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To address the challenges of slow convergence speed, poor dynamic adaptability, and low communication 

efficiency in intelligence data processing, a dynamic integration and clustering method for intelligence 

data based on an improved federated learning algorithm is proposed. First, an improved federated 

learning algorithm combining decomposition and combination is designed, where the global model is 

decomposed into multiple sub-models for local training, and a dynamic combination strategy is applied 

to integrate these sub-models, thereby improving the adaptability and accuracy of the global model. Then, 

a pre-training mechanism is introduced to initialize the global model using feature information from 

historical data, enhancing the model's initialization performance in dynamic data environments and 

accelerating convergence. Experiments are conducted on the MNIST and CIFAR-10 datasets, with 

comparisons made against baseline methods including FedAvg, FedProx, and ScaFFL. The results show 

that the proposed algorithm achieves accuracies of 98.69% and 90.26% on the pathological heterogeneity 

client, and 98.14% and 89.87% on the actual scenario heterogeneity client, respectively, on the two 

datasets. The normalized mutual information values of the proposed intelligence dynamic data integration 

and clustering method are 0.91 and 0.79, respectively. In a practical medical Internet of Things scenario 

test, the running time and memory usage of the proposed method are 18.23s and 1681MB, respectively. 

Our research denotes that the designed method can effectively improve the quality of dynamic integration 

of intelligence data and reduce resource consumption, providing a feasible solution for efficient 

processing of multi-source heterogeneous intelligence data. 

Povzetek: Predlagana izboljšana metoda federativnega učenja z dinamično integracijo in gručenjem 

inteligentnih podatkov izboljša prilagodljivost, natančnost in učinkovitost obdelave večizvornih 

heterogenih podatkov ter hkrati zmanjša porabo virov. 

 

1 Introduction 
With the rapid development of information technology, 

the scale and complexity of intelligence data have 

increased sharply, and the demand for efficient processing 

and real-time analysis of large-scale intelligence data is 

becoming increasingly urgent [1]. In this study, 

intelligence data is defined as multi-source, heterogeneous 

data streams that are dynamically generated from 

distributed sensors, Internet of Things (IoT) devices, and 

edge computing nodes in real-world scenarios such as 

smart healthcare, industrial monitoring, and security 

systems. These data are characterized by their diverse 

modalities, high dimensionality, non-independent and 

identically distributed (non-IID) nature, and temporal 

dynamics. However, intelligence data has characteristics 

such as multi-source heterogeneity, high dimensionality, 

and dynamic evolution. Traditional data analysis methods 

face issues such as data silos, insufficient privacy 

protection, and poor real-time performance, making it 

difficult to meet the dynamic, collaborative, and 

intelligent requirements of modern intelligence processing  

 

[2]. Therefore, exploring an efficient method for 

integrating and clustering intelligence data has become a 

key focus of current research. In recent years, machine 

learning algorithms have been broadly employed in the 

area of intelligence data analysis [3]. Among them, 

Federated Learning (FL), as a distributed machine 

learning method, not only addresses data privacy and 

security issues, but also enables multi-party collaborative 

learning, demonstrating great potential [4]. Researchers 

have conducted extensive research on the FL algorithm, 

aiming to address issues such as non independent and 

identically distributed data, high communication 

overhead, and poor model convergence [5]. 

Guo et al. proposed a real-time medical data 

processing method based on FL, which integrates old and 

new models and selects representative samples to mitigate 

catastrophic forgetting, effectively learning diagnostic 

models from continuous medical data streams [6]. Gafni 

et al. introduced a signal processing-driven FL framework, 

combining signal processing and communication 

techniques to design optimized solutions that enhance FL 
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efficiency [7]. Yazdinejad et al. proposed an auditable 

privacy-preserving FL framework for medical electronic 

devices, using trusted execution environments to ensure 

secure training and aggregation, thereby preventing 

privacy leaks [8]. Bao and Guo presented a systematic 

research approach for FL under a cloud-edge collaborative 

architecture, filling the theoretical gap in cloud-edge FL 

[9]. Wang et al. designed an FL scheme for edge 

computing environments, integrating secret sharing and 

digital signatures to improve training efficiency by 40% 

while maintaining privacy [10]. Chatterjee et al. 

developed a recommendation model based on FL and 

blockchain, enhancing system security and transparency 

[11]. Akter et al. proposed an FL-based privacy protection 

framework for edge-based smart healthcare, balancing 

privacy and performance with an accuracy of 90% [12]. 

Gao et al. designed an FL framework based on cross-

technology communication, improving model 

performance and communication efficiency in 

heterogeneous IoT environments [13]. Qu et al. introduced 

a quantum fuzzy FL algorithm, increasing training 

efficiency by 23% and accuracy by 15% while 

maintaining over 90% fidelity in quantum noise 

environments [14]. 

The summary of federal learning related work is 

shown in Table 1. 

As illustrated in Table 1, prior research has made 

significant strides in applying FL to various domains, 

enhancing privacy, and improving efficiency through 

different strategies. However, several technical gaps 

remain. Many existing methods exhibit slow convergence 

speeds and poor adaptability under highly non-IID and 

dynamic data environments. Furthermore, considerations 

for the complex relationships between data sources are 

often insufficient, and communication efficiency remains 

a challenge. To systematically address these challenges 

and clearly define the scope of our contribution, this study 

is guided by the following research questions: 

(1) Can the proposed dynamic sub-model aggregation 

and combination mechanism significantly improve model 

accuracy and convergence speed under non-independent 

and identically distributed data distributions, compared to 

standard FL baselines? 

