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In an era of evolving market dynamics, Supply Chains (SC) face pandemic disruptions, geopolitical 

conflicts, and natural disasters. This investigates how Artificial Intelligence (AI) enhances Supply Chain 

Management (SCM) through efficiency improvement and optimization using empirical analysis. Data 

were collected from 534 firms using structured surveys, and statistical analyses were conducted using 

SPSS and Partial Least Squares Structural Equation Modeling (PLS-SEM) to validate constructs, and 

mediation effects. Reliability and validity tests providing robust insights into AI-driven performance. The 

framework examines how AI adoption is influenced by environmental uncertainty, supply chain 

cooperation, and perceived technological benefits, and how this adoption enhances optimization, 

efficiency, resilience, and overall performance. Results indicate that Environmental Uncertainty (EU) 

significantly impacts AI System Usability (ASU) (β = 0.74, t = 12.36, p < 0.001). ASU positively influences 

Cost Reduction (CR) (β = 0.68, t = 11.10, p < 0.001), Delivery Reliability (DR) (β = 0.63, t = 9.85, p < 

0.001), and Demand Variability management (DV) (β = 0.59, t = 8.92, p < 0.001). Furthermore, ASU 

mediates the EU–CR relationship (β = 0.41, t = 6.33, p < 0.001). CR strongly contributes to Supply Chain 

Efficiency (SCE) (β = 0.55, t = 7.20) and Supply Chain Resilience (SCR) (β = 0.52, t = 6.80), while DR 

and DV significantly enhance Supply Chain Performance (SCP) (β = 0.60, t = 8.10; β = 0.58, t = 7.50). 

Overall, the findings highlight AI’s capability in improving forecasting and logistics coordination, thereby 

strengthening resilience and promoting sustainable SCP. 

Povzetek: Empirična študija na 534 podjetjih z uporabo PLS-SEM pokaže, da negotovost okolja spodbuja 

uporabnost AI sistemov, ta pa prek znižanja stroškov, zanesljivejših dobav in boljšega obvladovanja nihanj 

povpraševanja izboljša učinkovitost, odpornost in skupno uspešnost oskrbovalnih verig. 

 

1 Introduction 

Technological innovation is becoming better applied, and 

Artificial Intelligence (AI) is improving responsiveness, 

flexibility, and decision-making across industries [1]. The 

competitive map is gradually becoming more biased 

toward organizations that successfully implement AI to 

streamline Supply Chains (SC). Organizations that can 

structure intelligent systems gain greater visibility into 

inefficiencies, growth opportunities, and services more 

rapidly, reliably and cost-effectively than utilizing 

conventional methods [2]. The need to adopt innovative 

SC solutions has been driven by uncertainty in the 

environment due to various elements like global trade 

wars, climate change and variations in consumer 

preference. Organizations are applying AI to achieve 

agility in their operations, allocate resources appropriately, 

and leverage participant collaboration with greater 

efficiency and flexibility in a volatile business 

environment [3]. The AI applicability in SCM has turned 

into necessity rather than a competitive advantage. Such 

tools assist the analysts to have a better understanding of 

performance, make faster decisions and enhance the 

accuracy of forecasts, which ultimately reduces the cost 

and increases level of services across value chain [4]. The 

capability to foresee threats and adapt swiftly in response 

to emerging circumstances and market trends provides a 

strategic advantage [5]. AI also positively influences the 

SC to perform effectively under uncertainty by enabling 

the accurate prediction of demand, better inventory 

management, and optimization of routes in response to 

unpredictable conditions to achieve higher purchasing 

satisfaction and competitiveness in the market [6]. The 

modification of AI to SCM is explained by its ability to 

integrate speed, scale, and precision. This integration 

allows organizations to react more quickly to change, 

identify new paths to grow, and achieve operational 

perfection in the evolving and competitive global market 
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[7]. AI helps organizations to create effective and 

sustainable SC that enhance expansion in rapidly changing 

settings. It also delivers predictive information to improve 

overall SCP [8]. AI-based systems distribute the level of 

analytical detail and speed of response required to manage 

such conditions, all while remaining stable and efficient 

[9]. Through predicting shifts and simulating potential 

outcomes, organizations improve understanding and 

generate a more synchronized connection and 

transparency around the mitigation of goods and services 

[10]. 

1.1   Problem statement 

Earlier research often lacked large-scale empirical 

validation and focused narrowly on either efficiency or 

resilience, without integrating both dimensions. Many 

researches has shown unnoticed contextual variables, such 

as environmental uncertainty and cooperation, shape AI 

adoption results. This research aims to explore how 

Environmental Uncertainty (EU) influences AI System 

Usability (ASU) and, in turn, how ASU impacts Cost 

Reduction (CR), Delivery Reliability (DR), and Demand 

Variability (DV) to enhance Supply Chain Efficiency 

(SCE), Resilience (SCR), and overall Supply Chain 

Performance (SCP), using empirical data from 534 firms 

analyzed through SPSS and PLS-SEM. 

