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With the development of smart tourism, traditional static recommendations struggle to cope with the 

dynamic changes in RTCs (Real-Time Contexts) such as traffic and weather in urban environments. 

Furthermore, they cannot integrate UPs (User Preferences) with real-time contextual awareness, 

resulting in poor recommendation adaptability. This paper aims to design a highly adaptable, 

personalized, and dynamic TR (Travel Route) recommendation model. The model leverages LSTM-CNN 

for feature extraction and Multi-Head Attention Mechanism (MHAM) for feature fusion. The system is 

trained using an Actor-Critic (AC) framework. Evaluation metrics such as HR@5, HR@10, coverage, 

and median response latency (MRL) are used to assess performance. Based on DRL (Deep Reinforcement 

Learning), this model captures UP differences through the construction of an LSTM-CNN (Long Short-

Term Memory-Convolutional Neural Network) network, achieving personalization. A MHAM (Multi-

Head Attention Mechanism) is applied to deeply integrate UPs with real-time contextual states such as 

traffic and weather. A CRF (Composite Reward Function) is designed by jointly modeling preferences 

and context, and end-to-end training is achieved using an AC (Actor-Critic) framework. Experiments show 

that on the FS-NYC (Four Square–New York City dataset) and TCI (Tokyo Check-ins dataset), the paper's 

model achieves a Top-5 hit rate of 53% and a Top-10 hit rate of 84%, with a MRL (Median Response 

Latency) of 1.07 seconds. It also significantly improves adaptability to dynamic scenarios compared to 

baseline methods. This research provides a personalized recommendation paradigm that combines high 

accuracy with real-time responsiveness for dynamic travel scenarios, effectively improving user 

experience and service quality. 

Povzetek: Članek predlaga prilagodljiv prilagojen model za priporočanje potovalnih poti, ki z LSTM–

CNN in večglavno pozornostjo združi uporabniške preference z realnočasovnimi konteksti. 

1 Introduction 
With the rapid advancement of science and technology, all 

industries are integrating new technologies for 

development, and the tourism industry is becoming 

increasingly intelligent. Route recommendations are an 

indispensable part of travel planning and onboarding. 

With the development of smart tourism, traditional static 

recommendations cannot meet users' individual 

requirements in complex and dynamic environments [1], 

[2]. Traditional methods often ignore real-time contextual 

changes and lack joint modeling of UPs and 

environmental interactions. They recommend only a fixed 

number of attractions, resulting in poor adaptability and a 

subpar experience. Especially in cities with volatile traffic, 

weather, and crowd conditions, tourist routes can change 

anytime [3], [4]. Fixed route planning is prone to failure, 

necessitating an intelligent recommendation mechanism 

with real-time responsiveness. 

This study focuses on the problem of dynamic route 

recommendation in urban tourism scenarios, taking the 

user's real-time location, preference characteristics, and 

multi-source contextual data as key objects, aiming to  

 

achieve highly adaptable and personalized serialized 

scenic spot recommendations, and enhance the quality of 

tourism services and user experience. Wilkins and Horne 

[5] pointed out that the weather has an important impact 

on tourists, and Marsanic et al. [6] believed that good 

traffic conditions can improve the quality of tourists' 

travel. These two studies prove the importance of RTC 

during travel. Kay Smith et al. [7] studied tourists' interests 

and the different activities they participated in, and 

pointed out that tourists' interests have a great influence on 

their behavior; Saxena et al. [8] proposed that tourists 

attach great importance to the accessibility and activities 

of scenic spots, verifying the necessity of a 

multidimensional context; Xin et al. and Prahadeeswaran 

believed that personalization can better enhance the 

experience of travel recommendation systems [9], [10]; 

Vada et al. and Anuar and Marzuki believed that suitable 

TRs require good infrastructure, and providing more 

personalized choices is an emerging trend [11], [12]. 

Research proposed adaptive fuzzy sliding-mode 

controllers with non-singular fixed-time sliding surfaces, 

which effectively addressed the issue of system 
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uncertainties [13]. The study proposed an output-feedback 

controller based on adaptive fuzzy systems and a variable-

structure framework to ensure system stability [14]. The 

study proposed a robust and indirect neural adaptive 

control scheme for uncertain nonlinear multivariable 

systems, which could effectively compensate for 

disturbances and ensure system stability [15]. The study 

proposed an adaptive backstepping control method based 

on Lyapunov stability theory, which ensured that the 

tracking error asymptotically converged to zero [16]. The 

study proposed a nonlinear optimal H-infinity control 

method for gas centrifugal compressors driven by 

asynchronous motors, aiming to achieve robust state 

estimation under uncertainty conditions [17]. The study 

proposed an adaptive backstepping control method that 

enabled the tracking error to asymptotically converge to 

zero [18]. These studies collectively indicate that dynamic 

travel recommendations must comprehensively consider 

user status and environmental evolution.

Table 1: Related work comparison 

Method 
User 

Preferences 

Real-Time 

Context 

DRL 

Technique 

Evaluation Datasets 
Reported Performance 

Zhang et al. 
Yes Yes No AmazonDataset HR@10:52.40%, 

75.57%, 72.43% 

Liu et al. 
Yes No No Ciao RMSE: 1.9136,MAE: 

1.4937 
Zhang et al. Yes Yes Yes ASSISTments0910 Difficulty:0.7 

Chen et al. 

Yes No No 2400 international and 

domestic tourists in 

Pokhara 

Accuracy:94%,99% 

Yoon and Choi Yes Yes No Jeju Tourism Dataset Accuracy:77.3% 

Wang 

Yes No No obtained by web crawling 

information about 

attractions in a city 

MAE:0.47235 

Nan and Wang Yes No No A tourism dataset Accuracy:91.04% 

Table 1 presents information such as datasets and 

evaluation metrics related to the relevant works. 

Regarding recommendation model technology, in terms of 

path planning, Ma and Zhu proposed a recommendation 

model based on Deep Reinforcement Learning, which had 

the advantage of flexible scheduling [19], [20]. Zhang et 

al. and Liu et al. combined graph neural networks to 

extract UPs from graphs. However, this method relies on 

historical patterns and is challenging to respond to sudden 

situations [21], [22]. While Shyam and Zhang et al. 

proposed a method that incorporated DRL, it struggled to 

effectively integrate deep UPs with RTC [23], [24]. 

Existing models still suffer from insufficient coupling 

between state representation and reward design and weak 

generalization capabilities. Shrestha et al. and Nunez et al. 

examined the utilization of machine learning in tourism 

and travel recommendations [25], [26]. Chen et al. and 

Yoon and Choi proposed tourism analysis models and 

recommendation models that could perceive RTC, 

respectively, but neither modeled the dynamic evolution 

of UPs [27], [28]. Based on collaborative filtering, Wang 

and Nan and Wang integrated UPs, which improved the 

accuracy of recommendations, but still had shortcomings 

in context perception [29], [30]. Liu et al. [31] applied an 

attention mechanism to weight historical visits to 

determine UPs, but ignored the impact of real-time 

weather on the action space. Tsai et al. [32] studied the 

implicit and dynamic information of points of interest, 

taking into account UPs, but did not consider the impact 

of real-time scenarios such as traffic and weather. Mou et 

al. and Zhou et al. studied user trajectories, emphasizing 

the main behavioral intentions of tourists. They can 

effectively understand tourists' travel patterns, but cannot 

adapt to unexpected situations [33], [34]. The above 

methods still have difficulty balancing the depth of 

personalization and dynamic adaptability. 

