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The animation production process is traditionally labor-intensive, requiring extensive manual effort in 

character motion design, scene composition, and post-production editing. To overcome these limitations, 

this research introduces a robot-assisted automation system integrated with artificial intelligence (AI) to 

streamline and accelerate animation development. The system incorporates a motion capture interface 

for acquiring human movement data, a feedback-enabled robotic arm to replicate and analyze motions, 

and a simulation environment for virtual testing. Preprocessing includes missing-value handling and Z-

score normalization, after which structured motion sequences (3D joint coordinates, robotic servo 

positions, and torque data) are provided as input to the Scalable Elephant Herding-tuned Conditional 

Generative Adversarial Network (SEH-ConGAN). The model generates refined outputs such as smooth 

motion trajectories, facial expression synthesis, and context-aware style transfer. Statistical analysis 

using a paired t-test, 95% confidence intervals, and Cohen’s d effect size was performed to confirm the 

significant performance improvement of SEH-ConGAN over baseline models Performance is evaluated 

using 5-fold cross-validation and achieves an accuracy of 0.96, precision of 0.97, recall of 0.96, and F1-

score of 0.96. Comparative analysis of motion generation metrics shows that SEH-ConGAN surpasses 

existing models achieving the best MPJPE (16.7), FID (11.3), Smoothness (0.028), and Diversity (0.72), 

demonstrating superior motion accuracy, trajectory smoothness, and animation realism. . The findings 

demonstrate that combining robotics with SEH-ConGAN provides a scalable solution for producing high-

quality animations with reduced time, cost, and manual intervention. 

Povzetek: Raziskava predstavlja robotsko podprt AI-sistem za avtomatizacijo animacije, ki z modelom 

SEH-ConGAN omogoča natančnejše, bolj tekoče in realistične gibe ob bistveno manjšem času, stroških 

in ročnem delu. 

 

 

1 Introduction 
The animation production method is complex and multi-

layered, with the production process converting creative 

ideas into action-rich visual content [1]. Pre-production 

covers storyboarding, concept design, and screenplay 

writing, and production includes character modeling, 

rigging, scene layout, animation, and rendering [2]. 

Lastly, compositing, sound design, and editing are the 

other post-production processes through which the output 

is made ready to be distributed. The technological 

advancements have augmented the productivity, but the 

traditional pipelines are still labor-intensive and require 

professional animators to take care of the subtle 

differences in the motions of the characters, and 

coordination of the scenes, and do some visual effects [3]. 

This makes animation both time-consuming and resource-

intensive, especially for large-scale productions with 

high-quality standards. 

Automation in animation refers to the utilization of 

electronic tools and computer procedures to make 

repetitive and time-consuming tasks easy [4]. It consists 

of procedural animation methods, automatic lip-synching, 

motion capture, and background making. Automation 

spares human effort in the tasks where manual repetition 

can be detrimental to production, and artists are able to  

 

focus on creative decision-making instead of technical 

performance [5]. With the introduction of artificial 

intelligence (AI) and machine learning, automation has 

been enhanced to include intelligent motion prediction, 

style transfer, and scene optimization, which have 

extended the production cycle and produced their 

products with guaranteed quality standards [6]. Due to the 

creative and subjective nature of animation, achieving full 

automation without human interaction is difficult.  

Robot-aided systems are still automation beyond 

software and bring physical or creative support functions 

into the animation process that can be carried out by 

robotic hardware [7]. Such technologies could be applied 

to a stop-motion animation process to facilitate precise 

camera movements, robotically controlled puppets, and 

object placement [8]. The robotic installations within the 

virtual production setting could have the capability to 

collaborate with the digital technologies to capture the 

information regarding the motion, choose the movements 

of cameras, and reproduce the complicated shots and 

movements accurately [9]. Integration of this type 

enhances repeatability and reduces manual setup. Manual 

setup can be performed within, and fragile tasks can be 

repeated that are found by human operators to be quite 

impossible to perform manually. Figure 1 shows the 

robot-assisted animation production process. 
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Figure 1: Robot-assisted animation production process 

 
A robot-assisted automation system for animation 

production leverages modern robotics, AI, and animation 

software to maximize productivity while maintaining 

artistic integrity [10]. A configuration like this would be 

able to process every day, yet technically difficult tasks, 

make real-time adjustments, and promote the formation 

of a team between human artists and automatic tools by 

attaching sensors, motion control systems, and intelligent 

algorithms [11]. The strategy can transform the process of 

animation production through reducing costs, reducing 

schedules, and enabling studios to produce more creative 

material. Robot-assisted automation is one of the 

potential directions in a rapidly evolving entertainment 

industry to faster, smarter, and more adaptable animation 

pipelines [12]. 

Current machine learning techniques in animation 

production, including Long Short-Term Memory (LSTM) 

networks to predict temporal motion sequences and 

Variational Autoencoders (VAE) to generate smooth 

character poses, have increased automation but lack 

flexibility, compared to manual design, in that they are 

expensive to setup, can only adapt to particular artistic 

styles, and do not give as much creative freedom. These 

obstacles are overcome, to develop a SEH-ConGAN–

based robot-assisted animation system that can learn 

human motion patterns, reduce motion estimation errors, 

and improve realistic motion style transfer to achieve 

higher adaptability, accuracy, and creative diversity in 

automated animation workflows. The contribution section 

is as follows: 

Dataset: Prepared and validated good-quality 

animation motion dataset that comprised various motions 

of the character to adequately train the model. 

Data preprocessing: It should be acknowledged that 

data preprocessing, Z-score normalization and missing 

values, was performed to ensure the stability of noise-free 

inputs into the model performance. 

Proposed Framework: It suggested a robot-assisted 

animation system that effectively automates animation 

production phases by combining a deep learning model 

SEH-ConGAN. 

Experimental validation: The proposed solution was 

tested experimentally and proved to be more animated, 

realistic, and performed better in terms of rendering than 

conventional manual production pipelines. 

Research Questionnaire: 

RQ1: In comparison to conventional ConGAN or 

manual animation techniques, can the SEH-ConGAN 

model produce robot-assisted animation sequences with 

better motion accuracy and stylistic fidelity? 

 RQ2: What effects do Elephant Herding 

Optimization (EHO)-optimized SEH-ConGAN 

hyperparameters have on training efficiency, style 

consistency, and animation quality? 

 RQ3: How much does the suggested approach 

enhance overall automation in the animation production 

process and lessen manual labor? 

 

2 Related works 

To examines developments in digital human technology 

and expression transfer in cinema and television 

animation [13]. Techniques like 3D digital human 

modeling and facial expression mapping improve 

emotional performance and realism.  Results show 

increased viewer engagement and character plausibility.  

High computational costs, moral dilemmas, and possible 

abuse are among the limitations.  There are documented 

numerical gains in motion precision and expression 

fidelity.  It emphasizes the need of realistic, emotionally 

compelling animation in contemporary storytelling and 

calls for scalable, morally sound frameworks. 

