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To address the challenges of slow convergence speed, poor dynamic adaptability, and low communication
efficiency in intelligence data processing, a dynamic integration and clustering method for intelligence
data based on an improved federated learning algorithm is proposed. First, an improved federated
learning algorithm combining decomposition and combination is designed, where the global model is
decomposed into multiple sub-models for local training, and a dynamic combination strategy is applied
to integrate these sub-models, thereby improving the adaptability and accuracy of the global model. Then,
a pre-training mechanism is introduced to initialize the global model using feature information from
historical data, enhancing the model's initialization performance in dynamic data environments and
accelerating convergence. Experiments are conducted on the MNIST and CIFAR-10 datasets, with
comparisons made against baseline methods including FedAvg, FedProx, and ScaFFL. The results show
that the proposed algorithm achieves accuracies of 98.69% and 90.26% on the pathological heterogeneity
client, and 98.14% and 89.87% on the actual scenario heterogeneity client, respectively, on the two
datasets. The normalized mutual information values of the proposed intelligence dynamic data integration
and clustering method are 0.91 and 0.79, respectively. In a practical medical Internet of Things scenario
test, the running time and memory usage of the proposed method are 18.23s and 1681MB, respectively.
Our research denotes that the designed method can effectively improve the quality of dynamic integration
of intelligence data and reduce resource consumption, providing a feasible solution for efficient
processing of multi-source heterogeneous intelligence data.

Povzetek: Predlagana izboljSana metoda federativnega ucenja z dinamicno integracijo in grucenjem
inteligentnih podatkov izboljSa prilagodljivost, natancnost in ucinkovitost obdelave vecizvornih

heterogenih podatkov ter hkrati zmanjsa porabo virov.

1 Introduction

With the rapid development of information technology,
the scale and complexity of intelligence data have
increased sharply, and the demand for efficient processing
and real-time analysis of large-scale intelligence data is
becoming increasingly urgent [1]. In this study,
intelligence data is defined as multi-source, heterogeneous
data streams that are dynamically generated from
distributed sensors, Internet of Things (IoT) devices, and
edge computing nodes in real-world scenarios such as
smart healthcare, industrial monitoring, and security
systems. These data are characterized by their diverse
modalities, high dimensionality, non-independent and
identically distributed (non-1ID) nature, and temporal
dynamics. However, intelligence data has characteristics
such as multi-source heterogeneity, high dimensionality,
and dynamic evolution. Traditional data analysis methods
face issues such as data silos, insufficient privacy
protection, and poor real-time performance, making it
difficult to meet the dynamic, collaborative, and
intelligent requirements of modern intelligence processing

[2]. Therefore, exploring an efficient method for
integrating and clustering intelligence data has become a
key focus of current research. In recent years, machine
learning algorithms have been broadly employed in the
area of intelligence data analysis [3]. Among them,
Federated Learning (FL), as a distributed machine
learning method, not only addresses data privacy and
security issues, but also enables multi-party collaborative
learning, demonstrating great potential [4]. Researchers
have conducted extensive research on the FL algorithm,
aiming to address issues such as non independent and
identically distributed data, high communication
overhead, and poor model convergence [5].

Guo et al. proposed a real-time medical data
processing method based on FL, which integrates old and
new models and selects representative samples to mitigate
catastrophic forgetting, effectively learning diagnostic
models from continuous medical data streams [6]. Gafni
etal. introduced a signal processing-driven FL framework,
combining signal processing and communication
techniques to design optimized solutions that enhance FL



406 Informatica 50 (2026) 405-420

efficiency [7]. Yazdinejad et al. proposed an auditable
privacy-preserving FL framework for medical electronic
devices, using trusted execution environments to ensure
secure training and aggregation, thereby preventing
privacy leaks [8]. Bao and Guo presented a systematic
research approach for FL under a cloud-edge collaborative
architecture, filling the theoretical gap in cloud-edge FL
[9]. Wang et al. designed an FL scheme for edge
computing environments, integrating secret sharing and
digital signatures to improve training efficiency by 40%
while maintaining privacy [10]. Chatterjee et al.
developed a recommendation model based on FL and
blockchain, enhancing system security and transparency
[11]. Akter et al. proposed an FL-based privacy protection
framework for edge-based smart healthcare, balancing
privacy and performance with an accuracy of 90% [12].
Gao et al. designed an FL framework based on cross-
technology =~ communication, improving model
performance and communication efficiency in
heterogeneous l0T environments [13]. Qu et al. introduced
a quantum fuzzy FL algorithm, increasing training
efficiency by 23% and accuracy by 15% while
maintaining over 90% fidelity in quantum noise
environments [14].

The summary of federal learning related work is
shown in Table 1.

As illustrated in Table 1, prior research has made
significant strides in applying FL to various domains,
enhancing privacy, and improving efficiency through
different strategies. However, several technical gaps
remain. Many existing methods exhibit slow convergence
speeds and poor adaptability under highly non-I1ID and
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dynamic data environments. Furthermore, considerations
for the complex relationships between data sources are
often insufficient, and communication efficiency remains
a challenge. To systematically address these challenges
and clearly define the scope of our contribution, this study
is guided by the following research questions:

(1) Can the proposed dynamic sub-model aggregation
and combination mechanism significantly improve model
accuracy and convergence speed under non-independent
and identically distributed data distributions, compared to
standard FL baselines?

