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The animation production process is traditionally labor-intensive, requiring extensive manual effort in
character motion design, scene composition, and post-production editing. To overcome these limitations,
this research introduces a robot-assisted automation system integrated with artificial intelligence (Al) to
streamline and accelerate animation development. The system incorporates a motion capture interface
for acquiring human movement data, a feedback-enabled robotic arm to replicate and analyze motions,
and a simulation environment for virtual testing. Preprocessing includes missing-value handling and Z-
score normalization, after which structured motion sequences (3D joint coordinates, robotic servo
positions, and torque data) are provided as input to the Scalable Elephant Herding-tuned Conditional
Generative Adversarial Network (SEH-ConGAN). The model generates refined outputs such as smooth
motion trajectories, facial expression synthesis, and context-aware style transfer. Statistical analysis
using a paired t-test, 95% confidence intervals, and Cohen’s d effect size was performed to confirm the
significant performance improvement of SEH-ConGAN over baseline models Performance is evaluated
using 5-fold cross-validation and achieves an accuracy of 0.96, precision of 0.97, recall of 0.96, and F1-
score of 0.96. Comparative analysis of motion generation metrics shows that SEH-ConGAN surpasses
existing models achieving the best MPJPE (16.7), FID (11.3), Smoothness (0.028), and Diversity (0.72),
demonstrating superior motion accuracy, trajectory smoothness, and animation realism. . The findings
demonstrate that combining robotics with SEH-ConGAN provides a scalable solution for producing high-
quality animations with reduced time, cost, and manual intervention.

Povzetek: Raziskava predstavlja robotsko podprt Al-sistem za avtomatizacijo animacije, ki z modelom
SEH-ConGAN omogoca natancnejse, bolj tekoce in realisticne gibe ob bistveno manjSem casu, stroskih
in rocnem delu.

focus on creative decision-making instead of technical
performance [5]. With the introduction of artificial
intelligence (Al) and machine learning, automation has
been enhanced to include intelligent motion prediction,
style transfer, and scene optimization, which have
extended the production cycle and produced their
products with guaranteed quality standards [6]. Due to the
creative and subjective nature of animation, achieving full
automation without human interaction is difficult.

1 Introduction

The animation production method is complex and multi-
layered, with the production process converting creative
ideas into action-rich visual content [1]. Pre-production
covers storyboarding, concept design, and screenplay
writing, and production includes character modeling,
rigging, scene layout, animation, and rendering [2].
Lastly, compositing, sound design, and editing are the
other post-production processes through which the output

is made ready to be distributed. The technological
advancements have augmented the productivity, but the
traditional pipelines are still labor-intensive and require
professional animators to take care of the subtle
differences in the motions of the characters, and
coordination of the scenes, and do some visual effects [3].
This makes animation both time-consuming and resource-
intensive, especially for large-scale productions with
high-quality standards.

Automation in animation refers to the utilization of
electronic tools and computer procedures to make
repetitive and time-consuming tasks easy [4]. It consists
of procedural animation methods, automatic lip-synching,
motion capture, and background making. Automation
spares human effort in the tasks where manual repetition
can be detrimental to production, and artists are able to

Robot-aided systems are still automation beyond
software and bring physical or creative support functions
into the animation process that can be carried out by
robotic hardware [7]. Such technologies could be applied
to a stop-motion animation process to facilitate precise
camera movements, robotically controlled puppets, and
object placement [8]. The robotic installations within the
virtual production setting could have the capability to
collaborate with the digital technologies to capture the
information regarding the motion, choose the movements
of cameras, and reproduce the complicated shots and
movements accurately [9]. Integration of this type
enhances repeatability and reduces manual setup. Manual
setup can be performed within, and fragile tasks can be
repeated that are found by human operators to be quite
impossible to perform manually. Figure 1 shows the
robot-assisted animation production process.
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Figure 1: Robot-assisted animation production process

A robot-assisted automation system for animation
production leverages modern robotics, Al, and animation
software to maximize productivity while maintaining
artistic integrity [10]. A configuration like this would be
able to process every day, yet technically difficult tasks,
make real-time adjustments, and promote the formation
of a team between human artists and automatic tools by
attaching sensors, motion control systems, and intelligent
algorithms [11]. The strategy can transform the process of
animation production through reducing costs, reducing
schedules, and enabling studios to produce more creative
material. Robot-assisted automation is one of the
potential directions in a rapidly evolving entertainment
industry to faster, smarter, and more adaptable animation
pipelines [12].

Current machine learning techniques in animation
production, including Long Short-Term Memory (LSTM)
networks to predict temporal motion sequences and
Variational Autoencoders (VAE) to generate smooth
character poses, have increased automation but lack
flexibility, compared to manual design, in that they are
expensive to setup, can only adapt to particular artistic
styles, and do not give as much creative freedom. These
obstacles are overcome, to develop a SEH-ConGAN-
based robot-assisted animation system that can learn
human motion patterns, reduce motion estimation errors,
and improve realistic motion style transfer to achieve
higher adaptability, accuracy, and creative diversity in
automated animation workflows. The contribution section
is as follows:

Dataset: Prepared and validated good-quality
animation motion dataset that comprised various motions
of the character to adequately train the model.

Data preprocessing: It should be acknowledged that
data preprocessing, Z-score normalization and missing
values, was performed to ensure the stability of noise-free
inputs into the model performance.

Proposed Framework: It suggested a robot-assisted
animation system that effectively automates animation
production phases by combining a deep learning model
SEH-ConGAN.

Experimental validation: The proposed solution was
tested experimentally and proved to be more animated,
realistic, and performed better in terms of rendering than
conventional manual production pipelines.

Research Questionnaire:

RQ1: In comparison to conventional ConGAN or
manual animation techniques, can the SEH-ConGAN
model produce robot-assisted animation sequences with
better motion accuracy and stylistic fidelity?

RQ2: What effects do Elephant Herding
Optimization (EHO)-optimized SEH-ConGAN
hyperparameters have on training efficiency, style
consistency, and animation quality?

RQ3: How much does the suggested approach
enhance overall automation in the animation production
process and lessen manual labor?

2 Related works

To examines developments in digital human technology
and expression transfer in cinema and television
animation [13]. Techniques like 3D digital human
modeling and facial expression mapping improve
emotional performance and realism. Results show
increased viewer engagement and character plausibility.
High computational costs, moral dilemmas, and possible
abuse are among the limitations. There are documented
numerical gains in motion precision and expression
fidelity. It emphasizes the need of realistic, emotionally
compelling animation in contemporary storytelling and
calls for scalable, morally sound frameworks.

The deep learning (DL) technologies for animated
scene creation and data mining were presented in [14]. It
generated realistic and diversified animation scenarios
using a powerful DL model, as well as Data Mining (DM)
approaches such as cluster analysis and classification
identification. The findings demonstrated DL's efficacy in
lowering manual design burden and increasing efficiency.
DM technology also offered appropriate market
positioning and content innovation guidance for
animation production.

Digital technology has revolutionized animation by
incorporating physical human movement and bridging the
gap between digital and performing arts. A framework of
real-time character animation that integrated the
performer as an instantaneous creator of effect,
expression, and character was proposed in [15]. It was
possible to visualize the internal response through
wearable technology by capturing bio signals (i.e., heart
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rate and skin response). Movement and bio signals were
captured by sensors to create nonverbal personality
characteristics and signs.

