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With the development of smart tourism, traditional static recommendations struggle to cope with the
dynamic changes in RTCs (Real-Time Contexts) such as traffic and weather in urban environments.
Furthermore, they cannot integrate UPs (User Preferences) with real-time contextual awareness,
resulting in poor recommendation adaptability. This paper aims to design a highly adaptable,
personalized, and dynamic TR (Travel Route) recommendation model. The model leverages LSTM-CNN
for feature extraction and Multi-Head Attention Mechanism (MHAM) for feature fusion. The system is
trained using an Actor-Critic (AC) framework. Evaluation metrics such as HR@5, HR@10, coverage,
and median response latency (MRL) are used to assess performance. Based on DRL (Deep Reinforcement
Learning), this model captures UP differences through the construction of an LSTM-CNN (Long Short-
Term Memory-Convolutional Neural Network) network, achieving personalization. A MHAM (Multi-
Head Attention Mechanism) is applied to deeply integrate UPs with real-time contextual states such as
traffic and weather. A CRF (Composite Reward Function) is designed by jointly modeling preferences
and context, and end-to-end training is achieved using an AC (Actor-Critic) framework. Experiments show
that on the FS-NYC (Four Square—New York City dataset) and TCI (Tokyo Check-ins dataset), the paper's
model achieves a Top-5 hit rate of 53% and a Top-10 hit rate of 84%, with a MRL (Median Response
Latency) of 1.07 seconds. It also significantly improves adaptability to dynamic scenarios compared to
baseline methods. This research provides a personalized recommendation paradigm that combines high
accuracy with real-time responsiveness for dynamic travel scenarios, effectively improving user
experience and service quality.

Povzetek: Clanek predlaga prilagodljiv prilagojen model za priporocanje potovalnih poti, ki z LSTM—

CNN in vecglavno pozornostjo zdruzi uporabniske preference z realnocasovnimi konteksti.

1 Introduction

With the rapid advancement of science and technology, all
industries are integrating new technologies for
development, and the tourism industry is becoming
increasingly intelligent. Route recommendations are an
indispensable part of travel planning and onboarding.
With the development of smart tourism, traditional static
recommendations cannot meet users' individual
requirements in complex and dynamic environments [1],
[2]. Traditional methods often ignore real-time contextual
changes and lack joint modeling of UPs and
environmental interactions. They recommend only a fixed
number of attractions, resulting in poor adaptability and a
subpar experience. Especially in cities with volatile traffic,
weather, and crowd conditions, tourist routes can change
anytime [3], [4]. Fixed route planning is prone to failure,
necessitating an intelligent recommendation mechanism
with real-time responsiveness.

This study focuses on the problem of dynamic route
recommendation in urban tourism scenarios, taking the
user's real-time location, preference characteristics, and
multi-source contextual data as key objects, aiming to

achieve highly adaptable and personalized serialized
scenic spot recommendations, and enhance the quality of
tourism services and user experience. Wilkins and Horne
[5] pointed out that the weather has an important impact
on tourists, and Marsanic et al. [6] believed that good
traffic conditions can improve the quality of tourists'
travel. These two studies prove the importance of RTC
during travel. Kay Smith et al. [7] studied tourists' interests
and the different activities they participated in, and
pointed out that tourists' interests have a great influence on
their behavior; Saxena et al. [8] proposed that tourists
attach great importance to the accessibility and activities
of scenic spots, verifying the necessity of a
multidimensional context; Xin et al. and Prahadeeswaran
believed that personalization can better enhance the
experience of travel recommendation systems [9], [10];
Vada et al. and Anuar and Marzuki believed that suitable
TRs require good infrastructure, and providing more
personalized choices is an emerging trend [11], [12].
Research proposed adaptive fuzzy sliding-mode
controllers with non-singular fixed-time sliding surfaces,
which effectively addressed the issue of system
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uncertainties [13]. The study proposed an output-feedback
controller based on adaptive fuzzy systems and a variable-
structure framework to ensure system stability [14]. The
study proposed a robust and indirect neural adaptive
control scheme for uncertain nonlinear multivariable
systems, which could effectively compensate for
disturbances and ensure system stability [15]. The study
proposed an adaptive backstepping control method based
on Lyapunov stability theory, which ensured that the
tracking error asymptotically converged to zero [16]. The
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study proposed a nonlinear optimal H-infinity control
method for gas centrifugal compressors driven by
asynchronous motors, aiming to achieve robust state
estimation under uncertainty conditions [17]. The study
proposed an adaptive backstepping control method that
enabled the tracking error to asymptotically converge to
zero [18]. These studies collectively indicate that dynamic
travel recommendations must comprehensively consider
user status and environmental evolution.

Table 1: Related work comparison

Method User Real-Time | DRL _ Evaluation Datasets Reported Performance
Preferences | Context Technique
Zhang et al Yes Yes No AmazonDataset HR@10:52.40%,
' 75.57%, 72.43%
Liu et al. Yes No No Ciao RMSE:  1.9136,MAE:
1.4937
Zhang et al. Yes Yes Yes ASSISTments0910 Difficulty:0.7
Yes No No 2400 international and
Chen etal. domestic  tourists  in | Accuracy:94%,99%
Pokhara
Yoon and Choi | Yes Yes No Jeju Tourism Dataset Accuracy:77.3%
Yes No No obtained by web crawling
Wang information about | MAE:0.47235
attractions in a city
Nan and Wang | Yes No No A tourism dataset Accuracy:91.04%

Table 1 presents information such as datasets and
evaluation metrics related to the relevant works.
Regarding recommendation model technology, in terms of
path planning, Ma and Zhu proposed a recommendation
model based on Deep Reinforcement Learning, which had
the advantage of flexible scheduling [19], [20]. Zhang et
al. and Liu et al. combined graph neural networks to
extract UPs from graphs. However, this method relies on
historical patterns and is challenging to respond to sudden
situations [21], [22]. While Shyam and Zhang et al.
proposed a method that incorporated DRL, it struggled to
effectively integrate deep UPs with RTC [23], [24].
Existing models still suffer from insufficient coupling
between state representation and reward design and weak
generalization capabilities. Shrestha et al. and Nunez et al.
examined the utilization of machine learning in tourism
and travel recommendations [25], [26]. Chen et al. and
Yoon and Choi proposed tourism analysis models and
recommendation models that could perceive RTC,
respectively, but neither modeled the dynamic evolution
of UPs [27], [28]. Based on collaborative filtering, Wang
and Nan and Wang integrated UPs, which improved the
accuracy of recommendations, but still had shortcomings
in context perception [29], [30]. Liu et al. [31] applied an
attention mechanism to weight historical visits to
determine UPs, but ignored the impact of real-time
weather on the action space. Tsai et al. [32] studied the
implicit and dynamic information of points of interest,
taking into account UPs, but did not consider the impact
of real-time scenarios such as traffic and weather. Mou et
al. and Zhou et al. studied user trajectories, emphasizing
the main behavioral intentions of tourists. They can

effectively understand tourists' travel patterns, but cannot
adapt to unexpected situations [33], [34]. The above
methods still have difficulty balancing the depth of
personalization and dynamic adaptability.