1.2 Key contribution 
❖ Research created an integrated framework connecting 

contextual drivers’ relative advantage, collaboration, 

and environmental uncertainty with AI adoption in 

SC. 

❖ Empirical analysis uses survey data composed of 534 

firms across diverse industries, allowing statistically 

strong evaluation. 

❖ AI's contribution to improving logistics coordination, 

inventory control, and forecasting accuracy might be 

measured to provide clear influences on efficacy and 

optimization. 

❖ Dependability and rationality of the constructs are 

measured, while EFA, correlation analysis, and PLS-

SEM are used to test the model. 

❖ Results provide actionable guidance for organizations 

to strengthen flexibility and accomplish sustainable 

performance in volatile market environments. 

 

 

1.3 Research questions 

How does EU influence the AI adoption and usability in 

SCM? To what extent does ASU mediate the connection 

between EU and key SCP outcomes such as CR, DR, and 

DV? What is AI adoption impact on SC optimization, 

operational efficacy, and resilience under varying levels of 

external market uncertainty? How can AI-enabled SC 

collaboration enhance forecasting accuracy, inventory 

management, and logistics coordination to improve overall 

performance and sustainability? 

1.4 Paper organization 

The paper is organized as Section 1 introduces, while 

Section 2 examines pertinent research on AI applications 

in SC optimization. Section 3 explains the conceptual 

framework and hypothesized relationships, AI adoption, 

and SC outcomes. Section 4 details the empirical analysis, 

including reliability and validity testing, correlation 

analysis, and PLS-SEM modeling. Section 5 and 6 discuss 

the results, interpreting the findings in light of theory and 

practice. Section 7 provides the conclusion, emphasizing 

key contributions, and future research. 

2 Related works 

The investigators examined how suppliers were affected 

by the commitment of buying firms towards 

environmental management initiatives through a 

contingent causal process framework by Qiao et al. [11]. 

The data for survey were attained from 237 Chinese 

suppliers and were analyzed by regression analysis using 

bootstrapping. The results showed that environmental 

collaboration has a greater influence on improving the 

environmental commitment of the suppliers as compared 

to environmental assessment. Limitations include the 

focus on Chinese suppliers, which restricted the 

generalizability of the discoveries to other countries. The 

investigation examined the determinants influencing 

firms’ readiness to implement AI in SC, guided by the 

specified framework by Wang & Pan [12]. Data from the 

survey of 318 Chinese firms were evaluated using PLS-

SEM. The overall results indicated that SC cooperation, 

and relative advantages of AI have the greatest effects on 

AI adoption. Limitations include focusing primarily on 

Chinese firms and cultural or regional restrictions to 

generalizability. Table 1 provides the related works 

summary. 
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Table 1: Related works on AI in SC and sustainability 

Ref Dataset Purpose 
Suggested 

Model 
Result Limitation 

Wong et 

al. [13]  

Survey data from 

Small and 

Medium 

Enterprises 

(SME) 

executives  

Examine how AI 

improves SCM 

risk management 

and agility 

PLS-SEM and 

ANN 

Re-engineering 

mediates the risk-

agility link, while 

AI improves risk 

management 

capacities by 

enhancing SC re-

engineering and 

agility. 
 

Focused only on 

SMEs; limits 

generalizability to 

other industries and 

company sizes. 

Hasan et 

al. [14] 

Historical 

emission factor 

data  

Predict high-

emission areas for 

targeted 

sustainability 

interventions 

Random Forest 

AI accurately 

identifies emission 

hotspots for 

effective carbon 

footprint reduction 

interventions. 

Based on data, 

limits worldwide 

applicability 

Olan et 

al. [15] 

Literature-based 

conceptual 

framework for 

the Food and 

Drink Industry 

(FDI)  

Explore AI 

applications in 

financing 

mechanisms in 

complex SCM 

networks 

Meta-framework 

developed from 

theoretical 

contributions 

AI-enabled SCM 

networks create 

sustainable 

financing streams 

for FDIs 

Lack of empirical 

validation; requires 

real-world testing 

Lim et al. 

