
https://doi.org/10.31449/inf.v50i5.10966 Informatica 50 (2026) 405–420 405

Dynamic Sub-Model Aggregation and Clustering for Intelligence

Data via Hierarchical Federated Learning with Pre-Training

Jianfeng Wang*, Lin Ma, Xinyan Pei, Ruonan Shi, Qi Jing, Chen Yang

State Grid Shanxi Electric Power Company Yuncheng Power Supply Company, Yuncheng 044000, China

E-mail: wjf056391@126.com

*Corresponding author

Keywords: federated learning algorithm, intelligence data integration, pre-training mechanism, hierarchical clustering,

decomposition and combination technology

Received: August 21, 2025

To address the challenges of slow convergence speed, poor dynamic adaptability, and low communication

efficiency in intelligence data processing, a dynamic integration and clustering method for intelligence

data based on an improved federated learning algorithm is proposed. First, an improved federated

learning algorithm combining decomposition and combination is designed, where the global model is

decomposed into multiple sub-models for local training, and a dynamic combination strategy is applied

to integrate these sub-models, thereby improving the adaptability and accuracy of the global model. Then,

a pre-training mechanism is introduced to initialize the global model using feature information from

historical data, enhancing the model's initialization performance in dynamic data environments and

accelerating convergence. Experiments are conducted on the MNIST and CIFAR-10 datasets, with

comparisons made against baseline methods including FedAvg, FedProx, and ScaFFL. The results show

that the proposed algorithm achieves accuracies of 98.69% and 90.26% on the pathological heterogeneity

client, and 98.14% and 89.87% on the actual scenario heterogeneity client, respectively, on the two

datasets. The normalized mutual information values of the proposed intelligence dynamic data integration

and clustering method are 0.91 and 0.79, respectively. In a practical medical Internet of Things scenario

test, the running time and memory usage of the proposed method are 18.23s and 1681MB, respectively.

Our research denotes that the designed method can effectively improve the quality of dynamic integration

of intelligence data and reduce resource consumption, providing a feasible solution for efficient

processing of multi-source heterogeneous intelligence data.

Povzetek: Predlagana izboljšana metoda federativnega učenja z dinamično integracijo in gručenjem

inteligentnih podatkov izboljša prilagodljivost, natančnost in učinkovitost obdelave večizvornih

heterogenih podatkov ter hkrati zmanjša porabo virov.

1 Introduction
With the rapid development of information technology,

the scale and complexity of intelligence data have

increased sharply, and the demand for efficient processing

and real-time analysis of large-scale intelligence data is

becoming increasingly urgent [1]. In this study,

intelligence data is defined as multi-source, heterogeneous

data streams that are dynamically generated from

distributed sensors, Internet of Things (IoT) devices, and

edge computing nodes in real-world scenarios such as

smart healthcare, industrial monitoring, and security

systems. These data are characterized by their diverse

modalities, high dimensionality, non-independent and

identically distributed (non-IID) nature, and temporal

dynamics. However, intelligence data has characteristics

such as multi-source heterogeneity, high dimensionality,

and dynamic evolution. Traditional data analysis methods

face issues such as data silos, insufficient privacy

protection, and poor real-time performance, making it

difficult to meet the dynamic, collaborative, and

intelligent requirements of modern intelligence processing

[2]. Therefore, exploring an efficient method for

integrating and clustering intelligence data has become a

key focus of current research. In recent years, machine

learning algorithms have been broadly employed in the

area of intelligence data analysis [3]. Among them,

Federated Learning (FL), as a distributed machine

learning method, not only addresses data privacy and

security issues, but also enables multi-party collaborative

learning, demonstrating great potential [4]. Researchers

have conducted extensive research on the FL algorithm,

aiming to address issues such as non independent and

identically distributed data, high communication

overhead, and poor model convergence [5].

Guo et al. proposed a real-time medical data

processing method based on FL, which integrates old and

new models and selects representative samples to mitigate

catastrophic forgetting, effectively learning diagnostic

models from continuous medical data streams [6]. Gafni

et al. introduced a signal processing-driven FL framework,

combining signal processing and communication

techniques to design optimized solutions that enhance FL

406 Informatica 50 (2026) 405–420 J. Wang et al.

efficiency [7]. Yazdinejad et al. proposed an auditable

privacy-preserving FL framework for medical electronic

devices, using trusted execution environments to ensure

secure training and aggregation, thereby preventing

privacy leaks [8]. Bao and Guo presented a systematic

research approach for FL under a cloud-edge collaborative

architecture, filling the theoretical gap in cloud-edge FL

[9]. Wang et al. designed an FL scheme for edge

computing environments, integrating secret sharing and

digital signatures to improve training efficiency by 40%

while maintaining privacy [10]. Chatterjee et al.

developed a recommendation model based on FL and

blockchain, enhancing system security and transparency

[11]. Akter et al. proposed an FL-based privacy protection

framework for edge-based smart healthcare, balancing

privacy and performance with an accuracy of 90% [12].

Gao et al. designed an FL framework based on cross-

technology communication, improving model

performance and communication efficiency in

heterogeneous IoT environments [13]. Qu et al. introduced

a quantum fuzzy FL algorithm, increasing training

efficiency by 23% and accuracy by 15% while

maintaining over 90% fidelity in quantum noise

environments [14].

The summary of federal learning related work is

shown in Table 1.

As illustrated in Table 1, prior research has made

significant strides in applying FL to various domains,

enhancing privacy, and improving efficiency through

different strategies. However, several technical gaps

remain. Many existing methods exhibit slow convergence

speeds and poor adaptability under highly non-IID and

dynamic data environments. Furthermore, considerations

for the complex relationships between data sources are

often insufficient, and communication efficiency remains

a challenge. To systematically address these challenges

and clearly define the scope of our contribution, this study

is guided by the following research questions:

(1) Can the proposed dynamic sub-model aggregation

and combination mechanism significantly improve model

accuracy and convergence speed under non-independent

and identically distributed data distributions, compared to

standard FL baselines?

(2) To what extent does the integration of a pre-

training mechanism and hierarchical similarity clustering

enhance the quality of data integration and reduce

communication overhead in dynamic environments?

In view of this, this study proposes a dynamic

integration and clustering method for intelligence data

based on an improved FL algorithm, aiming to enhance

the real-time, adaptability, and accuracy of intelligence

data processing. The novelty of this study lies in using a

dynamic sub-model aggregation mechanism to solve the

problem of insufficient adaptability of traditional methods

to changes in data distribution. Moreover, a pre-training

mechanism that utilizes historical data feature information

to enhance the initialization performance and convergence

speed of the model is introduced. Besides, by combining

hierarchical similarity clustering techniques, efficient

grouping and personalized modeling of data can be

achieved, reducing communication overhead and

improving the efficiency of dynamic integration and

clustering of intelligence data.

Table 1: Summary of related works in federated learning.

