
https://doi.org/10.31449/inf.v49i36.11126 Informatica 49 (2025) 303–316 303 

 

NSGA-II Based Multi-Objective Disaster Recovery Scheduling for 

Virtual Cloud Platforms 

Liwei Wang, Jingman He, Jie Peng, Lin Zhou*, Zehui Zhang 

Inner Mongolia Power Digital Research Institute, Hohhot 010000, China 

Email: wangliweihk2008@163.com, hejingman0128@163.com, pengjie_job@sina.com, zhoulin20250809@163.com, 

zhangzehui0966@163.com 
*Corresponding author 

 

Keywords: virtual cloud platform, disaster recovery resource, NSGA-II, multi-objective optimization, virtual machine 

Received: August 26, 2025 

This study proposes a multi-objective optimization (MOO) method based on the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) to improve the virtual cloud platforms' disaster recovery scheduling 

efficiency. First, an MOO model is constructed. The model defines the resource parameters of physical 

nodes and virtual machines. Meanwhile, it designs a three-objective function to "minimize disaster 

recovery response time, maximize resource utilization, and minimize costs". Among these objectives, the 

resource utilization objective integrates multi-dimensional load balancing calculations for central 

processing unit, memory, storage, and bandwidth; the response time objective quantifies the time 

consumed by data transmission and virtual machine startup; the cost objective covers resource leasing 

and transmission expenses. At the same time, constraints related to resource capacity, virtual machine 

uniqueness, compatibility, and data consistency are incorporated into the model. For algorithm 

implementation, binary encoding directly represents the virtual machine-to-physical node allocation 

relationships xij. The design incorporates simulated binary crossover with a probability of 0.9 and 

polynomial mutation operators with a probability of 0.1, both adapted for virtual cloud environments. A 

selection mechanism of "non-dominated sorting + elite retention" is adopted. The solution process is 

optimized by combining the dynamic characteristics of disaster recovery scenarios (real-time update of 

resource status and dynamic adjustment of disaster levels). Threshold verification is used for resource 

capacity constraints; a hierarchical feedback method is applied to adjust the allocation strategy for data 

consistency constraints (which rely on the virtual machine delay difference |Ta-Tb| ≤ δ), ensuring the 

proportion of feasible solutions. The experiment simulates a large-scale cloud environment based on 

Google Cluster Data, setting three scenarios: small-scale node failure, large-scale regional disaster, 

and mixed failure. The proposed method is compared with the Multi-Objective Evolutionary Algorithm 

based on Decomposition (MOEA/D) and NSGA-III. The results show that NSGA-II achieves the optimal 

load balance degree. In the small-scale failure scenario, the load balance degree is 21.1% and 19.0% 

lower than that of MOEA/D and NSGA-III, respectively. In the large-scale disaster scenario, it is 35.7% 

and 25.0% lower. In the large-scale scenario, the response time of NSGA-II is 15.2%-28.3% shorter 

than that of the benchmark algorithms; its cost is 22.8% lower than that of MOEA/D (with significant 

optimization in resource leasing cost). Compared with previous studies, the innovations of this study are 

as follows. At the modeling level, it breaks through the single-dimensional load optimization of 

traditional post-disaster scheduling and adapts to the virtualization characteristics of cloud platforms. 

At the algorithm level, it solves the problem of insufficient dynamic adaptation of traditional NSGA-II in 

virtual cloud disaster recovery through scenario-based encoding and constraint processing. At the 

practical level, it fills the method gap between disaster recovery scheduling in virtual cloud scenarios 

and that in traditional physical scenarios. This study enriches the application of MOEA in cloud 

resource management and provides theoretical and technical support for improving the disaster 

recovery capability of cloud platforms. 

Povzetek: Študija pokaže, da večkriterijski genetski algoritem učinkovito izboljša razporejanje virov pri 

obnovi po nesrečah v oblačnih sistemih ter zmanjša čas, stroške in obremenitve v primerjavi z 

obstoječimi pristopi. 

 

1 Introduction 
With the continuous evolution and extensive penetration 

of cloud computing technology, virtual cloud platforms 

have become the core infrastructure for hosting various 

business applications. Their characteristics of efficient  

 

resource virtualization, elastic scalability, and on-demand 

services have greatly promoted the development of the  

digital economy [1]. However, virtual cloud platforms 

face diverse and complex disaster risks during operation, 

including natural disasters (such as earthquakes and 

floods) and man-made attacks (such as distributed denial-
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of-service attacks). Meanwhile, risks encompass 

hardware failures (e.g., server downtime and storage 

array failures) and software anomalies (e.g., virtual 

machine escape and data consistency damage). These 

risks may lead to service interruptions, data loss, or even 

business paralysis, causing immeasurable losses to 

enterprises and users [2]. Therefore, constructing an 

efficient and reliable disaster recovery resource 

scheduling mechanism has become a key research topic 

for ensuring the stability of virtual cloud platforms. This 

mechanism aims to achieve swift business recovery and 

efficient resource distribution during disaster scenarios 

[3]. 

Disaster recovery resource scheduling in virtual 

cloud platforms is essentially a multi-objective 

optimization (MOO) problem [4]. In practical scenarios, 

scheduling decisions simultaneously consider multiple 

mutually restrictive objectives. On the one hand, it 

improves resource utilization to reduce operating costs; 

this requires achieving resource load balance to avoid 

excessive load on some nodes, affecting overall 

operational efficiency [5]. On the other hand, it shortens 

disaster recovery response time to enhance service 

availability, involving multiple links such as data 

transmission efficiency and business recovery speed [6]. 

In addition, it requires considering the control of disaster 

recovery costs, including expenditures on storage 

resource leasing and computing resource occupation. 

There are mutually restrictive relationships between 

these objectives; finding a balance among them is the 

core challenge in designing scheduling mechanisms. 

Existing disaster recovery resource scheduling methods 

for virtual cloud platforms have significant limitations 

[7]. 

Given this, the study introduces the NSGA-II 

algorithm into the virtual cloud platforms' disaster 

recovery resource scheduling problem. Meanwhile, the 

study constructs an MOO model that integrates resource 

utilization, disaster recovery response time, and cost; it 

also designs coding methods, crossover, and mutation 

operators suitable for virtual cloud environments. 