The deep learning (DL) technologies for animated 

scene creation and data mining were presented in [14]. It 

generated realistic and diversified animation scenarios 

using a powerful DL model, as well as Data Mining (DM) 

approaches such as cluster analysis and classification 

identification. The findings demonstrated DL's efficacy in 

lowering manual design burden and increasing efficiency. 

DM technology also offered appropriate market 

positioning and content innovation guidance for 

animation production. 

Digital technology has revolutionized animation by 

incorporating physical human movement and bridging the 

gap between digital and performing arts. A framework of 

real-time character animation that integrated the 

performer as an instantaneous creator of effect, 

expression, and character was proposed in [15]. It was 

possible to visualize the internal response through 

wearable technology by capturing bio signals (i.e., heart 
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rate and skin response). Movement and bio signals were 

captured by sensors to create nonverbal personality 

characteristics and signs. 

The framework allowed humanoid robots to develop 

expressive motion sequences called EMOTION [16], 

which improved the capacity to participate in nonverbal 

communication. The method employed huge language 

models' in-context learning to build socially suitable 

gesture motion sequences for human-robot interaction. 

The system was evaluated and shown to meet or 

outperform human performance in creating intelligible 

and natural robot motions. 

The animated film characters improved the quality and 

accuracy of the pictures in the first-order motion model 

(FOMM). Convolutional block attention model (CBAM) 

was proposed in [17], who wanted to think about the 

essential features and restore the distortion of the image due 

to the change of posture. The suggested enhanced FOOM 

(E-FOOM) model was intended to improve end-to-end 

character image production. According to the experimental 

results, the E-FOOM model had the highest performance of 

image resolution, key point detection accuracy, and 

reconstruction of posture when compared to other models. 

AI and machine learning have revolutionized 

animation, altering character movement and interaction 

[18]. It investigated how the technologies automate chores, 

increase realism, and open up new creative possibilities. It 

examined scenarios and industry practices to demonstrate  

The influence of AI on storytelling, production 

pipelines, and the prospects of animated entertainment. It 

recognized the limitations of AI in animation, which could 

influence animators' careers and enterprises. Table 1 

displays the further related works. 

 

Table 1: Comparative summary of existing animation and robot-assisted motion generation techniques

References Technique / Model Used Dataset / Input 

Type 

Evaluation Metrics / 

Results 

Strengths Limitations  

Racinskis et al. 
2022 [19] 

Feedforward NN & 
Recurrent Neural Networks 

for robot motion concepts 

Multi-modal inputs; 
Motion capture 

(most feasible) 

RNN outperformed 
FFNN but not 

consistently 

Demonstration-
based robot 

motion learning; 

multi-modal 
capability 

Performance not 
stable; lacks style 

transfer; no 

robotic animation 
generation 

Liu et al. 2024 

[20] 

CAD + Reinforcement 

Learning + Computer 

Vision for animation SFX 

CAD models, RL 

action modeling, 

CV-based object 
tracking 

Generated realistic 

SFX during filming 

Integrates CAD, 

RL, CV for 

automated SFX 
creation 

Focus only on 

SFX; does not 

handle motion 
style transfer; no 

robot-assisted 

system 

Wang et al. [21] Deep Reinforcement 
Learning with RAG + 

dynamic reward 

Rule-based action 
inputs for swarm 

animation 

Improved swarm 
behavior & control 

precision 

High-quality 
swarm animation; 

real-time 

interaction 

Not suitable for 
human motion 

prediction; no 

GAN-based 
realism 

enhancement 

Pibernik et al. 
2023 [22] 

Experimental evaluation of 
loading-animation design, 

semantics, and motion 

properties 

Loading animations 
with varied 

structure, metaphor, 

and speed 

Statistical tests showed 
significant influence 

on perceived wait-

time; measurable 

differences in 

perceived load-speed 

Demonstrates 
importance of 

nontemporal 

animation cues; 

strong empirical 

insights 

Conducted in 
controlled 

laboratory setting; 

limited animation 

variations 

Kang and Kim 

et al. 2024 [23] 

CAD-based character 

modeling + VR-driven 
action design + 

optimization algorithm 

CAD geometric 

models, VR-based 
interaction 

sequences 

High-quality character 

outputs; real-time 
performance; high user 

satisfaction across 

simulations 

Integrates CAD, 

VR, and 
optimization; 

realistic action 

generation; strong 
real-time 

capability 

Limited 

simulation 
diversity; no 

statistical 

validation across 
diverse animation 

environments 
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Li et al. 2025 
[24] 

Temporal-Stylistic Latent 
Animator (TSLA) + 

Domain-Informed 

Animation Realignment 
Strategy (DIARS) 

Real-time animation 
sequences capturing 

temporal and 

stylistic dynamics 

Outperforms existing 
methods in animation 

completion, style 

transfer, and semantic 
editing 

High-fidelity 
synthesis; 

semantic 

consistency; 
stylistic 

coherence; 

supports real-time, 
complex human 

motion 

Computationally 
intensive; requires 

comprehensive 

training datasets; 
may need domain-

specific tuning 

 

2.1 Problem statement 
The existing animation approaches have significant 

limitations. Motion capture technologies [13] often face 

high prices, complicated integration into production 

workflows, and demand substantial resources, restricting 

accessibility. Deep learning-based animated scene 

production [14] can save manual design labor, but it 

cannot be adaptable to different animation styles and 

requires a large amount of labeled data. Reinforcement 

learning techniques for animation special effects [20] 

enhance automation and quality, but they frequently require 

significant computer resources and suffer from real-time 

performance restrictions. To address these issues, the 

proposed SEH-ConGAN provides a scalable and efficient 

framework that uses elephant herding optimization to fine-

tune the conditional GAN, improving animation quality 

while lowering training time and resource requirements. 

This technology strikes a compromise between accessibility 

and high-quality output, hence improving practical 

animation production procedures. 

 

3 Methodology 

The process of animation production has never ceased to be 

labor intensive; this includes the proper motion design, 

structure of the scene and the post production. It uses a 

curated dataset of animation motion that contains a great 

variety of motions, which were first preprocessed with the 

aid of missing value management and Z-score 

normalization to give uniform noise-free data. The 

presented proposal is a robot-assisted animation system, 

which automated and optimized production stages 

involving the integration of the SEH-ConGAN. 

Experimental results depict high promotion of evaluation 

measures, which is a scalable cost-effective option of 

studios and individual producers seeking high quality 

productions without manual interventions. Figure 2 shows 

the overall suggested flow for the animation production 

process. 