References Datasets Used Methodological Innovations Accuracy / Performance Metrics Identified Limitations

Guo et al. [6]
Continuous medical

data streams

Model fusion with sample

selection

Supports continuous data stream

learning

Limited adaptability to

dynamic non-IID data

Gafni et al. [7]
Not specified
(Theoretical)

Signal processing-inspired
optimization

Improves FL efficiency
Lacks validation on real-
world data

Yazdinejad et al.
[8]

Medical data from
electronic devices

Privacy protection using

trusted execution

environments

Effectively prevents privacy
leaks

High hardware dependency
and overhead

Bao and Guo [9] Not specified (Survey)
Cloud-edge collaborative

architecture analysis
Provides theoretical framework

No algorithmic innovation

or validation

Wang et al. [10] Medical IoT data
Secret sharing with digital
signatures

40% training efficiency
improvement

High communication and
computation costs

Chatterjee et al.

[11]

Financial consumer

service data
FL combined with blockchain

Enhanced security and

transparency

Latency and scalability

issues

Akter et al. [12] Smart healthcare data Artificial noise injection
90% accuracy with high privacy

rate.

Difficult to balance privacy

and accuracy

Gao et al. [13]
Heterogeneous IoT

data

Cross-technology

communication coordination

Improved performance in

heterogeneous environments

Requires dedicated

coordination devices

Qu et al. [14]
Not specified
(Simulation)

Quantum fuzzy FL
23% efficiency gain, 15%
accuracy improvement

Requires quantum
resources, low practicality

Dynamic Sub-Model Aggregation and Clustering for Intelligence… Informatica 50 (2026) 405–420 407

Break down

Broadcast

Update

Model archive set

Combination

Cluster

aggregation

Merge

Upload

Figure 1: Flow diagram of improved FL algorithm combining decomposition and combination.

2 Methods and materials
Firstly, an improved FL algorithm combining

decomposition and combination is designed to enhance

the adaptability and accuracy of the global model. Then, a

dynamic intelligence data integration and clustering

method based on improved joint pre-training and

hierarchical similarity is proposed to achieve efficient

grouping and personalized modeling of data.

2.1 Improved FL algorithm combining

decomposition and combination

In the big data era, intelligence data presents

characteristics such as multi-source heterogeneity, high

dimensionality, and dynamic evolution. Although FL is a

distributed machine learning paradigm that can effectively

protect data privacy, it still faces problems such as slow

convergence speed, poor adaptability to dynamic data and

an inability to consider complex relationships between

data sources when processing intelligence data [15].

Therefore, a study proposes an improved FL algorithm

that combines decomposition and combination. This

algorithm breaks down the global model into local sub-

models, optimizes local training efficiency and combines

the sub-models dynamically to enhance the global model's

adaptability and accuracy. The flowchart of the improved

FL algorithm combining decomposition and combination

is shown in Figure 1.

To adapt complex global models to different data

feature spaces, the study first decomposes the global

model, with each sub-model corresponding to a data

feature subspace, as shown in equation (1) [16].

, kd d

k k km M


=  W W R (1)

In equation (1),
km represents the k th sub-model

obtained after decomposition; M represents the global

model;
kW represents the decomposition matrix; d and

kd respectively represent the dimensions of the global

model and sub-models; R represents the set of real

numbers. The decomposition matrix
kW is predefined

based on the structural characteristics of the global model.

Specifically, the decomposition is performed by

partitioning the global model into multiple sub-models,

each corresponding to a distinct feature subspace. This

partitioning is conducted according to the layer-wise or

block-wise architecture of the neural network, ensuring

that each sub-model captures a specific subset of features.

The decomposition matrix is not learned during training,

nor is it a random projection. Instead, it is constructed as

a fixed, structured matrix that maps the global model

parameters to the respective sub-models. This approach

allows for efficient local training and dynamic

recombination while maintaining the interpretability and

structural consistency of the global model. The number of

sub-models used in the experiments was determined

through empirical validation and sensitivity analysis. With

fewer sub-models, the feature subspaces were too coarse,

limiting adaptability to heterogeneous data distributions.

With more sub-models, the communication and

computation costs increased without significant gains in

accuracy. After the model decomposition is completed,

each node needs to train the sub-model based on local

data. The node trains a sub-model based on local data, and

its Loss Function (LF) is designed as shown in equation

(2).

408 Informatica 50 (2026) 405–420 J. Wang et al.

2

(,)

1
() ()

i

i k k

x y Di

L m y m x
D 

= − (2)

In equation (2), ()i kL m represents the LF when

training the sub-model on the local dataset of node i ;
iD

denotes the local dataset of node i ; iD represents the

amount of samples in dataset
iD ; x and y respectively

represent input features and real labels; ()km x denotes the

predicted output of the sub model
km on the input x . To

optimize the performance of sub models, each node needs

to calculate the gradient update of model parameters [17].

After receiving local updates from all nodes, the central

server needs to preliminarily integrate these updates, as

shown in equation (3).

1

()

1

i

k i k

N
merge i

k k

i

m L m

m m
N



=

 = 


 = 



 (3)

In equation (3), i

km refers to the parameter update

amount of node i to submodel
km ;  stands for learning

rate; ()i kL m refers to the parameter gradient of the LF

()i kL m for the submodel
km ; merge

km represents the

merging and updating amount of sub-models by the

central server; N means the total amount of nodes. To

strengthen the robustness of the model, it needs to cluster

local updates to eliminate the influence of noisy data. The

study uses the K-means clustering (K-means) algorithm

for local update clustering, and the calculation of cluster

centers is shown in equation (4) [18].

1

i
k c

c i

k k

m Sc

m m
S  

 =  (4)

In equation (4), c

km represents the center of c

clusters;
cS represents the collection of the c th cluster.

Based on the clustering results, the algorithm needs to

assign different weights to updates of different clusters to

achieve dynamic combination. The new sub-model

obtains equation (5) by weighting and combining the

updates of each cluster center.

1

C
new c

k k c k

c

m m m
=

= +  (5)

In equation (5), new

km represents the updated sub-

model;
km represents the current sub-model parameters;

c means the weight of the c th cluster. The design of

weights takes into account both cluster size and data

quality, as shown in equation (6).

1

exp(())
c

c cC

cc

S
Var S

S
 

=

=  − 


 (6)

In equation (6),  represents the adjustment

parameter; ()cVar S represents the variance of local

updates within cluster
cS , measuring the level of data

noise. To further enhance the robustness of the improved

FL algorithm, eliminate the influence of noisy data on

model updates, and achieve dynamic adaptation of

different data feature spaces, clustering and aggregation

operations are studied for local updates. The schematic

diagram of sub-model clustering and aggregation for

improving the FL algorithm is shown in Figure 2.

In Figure 2, sub-model clustering and aggregation

involve three key steps, and in the merging stage, the local

sub-model updates uploaded by each node are

preliminarily integrated. The clustering stage uses

clustering algorithms to group the merged updates. During

the aggregation stage, weights are dynamically allocated

based on clustering results to form an optimized global sub

model. After all sub-models are updated, they need to be

recombined into a complete global model. The new global

model obtains equation (7) through a linear combination

of sub-models and their decomposition matrices [19].