This paper designs a dynamic TR recommendation 

model based on DRL. The primary research questions 

addressed by this study are: (1) Can a DRL model 

integrating real-time context and user preferences 

outperform baseline recommendation systems in dynamic 

travel scenarios? (2) Does MHAM improve temporal 

personalization in dynamic travel recommendation? A 

joint high-dimensional vector that includes users' long-

term preferences, real-time multidimensional context, and 

current state is constructed, and an LSTM-CNN network 

is adopted for feature extraction. The novelty of this 

integration lies in the specific combination of LSTM-CNN 

for capturing user preference patterns with MHAM for 

real-time contextual fusion, which is designed to enhance 

the adaptability of the recommendation in dynamic 

environments. While previous DRL-based systems 

address user preferences and contextual information, they 

do not employ such a tightly integrated feature fusion 

mechanism, particularly for real-time contextual shifts 

such as changes in weather or traffic patterns. This 

approach ensures that the model not only prioritizes user 

preferences but dynamically adapts to immediate 

situational changes, which has been underexplored in 

existing literature on mobility-based or temporal 

recommendation systems. The LSTM network is used to 

model the temporal dependencies of users' historical visit 

sequences, and the CNN network is used to process 

structured real-time contextual data. An MHAM is applied 
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to achieve deep feature fusion. The decision mechanism is 

based on the asynchronous advantage AC framework for 

end-to-end training, and the Dueling DQN structure is 

used to decouple state value and action advantage to 

improve the stability of Q-value estimation. Finally, a 

compound reward function that includes preference 

matching, time rationality, situational adaptability, and 

repeated punishment is designed. Additionally, how 

attention mechanisms can provide insights into the 

decision-making process, helping end-users and tourism 

operators understand why certain recommendations are 

made, is explored, aiming to enhance user trust in the 

system by leveraging attention mechanisms not only for 

performance but also for interpretability. Comparisons 

with explainable recommendation systems can be 

considered in future work. Combined with a prioritized 

experience replay mechanism, learning efficiency under 

sparse rewards is improved, and the learning process is 

optimized, providing a learnable and evolvable decision-

making paradigm for the intelligent tour guide system. 

2 Algorithm design 

2.1 State space construction 

Accurate state space modeling is fundamental to enabling 

effective decision-making in dynamic travel 

recommendations using DRL. This study constructs a 

high-dimensional, semantically rich joint state vector S𝑡 

to simultaneously represent user personalization and real-

time environmental changes. This implementation 

involves four steps. 

First, UP encoding uses a two-layer unidirectional 

LSTM network to process the user's historical visit 

sequence [35], [36]. The input is a time-ordered sequence 

of scenic spot ID {v1,v2,...,vn}, which is mapped into a 64-

dimensional dense vector (Embedding Size = 64) through 

the embedding layer and sent to the LSTM (hidden layer 

dimension 128, sequence length limit 50). The LSTM 

updates its hidden state moment by moment, ultimately 

outputting a hidden vector hn∈R128  as a compressed 

representation of the user's long-term interests. This vector 

is further nonlinearly transformed through a fully 

connected layer to generate a fixed-dimensional 

preference embedding h𝑢 ∈ ℝ128, preserving the interest 

evolution pattern in temporal behavior. 

Secondly, RTC collection and vectorization 

encompass multi-source heterogeneous data. The system 

obtains the current weather conditions (sunny, rainy, 

snowy, high temperature, etc.) through the 

OpenWeatherMap API, one-hot-encodes them, and 

normalizes them into a 16-dimensional vector. The system 

also obtains the traffic congestion index (0–10) for the 

user's area through the Baidu Maps API and linearly 

normalizes it to the interval [0,1]. The real-time visitor 

flow ratio (current number of people/maximum capacity) 

of the target attraction is obtained through the scenic spot 

ticketing system interface and similarly normalized. The 

current time (hour encoded as a sin/cosine cycle feature) 

and whether it is a holiday (a binary flag) are combined to 

form a 64-dimensional context vector ct. 

Third, location status represents the user's current 

geographic and behavioral state. The latitude and 

longitude coordinates of the user's last checked-in 

attraction are used as the reference. These coordinates are 

converted to a spatial index using GeoHash encoding (6-

digit precision) and co-encoded with the duration of stay 

(in minutes, truncated to 300 minutes). The duration of 

stay is logarithmically transformed and concatenated with 

the GeoHash vector, and is then mapped to a 32-

dimensional position vector p
t
 through a fully connected 

network (32→32 ReLU), effectively capturing the user's 

current activity intensity and spatial anchor point. 

Finally, the state fusion mechanism concatenates the 

three vectors to form a joint state representation: 

st=[hu;ct;pt
]∈R224 (1) 

This joint vector serves as the state input for DRL, 

fully encompassing the user's intrinsic preferences, 

external environment dynamics, and current location 

information. The final concatenated state vector has a 

dimensionality of 160, comprising the 64-dimensional 

user preference vector, 64-dimensional contextual vector, 

and 32-dimensional location status vector. To ensure input 

consistency, all components are Z-score normalized 

(mean 0, variance 1) before entering the network, and are 

calculated offline based on statistical parameters from the 

training set. The normalization parameters (mean and 

variance) are computed from the training set and 

maintained across both the training and test phases to 

prevent data leakage. 

2.2 Action space definition 

The design of the action space directly determines the 

feasibility and real-time adaptability of the 

recommendation system. This study models each 

recommendation step as a discrete decision problem 

involving selecting the next destination from a set of 

candidate attractions. Action at∈At represents the unique 

identifier of the recommended attraction at the time t. To 

ensure the enforceability of the recommendation results 

across geography, time, and user behavior, the action 

space At is not a fixed set, but a dynamically generated 

subset based on multidimensional constraints. 

First, accessibility screening is centered around the 

user's current location, establishing spatial constraints. 

Using GPS to obtain the user's real-time (xt,yt
) 

coordinates, an R-tree index is used to retrieve all 

candidate attractions within a 5-kilometer radius from the 

attraction database, forming an initial set Cgeo . The 5-

kilometer radius is chosen based on the average walking 

distance in urban environments, considering the practical 

travel limits for tourists and the density of attractions 

within this area. This range takes into account the city's 

average traffic density and the feasibility of walking/short-

distance connections, avoiding jumpy recommendations 

across regions. Attraction closure events are simulated in 

the training phase as part of the environment, but are not 

present in the test phase to simulate real-world 
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unpredictability. Geographic queries are supported by the 

PostGIS spatial database. The R-tree index is used to 

efficiently filter candidate attractions within the defined 

spatial range (5 km). The GeoHash encoding aids in 

determining the geographical proximity of attractions, and 

the R-tree provides an optimized search for nearest 

attractions. 