 

 

Figure 2: Overall suggested flow for robot-assisted animation production process 

 

3.1 Dataset 
The Robot-Assisted Animation Motion Capture Dataset 

combines motion capture, robotic arm input, and motion 

quality evaluation to provide detailed, realistic data for 

AI-driven animation development. It is composed of 100 

motion sequences, each comprising 50 frames of 3D 

skeleton joint coordinates, servo motor locations, and 

torque data from a simulated robotic arm. The dataset 

encompasses a range of motion types, including walking, 

running, leaping, waving, sitting, and dancing, along with 

additional information such as actor ID and a 

motion_quality_score column for supervised learning or 

regression purposes. Its multi-modal and well-structured 

data format makes it perfect for investigating motion 

tracking, robotic animation control, movement analysis, 

and animation quality evaluation, allowing for repeatable 

trials with controlled variability. 

Source: https://www.kaggle.com/datasets/ziya07/robot-

assisted-animation-motion-capture-dataset/data 

3.2 Data preprocessing 
Data preprocessing in robot-assisted animation 

production includes imputation or removal of missing 

values to ensure dataset completeness, as well as Z-score 

normalization to standardize features and enable 

consistent scaling for improved AI model accuracy and 

performance during motion tracking and scene 

automation. 

 

3.2.1 Handling missing values 
To handle missing values in the robot-assisted animation 

motion capture dataset, first check for gaps in the 3D joint 

coordinates, servo motor locations, torque measurements, 

and metadata fields. Interpolation or forward/backward 

filling can be used to approximate missing frames in 

sequential numerical data such as joint coordinates and 

sensor inputs while maintaining temporal continuity. If 

the missing data is large or impacts whole sequences, 

consider deleting those samples to preserve dataset 

https://www.kaggle.com/datasets/ziya07/robot-assisted-animation-motion-capture-dataset/data
https://www.kaggle.com/datasets/ziya07/robot-assisted-animation-motion-capture-dataset/data
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quality. If categorical metadata, such as motion type or 

actor ID, is missing, check the source logs or eliminate 

the impacted sequences. This method minimizes data loss 

while retaining integrity, resulting in reliable motion 

analysis and machine learning tasks. 

 

3.2.2 Z-Score normalization 
In the robot-assisted animation motion capture data set, 

the focus will be on each numerical feature to its mean 

(W) and normalized to its standard deviation (σ). This will 

be done according to the following formula: The data are 

normalized to maintain consistent scaling across the 

features (including 3D coordinates of skeleton joints, 

servo motor position, and torques) in all motion 

sequences, regardless of their initial point units or value 

range. The approach increases model stability, learning 

efficiency, and detects tiny variations in motion quality 

patterns, allowing for precise robotic animation control 

and quality evaluation. 

 

Wnew=
W-μ

σ
 (1) 

 

Where Wnew- new value, W – old value, μ- mean, σ- 

standard deviation value. The servo locations and torques 

following Z-score normalization are shown in Figure 3, 

which ensures consistent feature scaling, balanced value 

ranges, and increased comparability for accurate analysis 

in robot-assisted animation production. 

 

 

Figure 3: Pairwise feature relationships after Z-score normalization for servo positions and torques 

 

3.3 SEH-ConGAN 
The SEH-ConGAN is a novel approach that 

revolutionizes the field of robot-aided animation 

production, combining AI in content production with 

smart optimization. Traditional animation production 

involves a heavy investment of manual work in designing 

character movements, setting up the scenery, and 

characterizing the scene dimensions, and this might be 

long and tedious. SEH-ConGAN addresses these 

limitations effectively to enable the robotic arm executes 

motion patterns for animation generation, which can 

adjust styles to various plots and dynamically respond to 

director instructions through changes in motion patterns. 

By using conditional GANs, the system creates outputs 

based on certain animation parameters (e.g., position, 

camera angle, illumination), resulting in context-aware 

creation. The Elephant Herding Optimization (EHO) 

method fine-tunes hyperparameters for optimal training 

stability, frame quality, and style consistency, allowing 

the system to scale across animation genres and 

production sizes. Due of their slowness and frequent 

instability for GANs, SEH is preferred over grid search 

and Bayesian optimization.  SEH provides smoother 

motion with better animation quality, increases 

convergence speed, and more effectively investigates 

hyperparameters. Elephant Herding Optimization (EHO) 

in SEH-ConGAN automatically modifies the GAN 

hyperparameters, such as learning rate, network size, and 

noise settings, to improve training.  Selecting these 

hyperparameters by hand may be sluggish, erratic, or 

result in frames of poor quality.  EHO functions similarly 

to an elephant herd, with leaders directing sound solutions 

and substituting poor alternatives.  Compared to standard 

GAN tweaking, this lets the model explore 

hyperparameters more effectively, trains more quickly, 

lowers frame mistakes, enhances style consistency, and 

produces more accurate, high-quality animations. The 

Discriminator C tries to maximize U(C,H)  making real 

frames score high and fake frames score low. SEH-

ConGAN uses the Generator (H)  to produce real 

animation frames as w based on conditioning variables z, 

and the Discriminator (C) to discriminate between actual 

and created frames (equation 2). 

 

min max U(C,H)=Fw,z [log C(w|z) ]| Fw,z [log (1 C(H(w|z)|z)) ] (2) 
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EHO optimizes learning rates, architectural depth, 

and noise parameters to reduce frame reconstruction 

error in equation (3). 

 

Fitness=
1

M
∑ ||ŵj-wj||

2M
j=1   (3) 

 

Where M  is the number of frames, ŵj is the 

generated frame, wj  is the real frame, and ||ŵj-wj||
2
 

measures the pixel-wise error to evaluate fitness. 

Algorithm 1 shows the pseudocode for SEH-ConGAN. 

Advantages of using SEH-ConGAN 
➢ Reduces animation production time by 

automating repetitive creative tasks. 

➢ Creates frames that are both style-consistent and 

contextually aware. 

➢ Scalability allows for the adaptation to numerous 

animation genres. 

➢ Improves training efficiency with clever 

hyperparameter adjustment. 

➢ Improves robotic coordination for complicated 

scenario execution. 

 

Algorithm 1: SEH-ConGAN 

Input: 

    - Dataset D with 10,000 samples and 10 classes 

    - Number of clans C = 3 

    - Clan size N = 5 elephants per clan (total 15 elephants) 

    - Maximum iterations MaxIter = 20 

    - GAN training epochs per evaluation = 5 epochs 

    - Hyperparameter search space P: 

        * Learning rate: [0.0001, 0.001, 0.01] 

        * Batch size: [32, 64, 128] 

        * Noise dimension: [50, 100, 150] 

Output: 

    - Trained conditional GAN with optimized hyperparameters 

Begin 

1. Initialize elephant population E: 

    For each clan c in [1..3]: 

        For each elephant j in [1..5]: 

            Randomly assign hyperparameters h_e from P 

            e.g. h_e = {learning_rate=0.001, batch_size=64, noise_dim=100} 

2. For iteration = 1 to 20 do: 

    2.1 For each elephant e in population E: 

        - Extract hyperparameters h_e = {lr, batch_size, noise_dim} 

        - Train a conditional GAN for 5 epochs on dataset D using h_e 

        - Evaluate performance metric f_e = FID score on validation data 

          (Lower FID means better) 

