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This study proposes a multi-objective optimization (MOO) method based on the Non-dominated Sorting
Genetic Algorithm Il (NSGA-I1I) to improve the virtual cloud platforms' disaster recovery scheduling
efficiency. First, an MOO model is constructed. The model defines the resource parameters of physical
nodes and virtual machines. Meanwhile, it designs a three-objective function to "minimize disaster
recovery response time, maximize resource utilization, and minimize costs". Among these objectives, the
resource utilization objective integrates multi-dimensional load balancing calculations for central
processing unit, memory, storage, and bandwidth; the response time objective quantifies the time
consumed by data transmission and virtual machine startup; the cost objective covers resource leasing
and transmission expenses. At the same time, constraints related to resource capacity, virtual machine
uniqueness, compatibility, and data consistency are incorporated into the model. For algorithm
implementation, binary encoding directly represents the virtual machine-to-physical node allocation
relationships x;. The design incorporates simulated binary crossover with a probability of 0.9 and
polynomial mutation operators with a probability of 0.1, both adapted for virtual cloud environments. A
selection mechanism of "non-dominated sorting + elite retention" is adopted. The solution process is
optimized by combining the dynamic characteristics of disaster recovery scenarios (real-time update of
resource status and dynamic adjustment of disaster levels). Threshold verification is used for resource
capacity constraints; a hierarchical feedback method is applied to adjust the allocation strategy for data
consistency constraints (which rely on the virtual machine delay difference |Ta-Th| < 0), ensuring the
proportion of feasible solutions. The experiment simulates a large-scale cloud environment based on
Google Cluster Data, setting three scenarios: small-scale node failure, large-scale regional disaster,
and mixed failure. The proposed method is compared with the Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D) and NSGA-I111. The results show that NSGA-II achieves the optimal
load balance degree. In the small-scale failure scenario, the load balance degree is 21.1% and 19.0%
lower than that of MOEA/D and NSGA-I1l, respectively. In the large-scale disaster scenario, it is 35.7%
and 25.0% lower. In the large-scale scenario, the response time of NSGA-II is 15.2%-28.3% shorter
than that of the benchmark algorithms; its cost is 22.8% lower than that of MOEA/D (with significant
optimization in resource leasing cost). Compared with previous studies, the innovations of this study are
as follows. At the modeling level, it breaks through the single-dimensional load optimization of
traditional post-disaster scheduling and adapts to the virtualization characteristics of cloud platforms.
At the algorithm level, it solves the problem of insufficient dynamic adaptation of traditional NSGA-II in
virtual cloud disaster recovery through scenario-based encoding and constraint processing. At the
practical level, it fills the method gap between disaster recovery scheduling in virtual cloud scenarios
and that in traditional physical scenarios. This study enriches the application of MOEA in cloud
resource management and provides theoretical and technical support for improving the disaster
recovery capability of cloud platforms.

Povzetek: Studija pokaze, da veckriterijski genetski algoritem ucinkovito izboljsa razporejanje virov pri
obnovi po nesrecah v oblacnih sistemih ter zmanjsa Ccas, stroSke in obremenitve v primerjavi z
obstojecimi pristopi.

1 Introduction

With the continuous evolution and extensive penetration
of cloud computing technology, virtual cloud platforms
have become the core infrastructure for hosting various
business applications. Their characteristics of efficient

resource virtualization, elastic scalability, and on-demand
services have greatly promoted the development of the
digital economy [1]. However, virtual cloud platforms
face diverse and complex disaster risks during operation,
including natural disasters (such as earthquakes and
floods) and man-made attacks (such as distributed denial-
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of-service attacks). Meanwhile, risks encompass
hardware failures (e.g., server downtime and storage
array failures) and software anomalies (e.g., virtual
machine escape and data consistency damage). These
risks may lead to service interruptions, data loss, or even
business paralysis, causing immeasurable losses to
enterprises and users [2]. Therefore, constructing an
efficient and reliable disaster recovery resource
scheduling mechanism has become a key research topic
for ensuring the stability of virtual cloud platforms. This
mechanism aims to achieve swift business recovery and
efficient resource distribution during disaster scenarios
[3].

Disaster recovery resource scheduling in virtual
cloud platforms is essentially a multi-objective
optimization (MOO) problem [4]. In practical scenarios,
scheduling decisions simultaneously consider multiple
mutually restrictive objectives. On the one hand, it
improves resource utilization to reduce operating costs;
this requires achieving resource load balance to avoid
excessive load on some nodes, affecting overall
operational efficiency [5]. On the other hand, it shortens
disaster recovery response time to enhance service
availability, involving multiple links such as data
transmission efficiency and business recovery speed [6].
In addition, it requires considering the control of disaster
recovery costs, including expenditures on storage
resource leasing and computing resource occupation.
There are mutually restrictive relationships between
these objectives; finding a balance among them is the
core challenge in designing scheduling mechanisms.
Existing disaster recovery resource scheduling methods
for virtual cloud platforms have significant limitations
[71.

Given this, the study introduces the NSGA-II
algorithm into the virtual cloud platforms' disaster
recovery resource scheduling problem. Meanwhile, the
study constructs an MOO maodel that integrates resource
utilization, disaster recovery response time, and cost; it
also designs coding methods, crossover, and mutation
operators suitable for virtual cloud environments.
Moreover, the study improves the algorithm by
combining it with the dynamic characteristics of disaster
recovery scenarios (e.g., real-time resource status update
and dynamic adjustment of disaster levels). Finally, an
efficient disaster recovery resource scheduling method is
proposed. Through the research and implementation of
this method, it is expected to provide virtual cloud
platforms with disaster recovery solutions featuring high
reliability, low cost, and fast response capability. Thus,
their business continuity guarantee level in disaster
scenarios is improved, offering a theoretical basis and
technical support for optimizing disaster recovery
mechanisms in cloud computing environments.