Next, temporal feasibility pruning is performed based 

on the current system time τt  and the opening schedule 

[oj,cj] of each candidate attraction. Only attractions that 

meet the criteria τt+d(xt,xj)/v<cj  are retained, where 

d(xt,xj)  is the shortest road distance from the current 

location to the candidate attraction j (calculated using the 

OSRM routing engine), and v  is the preset average 

moving speed (set to 8 km/h in urban areas). At the same 

time, attractions whose last entry time for the day has 

passed are eliminated to ensure that the recommended 

action can be completed in time. The preset average 

moving speed of 8 km/h is chosen based on typical 

walking speeds in urban tourism areas, which balances 

efficiency and user comfort. 

Third, itinerary consistency constraints exclude 

attractions that the user has already visited. A dynamic set 

Vt={v1,v2,...,vt}  is maintained, recording the user's 

historical check-in sequence. All attractions in j∈Vt  are 

removed from the candidate set to prevent duplicate 

recommendations. Furthermore, if an attraction has been 

recommended but the user has not chosen it and is 

relatively close, the probability of it being recommended 

again is reduced over the next 30 minutes, achieving 

recommendation memory deduplication through status 

tagging. 

Fourth, adaptive optimization of remaining time 

applies a path duration estimation mechanism based on the 

Dijkstra algorithm [37], [38]. A weighted graph is 

constructed based on urban road network data, with edge 

weights representing travel time (integrated with real-time 

traffic indices). The shortest arrival time tarrive(j) from the 

current node to each candidate attraction is calculated. 

This is combined with the recommended duration tstay(j) 

of the attraction. If tarrive(j)+tstay(j)>Tremain , where Tremain 

is the remaining time preset by the user or predicted by the 

model, the candidate is eliminated. This pruning strategy 

effectively avoids recommending infeasible actions that 

exceed the time budget. 

Finally, the action space At  is defined as the 

intersection of the above four filtered sets: 

At=Cgeo∩Ctime∩Vt
―∩{j∣tarrive(j)+tstay(j)≤Tremain} (2) 

In cases where the filtered set is too small, the system 

expands the spatial range or allows for recommendations 

from attractions visited earlier within the trip, ensuring a 

minimum number of recommendations (K = 5) is 

maintained. This dynamic action space is updated every 

step, synchronized with state awareness (triggered every 

30 seconds or when the user's location changes by >200 

meters). When At=∅, the termination action at=END is 

triggered, signaling the end of the trip. All candidate 

actions are sorted by Q value, and a top-K 

recommendation list (K = 5) is generated. This list is 

pushed to the client in real-time via the gRPC interface. 

2.3 Reward function design 

The design of the reward function directly affects the 

optimization direction of the DRL strategy and the 

rationality of the recommended behavior. The design 

structure is illustrated in Fig. 1. 

 

Figure 1: Architecture of the CRF for multi-objective optimization 
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Fig. 1 shows the structure of the reward function, and 

illustrates the Composite Reward Function (CRF) using a 

weighted sum of preference matching, time rationality, 

context adaptability, and duplicate penalty to balance 

personalization, dynamic responsiveness, and 

recommendation consistency. This study constructs a CRF 

Rt , which achieves multi-objective collaborative 

optimization through a weighted linear combination to 

ensure that the model strikes a balance between preference 

matching, time rationality, situational adaptation, and 

recommendation specifications. The specific form is as 

follows: 

Rt=αRpref+βRtime+γRcontext-δRpenalty (3) 

The weights of each item are determined through grid 

search as: α=0.22 , β=0.18 , γ=0.27 , and δ=0.33 , to 

enhance the response priority to situational changes and 

inhibit repetitive behaviors. A grid search is performed 

over the following parameter ranges: preference matching 

weight (0.1–0.5), time rationality weight (0.05–0.2), 

context-adaptive weight (0.1–0.4), and duplicate penalty 

weight (0.2–1.0). These ranges are chosen to balance 

personalization with situational responsiveness and 

penalize redundant recommendations. 

The preference-matching reward Rpref  quantifies the 

consistency of the recommendation results with the user's 

long-term interests. The input is the UP vector hu∈R128 

(generated by LSTM encoding) and the category 

embedding ej∈R64  of the target attraction j. The cosine 

similarity between the two is calculated: 

Rpref= cos(hu,ej) (4) 

This value ranges from [-1, 1] and is linearly mapped 

to the interval [0, 1] to serve as the base preference score. 

This design encourages the model to recommend 

attractions that are semantically similar to the user's 

historical behavior, improving personalization accuracy. 

The time rationality reward, 𝑅time , assesses the 

suitability of the recommended timing. The optimal 

visiting hours are predefined based on the attraction type: 

9:00–11:00 for museums, 11:30–1:30 for restaurants, and 

18:00–21:00 for night scenes. If the predicted arrival time, 

τ
^

arrive, falls within the corresponding interval, Rtime=1.0; if 

it falls within opening hours but not during peak hours, R 

is assigned a value of 0.3; if it is near closing time 

(remaining available time < 30 minutes), it is set to 0. The 

arrival time is calculated by adding the estimated travel 

time from the current location using the OSRM 

(OpenStreetMap Routing Machine) path planning engine 

to ensure that the time judgment is based on real traffic 

conditions. 

The context-adaptive reward Rcontext  achieves 

responsiveness to dynamic environments, and makes 

logical decisions according to the current weather 

conditions and the attributes of the attraction: if the 

weather is "raining" or "snowing", and the recommended 

attraction is indoors (e.g., a museum or shopping mall), 

then Rcontext=+1 ; if the recommended attraction is an 

outdoor attraction (e.g., a park or square), then Rcontext=-1. 

Recommending an outdoor attraction on a sunny day can 

earn +0.8, and 0 otherwise. This mechanism forces the 

model to prioritize safe and comfortable indoor locations 

during inclement weather, improving user experience and 

safety. A duplicate penalty term, Rpenalty, prevents invalid 

recommendation loops. If the attraction j corresponding to 

action at already exists in the user's historical visit set Vt, 

a fixed penalty of -2 is applied. If the attraction is 

recommended for the most recent trip but is not chosen, an 

additional penalty of -1 is applied. This design uses 

negative incentives to prevent the model from repeatedly 

outputting the same candidate, enhancing 

recommendation diversity. 

All rewards are calculated immediately after each 

decision, normalized using the Z-score to eliminate 

dimensionality, and then weighted and summed. The final 

scalar reward Rt serves as an immediate feedback signal 

for RL (Reinforcement Learning), driving the policy 

network to optimize long-term cumulative benefits. To 

further investigate the impact of trade-offs between 

accuracy, latency, and personalization, sensitivity 

analyses are conducted on the weights of the CRF. 

Specifically, how varying the balance between preference 

satisfaction and contextual adaptation affects 

recommendation performance and responsiveness is 

explored. Additionally, the feasibility of integrating a 

multi-objective reinforcement learning framework is 

considered to provide a more structured approach to 

handling these trade-offs systematically. This reward 

mechanism addresses the decision bias caused by the 

single-goal orientation of traditional recommendation 

systems. A multidimensional reward structure enables the 

model to simultaneously address users' intrinsic 

preferences, external environmental constraints, and 

behavioral rationality; differentiated weighting enhances 

sensitivity to critical contexts; an explicit penalty 

mechanism improves the logical consistency of the 

recommendation sequence. Experiments demonstrate that 

this design significantly improves the strategy's robustness 

and practicality in complex urban tourism scenarios. The 

numerical values or ranges of each component are shown 

in Table 2.