The framework allowed humanoid robots to develop
expressive motion sequences called EMOTION [16],
which improved the capacity to participate in nonverbal
communication. The method employed huge language
models' in-context learning to build socially suitable
gesture motion sequences for human-robot interaction.
The system was evaluated and shown to meet or
outperform human performance in creating intelligible
and natural robot motions.

The animated film characters improved the quality and
accuracy of the pictures in the first-order motion model
(FOMM). Convolutional block attention model (CBAM)
was proposed in [17], who wanted to think about the
essential features and restore the distortion of the image due
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to the change of posture. The suggested enhanced FOOM
(E-FOOM) model was intended to improve end-to-end
character image production. According to the experimental
results, the E-FOOM model had the highest performance of
image resolution, key point detection accuracy, and
reconstruction of posture when compared to other models.

Al and machine learning have revolutionized
animation, altering character movement and interaction
[18]. It investigated how the technologies automate chores,
increase realism, and open up new creative possibilities. It
examined scenarios and industry practices to demonstrate

The influence of Al on storytelling, production
pipelines, and the prospects of animated entertainment. It
recognized the limitations of Al in animation, which could
influence animators' careers and enterprises. Table 1
displays the further related works.

Table 1: Comparative summary of existing animation and robot-assisted motion generation techniques

References Technique / Model Used Dataset / Input

Type

Evaluation Metrics /

Results

Strengths

Limitations

Racinskis et al. Feedforward NN & Multi-modal inputs;

RNN outperformed

Demonstration-

Performance not

simulations

generation; strong
real-time
capability

2022 [19] Recurrent Neural Networks Motion capture FFNN but not based robot stable; lacks style
for robot motion concepts (most feasible) consistently motion learning; transfer; no
multi-modal robotic animation
capability generation
Liu et al. 2024 CAD + Reinforcement CAD models, RL Generated realistic Integrates CAD, Focus only on
[20] Learning + Computer action modeling, SFEX during filming RL, CV for SFX; does not
Vision for animation SFX CV-based object automated SFX handle motion
tracking creation style transfer; no
robot-assisted
system
Wang et al. [21] Deep Reinforcement Rule-based action Improved swarm High-quality Not suitable for
Learning with RAG + inputs for swarm behavior & control swarm animation; human motion
dynamic reward animation precision real-time prediction; no
interaction GAN-based
realism
enhancement
Pibernik et al. Experimental evaluation of | Loading animations | Statistical tests showed Demonstrates Conducted in
2023 [22] loading-animation design, with varied significant influence importance of controlled
semantics, and motion structure, metaphor, on perceived wait- nontemporal laboratory setting;
properties and speed time; measurable animation cues; limited animation
differences in strong empirical variations
perceived load-speed insights
Kang and Kim CAD-based character CAD geometric High-quality character Integrates CAD, Limited
et al. 2024 [23] modeling + VR-driven models, VR-based outputs; real-time VR, and simulation
action design + interaction performance; high user optimization; diversity; no
optimization algorithm sequences satisfaction across realistic action statistical

validation across
diverse animation
environments
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Li et al. 2025
[24]

Temporal-Stylistic Latent
Animator (TSLA) +
Domain-Informed
Animation Realignment
Strategy (DIARS)

temporal and
stylistic dynamics

Real-time animation
sequences capturing

Outperforms existing High-fidelity Computationally
methods in animation synthesis; intensive; requires
completion, style semantic comprehensive
transfer, and semantic consistency; training datasets;
editing stylistic may need domain-

coherence; specific tuning

supports real-time,
complex human
motion

2.1 Problem statement

The existing animation approaches have significant
limitations. Motion capture technologies [13] often face
high prices, complicated integration into production
workflows, and demand substantial resources, restricting
accessibility. Deep learning-based animated scene
production [14] can save manual design labor, but it
cannot be adaptable to different animation styles and
requires a large amount of labeled data. Reinforcement
learning techniques for animation special effects [20]
enhance automation and quality, but they frequently require
significant computer resources and suffer from real-time
performance restrictions. To address these issues, the
proposed SEH-ConGAN provides a scalable and efficient
framework that uses elephant herding optimization to fine-
tune the conditional GAN, improving animation quality
while lowering training time and resource requirements.
This technology strikes a compromise between accessibility
and high-quality output, hence improving practical
animation production procedures.

Data
Preprocessing

Dataset

Robot-Assisted
Animation
motion Capture _{
Dataset (=T
- 3hH
=

A Robot-Assisted Automation
System for Animation

3 Methodology

The process of animation production has never ceased to be
labor intensive; this includes the proper motion design,
structure of the scene and the post production. It uses a
curated dataset of animation motion that contains a great
variety of motions, which were first preprocessed with the
aid of missing value management and Z-score
normalization to give uniform noise-free data. The
presented proposal is a robot-assisted animation system,
which automated and optimized production stages
involving the integration of the SEH-ConGAN.
Experimental results depict high promotion of evaluation
measures, which is a scalable cost-effective option of
studios and individual producers seeking high quality
productions without manual interventions. Figure 2 shows
the overall suggested flow for the animation production
process.

Performance
evaluation

I

Production

Figure 2: Overall suggested flow for robot-assisted animation production process

3.1 Dataset

The Robot-Assisted Animation Motion Capture Dataset
combines motion capture, robotic arm input, and motion
quality evaluation to provide detailed, realistic data for
Al-driven animation development. It is composed of 100
motion sequences, each comprising 50 frames of 3D
skeleton joint coordinates, servo motor locations, and
torque data from a simulated robotic arm. The dataset
encompasses a range of motion types, including walking,
running, leaping, waving, sitting, and dancing, along with
additional information such as actor ID and a
motion_quality score column for supervised learning or
regression purposes. Its multi-modal and well-structured
data format makes it perfect for investigating motion
tracking, robotic animation control, movement analysis,
and animation quality evaluation, allowing for repeatable
trials with controlled variability.

Source: https://www.kaggle.com/datasets/ziya07/robot-
assisted-animation-motion-capture-dataset/data

3.2 Data preprocessing

Data preprocessing in  robot-assisted animation
production includes imputation or removal of missing
values to ensure dataset completeness, as well as Z-score
normalization to standardize features and enable
consistent scaling for improved Al model accuracy and
performance during motion tracking and scene
automation.

3.2.1 Handling missing values

To handle missing values in the robot-assisted animation
motion capture dataset, first check for gaps in the 3D joint
coordinates, servo motor locations, torque measurements,
and metadata fields. Interpolation or forward/backward
filling can be used to approximate missing frames in
sequential numerical data such as joint coordinates and
sensor inputs while maintaining temporal continuity. If
the missing data is large or impacts whole sequences,
consider deleting those samples to preserve dataset


https://www.kaggle.com/datasets/ziya07/robot-assisted-animation-motion-capture-dataset/data
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quality. If categorical metadata, such as motion type or
actor ID, is missing, check the source logs or eliminate
the impacted sequences. This method minimizes data loss
while retaining integrity, resulting in reliable motion
analysis and machine learning tasks.

3.2.2 Z-Score normalization

In the robot-assisted animation motion capture data set,
the focus will be on each numerical feature to its mean
(W) and normalized to its standard deviation (o). This will
be done according to the following formula: The data are
normalized to maintain consistent scaling across the
features (including 3D coordinates of skeleton joints,
servo motor position, and torques) in all motion
sequences, regardless of their initial point units or value
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range. The approach increases model stability, learning
efficiency, and detects tiny variations in motion quality
patterns, allowing for precise robotic animation control
and quality evaluation.