This paper designs a dynamic TR recommendation
model based on DRL. The primary research questions
addressed by this study are: (1) Can a DRL model
integrating real-time context and user preferences
outperform baseline recommendation systems in dynamic
travel scenarios? (2) Does MHAM improve temporal
personalization in dynamic travel recommendation? A
joint high-dimensional vector that includes users' long-
term preferences, real-time multidimensional context, and
current state is constructed, and an LSTM-CNN network
is adopted for feature extraction. The novelty of this
integration lies in the specific combination of LSTM-CNN
for capturing user preference patterns with MHAM for
real-time contextual fusion, which is designed to enhance
the adaptability of the recommendation in dynamic
environments. While previous DRL-based systems
address user preferences and contextual information, they
do not employ such a tightly integrated feature fusion
mechanism, particularly for real-time contextual shifts
such as changes in weather or traffic patterns. This
approach ensures that the model not only prioritizes user
preferences but dynamically adapts to immediate
situational changes, which has been underexplored in
existing literature on mobility-based or temporal
recommendation systems. The LSTM network is used to
model the temporal dependencies of users' historical visit
sequences, and the CNN network is used to process
structured real-time contextual data. An MHAM is applied
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to achieve deep feature fusion. The decision mechanism is
based on the asynchronous advantage AC framework for
end-to-end training, and the Dueling DQN structure is
used to decouple state value and action advantage to
improve the stability of Q-value estimation. Finally, a
compound reward function that includes preference
matching, time rationality, situational adaptability, and
repeated punishment is designed. Additionally, how
attention mechanisms can provide insights into the
decision-making process, helping end-users and tourism
operators understand why certain recommendations are
made, is explored, aiming to enhance user trust in the
system by leveraging attention mechanisms not only for
performance but also for interpretability. Comparisons
with explainable recommendation systems can be
considered in future work. Combined with a prioritized
experience replay mechanism, learning efficiency under
sparse rewards is improved, and the learning process is
optimized, providing a learnable and evolvable decision-
making paradigm for the intelligent tour guide system.

2 Algorithm design

2.1 State space construction

Accurate state space modeling is fundamental to enabling
effective  decision-making in  dynamic  travel
recommendations using DRL. This study constructs a
high-dimensional, semantically rich joint state vector S,
to simultaneously represent user personalization and real-
time environmental changes. This implementation
involves four steps.

First, UP encoding uses a two-layer unidirectional
LSTM network to process the user's historical visit
sequence [35], [36]. The input is a time-ordered sequence
of scenic spot ID {v,,vs,...,v, }, which is mapped into a 64-
dimensional dense vector (Embedding Size = 64) through
the embedding layer and sent to the LSTM (hidden layer
dimension 128, sequence length limit 50). The LSTM
updates its hidden state moment by moment, ultimately
outputting a hidden vector h,eR'?® as a compressed
representation of the user's long-term interests. This vector
is further nonlinearly transformed through a fully
connected layer to generate a fixed-dimensional
preference embedding h,, € R128, preserving the interest
evolution pattern in temporal behavior.

Secondly, RTC collection and vectorization
encompass multi-source heterogeneous data. The system
obtains the current weather conditions (sunny, rainy,
snowy, high temperature, etc.) through the
OpenWeatherMap API, one-hot-encodes them, and
normalizes them into a 16-dimensional vector. The system
also obtains the traffic congestion index (0-10) for the
user's area through the Baidu Maps API and linearly
normalizes it to the interval [0,1]. The real-time visitor
flow ratio (current number of people/maximum capacity)
of the target attraction is obtained through the scenic spot
ticketing system interface and similarly normalized. The
current time (hour encoded as a sin/cosine cycle feature)
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and whether it is a holiday (a binary flag) are combined to
form a 64-dimensional context vector c,.

Third, location status represents the user's current
geographic and behavioral state. The latitude and
longitude coordinates of the user's last checked-in
attraction are used as the reference. These coordinates are
converted to a spatial index using GeoHash encoding (6-
digit precision) and co-encoded with the duration of stay
(in minutes, truncated to 300 minutes). The duration of
stay is logarithmically transformed and concatenated with
the GeoHash vector, and is then mapped to a 32-
dimensional position vector p, through a fully connected
network (32—32 ReLU), effectively capturing the user's
current activity intensity and spatial anchor point.

Finally, the state fusion mechanism concatenates the
three vectors to form a joint state representation:

st=[hu;c[;pt]ER224 (D)

This joint vector serves as the state input for DRL,
fully encompassing the user's intrinsic preferences,
external environment dynamics, and current location
information. The final concatenated state vector has a
dimensionality of 160, comprising the 64-dimensional
user preference vector, 64-dimensional contextual vector,
and 32-dimensional location status vector. To ensure input
consistency, all components are Z-score normalized
(mean 0, variance 1) before entering the network, and are
calculated offline based on statistical parameters from the
training set. The normalization parameters (mean and
variance) are computed from the training set and
maintained across both the training and test phases to
prevent data leakage.

2.2 Action space definition

The design of the action space directly determines the
feasibility and real-time adaptability of the
recommendation system. This study models each
recommendation step as a discrete decision problem
involving selecting the next destination from a set of
candidate attractions. Action a,E4, represents the unique
identifier of the recommended attraction at the time ¢. To
ensure the enforceability of the recommendation results
across geography, time, and user behavior, the action
space 4, is not a fixed set, but a dynamically generated
subset based on multidimensional constraints.

First, accessibility screening is centered around the
user's current location, establishing spatial constraints.
Using GPS to obtain the user's real-time (x.y,)
coordinates, an R-tree index is used to retrieve all
candidate attractions within a 5-kilometer radius from the
attraction database, forming an initial set C,,. The 5-
kilometer radius is chosen based on the average walking
distance in urban environments, considering the practical
travel limits for tourists and the density of attractions
within this area. This range takes into account the city's
average traffic density and the feasibility of walking/short-
distance connections, avoiding jumpy recommendations
across regions. Attraction closure events are simulated in
the training phase as part of the environment, but are not
present in the test phase to simulate real-world
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unpredictability. Geographic queries are supported by the
PostGIS spatial database. The R-tree index is used to
efficiently filter candidate attractions within the defined
spatial range (5 km). The GeoHash encoding aids in
determining the geographical proximity of attractions, and
the R-tree provides an optimized search for nearest
attractions.