(2) To what extent does the integration of a pre-

training mechanism and hierarchical similarity clustering 

enhance the quality of data integration and reduce 

communication overhead in dynamic environments? 

In view of this, this study proposes a dynamic 

integration and clustering method for intelligence data 

based on an improved FL algorithm, aiming to enhance 

the real-time, adaptability, and accuracy of intelligence 

data processing. The novelty of this study lies in using a 

dynamic sub-model aggregation mechanism to solve the 

problem of insufficient adaptability of traditional methods 

to changes in data distribution. Moreover, a pre-training 

mechanism that utilizes historical data feature information 

to enhance the initialization performance and convergence 

speed of the model is introduced. Besides, by combining 

hierarchical similarity clustering techniques, efficient 

grouping and personalized modeling of data can be 

achieved, reducing communication overhead and 

improving the efficiency of dynamic integration and 

clustering of intelligence data. 

Table 1: Summary of related works in federated learning. 

References Datasets Used Methodological Innovations Accuracy / Performance Metrics Identified Limitations 

Guo et al. [6] 
Continuous medical 

data streams 

Model fusion with sample 

selection 

Supports continuous data stream 

learning 

Limited adaptability to 

dynamic non-IID data 

Gafni et al. [7] 
Not specified 
(Theoretical) 

Signal processing-inspired 
optimization 

Improves FL efficiency 
Lacks validation on real-
world data 

Yazdinejad et al. 
[8] 

Medical data from 
electronic devices 

Privacy protection using 

trusted execution 

environments 

Effectively prevents privacy 
leaks 

High hardware dependency 
and overhead 

Bao and Guo [9] Not specified (Survey) 
Cloud-edge collaborative 

architecture analysis 
Provides theoretical framework 

No algorithmic innovation 

or validation 

Wang et al. [10] Medical IoT data 
Secret sharing with digital 
signatures 

40% training efficiency 
improvement 

High communication and 
computation costs 

Chatterjee et al. 

[11] 

Financial consumer 

service data 
FL combined with blockchain 

Enhanced security and 

transparency 

Latency and scalability 

issues 

Akter et al. [12] Smart healthcare data Artificial noise injection 
90% accuracy with high privacy 

rate. 

Difficult to balance privacy 

and accuracy 

Gao et al. [13] 
Heterogeneous IoT 

data 

Cross-technology 

communication coordination 

Improved performance in 

heterogeneous environments 

Requires dedicated 

coordination devices 

Qu et al. [14] 
Not specified 
(Simulation) 

Quantum fuzzy FL 
23% efficiency gain, 15% 
accuracy improvement 

Requires quantum 
resources, low practicality 
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Figure 1: Flow diagram of improved FL algorithm combining decomposition and combination. 

2 Methods and materials 
Firstly, an improved FL algorithm combining 

decomposition and combination is designed to enhance 

the adaptability and accuracy of the global model. Then, a 

dynamic intelligence data integration and clustering 

method based on improved joint pre-training and 

hierarchical similarity is proposed to achieve efficient 

grouping and personalized modeling of data. 

2.1 Improved FL algorithm combining 

decomposition and combination 

In the big data era, intelligence data presents 

characteristics such as multi-source heterogeneity, high 

dimensionality, and dynamic evolution. Although FL is a 

distributed machine learning paradigm that can effectively 

protect data privacy, it still faces problems such as slow 

convergence speed, poor adaptability to dynamic data and 

an inability to consider complex relationships between 

data sources when processing intelligence data [15]. 

Therefore, a study proposes an improved FL algorithm 

that combines decomposition and combination. This 

algorithm breaks down the global model into local sub-

models, optimizes local training efficiency and combines 

the sub-models dynamically to enhance the global model's 

adaptability and accuracy. The flowchart of the improved 

FL algorithm combining decomposition and combination 

is shown in Figure 1. 

To adapt complex global models to different data 

feature spaces, the study first decomposes the global 

model, with each sub-model corresponding to a data 

feature subspace, as shown in equation (1) [16]. 

, kd d

k k km M


=  W W R                  (1) 

In equation (1), 
km  represents the k th sub-model 

obtained after decomposition; M  represents the global 

model; 
kW  represents the decomposition matrix; d  and 

kd  respectively represent the dimensions of the global 

model and sub-models; R  represents the set of real 

numbers. The decomposition matrix 
kW  is predefined 

based on the structural characteristics of the global model. 

Specifically, the decomposition is performed by 

partitioning the global model into multiple sub-models, 

each corresponding to a distinct feature subspace. This 

partitioning is conducted according to the layer-wise or 

block-wise architecture of the neural network, ensuring 

that each sub-model captures a specific subset of features. 

The decomposition matrix is not learned during training, 

nor is it a random projection. Instead, it is constructed as 

a fixed, structured matrix that maps the global model 

parameters to the respective sub-models. This approach 

allows for efficient local training and dynamic 

recombination while maintaining the interpretability and 

structural consistency of the global model. The number of 

sub-models used in the experiments was determined 

through empirical validation and sensitivity analysis. With 

fewer sub-models, the feature subspaces were too coarse, 

limiting adaptability to heterogeneous data distributions. 