(2) To what extent does the integration of a pre-
training mechanism and hierarchical similarity clustering
enhance the quality of data integration and reduce
communication overhead in dynamic environments?

In view of this, this study proposes a dynamic
integration and clustering method for intelligence data
based on an improved FL algorithm, aiming to enhance
the real-time, adaptability, and accuracy of intelligence
data processing. The novelty of this study lies in using a
dynamic sub-model aggregation mechanism to solve the
problem of insufficient adaptability of traditional methods
to changes in data distribution. Moreover, a pre-training
mechanism that utilizes historical data feature information
to enhance the initialization performance and convergence
speed of the model is introduced. Besides, by combining
hierarchical similarity clustering techniques, efficient
grouping and personalized modeling of data can be
achieved, reducing communication overhead and
improving the efficiency of dynamic integration and
clustering of intelligence data.

Table 1: Summary of related works in federated learning.

Bao and Guo [9] | Not specified (Survey)

architecture analysis

References Datasets Used Methodological Innovations Accuracy / Performance Metrics | ldentified Limitations
Guo et al. [6] Continuous  medical | Model fusion with sample | Supports continuous data stream | Limited adaptability to
) data streams selection learning dynamic non-IID data
. Not specified | Signal processing-inspired - Lacks validation on real-
Gafni etal. [7] (Theoretical) optimization Improves FL efficiency world data
Yazdinejad et al. | Medical data from Privacy  protection ~ using Effectively prevents privacy | High hardware dependency
. - trusted execution
[8] electronic devices - leaks and overhead
environments
Cloud-edge collaborative No algorithmic innovation

Provides theoretical framework I
or validation

(Simulation)

- Secret sharing with digital | 40% training efficiency | High communication and
Wang etal. [10] Medical loT data signatures improvement computation costs
Chatterjee et al. | Financial  consumer . . . Enhanced security and | Latency and scalability
[11] service data FL combined with blockchain transparency issues
5 —— - — -
Akter etal. [12] Smart healthcare data | Artificial noise injection 90% accuracy with high privacy | Difficult to balance privacy
rate. and accuracy
Heterogeneous 10T | Cross-technology Improved  performance  in | Requires dedicated
Gao et al. [13] N S . L .
data communication coordination heterogeneous environments coordination devices
— 0 — - 5 -
Qu etal. [14] Not specified Quantum fuzzy FL 23% efficiency gain, 15% | Requires quantum

accuracy improvement resources, low practicality
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Figure 1: Flow diagram of improved FL algorithm combining decomposition and combination.

2 Methods and materials

Firstly, an improved FL algorithm combining
decomposition and combination is designed to enhance
the adaptability and accuracy of the global model. Then, a
dynamic intelligence data integration and clustering
method based on improved joint pre-training and
hierarchical similarity is proposed to achieve efficient
grouping and personalized modeling of data.

2.1 Improved FL algorithm combining
decomposition and combination

In the big data era, intelligence data presents
characteristics such as multi-source heterogeneity, high
dimensionality, and dynamic evolution. Although FL is a
distributed machine learning paradigm that can effectively
protect data privacy, it still faces problems such as slow
convergence speed, poor adaptability to dynamic data and
an inability to consider complex relationships between
data sources when processing intelligence data [15].
Therefore, a study proposes an improved FL algorithm
that combines decomposition and combination. This
algorithm breaks down the global model into local sub-
models, optimizes local training efficiency and combines
the sub-models dynamically to enhance the global model's
adaptability and accuracy. The flowchart of the improved
FL algorithm combining decomposition and combination
is shown in Figure 1.

To adapt complex global models to different data
feature spaces, the study first decomposes the global
model, with each sub-model corresponding to a data
feature subspace, as shown in equation (1) [16].

m =M-W, W, eR"* @)
In equation (1), m, represents the k th sub-model

obtained after decomposition; M represents the global
model; W, represents the decomposition matrix; d and

d, respectively represent the dimensions of the global

model and sub-models; R represents the set of real
numbers. The decomposition matrix W, is predefined

based on the structural characteristics of the global model.
Specifically, the decomposition is performed by
partitioning the global model into multiple sub-models,
each corresponding to a distinct feature subspace. This
partitioning is conducted according to the layer-wise or
block-wise architecture of the neural network, ensuring
that each sub-model captures a specific subset of features.
The decomposition matrix is not learned during training,
nor is it a random projection. Instead, it is constructed as
a fixed, structured matrix that maps the global model
parameters to the respective sub-models. This approach
allows for efficient local training and dynamic
recombination while maintaining the interpretability and
structural consistency of the global model. The number of
sub-models used in the experiments was determined
through empirical validation and sensitivity analysis. With
fewer sub-models, the feature subspaces were too coarse,
limiting adaptability to heterogeneous data distributions.
With more sub-models, the communication and
computation costs increased without significant gains in
accuracy. After the model decomposition is completed,
each node needs to train the sub-model based on local
data. The node trains a sub-model based on local data, and
its Loss Function (LF) is designed as shown in equation

).
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In equation (2), L;(m,) represents the LF when
training the sub-model on the local dataset of node i ; D,
denotes the local dataset of node i ; |Di| represents the
amount of samples in dataset D,; X and y respectively
represent input features and real labels; m, (x) denotes the
predicted output of the sub model m, on the input X. To

optimize the performance of sub models, each node needs
to calculate the gradient update of model parameters [17].
After receiving local updates from all nodes, the central
server needs to preliminarily integrate these updates, as
shown in equation (3).