    2.2 For each clan c in [1..3]: 

        - Find clan chief e_chief with lowest FID in clan c 

        - For each clan member e_j ≠ e_chief: 

            Update h_e_j as: 

                lr_new = lr_chief + random_uniform(-0.0001, 0.0001) 

                batch_size_new = batch_size_chief (round if needed) 

                noise_dim_new = noise_dim_chief + random_choice([-10, 0, +10]) 

            Ensure h_e_j within valid range 

    2.3 Clan separation: 

        - For each clan: 

            Remove worst performing elephant (highest FID) 

            Replace with a new elephant with random hyperparameters from P 

3. After 20 iterations: 

    - Select best elephant e_best with lowest FID 

    - Retrain the conditional GAN on full training data for 50 epochs using e_best hyperparameters 

4. Return trained GAN model and e_best hyperparameters 

End 

 

 

3.3.1 ConGAN 
The ConGAN modules, with a special emphasis on the 

two primary modules, generator and discriminator, and 

their responsibilities in the animation creation process. In 

this case, the generator acts as a creative design team, 

creating frames, characters, and scenarios based on the 

provided concept art and style guides. The discriminator 

serves as a quality control unit, examining each produced 

sequence to verify that it satisfies the intended creative 

style, smoothness of motion, and visual consistency 

before it is incorporated into the final animation. In Figure 

4, the ConGAN model takes as input a latent noise vector 
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and motion type labels, along with real motion capture 

sequences from the Robot-Assisted Animation Motion 

Capture Dataset. It outputs either generated motion 

sequences (Generator) or a probability score 

(Discriminator) indicating whether the input motion is 

real or AI-generated, enabling realistic animation 

synthesis and validation. 

 

 

Figure 4: ConGAN architecture 

 

Generator 

The generator is a stack of artificial neural networks 

where the number of cells doubles in each successive 

layer. Activation layers are separated by dense layers. The 

last layer is that which comes preceding the output layer, 

which is a batch normalization layer that is used as a 

regularization measure to enhance stability and 

generalization properties. Equation (4) supplies a 

generator function to the latent input y and a conditional 

input d , where H  is a nonlinear function, such as an 

artificial neural network. Equation (4) produces a 

sequence of multivariate data called z⃗h that represents the 

animation material being modeled throughout the creation 

process. 

H:(y⃗⃗,d⃗⃗)⟼z⃗h  (4) 

The vector z⃗h could represent discrete, continuous, or 

a combination of both type of variable.  To prevent mode 

collapse and overfitting, white noise is added to the z⃗h 

output before feeding it to the discriminator. 

 

Discriminator 

It has been shown that other assumptions include the fact 

that the log-likelihood-ratio between created animation 

frames z⃗h , and the actual frames w⃗⃗⃗⃗c  is finite, and the 

Jensen-Shannon divergence will not reach a maximum 

value under the condition JS[z⃗h|w⃗⃗⃗⃗c]. This leads to the use 

of additive noise with a normal distribution and variable 

variance to avoid over-fitting of the quality evaluator 

(discriminator) during training. It introduced noise to 

each sample, zh∈z⃗h and  wc  ϵ  z⃗c, to avoid overfitting on 

the training set (equation 5). 

C:(z⃗,w̃)⟼z⃗c    where    z⃗⃗⃗⊇ z⃗h, w⃗⃗⃗c (5) 

As part of the training, the objective loss function of 

the ConGAN, which measures the connection between the 

generator and discriminator in the generation of 

animation, is given as follows in equation (6), where KH 

and KC are losses of the generator and discriminator. 

KC=F[log(C(w⃗⃗⃗c,w̃))]+F[ log (1-C (F(H(y⃗⃗,d⃗⃗),w̃))]

KH=F[log(C(H(y⃗⃗
 
,d⃗⃗),w̃)))]

 

(6) 

Where C is the discriminator, H is the generator, w⃗⃗⃗c 

is the real input data, y⃗⃗
 
 is the encoded noise vector, and d⃗⃗ 

is the encoded condition or context. KC  evaluates the 

discriminator's ability to discriminate between actual and 

created samples, whereas KH  measures the generator's 

ability to mislead the discriminator. 

 

Controlling discriminator overfitting 

It is possible to add synthetic noise to the output of the 

generator (z⃗h) and the real sample input (w⃗⃗⃗c) and use this 

in animation production. In this case, the generator could 

represent a robot-based animation frame generator, 

whereas the real scenarios are legitimate, artist-created 

frames. One of the basic assumptions of GANs is that 
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the logarithmic probability ratio  
z⃗h(z⃗c)

w⃗⃗⃗c(z⃗c)
. However, in 

complex animation production scenarios, given 

H:(y⃗⃗,d⃗⃗)⟼z⃗h where the support is  {y ∈y⃗⃗,d∈d⃗⃗ :H(y,d)≠0}, 

the intersection between the generator's output space and 

the real frame distribution  w⃗⃗⃗c in high-dimensional 

feature space could be ∅  if the distributions are 

degenerate. As shown in equation (5), the addition of 

synthetic noise would generate overlapping supports of 

these two distributions. This overlap ensures that the 

probability distribution is not infinite, and the Jensen-

Shannon divergence is a continuous function and will not 

lead to a final result that is constant. As a consequence, 

overfitting in the discriminator is minimized, resulting in 

more consistent and visually cohesive animation frames. 

 

3.3.2 Scalable elephant herding (SEH) 

SEH in animation production makes it easier to manage 

significant, complicated character groups by allowing for 

effective coordination, realistic movement modeling, and 

resource optimization for crowd scenes, resulting in faster 

production times and better visual consistency in large-

scale animated productions. Elephants are gregarious 

creatures that live in tribes and are female. A matriarch 

leads an elephant clan, and it includes a large number of 

elephants. The female elephants in the clan decided to 

stay with their family members, whilst the male elephants 

prefer to be outside. 

They gradually grow independent of their family, 

eventually leaving them. SEH is inspired by elephants' 

herding habits. SEH considers the following assumptions: 

➢ Some clans have a predetermined number of 

elephants. 

➢ Male elephants were able to leave behind their 

group of family and live alone for generations 

without being integrated into the rest of the group.  

➢ Every clan has a matriarch who leads the elephants. 

Elephant behavior could be modeled as clan updates 

and separations. Each elephant in the population adds or 

removes creative elements in production tasks to ensure 

animation quality and consistency. SEH models elephant 

behavior as clan updating and separating operators. The 

clan-modifying operator updates the elephants' present 

location and matriarch, followed by the separating 

operator. The suggested SEH model aims to optimize 

production speed while balancing refinement 

(exploitation) and innovation (exploration) stages. 