Table 2: Model components, their expected impacts, and parameter settings 

Component Parameter Name Value / Range 

LSTM Embedding Size 64 

 Hidden Layer Dimension 128 
 Sequence Length Limit 50 

CNN-MLP  Conv1D Kernel Size 3 

 Conv1D Filters 32 

 MLP Hidden Layers 64→32, 32→32 

MHAM Attention Dimension 64 
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Action Space Pruning Spatial Radius 5 km 

 Average Moving Speed 8 km/h 

 Minimum Recommendations  5 

CRF Preference 0.22 

 Time  0.18 

 Context  0.27 

 Penalty 0.33 

Asynchronous AC Training Number of Parallel Threads 8 

 n-step return 5 

Prioritized Experience Replay (PER) PER Priority Exponent  0.6 

 PER Importance Sampling  0.4 

Exploration Strategy ε-Greedy Rate  0.1 

 Softmax Temperature  0.8 

Network Optimization Discount Factor  0.9 

 Dropout Rate 0.2 

 L2 Weight Decay  0.01 

2.4 Deep policy network architecture 

The network architecture consists of a preference-context 

joint encoding layer and a fusion decision layer, with 

parameters jointly optimized via end-to-end 

backpropagation. 

The preference layer is specifically designed to model 

the temporal dependencies of a user's historical behavior. 

The input layer for the user preference subnetwork has a 

size of 64, corresponding to the embedding dimension of 

the user's attraction IDs. The context subnetwork receives 

a 96-dimensional input, combining both contextual 

features and location status. The total number of 

parameters in the entire network is approximately 1.5 

million, and regularization techniques such as dropout 

(with a rate of 0.2) and L2 weight decay (λ=0.01) are 

applied to the fully connected layers. The average 

inference time per recommendation step is 0.03 seconds. 

The input is a sequence {vt-9,...,vt} of attraction ID from 

the user's last ten check-ins. This is mapped into a 64-

dimensional dense vector (Embedding Size = 64) by the 

embedding layer and fed into a two-layer unidirectional 

LSTM (hidden dimension 128, tanh activation). The 

second-layer LSTM outputs a hidden state hi∈R128 at each 

time step, forming a set of sequence representation 

{h1,...,h10}. In the following step, a MHAM is applied to 

dynamically weight UPs [39], [40]. This mechanism 

concatenates the individual heads after calculating 

attention for different subspaces and combines the results 

to generate a final preference representation. This 

mechanism can understand UPs from multiple subspaces 

and achieve a dynamic and focused interpretation of a 

user's historical access behavior. The current state is 

considered the focus of attention, with the current LSTM 

hidden state’s as the query vector (query), and the LSTM 

hidden states of all historical accesses as the key/value 

pairs (key/value), to calculate the alignment weight: 

ei=vTtanh(W[hi;st]),αi=
exp(ei)

∑  j exp(ej)
 (5) 

W∈Rk×256 , v∈Rk  are learnable parameters ( k =64). 

After calculating the attention weights, the model uses 

these weights to perform a weighted summation of all 

historical hidden states to obtain a dynamic aggregated 

final preference representation: 

hu= ∑  
10

i=1

αihi (6) 

This mechanism enables the model to dynamically 

concentrate on the historical accesses that are most 

relevant to the current decision, enhancing the semantic 

sensitivity of personalized representation. 

The context component processes structured real-time 

input ct∈R64 and a position vector p
t
∈R32. These two are 

concatenated into a 96-dimensional input. Local features 

are extracted through a one-dimensional convolutional 

layer (Conv1D, kernel size 3, number of filters 32, ReLU 

activation), outputting 32 feature maps of length 94. These 

are then flattened and further nonlinearly transformed 

through two fully connected MLP layers (64→32 ReLU, 

32→32 ReLU), outputting a 32-dimensional context 

feature vector fc. This CNN-MLP architecture effectively 

captures the interactions between multiple context 

variables. For example, "high congestion combined with 

low passenger flow" may indicate an abnormal event. 

The feature fusion and decision layer concatenate the 

preference representation hu∈R128  and the contextual 

features fc∈R32  into a 160-dimensional joint vector 

z=[hu;fc] , which is then fed into a three-layer MLP 

(256→128ReLU, 128→64ReLU, and 64→64ReLU) for 

high-level abstraction. The output layer employs a 

Dueling DQN architecture, connecting two branches: the 

value stream and the advantage stream. The value stream 

is a single-neuron, fully connected layer that outputs a 

state value estimate V(st); the advantage stream outputs an 

action advantage vector A(st,a)∈R|At| , which is then 

combined into a Q value after mean reduction: 

Q(st,a)=V(st)+(A(st,a)-
1

|At|
∑  

a'
A(st,a

')) (7) 

This structure decouples state value and action 

difference, improves the stability of Q-value estimation, 

and is especially suitable for scenarios where the action 

space changes dynamically. 

The network output action probability distribution 

π(a|st) is generated by the Actor branch through SoftMax 

normalization: 
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π(a|st)=

exp (
Q(st,a)

τ
)

∑  a' exp (
Q(st,a

')
τ

)

 (8) 

The temperature parameter τ=0.8  controls the 

exploration intensity. 

This LSTM-CNN architecture addresses the 

inadequate modeling capabilities of traditional single-

stream networks for heterogeneous inputs [41], [42]. The 

LSTM-Attention structure accurately captures evolving 

user interests; the CNN-MLP efficiently handles 

multidimensional contexts; the Dueling architecture 

enhances the robustness of value estimation. The overall 

network achieves a deep joint representation of 

personalized and dynamic environments while 

maintaining parameter efficiency. 

2.5 Asynchronous advantage actor-critic 

training mechanism based on 

experience replay 

This study uses the asynchronous advantage AC 

framework to implement distributed policy training to 

improve sample efficiency and convergence stability [43]. 

The entire training process is carried out in 8 parallel 

execution environment threads, each of which 

independently simulates a user's decision trajectory in the 

urban tourism scenario. The simulation of user 

trajectories is based on a synthetic environment that 

models urban tourism scenarios, taking into account 

dynamic changes such as weather and traffic conditions. 

To explain why DRL with Actor-Critic is chosen over 

other adaptive control methods (e.g., backstepping 

optimization or robust adaptive models), it is noted that 

this paper’s approach focuses on dynamic, real-time 

decision-making, balancing long-term user preferences 

with immediate contextual factors. Backstepping and 

robust adaptive models, though effective in predictable 

systems, struggle with unpredictable contextual changes 

like traffic or weather. Additionally, DRL with Actor-

Critic has proven more flexible in optimizing complex, 

multi-dimensional rewards in real-time dynamic settings, 

as shown in the experiments. 