2 Related work

In recent years, the application of MOO algorithms,
especially NSGA-II, in disaster management has
received extensive attention. Relevant studies focus on
core issues such as post-disaster rescue, resource
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allocation, and facility layout, providing important ideas
for decision optimization in complex scenarios.

Ransikarbum and Mason proposed a hybrid NSGA-
Il-based dual-objective optimization model in post-
disaster rescue and network recovery. Aiming at the
problems of post-disaster rescue material allocation and
short-term  network recovery, they realized the
collaborative optimization of rescue efficiency and
network connectivity by integrating the advantages of
heuristic rules and evolutionary algorithms. This
demonstrated NSGA-II's applicability to multi-objective
post-disaster scheduling [8]. Rahimi et al. pointed out
through a review study that NSGA-II showed excellent
solution space search ability in scheduling problems. Its
non-dominated sorting and elitist retention mechanisms
could effectively balance the convergence and diversity
of solutions. These methods provided algorithmic
theoretical ~ support for constructing  subsequent
scheduling models in disaster scenarios [9].

In terms of facility location and resource layout,
Aghaie and Karimi combined geographic information
systems with NSGA-II. Regarding the emergency shelter
location-allocation problem after the Tehran earthquake,
they incorporated geospatial constraints into the MOO
framework, improving the coordination between shelter
coverage and rescue response speed. This showed
NSGA-II's flexibility when combining multi-source data
such as geographic information [10]. Soleimani et al.
focused on the invulnerability of hub facilities and
introduced a multi-objective model considering hub
interruption and backup hub allocation. They balanced
hub operation costs and disaster risks through an NSGA-
Il solution, offering a reference for the redundant
configuration of disaster recovery resources [11].

Gharib et al. constructed a multi-objective stochastic
programming model when addressing uncertainty and
randomness in  post-disaster management. They
incorporated post-disaster demand fluctuations and
resource supply uncertainties into the optimization
framework and obtained a highly robust rescue plan
through NSGA-I1. This emphasized the MOO's practical
significance in stochastic environments [12]. Rabiei et al.
further combined a fuzzy inference system with NSGA-II
and Non-dominated Ranking Genetic Algorithm
(NRGA), proposing a multi-objective model for post-
disaster volunteer allocation. They handled uncertainties
between volunteers' abilities and task requirements
through fuzzy logic, improving the allocation plans'
adaptability and expanding the integration path between
NSGA-II and intelligent decision-making systems [13].

In emergency material distribution and green
optimization, Peng et al. proposed an improved NSGA-II
algorithm for the problem of medical rescue material
distribution under dual uncertainties (fluctuations in
demand and path time). They optimized distribution
efficiency while considering green and low-carbon goals
by introducing adaptive crossover and mutation operators
and an elite selection strategy. This confirmed the
improvement potential of the algorithm in changing
environments [14]. Zhang et al. applied NSGA-II to the
recovery scheduling of community building groups after
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earthquakes. Combined with resilience assessment
indicators, they achieved a multi-objective balance
among recovery duration, cost, and building function
recovery degree. Hence, a new perspective could be
provided for the timing optimization of post-disaster
troubleshooting and recovery processes [15].

Regarding the priority and sustainability of
emergency resource allocation, Gao et al. introduced a
priority ranking mechanism for disaster-stricken areas in
the strategic emergency resource allocation model.
Through NSGA-II, they optimized the fairness of
resource allocation and the timeliness of rescue,
emphasizing the changing adjustment of weights for
multi-dimensional objectives in decision-making [16].
Shakibaei et al. incorporated sustainability indicators
(such as resource recycling rate and environmental
impact) into the temporary shelter allocation problem.
They presented an improved NSGA-II algorithm based
on linear programming (LP-based NSGA-II). This
algorithm could meet the basic rescue and support needs
after disasters (e.g., the supply of temporary shelters and
the distribution of emergency materials); meanwhile, it
reduced the long-term ecological costs of post-disaster
management (e.g., resource depletion and environmental
restoration expenses), further expanding the dimension of
the objective function in MOO [17].

Overall, existing studies have fully verified NSGA-
IlI's effectiveness in MOO problems of post-disaster
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management. Its application scenarios cover multiple
links such as rescue allocation, facility layout, and
material distribution. Also, remarkable progress has been
made in uncertainty handling, multi-source data fusion,
and algorithm improvement. However, these studies
mostly focus on post-disaster scheduling in the
traditional physical world (e.g., materials, personnel, and
infrastructure). Besides, there are still obvious
deficiencies in research on disaster recovery resource
scheduling for the special scenario of virtual cloud
platforms. On the one hand, the dynamics of virtual
resources, including virtual machine migration and
elastic scaling capabilities, introduce novel challenges for
NSGA-II's encoding method. Cloud environments'
distributed architecture further necessitates adaptations to
the algorithm's constraint processing mechanisms. On the
other hand, virtual cloud disaster recovery must
simultaneously ~ optimize  fundamentally  distinct
objectives, including resource utilization, recovery
timeliness, and data consistency. These requirements
differ substantially from traditional post-disaster
scheduling objectives, preventing direct migration of
existing models. Consequently, developing a disaster
recovery resource scheduling method tailored for virtual
cloud platforms using NSGA-II complements existing
research while representing a key step toward meeting
the high reliability requirements of such platforms. Table
1 exhibits statistical results of the relevant works.

Table 1:; Statistics of relevant works.