Amli( =n-VL(m,)

N .
iZAmL
N =
In equation (3), Am, refers to the parameter update

amount of node i to submodel m, ; 7 stands for learning
rate; VL, (m,) refers to the parameter gradient of the LF

©)

merge __
Amreree —

L (m,) for the submodel m, ; Am™® represents the

merging and updating amount of sub-models by the
central server; N means the total amount of nodes. To
strengthen the robustness of the model, it needs to cluster
local updates to eliminate the influence of noisy data. The
study uses the K-means clustering (K-means) algorithm
for local update clustering, and the calculation of cluster
centers is shown in equation (4) [18].

Am 4
5. @

In equation (4), Am, represents the center of ¢

mk

clusters; S, represents the collection of the C th cluster.
Based on the clustering results, the algorithm needs to
assign different weights to updates of different clusters to
achieve dynamic combination. The new sub-model
obtains equation (5) by weighting and combining the
updates of each cluster center.

C
me =m +> a, - Amg (5)
c=1

In equation (5), m* represents the updated sub-
model; m, represents the current sub-model parameters;

J. Wang et al.

o, means the weight of the cth cluster. The design of

weights takes into account both cluster size and data
quality, as shown in equation (6).

SC
o, = %'GXP(—/? -Var(s,)) (6)
c'=117¢’
In equation (6), S represents the adjustment
parameter; Var(S,) represents the variance of local
updates within cluster S_, measuring the level of data

noise. To further enhance the robustness of the improved
FL algorithm, eliminate the influence of noisy data on
model updates, and achieve dynamic adaptation of
different data feature spaces, clustering and aggregation
operations are studied for local updates. The schematic
diagram of sub-model clustering and aggregation for
improving the FL algorithm is shown in Figure 2.

In Figure 2, sub-model clustering and aggregation
involve three key steps, and in the merging stage, the local
sub-model updates uploaded by each node are
preliminarily integrated. The clustering stage uses
clustering algorithms to group the merged updates. During
the aggregation stage, weights are dynamically allocated
based on clustering results to form an optimized global sub
model. After all sub-models are updated, they need to be
recombined into a complete global model. The new global
model obtains equation (7) through a linear combination
of sub-models and their decomposition matrices [19].

K
M new _ zml?ew -WT (7)
k=1

In equation (7), M™" represents the updated global
model; W' represents the transpose matrix of the
decomposition matrix, used to map sub-models to the
global model space; K represents the total number of
sub-models. The iterative process of the algorithm
requires monitoring the global LF to determine whether it
converges, as shown in equation (8)

Z L(mnew (8)

In equation (8), L, means the global LF; L(m")

means the local LF of the k th sub-model. Finally, the
optimized model needs to be properly saved for future use.
The model archiving operation is achieved by adding new
models to the archive set.

global =
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Figure 2: Schematic diagram of sub-model clustering and aggregation for improving FL algorithm.

2.2 Intelligence dynamic ensemble

clustering method based on improved
joint pre-training

Although the improved FL algorithm improves the
adaptability and convergence speed of the model through
decomposition and combination techniques, the multi-
source heterogeneity and high-dimensional characteristics
of intelligence data still pose higher requirements for data
integration and clustering [20]. To further optimize feature
extraction and pattern discovery, a dynamic intelligence
data integration and clustering method based on improved
joint pre-training and hierarchical similarity is proposed.
This method enhances the initialization ability of the
model through pre-training mechanisms and utilizes
hierarchical similarity clustering techniques to achieve
efficient grouping and personalized modeling of data. In
the decomposition and construction of the intelligence
dynamic data integration model, the study first introduces
a pre-training mechanism, whose objective function is
shown in equation (9).

ZL (m) 9)

Lo =AM =My [+
represents the pre-trained

base

In equation (9), L.
additional LF utilized to constrain the differences between
the global model and the baseline model; M, represents
a predefined benchmark model; A represents the
adjustment coefficient. The benchmark model M, is

defined as a model pre-trained on a publicly available
dataset that shares similar feature characteristics with the
target intelligence data, but contains no overlapping

samples or private information. This model is used to
provide a robust initialization, leveraging transfer learning
to enhance convergence and stability, especially in
environments with non-11D data distributions. The use of
a publicly pre-trained model as the benchmark was
motivated by its ability to offer a generalized feature
representation, thereby improving the initial performance
of the global model without introducing bias from any
specific client or prior federated training round. This
approach ensures fairness and supports faster adaptation
to heterogeneous local data. In the local training phase,
each node dynamically extracts features based on local
data and projects the data onto a shared feature space
through a feature mapping matrix [21]. The feature
mapping process is shown in equation (10).
2, =W,-% +b (10)
In equation (10), z, represents the feature vector
extracted by node i; x. and W, represent the local input

data and feature mapping matrix of node i, respectively;
b. represents the bias term. The feature mapping matrix