Each thread initializes a local copy of the policy 

network, whose parameters are synchronized with the 

global network. In each trajectory, the system selects 

action at  based on the current state’s using an ε-greedy 

policy (ε = 0.1). After execution, it obtains the reward rt 

and the next state’s from the simulation environment and 

stores the experience tuple (st,at,rt,st+1) in a local replay 

buffer. An asynchronous gradient update is initiated when 

the buffer accumulates 32 steps or when the trajectory 

terminates. 

To improve learning efficiency under sparse rewards, 

this study applies Prioritized Experience Replay (PER). 

The priority p
i
 of each experience is determined by its TD 

(Temporal-Difference) error δi=|rt+γV(st+1)-V(st)| , and 

the sampling probability is calculated based on P(i)∝p
i
α (α 

=0.6). During training, 16 samples are sampled from the 

local buffer according to the priority, and the gradient is 

corrected using the importance sampling weight 

wi=(
1

N·P(i)
)
β
（β=0.4） to correct for sampling bias. 

Gradient calculation is based on an n-step Q-learning 

objective. For the sample sequence, the n-step return is 

calculated: 

Rt
(n)

= ∑  
n-1

k=0

γkrt+k+γnV(st+n) (9) 

The critic loss function is the mean square error: 

Lv=(Rt
(n)

-V(st))
2
 (10) 

Actor loss combines policy gradient and entropy 

regularization: 

Lπ=-logπ(at|st)·A(st,at)-λH(π(·|st)) (11) 

The advantage function A(st,at)=Rt
(n)

-V(st)  and the 

entropy term H enhance exploration capabilities, with a 

weight of λ=0.01. 

After each update, the local network's gradients are 

uploaded to the global shared network, and the parameters 

(learning rate lr=3×10-4, decay rates ρ=0.99, ϵ=10-5) are 

updated using the RMSprop optimizer. The global 

network is synchronized to all threads every 10 

asynchronous update cycles to ensure consistent policy 

evolution. 

 

Figure 2: Loss function variation curves; (a). Critic loss variation curve, (b). Actor loss variation curve 
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Fig. 2 shows how the loss of critics and actors changes 

with the number of training rounds. Fig. 2(a) depicts the 

critic loss curve. As training progresses, the critic loss 

gradually decreases and stabilizes, indicating that the 

model's estimation of state values is becoming 

increasingly accurate. Fig. 2(b) shows the actor loss curve. 

It gradually decreases as training progresses, reflecting the 

dynamic balance between Exploration and Exploitation 

(E&E) in the policy network. The loss functions of both 

the critic and actor networks show a favorable downward 

trend, validating the model's efficiency. In the AC 

framework, the critic network continuously optimizes its 

predictions of state values utilizing the mean squared error 

loss function. As training progresses, the predicted values 

become closer to the true values, resulting in a decrease in 

loss. In the early stages of training, the actor network tends 

to explore more unknown states, leading to greater loss 

fluctuations. However, as training progresses, the network 

gradually learns to make better decisions within known 

states, resulting in a decrease in loss. 

2.6 Recommendation generation mechanism 

The recommendation generation mechanism implements 

a closed-loop deployment from trained policy models to 

online services, ensuring the system can deliver 

personalized, dynamically adjusted route 

recommendations in real-time in real-world travel 

scenarios. This mechanism, with its core process of state 

perception, decision-making inference, and feedback 

updates, operates on a low-latency service architecture. 

 

Figure 3: Closed-loop architecture for real-time recommendation generation 

 

Figure 4: Overall algorithm workflow 
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Fig. 3 illustrates the output structure of the 

recommended path, and depicts the end-to-end 

deployment pipeline, where real-time context updates and 

user feedback form a dynamic recommendation chain for 

continuous personalization and adaptation throughout the 

user's journey. After constructing the initial state, all input 

features are normalized and fed into the loaded global 

policy network. A CNN-MLP then processes the RTC and 

location, while an LSTM-Attention framework extracts 

UPs. The model uses a shared AC network architecture for 

inference: the current state’s is input, and the encoding 

branch extracts UPs and contextual features in parallel. 

After fusion, the MLP (Multilayer Perceptron) and 

Dueling architecture output the Q-value for each candidate 

action. For each legal location j in the action space At, its 

Q-value Q(st,j)  is extracted and converted to an action 

probability distribution using a SoftMax function: 

π(a=j|st)=
exp(Q(st,j)/τ)

∑  k∈At
exp(Q(st,k)/τ)

 (12) 

The temperature parameter τ = 0.8 controls the 

smoothness of the output distribution to avoid excessive 

concentration on a single option. 

During the action selection phase, an ε-greedy 

strategy is utilized to balance E&E: action 

at= arg  maxj∈At
Q(st,j) with the highest Q value is chosen 

with a 90% probability, and a uniform random sample is 

taken from At with a 10% probability. After selecting an 

attraction ID, the system invokes a path planning API to 

generate the optimal route from the current location to the 

target attraction (including transportation options and 

estimated travel time). This route is then pushed to the 

client along with the reasoning for the recommendation 

(e.g., "This matches your preference for cultural 

attractions" or "The current weather is suitable for indoor 

activities"). 

User responses are captured in real-time: if a user 

clicks on navigation or checks in to a destination, this is 

marked as positive feedback and recorded as a valid 

recommendation. If a user skips a recommendation or 

remains unresponsive for an extended period, this is 

considered negative feedback, triggering a signal for fine-

tuning the local strategy. All interaction data is 

asynchronously written to the log system via a message 

queue for subsequent offline training data updates. 

When a user completes their current stop at a scenic 

spot and moves to a new location, the system triggers a 

state update. Using a timer (every 30 seconds) or location 

change detection (displacement > 200 meters), the system 

recollects real-time contextual data (weather, traffic, and 

crowd flow), updates the user's location and time state, 

constructs a new state’ s , and re-enters the model to 

generate the next recommendation, forming a dynamic 

recommendation chain. This process continues until the 

user actively terminates their trip or the system determines 

that there is insufficient time left to visit any new 

attractions. The overall workflow of the training and 

online recommendation processes is illustrated in Figure 

4. 

3 Experiment and verification 

3.1 Experimental design 

The experimental design aims to validate the 

comprehensive performance of a dynamic TR 

recommendation model based on DRL in a real-world 

urban tourism scenario. A reproducible, high-fidelity 

simulation evaluation environment is constructed. All 

experiments are run on a server cluster equipped with 

NVIDIA Tesla V100 GPUs, using Python 3.9 and 

PyTorch 1.12. 

The data set utilizes FS-NYC and TCI, which hold 

check-in data gathered in NYC and Tokyo, spanning about 

10 months (from April 12, 2012, until February 16, 2013), 

including 227,428 check-ins for NYC and 573,703 check-

ins for Tokyo. Every check-in has a timestamp, GPS 

location, and a semantic label (indicated by a specific 

venue type). POI (Point of Interest) category information 

is supplemented via the Foursquare API, covering 16 

categories (such as museums, parks, restaurants, and 

shopping malls). Ancillary data is acquired in real-time 

through APIs: weather data comes from the 

OpenWeatherMap API (updated hourly); traffic 

congestion index is provided by the Baidu Maps API 

(based on floating vehicle data); attraction opening hours 

are retrieved from official websites and stored in a 

structured format. 