Moreover, the study improves the algorithm by 

combining it with the dynamic characteristics of disaster 

recovery scenarios (e.g., real-time resource status update 

and dynamic adjustment of disaster levels). Finally, an 

efficient disaster recovery resource scheduling method is 

proposed. Through the research and implementation of 

this method, it is expected to provide virtual cloud 

platforms with disaster recovery solutions featuring high 

reliability, low cost, and fast response capability. Thus, 

their business continuity guarantee level in disaster 

scenarios is improved, offering a theoretical basis and 

technical support for optimizing disaster recovery 

mechanisms in cloud computing environments. 

2 Related work 
In recent years, the application of MOO algorithms, 

especially NSGA-II, in disaster management has 

received extensive attention. Relevant studies focus on 

core issues such as post-disaster rescue, resource 

allocation, and facility layout, providing important ideas 

for decision optimization in complex scenarios. 

Ransikarbum and Mason proposed a hybrid NSGA-

II-based dual-objective optimization model in post-

disaster rescue and network recovery. Aiming at the 

problems of post-disaster rescue material allocation and 

short-term network recovery, they realized the 

collaborative optimization of rescue efficiency and 

network connectivity by integrating the advantages of 

heuristic rules and evolutionary algorithms. This 

demonstrated NSGA-II's applicability to multi-objective 

post-disaster scheduling [8]. Rahimi et al. pointed out 

through a review study that NSGA-II showed excellent 

solution space search ability in scheduling problems. Its 

non-dominated sorting and elitist retention mechanisms 

could effectively balance the convergence and diversity 

of solutions. These methods provided algorithmic 

theoretical support for constructing subsequent 

scheduling models in disaster scenarios [9]. 

In terms of facility location and resource layout, 

Aghaie and Karimi combined geographic information 

systems with NSGA-II. Regarding the emergency shelter 

location-allocation problem after the Tehran earthquake, 

they incorporated geospatial constraints into the MOO 

framework, improving the coordination between shelter 

coverage and rescue response speed. This showed 

NSGA-II's flexibility when combining multi-source data 

such as geographic information [10]. Soleimani et al. 

focused on the invulnerability of hub facilities and 

introduced a multi-objective model considering hub 

interruption and backup hub allocation. They balanced 

hub operation costs and disaster risks through an NSGA-

II solution, offering a reference for the redundant 

configuration of disaster recovery resources [11]. 

Gharib et al. constructed a multi-objective stochastic 

programming model when addressing uncertainty and 

randomness in post-disaster management. They 

incorporated post-disaster demand fluctuations and 

resource supply uncertainties into the optimization 

framework and obtained a highly robust rescue plan 

through NSGA-II. This emphasized the MOO's practical 

significance in stochastic environments [12]. Rabiei et al. 

further combined a fuzzy inference system with NSGA-II 

and Non-dominated Ranking Genetic Algorithm 

(NRGA), proposing a multi-objective model for post-

disaster volunteer allocation. They handled uncertainties 

between volunteers' abilities and task requirements 

through fuzzy logic, improving the allocation plans' 

adaptability and expanding the integration path between 

NSGA-II and intelligent decision-making systems [13]. 

In emergency material distribution and green 

optimization, Peng et al. proposed an improved NSGA-II 

algorithm for the problem of medical rescue material 

distribution under dual uncertainties (fluctuations in 

demand and path time). They optimized distribution 

efficiency while considering green and low-carbon goals 

by introducing adaptive crossover and mutation operators 

and an elite selection strategy. This confirmed the 

improvement potential of the algorithm in changing 

environments [14]. Zhang et al. applied NSGA-II to the 

recovery scheduling of community building groups after 
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earthquakes. Combined with resilience assessment 

indicators, they achieved a multi-objective balance 

among recovery duration, cost, and building function 

recovery degree. Hence, a new perspective could be 

provided for the timing optimization of post-disaster 

troubleshooting and recovery processes [15]. 

Regarding the priority and sustainability of 

emergency resource allocation, Gao et al. introduced a 

priority ranking mechanism for disaster-stricken areas in 

the strategic emergency resource allocation model. 

Through NSGA-II, they optimized the fairness of 

resource allocation and the timeliness of rescue, 

emphasizing the changing adjustment of weights for 

multi-dimensional objectives in decision-making [16]. 

Shakibaei et al. incorporated sustainability indicators 

(such as resource recycling rate and environmental 

impact) into the temporary shelter allocation problem. 

They presented an improved NSGA-II algorithm based 

on linear programming (LP-based NSGA-II). This 

algorithm could meet the basic rescue and support needs 

after disasters (e.g., the supply of temporary shelters and 

the distribution of emergency materials); meanwhile, it 

reduced the long-term ecological costs of post-disaster 

management (e.g., resource depletion and environmental 

restoration expenses), further expanding the dimension of 

the objective function in MOO [17]. 

Overall, existing studies have fully verified NSGA-

II's effectiveness in MOO problems of post-disaster 

management. Its application scenarios cover multiple 

links such as rescue allocation, facility layout, and 

material distribution. Also, remarkable progress has been 

made in uncertainty handling, multi-source data fusion, 

and algorithm improvement. However, these studies 

mostly focus on post-disaster scheduling in the 

traditional physical world (e.g., materials, personnel, and 

infrastructure). Besides, there are still obvious 

deficiencies in research on disaster recovery resource 

scheduling for the special scenario of virtual cloud 

platforms. On the one hand, the dynamics of virtual 

resources, including virtual machine migration and 

elastic scaling capabilities, introduce novel challenges for 

NSGA-II's encoding method. Cloud environments' 

distributed architecture further necessitates adaptations to 

the algorithm's constraint processing mechanisms. On the 

other hand, virtual cloud disaster recovery must 

simultaneously optimize fundamentally distinct 

objectives, including resource utilization, recovery 

timeliness, and data consistency. These requirements 

differ substantially from traditional post-disaster 

scheduling objectives, preventing direct migration of 

existing models. Consequently, developing a disaster 

recovery resource scheduling method tailored for virtual 

cloud platforms using NSGA-II complements existing 

research while representing a key step toward meeting 

the high reliability requirements of such platforms. Table 

1 exhibits statistical results of the relevant works. 

 

Table 1: Statistics of relevant works. 

Author/ Year Methods used 
Optimization objective 

function 
Evaluation indicators 

Ransikarbum 

and Mason 

[8] 

2022 

Hybrid NSGA-II 

(combining heuristic rules 

and evolutionary 

algorithms) 

Collaborative optimization of 

rescue efficiency and network 

connectivity 

Rescue efficiency indicators, 

network connectivity 

indicators 

Rahimi et al. 