[16] 

Survey data from 

177 

manufacturing 

firms 

Investigate the 

combined effect 

of SCM and QM  

ANN with 

sensitivity 

analysis 

Customer focus 

(CF) had impact on 

sustainability 

performance  

Small sample size 

and focus on 

manufacturing 

firms limit 

generalizability to 

other regions or 

industries 

Benzidia 

et al. [17] 

Data from 168 

French hospitals 

Analyze the 

impact of AI on 

green SC 

integration 

PLS-SEM under 

Organizational 

Information 

Processing 

Theory 

AI promotes 

environmental 

process integration 

and green SC 

collaboration 

Restricted to 

French hospitals; 

findings may not 

apply to other 

sectors or countries 

Alabdali 

& Salam 

[18] 

Survey of 221 SC 

professionals via 

LinkedIn 

Investigate the 

effect of Digital 

Transformation 

(DT) on SC  

PLS-SEM using 

SmartPLS 

DT significantly 

improves SC, and 

SC mediates the 

effect of DT  

Sample limited to 

LinkedIn users; 

cross-sectional 

design limits 

understanding of 

long-term effects 
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2.1   Research gap 

While prior researches have explored AI applications in 

SCM and sustainability, most focus on single-dimensional 

outcomes, such as risk mitigation, emission reduction, or 

green integration [11-15]. Existing models often lack 

multivariate analysis, failing to jointly consider constructs 

like EU, AI System Usability (ASU), and performance 

outcomes (Cost Reduction, Delivery Reliability, Demand 

Variability). Additionally, many researches are limited to 

specific industries, regions, or survey-based datasets, 

restricting generalizability [16-18]. The present research 

addresses these gaps by developing an integrated, multi-

objective framework that empirically evaluates how AI 

adoption simultaneously enhances SCM efficiency, 

resilience, and optimization across diverse contexts. 

2.2   Variable definition 

The following variables are selected based on their 

applicability to the adoption of AI and how they enhance 

SCR, efficiency, and optimization in various industries. 

➢ Environmental Uncertainty (EU): It reflects the 

uncertainty in market conditions, supply, and external 

factors impacting SC. It influences the organizations' 

implementation of AI to enhance SC flexibility and 

operational stability. 

➢ Cost Reduction (CR): It entails reducing costs across 

SC operations using enhanced efficiency and better 

resource utilization. Precise forecasting and improved 

logistics through integration of AI add up directly to 

these cost savings. 

➢ Delivery Reliability (DR): It denotes the ability to 

satisfy delivery dates and orders accurately on a 

regular basis. The use of AI applications enhances this 

reliability in SC processes by improving coordination 

and planning. 

➢ AI System Usability (ASU): It describes the ease and 

success with which users utilize AI adoption in SC. 

Increased usability supports easier adoption and 

implementation of AI in the SC processes. 

➢ Demand Variability (DV): It is characterized as 

changes in customer demand over time. DV 

awareness guides the establishments to apply AI that 

allows making predictions and modifying operations 

of SC accordingly. 

➢ Supply Chain Efficiency (SCE): It is the capability 

for SC to perform with a minimum of time, cost, and 

resources with quality. Knowledge in SCE firms to 

automate operations and enhance productivity in the 

processes. 

➢ Supply Chain Resilience (SCR): It signifies the 

capacity of SC to adapt, restore, and operate in case of 

disruption. SCR knowledge assists firms to enhance 

flexibility, risk-management, and continuity in the 

event of uncertainty. 

➢ Supply Chain Performance (SCP): It encompasses 

total efficiency of the SC in meeting its target 

objectives like cost efficiency, reliability, and 

customer satisfaction. Knowledge of SCP enables 

firms to evaluate outcomes, enhance competitiveness, 

and drive sustainable operational improvements. 

2.3   Hypotheses development  

The hypotheses examine the relation between EU and 

ASU, and also provide insight into key SC performance 

factors, including CR, DR, SCE, SCR, SCP and DV 

management. The framework highlights the contextual and 

technological forces being examined as direct influences 

on operational performance, as demonstrated in Figure 1. 

EU increases the necessity of adaptive and usable AI 

systems. As uncertainty increases organizations are more 

likely to view artificial system use and adaptability (ASU) 

as critical for efficient SCM. 

H1: EU positively impacts ASU. 

Greater ASU enables organizations to effectively utilize AI 

tools, which reduces costs and makes operations more 

efficient. Thus, an increase in usability directly impacts the 

attainment of CR in SC. 

H2: ASU significantly influences CR. 

Improved ASU makes SC operations more accurate and 

efficient; it is leading to more reliable deliveries. The 

resulting improved usability aids in on-time deliveries that 

will improve DR. 

H3: ASU positively influences DR. 

Improved ASU allows firms to better utilize AI tools for 

forecasting and demand planning. This facilitates stronger 

management of DV and fewer SC disruptions. 

H4: ASU significantly influences DV management. 

EU drives firms to adopt AI systems that are user-friendly 

and adaptable ASU. In turn, this increased usability 

mediates the effect of uncertainty on achieving CR in SC. 

H5: ASU mediates the relationship between EU and CR. 

ASU explains how the EU influences CR. High EU drives 

firms to adopt AI effectively. 

H6: CR positively influences SCE. 

Effective CR practices, such as sustainability and ethical 

operations, streamline processes, reduce waste, and 

optimize resources, thereby improving SCE. 

H7: CR positively influences SCR 
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Responsible CR practices strengthen supplier 

relationships, risk management, and proactive planning, 

enabling the SCR to anticipate, absorb, and recover from 

disruptions. 