With more sub-models, the communication and 

computation costs increased without significant gains in 

accuracy. After the model decomposition is completed, 

each node needs to train the sub-model based on local 

data. The node trains a sub-model based on local data, and 

its Loss Function (LF) is designed as shown in equation 

(2). 
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i
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D 

= −               (2) 

In equation (2), ( )i kL m  represents the LF when 

training the sub-model on the local dataset of node i ; 
iD  

denotes the local dataset of node i ; iD  represents the 

amount of samples in dataset 
iD ; x  and y  respectively 

represent input features and real labels; ( )km x  denotes the 

predicted output of the sub model 
km  on the input x . To 

optimize the performance of sub models, each node needs 

to calculate the gradient update of model parameters [17]. 

After receiving local updates from all nodes, the central 

server needs to preliminarily integrate these updates, as 

shown in equation (3). 

1

( )

1

i

k i k

N
merge i

k k

i

m L m

m m
N



=

 = 


 = 



                    (3) 

In equation (3), i

km  refers to the parameter update 

amount of node i  to submodel 
km ;   stands for learning 

rate; ( )i kL m  refers to the parameter gradient of the LF 

( )i kL m  for the submodel 
km ; merge

km  represents the 

merging and updating amount of sub-models by the 

central server; N  means the total amount of nodes. To 

strengthen the robustness of the model, it needs to cluster 

local updates to eliminate the influence of noisy data. The 

study uses the K-means clustering (K-means) algorithm 

for local update clustering, and the calculation of cluster 

centers is shown in equation (4) [18]. 

1

i
k c

c i

k k

m Sc

m m
S  

 =                          (4) 

In equation (4), c

km  represents the center of c  

clusters; 
cS  represents the collection of the c th cluster. 

Based on the clustering results, the algorithm needs to 

assign different weights to updates of different clusters to 

achieve dynamic combination. The new sub-model 

obtains equation (5) by weighting and combining the 

updates of each cluster center. 

1

C
new c

k k c k

c

m m m
=

= +                     (5) 

In equation (5), new

km  represents the updated sub-

model; 
km  represents the current sub-model parameters; 

c  means the weight of the c th cluster. The design of 

weights takes into account both cluster size and data 

quality, as shown in equation (6). 

1

exp( ( ))
c

c cC

cc

S
Var S

S
 

=

=  − 


            (6) 

In equation (6),   represents the adjustment 

parameter; ( )cVar S  represents the variance of local 

updates within cluster 
cS , measuring the level of data 

noise. To further enhance the robustness of the improved 

FL algorithm, eliminate the influence of noisy data on 

model updates, and achieve dynamic adaptation of 

different data feature spaces, clustering and aggregation 

operations are studied for local updates. The schematic 

diagram of sub-model clustering and aggregation for 

improving the FL algorithm is shown in Figure 2. 

In Figure 2, sub-model clustering and aggregation 

involve three key steps, and in the merging stage, the local 

sub-model updates uploaded by each node are 

preliminarily integrated. The clustering stage uses 

clustering algorithms to group the merged updates. During 

the aggregation stage, weights are dynamically allocated 

based on clustering results to form an optimized global sub 

model. After all sub-models are updated, they need to be 

recombined into a complete global model. The new global 

model obtains equation (7) through a linear combination 

of sub-models and their decomposition matrices [19]. 

1

K
new new T

k

k

M m W
=

=                         (7) 

In equation (7), newM  represents the updated global 

model; 
TW  represents the transpose matrix of the 

decomposition matrix, used to map sub-models to the 

global model space; K  represents the total number of 

sub-models. The iterative process of the algorithm 

requires monitoring the global LF to determine whether it 

converges, as shown in equation (8). 

1

1
( )

K
new

global k

k

L L m
K =

=                    (8) 

In equation (8), 
globalL  means the global LF; ( )new

kL m  

means the local LF of the k th sub-model. Finally, the 

optimized model needs to be properly saved for future use. 

The model archiving operation is achieved by adding new 

models to the archive set. 
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Figure 2: Schematic diagram of sub-model clustering and aggregation for improving FL algorithm. 

2.2 Intelligence dynamic ensemble 

clustering method based on improved 

joint pre-training 

Although the improved FL algorithm improves the 

adaptability and convergence speed of the model through 

decomposition and combination techniques, the multi-

source heterogeneity and high-dimensional characteristics 

of intelligence data still pose higher requirements for data 

integration and clustering [20]. To further optimize feature 

extraction and pattern discovery, a dynamic intelligence 

data integration and clustering method based on improved 

joint pre-training and hierarchical similarity is proposed. 

This method enhances the initialization ability of the 

model through pre-training mechanisms and utilizes 

hierarchical similarity clustering techniques to achieve 

efficient grouping and personalized modeling of data. In 

the decomposition and construction of the intelligence 

dynamic data integration model, the study first introduces 

a pre-training mechanism, whose objective function is 

shown in equation (9). 