1

K
new new T

k

k

M m W
=

=  (7)

In equation (7), newM represents the updated global

model;
TW represents the transpose matrix of the

decomposition matrix, used to map sub-models to the

global model space; K represents the total number of

sub-models. The iterative process of the algorithm

requires monitoring the global LF to determine whether it

converges, as shown in equation (8).

1

1
()

K
new

global k

k

L L m
K =

=  (8)

In equation (8),
globalL means the global LF; ()new

kL m

means the local LF of the k th sub-model. Finally, the

optimized model needs to be properly saved for future use.

The model archiving operation is achieved by adding new

models to the archive set.

Dynamic Sub-Model Aggregation and Clustering for Intelligence… Informatica 50 (2026) 405–420 409

...

...

...

...

Cluster

Aggregate

Merge

...

...

...

...

...

Cluster

Aggregate

Merge

...

Figure 2: Schematic diagram of sub-model clustering and aggregation for improving FL algorithm.

2.2 Intelligence dynamic ensemble

clustering method based on improved

joint pre-training

Although the improved FL algorithm improves the

adaptability and convergence speed of the model through

decomposition and combination techniques, the multi-

source heterogeneity and high-dimensional characteristics

of intelligence data still pose higher requirements for data

integration and clustering [20]. To further optimize feature

extraction and pattern discovery, a dynamic intelligence

data integration and clustering method based on improved

joint pre-training and hierarchical similarity is proposed.

This method enhances the initialization ability of the

model through pre-training mechanisms and utilizes

hierarchical similarity clustering techniques to achieve

efficient grouping and personalized modeling of data. In

the decomposition and construction of the intelligence

dynamic data integration model, the study first introduces

a pre-training mechanism, whose objective function is

shown in equation (9).

2

1

1
()

N

pre base i k

i

L M M L m
N


=

=  − +  (9)

In equation (9),
preL represents the pre-trained

additional LF utilized to constrain the differences between

the global model and the baseline model;
baseM represents

a predefined benchmark model;  represents the

adjustment coefficient. The benchmark model
baseM is

defined as a model pre-trained on a publicly available

dataset that shares similar feature characteristics with the

target intelligence data, but contains no overlapping

samples or private information. This model is used to

provide a robust initialization, leveraging transfer learning

to enhance convergence and stability, especially in

environments with non-IID data distributions. The use of

a publicly pre-trained model as the benchmark was

motivated by its ability to offer a generalized feature

representation, thereby improving the initial performance

of the global model without introducing bias from any

specific client or prior federated training round. This

approach ensures fairness and supports faster adaptation

to heterogeneous local data. In the local training phase,

each node dynamically extracts features based on local

data and projects the data onto a shared feature space

through a feature mapping matrix [21]. The feature

mapping process is shown in equation (10).

i i i iz W x b=  + (10)

In equation (10),
iz represents the feature vector

extracted by node i ;
ix and

iW represent the local input

data and feature mapping matrix of node i , respectively;

ib represents the bias term. The feature mapping matrix

iW is precisely defined as a learned parameter matrix. It

is not a random projection. For each client, the matrix is

optimized during the local training phase to project the

local input data into a shared feature space. This learning

process is performed collaboratively across clients within

the FL framework, with the goal of aligning the feature

representations from different clients to facilitate effective

model aggregation and improve overall performance. The

decomposition and construction diagram of the

intelligence dynamic data integration model is shown in

Figure 3.

410 Informatica 50 (2026) 405–420 J. Wang et al.

Break down Aggregation

Figure 3: Decomposition and construction diagram of intelligence dynamic data integration model.

Aiming at the heterogeneity of client data, a

hierarchical clustering algorithm based on cosine

similarity is proposed to calculate the similarity matrix of

client data distribution, as shown in equation (11) [22].

u v

uv

u v

D D
S

D D


=


 (11)

In equation (11),
uvS represents the cosine similarity

between client u and client v ;
uD represents the data

feature vector of client u ;
vD represents the

corresponding feature vector of client v ; uD represents

the Euclidean norm of vector
uD . Hierarchical clustering

is primarily used in the initial phase to form a dendrogram,

providing insights into the potential number of clusters

and the multi-level data structure. However, the final

client grouping is determined by the Spherical K-means

algorithm, which operates directly on the normalized

feature vectors. Spherical K-means is chosen as the final

clustering driver due to its efficiency and compatibility

with cosine similarity on normalized data, ensuring clients

are partitioned into hyperspherical clusters. Further

research is conducted using the spherical K-means

algorithm for grouping, with the objective function shown

in equation (12) [23].

arg min (1)o uh
h

u h

C S


= − (12)

In equation (12),
oC represents the central client of

the o th cluster; h stands for candidate center client; uhS

refers to the cosine similarity between client u and the

current center h . After obtaining the client group, it is

necessary to design a hierarchical model aggregation

strategy [24]. To achieve more refined personalization, the

intra group client model is fine tuned and its calculation is

shown in equation (13).

()

g u u

u G

per

u g u g

M w m

m M L M



 = 


 = + 


 (13)

In equation (13),
gM represents the global model

generated by aggregation; G means the set of clients in

the current group;
um and

uw respectively represent the

local model and aggregation weights of client u ; per

um

represents the personalized model of the client; 

represents fine-tuning step size; ()u gL M represents the

gradient of the local LF
uL of client u on the global

model
gM . The schematic diagram of intelligence

dynamic data clustering is shown in Figure 4.

In Figure 4, the sub-model is selected through client

selection and used for local training. During the local

training phase, each client trains based on the selected

model and local data to optimize model performance.

Considering the timeliness of intelligence data, it is

necessary to dynamically adjust the model weights. The

temporal decay strategy is implemented to address the

concept drift and potential data quality degradation that

may occur in dynamic intelligence data environments. The

primary rationale is to gradually reduce the influence of

clients that have not provided recent updates, as their local

models might become less representative of the current

global data distribution over time. The weight update

strategy for time decay is shown in equation (14) [25].

() t

u uw t w e −=  (14)

Dynamic Sub-Model Aggregation and Clustering for Intelligence… Informatica 50 (2026) 405–420 411

Model archive set

Client selection model

Local training

Merge new models

into archive set

Cluster aggregation

Figure 4: Schematic diagram of intelligence dynamic data clustering.

Start

Global model pre

training

Decompose the global

model into sub models

Distribute sub models to

the client

Client local training

Extract feature vectors

Calculate similarity

Hierarchical clustering:

spherical K-means

Meet clustering

requirements?

Dynamic weight aggregation

group level model

Personalized fine-tuning

within the group

Composite submodel

Update global model

Global loss

convergence?

Output clustering results and

global model

End

Yes

No

Yes

No

Figure 5: Flow chart of intelligence dynamic data integration and clustering based on improved joint pre-training and

hierarchical similarity.

In equation (14), ()uw t represents the dynamic

weight of client u at time t ;
uw represents the initial

weight of client u ;  represents attenuation coefficient;

t represents the time variable. Among them, the

calculation of sub-model weights needs to reflect data

quality, and its expression is shown in equation (15).