Next, temporal feasibility pruning is performed based
on the current system time 1, and the opening schedule
[0j,c;] of each candidate attraction. Only attractions that
meet the criteria t+d(x.,x;)/v<c; are retained, where
d(x.,xj) is the shortest road distance from the current
location to the candidate attraction j (calculated using the
OSRM routing engine), and v is the preset average
moving speed (set to 8 km/h in urban areas). At the same
time, attractions whose last entry time for the day has
passed are eliminated to ensure that the recommended
action can be completed in time. The preset average
moving speed of 8 km/h is chosen based on typical
walking speeds in urban tourism areas, which balances
efficiency and user comfort.

Third, itinerary consistency constraints exclude
attractions that the user has already visited. A dynamic set
V={v,,v,...,v;} IS maintained, recording the user's
historical check-in sequence. All attractions in jeV, are
removed from the candidate set to prevent duplicate
recommendations. Furthermore, if an attraction has been
recommended but the user has not chosen it and is
relatively close, the probability of it being recommended
again is reduced over the next 30 minutes, achieving
recommendation memory deduplication through status
tagging.

Fourth, adaptive optimization of remaining time
applies a path duration estimation mechanism based on the
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Dijkstra algorithm [37], [38]. A weighted graph is
constructed based on urban road network data, with edge
weights representing travel time (integrated with real-time
traffic indices). The shortest arrival time t,.;,.(j) from the
current node to each candidate attraction is calculated.
This is combined with the recommended duration t,,(j)
of the attraction. If t,ive (1) tstay ()™ Tremains WHEre Tremain
is the remaining time preset by the user or predicted by the
model, the candidate is eliminated. This pruning strategy
effectively avoids recommending infeasible actions that
exceed the time budget.

Finally, the action space A, is defined as the
intersection of the above four filtered sets:

At:Cgeo m Ctime n‘VLt n {J |tanive(j)+tstay(i)§Trelnain} (2)

In cases where the filtered set is too small, the system
expands the spatial range or allows for recommendations
from attractions visited earlier within the trip, ensuring a
minimum number of recommendations (K 5) is
maintained. This dynamic action space is updated every
step, synchronized with state awareness (triggered every
30 seconds or when the user's location changes by >200
meters). When A=0, the termination action a=END is
triggered, signaling the end of the trip. All candidate
actions are sorted by Q wvalue, and a top-K
recommendation list (K = 5) is generated. This list is
pushed to the client in real-time via the gRPC interface.

2.3 Reward function design

The design of the reward function directly affects the
optimization direction of the DRL strategy and the
rationality of the recommended behavior. The design
structure is illustrated in Fig. 1.
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Fig. 1 shows the structure of the reward function, and
illustrates the Composite Reward Function (CRF) using a
weighted sum of preference matching, time rationality,
context adaptability, and duplicate penalty to balance
personalization, dynamic responsiveness, and
recommendation consistency. This study constructs a CRF
R, , which achieves multi-objective collaborative
optimization through a weighted linear combination to
ensure that the model strikes a balance between preference
matching, time rationality, situational adaptation, and
recommendation specifications. The specific form is as
follows:

Rt:aRpref+BRtime+YRcontext 'SRpenalty (3)

The weights of each item are determined through grid
search as: 0=0.22, p=0.18, y=0.27, and 6=0.33, to
enhance the response priority to situational changes and
inhibit repetitive behaviors. A grid search is performed
over the following parameter ranges: preference matching
weight (0.1-0.5), time rationality weight (0.05-0.2),
context-adaptive weight (0.1-0.4), and duplicate penalty
weight (0.2-1.0). These ranges are chosen to balance
personalization with situational responsiveness and
penalize redundant recommendations.

The preference-matching reward R,..¢ quantifies the
consistency of the recommendation results with the user's
long-term interests. The input is the UP vector h,eR'*®
(generated by LSTM encoding) and the category
embedding e;€R* of the target attraction j. The cosine
similarity between the two is calculated:

Rpref= cos(hu,ej) 4)

This value ranges from [-1, 1] and is linearly mapped
to the interval [0, 1] to serve as the base preference score.
This design encourages the model to recommend
attractions that are semantically similar to the user's
historical behavior, improving personalization accuracy.

The time rationality reward, Rime ., assesses the
suitability of the recommended timing. The optimal
visiting hours are predefined based on the attraction type:
9:00-11:00 for museums, 11:30-1:30 for restaurants, and
18:00-21:00 for night scenes. If the predicted arrival time,

Tumives T211S Within the corresponding interval, R;,.=1.0; if
it falls within opening hours but not during peak hours, R
is assigned a value of 0.3; if it is near closing time
(remaining available time < 30 minutes), itis set to 0. The
arrival time is calculated by adding the estimated travel
time from the current location using the OSRM
(OpenStreetMap Routing Machine) path planning engine
to ensure that the time judgment is based on real traffic
conditions.
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The context-adaptive reward R, . achieves
responsiveness to dynamic environments, and makes
logical decisions according to the current weather
conditions and the attributes of the attraction: if the
weather is "raining" or "snowing", and the recommended
attraction is indoors (e.g., a museum or shopping mall),
then R onexi=11; if the recommended attraction is an
outdoor attraction (e.g., a park or square), then R g iexi=-1.
Recommending an outdoor attraction on a sunny day can
earn +0.8, and 0 otherwise. This mechanism forces the
model to prioritize safe and comfortable indoor locations
during inclement weather, improving user experience and
safety. A duplicate penalty term, Ryeqqiy, Prevents invalid
recommendation loops. If the attraction j corresponding to
action a, already exists in the user's historical visit set V,,
a fixed penalty of -2 is applied. If the attraction is
recommended for the most recent trip but is not chosen, an
additional penalty of -1 is applied. This design uses
negative incentives to prevent the model from repeatedly
outputting the same candidate, enhancing
recommendation diversity.

All rewards are calculated immediately after each
decision, normalized using the Z-score to eliminate
dimensionality, and then weighted and summed. The final
scalar reward R, serves as an immediate feedback signal
for RL (Reinforcement Learning), driving the policy
network to optimize long-term cumulative benefits. To
further investigate the impact of trade-offs between
accuracy, latency, and personalization, sensitivity
analyses are conducted on the weights of the CRF.
Specifically, how varying the balance between preference
satisfaction ~and  contextual adaptation  affects
recommendation performance and responsiveness is
explored. Additionally, the feasibility of integrating a
multi-objective reinforcement learning framework is
considered to provide a more structured approach to
handling these trade-offs systematically. This reward
mechanism addresses the decision bias caused by the
single-goal orientation of traditional recommendation
systems. A multidimensional reward structure enables the
model to simultaneously address users' intrinsic
preferences, external environmental constraints, and
behavioral rationality; differentiated weighting enhances
sensitivity to critical contexts; an explicit penalty
mechanism improves the logical consistency of the
recommendation sequence. Experiments demonstrate that
this design significantly improves the strategy's robustness
and practicality in complex urban tourism scenarios. The
numerical values or ranges of each component are shown
in Table 2.