2

1

1
( )

N

pre base i k

i

L M M L m
N


=

=  − +             (9) 

In equation (9), 
preL  represents the pre-trained 

additional LF utilized to constrain the differences between 

the global model and the baseline model; 
baseM  represents 

a predefined benchmark model;   represents the 

adjustment coefficient. The benchmark model 
baseM  is 

defined as a model pre-trained on a publicly available 

dataset that shares similar feature characteristics with the 

target intelligence data, but contains no overlapping 

samples or private information. This model is used to 

provide a robust initialization, leveraging transfer learning 

to enhance convergence and stability, especially in 

environments with non-IID data distributions. The use of 

a publicly pre-trained model as the benchmark was 

motivated by its ability to offer a generalized feature 

representation, thereby improving the initial performance 

of the global model without introducing bias from any 

specific client or prior federated training round. This 

approach ensures fairness and supports faster adaptation 

to heterogeneous local data. In the local training phase, 

each node dynamically extracts features based on local 

data and projects the data onto a shared feature space 

through a feature mapping matrix [21]. The feature 

mapping process is shown in equation (10). 

i i i iz W x b=  +                           (10) 

In equation (10), 
iz  represents the feature vector 

extracted by node i ; 
ix  and 

iW  represent the local input 

data and feature mapping matrix of node i , respectively; 

ib  represents the bias term. The feature mapping matrix 

iW  is precisely defined as a learned parameter matrix. It 

is not a random projection. For each client, the matrix is 

optimized during the local training phase to project the 

local input data into a shared feature space. This learning 

process is performed collaboratively across clients within 

the FL framework, with the goal of aligning the feature 

representations from different clients to facilitate effective 

model aggregation and improve overall performance. The 

decomposition and construction diagram of the 

intelligence dynamic data integration model is shown in 

Figure 3. 
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Figure 3: Decomposition and construction diagram of intelligence dynamic data integration model. 

Aiming at the heterogeneity of client data, a 

hierarchical clustering algorithm based on cosine 

similarity is proposed to calculate the similarity matrix of 

client data distribution, as shown in equation (11) [22]. 

u v

uv

u v

D D
S

D D


=


                            (11) 

In equation (11), 
uvS  represents the cosine similarity 

between client u  and client v ; 
uD  represents the data 

feature vector of client u ; 
vD  represents the 

corresponding feature vector of client v ; uD  represents 

the Euclidean norm of vector 
uD . Hierarchical clustering 

is primarily used in the initial phase to form a dendrogram, 

providing insights into the potential number of clusters 

and the multi-level data structure. However, the final 

client grouping is determined by the Spherical K-means 

algorithm, which operates directly on the normalized 

feature vectors. Spherical K-means is chosen as the final 

clustering driver due to its efficiency and compatibility 

with cosine similarity on normalized data, ensuring clients 

are partitioned into hyperspherical clusters. Further 

research is conducted using the spherical K-means 

algorithm for grouping, with the objective function shown 

in equation (12) [23]. 

arg min (1 )o uh
h

u h

C S


= −                 (12) 

In equation (12), 
oC  represents the central client of 

the o th cluster; h  stands for candidate center client; uhS
 

refers to the cosine similarity between client u  and the 

current center h . After obtaining the client group, it is 

necessary to design a hierarchical model aggregation 

strategy [24]. To achieve more refined personalization, the 

intra group client model is fine tuned and its calculation is 

shown in equation (13). 

( )

g u u

u G

per

u g u g

M w m

m M L M



 = 


 = + 


               (13) 

In equation (13), 
gM  represents the global model 

generated by aggregation; G  means the set of clients in 

the current group; 
um  and 

uw  respectively represent the 

local model and aggregation weights of client u ; per

um  

represents the personalized model of the client;   

represents fine-tuning step size; ( )u gL M  represents the 

gradient of the local LF 
uL  of client u  on the global 

model 
gM . The schematic diagram of intelligence 

dynamic data clustering is shown in Figure 4. 

In Figure 4, the sub-model is selected through client 

selection and used for local training. During the local 

training phase, each client trains based on the selected 

model and local data to optimize model performance. 

Considering the timeliness of intelligence data, it is 

necessary to dynamically adjust the model weights. The 

temporal decay strategy is implemented to address the 

concept drift and potential data quality degradation that 

may occur in dynamic intelligence data environments. The 

primary rationale is to gradually reduce the influence of 

clients that have not provided recent updates, as their local 

models might become less representative of the current 

global data distribution over time. The weight update 

strategy for time decay is shown in equation (14) [25]. 

( ) t

u uw t w e −=                            (14) 
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Figure 4: Schematic diagram of intelligence dynamic data clustering. 
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Figure 5: Flow chart of intelligence dynamic data integration and clustering based on improved joint pre-training and 

hierarchical similarity. 

In equation (14), ( )uw t  represents the dynamic 

weight of client u  at time t ; 
uw  represents the initial 

weight of client u ;   represents attenuation coefficient; 

t  represents the time variable. Among them, the 

calculation of sub-model weights needs to reflect data 

quality, and its expression is shown in equation (15). 

1
( ) / ( )

k v

K

k u uu S v u S
D D

 = 
=            (15) 

In equation (15), 
k  represents the weight of sub 

model k ; 
kS  represents the set of clients belonging to the 

sub model k . The intelligent dynamic data integration 

and clustering process based on improved joint pre-

training and hierarchical similarity is shown in Figure 5. 

The pseudocode of the proposed method is as follows.