1
() / ()

k v

K

k u uu S v u S
D D

 = 
=    (15)

In equation (15),
k represents the weight of sub

model k ;
kS represents the set of clients belonging to the

sub model k . The intelligent dynamic data integration

and clustering process based on improved joint pre-

training and hierarchical similarity is shown in Figure 5.

The pseudocode of the proposed method is as follows.

Algorithm 1: Dynamic Sub-Model Aggregation and Clustering via Hierarchical Federated Learning with Pre-Training

Input: Number of clients, total rounds, number of sub-models, clustering epochs, historical dataset

Output: Final global model

/ Step 1: Pre-training Phase

1: Initialize global model by pre-training on historical dataset

// Step 2: Federated Learning Rounds

412 Informatica 50 (2026) 405–420 J. Wang et al.

2: for round t=1to total rounds do
3: // Server executes:

4: Decompose global model into sub-models

5: Send relevant sub-models to a subset of active clients
6: // Client execution (in parallel):

7: for each client in selected clients do

8: Train received sub-model on local data
9: Compute feature vector and upload model update

10: end for

11: // Server executes:
12: Perform preliminary integration of updates

13: if t mod  Ec=0 then

14: Calculate client similarity matrix
15: Perform hierarchical client clustering via Spherical K-means

16: end if

17: Cluster client updates via K-means
18: Dynamically combine sub-models

19: Apply temporal weight decay

20: Recombine sub-models into global model

21: Evaluate global loss

22: end for

23: return final global model

3 Results
Firstly, the performance of the improved FL algorithm

was analyzed to verify the advantages of decomposition

and combination mechanisms in improving model

convergence speed and adapting to dynamic data. Then,

the performance of intelligence dynamic data integration

and clustering methods was evaluated.

3.1 Performance validation of improved

FL algorithm

To prove the effect of the improved FL algorithm,

experiments were carried out on two common datasets,

MNIST and CIFAR-10. The MNIST dataset contains

70000 handwritten digit images, split into 10 categories,

with 60000 for training and 10000 for testing. The

CIFAR-10 dataset contains 60000 color images, split into

10 categories, with 50000 for training and 10000 for

testing. The number of algorithm iterations was 400. For

the selection of attenuation coefficient, sensitivity analysis

was conducted by changing its value, and the results are

shown in Table 2. In Table 2, the attenuation coefficient

has a significant impact on model performance and

participation fairness. When the attenuation coefficient

was 0.05, the model achieved the highest accuracy of

98.69% and 90.26% on the MNIST and CIFAR-10

datasets, respectively. At this time, the client dropout rate

was 5.1% and the fairness index was 0.89. When the

attenuation coefficient increased to 0.20, the accuracy

decreased to 97.33% and 86.41% respectively, and the

fairness index dropped to 0.61. The results indicate that

when the attenuation coefficient is 0.05, the model

achieves the best balance between accuracy, dropout rate,

and fairness, and is the recommended optimal parameter.

To substantiate the use of K-means clustering for

update grouping, a comparative experiment was

conducted under varying levels of simulated data noise.

The proposed method was compared against the standard

FedAvg aggregation. The clustering quality was

quantitatively assessed using the Silhouette Score, and the

model's robustness was evaluated by its performance on a

clean test set. The results are shown in Table 3. The results

confirm that as noise levels increase, the K-means-based

aggregation mechanism effectively identifies and isolates

anomalous updates into separate clusters. This is

evidenced by the maintenance of a high Silhouette Score

and a lower Intra-cluster Distance for the dominant

cluster, indicating coherent grouping of reliable updates.

The clustering metrics provide clear empirical evidence

that the K-means grouping enhances robustness by

prioritizing the aggregation of updates from clients with

consistent and trustworthy data distributions.

Table 2: Sensitivity analysis results of decay coefficient.

Decay coefficient MNIST Accuracy (%) CIFAR-10 Accuracy (%) Client Dropout Rate (%)
Participation Fairness
Index

0.01 98.45 89.12 3.2 0.92

0.03 98.61 89.87 4.2 0.90

0.05 98.69 90.26 5.1 0.89

0.10 98.12 88.95 12.7 0.78

0.15 97.68 87.23 19.3 0.70

0.20 97.33 86.41 28.4 0.61

Table 3: Performance and clustering quality comparison under noisy conditions.

Noise Level Aggregation Method
Final Test Accuracy

(%)
Avg. Silhouette Score

Intra-cluster Distance (Majority

Cluster)

10%
FedAvg (Baseline) 97.85 N/A N/A

Proposed (K-means) 98.41 0.72 0.15

Dynamic Sub-Model Aggregation and Clustering for Intelligence… Informatica 50 (2026) 405–420 413

20%
FedAvg (Baseline) 95.12 N/A N/A

Proposed (K-means) 97.56 0.68 0.18

30%
FedAvg (Baseline) 90.33 N/A N/A

Proposed (K-means) 95.88 0.61 0.23

40%
FedAvg (Baseline) 83.47 N/A N/A

Proposed (K-means) 92.15 0.55 0.29

Table 4: Experimental environments and parameters.

Experimental environments Parameters

Names Configuration Names Values

Graphics processing unit NVIDIA Tesla V100 Learning rate 0.01

Central processing unit Intel Xeon Gold 6248R Number of clusters 3

Memory 64GB DDR4 Number of clients 20

Operating System Windows 10 Batch size 32

Deep learning framework PyTorch 1.10 Number of sub-models 5

Programming language Python 3.8 Decay coefficient 0.05

0 80 160 240 320 400
80

Iterations

(a) Accuracy of algorithms under pathological

heterogeneity client in MNIST dataset

A
cc

u
ra

cy
 (

%
)

85

90

95

100

FedAvg

FedProx

SCAFFL

OURS

0 80 160 240 320 400
80

Iterations

(b) Accuracy of algorithms under practical

heterogeneity client in MNIST dataset

A
cc

u
ra

cy
 (

%
)

85

90

95

100

FedAvg

FedProx

SCAFFL

OURS

0 80 160 240 320 400
60

Iterations

(c) Accuracy of algorithms under pathological

heterogeneity client in CIFAR-10 dataset

A
cc

u
ra

cy
 (

%
)

70

80

90

100

FedAvg

FedProx

SCAFFL

OURS

0 80 160 240 320 400
60

Iterations

(d) Accuracy of algorithms under practical

heterogeneity client in CIFAR-10 dataset

A
cc

u
ra

cy
 (

%
)

70

80

90

100

FedAvg

FedProx

SCAFFL

OURS

Figure 6: Accuracy of algorithms under two heterogeneous clients in MNIST and CIFAR-10 datasets.

The experimental environment and parameters are

denoted in Table 4.

To prove the robustness of the designed algorithm, the

accuracy of the algorithm was analyzed on two

heterogeneous clients, pathology and real-world

scenarios, in the MNIST and CIFAR-10 datasets.