 

The initialization process and fitness 

function 

A clan contains several elephants, and each elephant is a 

solution (i.e., a completed animation sequence), again 

represented using a series of 0s and 1s. The 1 denotes an 

appearance of a critical animation frame, whereas the 0 

denotes its absence from the sequence. The first elephant 

in the population symbolizes a series of key frames from 

the original storyboard. The remaining elephants in the 

population update specific frames at random, but the 

initial elephant's frames stay unchanged. As a result, an 

initial population including a variety of animation options 

is created. Following the initialization procedure, each 

elephant's fitness value is computed based on 

the smoothness of motion, consistency with the storyline, 

visual coherence, scheduling accuracy, and frame 

continuity. The fitness function is expressed in equation 

(7). 

Min fit ⃗⃗ ⃗⃗ ⃗=[fit1,fit2,fit3,fit4,fit5] (7) 

Where,  

 fit1=|HF|             

 fit2=|LR| 

 fit3=RHD+RLD         

 fit4=
N0_of_GR  

R
        

 fit5=
No_of_T

Size_of_C  
 

In the equation above, |HF| indicates the number of 

hidden flaws, |LR| indicates the number of lost revisions, 

the revision hiding distance is RHD, and the revision loss 

distance is RLD. No_of_GR denotes the number of ghost 

frames, which are animation frames that were not 

included in the original storyboard but emerge in the final 

render following revisions. R  is the total number of 

frames completed that meet the required Minimum 

Quality Threshold (MQT)  and Minimum Consistency 

Threshold (MCT) . No_of_T  indicates the number of 

adapted scenes, and Size_of_C represents the whole size 

of the animation production. 

 

The clan upgrading operator 

Each elephant z in clan w has an old place (fw,z
s

). The new 

position will be affected by the matriarch of the clan, fw,z
s+1

, 

nw
s  Matriarch’s position for the clan w at iteration s, using 

the following equation in equation (8): 

fw,z
s+1

=fw,z
s

+α×(nw
s -fw,z

s )+β×(dw
s

-fw,z
s )+γ×rand (8)  

Where α, β, and γ are scaling variables ranging from 

0 to 1 that define the task effect on an animator's new 

position, the animator's affinity towards the core 

production team, and the animator's inclination to 

function autonomously, respectively. The random 

vector rand = (2 × r - 1)(fmax-fmin)  is chosen from a 

uniform distribution, with fmax  and fmin  representing an 

animator's upper and lower constraints on the animation 

parameters.  dw
s

 is the center of the production team and is 

determined as follows in equation (9): 

 dw
s

=
1

Numw
 × ∑ fw,z

s
z  (9) 

Where Numw is the number of elephants in the Clan 

w. The new position of the matriarch is a straight mix of 

their previous position. To control convergence on the 

clan center, as well as that of the random walk, three 

control parameters (alpha, beta, and gamma) are used. 

 

Separating operator 

Male elephants create a separation operator, which could 

be simulated. 

fw,worst
s

=fmin+ (fmax-fmin)×q     (10) 

Equation (10) translates fmin and fmax as the upper and 

lower limits of an elephant’s position, respectively, and 

fw,worst
s

 as the worst single elephant in the clan dw . The 
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separation operator probability density function starts 

with q, a pseudo-random number Generator (PRNG), a 

uniformly distributed random number between 0 and 1 

generator. To produce a uniformly distributed, arbitrarily-

chosen integer between the boundaries [fmin , fmax], q must 

be scaled and moved. The floor function is utilized to 

generate an evenly distributed arbitrary integer value 

within a given range. The floor function ( [fmin , 

fmax))=(fmin. fmax-1)  indicates a constant homogeneous 

distribution over the range [fmin, fmax]. Figure 5 depicts the 

whole flow of SEH-based optimization for scheduling the 

animation production process. 

 

 

Figure 5: Flowchart for SEH 

 
The hyperparameters of the Scalable Elephant Herding-

tuned Conditional GAN (SEH-ConGAN) framework are 

described in Table 2. It covers parameter symbols, 

example values, ranges, and explanations for both GAN 

training and SEH optimization, including learning rates, 

population structure, update frequencies, and fitness 

assessment parameters for balanced generator-

discriminator performance 

.
Table 2: Hyperparameters for SEH-ConGAN 

 

Hyperparameter Symbol / Vector Pos. Example Value Range / Bounds 

Total epochs E 200 - 

Batch size B 64 16 - 128 

Discriminator steps/iteration n_D 1 1 - 5 

Generator steps/iteration n_G 1 1 - 5 

SEH period (epochs) P_seh 10 5 - 20 

SEH population size N_pop 24 12 - 40 

Number of clans C 4 3 - 6 

Clan size - 6 - 

SEH iterations per run I_seh 12 5 - 30 

Candidate dimension dim_p 6 - 

Generator learning rate p[0] = lr_G 0.0002 1e-5 - 5e-3 

Generator β₁ p[1] = beta1_G 0.5 0.0 - 0.999 

Latent std. scale p[2] 1.0 0.5 - 2.0 

BatchNorm momentum p[3] 0.1 0.01 - 0.5 
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Conv. channel scale factor p[4] 1.0 0.5 - 2.0 

L2 reg. lambda p[5] 0.0002 0.0 - 1e-3 

Clan attraction factor α 0.12 0.05 - 0.2 

Gaussian perturbation scale β 0.02 0.01 - 0.05 

Separation probability p_separate 0.12 0.05 - 0.2 

Migration frequency migration_freq 3 2 - 5 

Fitness class accuracy weight γ 0.8 0.5 - 1.0 

Inner steps in candidate eval inner_steps 3 1 – 8 

4 Results and discussion 

The implementation details display in Table 3 ensure 

reproducibility and provide a clear understanding of the 

computational resources required for the proposed 

framework.

 
Table 3: Implementation and training specifications

Component Description 

Hardware (Computational 

Setup) 

NVIDIA RTX 3080 GPU (10 GB), Intel i7-11700 CPU, 32 GB RAM, 

Ubuntu 20.04 

Framework Python, PyTorch 2.0 

Training Time per Epoch 24 seconds (SEH-ConGAN), 19 seconds (ConGAN baseline) 

Total Training Duration ~78 minutes for 200 epochs 

Stopping / Convergence 

Criteria 

Stop after 200 epochs OR generator loss Δ < 0.001 for 12 consecutive 

epochs 

Generator Architecture 7 layers, 3.2M parameters 

Discriminator Architecture 5 layers, 1.1M parameters 

Total Parameters 4.3M trainable parameters 

GAN Training Strategy 1 discriminator step per iteration, 1 generator step per iteration 

To assess the proposed technique, with the standard ConGAN 

trained on the robot-assisted animation motion capture dataset 

serving as a baseline comparison. The dataset contains several 

motion patterns from robot-assisted animation creation. It 

enables quick preprocessing, training, and evaluation, 

ensuring fair performance evaluation for creating high-

quality, realistic animated motion sequences. 