 
Algorithm 1: Dynamic Sub-Model Aggregation and Clustering via Hierarchical Federated Learning with Pre-Training 

Input: Number of clients, total rounds, number of sub-models, clustering epochs, historical dataset 

Output: Final global model  

/ Step 1: Pre-training Phase 

1: Initialize global model by pre-training on historical dataset 

// Step 2: Federated Learning Rounds 
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2: for round t=1to total rounds do 
3:      // Server executes: 

4:      Decompose global model into sub-models 

5:      Send relevant sub-models to a subset of active clients 
6:      // Client execution (in parallel): 

7:      for each client in selected clients do 

8:          Train received sub-model on local data 
9:          Compute feature vector and upload model update 

10:      end for 

11:      // Server executes: 
12:      Perform preliminary integration of updates 

13:      if t mod  Ec=0 then 

14:          Calculate client similarity matrix 
15:          Perform hierarchical client clustering via Spherical K-means 

16:      end if 

17:      Cluster client updates via K-means 
18:      Dynamically combine sub-models 

19:      Apply temporal weight decay 

20:      Recombine sub-models into global model 

21:      Evaluate global loss 

22: end for 

23: return final global model 

 

3 Results 
Firstly, the performance of the improved FL algorithm 

was analyzed to verify the advantages of decomposition 

and combination mechanisms in improving model 

convergence speed and adapting to dynamic data. Then, 

the performance of intelligence dynamic data integration 

and clustering methods was evaluated. 

3.1 Performance validation of improved 

FL algorithm 

To prove the effect of the improved FL algorithm, 

experiments were carried out on two common datasets, 

MNIST and CIFAR-10. The MNIST dataset contains 

70000 handwritten digit images, split into 10 categories, 

with 60000 for training and 10000 for testing. The 

CIFAR-10 dataset contains 60000 color images, split into 

10 categories, with 50000 for training and 10000 for 

testing. The number of algorithm iterations was 400. For 

the selection of attenuation coefficient, sensitivity analysis 

was conducted by changing its value, and the results are 

shown in Table 2. In Table 2, the attenuation coefficient 

has a significant impact on model performance and 

participation fairness. When the attenuation coefficient 

was 0.05, the model achieved the highest accuracy of 

98.69% and 90.26% on the MNIST and CIFAR-10 

datasets, respectively. At this time, the client dropout rate 

was 5.1% and the fairness index was 0.89. When the 

attenuation coefficient increased to 0.20, the accuracy 

decreased to 97.33% and 86.41% respectively, and the 

fairness index dropped to 0.61. The results indicate that 

when the attenuation coefficient is 0.05, the model 

achieves the best balance between accuracy, dropout rate, 

and fairness, and is the recommended optimal parameter. 

To substantiate the use of K-means clustering for 

update grouping, a comparative experiment was 

conducted under varying levels of simulated data noise. 

The proposed method was compared against the standard 

FedAvg aggregation. The clustering quality was 

quantitatively assessed using the Silhouette Score, and the 

model's robustness was evaluated by its performance on a 

clean test set. The results are shown in Table 3. The results 

confirm that as noise levels increase, the K-means-based 

aggregation mechanism effectively identifies and isolates 

anomalous updates into separate clusters. This is 

evidenced by the maintenance of a high Silhouette Score 

and a lower Intra-cluster Distance for the dominant 

cluster, indicating coherent grouping of reliable updates. 

The clustering metrics provide clear empirical evidence 

that the K-means grouping enhances robustness by 

prioritizing the aggregation of updates from clients with 

consistent and trustworthy data distributions. 

Table 2: Sensitivity analysis results of decay coefficient. 

Decay coefficient MNIST Accuracy (%) CIFAR-10 Accuracy (%) Client Dropout Rate (%) 
Participation Fairness 
Index 

0.01 98.45 89.12 3.2 0.92 

0.03 98.61 89.87 4.2 0.90 

0.05 98.69 90.26 5.1 0.89 

0.10 98.12 88.95 12.7 0.78 

0.15 97.68 87.23 19.3 0.70 

0.20 97.33 86.41 28.4 0.61 

 

Table 3: Performance and clustering quality comparison under noisy conditions. 

Noise Level Aggregation Method 
Final Test Accuracy 

(%) 
Avg. Silhouette Score 

Intra-cluster Distance (Majority 

Cluster) 

10% 
FedAvg (Baseline) 97.85 N/A N/A 

Proposed (K-means) 98.41 0.72 0.15 
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20% 
FedAvg (Baseline) 95.12 N/A N/A 

Proposed (K-means) 97.56 0.68 0.18 

30% 
FedAvg (Baseline) 90.33 N/A N/A 

Proposed (K-means) 95.88 0.61 0.23 

40% 
FedAvg (Baseline) 83.47 N/A N/A 

Proposed (K-means) 92.15 0.55 0.29 

 

Table 4: Experimental environments and parameters. 

Experimental environments Parameters 

Names Configuration Names Values 

Graphics processing unit NVIDIA Tesla V100 Learning rate 0.01 

Central processing unit Intel Xeon Gold 6248R Number of clusters 3 

Memory 64GB DDR4 Number of clients 20 

Operating System Windows 10 Batch size 32 

Deep learning framework PyTorch 1.10 Number of sub-models 5 

Programming language Python 3.8 Decay coefficient 0.05 
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Figure 6: Accuracy of algorithms under two heterogeneous clients in MNIST and CIFAR-10 datasets. 

The experimental environment and parameters are 

denoted in Table 4. 

To prove the robustness of the designed algorithm, the 

accuracy of the algorithm was analyzed on two 

heterogeneous clients, pathology and real-world 

scenarios, in the MNIST and CIFAR-10 datasets. 