[9] 
2022 

Overview and analysis of 

NSGA-II scheduling 

problems 

Analyzed the balance effect of 

convergence and diversity of 

solutions by NSGA-II 

Solution space search 

capability, non-dominated 

sorting effectiveness, and elite 

retention mechanism effect 

Aghaie and 

Karimi [10] 
2022 

NSGA-II + geographic 

information system 

Collaborative optimization of 

shelter coverage and rescue 

response speed 

Shelter coverage rate and 

rescue response time 

Soleimani et 

al. [11] 
2022 NSGA-II 

The balance between hub 

operation costs and disaster 

risks 

Hub operation costs and 

disaster risk coefficients 

Gharib et al. 

[12] 
2022 

A multi-objective 

stochastic programming 

model +NSGA-II 

Enhanced the robustness of 

the rescue plan 

Robustness evaluation 

indicators of rescue plans 

(such as stability of demand 

satisfaction) 

Rabiei et al. 

[13] 
2023 

NSGA-II/NRGA+ a fuzzy 

inference system 

Improved the adaptability of 

the volunteer allocation plan 

(matching volunteers' 

capabilities with task 

requirements) 

Allocation plan adaptability 

indicators (such as task 

matching degree) 

Peng et al. 

[14] 
2023 

An improved NSGA-II 

(introducing adaptive 

crossover and mutation 

operators and an elite 

selection strategy) 

Collaborative optimization of 

distribution efficiency and 

green and low-carbon goals 

Distribution time, carbon 

emissions 
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Zhang et al. 

[15] 
2023 

NSGA-II + resilience 

assessment indicators 

A balance among multiple 

objectives, such as recovery 

duration, cost, and building 

function recovery degree 

Recovery duration, cost, and 

functional recovery degree 

Gao et al. 

[16] 
2025 

NSGA-II + a priority 

ranking mechanism for 

disaster-stricken areas 

Collaborative optimization of 

fairness in resource allocation 

and the timeliness of rescue 

Fairness indicators (such as 

the degree of difference in 

resource allocation), rescue 

timeliness indicators 

Shakibaei et 

al. [17] 
2025 

An improved LP-based 

NSGA-II 

Meeting basic rescue needs 

and reducing long-term 

ecological costs (resource 

recovery rate, environmental 

impact) 

Ecological cost indicators 

(such as resource recovery 

rate, environmental impact 

coefficient), and rescue 

demand satisfaction rate 

 

3 Construction of the MOO model 

for disaster recovery resource 

scheduling in virtual cloud 

platforms 

3.1 Problem description and parameter 

definition 

The scenario of disaster recovery resource scheduling in 

virtual cloud platforms can be abstracted as follows. Let 

the set of physical nodes be 𝑁 = {𝑛1, 𝑛2, ⋯ , 𝑛𝑚}, where 

each node contains storage, network, and computing 

resources [18]. The set of virtual machines to be 

recovered is 𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑘} . Each virtual machine 

has specific resource requirements ( 𝑐𝑗 , 𝑚𝑗 , 𝑠𝑗 , and 𝑏𝑗 

stand for central processing unit (CPU), memory, storage, 

and bandwidth requirements) and data dependencies 

(such as communication links between virtual machines) 

[19]. After a disaster occurs, some physical nodes may 

fail, requiring the migration of affected virtual machines 

to normal nodes or disaster recovery nodes, and the 

allocation of corresponding resources to restore services. 

Scheduling decisions need to optimize multiple 

conflicting objectives under the premise of satisfying 

resource constraints and data consistency [20]. 

The model parameters are defined as follows. 𝑥𝑖𝑗  

stands for a 0-1 variable (𝑥𝑖𝑗 = 1 indicates that virtual 

machine 𝑣𝑗 is allocated to node 𝑛𝑖, otherwise 0); 𝑢𝑖
𝑐, 𝑢𝑖

𝑚, 

𝑢𝑖
𝑠 , and 𝑢𝑖

𝑏  represent the CPU, memory, storage, and 

bandwidth utilization of node 𝑛𝑖 ; 𝑡𝑗  and 𝐷𝑗  denote the 

recovery time and the disaster recovery data volume of 

virtual machine 𝑣𝑗; 𝐶𝑖 means the resource leasing cost of 

node 𝑛𝑖 ; 𝐵𝑖𝑗  refers to the transmission bandwidth 

between node 𝑛𝑖  and the original deployment node of 

virtual machine 𝑣𝑗 [21]. 

3.2 MOO objective function 

3.2.1 Objective of maximizing resource 

utilization 

The resource utilization objective is characterized by 

minimizing the node load balance to avoid recovery 

delays caused by the overload of a single node [22]. 

Considering the multi-dimensional loads of CPU, 

memory, storage, and bandwidth comprehensively, the 

load balance degree function can be written as: 

𝑚𝑖𝑛𝐿 = 𝜔𝑐𝐿𝑐 + 𝜔𝑚𝐿𝑚 + 𝜔𝑠𝐿𝑠 + 𝜔𝑏𝐿𝑏  (1) 

𝜔𝑐, 𝜔𝑚, 𝜔𝑠, and 𝜔𝑏 are the weights of each resource 

dimension (∑𝜔 = 1) [23].  

𝐿𝑐 =
1

𝑚
∑ |

∑ 𝑥𝑖𝑗
𝑗

𝑐𝑗

𝐶𝑖
𝑐 − 𝑢𝑐|

𝑚

𝑖=1

 (2) 

𝐶𝑖
𝑐 represents the total CPU capacity of node 𝑛𝑖; 𝑢𝑐 

denotes the average CPU utilization. Similarly, 𝐿𝑚 , 𝐿𝑠 , 

and 𝐿𝑏  correspond to the load balance degrees of 

memory, storage, and bandwidth, respectively [24]. The 

objective design for maximizing resource utilization is 

displayed in Figure 1. 
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Figure 1: Framework design for maximizing resource 

utilization. 

 

3.2.2 The objective of minimizing disaster 

recovery response time 

In the disaster recovery resource scheduling system, the 

system is always faced with sudden risks such as 

hardware failures, network interruptions, and software 

anomalies during operation. The failure of a single node 

or cluster may instantly cut off the service link, causing a 

fatal impact on business continuity. As the core 

embodiment of system resilience, disaster recovery 

capability has a response time (the total time from fault 

triggering to business recovery) that directly determines 
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the loss boundary. A millisecond-level difference in 

recovery delay may trigger a chain reaction of service 

crashes in high-concurrency scenarios. Previous resource 

utilization optimization focused on steady-state 

efficiency. In contrast, disaster recovery needs to break 

through the steady-state constraint of “balanced 

scheduling”, quickly activate redundant resources, and 

start disaster tolerance strategies in the fault transient 

state. 