H8: DR positively influences SCP 

 

High DR allows firms to respond swiftly to market 

variations, minimizing delays and stockouts and 

enhancing overall SCP. 

 

H9: DV positively influences SCP 

 

Managing DV through timely and accurate data improves 

forecasting, inventory control, and partner coordination, 

resulting in a stronger SCP. 

 

 

 

Figure 1: Conceptual framework of the proposed 

hypothesis 

Figure 1 illustrates the hypothesized relationships 

framework among key constructs influencing SCP. EU, 

CR, DR, SCR, SCP, SCE and DV represent the external 

and operational drivers affecting supply chain dynamics. 

ASU acts as a facilitating factor, enhancing the 

effectiveness of these drivers. SCE and SCR function as 

mediating variables that channel the effects of the drivers 

toward overall SCP. The framework proposes that effective 

AI adoption improves operational efficiency, strengthens 

resilience against disruptions, and ultimately enhances 

performance outcomes across the SC. 

3 Methodology 

The research aims to examine how AI adoption enhances 

SC optimization, efficiency, and resilience, using data 

from 534 firms across multiple industries. Exploratory 

factor analyses, PLS-SEM analysis and correlation are 

conducted to validate measurement constructs. Figure 2 

shows the methodological flow in which survey data were 

collected from 534 firms to examine the influence of EU, 

ASU, CR, DR, DV SCE, SCR, and SCP. SPSS and PLS-

SEM analyses validate constructs and mediation effects, 

showing AI adoption enhances optimization, efficiency, 

and resilience. Assessments of validity and reliability 

guarantee the outcome's accuracy and robustness. 

 

Figure 2:  Analytical framework of empirical analysis 

3.1   Data collection     

Structured survey data were gathered from 534 firms 

across diverse industry sectors. Respondents included SC 

managers, operations directors, and executives with direct 

knowledge of AI implementation. The demographic 

distribution of participating firms by respondent role, 

company size, industrial sector, and experience is 

displayed in Table 2, demonstrating the representative and 

varied sample that was used for the empirical analysis. 

Table 2: Demographic profile of participating firms' 

overview 

Demographic 

Variable 
Category 

Frequen

cy (n) 

Percenta

ge (%) 

Industry 

Sector 

Manufacturi

ng 
180 33.7 

Retail 120 22.5 

Logistics 95 17.8 

Technology 75 14.0 

Others 64 12.0 

Firm Size 

(Employees) 

Small (1–

99) 
210 39.3 

Medium 

(100–499) 
185 34.6 

Large 

(500+) 
139 26.1 

Respondent 

Role 

SC Manager 250 46.8 

Operations 

Director 
160 30.0 

Executive/T

op 

Managemen

t 

90 16.9 
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Other 34 6.3 

AI 

Implementati

on 

Experience 

(Years) 

Less than 1 

year 
160 30.0 

1 to 3 years 200 37.5 

4 to 6 years 120 22.5 

More than 6 

years 
54 10.0 

 

Table 2 shows that the survey captured a diverse sample of 

534 firms, with the largest representation from 

manufacturing (33.7%) and small-sized firms (39.3%). 

Most respondents were SC managers (46.8%) with 1–3 

years of AI implementation experience (37.5%), ensuring 

broad and relevant insights for the analysis. 

3.2   Questionnaire 

The survey used a structured approach with closed-ended 

questions to evaluate variables affecting AI adoption in 

SCM. Table 3 presents the dimensions and corresponding 

questions, which evaluate user perceptions and actual use 

of AI technologies within SC operations.  

Table 3: Participants' Questionnaires 

Variable Questions Measurement Scale (Likert Scale) 

EU 1. How often do unexpected market 

changes affect your SC decisions? 

1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Often, 5 

= Always 

2. What external factors create 

challenges in planning your SC 

operations? 

1 = Not at all challenging, 2 = Slightly challenging, 

3 = Moderately challenging, 4 = Very challenging, 

5 = Extremely challenging 

3. Why is adapting to regulatory 

changes important for your SCM? 

1 = Insignificant, 2 = Slightly significant, 3 = 

Moderately significant, 4 = Significant, 5 = Highly 

significant 

CR 1. What benefits have you observed in 

reducing costs after adopting AI in 

your SC? 

1 = No benefit, 2 = Minor benefit, 3 = Moderate 

benefit, 4 = Significant benefit, 5 = Very high 

benefit 

2. How has AI helped your company 

minimize operational expenses? 

1 = Not at all, 2 = Slightly, 3 = Moderately, 4 = 

Considerably, 5 = Greatly 

3. Why is cost reduction a key goal in 

your SC strategy? 

1 = Not important, 2 = Slightly important, 3 = 

Moderately important, 4 = Important, 5 = Very 

important 

DR 1. How reliable are your deliveries in 

meeting scheduled deadlines 

consistently? 