Compared with current mainstream algorithms, including 

FedAvg, FedProx, and Stochastic Controlled Averaging 

for Federated Learning (ScaFFL), the findings are denoted 

in Figure 6. In Figure 6 (a), in the MNIST dataset, with an 

iteration of 160, the accuracy of FedAvg, FedProx, 

SCAFFL, and the proposed algorithm on the pathological 

heterogeneity client were 96.24%, 95.16%, 97.68%, and 

98.69%, respectively. In Figure 6 (b), when the iteration 

number was 160, the accuracy of the four algorithms in 

the MNIST dataset was 96.58%, 97.10%, 97.35%, and 
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98.14%, respectively, under the actual scenario of 

heterogeneous clients. In Figure 6 (c), in the CIFAR-10 

dataset, with an iteration of 160, the accuracy of FedAvg, 

FedProx, and SCAFFL under pathological heterogeneity 

client was 65.37%, 67.69%, and 86.74%, respectively. 

The accuracy of the proposed algorithm was 90.26%. In 

Figure 6 (d), under the actual scenario of heterogeneous 

clients and with 160 iterations, the accuracy of the four 

algorithms in the CIFAR-10 dataset was 69.38%, 69.12%, 

83.56%, and 89.87%, respectively. The findings show that 

the designed algorithm exhibits higher accuracy and 

robustness in different data distributions and scenarios. 

The loss of different comparison algorithms was 

analyzed in the MNIST and CIFAR-10 datasets to validate 

the convergence of the designed algorithm. The findings 

are denoted in Figure 7. In Figure 7 (a), under the 

pathological heterogeneity client, when the iteration 

number was 160, the losses of FedAvg, FedProx, 

SCAFFL, and the proposed algorithm in the MNIST 

dataset were 0.348, 0.352, 1.025, and 0.113, respectively. 

In Figure 7 (b), under the actual scenario of heterogeneous 

clients, when the iteration number was 160, the losses of 

the four algorithms were 0.341, 0.326, 1.104, and 0.505, 

respectively. In Figure 7 (c), in the CIFAR-10 dataset, at 

an iteration of 160, the losses of the four algorithms under 

pathological heterogeneity clients were 4.472, 4.210, 

1.389, and 0.857, respectively. In Figure 7 (d), under the 

actual scenario of heterogeneous clients, when the 

iteration number was 160, the losses of FedAvg, FedProx, 

and SCAFFL were 3.021, 3.098, and 1.610, respectively, 

and the loss of the proposed algorithm was 1.024. The 

findings demonstrate that the designed algorithm can 

improve the convergence speed of the model and achieve 

lower losses under different data distributions. 
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Figure 7: Loss of algorithms under two heterogeneous clients in MNIST and CIFAR-10 datasets. 
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Table 5: Comprehensive comparison of model performance and statistical significance. 

Dataset Methods 
Pathological Heterogeneity Real-world Heterogeneity 

95% CI (Accuracy) 95% CI (Loss) p-value 95% CI (Accuracy) 95% CI (Loss) p-value 

MNIST 

FedAvg [95.98, 96.44] [0.335, 0.361] <0.01 [96.34, 96.76] [0.328, 0.354] <0.01 

FedProx [94.83, 95.45] [0.339, 0.365] <0.01 [96.85, 97.31] [0.313, 0.339] <0.01 

SCAFFL [97.47, 97.83] [1.001, 1.049] <0.01 [97.13, 97.51] [1.080, 1.128] <0.01 

OURS [98.52, 98.82] [0.105, 0.121] / [98.00, 98.24] [0.490, 0.520] / 

CIFAR-

10 

FedAvg [64.68, 66.00] [4.350, 4.594] <0.01 [68.84, 69.86] [2.909, 3.133] <0.01 

FedProx [67.07, 68.23] [4.098, 4.322] <0.01 [68.54, 69.64] [2.986, 3.210] <0.01 

SCAFFL [86.31, 87.11] [1.367, 1.411] <0.01 [83.09, 83.97] [1.588, 1.632] <0.01 

OURS [89.97, 90.51] [0.841, 0.873] / [89.57, 90.13] [1.010, 1.038] / 

Note: p<0.01 indicates reaching a highly significant level. 
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Figure 8: The impact of different numbers of sub models and local training epochs on the accuracy of improved 

algorithms. 

This study conducted a statistical analysis of the 

accuracy loss of the proposed algorithm under two 

heterogeneous clients, pathology and real-world 

scenarios, in the MNIST and CIFAR-10 datasets. The 

results are shown in Table 5. The statistical results show 

that the method proposed in this study significantly 

outperforms the baseline algorithm in both datasets and 

heterogeneous scenarios. On the MNIST dataset, the 

accuracy and 95% confidence interval of the proposed 

method were [98.52, 98.82] and [98.00, 98.24], 

respectively, demonstrating applicability to 

heterogeneous pathology and real-world scenarios, and 

the 95% confidence intervals for loss values were [0.105, 

0.121] and [0.490, 0.520], respectively. On the more 

complex CIFAR-10 dataset, the proposed method also 

outperformed all baselines in terms of confidence 

intervals. All p-values compared were less than 0.001, 

indicating that the performance improvement is highly 

statistically significant. 

A comparative analysis was conducted on the 

accuracy of the MNIST and CIFAR-10 datasets under 

different numbers of sub-models and local training 

epochs, to investigate the impact of these factors on the 

performance improvement of the proposed algorithm. The 

findings are denoted in Figure 8. In Figure 8 (a), under the 

pathological heterogeneity client, when the number of 

sub-models was 4, the accuracy of the designed algorithm 

in the two datasets was 99.82% and 90.33%, respectively. 

In actual heterogeneous client scenarios, their accuracy 

rates were 99.47% and 89.11%, respectively. In Figure 8 

(b), when the local training epochs were 5, the accuracy of 

the proposed algorithm in two datasets was 99.86% and 

90.62% respectively under pathological heterogeneity 

client. In actual scenarios with heterogeneous clients, the 

accuracy rates were 99.43% and 88.94%, respectively. 