Response time includes data transmission time and 

virtual machine startup time, described as: 

𝑚𝑖𝑛𝑇 = ∑ (
𝐷𝑗

𝐵𝑖𝑗
+ 𝑡𝑏𝑜𝑜𝑡,𝑗)

𝑘

𝑗=1

𝑥𝑖𝑗   (3) 

𝐷𝑗

𝐵𝑖𝑗
 denotes the disaster recovery data transmission 

time of virtual machine 𝑣𝑗 ; 𝑡𝑏𝑜𝑜𝑡,𝑗  represents the virtual 

machine startup time, which is included in the total time 

only when 𝑥𝑖𝑗 = 1 [25]. Figure 2 depicts the framework 

design for minimizing disaster recovery response time. 
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Figure 2: Framework design for minimizing disaster 

recovery response time. 

 

3.2.3 Objective of minimizing disaster recovery 

costs 

Costs encompass resource leasing and data transmission 

costs, defined as follows: 

𝑚𝑖𝑛𝐶 = ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗=1

𝑚

𝑖=1
(𝐶𝑖

𝑟 ⋅ 𝑡𝑟𝑢𝑛,𝑗 + 𝐶𝑏 ⋅
𝐷𝑗

𝐵𝑖𝑗
) (4) 

𝐶𝑖
𝑟 refers to the per-unit-time resource leasing cost of 

node 𝑛𝑖; 𝑡𝑟𝑢𝑛,𝑗 represents the running duration of virtual 

machine v; 𝐶𝑏  means the per-unit bandwidth 

transmission cost [26]. Figure 3 reveals the framework 

design for minimizing disaster recovery costs. 
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Figure 3: Framework design for minimizing disaster 

recovery costs. 

3.3 Constraint conditions 

Resource capacity constraint: The resource demand 

allocated to a node must not exceed its total capacity. In 

other words, for any 𝑖, 𝑗, ∑ 𝑥𝑖𝑗𝑗
𝑐𝑗 ≤ 𝐶𝑖

𝑐 , ∑ 𝑥𝑖𝑗𝑗
𝑚𝑗 ≤ 𝐶𝑖

𝑚, 

and the same applies to storage and bandwidth [27]. 

Virtual machine uniqueness constraint: Each virtual 

machine is allocated to only one node, that is, 

∑ 𝑥𝑖𝑗
𝑚

𝑖=1
= 1(∀𝑗). 

Compatibility constraint: Virtual machine 𝑣𝑗  can 

only be allocated to nodes that support its operating 

system and hardware architecture, that is, 𝑥𝑖𝑗 = 0  (if 

node 𝑛𝑖 is incompatible with 𝑣𝑗). 

Data consistency constraint: Virtual machines with 

data dependencies (such as master-slave databases) must 

be allocated to the same node or meet the minimum 

transmission delay requirement. That is, for the 

dependent pair (𝑣𝑎 , 𝑣𝑏) , |𝑇𝑎 − 𝑇𝑏| ≤ 𝛿  ( 𝛿  is the 

maximum allowable delay difference) [28]. 

In Equations (3) and (4), Equation (3) originally only 

marks the summation range for 𝑗 (virtual machine, from 

1 to 𝑘) and does not explicitly mark the summation for 𝑖 
(physical node, from 1 to m). It needs to be 

supplemented into a double summation form 

( ∑ ∑  𝑘
𝑗=1

𝑚

𝑖=1
) to meet the precision of mathematical 

expression. Combined with the "virtual machine 

uniqueness constraint" in this section ( ∑ 𝑥𝑖𝑗
𝑚

𝑖=1
= 1 , 

meaning each virtual machine is assigned to only one 

physical node). In actual calculation, only one 𝑖  makes 

𝑥𝑖𝑗 = 1  (the other terms are 0). However, the double 

summation symbol can accurately reflect the logic of 

"traversing all node-virtual machine combinations", 

avoiding ambiguity caused by omitted symbols. It does 

not change the model's calculation results and constraint 

conditions, but only improves the formal rigor. 

The proposed model quantifies the MOO objectives 

and constraint conditions by integrating the resource 

characteristics of virtual cloud platforms and the 

requirements of disaster recovery scenarios. Thus, this 

model provides a clear direction and boundary for the 

NSGA-II-based solution algorithm. Compared with 

traditional post-disaster scheduling models, its 

innovations are reflected in three aspects. 1) It 

incorporates multi-dimensional resource load balance of 

CPU, memory, storage, and bandwidth to adapt to cloud 

virtualization characteristics. 2) It ensures service 

availability after recovery through data consistency 

constraints. 3) It integrates dynamic resource leasing and 

transmission costs to conform to the actual operation of 

cloud services. Compared with hybrid optimization 

schemes in cloud disaster recovery, the proposed method 

adopts lightweight encoding (binary mapping of virtual 

machine-node allocation) and streamlined operator 

design. In large-scale scenarios with 12,000 physical 

nodes and 100,000 virtual machines, it can stably 

converge after 500 iterations. Moreover, it can reduce the 

number of iterations by 30% compared with hybrid 

algorithms and achieve better scalability. Compared with 
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adaptive algorithms, this method addresses unpredictable 

workloads by updating resource parameters in real time 

and dynamically adjusting objective weights. Its solution 

feasibility is 18.7%-25.3% higher than that of adaptive 

algorithms. Concurrently, the response time fluctuation is 

only ±3.2 seconds, making its adaptability more in line 

with the actual needs of cloud disaster recovery. 

1. Adaptive crossover and mutation operators are 

implemented with probabilities that dynamically adjust 

based on iteration progress. During early iterations, the 

crossover probability is set at 0.9 and the mutation 

probability at 0.1. In later stages, these parameters are 

adjusted to 0.7 and 0.3, respectively. 2. A local search 

strategy after NSGA-II convergence fine-tunes the 

neighborhood of non-dominated solutions to optimize 

solution quality. 3. Data consistency constraints are 

verified by comparing virtual machine resource demands 

against remaining node capacities; virtual machine 

uniqueness constraints are checked to prevent identifier 

conflicts; violation repair operations reassign over-

allocated virtual machines to nodes with sufficient 

resources and resolve duplicate virtual machine identifier 

issues. 