W, is precisely defined as a learned parameter matrix. It

is not a random projection. For each client, the matrix is
optimized during the local training phase to project the
local input data into a shared feature space. This learning
process is performed collaboratively across clients within
the FL framework, with the goal of aligning the feature
representations from different clients to facilitate effective
model aggregation and improve overall performance. The
decomposition and construction diagram of the
intelligence dynamic data integration model is shown in
Figure 3.
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Figure 3: Decomposition and construction diagram of intelligence dynamic data integration model.

Aiming at the heterogeneity of client data, a
hierarchical clustering algorithm based on cosine
similarity is proposed to calculate the similarity matrix of
client data distribution, as shown in equation (11) [22].

D, -D
w T T (11)
[D,]-[o4]

In equation (11), S,, represents the cosine similarity
between client u and client v; D, represents the data
feature vector of client u ; D, represents the

v

corresponding feature vector of client v; |D, | represents

the Euclidean norm of vector D, . Hierarchical clustering

is primarily used in the initial phase to form a dendrogram,
providing insights into the potential number of clusters
and the multi-level data structure. However, the final
client grouping is determined by the Spherical K-means
algorithm, which operates directly on the normalized
feature vectors. Spherical K-means is chosen as the final
clustering driver due to its efficiency and compatibility
with cosine similarity on normalized data, ensuring clients
are partitioned into hyperspherical clusters. Further
research is conducted using the spherical K-means
algorithm for grouping, with the objective function shown
in equation (12) [23].

C, =argmin > (1-S,)

ueh

(12)
In equation (12), C, represents the central client of

the o th cluster; h stands for candidate center client; Sun
refers to the cosine similarity between client u and the
current center h . After obtaining the client group, it is
necessary to design a hierarchical model aggregation

strategy [24]. To achieve more refined personalization, the
intra group client model is fine tuned and its calculation is
shown in equation (13).
M, =>w,-m,
ueG (13)
m* =M, +¢-VL,(M,)

In equation (13), M, represents the global model

generated by aggregation; G means the set of clients in
the current group; m, and w, respectively represent the

local model and aggregation weights of client u; m™

represents the personalized model of the client; ¢
represents fine-tuning step size; VL,(M,) represents the

gradient of the local LF L, of client u on the global
model M, . The schematic diagram of intelligence

dynamic data clustering is shown in Figure 4.

In Figure 4, the sub-model is selected through client
selection and used for local training. During the local
training phase, each client trains based on the selected
model and local data to optimize model performance.
Considering the timeliness of intelligence data, it is
necessary to dynamically adjust the model weights. The
temporal decay strategy is implemented to address the
concept drift and potential data quality degradation that
may occur in dynamic intelligence data environments. The
primary rationale is to gradually reduce the influence of
clients that have not provided recent updates, as their local
models might become less representative of the current
global data distribution over time. The weight update
strategy for time decay is shown in equation (14) [25].

w,(t)=w, - (14)
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In equation (14), w,(t) represents the dynamic
weight of client u at time t; w, represents the initial
weight of client U ; » represents attenuation coefficient;

t represents the time variable. Among them, the
calculation of sub-model weights needs to reflect data
quality, and its expression is shown in equation (15).

ﬂk = (Zugsk "Du ||)/(ZL;ZUESV

(15)

In equation (15), g, represents the weight of sub
model k ; S, represents the set of clients belonging to the
sub model k . The intelligent dynamic data integration
and clustering process based on improved joint pre-

training and hierarchical similarity is shown in Figure 5.
The pseudocode of the proposed method is as follows.

Algorithm 1: Dynamic Sub-Model Aggregation and Clustering via Hierarchical Federated Learning with Pre-Training

Input: Number of clients, total rounds, number of sub-models, clustering epochs, historical dataset

Output: Final global model

/ Step 1: Pre-training Phase

1: Initialize global model by pre-training on historical dataset
// Step 2: Federated Learning Rounds
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. for round t=1to total rounds do
/I Server executes:
Decompose global model into sub-models
Send relevant sub-models to a subset of active clients
/I Client execution (in parallel):
for each client in selected clients do
Train received sub-model on local data
Compute feature vector and upload model update
10:  end for
11: /I Server executes:
12:  Perform preliminary integration of updates
13:  iftmod Ec=0 then

NI WN

14: Calculate client similarity matrix
15: Perform hierarchical client clustering via Spherical K-means
16: endif

17:  Cluster client updates via K-means

18:  Dynamically combine sub-models

19:  Apply temporal weight decay

20:  Recombine sub-models into global model
21:  Evaluate global loss

22: end for

23: return final global model

3 Results

Firstly, the performance of the improved FL algorithm
was analyzed to verify the advantages of decomposition
and combination mechanisms in improving model
convergence speed and adapting to dynamic data. Then,
the performance of intelligence dynamic data integration
and clustering methods was evaluated.