Table 2: Model components, their expected impacts, and parameter settings

Component Parameter Name Value / Range
LSTM Embedding Size 64

Hidden Layer Dimension 128

Sequence Length Limit 50
CNN-MLP Conv1D Kernel Size 3

Conv1D Filters 32

MLP Hidden Layers 64—32,32—32
MHAM Attention Dimension 64
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Action Space Pruning Spatial Radius 5 km
Average Moving Speed 8 km/h
Minimum Recommendations 5
CRF Preference 0.22
Time 0.18
Context 0.27
Penalty 0.33
Asynchronous AC Training Number of Parallel Threads 8
n-step return 5
Prioritized Experience Replay (PER) | PER Priority Exponent 0.6
PER Importance Sampling 0.4
Exploration Strategy ¢-Greedy Rate 0.1
Softmax Temperature 0.8
Network Optimization Discount Factor 0.9
Dropout Rate 0.2
L2 Weight Decay 0.01

2.4 Deep policy network architecture

The network architecture consists of a preference-context
joint encoding layer and a fusion decision layer, with
parameters  jointly  optimized via  end-to-end
backpropagation.

The preference layer is specifically designed to model
the temporal dependencies of a user's historical behavior.
The input layer for the user preference subnetwork has a
size of 64, corresponding to the embedding dimension of
the user's attraction IDs. The context subnetwork receives
a 96-dimensional input, combining both contextual
features and location status. The total number of
parameters in the entire network is approximately 1.5
million, and regularization techniques such as dropout
(with a rate of 0.2) and L2 weight decay (A=0.01) are
applied to the fully connected layers. The average
inference time per recommendation step is 0.03 seconds.
The input is a sequence {v,...,v;} of attraction ID from
the user's last ten check-ins. This is mapped into a 64-
dimensional dense vector (Embedding Size = 64) by the
embedding layer and fed into a two-layer unidirectional
LSTM (hidden dimension 128, tanh activation). The
second-layer LSTM outputs a hidden state h.eR'?® at each
time step, forming a set of sequence representation
{hy,...,h;o}. In the following step, a MHAM is applied to
dynamically weight UPs [39], [40]. This mechanism
concatenates the individual heads after calculating
attention for different subspaces and combines the results
to generate a final preference representation. This
mechanism can understand UPs from multiple subspaces
and achieve a dynamic and focused interpretation of a
user's historical access behavior. The current state is
considered the focus of attention, with the current LSTM
hidden state’s as the query vector (query), and the LSTM
hidden states of all historical accesses as the key/value
pairs (key/value), to calculate the alignment weight:

e —vTtanh(W[hs,]).o— &) (5)
1 Y exp(e)

WEeRN?  veRX are learnable parameters (k=64).
After calculating the attention weights, the model uses
these weights to perform a weighted summation of all

historical hidden states to obtain a dynamic aggregated
final preference representation:

10
h=) ah ©)

This mechanism enables the model to dynamically
concentrate on the historical accesses that are most
relevant to the current decision, enhancing the semantic
sensitivity of personalized representation.

The context component processes structured real-time
input ¢, €R* and a position vector p €R**. These two are
concatenated into a 96-dimensional input. Local features
are extracted through a one-dimensional convolutional
layer (ConvlD, kernel size 3, number of filters 32, ReLU
activation), outputting 32 feature maps of length 94. These
are then flattened and further nonlinearly transformed
through two fully connected MLP layers (64—32 ReLU,
32—32 ReLU), outputting a 32-dimensional context
feature vector f,. This CNN-MLP architecture effectively
captures the interactions between multiple context
variables. For example, "high congestion combined with
low passenger flow" may indicate an abnormal event.

The feature fusion and decision layer concatenate the
preference representation h,€R'?® and the contextual
features f.€R™ into a 160-dimensional joint vector
z=[hy;f,], which is then fed into a three-layer MLP
(256—128ReLU, 128—64RelLU, and 64—64RelU) for
high-level abstraction. The output layer employs a
Dueling DON architecture, connecting two branches: the
value stream and the advantage stream. The value stream
is a single-neuron, fully connected layer that outputs a
state value estimate V(s,); the advantage stream outputs an
action advantage vector A(s,,a)€R! , which is then
combined into a Q value after mean reduction:

1 \
Q(St>a):V(St)+(A(Stsa)'mz L Alsa)) )

This structure decouples state value and action
difference, improves the stability of Q-value estimation,
and is especially suitable for scenarios where the action
space changes dynamically.

The network output action probability distribution
n(als,) is generated by the Actor branch through SoftMax
normalization:
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The temperature parameter t=0.8 controls the
exploration intensity.

This LSTM-CNN architecture addresses the
inadequate modeling capabilities of traditional single-
stream networks for heterogeneous inputs [41], [42]. The
LSTM-Attention structure accurately captures evolving
user interests; the CNN-MLP efficiently handles
multidimensional contexts; the Dueling architecture
enhances the robustness of value estimation. The overall
network achieves a deep joint representation of
personalized and dynamic environments  while
maintaining parameter efficiency.

(8)

n(als)=

2.5 Asynchronous advantage actor-critic
training mechanism based on
experience replay

This study uses the asynchronous advantage AC
framework to implement distributed policy training to
improve sample efficiency and convergence stability [43].
The entire training process is carried out in 8 parallel
execution environment threads, each of which
independently simulates a user's decision trajectory in the
urban tourism scenario. The simulation of user
trajectories is based on a synthetic environment that
models urban tourism scenarios, taking into account
dynamic changes such as weather and traffic conditions.

To explain why DRL with Actor-Critic is chosen over
other adaptive control methods (e.g., backstepping
optimization or robust adaptive models), it is noted that
this paper’s approach focuses on dynamic, real-time
decision-making, balancing long-term user preferences
with immediate contextual factors. Backstepping and
robust adaptive models, though effective in predictable
systems, struggle with unpredictable contextual changes
like traffic or weather. Additionally, DRL with Actor-
Critic has proven more flexible in optimizing complex,
multi-dimensional rewards in real-time dynamic settings,
as shown in the experiments.

Each thread initializes a local copy of the policy
network, whose parameters are synchronized with the
global network. In each trajectory, the system selects
action a, based on the current state’s using an g-greedy
policy (¢ = 0.1). After execution, it obtains the reward r;
and the next state’s from the simulation environment and
stores the experience tuple (s;,a.1,S.:;) in a local replay
buffer. An asynchronous gradient update is initiated when
the buffer accumulates 32 steps or when the trajectory
terminates.