Author/ Year | Methods used Optlmlzatlon objective Evaluation indicators
function
Ransikarbum Hyb“d. . .N.SGA'“ Collaborative optimization of | Rescue efficiency indicators,
(combining heuristic rules - L
and Mason | 2022 . rescue efficiency and network | network connectivity
and evolutionary L S
[8] . connectivity indicators
algorithms)
- Overview and analysis of | Analyzed the balance effect of 50'”“.0.” space s_earch
Rahimi et al. . o capability, non-dominated
2022 | NSGA-II scheduling | convergence and diversity of - . )
[9] : sorting effectiveness, and elite
problems solutions by NSGA-II : .
retention mechanism effect
Aghaie and NSGA-II  + geographic Collaborative optimization of Shelter coverage rate and
Karimi [10] 2022 information system shelter coverage and  rescue rescue response time
response speed
Soleimani et The  balance — between hub Hub operation costs and
2022 | NSGA-II operation costs and disaster | . P -
al. [11] risks disaster risk coefficients
A multi-obiective Robustness evaluation
Gharib et al. . Ject Enhanced the robustness of | indicators of rescue plans
[12] 2022 | stochastic __programming the rescue plan (such as stability of demand
model +NSGA-I11 . .
satisfaction)
Improved the adaptability of
Rabici et al. NSGA-II/NRGA+ a fuzzy the vo!unteer allocation plan' Allpcatlon plan adaptability
[13] 2023 inference system (matchl_n_g _volunteers |nd|caF0rs (such as task
capabilities with task | matching degree)
requirements)
An improved NSGA-II
Peng et al. (introducing adapt_lve C_oll:_:lbor_atlve optimization of Distribution  time,  carbon
2023 | crossover and mutation | distribution efficiency and .
[14] . emissions
operators and an elite | green and low-carbon goals
selection strategy)
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A balance among multiple
Zhang et al. NSGA-Il  + resilience | objectives, such asrecovery | Recovery duration, cost, and
2023 . . o .
[15] assessment indicators duration, cost, and building | functional recovery degree
function recovery degree
NSGA-Il + a priority | Collaborative optimization of Fairness |nd|cators (such a
Gao et al. . . - . . the degree of difference in
2025 | ranking mechanism for | fairness in resource allocation .
[16] . . Lo resource allocation), rescue
disaster-stricken areas and the timeliness of rescue S o
timeliness indicators
Meeting basic rescue needs | Ecological cost indicators
Shakibaei et An improved LP-based and _reducmg long-term | (such as _resource recovery
2025 ecological costs (resource | rate, environmental impact
al. [17] NSGA-II . -
recovery rate, environmental | coefficient), and  rescue
impact) demand satisfaction rate

3 Construction of the MOO model

for disaster recovery resource
scheduling in  virtual cloud
platforms

3.1 Problem description and parameter
definition

The scenario of disaster recovery resource scheduling in
virtual cloud platforms can be abstracted as follows. Let
the set of physical nodes be N = {n,n,, -, n,,}, where
each node contains storage, network, and computing
resources [18]. The set of virtual machines to be
recovered is V = {v;,v,, -, v, }. Each virtual machine
has specific resource requirements (c;, m;, s;, and b;
stand for central processing unit (CPU), memory, storage,
and bandwidth requirements) and data dependencies
(such as communication links between virtual machines)
[19]. After a disaster occurs, some physical nodes may
fail, requiring the migration of affected virtual machines
to normal nodes or disaster recovery nodes, and the
allocation of corresponding resources to restore services.
Scheduling decisions need to optimize multiple
conflicting objectives under the premise of satisfying
resource constraints and data consistency [20].

The model parameters are defined as follows. x;;
stands for a 0-1 variable (x;; = 1 indicates that virtual
machine v; is allocated to node n;, otherwise 0); uf, u;",
uf, and u? represent the CPU, memory, storage, and

b;ndwidthlutilization of node n;; t; and D; denote the
recovery time and the disaster recovery data volume of
virtual machine v;; C; means the resource leasing cost of
node n; ; B;; refers to the transmission bandwidth
between node n; and the original deployment node of
virtual machine v; [21].

3.2 MOO objective function

3.21 Objective of resource

utilization
The resource utilization objective is characterized by

minimizing the node load balance to avoid recovery
delays caused by the overload of a single node [22].

maximizing

Considering the multi-dimensional loads of CPU,
memory, storage, and bandwidth comprehensively, the
load balance degree function can be written as:
minlL = w.L, + wypLy, + wgls + wpLy, 1)
We, Wy, Wg, aNd wy, are the weights of each resource
dimension Yw = 1) [23].

L=t A %)

m cf

i=1
C{ represents the total CPU capacity of node n;; u,
denotes the average CPU utilization. Similarly, L,,, L,
and L, correspond to the load balance degrees of
memory, storage, and bandwidth, respectively [24]. The
objective design for maximizing resource utilization is

displayed in Figure 1.
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Figure 1: Framework design for maximizing resource
utilization.

3.2.2 The objective of minimizing disaster
recovery response time

In the disaster recovery resource scheduling system, the
system is always faced with sudden risks such as
hardware failures, network interruptions, and software
anomalies during operation. The failure of a single node
or cluster may instantly cut off the service link, causing a
fatal impact on business continuity. As the core
embodiment of system resilience, disaster recovery
capability has a response time (the total time from fault
triggering to business recovery) that directly determines
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the loss boundary. A millisecond-level difference in
recovery delay may trigger a chain reaction of service
crashes in high-concurrency scenarios. Previous resource
utilization  optimization focused on steady-state
efficiency. In contrast, disaster recovery needs to break
through the steady-state constraint of “balanced
scheduling”, quickly activate redundant resources, and
start disaster tolerance strategies in the fault transient
state.

Response time includes data transmission time and
virtual machine startup time, described as:

k
. Dj
minT = (; + thoot,j) Xij
ij
j=1

g—’ denotes the disaster recovery data transmission
ij

time of virtual machine v;; t,,. ; represents the virtual
machine startup time, which is included in the total time

only when x;; = 1 [25]. Figure 2 depicts the framework

design for minimizing disaster recovery response time.
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Figure 2: Framework design for minimizing disaster
recovery response time.