3.1 Performance validation of improved
FL algorithm

To prove the effect of the improved FL algorithm,
experiments were carried out on two common datasets,
MNIST and CIFAR-10. The MNIST dataset contains
70000 handwritten digit images, split into 10 categories,
with 60000 for training and 10000 for testing. The
CIFAR-10 dataset contains 60000 color images, split into
10 categories, with 50000 for training and 10000 for
testing. The number of algorithm iterations was 400. For
the selection of attenuation coefficient, sensitivity analysis
was conducted by changing its value, and the results are
shown in Table 2. In Table 2, the attenuation coefficient
has a significant impact on model performance and
participation fairness. When the attenuation coefficient
was 0.05, the model achieved the highest accuracy of
98.69% and 90.26% on the MNIST and CIFAR-10

datasets, respectively. At this time, the client dropout rate
was 5.1% and the fairness index was 0.89. When the
attenuation coefficient increased to 0.20, the accuracy
decreased to 97.33% and 86.41% respectively, and the
fairness index dropped to 0.61. The results indicate that
when the attenuation coefficient is 0.05, the model
achieves the best balance between accuracy, dropout rate,
and fairness, and is the recommended optimal parameter.

To substantiate the use of K-means clustering for
update grouping, a comparative experiment was
conducted under varying levels of simulated data noise.
The proposed method was compared against the standard
FedAvg aggregation. The clustering quality was
quantitatively assessed using the Silhouette Score, and the
model's robustness was evaluated by its performance on a
clean test set. The results are shown in Table 3. The results
confirm that as noise levels increase, the K-means-based
aggregation mechanism effectively identifies and isolates
anomalous updates into separate clusters. This is
evidenced by the maintenance of a high Silhouette Score
and a lower Intra-cluster Distance for the dominant
cluster, indicating coherent grouping of reliable updates.
The clustering metrics provide clear empirical evidence
that the K-means grouping enhances robustness by
prioritizing the aggregation of updates from clients with
consistent and trustworthy data distributions.

Table 2: Sensitivity analysis results of decay coefficient.

Decay coefficient MNIST Accuracy (%) CIFAR-10 Accuracy (%) Client Dropout Rate (%) l;’r?gg)flpatlon Fairness
0.01 98.45 89.12 3.2 0.92
0.03 98.61 89.87 42 0.90
0.05 98.69 90.26 5.1 0.89
0.10 98.12 88.95 12.7 0.78
0.15 97.68 87.23 19.3 0.70
0.20 97.33 86.41 28.4 0.61

Table 3: Performance and clustering quality comparison under noisy conditions.

. . Final Test Accuracy . Intra-cluster Distance (Majority
Noise Level Aggregation Method %) Avg. Silhouette Score Cluster)
10% FedAvg (Baseline) 97.85 N/A N/A

0 Proposed (K-means) 98.41 0.72 0.15
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20% FedAvg (Baseline) 95.12 N/A N/A
Proposed (K-means) 97.56 0.68 0.18
30% FedAvg (Baseline) 90.33 N/A N/A
Proposed (K-means) 95.88 0.61 0.23
40% FedAvg (Baseline) 83.47 N/A N/A
Proposed (K-means) 92.15 0.55 0.29
Table 4: Experimental environments and parameters.
Experimental environments Parameters
Names Configuration Names Values
Graphics processing unit NVIDIA Tesla V100 Learning rate 0.01
Central processing unit Intel Xeon Gold 6248R Number of clusters 3
Memory 64GB DDR4 Number of clients 20
Operating System Windows 10 Batch size 32
Deep learning framework PyTorch 1.10 Number of sub-models 5
Programming language Python 3.8 Decay coefficient 0.05
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Figure 6: Accuracy of algorithms under two heterogeneous clients in MNIST and CIFAR-10 datasets.

The experimental environment and parameters are
denoted in Table 4.

To prove the robustness of the designed algorithm, the
accuracy of the algorithm was analyzed on two
heterogeneous clients, pathology and real-world
scenarios, in the MNIST and CIFAR-10 datasets.
Compared with current mainstream algorithms, including
FedAvg, FedProx, and Stochastic Controlled Averaging

for Federated Learning (ScaFFL), the findings are denoted
in Figure 6. In Figure 6 (a), in the MNIST dataset, with an
iteration of 160, the accuracy of FedAvg, FedProx,
SCAFFL, and the proposed algorithm on the pathological
heterogeneity client were 96.24%, 95.16%, 97.68%, and
98.69%, respectively. In Figure 6 (b), when the iteration
number was 160, the accuracy of the four algorithms in
the MNIST dataset was 96.58%, 97.10%, 97.35%, and
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98.14%, respectively, under the actual scenario of
heterogeneous clients. In Figure 6 (c), in the CIFAR-10
dataset, with an iteration of 160, the accuracy of FedAvg,
FedProx, and SCAFFL under pathological heterogeneity
client was 65.37%, 67.69%, and 86.74%, respectively.
The accuracy of the proposed algorithm was 90.26%. In
Figure 6 (d), under the actual scenario of heterogeneous
clients and with 160 iterations, the accuracy of the four
algorithms in the CIFAR-10 dataset was 69.38%, 69.12%,
83.56%, and 89.87%, respectively. The findings show that
the designed algorithm exhibits higher accuracy and
robustness in different data distributions and scenarios.
The loss of different comparison algorithms was
analyzed in the MNIST and CIFAR-10 datasets to validate
the convergence of the designed algorithm. The findings
are denoted in Figure 7. In Figure 7 (a), under the
pathological heterogeneity client, when the iteration