To improve learning efficiency under sparse rewards,
this study applies Prioritized Experience Replay (PER).
The priority p, of each experience is determined by its TD
(Temporal-Difference) error &;=|r+yV(s.)-V(sy|, and
the sampling probability is calculated based on P(i)xp? (a
=0.6). During training, 16 samples are sampled from the
local buffer according to the priority, and the gradient is
corrected using the importance sampling weight
Wi:(ﬁ(i))ﬁ (B=0.4) to correct for sampling bias.

Gradient calculation is based on an n-step Q-learning
objective. For the sample sequence, the n-step return is
calculated:

n-1
Rin): Zkfo Ykrt+k+YnV(st+n) 9)
The critic loss function is the mean square error:
L=R{"-V(s))’ (10)

Actor loss combines policy gradient and entropy
regularization:

L=-logn(as;)- A(sp.a)-AH(m("|s,)) (11)

The advantage function A(st,a1)=R§“)-V(st) and the
entropy term H enhance exploration capabilities, with a
weight of A=0.01.

After each update, the local network's gradients are
uploaded to the global shared network, and the parameters
(learning rate Ir=3x10, decay rates p=0.99, e=107) are
updated using the RMSprop optimizer. The global
network is synchronized to all threads every 10
asynchronous update cycles to ensure consistent policy
evolution.

Critic Loss

1 L 1 L 1

Q0 50 100 150 200

250 300 350 400 450 500
Epochs

(&)

Actor Loss

0 50 100 150 200

250 300 350 400 450 500
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Figure 2: Loss function variation curves; (a). Critic loss variation curve, (b). Actor loss variation curve
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Fig. 2 shows how the loss of critics and actors changes
with the number of training rounds. Fig. 2(a) depicts the
critic loss curve. As training progresses, the critic loss
gradually decreases and stabilizes, indicating that the
model's estimation of state values is becoming
increasingly accurate. Fig. 2(b) shows the actor loss curve.
It gradually decreases as training progresses, reflecting the
dynamic balance between Exploration and Exploitation
(E&E) in the policy network. The loss functions of both
the critic and actor networks show a favorable downward
trend, validating the model's efficiency. In the AC
framework, the critic network continuously optimizes its
predictions of state values utilizing the mean squared error
loss function. As training progresses, the predicted values
become closer to the true values, resulting in a decrease in
loss. In the early stages of training, the actor network tends
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to explore more unknown states, leading to greater loss
fluctuations. However, as training progresses, the network
gradually learns to make better decisions within known
states, resulting in a decrease in loss.

2.6 Recommendation generation mechanism

The recommendation generation mechanism implements
a closed-loop deployment from trained policy models to

online services, ensuring the system can deliver
personalized, dynamically adjusted route
recommendations in real-time in real-world travel

scenarios. This mechanism, with its core process of state
perception, decision-making inference, and feedback
updates, operates on a low-latency service architecture.
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Figure 3: Closed-loop architecture for real-time recommendation generation
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Fig. 3 illustrates the output structure of the
recommended path, and depicts the end-to-end
deployment pipeline, where real-time context updates and
user feedback form a dynamic recommendation chain for
continuous personalization and adaptation throughout the
user's journey. After constructing the initial state, all input
features are normalized and fed into the loaded global
policy network. A CNN-MLP then processes the RTC and
location, while an LSTM-Attention framework extracts
UPs. The model uses a shared AC network architecture for
inference: the current state’s is input, and the encoding
branch extracts UPs and contextual features in parallel.
After fusion, the MLP (Multilayer Perceptron) and
Dueling architecture output the Q-value for each candidate
action. For each legal location j in the action space A,, its
Q-value Q(s,,j) is extracted and converted to an action
probability distribution using a SoftMax function:

s XP(QLSDD)
7 Ykea, exp(Qsik)/r)

The temperature parameter T = 0.8 controls the
smoothness of the output distribution to avoid excessive
concentration on a single option.

During the action selection phase, an g-greedy
strategy is utilized to balance E&E: action
a;=arg maxjea, Q(sy,)) With the highest Q value is chosen
with a 90% probability, and a uniform random sample is
taken from A, with a 10% probability. After selecting an
attraction 1D, the system invokes a path planning API to
generate the optimal route from the current location to the
target attraction (including transportation options and
estimated travel time). This route is then pushed to the
client along with the reasoning for the recommendation
(e.g., "This matches your preference for cultural
attractions" or "The current weather is suitable for indoor
activities").

User responses are captured in real-time: if a user
clicks on navigation or checks in to a destination, this is
marked as positive feedback and recorded as a valid
recommendation. If a user skips a recommendation or
remains unresponsive for an extended period, this is
considered negative feedback, triggering a signal for fine-
tuning the local strategy. All interaction data is
asynchronously written to the log system via a message
queue for subsequent offline training data updates.

When a user completes their current stop at a scenic
spot and moves to a new location, the system triggers a
state update. Using a timer (every 30 seconds) or location
change detection (displacement > 200 meters), the system
recollects real-time contextual data (weather, traffic, and
crowd flow), updates the user's location and time state,
constructs a new state’s, and re-enters the model to
generate the next recommendation, forming a dynamic
recommendation chain. This process continues until the
user actively terminates their trip or the system determines
that there is insufficient time left to visit any new
attractions. The overall workflow of the training and
online recommendation processes is illustrated in Figure
4,

(12)
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3 Experiment and verification

3.1 Experimental design

The experimental design aims to validate the
comprehensive performance of a dynamic TR
recommendation model based on DRL in a real-world
urban tourism scenario. A reproducible, high-fidelity
simulation evaluation environment is constructed. All
experiments are run on a server cluster equipped with
NVIDIA Tesla V100 GPUs, using Python 3.9 and
PyTorch 1.12.

The data set utilizes FS-NYC and TCI, which hold
check-in data gathered in NYC and Tokyo, spanning about
10 months (from April 12, 2012, until February 16, 2013),
including 227,428 check-ins for NYC and 573,703 check-
ins for Tokyo. Every check-in has a timestamp, GPS
location, and a semantic label (indicated by a specific
venue type). POI (Point of Interest) category information
is supplemented via the Foursquare API, covering 16
categories (such as museums, parks, restaurants, and
shopping malls). Ancillary data is acquired in real-time
through  APIs: weather data comes from the
OpenWeatherMap APl (updated hourly); traffic
congestion index is provided by the Baidu Maps API
(based on floating vehicle data); attraction opening hours
are retrieved from official websites and stored in a
structured format.