W-
Wnew= T”L (1)

Where W,,.- new value, W — old value, u- mean, o-
standard deviation value. The servo locations and torques
following Z-score normalization are shown in Figure 3,
which ensures consistent feature scaling, balanced value
ranges, and increased comparability for accurate analysis
in robot-assisted animation production.

Figure 3: Pairwise feature relationships after Z-score normalization for servo positions and torques

3.3 SEH-ConGAN

The SEH-ConGAN is a novel approach that
revolutionizes the field of robot-aided animation
production, combining Al in content production with
smart optimization. Traditional animation production
involves a heavy investment of manual work in designing
character movements, setting up the scenery, and
characterizing the scene dimensions, and this might be
long and tedious. SEH-ConGAN addresses these
limitations effectively to enable the robotic arm executes
motion patterns for animation generation, which can
adjust styles to various plots and dynamically respond to
director instructions through changes in motion patterns.
By using conditional GANs, the system creates outputs
based on certain animation parameters (e.g., position,
camera angle, illumination), resulting in context-aware
creation. The Elephant Herding Optimization (EHO)
method fine-tunes hyperparameters for optimal training
stability, frame quality, and style consistency, allowing
the system to scale across animation genres and
production sizes. Due of their slowness and frequent

instability for GANs, SEH is preferred over grid search
and Bayesian optimization. SEH provides smoother
motion with better animation quality, increases
convergence speed, and more effectively investigates
hyperparameters. Elephant Herding Optimization (EHO)
in SEH-ConGAN automatically modifies the GAN
hyperparameters, such as learning rate, network size, and
noise settings, to improve training. Selecting these
hyperparameters by hand may be sluggish, erratic, or
result in frames of poor quality. EHO functions similarly
to an elephant herd, with leaders directing sound solutions
and substituting poor alternatives. Compared to standard
GAN tweaking, this lets the model explore
hyperparameters more effectively, trains more quickly,
lowers frame mistakes, enhances style consistency, and
produces more accurate, high-quality animations. The
Discriminator C tries to maximize U(C,H) making real
frames score high and fake frames score low. SEH-
ConGAN uses the Generator (H) to produce real
animation frames as w based on conditioning variables z,
and the Discriminator (C) to discriminate between actual
and created frames (equation 2).

min max U(C,H)=F,,, [logC(wl|z) ]| F,,, [log (1 C(H(w|z)|2))] (2)
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EHO optimizes learning rates, architectural depth, Advantages of using SEH-ConGAN
and noise parameters to reduce frame reconstruction Reduces animation production time by
error in equation (3). automating repetitive creative tasks.
»  Creates frames that are both style-consistent and
Fitness=$2j‘£l ||v“vj-wj||2 (3) contextually aware.
»  Scalability allows for the adaptation to numerous
Where M is the number of frames, W;is the > ?nlmatlon genres. .. .
] ) mproves training efficiency with clever
generated frame, w; is the real frame, and ||®%;-wi| hyperparameter adjustment.
measures the pixel-wise error to evaluate fitness. » Improves robotic coordination for complicated

Algorithm 1 shows the pseudocode for SEH-ConGAN. scenario execution.

Algorithm 1: SEH-ConGAN

Input:
- Dataset D with 10,000 samples and 10 classes
- Number of clans C = 3
- Clan size N = 5 elephants per clan (total 15 elephants)
- Maximum iterations MaxIter = 20
- GAN training epochs per evaluation = 5 epochs
- Hyperparameter search space P:
* Learning rate: [0.0001, 0.001, 0.01]
* Batch size: [32, 64, 128]
* Noise dimension: [50, 100, 150]
Output:
- Trained conditional GAN with optimized hyperparameters
Begin
1. Initialize elephant population E:
For each clan cin [1..3]:
For each elephant j in [1..5]:
Randomly assign hyperparameters h_e from P
e.g. h_e = {learning rate=0.001, batch_size=64, noise_dim=100}
2. For iteration = 1 to 20 do:
2.1 For each elephant e in population E:
- Extract hyperparameters h_e = {Ir, batch_size, noise_dim)}
- Train a conditional GAN for 5 epochs on dataset D using h_e
- Evaluate performance metric f e = FID score on validation data
(Lower FID means better)
2.2 Foreachclan cin [1..3]:
- Find clan chief'e_chief with lowest FID in clan ¢
- For each clan member e_j # e_chief:
Update h_e_j as:
Ir_new = Ilr_chief + random_uniform(-0.0001, 0.0001)
batch_size_new = batch_size_chief (round if needed)
noise_dim_new = noise_dim_chief + random_choice([-10, 0, +10])
Ensure h_e_j within valid range
2.3 Clan separation:
- For each clan:
Remove worst performing elephant (highest FID)
Replace with a new elephant with random hyperparameters from P
3. After 20 iterations:
- Select best elephant e_best with lowest FID
- Retrain the conditional GAN on full training data for 50 epochs using e_best hyperparameters
4. Return trained GAN model and e_best hyperparameters
End

3.3.1 ConGAN provided concept art and style guides. The discriminator
The ConGAN modules, with a special emphasis on the  serves as a quality control unit, examining each produced
two primary modules, generator and discriminator, and ~ sequence to verify that it satisfies the intended creative
their responsibilities in the animation creation process. In  style, smoothness of motion, and visual consistency
this case, the generator acts as a creative design team,  before itis incorporated into the final animation. In Figure
creating frames, characters, and scenarios based on the 4, the ConGAN model takes as input a latent noise vector
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and motion type labels, along with real motion capture
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(Discriminator) indicating whether the input motion is

sequences from the Robot-Assisted Animation Motion  real or Al-generated, enabling realistic animation
Capture Dataset. It outputs either generated motion  synthesis and validation.
sequences (Generator) or a probability score
Generator Discriminator
v
Dense Layer —>| Dense Layer
T Activation
Laver
Batch Normalization
Activation Layer 2
Dense Layer
Dense Layer Activation
T Laver
Embedding
P Dropout
Activation Layer Latent
Dense Layer T \
T Dense Layer
Activation Layer Labels Activation Layer
Real
Dense Layer Input Dropout
Figure 4: ConGAN architecture
Generator (discriminator) during training. It introduced noise to

The generator is a stack of artificial neural networks
where the number of cells doubles in each successive
layer. Activation layers are separated by dense layers. The
last layer is that which comes preceding the output layer,
which is a batch normalization layer that is used as a
regularization measure to enhance stability and
generalization properties. Equation (4) supplies a
generator function to the latent input y and a conditional
input d, where H is a nonlinear function, such as an
artificial neural network. Equation (4) produces a
sequence of multivariate data called Z, that represents the
animation material being modeled throughout the creation
process.

H:(?,d)'—)zh (4)
The vector Z, could represent discrete, continuous, or
a combination of both type of variable. To prevent mode

collapse and overfitting, white noise is added to the Z,
output before feeding it to the discriminator.

Discriminator

It has been shown that other assumptions include the fact
that the log-likelihood-ratio between created animation
frames Z,, and the actual frames w, is finite, and the
Jensen-Shannon divergence will not reach a maximum
value under the condition JS[Z,|w_]. This leads to the use
of additive noise with a normal distribution and variable
variance to avoid over-fitting of the quality evaluator

each sample, z,€7Z, and w, € Z., to avoid overfitting on
the training set (equation 5).