1 = Very unreliable, 2 = Unreliable, 3 = Neutral, 4 

= Reliable, 5 = Very reliable 

2. What improvements has AI brought 

to your order fulfillment accuracy? 

1 = No improvement, 2 = Slight improvement, 3 = 

Moderate improvement, 4 = High improvement, 5 

= Significant improvement 

3. Why is maintaining delivery 

reliability critical for customer 

satisfaction? 

1 = Not critical, 2 = Slightly critical, 3 = 

Moderately critical, 4 = Critical, 5 = Very critical 

ASU 1. How easy is it for your team to learn 

and use AI tools in SC tasks? 

1 = Very difficult, 2 = Difficult, 3 = Neutral, 4 = 

Easy, 5 = Very easy 

2. What kind of training or support 

helps users interact effectively with AI 

systems? 

1 = Not effective, 2 = Slightly effective, 3 = 

Moderately effective, 4 = Effective, 5 = Very 

effective 

3. Why does user-friendly AI 

technology matter for successful 

adoption? 

1 = Insignificant, 2 = Of little value, 3 = Moderately 

valuable, 4 = Valuable, 5 = Extremely valuable 
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DV 1. How frequently does customer 

demand fluctuate in your SC? 

1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Often, 5 

= Very often 

2. What challenges arise from demand 

variability in forecasting and 

planning? 

1 = No challenge, 2 = Minor challenge, 3 = 

Moderate challenge, 4 = Major challenge, 5 = 

Severe challenge 

3. Why is managing demand 

variability crucial for SC efficiency? 

1 = Not crucial, 2 = Slightly crucial, 3 = Moderately 

crucial, 4 = Crucial, 5 = Very crucial 

SCE 1. How effectively does your SC use 

resources to minimize costs and time? 

1 = Very ineffective, 2 = Ineffective, 3 = Neutral, 4 

= Effective, 5 = Very effective 

2. How has AI improved process 

efficiency and operational 

productivity in your SC? 

1 = Not at all, 2 = Slightly, 3 = Moderately, 4 = 

Considerably, 5 = Greatly 

3. Why is SC efficiency important for 

overall organizational performance? 

1 = Not significant, 2 = Slightly significant, 3 = 

Moderately significant, 4 = Significant, 5 = 

Extremely significant 

SCR 1. How quickly can your SC recover 

from unexpected disruptions? 

1 = Very slowly, 2 = Slowly, 3 = Neutral, 4 = 

Quickly, 5 = Very quickly 

2. How effective are your risk 

mitigation strategies in maintaining 

SC continuity? 

1 = Not effective, 2 = Slightly effective, 3 = 

Moderately effective, 4 = Effective, 5 = Very 

effective 

3. Why resilience is critical for 

sustaining SC operations during 

disruptions? 

1 = Not critical, 2 = Slightly critical, 3 = 

Moderately critical, 4 = Critical, 5 = Very critical 

SCP 1. How satisfied are you with your 

SC’s ability to meet organizational 

objectives? 

1 = Very dissatisfied, 2 = Dissatisfied, 3 = Neutral, 

4 = Satisfied, 5 = Very satisfied 

2. How has AI adoption enhanced the 

overall performance of your SC? 

1 = Not at all, 2 = Slightly, 3 = Moderately, 4 = 

Considerably, 5 = Greatly 

3. Why is monitoring SCP important 

for long-term competitiveness? 

1 = Not important, 2 = Slightly important, 3 = 

Moderately important, 4 = Important, 5 = Very 

important 

4 Statistical analysis  

 This analysis assessed how AI adoption increases SC 

efficiency and resilience by utilizing SPSS software. 

Exploratory Factor Analysis (EFA) identifies underlying 

dimensions among survey items, reliability and validity 

are confirmed using CA, CR, and AVE. Correlation 

analysis and PLS-SEM examine relationships, including 

direct, indirect, and mediating effects, ensuring robust 

model evaluation. 

5 Result  

The analysis revealed that environmental uncertainty, SC 

cooperation, and relative advantage positively influence 

AI adoption in SCM. AI adoption was found to improve 

SC optimization, and resilience, permitting more accurate 

forecasting, improved inventory control, and better 

logistics coordination. 