Compared with current mainstream algorithms, including

FedAvg, FedProx, and Stochastic Controlled Averaging

for Federated Learning (ScaFFL), the findings are denoted

in Figure 6. In Figure 6 (a), in the MNIST dataset, with an

iteration of 160, the accuracy of FedAvg, FedProx,

SCAFFL, and the proposed algorithm on the pathological

heterogeneity client were 96.24%, 95.16%, 97.68%, and

98.69%, respectively. In Figure 6 (b), when the iteration

number was 160, the accuracy of the four algorithms in

the MNIST dataset was 96.58%, 97.10%, 97.35%, and

414 Informatica 50 (2026) 405–420 J. Wang et al.

98.14%, respectively, under the actual scenario of

heterogeneous clients. In Figure 6 (c), in the CIFAR-10

dataset, with an iteration of 160, the accuracy of FedAvg,

FedProx, and SCAFFL under pathological heterogeneity

client was 65.37%, 67.69%, and 86.74%, respectively.

The accuracy of the proposed algorithm was 90.26%. In

Figure 6 (d), under the actual scenario of heterogeneous

clients and with 160 iterations, the accuracy of the four

algorithms in the CIFAR-10 dataset was 69.38%, 69.12%,

83.56%, and 89.87%, respectively. The findings show that

the designed algorithm exhibits higher accuracy and

robustness in different data distributions and scenarios.

The loss of different comparison algorithms was

analyzed in the MNIST and CIFAR-10 datasets to validate

the convergence of the designed algorithm. The findings

are denoted in Figure 7. In Figure 7 (a), under the

pathological heterogeneity client, when the iteration

number was 160, the losses of FedAvg, FedProx,

SCAFFL, and the proposed algorithm in the MNIST

dataset were 0.348, 0.352, 1.025, and 0.113, respectively.

In Figure 7 (b), under the actual scenario of heterogeneous

clients, when the iteration number was 160, the losses of

the four algorithms were 0.341, 0.326, 1.104, and 0.505,

respectively. In Figure 7 (c), in the CIFAR-10 dataset, at

an iteration of 160, the losses of the four algorithms under

pathological heterogeneity clients were 4.472, 4.210,

1.389, and 0.857, respectively. In Figure 7 (d), under the

actual scenario of heterogeneous clients, when the

iteration number was 160, the losses of FedAvg, FedProx,

and SCAFFL were 3.021, 3.098, and 1.610, respectively,

and the loss of the proposed algorithm was 1.024. The

findings demonstrate that the designed algorithm can

improve the convergence speed of the model and achieve

lower losses under different data distributions.

0 80 160 240 320 400
0.0

Iterations

(a) Loss of algorithms under pathological

heterogeneity client in MNIST dataset

L
o
ss

1.5

3.0

4.5

6.0

0 80 160 240 320 400
0.0

Iterations

(b) Loss of algorithms under practical

heterogeneity client in MNIST dataset

L
o
ss

1.0

2.0

3.0

4.0

0 80 160 240 320 400
0.0

Iterations

(c) Loss of algorithms under pathological

heterogeneity client in CIFAR-10 dataset

L
o
ss

1.5

3.0

4.5

6.0

0 80 160 240 320 400
0.0

Iterations

(d) Loss of algorithms under practical

heterogeneity client in CIFAR-10 dataset

L
o
ss

1.0

2.0

3.0

4.0

FedAvg

FedProx

SCAFFL

OURS

FedAvg

FedProx

SCAFFL

OURS

FedAvg

FedProx

SCAFFL

OURS

FedAvg

FedProx

SCAFFL

OURS

Figure 7: Loss of algorithms under two heterogeneous clients in MNIST and CIFAR-10 datasets.

Dynamic Sub-Model Aggregation and Clustering for Intelligence… Informatica 50 (2026) 405–420 415

Table 5: Comprehensive comparison of model performance and statistical significance.

Dataset Methods
Pathological Heterogeneity Real-world Heterogeneity

95% CI (Accuracy) 95% CI (Loss) p-value 95% CI (Accuracy) 95% CI (Loss) p-value

MNIST

FedAvg [95.98, 96.44] [0.335, 0.361] <0.01 [96.34, 96.76] [0.328, 0.354] <0.01

FedProx [94.83, 95.45] [0.339, 0.365] <0.01 [96.85, 97.31] [0.313, 0.339] <0.01

SCAFFL [97.47, 97.83] [1.001, 1.049] <0.01 [97.13, 97.51] [1.080, 1.128] <0.01

OURS [98.52, 98.82] [0.105, 0.121] / [98.00, 98.24] [0.490, 0.520] /

CIFAR-

10

FedAvg [64.68, 66.00] [4.350, 4.594] <0.01 [68.84, 69.86] [2.909, 3.133] <0.01

FedProx [67.07, 68.23] [4.098, 4.322] <0.01 [68.54, 69.64] [2.986, 3.210] <0.01

SCAFFL [86.31, 87.11] [1.367, 1.411] <0.01 [83.09, 83.97] [1.588, 1.632] <0.01

OURS [89.97, 90.51] [0.841, 0.873] / [89.57, 90.13] [1.010, 1.038] /

Note: p<0.01 indicates reaching a highly significant level.

1 2 3 4 5
84

Number of sub models

(a) The impact of different numbers of sub

models on the accuracy of the algorithm

A
cc

u
ra

cy
 (

%
)

88

92

96

1 3 5 7 9
84

Local training epochs

(b) The impact of different local training

epochs on the accuracy of the algorithm

A
cc

u
ra

cy
 (

%
)

88

92

96

100

Pathology

Practical

MNIST CIFAR-10

Pathology

Practical

100

Pathology

Practical

MNIST CIFAR-10

Pathology

Practical

Figure 8: The impact of different numbers of sub models and local training epochs on the accuracy of improved

algorithms.

This study conducted a statistical analysis of the

accuracy loss of the proposed algorithm under two

heterogeneous clients, pathology and real-world

scenarios, in the MNIST and CIFAR-10 datasets. The

results are shown in Table 5. The statistical results show

that the method proposed in this study significantly

outperforms the baseline algorithm in both datasets and

heterogeneous scenarios. On the MNIST dataset, the

accuracy and 95% confidence interval of the proposed

method were [98.52, 98.82] and [98.00, 98.24],

respectively, demonstrating applicability to

heterogeneous pathology and real-world scenarios, and

the 95% confidence intervals for loss values were [0.105,

0.121] and [0.490, 0.520], respectively. On the more

complex CIFAR-10 dataset, the proposed method also

outperformed all baselines in terms of confidence

intervals. All p-values compared were less than 0.001,

indicating that the performance improvement is highly

statistically significant.

A comparative analysis was conducted on the

accuracy of the MNIST and CIFAR-10 datasets under

different numbers of sub-models and local training

epochs, to investigate the impact of these factors on the

performance improvement of the proposed algorithm. The

findings are denoted in Figure 8. In Figure 8 (a), under the

pathological heterogeneity client, when the number of

sub-models was 4, the accuracy of the designed algorithm

in the two datasets was 99.82% and 90.33%, respectively.