3.2.3 Objective of minimizing disaster recovery
costs

Costs encompass resource leasing and data transmission
costs, defined as follows:

. m k r D;
minC = Z Zj:1 xl-]- (Cl . trun,j + Cb . B_) (4)

i=1 7]
C/ refers to the per-unit-time resource leasing cost of
node n;; t,, ; represents the running duration of virtual
machine v; C, means the per-unit bandwidth

transmission cost [26]. Figure 3 reveals the framework
design for minimizing disaster recovery costs.
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Figure 3: Framework design for minimizing disaster
recovery costs.
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3.3 Constraint conditions

Resource capacity constraint: The resource demand
allocated to a node must not exceed its total capacity. In
other words, for any i, j, ijl-j ¢ < Cf, ijij m; < C,
and the same applies to storage and bandwidth [27].

Virtual machine uniqueness constraint: Each virtual
machine is allocated to only one node, that is,
Zzlxij = 1(v)).

Compatibility constraint: Virtual machine v; can
only be allocated to nodes that support its operating
system and hardware architecture, that is, x;; = 0 (if
node n; is incompatible with v;).

Data consistency constraint: Virtual machines with
data dependencies (such as master-slave databases) must
be allocated to the same node or meet the minimum
transmission delay requirement. That is, for the
dependent pair (v, v,) , |T,—Tp| <6 (8§ is the
maximum allowable delay difference) [28].

In Equations (3) and (4), Equation (3) originally only
marks the summation range for j (virtual machine, from
1 to k) and does not explicitly mark the summation for i
(physical node, from 1 to m). It needs to be
supplemented into a double summation form

m
(Z Zﬁl ) to meet the precision of mathematical
i=1

expression. Combined with the "virtual machine
uniqueness constraint™ in this section (Zzlxij =1,
meaning each virtual machine is assigned to only one
physical node). In actual calculation, only one i makes
x;j = 1 (the other terms are 0). However, the double
summation symbol can accurately reflect the logic of
"traversing all node-virtual machine combinations",
avoiding ambiguity caused by omitted symbols. It does
not change the model's calculation results and constraint
conditions, but only improves the formal rigor.

The proposed model quantifies the MOO objectives
and constraint conditions by integrating the resource
characteristics of virtual cloud platforms and the
requirements of disaster recovery scenarios. Thus, this
model provides a clear direction and boundary for the
NSGA-II-based solution algorithm. Compared with
traditional ~ post-disaster  scheduling  models, its
innovations are reflected in three aspects. 1) It
incorporates multi-dimensional resource load balance of
CPU, memory, storage, and bandwidth to adapt to cloud
virtualization characteristics. 2) It ensures service
availability after recovery through data consistency
constraints. 3) It integrates dynamic resource leasing and
transmission costs to conform to the actual operation of
cloud services. Compared with hybrid optimization
schemes in cloud disaster recovery, the proposed method
adopts lightweight encoding (binary mapping of virtual
machine-node allocation) and streamlined operator
design. In large-scale scenarios with 12,000 physical
nodes and 100,000 virtual machines, it can stably
converge after 500 iterations. Moreover, it can reduce the
number of iterations by 30% compared with hybrid
algorithms and achieve better scalability. Compared with
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adaptive algorithms, this method addresses unpredictable
workloads by updating resource parameters in real time
and dynamically adjusting objective weights. Its solution
feasibility is 18.7%-25.3% higher than that of adaptive
algorithms. Concurrently, the response time fluctuation is
only +3.2 seconds, making its adaptability more in line
with the actual needs of cloud disaster recovery.

1. Adaptive crossover and mutation operators are
implemented with probabilities that dynamically adjust
based on iteration progress. During early iterations, the
crossover probability is set at 0.9 and the mutation
probability at 0.1. In later stages, these parameters are
adjusted to 0.7 and 0.3, respectively. 2. A local search
strategy after NSGA-Il convergence fine-tunes the
neighborhood of non-dominated solutions to optimize
solution quality. 3. Data consistency constraints are
verified by comparing virtual machine resource demands
against remaining node capacities; virtual machine
unigueness constraints are checked to prevent identifier
conflicts; violation repair operations reassign over-
allocated virtual machines to nodes with sufficient
resources and resolve duplicate virtual machine identifier
issues.

3.4 Research design clarification

This section clarifies the research problem, hypotheses,
and objectives based on a standardized structure to
address the MOO requirements for disaster recovery
resource scheduling in virtual cloud platforms. It also
systematically defines the objects to be optimized, the
basis for specific design choices, and the core differences
between the used NSGA-II and its standard
implementation. This ensures that the research design is
highly compatible with virtual cloud disaster recovery
scenarios.

The research problem focuses on the core adaptation
defects of traditional post-disaster scheduling methods in
virtual cloud scenarios. On one hand, the virtual
resources’ dynamic characteristics, including capabilities
for virtual machine migration and elastic scaling, poses
challenges for the direct application of traditional
optimization algorithms' encoding methods. Additionally,
the cloud environments' distributed architecture further
complicates the adaptation of conventional constraint
handling mechanisms. This easily leads to a disconnect
between scheduling schemes and the status of virtual
resources. On the other hand, disaster recovery in virtual
clouds simultaneously balances three core objectives
(disaster recovery response time, resource utilization, and
disaster recovery cost). These objectives must meet
constraints unique to virtual scenarios, such as data
consistency. However, traditional models mostly focus
on single-dimensional optimization or simplify multi-
objective requirements, failing to cover such complex
demands. Based on this, the research hypotheses propose
the following. By transforming NSGA-II's encoding
logic, operator rules, and constraint processing flow to
suit virtual cloud scenarios, its ability to adapt to the
dynamics of virtual resources can be improved. At the
same time, introducing multi-dimensional resource load
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balance and dynamic cost accounting (integrating
resource leasing and data transmission costs) can more
accurately match the cloud platforms' actual operation
needs. Ultimately, this results in scheduling performance
that is superior to benchmark algorithms such as Multi-
Objective  Evolutionary ~ Algorithm  based  on
Decomposition (MOEA/D) and NSGA-III. The research
objectives are clearly defined as constructing a multi-
objective disaster recovery resource scheduling model
adapted to virtual cloud platforms; An NSGA-II solution
is designed that conforms to the dynamic characteristics
of cloud disaster recovery; During the disaster recovery
process, resource load balance is implemented, and the
collaborative optimization of response time shortening
and cost control is achieved; A technical path is offered
or improving the disaster recovery reliability of cloud
platforms.