➢ Reliability analysis 

It evaluates the internal steadiness of survey items in 

measuring constructs linked to AI adoption and its effects 

on SCP. High reliability indicates that the survey items 

reliably measure usability, responsiveness, and 

digitalization outcomes. Table 4 presents reliability 

outcomes for the constructs. 
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Table 4: Reliability assessment of AI-driven SC constructs 

Construct Items CA CR AVE IL 

EU  Frequency of Market Changes 0.87 0.91 0.72 0.81 

External Planning Challenges 0.88 0.91 0.72 0.83 

Regulatory Adaptability Importance 0.85 0.91 0.72 0.80 

ASU  Ease of Learning AI Tools 0.88 0.91 0.73 0.82 

Training and Support Effectiveness 0.86 0.91 0.73 0.81 

Importance of User-Friendly AI 0.87 0.91 0.73 0.82 

CR  Benefits from AI Cost Savings 0.87 0.90 0.71 0.80 

Reduction in Operational Expenses 0.85 0.90 0.71 0.79 

Strategic Importance of Cost Reduction 0.82 0.90 0.71 0.78 

DR  On-Time Delivery Performance 0.88 0.91 0.72 0.81 

Delivery Consistency 0.86 0.91 0.72 0.80 

Order Fulfillment Accuracy 0.83 0.91 0.72 0.79 

DV Frequency of Demand Fluctuations 0.87 0.90 0.71 0.80 

Forecasting and Planning Challenges 0.84 0.90 0.71 0.79 

Importance of Managing Demand Variability 0.81 0.90 0.71 0.78 

SCE  Resource Utilization Effectiveness 0.86 0.90 0.71 0.80 

AI-Enhanced Process Productivity 0.86 0.90 0.71 0.81 

Importance of SC Efficiency for Performance 0.86 0.90 0.71 0.79 

SCR  Recovery Speed from Disruptions 0.87 0.91 0.72 0.81 

Effectiveness of Risk Mitigation 0.87 0.91 0.72 0.80 

Importance of SC Resilience 0.87 0.91 0.72 0.79 

SCP  Satisfaction with SC Objectives Achievement 0.88 0.92 0.73 0.82 

AI-Driven SC Performance Improvement 0.88 0.92 0.73 0.81 

Importance of Monitoring SC Performance 0.88 0.92 0.73 0.80 

 

Table 4 presents the measurement model outcomes for all 

constructs: EU, ASU, CR, DR, DV, SCE, SCR, and SCP. 

CA ranges (0.81 to 0.88), and CR ranges from 0.90 to 0.92, 

showing strong uniformity. AVE shows a 0.71 to 0.73 

range, confirming good convergent validity. IL for all 

items falls between 0.78 and 0.83, demonstrating that each 

item reliably measures its respective construct. Overall, it 

indicates reliability and validity of model, suitable for 

PLS-SEM structural analysis. 

➢ Exploratory Factor Analysis 

EFA identifies underlying dimensions of the survey items 

to show how the AI usage affects SC. It permits the ability 

to verify that dimensions for usability, responsiveness, and 

digitalization are distinct and accurately represented. Table 

5 reports the EFA results. 
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Table 5: EFA of AI-driven SC constructs 

Factor Variable Factor Loading Eigenvalue Variance Explained Cumulative Variance 

EU EU1 0.85 4.60 34% 34% 

 
EU2 0.81 1.05 8% 42% 

 
EU3 0.83 0.95 7% 49% 

ASU ASU1 0.84 4.20 32% 32% 

 
ASU2 0.79 1.10 8% 40% 

 
ASU3 0.81 0.95 7% 47% 

CR CR1 0.82 3.50 27% 27% 

 
CR2 0.78 1.10 8% 35% 

 
CR3 0.80 0.90 7% 42% 

DR DR1 0.83 3.20 25% 25% 

 
DR2 0.80 1.05 8% 33% 

 
DR3 0.79 0.90 7% 40% 

DV DV1 0.84 3.00 24% 24% 

 
DV2 0.80 1.00 8% 32% 

 
DV3 0.78 0.85 6% 38% 

SCE SCE1 0.83 3.40 26% 26% 

 
SCE2 0.81 1.05 8% 34% 

 
SCE3 0.80 0.90 7% 41% 

SCR SCR1 0.84 3.50 27% 27% 

 
SCR2 0.82 1.10 8% 35% 

 
SCR3 0.81 0.95 7% 42% 

SCP SCP1 0.85 3.60 28% 28% 

 
SCP2 0.83 1.05 8% 36% 

 
SCP3 0.82 0.95 7% 43% 

Table 5 presents EFA outcomes of all key constructs, 

including EU, ASU, CR, DR, DV, SCE, SCR, and SCP. 

Factor loadings range (0.78 to 0.85) providing strong item-

construct relationships. Eigenvalues for the first factor of 

each construct range from 3.00 to 4.60, while the variance 

explained by individual items ranges from 6% to 34%. 

Cumulative variance across items within each construct 

ranges from 38% to 49%, demonstrating adequate 

representation of the underlying latent variables. These 

confirm that all are reliable and valid for subsequent 

structural analysis. 