 

4.1 Experimental results 
The robot-assisted animation production process was depicted 

in Figure 6. Figure 6(a) depicts 3D motion trajectories for 

activities such as running, sitting, waving, jumping, walking, 

and dancing in X, Y, and Z  space, allowing the system to 

capture, distinguish, and accurately replicate diverse 

character movements during animation creation. It serves as 

a visual reference for motion variety, allowing users to spot 

motion overlaps and distinct movement patterns. This 

information enables the robot to automatically adjust 

animation environments to match Individual motions, 

resulting in realistic and expressive output. Figure 6(b) shows 

the correlation between the position of servo motors (Servos 

1 and 2) and the rating of the motion quality, in which the 

brighter colors represent higher quality. It draws the optimal 

control range over the servo motions that produce the most 

fluid animations. This kind of calibration guarantees reduced 

mechanical stress, longer component life and stability in the 

reproduction of high-quality motion. 
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Figure 6: Robot-assisted animation production process (a) motion trajectories for activities (b) servo position vs 

motion quality 

 
Figure 7 represents the torque patterns (torque_1, torque_2, 

and torque_3) of three actuators during 50 animation frames 

in the process of creating the animation involving the robot-

assisted. The values of torque remain at the highest limit 

(~0.5) and change slightly but in the same way, which also 

demonstrates the stable and steady functioning of the joints. 

It is stable and thus the motion can be executed smoothly 

and accurately and this is very important in creation of good 

animations. The observation and analysis of these torque 

patterns can allow a more balanced distribution of loads, 

reduced mechanical wear and better performance of the 

actuators. It makes robots work reliably and efficiently 

throughout long sequences of animation production through 

the refinement of control algorithms. 
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Figure 7: Torque variation across frames for robotic actuators in animation production  

 
The column actor-id is probably the one that is the person 

(human or robot) who carries out the motion sequence 

recorded. The Figure 8 shows the performance measures 

of Actor 1 during the process of creating robot-assisted 

animation. The Z-axis motion versus time is plotted in 

figure 8(a) where the red line illustrates changes in 

positions with 50 frames and the shaded area represents 

variation. It assists in calculating the stability of 

horizontal motion leading to smooth and natural motion. 

Figure 8(b) shows the smoothed quality of motion frame 

by frame with a rolling mean, the purple line shows a 

constant quality and the stippled area shows moderate 

changes. With these insights, purposeful adjustments to 

the parameter of robotic motion are possible, minimizing 

deviations of the expected movements. Such analysis 

guarantees accurate motion replication, which improves 

animation realism and production efficiency. 

 

 

 

Figure 8: Actor 1 performance for animation production process (a) Z-axis motion over time (b) smoothed motion 

quality over frame 

 

4.2 Performance metrics 
The performance metrics for robot-assisted animation 

creation are interpreted using frame-level and action-level 

validation: 

➢ Accuracy: The percentage of created animation 

outputs that accurately match the ground-truth 

motion plan, including anticipated poses, 

transitions, or scene-level activities, is known as 
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accuracy.  It shows how reliably the technology 

generates legitimate motion sequences. 

➢ Precision: The percentage of correctly generated 

frames or actions among all outputs that the model 

classifies as accurate is known as precision.  It 

assesses how well the system ensures that the 

majority of created motions are legitimate by 

preventing the production of erroneous, jittery, or 

stylistically inconsistent frames. 

➢ Recall: It quantifies the number of crucial motion 

transitions, animation frames, and important ground 

truth acts that are successfully replicated.  A high 

recall means that crucial stages or movement 

components are not overlooked by the system. 

➢ F1 Score: The model's overall capacity to generate 

error-free frames while simultaneously capturing 

all necessary motion features is shown by the F1-

score, which strikes a compromise between 

precision and recall. 

The translation of classification metrics to animation 

creation is made evident by treating each created frame or 

motion action as an anticipated output and comparing it 

with the ground-truth animation sequence. 

The stance of each frame is compared to the ground-

truth pose in SEH-ConGAN since the model predicts 

animation at the frame level.  When the difference in joint 

angles is between two and five percent of the actual 

motion, a frame is considered accurate.  In order to 

preserve smooth motion, we also verify that action 

transitions (such as steps or rotations) occur in the proper 

sequence.  Since the model produces pose sequences 

rather than images, pixel-level comparisons are not 

utilized.  With this configuration, the number of correct 

frames, the number of incorrect frames avoided, and the 

completeness of the created motion sequence are all 

directly measured by accuracy, precision, recall, and F1-

score. 

 

4.3 5-Fold cross-validation for animation 

production process 
The 5-Fold cross-validation for the robot-assisted 

animation production process reveals remarkable 

performance in automating motion design, scene 

coordination, and post-production operations using SEH-

ConGAN, as shown in Table 4. Across five folds, the 

system obtained perfect results in folds 1 and 4, with 

accuracy, precision, recall, and F1-score all equal to 

1.0000, signifying perfect execution. The scores for fold 

2 were accuracy 0.9667, precision 0.9722, recall 0.9667, 

and F1-score 0.9664, whereas fold 3 obtained 0.9333, 

0.9400, 0.9333, and 0.9325. Fold 5 measured 0.9333, 

0.9444, 0.9333, and 0.9324 for similar parameters. These 

consistently good results show the AI-driven system's 

capacity to reliably forecast motion patterns, manage 

scene variances, and provide smooth, high-quality 

outputs, minimizing the need for manual intervention and 

simplifying processes in animation creation. 

 
Table 4: Performance metrics using 5-Fold cross-validation and their average values for SEH-ConGAN 

 

Fold Accuracy Precision Recall F1-score 

1 1.0000 1.0000 1.0000 1.0000 

2 0.9667 0.9722 0.9667 0.9664 

3 0.9333 0.9400 0.9333 0.9325 

4 1.0000 1.0000 1.0000 1.0000 

5 0.9333 0.9444 0.9333 0.9324 

Average values 0.96 0.97 0.96 0.96 

The robot-assisted automation system for the animation 

production process performs well using SHE-ConGAN, 

with an accuracy of 0.96, showing that it successfully 

automates motion design and scene coordination in 

almost all circumstances. The model's precision of 0.97 

demonstrates its ability to produce correct and artistically 

consistent animations with minimal faults. A recall rate of 

0.96 demonstrates its ability to capture and complete a 

significant number of essential animation tasks without 

exclusion. The F1-score of 0.96 demonstrates a fair trade-

off between precision and recall, resulting in dependable, 

efficient, and high-quality animation automation. 