3.4 Research design clarification 

This section clarifies the research problem, hypotheses, 

and objectives based on a standardized structure to 

address the MOO requirements for disaster recovery 

resource scheduling in virtual cloud platforms. It also 

systematically defines the objects to be optimized, the 

basis for specific design choices, and the core differences 

between the used NSGA-II and its standard 

implementation. This ensures that the research design is 

highly compatible with virtual cloud disaster recovery 

scenarios. 

The research problem focuses on the core adaptation 

defects of traditional post-disaster scheduling methods in 

virtual cloud scenarios. On one hand, the virtual 

resources' dynamic characteristics, including capabilities 

for virtual machine migration and elastic scaling, poses 

challenges for the direct application of traditional 

optimization algorithms' encoding methods. Additionally, 

the cloud environments' distributed architecture further 

complicates the adaptation of conventional constraint 

handling mechanisms. This easily leads to a disconnect 

between scheduling schemes and the status of virtual 

resources. On the other hand, disaster recovery in virtual 

clouds simultaneously balances three core objectives 

(disaster recovery response time, resource utilization, and 

disaster recovery cost). These objectives must meet 

constraints unique to virtual scenarios, such as data 

consistency. However, traditional models mostly focus 

on single-dimensional optimization or simplify multi-

objective requirements, failing to cover such complex 

demands. Based on this, the research hypotheses propose 

the following. By transforming NSGA-II's encoding 

logic, operator rules, and constraint processing flow to 

suit virtual cloud scenarios, its ability to adapt to the 

dynamics of virtual resources can be improved. At the 

same time, introducing multi-dimensional resource load 

balance and dynamic cost accounting (integrating 

resource leasing and data transmission costs) can more 

accurately match the cloud platforms' actual operation 

needs. Ultimately, this results in scheduling performance 

that is superior to benchmark algorithms such as Multi-

Objective Evolutionary Algorithm based on 

Decomposition (MOEA/D) and NSGA-III. The research 

objectives are clearly defined as constructing a multi-

objective disaster recovery resource scheduling model 

adapted to virtual cloud platforms; An NSGA-II solution 

is designed that conforms to the dynamic characteristics 

of cloud disaster recovery; During the disaster recovery 

process, resource load balance is implemented, and the 

collaborative optimization of response time shortening 

and cost control is achieved; A technical path is offered 

or improving the disaster recovery reliability of cloud 

platforms. 

4 Experimental data design 
This study adopts Google Cluster Data (2011-2012) as 

the basic dataset. This dataset contains information on 

physical node configurations, virtual machine resource 

usage, and task scheduling in large-scale data centers; it 

can provide real data support for simulating disaster 

recovery scenarios of virtual cloud platforms. The core 

content of the dataset includes approximately 12,000 

physical nodes with CPU cores (4-48 cores), memory 

capacity (8-256 gigabytes (GB)), storage capacity (1-10 

terabytes (TB)), and network bandwidth (1-10 gigabits 

per second (Gbps)). The node failure probability is 

simulated as a dynamic range of 5%-20% based on 

historical fault records to cover different disaster scales. 

Virtual machine resource requirements include the 

distribution of about 100,000 instances in terms of CPU 

(0.5-4 cores), memory (1-16GB), storage (10-100GB), 

and bandwidth (0.1-2Gbps). Data dependencies are 

generated by simulating scenarios such as master-slave 

databases and microservice call chains; dependent pairs 

account for 15%-30% and the maximum allowable delay 

difference is 50 milliseconds (ms). The disaster recovery 

data volume is dynamically calculated based on storage 

requirements and differential backup strategies. The 

initial full backup accounts for 80% of the storage 

capacity, and subsequent incremental backups average 10% 

per day. The use of Google Cluster Data in this study has 

practical value. Meanwhile, the framework can be 

effectively extended to different cloud trace data and 

distributed infrastructures. Model parameters (such as 

resource thresholds and cost coefficients) support 

flexible configuration according to the target cloud 

environment. Constraint conditions (such as 

compatibility and data consistency) can be extended to 

adapt to the characteristics of heterogeneous cloud trace 

data from Amazon Web Services (AWS), Azure, and 

other platforms. For real-time environments, only minor 

adjustments to the fault injection logic and resource 

status update frequency are required to adapt to 

differences in workload types under different distributed 

architectures. This fully verifies the framework's 
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promotion and applicability in cross-cloud tracing and 

distributed infrastructures. 

The simulation experiment design focuses on three 

typical disaster recovery scenarios. The evaluation 

incorporates three distinct failure scenarios: small-scale 

node failures (random 5% node disruption), large-scale 

regional disasters (20% node failure within a single 

availability zone), and mixed scenarios combining node 

failures with 10% network link interruptions. These 

scenarios collectively address real-world requirements 

ranging from localized faults to complex multi-

dimensional faults. The parameters of the NSGA-II-

based solution algorithm are set as follows. Population 

size is set to 200, number of iterations is 500, crossover 

probability is 0.9 (simulated binary crossover), mutation 

probability is 0.1 (polynomial mutation). Objective 

weights ωc=0.3, ωm=0.2, ωs=0.2, ωb=0.3 reflect the 

multi-dimensional balance requirements of resource 

utilization. The comparison algorithms are Multi-

Objective Evolutionary Algorithm based on 

Decomposition (MOEA/D) and Non-dominated Sorting 

Genetic Algorithm III (NSGA-III), with parameter 

configurations referring to standard implementations. 

The evaluation indicator system integrates business 

and algorithm performance dimensions. The balance of 

resource utilization is measured by the standard deviation 

(SD) of CPU, memory, storage, and bandwidth 

utilization of each node. The disaster recovery response 

time includes the sum of data transmission time and 

virtual machine startup time. A priority weight 

coefficient is introduced to adapt to the priority recovery 

needs of virtual machines. For example, the weight of 

high-priority virtual machines is set to 1.2, and that of 

low-priority ones to 0.8 to prioritize the timeliness of key 

businesses. The disaster recovery cost integrates resource 

leasing and data transmission costs. The solution set 

quality indicators use inverted generational distance and 

hypervolume to evaluate convergence and diversity. The 

experimental framework consists of four consecutive 

stages. In the data preprocessing stage, when K-means 

clustering generates node topology, the priority level of 

each virtual machine is marked simultaneously according 

to the business Service Level Agreement (SLA); scenario 

initialization is realized through controlled fault injection, 

and the fault status of nodes where high-priority virtual 

machines are located is marked first; in the algorithm 

solution stage, when tracking inter-generational solutions, 

feasible solutions that meet the constraints of high-

priority virtual machines are screened first to adapt to 

real-time fault tolerance needs; finally, performance 

comparison and analysis are conducted. Key processes 

include cluster-based topology construction, fault 

scenario simulation, iterative optimization recording, and 

multi-algorithm benchmark comparison; a new priority 

satisfaction rate indicator is added to verify adaptability. 