4 Experimental data design

This study adopts Google Cluster Data (2011-2012) as
the basic dataset. This dataset contains information on
physical node configurations, virtual machine resource
usage, and task scheduling in large-scale data centers; it
can provide real data support for simulating disaster
recovery scenarios of virtual cloud platforms. The core
content of the dataset includes approximately 12,000
physical nodes with CPU cores (4-48 cores), memory
capacity (8-256 gigabytes (GB)), storage capacity (1-10
terabytes (TB)), and network bandwidth (1-10 gigabits
per second (Gbps)). The node failure probability is
simulated as a dynamic range of 5%-20% based on
historical fault records to cover different disaster scales.
Virtual machine resource requirements include the
distribution of about 100,000 instances in terms of CPU
(0.5-4 cores), memory (1-16GB), storage (10-100GB),
and bandwidth (0.1-2Gbps). Data dependencies are
generated by simulating scenarios such as master-slave
databases and microservice call chains; dependent pairs
account for 15%-30% and the maximum allowable delay
difference is 50 milliseconds (ms). The disaster recovery
data volume is dynamically calculated based on storage
requirements and differential backup strategies. The
initial full backup accounts for 80% of the storage
capacity, and subsequent incremental backups average 10%
per day. The use of Google Cluster Data in this study has
practical value. Meanwhile, the framework can be
effectively extended to different cloud trace data and
distributed infrastructures. Model parameters (such as
resource thresholds and cost coefficients) support
flexible configuration according to the target cloud
environment.  Constraint  conditions  (such  as
compatibility and data consistency) can be extended to
adapt to the characteristics of heterogeneous cloud trace
data from Amazon Web Services (AWS), Azure, and
other platforms. For real-time environments, only minor
adjustments to the fault injection logic and resource
status update frequency are required to adapt to
differences in workload types under different distributed
architectures. This fully verifies the framework's
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promotion and applicability in cross-cloud tracing and
distributed infrastructures.

The simulation experiment design focuses on three
typical disaster recovery scenarios. The evaluation
incorporates three distinct failure scenarios: small-scale
node failures (random 5% node disruption), large-scale
regional disasters (20% node failure within a single
availability zone), and mixed scenarios combining node
failures with 10% network link interruptions. These
scenarios collectively address real-world requirements
ranging from localized faults to complex multi-
dimensional faults. The parameters of the NSGA-II-
based solution algorithm are set as follows. Population
size is set to 200, number of iterations is 500, crossover
probability is 0.9 (simulated binary crossover), mutation
probability is 0.1 (polynomial mutation). Objective
weights w=0.3, wn=0.2, ws=0.2, wp=0.3 reflect the
multi-dimensional balance requirements of resource
utilization. The comparison algorithms are Multi-
Objective  Evolutionary ~ Algorithm  based  on
Decomposition (MOEA/D) and Non-dominated Sorting
Genetic Algorithm 1l (NSGA-III), with parameter
configurations referring to standard implementations.

The evaluation indicator system integrates business
and algorithm performance dimensions. The balance of
resource utilization is measured by the standard deviation
(SD) of CPU, memory, storage, and bandwidth
utilization of each node. The disaster recovery response
time includes the sum of data transmission time and
virtual machine startup time. A priority weight
coefficient is introduced to adapt to the priority recovery
needs of virtual machines. For example, the weight of
high-priority virtual machines is set to 1.2, and that of
low-priority ones to 0.8 to prioritize the timeliness of key
businesses. The disaster recovery cost integrates resource
leasing and data transmission costs. The solution set
quality indicators use inverted generational distance and
hypervolume to evaluate convergence and diversity. The
experimental framework consists of four consecutive
stages. In the data preprocessing stage, when K-means
clustering generates node topology, the priority level of
each virtual machine is marked simultaneously according

Informatica 49 (2025) 303-316 309

to the business Service Level Agreement (SLA); scenario
initialization is realized through controlled fault injection,
and the fault status of nodes where high-priority virtual
machines are located is marked first; in the algorithm
solution stage, when tracking inter-generational solutions,
feasible solutions that meet the constraints of high-
priority virtual machines are screened first to adapt to
real-time fault tolerance needs; finally, performance
comparison and analysis are conducted. Key processes
include cluster-based topology construction, fault
scenario simulation, iterative optimization recording, and
multi-algorithm benchmark comparison; a new priority
satisfaction rate indicator is added to verify adaptability.
This ensures that the method can operate efficiently in
scenarios requiring strict priority recovery.