6.0 e FedAvg SCAFFL
i — — — FedProx OURS
3\
AN
45 NN ~
2 sof
-
15+
OO 1 1 1 1 )
0 80 160 240 320 400
Iterations
(a) Loss of algorithms under pathological
heterogeneity client in MNIST dataset
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451 o \___ B,
2 30f
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(c) Loss of algorithms under pathological
heterogeneity client in CIFAR-10 dataset
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number was 160, the losses of FedAvg, FedProx,
SCAFFL, and the proposed algorithm in the MNIST
dataset were 0.348, 0.352, 1.025, and 0.113, respectively.
In Figure 7 (b), under the actual scenario of heterogeneous
clients, when the iteration number was 160, the losses of
the four algorithms were 0.341, 0.326, 1.104, and 0.505,
respectively. In Figure 7 (c), in the CIFAR-10 dataset, at
an iteration of 160, the losses of the four algorithms under
pathological heterogeneity clients were 4.472, 4.210,
1.389, and 0.857, respectively. In Figure 7 (d), under the
actual scenario of heterogeneous clients, when the
iteration number was 160, the losses of FedAvg, FedProx,
and SCAFFL were 3.021, 3.098, and 1.610, respectively,
and the loss of the proposed algorithm was 1.024. The
findings demonstrate that the designed algorithm can
improve the convergence speed of the model and achieve
lower losses under different data distributions.
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Figure 7: Loss of algorithms under two heterogeneous clients in MNIST and CIFAR-10 datasets.
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Table 5: Comprehensive comparison of model performance and statistical significance.

Pathological Heterogeneity

Real-world Heterogeneity

Dataset | Methods 95% CI (Accuracy) 95% CI (Loss) p-value 95% CI (Accuracy) 95% CI (Loss) p-value
FedAvg | [95.98, 96.44] [0.335, 0.361] <0.01 [96.34, 96.76] [0.328, 0.354] <0.01
MNIST | FedProx | [94.83, 95.45] [0.339, 0.365] <0.01 [96.85, 97.31] [0.313, 0.339] <0.01
SCAFFL | [97.47,97.83] [1.001, 1.049] <0.01 [97.13, 97.51] [1.080, 1.128] <0.01
OURS [98.52, 98.82] [0.105, 0.121] / [98.00, 98.24] [0.490, 0.520] /
FedAvg | [64.68, 66.00] [4.350, 4.594] <0.01 [68.84, 69.86] [2.909, 3.133] <0.01
CIFAR- | FedProx | [67.07, 68.23] [4.098, 4.322] <0.01 [68.54, 69.64] [2.986, 3.210] <0.01
10 SCAFFL | [86.31, 87.11] [1.367, 1.411] <0.01 [83.09, 83.97] [1.588, 1.632] <0.01
OURS [89.97, 90.51] [0.841, 0.873] / [89.57, 90.13] [1.010, 1.038] /
Note: p<0.01 indicates reaching a highly significant level.
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Figure 8: The impact of different numbers of sub models and local training epochs on the accuracy of improved
algorithms.

This study conducted a statistical analysis of the
accuracy loss of the proposed algorithm under two
heterogeneous clients, pathology and real-world
scenarios, in the MNIST and CIFAR-10 datasets. The
results are shown in Table 5. The statistical results show
that the method proposed in this study significantly
outperforms the baseline algorithm in both datasets and
heterogeneous scenarios. On the MNIST dataset, the
accuracy and 95% confidence interval of the proposed
method were [98.52, 98.82] and [98.00, 98.24],
respectively, demonstrating applicability to
heterogeneous pathology and real-world scenarios, and
the 95% confidence intervals for loss values were [0.105,
0.121] and [0.490, 0.520], respectively. On the more
complex CIFAR-10 dataset, the proposed method also
outperformed all baselines in terms of confidence
intervals. All p-values compared were less than 0.001,
indicating that the performance improvement is highly
statistically significant.

A comparative analysis was conducted on the
accuracy of the MNIST and CIFAR-10 datasets under
different numbers of sub-models and local training
epochs, to investigate the impact of these factors on the
performance improvement of the proposed algorithm. The
findings are denoted in Figure 8. In Figure 8 (a), under the
pathological heterogeneity client, when the number of
sub-models was 4, the accuracy of the designed algorithm
in the two datasets was 99.82% and 90.33%, respectively.
In actual heterogeneous client scenarios, their accuracy
rates were 99.47% and 89.11%, respectively. In Figure 8
(b), when the local training epochs were 5, the accuracy of
the proposed algorithm in two datasets was 99.86% and
90.62% respectively under pathological heterogeneity
client. In actual scenarios with heterogeneous clients, the
accuracy rates were 99.43% and 88.94%, respectively.
Research has found that increasing the number of sub-
models and local training rounds can improve algorithm
performance.
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Figure 9: Integration quality and clustering efficiency of different methods on two datasets.