The data preprocessing process is as follows: first,
abnormal stops with check-in intervals less than 5 minutes
are filtered to prevent missed check-ins or short stops from
interfering with trajectory continuity; second, the visit
sequences of each user are sorted by time, and only valid
users with at least 5 check-ins are retained, ultimately
retaining 500 users; then, the Word2Vec model is used to
train attraction category embedding vectors on all check-
in sequences, with a dimension set to 64, for preference
matching calculations in the reward function; finally, the
original timestamps are parsed into hour and
weekday/holiday symbols, and aligned with external data
such as weather and traffic by time to construct a context
vector corresponding to each check-in.

Data is partitioned using a chronological splitting
method: the first 80% of the check-in data on the timeline
is used as the training set; the middle 10% is used as the
validation set (for hyperparameter tuning and early
stopping); the last 10% is used as the test set. This ensures
that test user behavior patterns are not leaked during
training, preventing future information leakage issues with
time series data.

This  document presents a dynamic TR
recommendation model based on DRL. By building an
LSTM-CNN network and applying an MHAM, it deeply
integrates UPs and real-time contextual status, designs a
multi-objective reward function, and implements end-to-
end training based on the AC framework.

The baseline model includes four representative
methods:

DQN: Deep Q Network (DQN) uses the same state
input, action space, and reward function in this paper;
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PageRank-based: this method constructs a transition
probability matrix based on the user-attraction interaction
graph, calculates attraction importance using the
PageRank algorithm, and generates static Top-K
recommendations;

PredRNN: a spatiotemporal prediction sequence
RNN (Recurrent Neural Network) travel recommendation
model that takes user history sequences as input, models
spatiotemporal patterns through LSTM, and outputs next
visit predictions.

After initializing the user state for each test trajectory,
each model runs sequentially until the end of the trip (three
consecutive recommendation failures or timeout). The
system automatically records the match between each
recommendation result and the actual check-in.
Hyperparameter settings are determined through grid
search, and an early stopping strategy is employed, where
training is halted if the validation loss does not improve
for 10 consecutive iterations. The parameter values are
illustrated in Table 3.

Table 3: Hyperparameter setting values

Parameter Value
AC Learning Rate 3x10™
n-step 5

PER Parameter o, 0.6

PER Parameter 0.4

g-Greedy Exploration Rate 0.1

Discount Factor 0.9

Table 3 shows the parameter settings. This

experimental design ensures fair evaluation and real-
world relevance. Time division prevents data leakage,
multi-source data fusion restores real-world scenarios, and
a unified simulation environment eliminates platform
differences. The constructed test framework supports
automated batch execution and metric collection,
providing a reliable data foundation for subsequent
performance comparisons.

3.2 Comparison of recommendation
accuracy

To quantify the accuracy of the model in personalized
recommendations, this study uses the Top-K Hit Ratio
(HR@K) as a core evaluation metric to measure the ability

D. Zhang

of the recommendation list to cover users' actual behavior.
The experiment is conducted on the test set constructed in
Section 3.1. All models start with the same initial state,
generating recommendations round by round and
comparing them with the user's actual check-in sequence.
The particular execution procedure follows: for each user
in the test set, the system extracts the current state S, from
their historical trajectory and inputs it into various models
to generate a top-K recommendation list (K=5 and K=10).
The set of attraction IDs corresponding to the
recommended action a, is denoted as R¥c4,. If the
attraction g, that the user actually visits in the next step is

in RX, the recommendation is considered a hit. This
process is executed slidingly across the entire test
trajectory, covering all evaluable time steps.

The hit rate is calculated using the global average form:

1 N
HR@K =NZH 1(g €R¥) (13)

Here, N is the total number of valid evaluation
samples (i.e., the number of decision steps where the
action space is non-empty and a true next point exists), and
I () is the indicator function. This metric reflects the
model's capability to forecast the user's next behavior in a
dynamic environment.

To ensure evaluation consistency, all models use the
same candidate set generation logic and time window
alignment mechanism. The proposed model and the DOQN
dynamic model update their state step by step and make
new recommendations. PageRank-based and PredRNN, as
sequence prediction models, output fixed-length rankings
based on the global graph structure and LSTM hidden
states, respectively, and select the top K items as
recommendations.

HR@K indicates the percentage of top K
recommended attractions that the user actually visits. For
each user in the test set, the system extracts their current
state from their historical trajectory, generates a top-K
recommendation list, and compares this list with the user's
actual check-in sequence. If the attraction the user actually
visits next is on the recommended list, the
recommendation is considered a hit. The hit rate is
calculated as a global average, representing the proportion
of hits across all valid evaluation samples. Fig. 5 shows
the HR@K of each model.
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Figure 5: HR@K hit rate
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Fig. 5 shows the HR@K hit rate. Under the HR@5
metric, this paper's model achieves a hit rate of 53%,
exceeding baseline models such as DQN (41%),
PageRank-based models (34%), and PredRNN (39%).
When the K value is expanded to 10, the HR@10 hit rate
of the paper's model reaches 84%, surpassing the three
baseline models of DQN (72%), PageRank-based models
(59%), and PredRNN (67%). The paper's model maintains
a clear advantage. The HR@10 of the experimental group
is higher than that of the GNN recommendation algorithm
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in Zhang et al.'s study (achieving 52.40%, 75.57%, and
72.43% on the Amazon-Beauty, Amazon-Games, and
Amazon-CDs datasets, respectively). This demonstrates
that the paper's model not only achieves high-precision
recommendations for the first few attractions in the
recommendation list, but also maintains high accuracy
across a wider range of recommendations, providing users
with more diverse choices. The standard deviations and
confidence intervals are shown in Table 4.

Table 4: Top-K hit rate statistical significance (Mean + Standard deviation, 95% Confidence interval)

Model HR@5 HR@10

Proposed Model 53.0% * 2.1% [52.1%, 53.9%] 84.0% + 1.8% [83.3%, 84.7%]
DQON 41.0% + 2.8% [40.0%, 42.0%] 72.0% * 2.3% [71.2%, 72.8%]
PredRNN 39.0% * 3.1% [38.0%, 40.0%] 67.0% * 2.6% [66.1%, 67.9%]
PageRank-based 34.0% + 3.5% [33.0%, 35.0%] 59.0% + 3.0% [58.0%, 60.0%]

Table 4 presents the mean, standard deviation, and 95% generate differentiated recommendations for different

confidence intervals for HR@5 and HR@10, calculated
over 50 independent runs. The non-overlapping
confidence intervals between the proposed model and all
baselines confirm its statistically significant performance
advantage.

To further compare recommendation accuracy, a
coverage metric is added, which is defined as the ratio of
the number of unique recommended attractions to the total
number of attractions. This metric reflects the breadth of
the recommendation system and its ability to discover
low-hanging fruit. A high-coverage model can
recommend not only popular attractions but also less
popular ones that meet UPs, providing users with a richer
and more diverse selection. The coverage data is shown in
Table 5.