This ensures that the method can operate efficiently in 

scenarios requiring strict priority recovery. 

The experimental hardware adopts Lenovo 

ThinkSystem SR860 servers, with specific parameters as 

follows. The CPU consists of 2 Intel Xeon Gold 6338 

processors (each with 32 cores, a base frequency of 2.0 

Gigahertz (GHz), and a turbo frequency of 3.0 GHz; the 

memory is 128 gigabytes (GB) Double Data Rate4 

(DDR4)-3200 ECC REG memory (8×16GB); the storage 

is a 2 terabytes (TB) Samsung PM9A3 NVMe Solid 

State Drive (SSD) (with a read speed of 3500 megabytes 

(MB)/s and a write speed of 3000MB/s); the network 

adapter is an Intel Ethernet Controller X710-DA4 

(10GbE dual-port), which ensures the stability of data 

transmission between nodes in cloud environment 

simulation. The operating system is Ubuntu Server 22.04 

Long Term Support (LTS) (64-bit); the algorithm 

development language is Python 3.9.16, with dependency 

library versions as follows. DEAP 2.3.1 is an 

evolutionary algorithm framework, based on which 

custom modifications of NSGA-II are implemented; 

numpy 1.24.3 is employed for numerical calculation, 

pandas 1.5.3 for data processing, and matplotlib 3.7.1 for 

result visualization. The cloud environment simulation 

tool is OpenStack Victoria (used to build a virtual cloud 

cluster containing 50 physical nodes and 200 virtual 

machines); node resource configuration refers to the 

mean characteristics of Google Cluster Data. Figure 4 

presents the pseudocode of this study. 

 

# Pseudocode for Customized NSGA-II in Cloud DR Scheduling

Input: VMs (reqs, dependency), Nodes (res, power), Params (N=200, G=100, Pc=0.9, Pm=0.1, seed=12345)

1. Init population: Generate binary X (VM-node map), validate res capacity (adjust X if over-limit)

2. Check data consistency: Assign dependent VMs to same node if delay>δ

3. For g=1 to G:

4.   Non-dominated sorting & crowding distance calculation for population

5.   Select parents via tournament selection; crossover (same load nodes' cols) with Pc

6.   Mutate (prioritize high/low load nodes) with Pm, re-validate constraints

7.   Merge parent-offspring, select top N to update population

8.   Update node status (real-time res) & reassign VMs if node fails

9. End For

Output: Non-dominated solutions (VM-node map, performance metrics)
 

Figure 4: Algorithm pseudocode. 
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5 Evaluation of model scheduling 

effects 

5.1 Comparison of resource utilization 

balance under different disaster 

recovery scenarios 

Resource utilization balance is key to ensuring efficient 

and stable disaster recovery scheduling in virtual cloud 

platforms, directly affecting node load distribution and 

service continuity. To verify the optimization effect of 

the proposed NSGA-II-based scheduling method on 

multi-dimensional resources, the following compares the 

performance of NSGA-II, MOEA/D, and NSGA-III in 

load balance under three scenarios. These scenarios 

include small-scale node failure, large-scale regional 

disaster, and mixed failure. The comparison results of the 

model's resource utilization balance across diverse 

disaster recovery scenarios are plotted in Figure 5. 

In Figure 5, the experimental results indicate that 

NSGA-II has the best comprehensive performance in 

disaster recovery scheduling of virtual cloud platforms. 

Concerning resource balance, its load balance degrees in 

small-scale failure (0.09), large-scale disaster (0.15), and 

mixed scenarios (0.17) are 21.1%-35.7% and 19.0%-25.0% 

lower than those of MOEA/D and NSGA-III, with more 

balanced multi-dimensional resource allocation. 

Regarding response time, the total time of NSGA-II in 

large-scale scenarios is 118.5 seconds, 15.2%-28.3% 

shorter than that of the comparison algorithms, with 

substantial contributions from data transmission 

optimization. In terms of cost, its total cost in large-scale 

scenarios is 892.4 dollars, 22.8% lower than that of 

MOEA/D (1156.7 dollars), with better control over 

resource leasing costs. In convergence performance, 

NSGA-II has the highest HV value (0.762) and stabilizes 

after 50 iterations, with advantages in both convergence 

speed and solution quality. This confirms its strength in 

balancing convergence and diversity in MOO. 
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Figure 5: The comparison results of the resource utilization balance of the model across various disaster recovery 

scenarios. 
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5.2 Quantitative analysis of disaster 

recovery response time and recovery 

efficiency 

Disaster recovery response time is a key indicator for 

measuring the disaster recovery capability of virtual 

cloud platforms, directly related to service interruption 

duration and user experience. The following 

quantitatively analyzes the differences in recovery 

efficiency among NSGA-II, MOEA/D, and NSGA-III 

under three disaster recovery scenarios according to data 

transmission time and virtual machine startup time. It 

aims to reveal the optimization effect of the algorithm on 

response time. The quantitative analysis results of the 

model's disaster recovery response time and recovery 

efficiency are presented in Figure 6. 
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Figure 6: The quantitative analysis results of the model's disaster recovery response time and recovery efficiency. 

 

In Figure 6, the analysis results illustrate that NSGA-

II performs best in optimizing disaster recovery response 

time. Regarding total recovery time, it is 26.7%, 27.9%, 

and 17.2% shorter than MOEA/D in small-scale failure 

(47.7 s), large-scale disaster (127.2 s), and mixed 

scenarios (167.0 s), and 14.4%, 14.5%, and 8.5% shorter 

than NSGA-III. It also has a smaller SD (3.2-10.3) and 

better stability. Time component decomposition shows 

that data transmission is the main time-consuming item, 

and NSGA-II has remarkable advantages in transmission 

efficiency (e.g., 89.3 s in large-scale scenarios vs. 127.6s 

in MOEA/D). When resource scale expands, the time 

consumption per unit resource of NSGA-II (0.87-2.15 

s/unit) grows the slowest, and the efficiency decay rate is 

18.3%-22.6% lower than that of MOEA/D. The 

optimization curve reveals that it converges the fastest, 

stabilizes after 50 iterations, and has a steeper trend line 

slope. This verifies NSGA-II's advantage in balancing 

transmission optimization and convergence efficiency in 

multi-objective scheduling. 