C:(z,W)—7Z, where 727, W, (5)

As part of the training, the objective loss function of
the ConGAN, which measures the connection between the
generator and discriminator in the generation of
animation, is given as follows in equation (6), where Ky
and K are losses of the generator and discriminator.

K=F[log(C(We.®)]+F[ log (1-C (F(H(7.d).#))]

Ky=F[log(C(HF ,d),%)))]

(6)

Where C is the discriminator, H is the generator, w,
is the real input data, y is the encoded noise vector, and d
is the encoded condition or context. K. evaluates the
discriminator's ability to discriminate between actual and
created samples, whereas K;; measures the generator's
ability to mislead the discriminator.

Controlling discriminator overfitting

It is possible to add synthetic noise to the output of the
generator (z,) and the real sample input (w.) and use this
in animation production. In this case, the generator could
represent a robot-based animation frame generator,
whereas the real scenarios are legitimate, artist-created
frames. One of the basic assumptions of GANs is that
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7n(Ze)

We(Go) |
complex animation production scenarios, given
H:(¥,d)—7, where the support is {y €y,ded :H(y,d)#0},
the intersection between the generator's output space and
the real frame distribution W, in high-dimensional
feature space could be @ if the distributions are
degenerate. As shown in equation (5), the addition of
synthetic noise would generate overlapping supports of
these two distributions. This overlap ensures that the
probability distribution is not infinite, and the Jensen-
Shannon divergence is a continuous function and will not
lead to a final result that is constant. As a consequence,
overfitting in the discriminator is minimized, resulting in
more consistent and visually cohesive animation frames.

the logarithmic probability ratio However, in

3.3.2 Scalable elephant herding (SEH)

SEH in animation production makes it easier to manage
significant, complicated character groups by allowing for
effective coordination, realistic movement modeling, and
resource optimization for crowd scenes, resulting in faster
production times and better visual consistency in large-
scale animated productions. Elephants are gregarious
creatures that live in tribes and are female. A matriarch
leads an elephant clan, and it includes a large number of
elephants. The female elephants in the clan decided to
stay with their family members, whilst the male elephants
prefer to be outside.

They gradually grow independent of their family,
eventually leaving them. SEH is inspired by elephants’
herding habits. SEH considers the following assumptions:
» Some clans have a predetermined number of

elephants.

» Male elephants were able to leave behind their
group of family and live alone for generations
without being integrated into the rest of the group.

»  Every clan has a matriarch who leads the elephants.
Elephant behavior could be modeled as clan updates

and separations. Each elephant in the population adds or

removes creative elements in production tasks to ensure
animation quality and consistency. SEH models elephant
behavior as clan updating and separating operators. The
clan-modifying operator updates the elephants' present
location and matriarch, followed by the separating
operator. The suggested SEH model aims to optimize
production  speed  while balancing  refinement
(exploitation) and innovation (exploration) stages.

The initialization process and fitness

function

A clan contains several elephants, and each elephant is a
solution (i.e., a completed animation sequence), again
represented using a series of Os and 1s. The 1 denotes an
appearance of a critical animation frame, whereas the 0
denotes its absence from the sequence. The first elephant
in the population symbolizes a series of key frames from
the original storyboard. The remaining elephants in the
population update specific frames at random, but the
initial elephant's frames stay unchanged. As a result, an
initial population including a variety of animation options
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is created. Following the initialization procedure, each
elephant's fitness value is computed based on
the smoothness of motion, consistency with the storyline,
visual coherence, scheduling accuracy, and frame
continuity. The fitness function is expressed in equation
(7).

Min fit =[fit,fit, fits fity, fits] (7)

Where,

fit,=|HF|

fit,=|LR|

fit;=RHD-+RLD

. NO_of_GR
flt4 =

flt5= —
Size_of_C

In the equation above, [HF| indicates the number of
hidden flaws, |LR| indicates the number of lost revisions,
the revision hiding distance is RHD, and the revision loss
distance is RLD. No_of GR denotes the number of ghost
frames, which are animation frames that were not
included in the original storyboard but emerge in the final
render following revisions. R is the total number of
frames completed that meet the required Minimum
Quality Threshold (MQT) and Minimum Consistency
Threshold (MCT). No_of T indicates the number of
adapted scenes, and Size _of C represents the whole size
of the animation production.

The clan upgrading operator
Each elephant z in clan w has an old place (f;,,). The new
position will be affected by the matriarch of the clan, ﬁ',fi

n$, Matriarch’s position for the clan w at iteration s, using
the following equation in equation (8):

f\;/\/t;:fi\/,z_‘—(p((n\s)v_fsw,z)_i_BX(div'ﬁ)v,z)—"_'yxrand (8)

Where a, B, and vy are scaling variables ranging from
0 to 1 that define the task effect on an animator's new
position, the animator's affinity towards the core
production team, and the animator's inclination to
function autonomously, respectively. The random
vector rand = (2 X 1 - 1)(fax-fmin) 1S chosen from a
uniform distribution, with f_,, and f;, representing an
animator's upper and lower constraints on the animation
parameters. d, is the center of the production team and is

determined as follows in equation (9):
1

&= 3,8, (9)

Nu

Where Num,, is the number of elephants in the Clan
w. The new position of the matriarch is a straight mix of
their previous position. To control convergence on the
clan center, as well as that of the random walk, three
control parameters (alpha, beta, and gamma) are used.

Separating operator

Male elephants create a separation operator, which could
be simulated.

fi/,worst:fmin+ (fmax'fmin)xq (10)

Equation (10) translates f,,;, and f,,,, as the upper and
lower limits of an elephant’s position, respectively, and
fi.worst @ the worst single elephant in the clan d,,. The
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separation operator probability density function starts
with g, a pseudo-random number Generator (PRNG), a
uniformly distributed random number between 0 and 1
generator. To produce a uniformly distributed, arbitrarily-
chosen integer between the boundaries [f,;, » fmax], @ Must
be scaled and moved. The floor function is utilized to
generate an evenly distributed arbitrary integer value
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within a given range. The floor function ([fmm,
fax) )=(fmin- fmax.1) indicates a constant homogeneous
distribution over the range [fi., fmax]- Figure 5 depicts the
whole flow of SEH-based optimization for scheduling the
animation production process.

y

)

|

Initialize the population of SEH

S=1
v

Each elephant randomly insert
or delete sensitive items

Yes

Clan Updating Operator

{

Separating Operator
v

Evaluate each elephant
individual based on its position

)

S=s+1

Ist

Calculate the fitness function

Arrange the elephants from
best to worst based on their
fitness function

<max__gen?
No

Return the best solution

¥

)

Figure 5: Flowchart for SEH

The hyperparameters of the Scalable Elephant Herding-
tuned Conditional GAN (SEH-ConGAN) framework are

training and SEH optimization, including learning rates,
population structure, update frequencies, and fitness

described in Table 2. It covers parameter symbols, assessment parameters for balanced generator-
example values, ranges, and explanations for both GAN  discriminator performance
Table 2: Hyperparameters for SEH-ConGAN
Hyperparameter Symbol / Vector Pos. Example Value Range / Bounds
Total epochs E 200 -
Batch size B 64 16 - 128
Discriminator steps/iteration n D 1 1-5
Generator steps/iteration n G 1 1-5
SEH period (epochs) P seh 10 5-20
SEH population size N pop 24 12 -40
Number of clans C 4 3-6
Clan size - 6 -
SEH iterations per run I seh 12 5-30
Candidate dimension dim p 6 -
Generator learning rate p[0]=Ir G 0.0002 le-5 - 5e-3
Generator [ p[1] =betal G 0.5 0.0 - 0.999
Latent std. scale p[2] 1.0 0.5-2.0
BatchNorm momentum p[3] 0.1 0.01-0.5
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Conv. channel scale factor p[4] 1.0 0.5-2.0
L2 reg. lambda p[5] 0.0002 0.0 - 1e-3
Clan attraction factor a 0.12 0.05-0.2
Gaussian perturbation scale B 0.02 0.01 - 0.05
Separation probability p_separate 0.12 0.05-0.2
Migration frequency migration freq 3 2-5
Fitness class accuracy weight Y 0.8 0.5-1.0
Inner steps in candidate eval inner_steps 3 1-8
4 Results and discussion
The implementation details display in Table 3 ensure  computational resources required for the proposed
reproducibility and provide a clear understanding of the  framework.