 

4.4 Comparison of the proposed technique 

with standard techniques 
Figure 9 illustrates that the proposed SEH-ConGAN 

method is better than its counterpart, the ConGAN in the 

robot-aided animation generation procedure. In Figure 9, 

SEH-ConGAN enhances accuracy of motion of robots by 

minimizing position error by 4.5cm and4.9o to 1.8cm and 

2.3o respectively. It also enhances the smoothness of 

trajectory by 78 to 95, motion repeatability by 72 to 96 

and pose alignment score by 74 to 94. The performance 

of style transfer is indicated in Table 5, where SEH-

ConGAN led to higher animation style fidelity of 94% 

compared to 81%, color consistency of 92 over 79, and 

texture/detailed accuracy compared to 91 over 77, poses 

style consistency compared to 93 over 80 and visual 

consistency across frames compared to 78 over 72, 

indicating better animation clarity and consistency. The 

aforementioned criteria measure how realistic robot-

assisted animation is: visual coherence guarantees 

seamless temporal transitions, while style integrity, color, 

texture, and posture accuracy capture spatial correctness.  

SEH-ConGAN consistently outperforms ConGAN in 

every metric, exhibiting improved style transfer and 

visual authenticity. These findings show that SEH-

ConGAN not only improves robotic motion execution but 

also provides high-quality visual style transfer. Overall, 

the strategy considerably improves mechanical 

correctness and visual authenticity in robot-assisted 

animation production. 
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Figure 9: Comparative performance for the proposed and the baseline method using the animation production process, 

robotic motion accuracy 

 

Table 5: Performance analysis of style transfer accuracy baseline and proposed method 

 

Style Transfer Accuracy ConGAN SEH-ConGAN [Proposed] 

Animation Style Fidelity (%) 81 94 

Color Consistency (%) 79 92 

Texture & Detail Accuracy (%) 77 91 

Pose Style Matching (%) 80 93 

Visual Coherence Across Frames (%) 78 92 

 

 

 

4.5  Performance comparison of existing and 

proposed motion generation models 
The performance of existing motion generation models 

Time-Series Latent Adversary (TSLA), Action-

Conditioned Transformer for Motion Generation (ACTOR), 

Motion Generative Flow (MoGlow), and Video Swin 

Transformer – generative variant (VideoSwin) [24] was 

compared with the proposed Scalable Elephant Herding-

tuned Conditional Generative Adversarial Network (SEH-

ConGAN) for robot-assisted animation. Four key 

evaluation metrics were used: Mean Per Joint Position Error 

(MPJPE), Fréchet Inception Distance (FID), Smoothness, 

and Diversity as shown in Table 6. 

 

MPJPE (Mean per Joint Position Error) 
MPJPE evaluates motion correctness in animation by 

calculating the average Euclidean distance between 

expected and ground-truth 3D joint locations.  More 

accurate motion replication is indicated by lower numbers 

in Equation (11). 

MPJPE=
1

N
∑ ‖Pj

pred
-Pi

gt
‖

2

N
i=1  (11) 

Where Pj

pred
 and Pi

gt
 are predicted and ground-truth 3D 

joint coordinates i, and N is the total number of joints. ∥⋅∥2 

represents the Euclidean (L2) norm In this research SEH-

ConGAN achieved the lowest error of 16.7, followed by 

TSLA (18.4), ACTOR (21.7), MoGlow (23.9), and 

VideoSwin (34.5), demonstrating superior performance in 

producing realistic motions as shown in Figure 10 (a).  

 

FID (Fréchet Inception Distance)  
It measures how realistic generated animation frames are by 

contrasting the feature distributions of ground-truth and 

anticipated data in Figure 10 (a).  Higher visual fidelity is 

indicated by lower values in Equation (12).   

FID= ‖μ
r
-μ

g
‖

2

2

+Tr(Σr+Σg-2(ΣrΣg)
1

2 )  (12) 

 

Where, μ
r
 and Σr are the mean and covariance of the 

real (ground-truth) features. μ
g
 and Σg are the mean and 

covariance of the generated features. ‖μ
r
-μ

g
‖

2

2

 is the 

squared Euclidean distance between the feature means. 

Tr (∙) is the trace of a matrix, and (ΣrΣg)
1

2 is the matrix 

square root of the product of covariances. 

The SEH-ConGAN outperformed TSLA (12.5), 

ACTOR (15.8), MoGlow (17.2), and VideoSwin (22.6) 

with the lowest FID of 11.3, exhibiting better motion 

representation and frame-level realism in robot-assisted 

animation. 

 

Smoothness 
In measuring sudden shifts or jitter in joint trajectories 

across time, smoothness assesses the temporal 

consistency of generated motion sequences.  Smoother 

and more organic motion transitions, which are essential 

for realistic animation and fluid robotic reproduction, 

are indicated by lower numbers in Equation (13). 

smoothness= 
1

N(T-1)
∑ ∑ ‖Pi

t-Pi
t-1‖T

t=2
N
i=1 (13) 

Where Pi
t  represents the 3D position of joint i  at 

time t, N is the total number of joints, and T is the total 

number of frames. The SEH-ConGAN achieved the 

lowest smoothness value of 0.028, indicating highly 

continuous and natural motion in Figure 10 (b). This 

outperformed TSLA (0.032), ACTOR (0.041), MoGlow 

(0.050), and VideoSwin (0.078), demonstrating superior 

temporal stability and fluidity in robot-assisted 

animation trajectories. 
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Diversity 
Diversity assesses the model's capacity to generate a broad 

variety of unique postures and actions by looking at the 

diversity of generated motion sequences.  Richer and more 

varied motions are indicated by higher values, which are 

crucial for producing realistic and captivating animation in 

Equation (14). 

 

Diversity=
1

M
∑ Var(Pi)

M
i-1   (14) 

Where Pi denotes the joint positions of motion 

sequence i , and M  is the total number of generated 

sequences. In this research, SEH-ConGAN achieved the 

highest diversity score of 0.72, surpassing TSLA (0.68), 

ACTOR (0.61), MoGlow (0.59), and VideoSwin (0.40). 

In Figure 10 (b) demonstrates SEH-ConGAN’s superior 

capability to generate a broad spectrum of motions, 

enhancing animation realism and creative flexibility in 

robot-assisted production.

 

Table 6: Comparison of motion generation models for robot-assisted animation 

 

Model MPJPE↓ FID↓ Smoothness↓ Diversity↑ 

TSLA [24] 18.4 12.5 0.032 0.68 

ACTOR [24] 21.7 15.8 0.041 0.61 

MoGlow [24] 23.9 17.2 0.050 0.59 

VideoSwin (gen.) [24] 34.5 22.6 0.078 0.40 

SEH-ConGAN  [Proposed] 16.7 11.3 0.028 0.72 

 

 

 
Figure 10: Evaluation of Motion Generation Models Across (a) MPJPE↓ and FID↓ and (b) Smoothness↓ and 

Diversity↑ 

 

4.6  Statistical analysis 

Statistical analysis was used to confirm SEH-ConGAN's 

superiority over baseline models to support the objective of 

creating a robot-assisted AI system that generates high-

quality animations with enhanced motion accuracy and less 

manual labor.  A paired t-test was utilized to determine 

whether SEH-ConGAN's improvements were statistically 

significant because all models were tested on the identical 

preprocessed motion-sequence folds.  Additionally, we 

provided 95% confidence intervals to guarantee 

consistency between folds and computed Cohen's d effect 

size to gauge the degree of performance gain.  In order to 

verify robust generalization on unseen animation data, a 

held-out test set evaluation was introduced at the end.  This 

combined analysis shows that the suggested approach 

offers statistically significant improvements. 
 