The data preprocessing process is as follows: first, 

abnormal stops with check-in intervals less than 5 minutes 

are filtered to prevent missed check-ins or short stops from 

interfering with trajectory continuity; second, the visit 

sequences of each user are sorted by time, and only valid 

users with at least 5 check-ins are retained, ultimately 

retaining 500 users; then, the Word2Vec model is used to 

train attraction category embedding vectors on all check-

in sequences, with a dimension set to 64, for preference 

matching calculations in the reward function; finally, the 

original timestamps are parsed into hour and 

weekday/holiday symbols, and aligned with external data 

such as weather and traffic by time to construct a context 

vector corresponding to each check-in. 

Data is partitioned using a chronological splitting 

method: the first 80% of the check-in data on the timeline 

is used as the training set; the middle 10% is used as the 

validation set (for hyperparameter tuning and early 

stopping); the last 10% is used as the test set. This ensures 

that test user behavior patterns are not leaked during 

training, preventing future information leakage issues with 

time series data. 

This document presents a dynamic TR 

recommendation model based on DRL. By building an 

LSTM-CNN network and applying an MHAM, it deeply 

integrates UPs and real-time contextual status, designs a 

multi-objective reward function, and implements end-to-

end training based on the AC framework. 

The baseline model includes four representative 

methods: 

DQN: Deep Q Network (DQN) uses the same state 

input, action space, and reward function in this paper; 
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PageRank-based: this method constructs a transition 

probability matrix based on the user-attraction interaction 

graph, calculates attraction importance using the 

PageRank algorithm, and generates static Top-K 

recommendations; 

PredRNN: a spatiotemporal prediction sequence 

RNN (Recurrent Neural Network) travel recommendation 

model that takes user history sequences as input, models 

spatiotemporal patterns through LSTM, and outputs next 

visit predictions. 

After initializing the user state for each test trajectory, 

each model runs sequentially until the end of the trip (three 

consecutive recommendation failures or timeout). The 

system automatically records the match between each 

recommendation result and the actual check-in. 

Hyperparameter settings are determined through grid 

search, and an early stopping strategy is employed, where 

training is halted if the validation loss does not improve 

for 10 consecutive iterations. The parameter values are 

illustrated in Table 3. 

Table 3: Hyperparameter setting values 

Parameter Value 

AC Learning Rate 3×10-4 

n-step 5 
PER Parameter α 0.6 

PER Parameter β 0.4 

ε-Greedy Exploration Rate 0.1 

Discount Factor 0.9 

Table 3  shows the parameter settings. This 

experimental design ensures fair evaluation and real-

world relevance. Time division prevents data leakage, 

multi-source data fusion restores real-world scenarios, and 

a unified simulation environment eliminates platform 

differences. The constructed test framework supports 

automated batch execution and metric collection, 

providing a reliable data foundation for subsequent 

performance comparisons. 

3.2 Comparison of recommendation 

accuracy 

To quantify the accuracy of the model in personalized 

recommendations, this study uses the Top-K Hit Ratio 

(HR@K) as a core evaluation metric to measure the ability 

of the recommendation list to cover users' actual behavior. 

The experiment is conducted on the test set constructed in 

Section 3.1. All models start with the same initial state, 

generating recommendations round by round and 

comparing them with the user's actual check-in sequence. 

The particular execution procedure follows: for each user 

in the test set, the system extracts the current state St from 

their historical trajectory and inputs it into various models 

to generate a top-K recommendation list (K=5 and K=10). 

The set of attraction IDs corresponding to the 

recommended action at  is denoted as Rt
K⊂At . If the 

attraction g
t
 that the user actually visits in the next step is 

in Rt
K , the recommendation is considered a hit. This 

process is executed slidingly across the entire test 

trajectory, covering all evaluable time steps. 

The hit rate is calculated using the global average form: 

HR@K =
 1

N 
∑  I

N

i=1

(g
i
∈Ri

K) (13) 

Here, N  is the total number of valid evaluation 

samples (i.e., the number of decision steps where the 

action space is non-empty and a true next point exists), and 

I ()  is the indicator function. This metric reflects the 

model's capability to forecast the user's next behavior in a 

dynamic environment. 

To ensure evaluation consistency, all models use the 

same candidate set generation logic and time window 

alignment mechanism. The proposed model and the DQN 

dynamic model update their state step by step and make 

new recommendations. PageRank-based and PredRNN, as 

sequence prediction models, output fixed-length rankings 

based on the global graph structure and LSTM hidden 

states, respectively, and select the top K items as 

recommendations. 

HR@K indicates the percentage of top K 

recommended attractions that the user actually visits. For 

each user in the test set, the system extracts their current 

state from their historical trajectory, generates a top-K 

recommendation list, and compares this list with the user's 

actual check-in sequence. If the attraction the user actually 

visits next is on the recommended list, the 

recommendation is considered a hit. The hit rate is 

calculated as a global average, representing the proportion 

of hits across all valid evaluation samples. Fig. 5 shows 

the HR@K of each model. 

 

Figure 5: HR@K hit rate 
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Fig. 5 shows the HR@K hit rate. Under the HR@5 

metric, this paper's model achieves a hit rate of 53%, 

exceeding baseline models such as DQN (41%), 

PageRank-based models (34%), and PredRNN (39%). 

When the K value is expanded to 10, the HR@10 hit rate 

of the paper's model reaches 84%, surpassing the three 

baseline models of DQN (72%), PageRank-based models 

(59%), and PredRNN (67%). The paper's model maintains 

a clear advantage. The HR@10 of the experimental group 

is higher than that of the GNN recommendation algorithm 

in Zhang et al.'s study (achieving 52.40%, 75.57%, and 

72.43% on the Amazon-Beauty, Amazon-Games, and 

Amazon-CDs datasets, respectively). This demonstrates 

that the paper's model not only achieves high-precision 

recommendations for the first few attractions in the 

recommendation list, but also maintains high accuracy 

across a wider range of recommendations, providing users 

with more diverse choices. The standard deviations and 

confidence intervals are shown in Table 4.

Table 4: Top-K hit rate statistical significance (Mean ± Standard deviation, 95% Confidence interval) 

Model HR@5 HR@10 

Proposed Model 53.0% ± 2.1% [52.1%, 53.9%]  84.0% ± 1.8% [83.3%, 84.7%] 

DQN 41.0% ± 2.8% [40.0%, 42.0%] 72.0% ± 2.3% [71.2%, 72.8%] 
PredRNN 39.0% ± 3.1% [38.0%, 40.0%] 67.0% ± 2.6% [66.1%, 67.9%] 

PageRank-based 34.0% ± 3.5% [33.0%, 35.0%] 59.0% ± 3.0% [58.0%, 60.0%] 

Table 4 presents the mean, standard deviation, and 95% 

confidence intervals for HR@5 and HR@10, calculated 

over 50 independent runs. The non-overlapping 

confidence intervals between the proposed model and all 

baselines confirm its statistically significant performance 

advantage. 

To further compare recommendation accuracy, a 

coverage metric is added, which is defined as the ratio of 

the number of unique recommended attractions to the total 

number of attractions. This metric reflects the breadth of 

the recommendation system and its ability to discover 

low-hanging fruit. A high-coverage model can 

recommend not only popular attractions but also less 

popular ones that meet UPs, providing users with a richer 

and more diverse selection. The coverage data is shown in 

Table 5. 