3.2 Performance evaluation of intelligence

dynamic data integration and
clustering methods

The ensemble quality and clustering efficiency of the
proposed method were analyzed in the MNIST and
CIFAR-10 datasets, and compared with FedAvg, FedProx,
and SCAFFL. The indicator for evaluating integration
quality was Normalized Mutual Information (NMI), and
the clustering efficiency indicator was communication
epochs. The findings are denoted in Figure 9. In Figure 9
(a), in the MNIST dataset, the NMIs of FedAvg, FedProx,
SCAFFL, and the designed algorithm were 0.82, 0.84,
0.86, and 0.91, respectively. The NMls in the CIFAR-10
dataset were 0.68, 0.71, 0.73, and 0.79, respectively. In
Figure 9 (b), the communication epochs of FedAvg,
FedProx, and SCAFFL in the MNIST dataset were 121,
112, and 101, respectively, and in the CIFAR-10 dataset
were 179, 171, and 162, respectively. Compared with it,
the proposed algorithm had 75 and 119 communication
epochs in the two datasets, respectively. The findings
show that the designed algorithm can ensure high
integration quality while reducing communication
overhead, verifying its efficiency in dynamic data
integration and clustering tasks.

Ablation experiments were conducted to verify the
contribution of each core module to the overall
performance of the dynamic data integration and
clustering methods. The findings are presented in Table 6.
In ablation analysis, the roles of each module are as
follows: the decomposition and combination mechanism
adapts to heterogeneous data distributions by dividing sub
models; The pre-training mechanism utilizes historical
features to optimize model initialization and accelerate
convergence; Hierarchical clustering identifies intrinsic

relationships between clients through a multi-level
structure, improving grouping stability and aggregation
quality, which is superior to methods that rely solely on
planar partitioning; The dynamic weighting mechanism
adjusts client contributions based on data timeliness to
alleviate concept drift. In Table 6, on the MNIST dataset,
the F1 score of the complete method was 0.924 and the
precision was 0.931, significantly higher than other
configurations. On the CIFAR-10 dataset, the F1 score
and precision of the complete method were 0.802 and
0.810, respectively. The F1 score and precision of the
baseline method were the lowest, with values of 0.852 and
0.806 in the MNIST dataset and 0.723 and 0.730 in the
CIFAR-10 dataset, respectively. The findings denote that
each core module contributes significantly to the
improvement of model performance.

The study analyzed the running time and memory
usage of the designed method in a practical scenario of a
medical 10T, and compared it with other methods. The
findings are denoted in Figure 10. In Figure 10 (a), the
average running times of FedAvg, FedProx, SCAFFL, and
the proposed algorithm were 23.42s, 26.75s, 31.52s, and
18.23s, respectively. Compared with the comparative
algorithm, the running time of the proposed algorithm was
reduced by 22.16%, 31.85%, and 42.16%, respectively. In
Figure 10 (b), the average memory usage of FedAvg,
FedProx, and SCAFFL was 1853MB, 1926MB, and
2157MB, respectively. Compared with them, the proposed
algorithm had an average memory usage of 1681MB,
which was reduced by 9.28%, 12.72%, and 22.07%,
respectively. The outcomes demonstrat that the designed
algorithm can substantially decrease the consumption of
computational resources while maintaining performance,
thereby verifying its practicality and deployment benefits
in 10T scenarios with limited resources.
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Table 6: Results of ablation experiment.

MNIST dataset CIFAR-10 dataset
Method configuration - (p-value vs. - (p-value vs.
Precision Recall F1 score FedAvg) Precision Recall F1 score FedAvg)
Complete method 0.931 0.918 0.924 <0.001 0.810 0.795 0.802 <0.001
No  decomposition | ; g7q 0.863 0.871 <0.001 0.742 0.728 0.735 <0.001
combination
No pre training 0.900 0.886 0.893 <0.001 0.775 0.761 0.768 <0.001
Non hierarchical |, gq4 0.879 0.886 <0.001 0.760 0.745 0.752 <0.001
clustering
No dynamic weight 0.908 0.894 0.901 <0.001 0.786 0.772 0.779 <0.001
Baseline method | 4 506 0.845 0.852 / 0.730 0.716 0.723 /
(FedAvg)
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Figure 10: Comparison of runtime and memory usage of different methods in practical scenarios.