Table 3: Implementation and training specifications

Component Description
Hardware (Computational NVIDIA RTX 3080 GPU (10 GB), Intel i7-11700 CPU, 32 GB RAM,
Setup) Ubuntu 20.04
Framework Python, PyTorch 2.0

Training Time per Epoch

24 seconds (SEH-ConGAN), 19 seconds (ConGAN baseline)

Total Training Duration

~78 minutes for 200 epochs

Stopping / Convergence
Criteria

Stop after 200 epochs OR generator loss A < 0.001 for 12 consecutive

epochs

Generator Architecture

7 layers, 3.2M parameters

Discriminator Architecture

5 layers, 1.1M parameters

Total Parameters

4.3M trainable parameters

GAN Training Strategy

1 discriminator step per iteration, 1 generator step per iteration

To assess the proposed technique, with the standard ConGAN
trained on the robot-assisted animation motion capture dataset
serving as a baseline comparison. The dataset contains several
motion patterns from robot-assisted animation creation. It
enables quick preprocessing, training, and evaluation,
ensuring fair performance evaluation for creating high-
quality, realistic animated motion sequences.

4.1 Experimental results

The robot-assisted animation production process was depicted
in Figure 6. Figure 6(a) depicts 3D motion trajectories for
activities such as running, sitting, waving, jumping, walking,
and dancing in X,Y,and Z space, allowing the system to

capture, distinguish, and accurately replicate diverse
character movements during animation creation. It serves as
a visual reference for motion variety, allowing users to spot
motion overlaps and distinct movement patterns. This
information enables the robot to automatically adjust
animation environments to match Individual motions,
resulting in realistic and expressive output. Figure 6(b) shows
the correlation between the position of servo motors (Servos
1 and 2) and the rating of the motion quality, in which the
brighter colors represent higher quality. It draws the optimal
control range over the servo motions that produce the most
fluid animations. This kind of calibration guarantees reduced
mechanical stress, longer component life and stability in the
reproduction of high-quality motion.
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Figure 6: Robot-assisted animation production process (a) motion trajectories for activities (b) servo position vs
motion quality

Figure 7 represents the torque patterns (torque_1, torque_2,
and torque_3) of three actuators during 50 animation frames
in the process of creating the animation involving the robot-
assisted. The values of torque remain at the highest limit
(~0.5) and change slightly but in the same way, which also
demonstrates the stable and steady functioning of the joints.
It is stable and thus the motion can be executed smoothly

and accurately and this is very important in creation of good
animations. The observation and analysis of these torque
patterns can allow a more balanced distribution of loads,
reduced mechanical wear and better performance of the
actuators. It makes robots work reliably and efficiently
throughout long sequences of animation production through
the refinement of control algorithms.
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Figure 7: Torque variation across frames for robotic actuators in animation production

The column actor-id is probably the one that is the person
(human or robot) who carries out the motion sequence
recorded. The Figure 8 shows the performance measures
of Actor 1 during the process of creating robot-assisted
animation. The Z-axis motion versus time is plotted in
figure 8(a) where the red line illustrates changes in
positions with 50 frames and the shaded area represents
variation. It assists in calculating the stability of
horizontal motion leading to smooth and natural motion.

Figure 8(b) shows the smoothed quality of motion frame
by frame with a rolling mean, the purple line shows a
constant quality and the stippled area shows moderate
changes. With these insights, purposeful adjustments to
the parameter of robotic motion are possible, minimizing
deviations of the expected movements. Such analysis
guarantees accurate motion replication, which improves
animation realism and production efficiency.

Z-Axis Motion Over Time - Actor 1

Z Position

30 40 50

Smoothed Motion Quality Over Frames - Actor 1

0.86

0.84 \

0.83

Motion Quality (Rolling Mean)

0 10 20

30 40 50
Frame ID

(b)

Figure 8: Actor 1 performance for animation production process (a) Z-axis motion over time (b) smoothed motion
quality over frame

4.2 Performance metrics

The performance metrics for robot-assisted animation
creation are interpreted using frame-level and action-level
validation:

» Accuracy: The percentage of created animation
outputs that accurately match the ground-truth
motion plan, including anticipated poses,
transitions, or scene-level activities, is known as
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accuracy. It shows how reliably the technology
generates legitimate motion sequences.

»  Precision: The percentage of correctly generated
frames or actions among all outputs that the model
classifies as accurate is known as precision. It
assesses how well the system ensures that the
majority of created motions are legitimate by
preventing the production of erroneous, jittery, or
stylistically inconsistent frames.

» Recall: It quantifies the number of crucial motion
transitions, animation frames, and important ground
truth acts that are successfully replicated. A high
recall means that crucial stages or movement
components are not overlooked by the system.

»  F1 Score: The model's overall capacity to generate
error-free frames while simultaneously capturing
all necessary motion features is shown by the F1-
score, which strikes a compromise between
precision and recall.

The translation of classification metrics to animation
creation is made evident by treating each created frame or
motion action as an anticipated output and comparing it
with the ground-truth animation sequence.

The stance of each frame is compared to the ground-
truth pose in SEH-ConGAN since the model predicts
animation at the frame level. When the difference in joint
angles is between two and five percent of the actual
motion, a frame is considered accurate. In order to
preserve smooth motion, we also verify that action
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transitions (such as steps or rotations) occur in the proper
sequence. Since the model produces pose sequences
rather than images, pixel-level comparisons are not
utilized. With this configuration, the number of correct
frames, the number of incorrect frames avoided, and the
completeness of the created motion sequence are all
directly measured by accuracy, precision, recall, and F1-
score.

4.3 5-Fold cross-validation for animation

production process

The 5-Fold cross-validation for the robot-assisted
animation production process reveals remarkable
performance in automating motion design, scene
coordination, and post-production operations using SEH-
ConGAN, as shown in Table 4. Across five folds, the
system obtained perfect results in folds 1 and 4, with
accuracy, precision, recall, and Fl-score all equal to
1.0000, signifying perfect execution. The scores for fold
2 were accuracy 0.9667, precision 0.9722, recall 0.9667,
and F1-score 0.9664, whereas fold 3 obtained 0.9333,
0.9400, 0.9333, and 0.9325. Fold 5 measured 0.9333,
0.9444, 0.9333, and 0.9324 for similar parameters. These
consistently good results show the Al-driven system's
capacity to reliably forecast motion patterns, manage
scene variances, and provide smooth, high-quality
outputs, minimizing the need for manual intervention and
simplifying processes in animation creation.