Research has found that increasing the number of sub-

models and local training rounds can improve algorithm 

performance. 
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Figure 9: Integration quality and clustering efficiency of different methods on two datasets. 

3.2 Performance evaluation of intelligence 

dynamic data integration and 

clustering methods 

The ensemble quality and clustering efficiency of the 

proposed method were analyzed in the MNIST and 

CIFAR-10 datasets, and compared with FedAvg, FedProx, 

and SCAFFL. The indicator for evaluating integration 

quality was Normalized Mutual Information (NMI), and 

the clustering efficiency indicator was communication 

epochs. The findings are denoted in Figure 9. In Figure 9 

(a), in the MNIST dataset, the NMIs of FedAvg, FedProx, 

SCAFFL, and the designed algorithm were 0.82, 0.84, 

0.86, and 0.91, respectively. The NMIs in the CIFAR-10 

dataset were 0.68, 0.71, 0.73, and 0.79, respectively. In 

Figure 9 (b), the communication epochs of FedAvg, 

FedProx, and SCAFFL in the MNIST dataset were 121, 

112, and 101, respectively, and in the CIFAR-10 dataset 

were 179, 171, and 162, respectively. Compared with it, 

the proposed algorithm had 75 and 119 communication 

epochs in the two datasets, respectively. The findings 

show that the designed algorithm can ensure high 

integration quality while reducing communication 

overhead, verifying its efficiency in dynamic data 

integration and clustering tasks. 

Ablation experiments were conducted to verify the 

contribution of each core module to the overall 

performance of the dynamic data integration and 

clustering methods. The findings are presented in Table 6. 

In ablation analysis, the roles of each module are as 

follows: the decomposition and combination mechanism 

adapts to heterogeneous data distributions by dividing sub 

models; The pre-training mechanism utilizes historical 

features to optimize model initialization and accelerate 

convergence; Hierarchical clustering identifies intrinsic 

relationships between clients through a multi-level 

structure, improving grouping stability and aggregation 

quality, which is superior to methods that rely solely on 

planar partitioning; The dynamic weighting mechanism 

adjusts client contributions based on data timeliness to 

alleviate concept drift. In Table 6, on the MNIST dataset, 

the F1 score of the complete method was 0.924 and the 

precision was 0.931, significantly higher than other 

configurations. On the CIFAR-10 dataset, the F1 score 

and precision of the complete method were 0.802 and 

0.810, respectively. The F1 score and precision of the 

baseline method were the lowest, with values of 0.852 and 

0.806 in the MNIST dataset and 0.723 and 0.730 in the 

CIFAR-10 dataset, respectively. The findings denote that 

each core module contributes significantly to the 

improvement of model performance. 

The study analyzed the running time and memory 

usage of the designed method in a practical scenario of a 

medical IoT, and compared it with other methods. The 

findings are denoted in Figure 10. In Figure 10 (a), the 

average running times of FedAvg, FedProx, SCAFFL, and 

the proposed algorithm were 23.42s, 26.75s, 31.52s, and 

18.23s, respectively. Compared with the comparative 

algorithm, the running time of the proposed algorithm was 

reduced by 22.16%, 31.85%, and 42.16%, respectively. In 

Figure 10 (b), the average memory usage of FedAvg, 

FedProx, and SCAFFL was 1853MB, 1926MB, and 

2157MB, respectively. Compared with them, the proposed 

algorithm had an average memory usage of 1681MB, 

which was reduced by 9.28%, 12.72%, and 22.07%, 

respectively. The outcomes demonstrat that the designed 

algorithm can substantially decrease the consumption of 

computational resources while maintaining performance, 

thereby verifying its practicality and deployment benefits 

in IoT scenarios with limited resources. 
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Table 6: Results of ablation experiment. 

Method configuration 

MNIST dataset CIFAR-10 dataset 

Precision Recall F1 score 
(p-value vs. 
FedAvg) 

Precision Recall F1 score 
(p-value vs. 
FedAvg) 

Complete method 0.931 0.918 0.924 <0.001 0.810 0.795 0.802 <0.001 

No decomposition 

combination 
0.879 0.863 0.871 <0.001 0.742 0.728 0.735 <0.001 

No pre training 0.900 0.886 0.893 <0.001 0.775 0.761 0.768 <0.001 

Non hierarchical 

clustering 
0.893 0.879 0.886 <0.001 0.760 0.745 0.752 <0.001 

No dynamic weight 0.908 0.894 0.901 <0.001 0.786 0.772 0.779 <0.001 

Baseline method 
(FedAvg) 

0.806 0.845 0.852 / 0.730 0.716 0.723 / 
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Figure 10: Comparison of runtime and memory usage of different methods in practical scenarios. 