➢ PLS-SEM  

PLS-SEM is utilized to discover complex relationships 

among latent constructs and observed measures. Internal 

consistency is assessed using CR, while convergent 

validity is confirmed through AVE and CA (α). Table 6 and 

Figure 3 present the validity and reliability data that allow 

the assessment of SC performance driven by AI. 
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Table 6: Reliability and validity assessment in key measurement constructs 

Construct Item Code Factor Loading SE t-value CR AVE α R² Validity Satisfied 

EU EU1 0.81 0.35 23.14 0.912 0.722 0.887 0.00 Yes 

 
EU2 0.87 0.30 28.96 

     

 
EU3 0.85 0.32 26.56 

     

ASU ASU1 0.79 0.34 21.94 0.908 0.735 0.881 0.68 Yes 

 
ASU2 0.88 0.28 30.20 

     

 
ASU3 0.86 0.30 28.66 

     

CR CR1 0.78 0.36 22.33 0.900 0.710 0.875 0.57 Yes 

 
CR2 0.85 0.31 27.42 

     

 
CR3 0.82 0.33 25.68 

     

DR DR1 0.80 0.35 23.11 0.906 0.720 0.879 0.53 Yes 

 
DR2 0.87 0.29 29.78 

     

 
DR3 0.83 0.31 27.22 

     

DV DV1 0.77 0.37 20.81 0.895 0.705 0.870 0.49 Yes 

 
DV2 0.84 0.33 25.45 

     

 
DV3 0.81 0.34 24.30 

     

SCE SCE1 0.82 0.32 25.63 0.900 0.710 0.875 0.55 Yes 

 
SCE2 0.84 0.30 27.88 

     

 
SCE3 0.81 0.33 24.55 

     

SCR SCR1 0.83 0.31 26.77 0.905 0.720 0.878 0.58 Yes 

 
SCR2 0.85 0.29 29.31 

     

 
SCR3 0.82 0.32 25.63 

     

SCP SCP1 0.84 0.30 28.00 0.910 0.730 0.882 0.60 Yes 

 
SCP2 0.86 0.28 30.71 

     

 
SCP3 0.83 0.31 26.77 
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Figure 3: PLS-SEM measurement and structural model 

with loadings 

Figure 3 presents the factor loadings and reliability 

analysis for all constructs, including EU, ASU, CR, DR, 

DV, SCE, SCR, and SCP. Factor loadings from 0.77 to 0.87 

with standard errors (SE) between 0.28 and 0.37 and t-

values from 20.81 to 30.71 indicate a significant load on 

respective constructs. CR ranges from 0.895 to 0.912, AVE 

(0.705 to 0.735), and CA (α) ranges from 0.870 to 0.887 

demonstrating robust and convergent validity. The R² 

values range from 0.00 to 0.68, reflecting predictive 

power. 

➢ Structural model  

The model explores both direct and mediating 

relationships among key factors, emphasizing their 

collective influence on AI usability and overall SC 

performance. Table 7 presents the structural model 

assessment of hypothesized paths. 

Table 7: Structural model results showing supported 

hypothesized relationships 

Path 

Direction 

β 

Coefficient 

t-

value 

p-

value 

Supported 

H1: EU 

→ ASU 

0.74 12.36 0.000 Supported 

H2: ASU 

→ CR 

0.68 11.10 0.000 Supported 

H3: ASU 

→ DR 

0.63 9.85 0.000 Supported 

H4: ASU 

→ DV 

0.59 8.92 0.000 Supported 

H5: EU 

→ CR 

(mediated 

by ASU) 

0.41 6.33 0.000 Supported 

H6: CR 

→ SCE 

0.55 7.20 0.000 Supported 

H7: CR 

→ SCR 

0.52 6.80 0.000 Supported 

H8: DR 

→ SCP 

0.60 8.10 0.000 Supported 

H9: DV 

→ SCP 

0.58 7.50 0.000 Supported 

 

Table 7 presents the hypothesized relationships among the 

key constructs. The (β) range from 0.41 to 0.74, 

representing moderate to strong effects. The t-values range 

from 6.33 to 12.36, and all p-values are 0.000, showing 

that all hypothesized paths are significant at the 0.001 

level. Specifically, H1 (EU → ASU) has the strongest 

effect with β = 0.74 and t = 12.36, while the mediation 

effect in H5 (EU → CR via ASU) shows β = 0.41 and t = 

6.33. Other significant effects include CR → SCE (β = 

0.55, t = 7.20), CR → SCR (β = 0.52, t = 6.80), DR → SCP 

(β = 0.60, t = 8.10), and DV → SCP (β = 0.58, t = 7.50). 

➢ Correlation analysis 

It is conducted to determine the movement and power of 

correlations among the critical factors influencing AI 

usability and SC performance and to assess 

interrelationships, which contribute to improved reliability 

and resilience in SC processes. Table 8 and Figure 4 show 

the correlation between critical constructs in the model. 