Table 5: Coverage statistics

Model Coverage (%)
Proposed Model 78.8
DQN 54.7
PredRNN 62.1
PageRank-based 31.5

Table 5 shows that the paper's model has the highest
coverage, reaching 78.8%, followed by PredRNN at
62.1%, DQN at 54.7%, and PageRank-based at 31.5%.
Due to the paper's model's sensitivity to context and its
penalty for repeated behavior, it can break out of its
comfort zone of focusing on popular attractions and

users and contexts, thus covering a wider range of
attractions in the inventory. The PredRNN model can
make personalized recommendations based on user
history, but lacks exploration capabilities. The DQN
model has exploration potential, but its ability to integrate
UPs and context is weak. The PageRank-based model,
driven by global popularity, repeatedly recommends a
small number of popular attractions, often overlooking
less popular ones that meet user needs.

3.3 Route rationality assessment

To assess the geographic coherence of routes, the
experiment uses three quantitative metrics: average travel
time, cross-region rate, and actual travel time. Using
actual road network data, the shortest travel time between
adjacent recommended attractions is calculated and
compared with the model's recommended routes to verify
whether they followed optimal or feasible transportation
paths. Unreasonable spatial jumps within the route, such
as long distances across different zones, are checked,
indicating an illogical recommendation logic. Then,
considering the overall duration of the recommended route
relative to the user's actual available travel time,
recommending unfeasible itineraries that exceed the user's
time budget are avoided. Calculating the proportion of
actual travel time to the total time needs to finish the route
to reflect the time efficiency of the recommended route.
Fig. 6 shows the average travel time, cross-zone rate, and
actual travel time percentage.
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Figure 6: Average travel time, cross-region rate, and percentage of actual travel time; (a) Average travel time, (b)
Cross-region rate, (c) Percentage of actual travel time

Fig. 6 shows that the paper's model significantly
outperforms the baseline model in average travel time
(14.2 minutes). The proposed model shortens average
travel time by 8.3 minutes compared to the PageRank-
based model, and the proposed model's cross-region rate
(8.3%) is 16.7% lower than the PageRank-based model
(25%). Compared to DQN, the paper's model shortens
average travel time by 4.5 minutes and has a lower cross-
region rate than DQN, demonstrating that the paper's
model effectively integrates geographic information and
generates coherent TRs. The actual travel time in the
paper's model accounts for 70.6%, significantly higher
than DQN (60.2%), PredRNN (58.7%), and PageRank-
based models (55.1%). The paper's model recommends
routes with shorter travel times and shorter waiting times,
demonstrating superior rationality to the three baseline
models.

3.4 Personalized matching satisfaction
evaluation

To quantitatively evaluate how well recommendations
match users' inherent preferences, this study uses user
satisfaction scores as a key metric to assess the model's
personalized performance. In experiments, the system
creates personalized recommendation routes based on test
users' historical check-in data. A panel of 30 evaluators
(15 domain experts with advanced degrees and research
experience, and 15 experienced travelers) conducts blind

reviews. Inter-rater reliability, assessed via Cohen’s
Kappa on a random subset, is 0.78 (95% CI [0.72, 0.84]),
showing substantial agreement and confirming the
evaluation's robustness. The scoring system uses a 5-point
Likert scale, with 1 indicating "completely inconsistent
with the user's interests” (e.g., recommending a high-
intensity outdoor sports venue to a user who prefers
cultural and artistic attractions) and 5 indicating "highly
consistent with the user's preferences." The evaluation
criteria cover five aspects: interest type matching: the
consistency of the recommended attractions with the user's
historical preferences (e.g., natural landscapes, historical
sites, food streets, etc.). Tour pace adaptability: this refers
to the degree to which the recommended itinerary's
schedule (e.g., a packed morning of sightseeing, a
leisurely afternoon) matches the user's historical behavior
patterns. Preference intensity responsiveness: this refers to
the ability to prioritize frequently visited attractions (e.g.,
recommending highly relevant museums to a "museum
enthusiast"). Dynamic interest tracking: this refers to the
ability to capture temporary shifts in user interest during
an itinerary (e.g., a shift to indoor attractions during a
sudden downpour) while maintaining consistent
preferences. Recommendation logic explainability: this
refers to the clarity and user understanding of the
recommendation rationale (e.g., "Based on your visits to
three art galleries last week, | recommend new museums
of the same type"). User satisfaction evaluations are
shown in Fig. 7.
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Figure 7: Satisfaction radar chart

As shown in Fig. 7, the satisfaction score for the
model in this paper is notably greater than the satisfaction
score for the baseline model. The recommended paths
generated by the paper's model score 4.4, 4.5, 4.6, 4.5, and
4.3 in the five dimensions of interest type matching, tour
rhythm adaptability, preference intensity responsiveness,
dynamic interest tracking ability, and recommendation
logic interpretability, respectively, with an average score
of 4.46. DQN scores 3.8, 3.9, 3.7, 3.5, and 3.8,
respectively, with an average score of 3.74. PredRNN
scores 3.5, 3.6, 3.4, 3.3, and 3.6, respectively, with an
average score of 3.48. The PageRank-based scores are 2.9,
3.0, 2.8, 2.7, and 2.9, respectively, with an average score
of 2.86. This shows the effectiveness of the paper's model
in continuously tracking UPs during dynamic interactions.
In contrast, baseline models, either due to a lack of an
explicit preference-context fusion mechanism or the
limitations of static ranking logic, struggle to maintain
personalization under environmental perturbations. This
demonstrates that the paper's model can achieve a higher
level of personalized matching.

3.5 Dynamic event and response delay
testing

To evaluate the model's robustness and strategy
adaptability during unexpected events, this study
simulates a "temporary closure of a tourist attraction" to
measure the system's reliability and responsiveness in
providing alternative recommendations under extreme
conditions. The assessment focuses on the model's closed-
loop performance from plan failure to new route
generation, demonstrating its fault tolerance and real-
world adaptability in tourism.

The specific implementation process is as follows:
during the testing phase, when a user completes their stop
at a current attraction and is about to proceed to the next
recommended destination, the system determines whether

the destination is a "park-type" POI. If so, a "temporary
closure" event simulation is triggered. The closed
attraction is forcibly removed from the candidate set, and
all subsequent recommendations are generated with
respect to the updated action space. Upon activation, the
system marks the attraction as "closed" and forcibly
removes it from the candidate action space A,. The
weather variable is injected deterministically based on
real-time weather data, ensuring that the simulated
conditions are as realistic as possible. Simultaneously, the
context vector ¢, is updated, injecting "weather
deterioration" or "crowd limit exceeded" flags to simulate
real-world closure reasons.