To verify the effectiveness of the proposed method in 

practical datasets, an analysis was conducted on the 

running time and average memory of different methods 

under different numbers of clients in the PhysioNet 

dataset. The PhysioNet dataset is a widely recognized real-

world clinical time series dataset containing records of 

12000 ICU patients. The results are shown in Figure 11. 

In Figure 11 (a), when the number of clients was 20, the 

running times of FedAvg, FedProx, and SCAFFL were 

28.45s, 32.11s, and 38.94s, respectively, and the running 

time of the proposed method was 21.08s. When the 

number of clients increased to 100, the running times of 

the four methods were 62.34s, 71.89s, 88.56s, and 45.12s, 

respectively. In Figure 11 (b), when the number of clients 

was 20, the average memory of FedAvg, FedProx, 

SCAFFL, and the proposed method was 2105MB, 

2189MB, 2455MB, and 1950MB, respectively. When the 

number of clients reached 100, the average memory was 

3521MB, 3744MB, and 1950MB, respectively. B, 

4455MB, and 2850MB. The results show that the 

proposed method effectively reduces computational and 

storage costs on real medical datasets, demonstrating 

superior scalability and practicality. 
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Figure 11: Run time and average memory of different methods under different numbers of clients. 

Table 7: Model complexity comparison across different datasets. 

Methods 
MNIST CIFAR-10 PhysioNet MNIST CIFAR-10 PhysioNet 

Number of Parameters (Millions) FLOPs (MegaFLOPs) 

FedAvg 4.21 23.45 1.85 8.45 125.67 3.72 

FedProx 4.21 23.47 1.85 8.47 125.72 3.73 

SCAFFL 4.26 23.51 1.87 8.52 126.05 3.76 

OURS 5.18 25.83 2.21 10.31 135.42 4.45 

 

Further analysis was conducted on the parameter 

count and Floating-Point Operations (FLOPs) of different 

methods on the MNIST, CIFAR-10, and PhysioNet 

datasets. The results are shown in Table 7. In Table 7, on 

the MNIST dataset, the proposed method had a parameter 

size of 5.18M and FLOPs of 10.31M, which were 

approximately 23% and 22% higher than FedAvg, 

respectively. The complexity of the proposed method on 

the real clinical dataset PhysioNet also maintained a 

similar increase. This controllable increase in complexity, 

compared to the specific performance improvements 

obtained in the previous experiments, demonstrates that 

the proposed method achieves a good balance between 

efficiency and performance. 

4 Discussion 
In this study, a dynamic integration and clustering method 

for intelligence data based on an improved FL algorithm 

was proposed. The experimental results demonstrated 

significant improvements in accuracy, convergence speed, 

and communication efficiency compared to several 

existing approaches. 

In terms of accuracy, this method achieved accuracies 

of 98.69% and 90.26% respectively on the MNIST and 

CIFAR-10 datasets for pathological heterogeneous 

clients, and 98.14% and 89.87% respectively in real-world 

heterogeneous clients. Compared with the real-time 

medical data processing method proposed in reference [6], 

the accuracy of this method was improved by about 6-8 

percentage points. This improvement is mainly due to the 

dynamic sub model aggregation mechanism, which 

decomposes the global model into multiple specialized 

sub models, enabling the model to better adapt to the data 

distribution characteristics of different clients. 

In terms of convergence performance, this method 

only required 75 communication rounds to converge on 

the MNIST dataset and 119 communication rounds on the 

CIFAR-10 dataset. In contrast, the privacy preserving FL 

method in reference [10] required 121 and 179 

communication epochs respectively in similar tasks. The 

improvement in convergence speed is mainly due to the 

introduction of pre-training mechanisms, which utilize 

historical data feature information for model initialization, 

enabling the model to have a good parameter foundation 

in the early stages of training, thereby accelerating the 

training process. 

In terms of communication efficiency, this method 

had a running time of 18.23 seconds and a memory usage 

of 1681MB in actual medical IoT scenario testing. 

Compared with the method in reference [12], the running 

time was reduced by 27% and the memory usage was 

reduced by 12%. This improvement is due to the 

application of hierarchical similarity clustering 

technology, which significantly reduces unnecessary 

communication overhead by intelligently grouping 

clients. 

However, this method also has some limitations. 

Firstly, due to the adoption of a multi submodel 

architecture and clustering process, its computational 

complexity is relatively high, which may limit its 

application in resource constrained environments. 

Secondly, the method is sensitive to hyperparameter 

settings, especially the selection of the number of clusters 

K and learning rate, which can significantly affect 

performance. Compared with the heterogeneous IoT FL 

framework in reference [13], this method improved 



Dynamic Sub-Model Aggregation and Clustering for Intelligence…                                             Informatica 50 (2026) 405–420   419                                                                                                                                            

 

accuracy by about 4% on the CIFAR-10 dataset, but 

increased computational load by about 15%. This 

indicates that while pursuing performance improvement, a 

balance needs to be struck between accuracy and 

computational efficiency. Compared with the TEE based 

method in reference [8], although this method avoided the 

dependence on dedicated hardware, it may be slightly 

inadequate in combating advanced security threats. 

In summary, the proposed method has achieved 

significant improvements in accuracy, convergence speed, 

and communication efficiency through the organic 

combination of dynamic submodel aggregation, pre 

training mechanism, and hierarchical clustering. Future 

research will focus on developing adaptive 

hyperparameter optimization strategies, reducing 

computational complexity, and exploring decentralized 

aggregation mechanisms to enhance system robustness. 

5 Conclusion 
The study proposes a dynamic integration and clustering 

method for intelligence data based on an improved FL 

algorithm to strengthen the effectiveness of the FL 

algorithm in intelligence data processing. The findings 

denote that the designed method can effectively solve the 

challenges of slow convergence speed, poor adaptability 

to dynamic data, and low clustering efficiency in FL. It not 

only improved precision and convergence speed, but also 

reduced computational resource consumption, making it 

suitable for practical application scenarios such as medical 

IoT. 
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