In actual heterogeneous client scenarios, their accuracy

rates were 99.47% and 89.11%, respectively. In Figure 8

(b), when the local training epochs were 5, the accuracy of

the proposed algorithm in two datasets was 99.86% and

90.62% respectively under pathological heterogeneity

client. In actual scenarios with heterogeneous clients, the

accuracy rates were 99.43% and 88.94%, respectively.

Research has found that increasing the number of sub-

models and local training rounds can improve algorithm

performance.

416 Informatica 50 (2026) 405–420 J. Wang et al.

FedAvg FedProx SCAFFL
0.50

Methods

(a) Comparison of NMI using different methods on

two datasets

N
M

I

0.60

0.70

0.80

0.90

1.00
MNIST

CIFAR-10

OURS FedAvg FedProx SCAFFL
60

Methods

(b) Comparison of communication epochs using

different methods on two datasets

C
o
m

m
u
n
ic

at
io

n
 e

p
o
ch

s

90

120

150

180

210
MNIST

CIFAR-10

OURS

Figure 9: Integration quality and clustering efficiency of different methods on two datasets.

3.2 Performance evaluation of intelligence

dynamic data integration and

clustering methods

The ensemble quality and clustering efficiency of the

proposed method were analyzed in the MNIST and

CIFAR-10 datasets, and compared with FedAvg, FedProx,

and SCAFFL. The indicator for evaluating integration

quality was Normalized Mutual Information (NMI), and

the clustering efficiency indicator was communication

epochs. The findings are denoted in Figure 9. In Figure 9

(a), in the MNIST dataset, the NMIs of FedAvg, FedProx,

SCAFFL, and the designed algorithm were 0.82, 0.84,

0.86, and 0.91, respectively. The NMIs in the CIFAR-10

dataset were 0.68, 0.71, 0.73, and 0.79, respectively. In

Figure 9 (b), the communication epochs of FedAvg,

FedProx, and SCAFFL in the MNIST dataset were 121,

112, and 101, respectively, and in the CIFAR-10 dataset

were 179, 171, and 162, respectively. Compared with it,

the proposed algorithm had 75 and 119 communication

epochs in the two datasets, respectively. The findings

show that the designed algorithm can ensure high

integration quality while reducing communication

overhead, verifying its efficiency in dynamic data

integration and clustering tasks.

Ablation experiments were conducted to verify the

contribution of each core module to the overall

performance of the dynamic data integration and

clustering methods. The findings are presented in Table 6.

In ablation analysis, the roles of each module are as

follows: the decomposition and combination mechanism

adapts to heterogeneous data distributions by dividing sub

models; The pre-training mechanism utilizes historical

features to optimize model initialization and accelerate

convergence; Hierarchical clustering identifies intrinsic

relationships between clients through a multi-level

structure, improving grouping stability and aggregation

quality, which is superior to methods that rely solely on

planar partitioning; The dynamic weighting mechanism

adjusts client contributions based on data timeliness to

alleviate concept drift. In Table 6, on the MNIST dataset,

the F1 score of the complete method was 0.924 and the

precision was 0.931, significantly higher than other

configurations. On the CIFAR-10 dataset, the F1 score

and precision of the complete method were 0.802 and

0.810, respectively. The F1 score and precision of the

baseline method were the lowest, with values of 0.852 and

0.806 in the MNIST dataset and 0.723 and 0.730 in the

CIFAR-10 dataset, respectively. The findings denote that

each core module contributes significantly to the

improvement of model performance.

The study analyzed the running time and memory

usage of the designed method in a practical scenario of a

medical IoT, and compared it with other methods. The

findings are denoted in Figure 10. In Figure 10 (a), the

average running times of FedAvg, FedProx, SCAFFL, and

the proposed algorithm were 23.42s, 26.75s, 31.52s, and

18.23s, respectively. Compared with the comparative

algorithm, the running time of the proposed algorithm was

reduced by 22.16%, 31.85%, and 42.16%, respectively. In

Figure 10 (b), the average memory usage of FedAvg,

FedProx, and SCAFFL was 1853MB, 1926MB, and

2157MB, respectively. Compared with them, the proposed

algorithm had an average memory usage of 1681MB,

which was reduced by 9.28%, 12.72%, and 22.07%,

respectively. The outcomes demonstrat that the designed

algorithm can substantially decrease the consumption of

computational resources while maintaining performance,

thereby verifying its practicality and deployment benefits

in IoT scenarios with limited resources.

Dynamic Sub-Model Aggregation and Clustering for Intelligence… Informatica 50 (2026) 405–420 417

Table 6: Results of ablation experiment.

Method configuration

MNIST dataset CIFAR-10 dataset

Precision Recall F1 score
(p-value vs.
FedAvg)

Precision Recall F1 score
(p-value vs.
FedAvg)

Complete method 0.931 0.918 0.924 <0.001 0.810 0.795 0.802 <0.001

No decomposition

combination
0.879 0.863 0.871 <0.001 0.742 0.728 0.735 <0.001

No pre training 0.900 0.886 0.893 <0.001 0.775 0.761 0.768 <0.001

Non hierarchical

clustering
0.893 0.879 0.886 <0.001 0.760 0.745 0.752 <0.001

No dynamic weight 0.908 0.894 0.901 <0.001 0.786 0.772 0.779 <0.001

Baseline method
(FedAvg)

0.806 0.845 0.852 / 0.730 0.716 0.723 /

2 4 6 8 10

Number of experiments

(a) Comparison of run time of different

methods in practical scenarios

R
u

n
 t

im
e

(s
)

20

FedAvg SCAFFL

OURS

1 3 5 7 9 2 4 6 8 10
1600

Number of experiments

(b) Comparison of memory usage of different

methods in practical scenarios

M
em

o
ry

 f
o

o
tp

ri
n

t
(M

B
)

1 3 5 7 9

FedProx

16

24

28

32

36

1750

1900

2050

2200

2350 FedAvg SCAFFL

OURSFedProx

Figure 10: Comparison of runtime and memory usage of different methods in practical scenarios.

To verify the effectiveness of the proposed method in

practical datasets, an analysis was conducted on the

running time and average memory of different methods

under different numbers of clients in the PhysioNet

dataset. The PhysioNet dataset is a widely recognized real-

world clinical time series dataset containing records of

12000 ICU patients. The results are shown in Figure 11.

In Figure 11 (a), when the number of clients was 20, the

running times of FedAvg, FedProx, and SCAFFL were

28.45s, 32.11s, and 38.94s, respectively, and the running

time of the proposed method was 21.08s. When the

number of clients increased to 100, the running times of

the four methods were 62.34s, 71.89s, 88.56s, and 45.12s,

respectively. In Figure 11 (b), when the number of clients

was 20, the average memory of FedAvg, FedProx,

SCAFFL, and the proposed method was 2105MB,

2189MB, 2455MB, and 1950MB, respectively. When the

number of clients reached 100, the average memory was

3521MB, 3744MB, and 1950MB, respectively. B,

4455MB, and 2850MB. The results show that the

proposed method effectively reduces computational and

storage costs on real medical datasets, demonstrating

superior scalability and practicality.