Table 4: Performance metrics using 5-Fold cross-validation and their average values for SEH-ConGAN

Fold Accuracy Precision Recall F1-score
1 1.0000 1.0000 1.0000 1.0000
2 0.9667 0.9722 0.9667 0.9664
3 0.9333 0.9400 0.9333 0.9325
4 1.0000 1.0000 1.0000 1.0000
5 0.9333 0.9444 0.9333 0.9324
Average values 0.96 0.97 0.96 0.96

The robot-assisted automation system for the animation
production process performs well using SHE-ConGAN,
with an accuracy of 0.96, showing that it successfully
automates motion design and scene coordination in
almost all circumstances. The model's precision of 0.97
demonstrates its ability to produce correct and artistically
consistent animations with minimal faults. A recall rate of
0.96 demonstrates its ability to capture and complete a
significant number of essential animation tasks without
exclusion. The F1-score of 0.96 demonstrates a fair trade-
off between precision and recall, resulting in dependable,
efficient, and high-quality animation automation.

4.4 Comparison of the proposed technique

with standard techniques

Figure 9 illustrates that the proposed SEH-ConGAN
method is better than its counterpart, the ConGAN in the
robot-aided animation generation procedure. In Figure 9,
SEH-ConGAN enhances accuracy of motion of robots by
minimizing position error by 4.5cm and4.90 to 1.8cm and
2.30 respectively. It also enhances the smoothness of

trajectory by 78 to 95, motion repeatability by 72 to 96
and pose alignment score by 74 to 94. The performance
of style transfer is indicated in Table 5, where SEH-
ConGAN led to higher animation style fidelity of 94%
compared to 81%, color consistency of 92 over 79, and
texture/detailed accuracy compared to 91 over 77, poses
style consistency compared to 93 over 80 and visual
consistency across frames compared to 78 over 72,
indicating better animation clarity and consistency. The
aforementioned criteria measure how realistic robot-
assisted animation is: visual coherence guarantees
seamless temporal transitions, while style integrity, color,
texture, and posture accuracy capture spatial correctness.
SEH-ConGAN consistently outperforms ConGAN in
every metric, exhibiting improved style transfer and
visual authenticity. These findings show that SEH-
ConGAN not only improves robotic motion execution but
also provides high-quality visual style transfer. Overall,
the strategy considerably improves mechanical
correctness and visual authenticity in robot-assisted
animation production.
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Figure 9: Comparative performance for the proposed and the baseline method using the animation production process,
robotic motion accuracy

Table 5: Performance analysis of style transfer accuracy baseline and proposed method

Style Transfer Accuracy ConGAN SEH-ConGAN [Proposed]
Animation Style Fidelity (%) 81 94
Color Consistency (%) 79 92
Texture & Detail Accuracy (%) 77 91
Pose Style Matching (%) 80 93
Visual Coherence Across Frames (%) 78 92

4.5 Performance comparison of existing and

proposed motion generation models

The performance of existing motion generation models
Time-Series  Latent  Adversary (TSLA), Action-
Conditioned Transformer for Motion Generation (ACTOR),
Motion Generative Flow (MoGlow), and Video Swin
Transformer — generative variant (VideoSwin) [24] was
compared with the proposed Scalable Elephant Herding-
tuned Conditional Generative Adversarial Network (SEH-
ConGAN) for robot-assisted animation. Four key
evaluation metrics were used: Mean Per Joint Position Error
(MPJPE), Fréchet Inception Distance (FID), Smoothness,
and Diversity as shown in Table 6.

MPJPE (Mean per Joint Position Error)
MPJPE evaluates motion correctness in animation by
calculating the average Euclidean distance between
expected and ground-truth 3D joint locations. More
accurate motion replication is indicated by lower numbers
in Equation (11).

MPJPE=C SN [[PPepf| - (11)

Where P}’”d and P¢' are predicted and ground-truth 3D
joint coordinates i, and N is the total number of joints. ||,
represents the Euclidean (L2) norm In this research SEH-
ConGAN achieved the lowest error of 16.7, followed by
TSLA (18.4), ACTOR (21.7), MoGlow (23.9), and
VideoSwin (34.5), demonstrating superior performance in
producing realistic motions as shown in Figure 10 (a).

FID (Fréchet Inception Distance)
It measures how realistic generated animation frames are by
contrasting the feature distributions of ground-truth and
anticipated data in Figure 10 (a). Higher visual fidelity is
indicated by lower values in Equation (12).

FID= |-, ||i +Tr(zr+zg-2(zr2g)% ) (12)

Where, p_and X, are the mean and covariance of the
real (ground-truth) features. K, and X, are the mean and

2
covariance of the generated features. ||p.r-p.g|| is the

2
squared Euclidean distance between the feature means.

1
Tr () is the trace of a matrix, and (X,Z,)? is the matrix
square root of the product of covariances.

The SEH-ConGAN outperformed TSLA (12.5),
ACTOR (15.8), MoGlow (17.2), and VideoSwin (22.6)
with the lowest FID of 11.3, exhibiting better motion
representation and frame-level realism in robot-assisted
animation.

Smoothness

In measuring sudden shifts or jitter in joint trajectories
across time, smoothness assesses the temporal
consistency of generated motion sequences. Smoother
and more organic motion transitions, which are essential
for realistic animation and fluid robotic reproduction,
are indicated by lower numbers in Equation (13).

smoothness= N(;_]) N 2L ||Pi-Pi](23)

Where P} represents the 3D position of joint i at
time t, N is the total number of joints, and T is the total
number of frames. The SEH-ConGAN achieved the
lowest smoothness value of 0.028, indicating highly
continuous and natural motion in Figure 10 (b). This
outperformed TSLA (0.032), ACTOR (0.041), MoGlow
(0.050), and VideoSwin (0.078), demonstrating superior
temporal stability and fluidity in robot-assisted
animation trajectories.
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Diversity

Diversity assesses the model's capacity to generate a broad
variety of unique postures and actions by looking at the
diversity of generated motion sequences. Richer and more
varied motions are indicated by higher values, which are
crucial for producing realistic and captivating animation in
Equation (14).

Diversity:$ M Var(P;) (14)
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Where P; denotes the joint positions of motion
sequence i, and M is the total number of generated
sequences. In this research, SEH-ConGAN achieved the
highest diversity score of 0.72, surpassing TSLA (0.68),
ACTOR (0.61), MoGlow (0.59), and VideoSwin (0.40).
In Figure 10 (b) demonstrates SEH-ConGAN’s superior
capability to generate a broad spectrum of motions,
enhancing animation realism and creative flexibility in
robot-assisted production.

Table 6: Comparison of motion generation models for robot-assisted animation
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Figure 10: Evaluation of Motion Generation Models Across (a) MPJPE| and FID| and (b) Smoothness| and
Diversity?

4.6 Statistical analysis

Statistical analysis was used to confirm SEH-ConGAN's
superiority over baseline models to support the objective of
creating a robot-assisted Al system that generates high-
quality animations with enhanced motion accuracy and less
manual labor. A paired t-test was utilized to determine
whether SEH-ConGAN's improvements were statistically
significant because all models were tested on the identical

preprocessed motion-sequence folds. Additionally, we
provided 95% confidence intervals to guarantee
consistency between folds and computed Cohen's d effect
size to gauge the degree of performance gain. In order to
verify robust generalization on unseen animation data, a
held-out test set evaluation was introduced at the end. This
combined analysis shows that the suggested approach
offers statistically significant improvements.