After a trigger event, the system immediately re-
executes the recommendation process: based on the
updated state’ s, the set of reachable candidates is
recalculated, excluding closed attractions and similar
high-risk  outdoor POls. Accessible, open, and
complementary alternative attractions (such as museums,
shopping malls, and indoor exhibition halls) are
prioritized. Any recommendations that are repeats from
previous attractions are penalized with a -1 score to
discourage repetition. The model outputs a new action
probability distribution n(als;). If a legitimate and non-
duplicate alternative attraction is recommended within
one minute, it is considered a "successful transfer”. The
experiment is tested with 50 independent events to ensure
statistical significance.

Two core metrics are measured: transfer success rate
and response latency. The transfer success rate reflects the
model's ability to adjust its strategy within a constrained
action space, measuring the rate at which the model
successfully re-executes recommendations during a
"temporary shutdown" event. A higher rate indicates a
stronger ability to propose a new plan when the original
plan fails. Fig. 8 illustrates the transfer success rate curve.
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Fig. 8 shows that the paper's model's success rate
significantly outperforms the three baseline models,
reaching an average success rate of 85.3% with minimal
fluctuation, demonstrating its ability to successfully
handle unexpected situations in the vast majority of cases.
In contrast, the DQN model has a lower average success
rate of approximately 63.7%. The PredRNN and
PageRank-based models perform even worse, with
average success rates of 51.3% and 29.1%, respectively,
and exhibiting significant fluctuations, indicating their
limited adaptability to dynamic events. In the paper's
model, when the "Attraction Closed" flag in the state
vector is updated, the policy network immediately detects
this change, enabling efficient and stable migration. While

DQN also uses RL, it lacks deep modeling of UPs and an
explicit penalty mechanism, resulting in sluggish and
unstable responses to sudden state changes. PredRNN, as
a sequence prediction model, relies too heavily on
historical access patterns, making it difficult to
dynamically adjust beyond the preset path. PageRank-
based models are rarely able to generate effective
alternatives and have the lowest success rate.

Response latency is the time interval (in seconds)
from event triggering to the output of a new
recommendation, accurately recorded by system logs. A
latency of less than 3 seconds is considered efficient, while
a latency exceeding 5 seconds may affect user experience.
Response delay box plot is shown in Fig. 9.
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Figure 9: Response delay box plot

Fig. 9 compares response latencies. The horizontal
axis signifies the four models, and the vertical axis denotes
response latency. The data is based on the results of 50
independent tests. The data shows that the proposed model
has extremely low response latency, with a maximum
latency of 1.56 seconds and a minimum latency of 0.61
seconds, with a median of approximately 1.07 seconds.
The overall distribution is compact, and the response is
efficient and stable. In contrast, the DQN and PredRNN
models experience significantly increased latency, with
medians of approximately 2.61 seconds and 2.89 seconds,
respectively. These wider bins indicate that their inference
processes take longer and are more volatile, with
maximum latencies of 3.26 seconds and 3.85 seconds,

respectively, indicating slightly slower response times.
The PageRank-based model has the highest latency, with
a median of 4.97 seconds and a maximum of 6.68 seconds.
This sluggish response to dynamic events may impact user
experience. The paper's model can quickly calculate the
new action probability distribution through efficient
inference after the state vector is updated. However,
standard deep learning models such as DQN and
PredRNN require high computational overhead when
processing high-dimensional states, while the latter
requires reprocessing the entire historical sequence,
resulting in high inference latency. The mean, median,
standard deviation (SD), minimum, and maximum values
are presented in Table 6.
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Table 6: Statistical summary of response latency (in seconds)

Model Mean Median SD Minimum Maximum
Proposed Model 1.05 1.07 0.18 0.61 1.56
DON 2.58 2.61 0.22 2.13 3.26
PredRNN 2.84 2.89 0.29 2.33 3.85
PageRank-based 4.92 4.97 0.65 3.57 6.68

4 Discussion

This study proposes a deep reinforcement learning
framework integrating LSTM-CNN and Multi-Head
Attention Mechanism (MHAM) for real-time personalized
travel route recommendation. On the FS-NYC and TCI
datasets, the model achieves HR@5 of 53% and HR@10
of 84% (Figure 5), outperforming baselines due to its
effective integration of User Preferences (UPs) and Real-
Time Contexts (RTCs), where LSTM captures long-term
behavior patterns, CNN-MLP processes contextual data
(e.g., weather, traffic), and MHAM enables dynamic, fine-
grained interest modeling by attending to relevant
historical visits. The model also achieves high coverage
(78.8%, Table 5), indicating strong diversity, driven by the
Composite Reward Function (CRF) which uses a
duplicate penalty and context-adaptive reward to promote
exploration and mitigate the "filter bubble.” Under
dynamic events like attraction closures, it achieves an 85.3%
migration success rate and a 1.07-second median response
latency (Figures 8-9), demonstrating robust adaptability
through its end-to-end AC architecture, which responds
immediately to state changes, unlike the slower DQN,
PredRNN, and static PageRank-based models.

In summary, the model’s performance arises from the
synergistic integration of LSTM-CNN, MHAM, CRF, and
AC, enabling accurate, diverse, and highly adaptive real-
time recommendations.

5 Conclusion

This study addresses the poor adaptability of
recommendation systems in dynamic tourism scenarios by
proposing a DRL model that integrates UPs with real-time
contextual awareness. The proposed framework uses an
LSTM-CNN-MHAM architecture within an Actor-Critic
framework, guided by a Composite Reward Function, to
achieve adaptive personalization by dynamically focusing
on relevant historical behaviors based on real-time
context. Based on the AC framework, a CRF is designed
to drive the model to learn personalized and context-
adaptive decision-making strategies. Experimental results
show that the model achieves a Top-5 hit rate of 53% and
a Top-10 hit rate of 84% on the FS-NYC and TCI, with a
MRL of 1.07 seconds. It can be recognized that the FS-
NYC and TCI datasets, though valuable, may not fully
capture global travel diversity. Future work can test
datasets from developing cities with less structured data
and explore solutions to cold-start problems for new users,
possibly using collaborative filtering or hybrid methods to
enhance initial recommendations. This research
effectively achieves collaborative modeling of user needs

and dynamic environments, providing a personalized
recommendation solution that combines high precision
and real-time performance for smart tourism. The
proposed model performs effectively in dynamic urban
tourism but faces limitations like the 'cold-start' problem
for new users without historical data, solvable through
collaborative filtering or hybrid models. Scaling may raise
computational costs from real-time processing, alleviated
by model pruning or distributed computing. Future
research can boost scalability for more users and contexts
and incorporate adaptive event-triggered strategies to
enhance responsiveness in complex urban environments.
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