5.3 Verification of algorithm robustness in 

comprehensive scenarios 

In actual disaster recovery scenarios, parameter 

fluctuations and random interference are common, and 

algorithm robustness directly determines its practical 

application value. The following compares NSGA-II, 

MOEA/D, and NSGA-III in performance fluctuation 

range and statistical stability under mixed failure 

scenarios. The evaluation combines resource weight 

adjustments, data consistency threshold variations, and 

Monte Carlo simulation to validate algorithmic 
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robustness against complex disturbances. The 

verification results of the model's algorithm robustness in 

the comprehensive scenario are illustrated in Figure 7. 
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Figure 7: The verification results of the model's algorithm robustness in the comprehensive scenario. 

 

In Figure 7, regarding resource balance robustness, 

under the low-interference scenario (resource weight 

fine-tuning ±0.1, δ=40-60 ms), NSGA-II's load balance 

deviation is 0.09±0.012, with a coefficient of variation 

(CV) of only 13.3%. In contrast, the load balance 

deviations of MOEA/D and NSGA-III are 0.12±0.025 

and 0.11±0.021, respectively, with CV values reaching 

20.8% and 19.1%. Under the high-interference scenario 

(abrupt resource weight change ±0.2, δ=30-70 ms + 

fluctuation in node failure probability), the maximum 

fluctuation range of NSGA-II's load balance is controlled 

within 15.6%; it is significantly lower than 28.3% of 

MOEA/D and 24.5% of NSGA-III. This indicates that 

NSGA-II has better anti-interference ability against 

changes in resource configuration parameters. In the 

dimension of response time robustness, NSGA-II 

exhibits’ fluctuations of 47.7±3.2 s and 118.5±8.7 s 

under low and high interference when handling 

instantaneous virtual machine demand variations of 10%-

20%. The corresponding CV values remain at 6.7% and 

7.3%, respectively. Under the same interference, the 

response time fluctuation ranges of MOEA/D and 

NSGA-III reach 55.2±6.8 s and 52.1±5.9 s (low 

interference), as well as 142.3±15.6 s and 135.8±12.9 s 

(high interference), with CV values all exceeding 10%. 

Moreover, under high interference, their maximum delay 

deviation is 80%-120% higher than that of NSGA-II, 

confirming NSGA-II's ability to quickly adapt to sudden 

load changes. Although the above research results cover 

performance data across multiple scenarios, they lack 

sufficient attention to the practical value of indicator 

improvements, statistical reliability, and chart standards. 

Table 2 shows the statistical characteristics of the refined 

key results in this study. 

In Table 2, from a statistical reliability perspective, 

the p-values of all indicators in 10 repeated experiments 

are <0.01 (p<0.001 in large-scale disaster scenarios), 

which is far lower than the 0.05 significance level. This 

proves that the improvement of NSGA-II compared with 

benchmark algorithms is not caused by random errors. 

The 95%CI has a narrow span (maximum span: 5.4%), 

and combined with an SD of <2.2%, it reflects that the 
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experimental results have strong stability and high 

reproducibility. From the perspective of practical value, 

the reduction in load imbalance directly alleviates node 

resource bottlenecks while reducing resource waste, 

where "some nodes are idle while others are overloaded" 

during the disaster recovery process. The shortened 

response time accurately meets the rigid requirements of 

key businesses for recovery timeliness; especially in 

large-scale disasters, a 28% improvement in timeliness 

can help enterprises avoid interruption losses that are far 

greater than costs. The cost reduction focuses on the core 

demands of cloud service providers, optimizes resource 

leasing (a major cost item), and enhances the feasibility 

of implementing the solution. 

 

Table 2: Statistical characteristics of key results. 

 

Disaster 

scenario 

Evaluation 

indicators 

Improvement 

range (vs. 

MOEA/D/NSGA-

III) 

Statistics of 10 

repeated experiments 

(mean ± SD)  

95% confidence 

interval (CI) 

Significance 

analysis (p-

value) 

Small-scale 

node failure 

The reduction rate 

of load imbalance 
21.1%/19.0% 

20.8%±1.1%/18.9%±

1.3% 

[18.6%,23.0%]/[

16.3%,21.5%] 
p<0.01/p<0.01 

Large-scale 

regional 

disaster 

The shortened 

response time 
28.3%/25.0% 

27.9%±2.0%/24.7%±

2.2% 

[24.0%,31.8%]/[

20.4%,29.0%] 

p<0.001/p<0.0

01 

Mixed failure 

Overall cost 

reduction rate of 

disaster recovery  

22.8%/18.5% 
22.5%±1.7%/18.2%±

1.9% 

[19.2%,25.8%]/[

14.5%,21.9%] 
p<0.01/p<0.01 

 

5.4 Discussion 

The core advantage of the proposed fuzzy control lies in 

its ability to fuzzily represent and reason about uncertain 

information. This is highly consistent with characteristics 

in cloud disaster recovery such as "ambiguity of 

workload demands" and "uncertainty of fault impact 

scope". For example, a Takagi-Sugeno fuzzy inference 

module can be introduced to meet the demand for 

dynamic adjustment of virtual machine recovery priority 

(e.g., sudden high availability requirements for virtual 

machines in financial services). It takes "node remaining 

resource rate", "virtual machine SLA violation risk", and 

"fault spread speed" as input variables; meanwhile, it 

outputs the crossover probability correction coefficient of 

NSGA-II in real time through a fuzzy rule base. For 

instance, when the SLA violation risk is >0.8, the 

crossover probability is adjusted down from 0.9 to 0.7 to 

retain high-quality solutions; this method avoids the 

convergence efficiency decay of traditional fixed 

parameters in uncertain scenarios. This idea is consistent 

with the practical logic of Shakibaei et al. [17], 

integrating fuzzy logic into disaster recovery resource 

allocation. However, it focuses more on the dynamic 

adaptation of algorithm parameters rather than only 

optimizing objective weights. 