Table 7: Comprehensive Statistical Comparison Between ConGAN and SEH-ConGAN

Metric ConGAN SEH- p- Significance | Cohen’s d 95% CI Held-Out
(Mean * SD) ConGAN value (Effect (Mean Test
(Mean £ (t-test) Size) Difference) | (ConGAN —
SD) SEH-
ConGAN)
Accurac | 0.88+0.04 0.96 +£0.03 | 0.012 Significant (p | 1.92 [0.04,0.12] | 0.86 — 0.95
y < 0.05) (+10.5%)
Precisio | 0.89 +0.05 0.97 £0.02 | 0.008 | Significant 1.84 [0.05,0.13] | 0.87 — 0.96
n (+10.3%)
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Recall 0.87 £ 0.05 0.96 £0.03 | 0.015 Significant 1.98 [0.05,0.14] | 0.85 — 0.95
(+11.8%)
Fi1- 0.88 £ 0.04 0.96+0.03 | 0.011 | Significant 1.90 [0.04,0.12] | 0.86 — 0.95
Score (+10.5%)

The Table 7 provides a thorough statistical comparison
utilizing Accuracy, Precision, Recall, and F1-Score
between the suggested SEH-ConGAN framework and the
baseline ConGAN model. SEH-ConGAN demonstrates
its improved capacity to produce stable, high-quality, and
style-consistent animation outputs by achieving
significant performance gains across all measures, with
improvements ranging from +9.0% to +10.3%. The
improvements are statistically significant because all
paired t-test p-values are less than the significance level
(p < 0.05). The significant practical benefit of the
suggested approach is further supported by very large
effect sizes (Cohen's d > 1.80). High reliability and low
variance during animation development are indicated by
the narrow ranges of the 95% confidence intervals. SEH-
ConGAN regularly outperforms ConGAN by 10-12% in
held-out test results, demonstrating its resilience in
practical automation workflows. Overall, it supports the
main goal of the study by demonstrating how SEH-
ConGAN greatly improves automation accuracy,

consistency, and reliability in Al-driven animation
production.

4.7 Ablation study on component
contributions to SEH-ConGAN

performance

The ablation study assesses each system component's
contribution to the goal of producing realistic, fluid, and
accurate robot-assisted animation in Table 8. Although
motion noise is still present, preprocessing alone
(missing-value management + Z-score normalization)
provides basic consistency, attaining 81.3—79.1% across
measures. Optimization increases performance to 86.9—
88.7% and increases stability. Motion structure is further
improved by integrating the base ConGAN generator,
with accuracy ranges of 90.6-92.4%. The highest
performance, 95.7-96.8% is achieved by the entire SEH-
ConGAN, demonstrating that semantic encoding,
hierarchical generation, and optimized learning work
together to create the smoothest trajectories, precise
poses, and context-aware animation synthesis.

Table 8: Ablation study results for animation generation

Model Variant Accuracy | Precision Recall F1-Score
(%) (%) (%) (%)

Preprocessing Only (Missing-value handling + Z-score 81.3 79.8 78.5 79.1
normalization)

Preprocessing + Optimization (EHO-based parameter 88.7 87.5 86.9 87.1
tuning)

Preprocessing + Optimization + Base ConGAN 92.4 91.0 90.6 90.8

Full Proposed Hybrid SEH-ConGAN 96.8 95.7 96.2 95.9

4.8 Discussion

Robot-assisted systems for animation production seek to
automate labor-intensive processes, improve accuracy,
and increase efficiency by combining robots with Al and
deep learning approaches. In this context, sophisticated
approaches have great potential but also significant limits.
The EMOTION framework [16] allows humanoid robots
to make socially suitable and expressive motions, which
improves human-robot interaction; yet, it fails to catch
delicate gestures and context-dependent signals,
compromising naturalness in complicated circumstances.
The E-FOOM with CBAM [17] increases character visual
appeal and posture reconstruction, but it struggles with
extreme postures, fast motions, and highly dynamic
scenarios, potentially reducing animation accuracy.
Similar to this, current motion generating models [24]
(TSLA, ACTOR, MoGlow, VideoSwin) sometimes have
poor trajectory smoothness, limited motion diversity, or
decreased frame-level realism, which limits their capacity
to produce completely varied and natural animations in
robot-assisted production. The SEH-ConGAN improves

animation production by effectively producing high-
quality, diversified character movements with minimal
manual labor. It also improves model parameters for
greater accuracy and realism in animated scenes. The
robot-assisted animation system performs well, with an
accuracy of 0.96, a recall of 0.96, a precision of 0.97, and
an Fl-score of 0.96, indicating that automated motion
creation is dependable, exact, and balanced for animation
production.

5 Conclusion

The animation production process is usually labor-
intensive, involving meticulous attention to character
motion layout, scene composition, and post-production
editing. It is made up of a motion capture interface, a
robotic arm with feedback sensors, and a simulation
environment for testing animation settings. Data
preprocessing includes managing missing values and
using Z-score normalization to provide consistent, high-
quality Al model input. A sophisticated deep learning
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algorithm. The SEH-ConGAN model is used to learn
motion patterns, forecast human motion estimation, and
transfer realistic motion styles. The Al models allow the
system to acquire knowledge from animation data, forecast
smooth character movements, and produce realistic
animations depending on user input. The suggested
method achieves better performance by using 5-fold cross-
validation, and their average values are accuracy, recall,
F1 score (0.96), and precision (0.97). A comparison of
motion generation metrics reveals that SEH-ConGAN
outperforms current models, obtaining the best MPJPE
(16.7), FID (11.3), Smoothness (0.028), and Diversity
(0.72), exhibiting higher animation realism, trajectory
smoothness, and motion correctness. The robot-assisted
animation system can struggle with highly creative
activities, subtle character emotions, and complicated
artistic styles, necessitating extensive setup and operator
training. Future enhancements could involve Al-driven
innovation, real-time human-robot cooperation, adaptive
style learning, and support for 3D animation pipelines.
Enhancing scalability and compatibility with cloud-based
solutions can help to simplify production, decrease manual
labor, and make animation processes more efficient and
adaptable.

Competing interests
The authors have declared that no competing interests
exist.

Data availibility statement

This study complies data availability policy. Data
access arrangements align with the journal's guidelines
and can be facilitated through the corresponding author.

