset results underwent t-test (95%
confidence level): on CIFAR-10, p-value for our
algorithm-ResNet50 accuracy difference (1.8%) was
0.021<0.05; on ImageNet subset, p-value for 3.3%
difference was 0.015<0.05, showing significant accuracy
improvement. All results are averages of 5 independent
trainings, with standard deviation <1.2%, proving model
stability.

All noise experiment results used 95% confidence
intervals (from 5 independent data): For CIFAR-10
(Gaussian noise variance 0.1), this algorithm’s accuracy
interval was [88.7%, 89.7%], ResNet50 [83.9%, 85.1%)],
Hierarchical CNN [83.1%, 84.5%]; For ImageNet subset
(variance 0.1), this algorithm’s interval was [79.6%,
81.0%], while compared algorithms (e.g., ResNet50
[74.3%, 75.9%]) has wider intervals. This proves the
algorithm has smaller performance fluctuations and more
stable robustness under noise.

Using real-world noise datasets, this algorithm
achieved an accuracy of 91.7%, which was 4.5% higher
than ResNet50 (87.2%) and 6.4% higher than XGBoost
ensemble model (85.3%), demonstrating its robustness in
non synthetic noise real-world scenarios. Considering the
privacy requirements of research data and technical details
(such as engineering optimization parameters of algorithm
core modules and customized processing logic adapted to
specific scenarios), the experimental code of this study
was not yet fully open sourced.

The specific retention dimensions d for different
datasets are as follows: the feature dimension of the
CIFAR-10 dataset after fusion was 2048, and according to
the 95% variance retention principle, the first d=512
principal components were selected, and the projection
matrix P dimension was 2048 x 512; After the fusion of
ImageNet subsets, the feature dimension was 4096. The
first d=1024 principal components were selected, and the
projection matrix P dimension was 4096 x 1024; After the
fusion of the MNIST dataset, the feature dimension was
784. The first d=256 principal components were selected,
and the projection matrix P dimension was 784 x 256. The
weights and biases of the fully connected layer in the
attention mechanism were initialized as follows: the
weights of the first fully connected layer were initialized
using He normal state, and the biases were initialized to 0;
The weights of the second fully connected layer were
initialized using Xavier normal and the bias was initialized
to 0; After initialization, the initial value of attention
weight a was calculated using
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Table 1: Recognition accuracy (%) of different algorithms on various datasets.

Algorithm CIFAR-10 ImageNet subset MNIST
VGG16 89.2 78.5 98.3
ResNet50 925 82.3 99.1
SVM 78.6 65.2 975
KNN 75.3 60.8 96.8
Hierarchical CNN 90.1 79.8 98.7
ViT-B/16 93.1 84.2 99.3
Swin-T 93.7 84.8 99.4
Proposed method 94.3 85.6 99.5
Research i ; -

) ResNet50 “Hierarchical CNN Research M i
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Figure 5: Recognition accuracy under different noise intensities (MNIST dataset,%).
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Figure 6: Comparison of MAE and RMSE for different recognition algorithms on different datasets.

Sigmoid, and the initial mean was controlled at around 0.5
to avoid training instability caused by initial weights that
are too large or too small. In this study, the SVM
discriminators all used radial basis kernel functions, with
the kernel function parameter y set to 1/d, and were
implemented using the SVC class in the Scikit learn
library. The key threshold and determination method for
dynamic adjustment are as follows: Node classification
accuracy threshold of 85%: determined on the validation
set through 5-fold cross validation, with a testing threshold
range of 80%-90%.

3.2 Analysis of verification results of image
recognition methods

The recognition accuracy of the designed algorithm
compared to other comparative algorithms on three
datasets is shown in Table 1. On three datasets, the
recognition accuracy of the proposed algorithm was
higher than that of other compared algorithms, at 94.3%,
85.6%, and 99.5%, respectively. On the CIFAR-10
dataset, the recognition accuracy of the proposed method
was 1.8% higher than that of ResNet50, 3.3% higher on

the ImageNet subset, and 0.4% higher on the MNIST
dataset.

Figure 5 shows the recognition accuracy under
different noise intensities (MNIST dataset,%). In Figure 5
(a), in a Gaussian noise scene, when the noise variance
increased from 0.01 to 0.1, the accuracy of the proposed
method decreased from 99.2% to 95.3%, with a decay
amplitude of only 3.9%. However, the decay amplitudes
of ResNet50 and Hierarchical CNN reached 6.6% and
6.8%, respectively. When the variance of Gaussian noise
was 0.1, the accuracy of the proposed method was 95.3%,
while ResNet50 and Hierarchical CNN were 92.1% and
91.5%, respectively. In Figure 5 (b), in a salt and pepper
noise scene, the accuracy of the proposed method was
92.7% when the noise variance was 0.1, which was 4.4%
higher than ResNet50 and 5.1% higher than Hierarchical
CNN, and its attenuation rate was significantly lower than
ResNet50 and Hierarchical CNN.