Table 5: Coverage statistics 

Model Coverage (%) 

Proposed Model 78.8 

DQN 54.7 
PredRNN 62.1 

PageRank-based 31.5 

 

Table 5 shows that the paper's model has the highest 

coverage, reaching 78.8%, followed by PredRNN at 

62.1%, DQN at 54.7%, and PageRank-based at 31.5%. 

Due to the paper's model's sensitivity to context and its 

penalty for repeated behavior, it can break out of its 

comfort zone of focusing on popular attractions and 

generate differentiated recommendations for different 

users and contexts, thus covering a wider range of 

attractions in the inventory. The PredRNN model can 

make personalized recommendations based on user 

history, but lacks exploration capabilities. The DQN 

model has exploration potential, but its ability to integrate 

UPs and context is weak. The PageRank-based model, 

driven by global popularity, repeatedly recommends a 

small number of popular attractions, often overlooking 

less popular ones that meet user needs. 

3.3 Route rationality assessment 

To assess the geographic coherence of routes, the 

experiment uses three quantitative metrics: average travel 

time, cross-region rate, and actual travel time. Using 

actual road network data, the shortest travel time between 

adjacent recommended attractions is calculated and 

compared with the model's recommended routes to verify 

whether they followed optimal or feasible transportation 

paths. Unreasonable spatial jumps within the route, such 

as long distances across different zones, are checked, 

indicating an illogical recommendation logic. Then, 

considering the overall duration of the recommended route 

relative to the user's actual available travel time, 

recommending unfeasible itineraries that exceed the user's 

time budget are avoided. Calculating the proportion of 

actual travel time to the total time needs to finish the route 

to reflect the time efficiency of the recommended route. 

Fig. 6 shows the average travel time, cross-zone rate, and 

actual travel time percentage. 
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Figure 6: Average travel time, cross-region rate, and percentage of actual travel time; (a) Average travel time, (b) 

Cross-region rate, (c) Percentage of actual travel time 

Fig. 6 shows that the paper's model significantly 

outperforms the baseline model in average travel time 

(14.2 minutes). The proposed model shortens average 

travel time by 8.3 minutes compared to the PageRank-

based model, and the proposed model's cross-region rate 

(8.3%) is 16.7% lower than the PageRank-based model 

(25%). Compared to DQN, the paper's model shortens 

average travel time by 4.5 minutes and has a lower cross-

region rate than DQN, demonstrating that the paper's 

model effectively integrates geographic information and 

generates coherent TRs. The actual travel time in the 

paper's model accounts for 70.6%, significantly higher 

than DQN (60.2%), PredRNN (58.7%), and PageRank-

based models (55.1%). The paper's model recommends 

routes with shorter travel times and shorter waiting times, 

demonstrating superior rationality to the three baseline 

models. 

3.4 Personalized matching satisfaction 

evaluation 

To quantitatively evaluate how well recommendations 

match users' inherent preferences, this study uses user 

satisfaction scores as a key metric to assess the model's 

personalized performance. In experiments, the system 

creates personalized recommendation routes based on test 

users' historical check-in data. A panel of 30 evaluators 

(15 domain experts with advanced degrees and research 

experience, and 15 experienced travelers) conducts blind 

reviews. Inter-rater reliability, assessed via Cohen’s 

Kappa on a random subset, is 0.78 (95% CI [0.72, 0.84]), 

showing substantial agreement and confirming the 

evaluation's robustness. The scoring system uses a 5-point 

Likert scale, with 1 indicating "completely inconsistent 

with the user's interests" (e.g., recommending a high-

intensity outdoor sports venue to a user who prefers 

cultural and artistic attractions) and 5 indicating "highly 

consistent with the user's preferences." The evaluation 

criteria cover five aspects: interest type matching: the 

consistency of the recommended attractions with the user's 

historical preferences (e.g., natural landscapes, historical 

sites, food streets, etc.). Tour pace adaptability: this refers 

to the degree to which the recommended itinerary's 

schedule (e.g., a packed morning of sightseeing, a 

leisurely afternoon) matches the user's historical behavior 

patterns. Preference intensity responsiveness: this refers to 

the ability to prioritize frequently visited attractions (e.g., 

recommending highly relevant museums to a "museum 

enthusiast"). Dynamic interest tracking: this refers to the 

ability to capture temporary shifts in user interest during 

an itinerary (e.g., a shift to indoor attractions during a 

sudden downpour) while maintaining consistent 

preferences. Recommendation logic explainability: this 

refers to the clarity and user understanding of the 

recommendation rationale (e.g., "Based on your visits to 

three art galleries last week, I recommend new museums 

of the same type"). User satisfaction evaluations are 

shown in Fig. 7. 
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Figure 7: Satisfaction radar chart 

As shown in Fig. 7, the satisfaction score for the 

model in this paper is notably greater than the satisfaction 

score for the baseline model. The recommended paths 

generated by the paper's model score 4.4, 4.5, 4.6, 4.5, and 

4.3 in the five dimensions of interest type matching, tour 

rhythm adaptability, preference intensity responsiveness, 

dynamic interest tracking ability, and recommendation 

logic interpretability, respectively, with an average score 

of 4.46. DQN scores 3.8, 3.9, 3.7, 3.5, and 3.8, 

respectively, with an average score of 3.74. PredRNN 

scores 3.5, 3.6, 3.4, 3.3, and 3.6, respectively, with an 

average score of 3.48. The PageRank-based scores are 2.9, 

3.0, 2.8, 2.7, and 2.9, respectively, with an average score 

of 2.86. This shows the effectiveness of the paper's model 

in continuously tracking UPs during dynamic interactions. 

In contrast, baseline models, either due to a lack of an 

explicit preference-context fusion mechanism or the 

limitations of static ranking logic, struggle to maintain 

personalization under environmental perturbations. This 

demonstrates that the paper's model can achieve a higher 

level of personalized matching. 

3.5 Dynamic event and response delay 

testing 

To evaluate the model's robustness and strategy 

adaptability during unexpected events, this study 

simulates a "temporary closure of a tourist attraction" to 

measure the system's reliability and responsiveness in 

providing alternative recommendations under extreme 

conditions. The assessment focuses on the model's closed-

loop performance from plan failure to new route 

generation, demonstrating its fault tolerance and real-

world adaptability in tourism. 

The specific implementation process is as follows: 

during the testing phase, when a user completes their stop 

at a current attraction and is about to proceed to the next 

recommended destination, the system determines whether 

the destination is a "park-type" POI. If so, a "temporary 

closure" event simulation is triggered. The closed 

attraction is forcibly removed from the candidate set, and 

all subsequent recommendations are generated with 

respect to the updated action space. Upon activation, the 

system marks the attraction as "closed" and forcibly 

removes it from the candidate action space At . The 

weather variable is injected deterministically based on 

real-time weather data, ensuring that the simulated 

conditions are as realistic as possible. Simultaneously, the 

context vector ct  is updated, injecting "weather 

deterioration" or "crowd limit exceeded" flags to simulate 

real-world closure reasons. 