 

Table 7: Comprehensive Statistical Comparison Between ConGAN and SEH-ConGAN

 

Metric ConGAN 

(Mean ± SD) 

SEH-

ConGAN 

(Mean ± 

SD) 

p-

value 

(t-test) 

Significance Cohen’s d 

(Effect 

Size) 

95% CI 

(Mean 

Difference) 

Held-Out 

Test 

(ConGAN → 

SEH-

ConGAN) 

Accurac

y 

0.88 ± 0.04 0.96 ± 0.03 0.012 Significant (p 

< 0.05) 

1.92 [0.04, 0.12] 0.86 → 0.95 

(+10.5%) 

Precisio

n 

0.89 ± 0.05 0.97 ± 0.02 0.008 Significant 1.84 [0.05, 0.13] 0.87 → 0.96 

(+10.3%) 
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Recall 0.87 ± 0.05 0.96 ± 0.03 0.015 Significant 1.98 [0.05, 0.14] 0.85 → 0.95 

(+11.8%) 

F1-

Score 

0.88 ± 0.04 0.96 ± 0.03 0.011 Significant 1.90 [0.04, 0.12] 0.86 → 0.95 

(+10.5%) 

 
 

The Table 7 provides a thorough statistical comparison 

utilizing Accuracy, Precision, Recall, and F1-Score 

between the suggested SEH-ConGAN framework and the 

baseline ConGAN model.  SEH-ConGAN demonstrates 

its improved capacity to produce stable, high-quality, and 

style-consistent animation outputs by achieving 

significant performance gains across all measures, with 

improvements ranging from +9.0% to +10.3%.  The 

improvements are statistically significant because all 

paired t-test p-values are less than the significance level 

(p < 0.05).  The significant practical benefit of the 

suggested approach is further supported by very large 

effect sizes (Cohen's d > 1.80).  High reliability and low 

variance during animation development are indicated by 

the narrow ranges of the 95% confidence intervals.  SEH-

ConGAN regularly outperforms ConGAN by 10–12% in 

held-out test results, demonstrating its resilience in 

practical automation workflows. Overall, it supports the 

main goal of the study by demonstrating how SEH-

ConGAN greatly improves automation accuracy, 

consistency, and reliability in AI-driven animation 

production. 

 

4.7 Ablation study on component 

contributions to SEH-ConGAN 

performance 
The ablation study assesses each system component's 

contribution to the goal of producing realistic, fluid, and 

accurate robot-assisted animation in Table 8. Although 

motion noise is still present, preprocessing alone 

(missing-value management + Z-score normalization) 

provides basic consistency, attaining 81.3–79.1% across 

measures. Optimization increases performance to 86.9–

88.7% and increases stability. Motion structure is further 

improved by integrating the base ConGAN generator, 

with accuracy ranges of 90.6–92.4%. The highest 

performance, 95.7–96.8% is achieved by the entire SEH-

ConGAN, demonstrating that semantic encoding, 

hierarchical generation, and optimized learning work 

together to create the smoothest trajectories, precise 

poses, and context-aware animation synthesis. 

 

Table 8: Ablation study results for animation generation 

 

Model Variant Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Preprocessing Only (Missing-value handling + Z-score 

normalization) 

81.3 79.8 78.5 79.1 

Preprocessing + Optimization (EHO-based parameter 

tuning) 

88.7 87.5 86.9 87.1 

Preprocessing + Optimization + Base ConGAN 92.4 91.0 90.6 90.8 

Full Proposed Hybrid SEH-ConGAN 96.8 95.7 96.2 95.9 

4.8  Discussion 
Robot-assisted systems for animation production seek to 

automate labor-intensive processes, improve accuracy, 

and increase efficiency by combining robots with AI and 

deep learning approaches. In this context, sophisticated 

approaches have great potential but also significant limits. 

The EMOTION framework [16] allows humanoid robots 

to make socially suitable and expressive motions, which 

improves human-robot interaction; yet, it fails to catch 

delicate gestures and context-dependent signals, 

compromising naturalness in complicated circumstances. 

The E-FOOM with CBAM [17] increases character visual 

appeal and posture reconstruction, but it struggles with 

extreme postures, fast motions, and highly dynamic 

scenarios, potentially reducing animation accuracy. 

Similar to this, current motion generating models [24] 

(TSLA, ACTOR, MoGlow, VideoSwin) sometimes have 

poor trajectory smoothness, limited motion diversity, or 

decreased frame-level realism, which limits their capacity 

to produce completely varied and natural animations in 

robot-assisted production. The SEH-ConGAN improves 

animation production by effectively producing high-

quality, diversified character movements with minimal 

manual labor. It also improves model parameters for 

greater accuracy and realism in animated scenes. The 

robot-assisted animation system performs well, with an 

accuracy of 0.96, a recall of 0.96, a precision of 0.97, and 

an F1-score of 0.96, indicating that automated motion 

creation is dependable, exact, and balanced for animation 

production. 

 

5 Conclusion 

The animation production process is usually labor-

intensive, involving meticulous attention to character 

motion layout, scene composition, and post-production 

editing. It is made up of a motion capture interface, a 

robotic arm with feedback sensors, and a simulation 

environment for testing animation settings. Data 

preprocessing includes managing missing values and 

using Z-score normalization to provide consistent, high-

quality AI model input. A sophisticated deep learning 
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algorithm. The SEH-ConGAN model is used to learn 

motion patterns, forecast human motion estimation, and 

transfer realistic motion styles. The AI models allow the 

system to acquire knowledge from animation data, forecast 

smooth character movements, and produce realistic 

animations depending on user input. The suggested 

method achieves better performance by using 5-fold cross-

validation, and their average values are accuracy, recall, 

F1 score (0.96), and precision (0.97). A comparison of 

motion generation metrics reveals that SEH-ConGAN 

outperforms current models, obtaining the best MPJPE 

(16.7), FID (11.3), Smoothness (0.028), and Diversity 

(0.72), exhibiting higher animation realism, trajectory 

smoothness, and motion correctness. The robot-assisted 

animation system can struggle with highly creative 

activities, subtle character emotions, and complicated 

artistic styles, necessitating extensive setup and operator 

training. Future enhancements could involve AI-driven 

innovation, real-time human-robot cooperation, adaptive 

style learning, and support for 3D animation pipelines. 

Enhancing scalability and compatibility with cloud-based 

solutions can help to simplify production, decrease manual 

labor, and make animation processes more efficient and 

adaptable. 
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