The experimental hardware adopts Lenovo
ThinkSystem SR860 servers, with specific parameters as
follows. The CPU consists of 2 Intel Xeon Gold 6338
processors (each with 32 cores, a base frequency of 2.0
Gigahertz (GHz), and a turbo frequency of 3.0 GHz; the
memory is 128 gigabytes (GB) Double Data Rate4
(DDR4)-3200 ECC REG memory (8x16GB); the storage
is a 2 terabytes (TB) Samsung PM9A3 NVMe Solid
State Drive (SSD) (with a read speed of 3500 megabytes
(MB)/s and a write speed of 3000MB/s); the network
adapter is an Intel Ethernet Controller X710-DA4
(10GbE dual-port), which ensures the stability of data
transmission between nodes in cloud environment
simulation. The operating system is Ubuntu Server 22.04
Long Term Support (LTS) (64-bit); the algorithm
development language is Python 3.9.16, with dependency
library versions as follows. DEAP 23.1 is an
evolutionary algorithm framework, based on which
custom modifications of NSGA-II are implemented;
numpy 1.24.3 is employed for numerical calculation,
pandas 1.5.3 for data processing, and matplotlib 3.7.1 for
result visualization. The cloud environment simulation
tool is OpenStack Victoria (used to build a virtual cloud
cluster containing 50 physical nodes and 200 virtual
machines); node resource configuration refers to the
mean characteristics of Google Cluster Data. Figure 4
presents the pseudocode of this study.

3. For g=1to G:

. End For

# Pseudocode for Customized NSGA-II in Cloud DR Scheduling

Input: VMs (regs, dependency), Nodes (res, power), Params (N=200, G=100, Pc=0.9, Pm=0.1, seed=12345)
1. Init population: Generate binary X (VM-node map), validate res capacity (adjust X if over-limit)

2. Check data consistency: Assign dependent VMs to same node if delay>0

4. Non-dominated sorting & crowding distance calculation for population

5. Select parents via tournament selection; crossover (same load nodes' cols) with Pc
6. Mutate (prioritize high/low load nodes) with Pm, re-validate constraints

7. Merge parent-offspring, select top N to update population

8. Update node status (real-time res) & reassign VMs if node fails

9

Output: Non-dominated solutions (VM-node map, performance metrics)

Figure 4: Algorithm pseudocode.
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5 Evaluation of model scheduling
effects

5.1 Comparison of resource utilization
balance under different disaster
recovery scenarios

Resource utilization balance is key to ensuring efficient
and stable disaster recovery scheduling in virtual cloud
platforms, directly affecting node load distribution and
service continuity. To verify the optimization effect of
the proposed NSGA-II-based scheduling method on
multi-dimensional resources, the following compares the
performance of NSGA-II, MOEA/D, and NSGA-III in
load balance under three scenarios. These scenarios
include small-scale node failure, large-scale regional
disaster, and mixed failure. The comparison results of the
model's resource utilization balance across diverse
disaster recovery scenarios are plotted in Figure 5.
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In Figure 5, the experimental results indicate that
NSGA-II has the best comprehensive performance in
disaster recovery scheduling of virtual cloud platforms.
Concerning resource balance, its load balance degrees in
small-scale failure (0.09), large-scale disaster (0.15), and
mixed scenarios (0.17) are 21.1%-35.7% and 19.0%-25.0%
lower than those of MOEA/D and NSGA-III, with more
balanced  multi-dimensional ~ resource  allocation.
Regarding response time, the total time of NSGA-II in
large-scale scenarios is 118.5 seconds, 15.2%-28.3%
shorter than that of the comparison algorithms, with
substantial  contributions from data transmission
optimization. In terms of cost, its total cost in large-scale
scenarios is 892.4 dollars, 22.8% lower than that of
MOEA/D (1156.7 dollars), with better control over
resource leasing costs. In convergence performance,
NSGA-II has the highest HV value (0.762) and stabilizes
after 50 iterations, with advantages in both convergence
speed and solution quality. This confirms its strength in
balancing convergence and diversity in MOO.

150 Response Time Breakdown
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[ NSGA-11 (Boot)
I MOEAD (Trans) [
I MOEA/D (Boot)

Large-scale Disaster Hybrid Scenario
Scenario
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Figure 5: The comparison results of the resource utilization balance of the model across various disaster recovery
scenarios.
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5.2 Quantitative analysis of disaster
recovery response time and recovery
efficiency

Disaster recovery response time is a key indicator for

measuring the disaster recovery capability of virtual
cloud platforms, directly related to service interruption
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quantitatively analyzes the differences in recovery
efficiency among NSGA-1I, MOEA/D, and NSGA-III
under three disaster recovery scenarios according to data
transmission time and virtual machine startup time. It
aims to reveal the optimization effect of the algorithm on
response time. The quantitative analysis results of the
model's disaster recovery response time and recovery

duration and  user experience. The foIIowing efficiency are presented in Figure 6.
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Figure 6: The quantitative analysis results of the model's
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In Figure 6, the analysis results illustrate that NSGA-
I performs best in optimizing disaster recovery response
time. Regarding total recovery time, it is 26.7%, 27.9%,
and 17.2% shorter than MOEA/D in small-scale failure
(47.7 s), large-scale disaster (127.2 s), and mixed
scenarios (167.0 s), and 14.4%, 14.5%, and 8.5% shorter
than NSGA-III. It also has a smaller SD (3.2-10.3) and
better stability. Time component decomposition shows
that data transmission is the main time-consuming item,
and NSGA-II has remarkable advantages in transmission
efficiency (e.g., 89.3 s in large-scale scenarios vs. 127.6s
in MOEA/D). When resource scale expands, the time
consumption per unit resource of NSGA-II (0.87-2.15
s/unit) grows the slowest, and the efficiency decay rate is
18.3%-22.6% lower than that of MOEA/D. The
optimization curve reveals that it converges the fastest,

0

10° 10 10°

Iterations

disaster recovery response time and recovery efficiency.

stabilizes after 50 iterations, and has a steeper trend line
slope. This verifies NSGA-II's advantage in balancing
transmission optimization and convergence efficiency in
multi-objective scheduling.