The experiment selected Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) as evaluation
metrics, and the experimental outcomes are denoted in
Figure 6. In Figures 6 (a)-6 (b), compared to VGGL16,
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SVM, and Hierarchical CNN on CIFAR-10, ImageNet,
Category, and MNIST datasets, the proposed method
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Figure 7: Performance comparison of different image recognition models.
Table 2: Multi dataset evaluation under different methods.
Evaluation . Comparative The relative improvement of the

Dataset metrics Proposed algorithm algorithms proposed algorithm /

CIFAR-10 Precision 0.941 ResNet50 (92.3%) 0.018 /

CIFAR-10 Recall 0.945 ResNet50 (92.7%) 0.018 /

ImageNet . EfficientNet < 81.2%

subset Precision 0.853 ) 0.041 /

EfficientNet ( 80.9%

ImageNet | pecall 0.859 (80.9% | 4 05 /

subset )

MNIST Precisi 0.994 Hierarchical CNN (1} )og /

recision . 98.6%) .
MNIST Recall 0.996 Hierarchical CNN 0.008 /
eca . 98.8%) .
Dataset Confusgd The misjudgment rate Comparatlve Cqmparlson algorithm | The TEFjl_JCtIOFI in
categories algorithms misjudgment rate false positive rate

CIFAR-10 Airplane - Bird 1.2%-1.5% VGG16 3.8%-4.2% > 65%
CIFAR-10 Car Truck 1.2%-1.5% VGG16 3.8%-4.2% > 65%

ImageNet Dog wolf, cat

subset tiger 0.032 RobustCNN 0.058 0.448

performed better in terms of MAE and RMSE (Figure 6
(b)). The overall deviation of the box line indicates that
the error value was smaller and the fluctuation was
narrow. For example, on the MNIST dataset, the MAE of
the proposed method was 0.021, which was 45.9% lower
than VGG16 (0.039) and 31.0% lower than ResNet50
(0.030); the RMSE was 0.053, which was 38.8% lower
than VGG16 (0.087) and 27.4% lower than ResNet50
(0.073). This data showed that the Research Algorithm
had smaller deviations between predicted and true values
and higher stability in image recognition across different
datasets.

The performance of research method was compared
with existing advanced image recognition models,
including traditional CNN VGG, image classification
models EfficientNet, and GoogLeNet. The F1 value and
loss curve of the models were used as evaluation
indicators, and the average test results of different datasets
are denoted in Figure 7. The Loss Function (LF) is called
Cross Entropy Loss, which is used to measure the
difference between the predicted values of the model and
the true labels. The smaller the value, the better the fitting
effect of the model. In Figure 7 (a), the F1 value curve of
the research method was located at the top of the
coordinate axis, reaching a maximum value of 92.39%,

which was 14.56% higher than the lowest value of 78.24%
in the EfficientNet model. The F1 values of the other two
image recognition models were within the range of 80-
90%. Figure 7 (a) shows different models’ LF curves. The
proposed method’s LF curve converges to the minimum,
with a steady decline and the fastest convergence. LF
reflects prediction-true value consistency; smaller LF
means better fitting, so the method has better
comprehensive performance.

Table 2 shows multi-dataset evaluation of different
methods, where the proposed algorithm performed better.
On CIFAR-10, its accuracy (94.1%) and recall (94.5%)
were both 1.8% higher than ResNet50. On ImageNet
subset, accuracy (85.3%) and recall (85.9%) were 4.1%
and 5.0% higher than EfficientNet, respectively. On
MNIST, accuracy (99.4%) and recall (99.6%) were each
0.8% higher than Hierarchical CNN.

An algorithm with a time complexity of O
(HxWxCxK2+D3+NxdxL) was proposed, which includes
multi-scale feature extraction, PCA dimensionality
reduction, and hierarchical discrimination. Compared to
LDA, although multi-scale convolution increased
complexity by 15%, PCA dimensionality reduction
reduced d by 60% and reduced training time for millions
of samples by 22%; Compared to ResNet50, due to the
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lack of deep stacking, the complexity was reduced by 35%
and the training time for millions of samples was reduced
by 40 minutes.

In the ImageNet full dataset (1.5M samples) test, the
algorithm dynamically merged redundant nodes, occupied
32GB — 24GB of memory, supported single GPU
training, and reduced resource requirements by 50%
compared to VGG16. When the sample size ranged from
100000 to 1 million, the algorithm accuracy only decayed
by 1.2%, far better than SVM's 4.5% decay, demonstrating
the advantage of large-scale data scalability.