Table 8: Correlation matrix of key constructs 

Const

ructs 

E

U 

AS

U 

C

R 

D

R 

D

V 

SC

E 

SC

R 

SC

P 

EU 1.0

00 

0.7

4 

0.6

8 

0.6

3 

0.5

9 

0.5

7 

0.5

5 

0.5

3 

ASU 0.7

4 

1.0

00 

0.7

1 

0.6

7 

0.6

1 

0.6

0 

0.5

8 

0.5

6 

CR 0.6

8 

0.7

1 

1.0

00 

0.6

6 

0.6

2 

0.6

4 

0.6

2 

0.6

0 

DR 0.6

3 

0.6

7 

0.6

6 

1.0

00 

0.6

4 

0.6

1 

0.5

9 

0.6

5 

DV 0.5

9 

0.6

1 

0.6

2 

0.6

4 

1.0

00 

0.6

0 

0.5

8 

0.6

3 

SCE 0.5

7 

0.6

0 

0.6

4 

0.6

1 

0.6

0 

1.0

00 

0.6

7 

0.6

6 

SCR 0.5

5 

0.5

8 

0.6

2 

0.5

9 

0.5

8 

0.6

7 

1.0

00 

0.6

4 

SCP 0.5

3 

0.5

6 

0.6

0 

0.6

5 

0.6

3 

0.6

6 

0.6

4 

1.0

00 
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Figure 4: Outcome of correlation analysis 

Figure 4 presents the correlation matrix for all constructs, 

including EU, ASU, CR, DR, DV, SCE, SCR, and SCP. 

Correlation coefficients range from 0.53 to 0.74, 

demonstrating moderate to strong positive relationships 

among all constructs. EU shows its highest correlation 

with ASU (r = 0.74) and lowest with SCP (r = 0.53). SCE 

is most powerfully associated with SCR (r = 0.67) and SCP 

(r = 0.66). SCP displays robust correlations in DR (r = 

0.65), SCE (r = 0.66), and DV (r = 0.63), reflecting its 

dependence on efficiency, resilience, and responsiveness. 

6 Discussion 

Research analyzed the effectiveness and usability of AI 

applications on SC performance through intermediary 

variables. Previous researches on AI adoption in SC 

exhibit several key limitations. Most investigations were 

conducted within specific regional, which restricts the 

generalizability of findings [13]. Many relied on limited or 

cross-sectional survey data, constraining long-term 

performance evaluation [18]. Prior models often 

overlooked critical contextual factors, leading to 

incomplete assessments of AI-driven SC outcomes [17]. 

Several researches lacked an integrated view of efficiency, 

resilience, and performance dimensions, focusing 

narrowly on isolated outcomes [16]. This research 

addressed these shortcomings, using a dataset of 534 

multi-industry firms, by combining EU and ASU in the 

analytical model, and using PLS-SEM to determine the 

direct and mediating effects. This holistic approach 

increases the generalizability, creates stronger causal 

relationships, and gives a comprehensive sense of AI-

enabled SC. Results showed that EU significantly affects 

ASU (β = 0.74, t = 12.36, p < 0.001), which positively 

influences CR (β = 0.68, t = 11.10), DR (β = 0.63, t = 9.85), 

and DV (β = 0.59, t = 8.92). ASU also mediates the effect 

of EU on CR (β = 0.41, t = 6.33). Furthermore, CR 

contributes to SCE (β = 0.55, t = 7.20) and SCR (β = 0.52, 

t = 6.80), while DR and DV drive overall SCP (β = 0.60, t 

= 8.10; β = 0.58, t = 7.50). The research provides 

actionable insights for managers to leverage AI for 

enhancing performance. By integrating AI usability with 

contextual factors like environmental uncertainty, firms 

optimize forecasting, reduces costs, and strengthens 

responsiveness, enabling data-driven decisions and 

sustainable competitiveness across diverse industries and 

regions. 

7 Conclusion 

The research focused on AI’s role in improving the 

performance of SC through optimization of operations, 

enhancement of efficiency, and further resilience during 

times of global uncertainty. A sample of 534 firms was 

used to collect data, which was supported by strong 

analyses, such as EFA, correlation analysis, and PLS-

SEM, to confirm the measurement model and contributing 

hypothesized relationships. Results indicated that EU 

strongly improves ASU with β = 0.74, t = 12.36, which 

improves CR with β = 0.68, t = 11.10, DR with β = 0.63, t 

= 9.85, and DV with β = 0.59, t = 8.92. ASU also 

intermediates EU’s effect on CR with β = 0.41, t = 6.33. 

Furthermore, CR drives SCE with β = 0.55, t = 7.20 and 

SCR with β = 0.52, t = 6.80, while DR and DV enhance 

overall SCP with β = 0.60, t = 8.10; β = 0.58, t = 7.50. 

These results confirm that AI adoption under 

environmental uncertainty significantly strengthens SC. 

The usage of survey-based, and a relatively small number 

of firms restricts the generalizability to industries and 

regions. Future research may include longitudinal data and 

cross-industrial research to confirm the SCP driven by AI 

in different operational settings. 
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