418 Informatica 50 (2026) 405–420 J. Wang et al.

2 4 6 8 10

Number of experiments

(a) Comparison of run time of different

methods in practical scenarios

R
u

n
 t

im
e

(s
)

20

FedAvg SCAFFL

OURS

1 3 5 7 9 2 4 6 8 10
1600

Number of experiments

(b) Comparison of memory usage of different

methods in practical scenarios

M
em

o
ry

 f
o

o
tp

ri
n

t
(M

B
)

1 3 5 7 9

FedProx

16

24

28

32

36

1750

1900

2050

2200

2350 FedAvg SCAFFL

OURSFedProx

Figure 11: Run time and average memory of different methods under different numbers of clients.

Table 7: Model complexity comparison across different datasets.

Methods
MNIST CIFAR-10 PhysioNet MNIST CIFAR-10 PhysioNet

Number of Parameters (Millions) FLOPs (MegaFLOPs)

FedAvg 4.21 23.45 1.85 8.45 125.67 3.72

FedProx 4.21 23.47 1.85 8.47 125.72 3.73

SCAFFL 4.26 23.51 1.87 8.52 126.05 3.76

OURS 5.18 25.83 2.21 10.31 135.42 4.45

Further analysis was conducted on the parameter

count and Floating-Point Operations (FLOPs) of different

methods on the MNIST, CIFAR-10, and PhysioNet

datasets. The results are shown in Table 7. In Table 7, on

the MNIST dataset, the proposed method had a parameter

size of 5.18M and FLOPs of 10.31M, which were

approximately 23% and 22% higher than FedAvg,

respectively. The complexity of the proposed method on

the real clinical dataset PhysioNet also maintained a

similar increase. This controllable increase in complexity,

compared to the specific performance improvements

obtained in the previous experiments, demonstrates that

the proposed method achieves a good balance between

efficiency and performance.

4 Discussion
In this study, a dynamic integration and clustering method

for intelligence data based on an improved FL algorithm

was proposed. The experimental results demonstrated

significant improvements in accuracy, convergence speed,

and communication efficiency compared to several

existing approaches.

In terms of accuracy, this method achieved accuracies

of 98.69% and 90.26% respectively on the MNIST and

CIFAR-10 datasets for pathological heterogeneous

clients, and 98.14% and 89.87% respectively in real-world

heterogeneous clients. Compared with the real-time

medical data processing method proposed in reference [6],

the accuracy of this method was improved by about 6-8

percentage points. This improvement is mainly due to the

dynamic sub model aggregation mechanism, which

decomposes the global model into multiple specialized

sub models, enabling the model to better adapt to the data

distribution characteristics of different clients.

In terms of convergence performance, this method

only required 75 communication rounds to converge on

the MNIST dataset and 119 communication rounds on the

CIFAR-10 dataset. In contrast, the privacy preserving FL

method in reference [10] required 121 and 179

communication epochs respectively in similar tasks. The

improvement in convergence speed is mainly due to the

introduction of pre-training mechanisms, which utilize

historical data feature information for model initialization,

enabling the model to have a good parameter foundation

in the early stages of training, thereby accelerating the

training process.

In terms of communication efficiency, this method

had a running time of 18.23 seconds and a memory usage

of 1681MB in actual medical IoT scenario testing.

Compared with the method in reference [12], the running

time was reduced by 27% and the memory usage was

reduced by 12%. This improvement is due to the

application of hierarchical similarity clustering

technology, which significantly reduces unnecessary

communication overhead by intelligently grouping

clients.

However, this method also has some limitations.

Firstly, due to the adoption of a multi submodel

architecture and clustering process, its computational

complexity is relatively high, which may limit its

application in resource constrained environments.

Secondly, the method is sensitive to hyperparameter

settings, especially the selection of the number of clusters

K and learning rate, which can significantly affect

performance. Compared with the heterogeneous IoT FL

framework in reference [13], this method improved

Dynamic Sub-Model Aggregation and Clustering for Intelligence… Informatica 50 (2026) 405–420 419

accuracy by about 4% on the CIFAR-10 dataset, but

increased computational load by about 15%. This

indicates that while pursuing performance improvement, a

balance needs to be struck between accuracy and

computational efficiency. Compared with the TEE based

method in reference [8], although this method avoided the

dependence on dedicated hardware, it may be slightly

inadequate in combating advanced security threats.

In summary, the proposed method has achieved

significant improvements in accuracy, convergence speed,

and communication efficiency through the organic

combination of dynamic submodel aggregation, pre

training mechanism, and hierarchical clustering. Future

research will focus on developing adaptive

hyperparameter optimization strategies, reducing

computational complexity, and exploring decentralized

aggregation mechanisms to enhance system robustness.

5 Conclusion
The study proposes a dynamic integration and clustering

method for intelligence data based on an improved FL

algorithm to strengthen the effectiveness of the FL

algorithm in intelligence data processing. The findings

denote that the designed method can effectively solve the

challenges of slow convergence speed, poor adaptability

to dynamic data, and low clustering efficiency in FL. It not

only improved precision and convergence speed, but also

reduced computational resource consumption, making it

suitable for practical application scenarios such as medical

IoT.

6 Funding
The research is supported by: the Science and Technology

Project of State Grid Shanxi Electric Power Company

“Research and Application of Key Technologies for

Information Extraction and Association Based on

Federated Learning Large Models” (Grant number:

5205M024000K).

References
[1] Iqbal H. Sarker. Machine learning for intelligent data

analysis and automation in cybersecurity: Current

and future prospects. Annals of Data Science,

10(6):1473-1498, 2023.

https://doi.org/10.1007/s40745-022-00444-2

[2] Zhijuan Zong, and Yu Guan. AI-driven intelligent

data analytics and predictive analysis in Industry 4.0:

Transforming knowledge, innovation, and

efficiency. Journal of the Knowledge Economy,

16(1):864-903, 2025.

https://doi.org/10.1007/s13132-024-02001-z

[3] Lei Ren, Yingjie Li, Xiaokang Wang, Jin Cui, and

Lin Zhang. An ABGE-aided manufacturing

knowledge graph construction approach for

heterogeneous IIoT data integration. International

Journal of Production Research, 61(12):4102-4116,

2023.

https://doi.org/10.1080/00207543.2022.2042416

[4] Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui,

Jianghui Cai, and Wensheng Zhang. A survey on

federated learning: challenges and applications.