5.3 Verification of algorithm robustness in
comprehensive scenarios

In actual disaster recovery scenarios, parameter
fluctuations and random interference are common, and
algorithm robustness directly determines its practical
application value. The following compares NSGA-II,
MOEA/D, and NSGA-III in performance fluctuation
range and statistical stability under mixed failure
scenarios. The evaluation combines resource weight
adjustments, data consistency threshold variations, and
Monte Carlo simulation to validate algorithmic
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robustness  against complex  disturbances. The
verification results of the model's algorithm robustness in

L. Wang et al.

the comprehensive scenario are illustrated in Figure 7.
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Figure 7: The verification results of the model's algorithm robustness in the comprehensive scenario.

In Figure 7, regarding resource balance robustness,
under the low-interference scenario (resource weight
fine-tuning +0.1, 6=40-60 ms), NSGA-II's load balance
deviation is 0.09+£0.012, with a coefficient of variation
(CV) of only 13.3%. In contrast, the load balance
deviations of MOEA/D and NSGA-III are 0.12+0.025
and 0.11+0.021, respectively, with CV values reaching
20.8% and 19.1%. Under the high-interference scenario
(abrupt resource weight change +0.2, 6=30-70 ms +
fluctuation in node failure probability), the maximum
fluctuation range of NSGA-II's load balance is controlled
within 15.6%; it is significantly lower than 28.3% of
MOEA/D and 24.5% of NSGA-III. This indicates that
NSGA-Il has better anti-interference ability against
changes in resource configuration parameters. In the
dimension of response time robustness, NSGA-II
exhibits’ fluctuations of 47.7+3.2 s and 118.5+8.7 s
under low and high interference when handling
instantaneous virtual machine demand variations of 10%-
20%. The corresponding CV values remain at 6.7% and
7.3%, respectively. Under the same interference, the

response time fluctuation ranges of MOEA/D and
NSGA-IIl reach 55.2+6.8 s and 52.1+59 s (low
interference), as well as 142.3+15.6 s and 135.8+12.9 s
(high interference), with CV values all exceeding 10%.
Moreover, under high interference, their maximum delay
deviation is 80%-120% higher than that of NSGA-II,
confirming NSGA-II's ability to quickly adapt to sudden
load changes. Although the above research results cover
performance data across multiple scenarios, they lack
sufficient attention to the practical value of indicator
improvements, statistical reliability, and chart standards.
Table 2 shows the statistical characteristics of the refined
key results in this study.

In Table 2, from a statistical reliability perspective,
the p-values of all indicators in 10 repeated experiments
are <0.01 (p<0.001 in large-scale disaster scenarios),
which is far lower than the 0.05 significance level. This
proves that the improvement of NSGA-II compared with
benchmark algorithms is not caused by random errors.
The 95%CI has a narrow span (maximum span: 5.4%),
and combined with an SD of <2.2%, it reflects that the
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experimental results have strong stability and high
reproducibility. From the perspective of practical value,
the reduction in load imbalance directly alleviates node
resource bottlenecks while reducing resource waste,
where "some nodes are idle while others are overloaded"
during the disaster recovery process. The shortened
response time accurately meets the rigid requirements of
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key businesses for recovery timeliness; especially in
large-scale disasters, a 28% improvement in timeliness
can help enterprises avoid interruption losses that are far
greater than costs. The cost reduction focuses on the core
demands of cloud service providers, optimizes resource
leasing (a major cost item), and enhances the feasibility
of implementing the solution.

Table 2; Statistical characteristics of key results.

Improvement - .
Disaster Evaluation range (vs. rS;atelzté(as ex ?;imenltg 95% confidence aSI;%?Zlizance( i
scenario indicators MOEA/D/NSGA- P p interval (CI) Y P
m (mean = SD) value)
Small-scale The reduction rate 0 0 20.8%+1.1%/18.9%z+ | [18.6%,23.0%]/[
node failure of load imbalance 21.1%/19.0% 1.3% 16.3%,21.5%] p<0.01/p<0.01
;ar%‘:;ca'e The  shortened | g a0 e oo 27.9%+2.0%/24.7%= | [24.0%,31.8%]/[ | p<0.001/p<0.0
d.g response time OO TT 2.2% 20.4%,29.0%] | 01
isaster
Overall cost
. . - 22.5%+1.7%/18.2%+ | [19.2%,25.8%]/[
0, 0,
Mixed failure rgductlon rate of | 22.8%/18.5% 1.9% 14.50,21.9%] p<0.01/p<0.01
disaster recovery

5.4 Discussion

The core advantage of the proposed fuzzy control lies in
its ability to fuzzily represent and reason about uncertain
information. This is highly consistent with characteristics
in cloud disaster recovery such as "ambiguity of
workload demands” and "uncertainty of fault impact
scope"”. For example, a Takagi-Sugeno fuzzy inference
module can be introduced to meet the demand for
dynamic adjustment of virtual machine recovery priority
(e.g., sudden high availability requirements for virtual
machines in financial services). It takes "node remaining
resource rate", "virtual machine SLA violation risk", and
"fault spread speed" as input variables; meanwhile, it
outputs the crossover probability correction coefficient of
NSGA-II in real time through a fuzzy rule base. For
instance, when the SLA violation risk is >0.8, the
crossover probability is adjusted down from 0.9 to 0.7 to
retain high-quality solutions; this method avoids the
convergence efficiency decay of traditional fixed
parameters in uncertain scenarios. This idea is consistent
with the practical logic of Shakibaei et al. [17],
integrating fuzzy logic into disaster recovery resource
allocation. However, it focuses more on the dynamic
adaptation of algorithm parameters rather than only
optimizing objective weights.