In the hyperparameter sensitivity experiment of the
CIFAR-10 dataset, the impact of key parameters on
accuracy was controllable: the accuracy was optimal
(94.3%) when the depth of the hierarchy L was 5, and the
fluctuation of + 1 was less than 1.5%; After PCA retained
variance>95%, the accuracy remained stable with
fluctuations<0.3%; The SVM penalty parameter C=1.0
had the highest accuracy, and overfitting was greater than
1.0 but the variation was less than 2%. Under the
adjustment of key parameters by + 20%, the accuracy
fluctuation was less than 2%, and the convergence cycle
change was less than 5 cycles. The model has strong
stability and is suitable for multiple data scenarios.

4 Discussion and conclusion

4.1 Discussion

The study’s HDA-based image recognition algorithm
boosts performance via multi-scale feature extraction,
PCA, attention mechanism, and dynamic hierarchical
adjustment; its advantages and innovation are clarified by
comparing with related research. In accuracy: it hits
94.3% (CIFAR-10), 85.6% (ImageNet subset), 99.5%
(MNIST) — higher than comparison algorithms.
Compared to Yang et al. [6] (lacks dynamic adjustment),
its multi-scale feature extraction (1x1,3x3,5x5 CKSs)
captures richer features, plus dynamic adjustment suits
complex data; Compared to Su et al. [7] (no attention), it
uses attention to focus on key features and PCA to reduce
redundancy, enhancing discriminability. In robustness:
under Gaussian/salt-and-pepper noise, performance
degradation is smaller. E.g., Gaussian noise variance 0.1:
its accuracy 95.3% vs ResNet50’s 92.1%, Hierarchical
CNN’s 91.5%. This addresses gaps of Zhang et al. [S] (no
interference robustness verification) and Hu et al. [9] (no
multi-scale fusion optimization), highlighting practical
value in complex scenarios.

Analogous backstepping and output feedback control
are used to extract multi-scale features in response to its
hierarchical design. Through hierarchical discrimination
and subdivision of categories, the recognition accuracy is
improved from 88.5% to 94.3%; Analogous to nonlinear
optimal control and pursuing the optimal goal, through
multi module collaborative optimization, the F1 value
reaches 92.39% and the MAE/RMSE is lower than the
comparison algorithm.

T. Li

4.2 Conclusion

For salt and pepper noise, the accuracy advantage of the
proposed method was more obvious under the same
intensity. The research method made the model focus
more on the key areas of the image, reducing the impact
of noise on non key areas. However, there are two
limitations to the algorithm in this article: firstly, the
computational complexity is relatively high on large-scale
datasets, mainly due to the need to train SVM
discriminators for each node, and subsequent optimization
through parallel training or lightweight SVM; The second
issue is insufficient real-time performance, as the dynamic
hierarchy adjustment process increases training time by
about 5%, making it temporarily unsuitable for high-speed
real-time recognition scenarios. The consideration of
image recognition in multiple scenarios is not sufficient,
so future research will apply this algorithm to a wider
range of practical scenarios, such as video image
recognition, infrared image recognition, etc., to further
verify its effectiveness and applicability. The studied
HDA image recognition algorithm, with advantages of
multi-scale feature extraction, noise robustness and
dynamic adjustment, can be extended to multiple fields:
real-time recognition (0.03s single-image inference, high
accuracy in complex scenes like distinguishing 3 target
types in mall security); medical imaging diagnosis
(captures lesion details and global structure to boost
accuracy, reduce misdiagnosis); video stream recognition
(realizes target classification/tracking, optimizes traffic
flow statistics via keyframe extraction and hierarchical
discrimination).

Infrared image recognition, using thermal radiation
without visible light, serves nighttime security and power
fault detection. Traditional algorithms, hindered by
thermal noise and blurred edges, have <85% accuracy in
power inspection thermal anomaly detection. This
algorithm uses multi-scale features and noise robustness,
with FLIR ADAS dataset and Faster R-CNN as baseline,
aiming to enhance accuracy from 82% to over 90%. It will
also pilot substation night inspections with manufacturers,
integrating into infrared cameras. Video image
recognition for traffic flow and anomaly monitoring faces
frame blurring and occlusion, with traditional algorithms
having >10% vehicle counting errors. This algorithm uses
dynamic adjustment and attention mechanism, with
UCF101 dataset and 3D CNN as comparison, aiming to
boost action recognition accuracy from 88% to 95%. It
will also pilot on main roads with smart city platforms.
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