International Journal of Machine Learning and

Cybernetics, 14(2):513-535, 2023.

https://doi.org/10.1007/s13042-022-01647-y

[5] Qiang Yang, Anbu Huang, Lixin Fan, Chee Seng

Chan, Jian Han Lim, Kam Woh Ng, Ding Sheng Ong,

and Bowen Li. Federated learning with privacy-

preserving and model IP-right-protection. Machine

Intelligence Research, 20(1):19-37, 2023.

https://doi.org/10.1007/s11633-022-1343-2

[6] Kehua Guo, Tianyu Chen, Sheng Ren, Nan Li, Min

Hu, and Jian Kang. Federated learning empowered

real-time medical data processing method for smart

healthcare. IEEE/ACM Transactions on

Computational Biology and Bioinformatics,

21(4):869-879, 2022.

https://doi.org/10.1109/TCBB.2022.3185395

[7] Tomer Gafni, Nir Shlezinger, Kobi Cohen, Yonina

C. Eldar, and H. Vincent Poor. Federated learning: A

signal processing perspective. IEEE Signal

Processing Magazine, 39(3):14-41, 2022.

https://doi.org/10.1109/MSP.2021.3125282

[8] Abbas Yazdinejad, Ali Dehghantanha, and Gautam

Srivastava. AP2FL: Auditable privacy-preserving

federated learning framework for electronics in

healthcare. IEEE Transactions on Consumer

Electronics, 70(1):2527-2535, 2023.

https://doi.org/10.1109/TCE.2023.3318509

[9] Guanming Bao, and Ping Guo. Federated learning in

cloud-edge collaborative architecture: Key

technologies, applications and challenges. Journal of

Cloud Computing, 11(1):94-115, 2022.

https://doi.org/10.1186/s13677-022-00377-4

[10] Ruijin Wang, Jinshan Lai, Zhiyang Zhang, Xiong Li,

Pandi Vijayakumar, and Marimuthu Karuppiah.

Privacy-preserving federated learning for internet of

medical things under edge computing. IEEE Journal

of Biomedical and Health Informatics, 27(2):854-

865, 2022.

https://doi.org/10.1109/JBHI.2022.3157725

[11] Pushpita Chatterjee, Debashis Das, and Danda B.

Rawat. Federated learning empowered

recommendation model for financial consumer

services. IEEE Transactions on Consumer

Electronics, 70(1):2508-2516, 2023.

https://doi.org/10.1109/TCE.2023.3339702

[12] Mahmuda Akter, Nour Moustafa, Timothy Lynar,

and Imran Razzak. Edge intelligence: Federated

learning-based privacy protection framework for

smart healthcare systems. IEEE Journal of

Biomedical and Health Informatics, 26(12):5805-

5816, 2022.

https://doi.org/10.1109/JBHI.2022.3192648

[13] Demin Gao, Haoyu Wang, Xiuzhen Guo, Lei Wang,

Guan Gui, and Weizheng Wang. Federated learning

based on CTC for heterogeneous internet of things.

IEEE Internet of Things Journal, 10(24):22673-

22685, 2023.

https://doi.org/10.1109/JIOT.2023.3305189

420 Informatica 50 (2026) 405–420 J. Wang et al.

[14] Zhiguo Qu, Lailei Zhang, and Prayag Tiwari.

Quantum fuzzy federated learning for privacy

protection in intelligent information processing.

IEEE Transactions on Fuzzy Systems, 33(1):278-

289, 2024.

https://doi.org/10.1109/TFUZZ.2024.3419559

[15] Rodolfo Stoffel Antunes, Cristiano André da Costa,

Arne Küderle, Imrana Abdullahi Yari, and Björn

Eskofier. Federated learning for healthcare:

Systematic review and architecture proposal. ACM

Transactions on Intelligent Systems and Technology

(TIST), 13(4):1-23, 2022.

https://doi.org/10.1145/3501813

[16] Shaoxiong Ji, Yue Tan, Teemu Saravirta, Zhiqin

Yang, Yixin Liu, Lauri Vasankari, Shirui Pan,

Guodong Long, Anwar Walid, Vasankari L, and

Walid A. Emerging trends in federated learning:

From model fusion to federated x learning.

International Journal of Machine Learning and

Cybernetics, 15(9):3769-3790, 2024.

https://doi.org/10.1007/s13042-024-02119-1

[17] Ali Hatamizadeh, Hongxu Yin, Pavlo Molchanov,

Andriy Myronenko, Wenqi Li, Prerna Dogra,

Andrew Feng, Mona G Flores, Jan Kautz, Daguang

Xu, and Holger R. Roth. Do gradient inversion

attacks make federated learning unsafe. IEEE

Transactions on Medical Imaging, 42(7):2044-2056,

2023. https://doi.org/10.1109/TMI.2023.3239391

[18] Weimin He, and Lei Zhao. Application of federated

learning algorithm based on K-means in electric

power data. Journal of New Media, 4(4):191-203,

2022. https://doi.org/10.32604/jnm.2022.032994

[19] Chaoli Sun, Xiaojun Wang, Junwei Ma, and Gang

Xie. A composition-decomposition based federated

learning. Complex & Intelligent Systems,

10(1):1027-1042, 2024.

https://doi.org/10.1007/s40747-023-01198-x

[20] Mansoor Ali, Faisal Naeem, Muhammad Tariq, and

Georges Kaddoum. Federated learning for privacy

preservation in smart healthcare systems: A

comprehensive survey. IEEE Journal of Biomedical

and Health Informatics, 27(2):778-789, 2022.

https://doi.org/10.1109/JBHI.2022.3181823

[21] Pradyumna Kumar Tripathy, Anurag Shrivastava,

Varsha Agarwal, Devangkumar Umakant Shah,

Chandra Sekhar Reddy L., and S.V. Akilandeeswari.

Federated learning algorithm based on matrix

mapping for data privacy over edge computing.

International Journal of Pervasive Computing and

Communications, 20(5):633-647, 2024.

https://doi.org/10.1108/IJPCC-03-2022-0113

[22] Zhiyuan Wang, Hongli Xu, Jianchun Liu, Yang Xu,

He Huang, and Yangming Zhao. Accelerating

federated learning with cluster construction and

hierarchical aggregation. IEEE Transactions on

Mobile Computing, 22(7):3805-3822, 2022.

https://doi.org/10.1109/TMC.2022.3147792

[23] Jose A. Carrillo, Nicolas Garcia Trillos, Sixu Li, and

Yuhua Zhu. FedCBO: Reaching group consensus in

clustered federated learning through consensus-

based optimization. Journal of Machine Learning

Research, 25(214):1-51, 2024. DOI:

10.48550/arXiv.2305.02894

[24] Yongheng Deng, Feng Lyu, Tengxi Xia, Yuezhi

Zhou, Yaoxue Zhang, Ju Ren, and Yuanyuan Yang.

A communication-efficient hierarchical federated

learning framework via shaping data distribution at

edge. IEEE/ACM Transactions on Networking,

32(3):2600-2615, 2024.

https://doi.org/10.1109/TNET.2024.3363916

[25] Chengtian Ouyang, Yehong Li, Jihong Mao, Donglin

Zhu, Changjun Zhou, and Zhenyu Xu. Enhancing

federated learning with dynamic weight adjustment

based on particle swarm optimization. Discover

Computing, 27(1):35-52, 2024.

https://doi.org/10.1007/s10791-024-09478-x