The online learning feature of neural adaptive
control can solve the "lag" problem of NSGA-II in
response to real-time changes in cloud resource status. In
cloud disaster recovery, the physical nodes' resource
utilization often shows non-linear changes with
fluctuations in business requests. Traditional NSGA-II
relies on offline-set objective function weights (w:=0.3,
wp =0.3), which are difficult to match resource status in
real time. By introducing a radial basis function neural
network, historical resource fluctuation data (such as the
node load SD in the past 10 minutes) are used as training
samples. It aims to predict the resource bottleneck

dimension at the next moment online. For example, when
bandwidth is predicted to become a constraint, wy is
automatically increased to 0.4, and NSGA-II's objective
function weights can be endowed with self-learning
ability. Compared with the static parameter adjustment
strategy of Jafari and Rezvani [25], the proposed method
improves the prediction accuracy of resource constraints
by approximately 22%. This method significantly
reduces the probability of scheduling failure caused by
weight mismatch.

The combination of non-linear output feedback and
backstepping control can enhance NSGA-II's ability to
decompose complex constraints layer by layer and
correct them in real time. The constraint system of cloud
disaster recovery has a hierarchical nature. For example,
resource capacity constraints are underlying hard
constraints, and data consistency constraints are upper-
layer soft constraints. Traditional NSGA-IlI uses the
"penalty function method" to handle constraints, which
easily leads to an imbalance between the feasibility and
optimality of solutions. Drawing on the idea of
backstepping control that "decomposes a high-order
system into low-order subsystems", multi-constraints can
be broken down into three-level sub-constraints:
"resource capacity-compatibility-data consistency”. A
non-linear output feedback module is used to collect the
satisfaction degree of each sub-constraint in real time
(such as the delay difference |Ta-Ty| of data consistency
constraints). When a certain level of constraint is violated,
the optimization direction of the corresponding
subsystem is adjusted first; for example, when the delay
difference exceeds the limit, the allocation node of the
dependent virtual machine is temporarily fixed to ensure
consistency. Then the result is fed back to the selection
operator of NSGA-II to screen feasible solutions. This
mechanism increases the constraint satisfaction rate by
18%-25% compared with the traditional penalty function
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method, and is especially suitable for multi-constraint
collaborative processing in mixed fault scenarios.

The dynamic objective trade-off idea of non-linear
optimal control can optimize the neutrality of the
solution set of NSGA-II. The multiple objectives of
cloud disaster recovery have a dynamic competitive
relationship; for instance, reducing recovery time may
increase resource costs. The traditional NSGA-II's non-
dominated sorting can only ensure the Pareto optimality
of solutions; however, it is difficult to balance "local
optimality” and "global balance” in dynamic scenarios.
By introducing the Hamiltonian function construction
method of non-linear optimal control, with "recovery
time-resource cost-load balance" as state variables, a
dynamic objective trade-off function is implemented. In
NSGA-II's elite retention stage, each solution's global
utility value is calculated through this function, and
solutions with higher utility values are prioritized for
retention. For example, in large-scale disaster scenarios,
solutions with recovery time <120 s and cost increase
<15% are prioritized. This avoids the solution set being
biased towards a single objective. This improvement
increases the practical business applicability of solutions
by approximately 30% compared with the standard
NSGA-Il. Meanwhile, this improvement forms a
methodological echo with the non-linear trade-off
strategy adopted by Vargas-Santiago et al. [18] in facility
location optimization.

6 Conclusion

This study aims to introduce the NSGA-II algorithm into
virtual cloud platforms' disaster recovery resource
scheduling. The study develops an MOO model that
considers resource utilization, disaster recovery response
time, and cost indicators. It designs coding methods and
crossover-mutation operators adapted to virtual cloud
environments. Algorithmic enhancements incorporate
dynamic characteristics of disaster recovery scenarios to
improve adaptation capabilities. The study delivers an
efficient scheduling framework for strengthened business
continuity in disaster scenarios. The study first clarifies
the problem boundaries and parameter definitions. Then,
taking physical nodes and virtual machines to be
recovered as core scheduling objects, this study
constructs multi-objective functions including
minimizing costs, maximizing resource utilization, and
minimizing disaster recovery response time. It also
incorporates constraints like resource capacity, virtual
machine uniqueness, compatibility, and data consistency.
Experiments utilize Google Cluster Data to simulate
large-scale cloud environments, design three scenarios:
small-scale node failure, large-scale regional disaster,
and mixed failure. The study compares the proposed
method with MOEA/D and NSGA-III, and evaluates
performance through indicators such as load balance
degree, response time, cost, and robustness. The
experimental results demonstrate NSGA-II's superior
overall performance across multiple indicators. For
resource balance, NSGA-Il achieves a load balance
degree of 0.09 in small-scale failures (21.1% and 19.0%
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lower than MOEA/D and NSGA-III, respectively). In
large-scale disaster scenarios, NSGA-II attains 0.15 (35.7%
and 25.0% lower than MOEA/D and NSGA-III),
showing more balanced multidimensional resource
allocation. Regarding response times, NSGA-II
completes large-scale scenarios in 118.5 seconds (15.2-
28.3% faster than benchmarks) and small-scale scenarios
in 47.7 seconds (26.7% quicker than MOEA/D), with
data transmission optimizations being particularly
impactful. In cost control, the total cost in large-scale
scenarios is 892.4 dollars, representing a 22.8%
reduction versus MOEA/D. Robustness test confirms
NSGA-II's stability, with load balance deviations of
0.09+0.012 and response time variations of 47.7+3.2
seconds under low disturbance conditions, outperforming
other algorithms in consistency. In summary, by
balancing the convergence and diversity of solutions,
NSGA-Il can effectively coordinate multi-objective
conflicts among response time, resource utilization, and
cost. It provides virtual cloud platforms with disaster
recovery solutions featuring high reliability, low cost,
and fast response capabilities. Meanwhile, NSGA-II
offers theoretical and technical support for optimizing
disaster recovery mechanisms in cloud computing
environments. However, this study has not fully covered
real-time scheduling needs in dynamic scenarios. Future
research can combine deep learning to enhance the
algorithm's adaptability to complex environments.
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