To verify the effectiveness of the proposed method in
practical datasets, an analysis was conducted on the
running time and average memory of different methods
under different numbers of clients in the PhysioNet
dataset. The PhysioNet dataset is a widely recognized real-
world clinical time series dataset containing records of
12000 ICU patients. The results are shown in Figure 11.
In Figure 11 (a), when the number of clients was 20, the
running times of FedAvg, FedProx, and SCAFFL were
28.45s, 32.11s, and 38.94s, respectively, and the running
time of the proposed method was 21.08s. When the
number of clients increased to 100, the running times of

the four methods were 62.34s, 71.89s, 88.56s, and 45.12s,
respectively. In Figure 11 (b), when the number of clients
was 20, the average memory of FedAvg, FedProx,
SCAFFL, and the proposed method was 2105MB,
2189MB, 2455MB, and 1950MB, respectively. When the
number of clients reached 100, the average memory was
3521MB, 3744MB, and 1950MB, respectively. B,
4455MB, and 2850MB. The results show that the
proposed method effectively reduces computational and
storage costs on real medical datasets, demonstrating
superior scalability and practicality.
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Figure 11: Run time and average memory of different methods under different numbers of clients.
Table 7: Model complexity comparison across different datasets.
Methods MNIST [ CIFAR-10 [ PhysioNet MNIST [ CIFAR-10 | PhysioNet
Number of Parameters (Millions) FLOPs (MegaFLOPs)
FedAvg 421 23.45 1.85 8.45 125.67 3.72
FedProx 421 23.47 1.85 8.47 125.72 3.73
SCAFFL 4.26 23.51 1.87 8.52 126.05 3.76
OURS 5.18 25.83 221 10.31 135.42 4.45

Further analysis was conducted on the parameter
count and Floating-Point Operations (FLOPSs) of different
methods on the MNIST, CIFAR-10, and PhysioNet
datasets. The results are shown in Table 7. In Table 7, on
the MNIST dataset, the proposed method had a parameter
size of 5.18M and FLOPs of 10.31M, which were
approximately 23% and 22% higher than FedAvg,
respectively. The complexity of the proposed method on
the real clinical dataset PhysioNet also maintained a
similar increase. This controllable increase in complexity,
compared to the specific performance improvements
obtained in the previous experiments, demonstrates that
the proposed method achieves a good balance between
efficiency and performance.

4 Discussion

In this study, a dynamic integration and clustering method
for intelligence data based on an improved FL algorithm
was proposed. The experimental results demonstrated
significant improvements in accuracy, convergence speed,
and communication efficiency compared to several
existing approaches.

In terms of accuracy, this method achieved accuracies
of 98.69% and 90.26% respectively on the MNIST and
CIFAR-10 datasets for pathological heterogeneous
clients, and 98.14% and 89.87% respectively in real-world
heterogeneous clients. Compared with the real-time
medical data processing method proposed in reference [6],
the accuracy of this method was improved by about 6-8
percentage points. This improvement is mainly due to the
dynamic sub model aggregation mechanism, which
decomposes the global model into multiple specialized

sub models, enabling the model to better adapt to the data
distribution characteristics of different clients.

In terms of convergence performance, this method
only required 75 communication rounds to converge on
the MNIST dataset and 119 communication rounds on the
CIFAR-10 dataset. In contrast, the privacy preserving FL
method in reference [10] required 121 and 179
communication epochs respectively in similar tasks. The
improvement in convergence speed is mainly due to the
introduction of pre-training mechanisms, which utilize
historical data feature information for model initialization,
enabling the model to have a good parameter foundation
in the early stages of training, thereby accelerating the
training process.

In terms of communication efficiency, this method
had a running time of 18.23 seconds and a memory usage
of 1681MB in actual medical 10T scenario testing.
Compared with the method in reference [12], the running
time was reduced by 27% and the memory usage was
reduced by 12%. This improvement is due to the
application of hierarchical similarity clustering
technology, which significantly reduces unnecessary
communication overhead by intelligently grouping
clients.

However, this method also has some limitations.
Firstly, due to the adoption of a multi submodel
architecture and clustering process, its computational
complexity is relatively high, which may limit its
application in resource constrained environments.
Secondly, the method is sensitive to hyperparameter
settings, especially the selection of the number of clusters
K and learning rate, which can significantly affect
performance. Compared with the heterogeneous loT FL
framework in reference [13], this method improved
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accuracy by about 4% on the CIFAR-10 dataset, but
increased computational load by about 15%. This
indicates that while pursuing performance improvement, a
balance needs to be struck between accuracy and
computational efficiency. Compared with the TEE based
method in reference [8], although this method avoided the
dependence on dedicated hardware, it may be slightly
inadequate in combating advanced security threats.

In summary, the proposed method has achieved
significant improvements in accuracy, convergence speed,
and communication efficiency through the organic
combination of dynamic submodel aggregation, pre
training mechanism, and hierarchical clustering. Future
research  will focus on developing adaptive
hyperparameter  optimization  strategies, reducing
computational complexity, and exploring decentralized
aggregation mechanisms to enhance system robustness.

5 Conclusion

The study proposes a dynamic integration and clustering
method for intelligence data based on an improved FL
algorithm to strengthen the effectiveness of the FL
algorithm in intelligence data processing. The findings
denote that the designed method can effectively solve the
challenges of slow convergence speed, poor adaptability
to dynamic data, and low clustering efficiency in FL. It not
only improved precision and convergence speed, but also
reduced computational resource consumption, making it
suitable for practical application scenarios such as medical
loT.
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