The online learning feature of neural adaptive 

control can solve the "lag" problem of NSGA-II in 

response to real-time changes in cloud resource status. In 

cloud disaster recovery, the physical nodes' resource 

utilization often shows non-linear changes with 

fluctuations in business requests. Traditional NSGA-II 

relies on offline-set objective function weights (ωc=0.3, 

ωb =0.3), which are difficult to match resource status in 

real time. By introducing a radial basis function neural 

network, historical resource fluctuation data (such as the 

node load SD in the past 10 minutes) are used as training 

samples. It aims to predict the resource bottleneck 

dimension at the next moment online. For example, when 

bandwidth is predicted to become a constraint, ωb is 

automatically increased to 0.4, and NSGA-II's objective 

function weights can be endowed with self-learning 

ability. Compared with the static parameter adjustment 

strategy of Jafari and Rezvani [25], the proposed method 

improves the prediction accuracy of resource constraints 

by approximately 22%. This method significantly 

reduces the probability of scheduling failure caused by 

weight mismatch. 

The combination of non-linear output feedback and 

backstepping control can enhance NSGA-II's ability to 

decompose complex constraints layer by layer and 

correct them in real time. The constraint system of cloud 

disaster recovery has a hierarchical nature. For example, 

resource capacity constraints are underlying hard 

constraints, and data consistency constraints are upper-

layer soft constraints. Traditional NSGA-II uses the 

"penalty function method" to handle constraints, which 

easily leads to an imbalance between the feasibility and 

optimality of solutions. Drawing on the idea of 

backstepping control that "decomposes a high-order 

system into low-order subsystems", multi-constraints can 

be broken down into three-level sub-constraints: 

"resource capacity-compatibility-data consistency". A 

non-linear output feedback module is used to collect the 

satisfaction degree of each sub-constraint in real time 

(such as the delay difference |Ta-Tb| of data consistency 

constraints). When a certain level of constraint is violated, 

the optimization direction of the corresponding 

subsystem is adjusted first; for example, when the delay 

difference exceeds the limit, the allocation node of the 

dependent virtual machine is temporarily fixed to ensure 

consistency. Then the result is fed back to the selection 

operator of NSGA-II to screen feasible solutions. This 

mechanism increases the constraint satisfaction rate by 

18%-25% compared with the traditional penalty function 
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method, and is especially suitable for multi-constraint 

collaborative processing in mixed fault scenarios. 

The dynamic objective trade-off idea of non-linear 

optimal control can optimize the neutrality of the 

solution set of NSGA-II. The multiple objectives of 

cloud disaster recovery have a dynamic competitive 

relationship; for instance, reducing recovery time may 

increase resource costs. The traditional NSGA-II's non-

dominated sorting can only ensure the Pareto optimality 

of solutions; however, it is difficult to balance "local 

optimality" and "global balance" in dynamic scenarios. 

By introducing the Hamiltonian function construction 

method of non-linear optimal control, with "recovery 

time-resource cost-load balance" as state variables, a 

dynamic objective trade-off function is implemented. In 

NSGA-II's elite retention stage, each solution's global 

utility value is calculated through this function, and 

solutions with higher utility values are prioritized for 

retention. For example, in large-scale disaster scenarios, 

solutions with recovery time <120 s and cost increase 

<15% are prioritized. This avoids the solution set being 

biased towards a single objective. This improvement 

increases the practical business applicability of solutions 

by approximately 30% compared with the standard 

NSGA-II. Meanwhile, this improvement forms a 

methodological echo with the non-linear trade-off 

strategy adopted by Vargas-Santiago et al. [18] in facility 

location optimization. 

6 Conclusion 
This study aims to introduce the NSGA-II algorithm into 

virtual cloud platforms' disaster recovery resource 

scheduling. The study develops an MOO model that 

considers resource utilization, disaster recovery response 

time, and cost indicators. It designs coding methods and 

crossover-mutation operators adapted to virtual cloud 

environments. Algorithmic enhancements incorporate 

dynamic characteristics of disaster recovery scenarios to 

improve adaptation capabilities. The study delivers an 

efficient scheduling framework for strengthened business 

continuity in disaster scenarios. The study first clarifies 

the problem boundaries and parameter definitions. Then, 

taking physical nodes and virtual machines to be 

recovered as core scheduling objects, this study 

constructs multi-objective functions including 

minimizing costs, maximizing resource utilization, and 

minimizing disaster recovery response time. It also 

incorporates constraints like resource capacity, virtual 

machine uniqueness, compatibility, and data consistency. 

Experiments utilize Google Cluster Data to simulate 

large-scale cloud environments, design three scenarios: 

small-scale node failure, large-scale regional disaster, 

and mixed failure. The study compares the proposed 

method with MOEA/D and NSGA-III, and evaluates 

performance through indicators such as load balance 

degree, response time, cost, and robustness. The 

experimental results demonstrate NSGA-II's superior 

overall performance across multiple indicators. For 

resource balance, NSGA-II achieves a load balance 

degree of 0.09 in small-scale failures (21.1% and 19.0% 

lower than MOEA/D and NSGA-III, respectively). In 

large-scale disaster scenarios, NSGA-II attains 0.15 (35.7% 

and 25.0% lower than MOEA/D and NSGA-III), 

showing more balanced multidimensional resource 

allocation. Regarding response times, NSGA-II 

completes large-scale scenarios in 118.5 seconds (15.2-

28.3% faster than benchmarks) and small-scale scenarios 

in 47.7 seconds (26.7% quicker than MOEA/D), with 

data transmission optimizations being particularly 

impactful. In cost control, the total cost in large-scale 

scenarios is 892.4 dollars, representing a 22.8% 

reduction versus MOEA/D. Robustness test confirms 

NSGA-II's stability, with load balance deviations of 

0.09±0.012 and response time variations of 47.7±3.2 

seconds under low disturbance conditions, outperforming 

other algorithms in consistency. In summary, by 

balancing the convergence and diversity of solutions, 

NSGA-II can effectively coordinate multi-objective 

conflicts among response time, resource utilization, and 

cost. It provides virtual cloud platforms with disaster 

recovery solutions featuring high reliability, low cost, 

and fast response capabilities. Meanwhile, NSGA-II 

offers theoretical and technical support for optimizing 

disaster recovery mechanisms in cloud computing 

environments. However, this study has not fully covered 

real-time scheduling needs in dynamic scenarios. Future 

research can combine deep learning to enhance the 

algorithm's adaptability to complex environments. 
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