After a trigger event, the system immediately re-

executes the recommendation process: based on the 

updated state’ s , the set of reachable candidates is 

recalculated, excluding closed attractions and similar 

high-risk outdoor POIs. Accessible, open, and 

complementary alternative attractions (such as museums, 

shopping malls, and indoor exhibition halls) are 

prioritized. Any recommendations that are repeats from 

previous attractions are penalized with a -1 score to 

discourage repetition. The model outputs a new action 

probability distribution π(a|st). If a legitimate and non-

duplicate alternative attraction is recommended within 

one minute, it is considered a "successful transfer". The 

experiment is tested with 50 independent events to ensure 

statistical significance. 

Two core metrics are measured: transfer success rate 

and response latency. The transfer success rate reflects the 

model's ability to adjust its strategy within a constrained 

action space,  measuring the rate at which the model 

successfully re-executes recommendations during a 

"temporary shutdown" event. A higher rate indicates a 

stronger ability to propose a new plan when the original 

plan fails. Fig. 8 illustrates the transfer success rate curve. 
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Figure 8: Transfer success rate curve 

Fig. 8 shows that the paper's model's success rate 

significantly outperforms the three baseline models, 

reaching an average success rate of 85.3% with minimal 

fluctuation, demonstrating its ability to successfully 

handle unexpected situations in the vast majority of cases. 

In contrast, the DQN model has a lower average success 

rate of approximately 63.7%. The PredRNN and 

PageRank-based models perform even worse, with 

average success rates of 51.3% and 29.1%, respectively, 

and exhibiting significant fluctuations, indicating their 

limited adaptability to dynamic events. In the paper's 

model, when the "Attraction Closed" flag in the state 

vector is updated, the policy network immediately detects 

this change, enabling efficient and stable migration. While 

DQN also uses RL, it lacks deep modeling of UPs and an 

explicit penalty mechanism, resulting in sluggish and 

unstable responses to sudden state changes. PredRNN, as 

a sequence prediction model, relies too heavily on 

historical access patterns, making it difficult to 

dynamically adjust beyond the preset path. PageRank-

based models are rarely able to generate effective 

alternatives and have the lowest success rate. 

Response latency is the time interval (in seconds) 

from event triggering to the output of a new 

recommendation, accurately recorded by system logs. A 

latency of less than 3 seconds is considered efficient, while 

a latency exceeding 5 seconds may affect user experience. 

Response delay box plot is shown in Fig. 9. 

 

Figure 9: Response delay box plot 

Fig. 9 compares response latencies. The horizontal 

axis signifies the four models, and the vertical axis denotes 

response latency. The data is based on the results of 50 

independent tests. The data shows that the proposed model 

has extremely low response latency, with a maximum 

latency of 1.56 seconds and a minimum latency of 0.61 

seconds, with a median of approximately 1.07 seconds. 

The overall distribution is compact, and the response is 

efficient and stable. In contrast, the DQN and PredRNN 

models experience significantly increased latency, with 

medians of approximately 2.61 seconds and 2.89 seconds, 

respectively. These wider bins indicate that their inference 

processes take longer and are more volatile, with 

maximum latencies of 3.26 seconds and 3.85 seconds, 

respectively, indicating slightly slower response times. 

The PageRank-based model has the highest latency, with 

a median of 4.97 seconds and a maximum of 6.68 seconds. 

This sluggish response to dynamic events may impact user 

experience. The paper's model can quickly calculate the 

new action probability distribution through efficient 

inference after the state vector is updated. However, 

standard deep learning models such as DQN and 

PredRNN require high computational overhead when 

processing high-dimensional states, while the latter 

requires reprocessing the entire historical sequence, 

resulting in high inference latency. The mean, median, 

standard deviation (SD), minimum, and maximum values 

are presented in Table 6.
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Table 6: Statistical summary of response latency (in seconds) 

Model Mean Median SD Minimum Maximum 

Proposed Model 1.05 1.07 0.18 0.61 1.56 

DQN 2.58 2.61 0.22 2.13 3.26 

PredRNN 2.84 2.89 0.29 2.33 3.85 

PageRank-based 4.92 4.97 0.65 3.57 6.68 

4 Discussion 
This study proposes a deep reinforcement learning 

framework integrating LSTM-CNN and Multi-Head 

Attention Mechanism (MHAM) for real-time personalized 

travel route recommendation. On the FS-NYC and TCI 

datasets, the model achieves HR@5 of 53% and HR@10 

of 84% (Figure 5), outperforming baselines due to its 

effective integration of User Preferences (UPs) and Real-

Time Contexts (RTCs), where LSTM captures long-term 

behavior patterns, CNN-MLP processes contextual data 

(e.g., weather, traffic), and MHAM enables dynamic, fine-

grained interest modeling by attending to relevant 

historical visits. The model also achieves high coverage 

(78.8%, Table 5), indicating strong diversity, driven by the 

Composite Reward Function (CRF) which uses a 

duplicate penalty and context-adaptive reward to promote 

exploration and mitigate the "filter bubble." Under 

dynamic events like attraction closures, it achieves an 85.3% 

migration success rate and a 1.07-second median response 

latency (Figures 8–9), demonstrating robust adaptability 

through its end-to-end AC architecture, which responds 

immediately to state changes, unlike the slower DQN, 

PredRNN, and static PageRank-based models. 

In summary, the model’s performance arises from the 

synergistic integration of LSTM-CNN, MHAM, CRF, and 

AC, enabling accurate, diverse, and highly adaptive real-

time recommendations. 

5 Conclusion 
This study addresses the poor adaptability of 

recommendation systems in dynamic tourism scenarios by 

proposing a DRL model that integrates UPs with real-time 

contextual awareness. The proposed framework uses an 

LSTM-CNN-MHAM architecture within an Actor-Critic 

framework, guided by a Composite Reward Function, to 

achieve adaptive personalization by dynamically focusing 

on relevant historical behaviors based on real-time 

context. Based on the AC framework, a CRF is designed 

to drive the model to learn personalized and context-

adaptive decision-making strategies. Experimental results 

show that the model achieves a Top-5 hit rate of 53% and 

a Top-10 hit rate of 84% on the FS-NYC and TCI, with a 

MRL of 1.07 seconds. It can be recognized that the FS-

NYC and TCI datasets, though valuable, may not fully 

capture global travel diversity. Future work can test 

datasets from developing cities with less structured data 

and explore solutions to cold-start problems for new users, 

possibly using collaborative filtering or hybrid methods to 

enhance initial recommendations. This research 

effectively achieves collaborative modeling of user needs 

and dynamic environments, providing a personalized 

recommendation solution that combines high precision 

and real-time performance for smart tourism. The 

proposed model performs effectively in dynamic urban 

tourism but faces limitations like the 'cold-start' problem 

for new users without historical data, solvable through 

collaborative filtering or hybrid models. Scaling may raise 

computational costs from real-time processing, alleviated 

by model pruning or distributed computing. Future 

research can boost scalability for more users and contexts 

and incorporate adaptive event-triggered strategies to 

enhance responsiveness in complex urban environments. 
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