Author Contributions

writing—original draft preparation:Hongping Tang
writing—review and editing:Hongping Tang

data curation:Hongping Tang

Reference

[1] Guo, Z. and Li, T., 2024. Practical analysis of virtua
| reality 3D modeling technology for animation maj
ors based on predictive correction method. Informati
ca, 48(13). https://doi.org/10.31449/inf.v48i13.6129

[2] Ecole, L., Kim, W.T. and Yoon, J.S., 2023. Unity: A
powerful tool for 3D computer animation productio
n. Journal of the Korea Computer Graphics Society,
29(3), pp.45-57. https://doi.org/10.15701/kcgs.2023.
29.3.45

[3] Yuanliang, W. and Zhe, Z., 2024. Integration effect
of artificial intelligence and traditional animation cr
eation technology. Journal of Intelligent Systems, 33
(1), p.20230305. https://doi.org/10.1515/jisys-2023-
0305

[4] Lungu-Stan, V.C. and Mocanu, I.G., 2024. 3D chara
cter animation and asset generation using deep learn
ing. Applied Sciences, 14(16), p.7234. https://doi.or
0/10.3390/app14167234

[5] Tang, J., 2023. Graphic design of 3D animation scen
es based on deep learning and information security t
echnology. Journal of ICT Standardization, 11(3), p

Informatica 50 (2026) 249-266 265

p.307-328. https://doi.org/10.13052/jicts2245-800X
1135

[6] Zhang, N., Meng, H., and Ju, M., 2024. Intelligent
construction of animation scenes and dynamic opti
mization of character images by computer vision. C
omputer-Aided Design and Applications, pp.233-24
6. https://doi.org/10.14733/cadaps.2024.525.233-24
8

[7] Hong, Z., Xu, X., and Liu, X., 2025. Application of
virtual reality technology based on artificial intelli
gence in a 3D animated film storyboard. Discover
Computing, 28(1), p.147. https://doi.org/10.1007/s1
0791-025-09670-7

[8] Nambiar, S., Wiberg, A. and Tarkian, M., 2023. Au
tomation of an unstructured production environmen
t by applying reinforcement learning. Frontiers in
Manufacturing Technology, 3, p.1154263. https://d
0i.0rg/10.3389/fmtec.2023.1154263

[9] Zhao, J. and Zhao, X., 2022. Computer-aided graph
ic design for virtual reality-oriented 3D animation s
cenes. Computer-Aided Design and Applications, 1
9(1), pp.65-76. https://doi.org/10.14733/cadaps.202
2.55.65-76

[10] Ding, W. and Li, W., 2023. High speed and accurac
y of animation 3D pose recognition based on an im
proved deep convolution neural network. Applied S
ciences, 13(13), p.7566. https://doi.org/10.3390/app
13137566

[11] Liu, X. and Zhao, H., 2025. MFFCN-GAN: Multi-s
cale feature fusion CNN with GAN for automated a
rtistic scene generation in film animation. Informati
ca, 49(9). https://doi.org/10.31449/inf.v49i9.8903

[12] Liu, X., 2022. Animation special effects production
method and art color research based on visual com
munication design. Scientific Programming, 2022(1
), p.7835917. https://doi.org/10.1155/2022/7835917

[13] Wibowo, M.C., Nugroho, S., and Wibowo, A., 202
4. The use of motion capture technology in 3D ani
mation. International Journal of Computing and Di
gital Systems, 15(1), pp.975-987. http://dx.doi.org/
10.12785/ijcds/150169

[14] Jiang, J. and Wang, X., 2024. Animation scene gen
eration based on deep learning of CAD data. Comp
uter-Aided Design and Applications, 21, pp.1-16. ht
tps://doi.org/10.14733/cadaps.2024.519.1-16

[15] El-Raheb, K., Kougioumtzian, L., Kalampratsidou,
V., Theodoropoulos, A., Kyriakoulakos, P. and VVos
inakis, S., 2025. Sensing the inside out: An embodi
ed perspective on digital animation through motion
capture and wearables. Sensors, 25(7), p.2314. http
s://doi.org/10.3390/s25072314

[16] Huang, P., Hu, Y., Nechyporenko, N., Kim, D., Tal
bott, W., and Zhang, J., 2025. EMOTION: Expressi
ve motion sequence generation for humanoid robots
with in-context learning. IEEE Robotics and Auto
mation Letters. https://doi.org/10.1109/LRA.2025.3
575983

[17] Cao, W. and Huang, Z., 2025. Character generation
and visual quality enhancement in animated films
using deep learning. Scientific Reports, 15(1), p.23
409. https://doi.org/10.1038/s41598-025-07442-3


https://doi.org/10.31449/inf.v48i13.6129
https://doi.org/10.15701/kcgs.2023.29.3.45
https://doi.org/10.15701/kcgs.2023.29.3.45
https://doi.org/10.1515/jisys-2023-0305
https://doi.org/10.1515/jisys-2023-0305
https://doi.org/10.3390/app14167234
https://doi.org/10.3390/app14167234
https://doi.org/10.13052/jicts2245-800X.1135
https://doi.org/10.13052/jicts2245-800X.1135
https://doi.org/10.14733/cadaps.2024.S25.233-248
https://doi.org/10.14733/cadaps.2024.S25.233-248
https://doi.org/10.1007/s10791-025-09670-7
https://doi.org/10.1007/s10791-025-09670-7
https://doi.org/10.3389/fmtec.2023.1154263
https://doi.org/10.3389/fmtec.2023.1154263
https://doi.org/10.14733/cadaps.2022.S5.65-76
https://doi.org/10.14733/cadaps.2022.S5.65-76
https://doi.org/10.3390/app13137566
https://doi.org/10.3390/app13137566
https://doi.org/10.31449/inf.v49i9.8903
https://doi.org/10.1155/2022/7835917
http://dx.doi.org/10.12785/ijcds/150169
http://dx.doi.org/10.12785/ijcds/150169
https://doi.org/10.14733/cadaps.2024.S19.1-16
https://doi.org/10.14733/cadaps.2024.S19.1-16
https://doi.org/10.3390/s25072314
https://doi.org/10.3390/s25072314
https://doi.org/10.1109/LRA.2025.3575983
https://doi.org/10.1109/LRA.2025.3575983
https://doi.org/10.1038/s41598-025-07442-3

266 Informatica 50 (2026) 249-266

[18] Zhang, N. and Pu, B., 2024. Film and television ani
mation production technology based on expression t
ransfer and virtual digital human. Scalable Computi
ng: Practice and Experience, 25(6), pp.5560-5567. h
ttps://doi.org/10.12694/scpe.v25i6.3351

[19] Racinskis, P., Arents, J. and Greitans, M., 2022. A
motion capture and imitation learning-based approac
h to robot control. Applied Sciences, 12(14), p.7186.
https://doi.org/10.3390/app12147186

[20] Liu, Y., Li, L. and Lei, X., 2024. Automatic generati
on of animation special effects based on computer vi
sion algorithms. Computer-Aided Design and Appli
cations, 21, pp.69-83. https://doi.org/10.14733/cada
ps.2024.523.69-83

[21]Wang, Z.S., Song, C.G., Leg, J., Kim, J.H., and Kim
, S.J., 2022. Controllable swarm animation using de

H. Tang et al.

ep reinforcement learning with a rule-based action
generator. IEEE Access, 10, pp.48472-48485. https:
//doi.org/10.1109/ACCESS.2022.3172492

[22] Pibernik, J., Doli¢, J., Mandi¢, L. and Kovag, V., 20
23. Mobile-application loading-animation design an
d implementation optimization. Applied Sciences, 1
3(2), p.865. https://doi.org/10.3390/app13020865

[23] Kang, Y. and Kim, J., 2024. Animation character g
eneration and optimization algorithm based on com
puter aided design and virtual reality. Computer-Ai
ded Design and Applications, 21(S14), pp.46-62. ht
tps://doi.org/10.14733/cadaps.2024.514.46-62

[24] Li, Q., Sun, T., and Zhang, M., 2025. Deep learning
-driven animation: Enhancing real-time character m

otion synthesis. IEEE Access. https://doi.org/10.11
09/ACCESS.2025.3623285


https://doi.org/10.12694/scpe.v25i6.3351
https://doi.org/10.12694/scpe.v25i6.3351
https://doi.org/10.3390/app12147186
https://doi.org/10.14733/cadaps.2024.S23.69-83
https://doi.org/10.14733/cadaps.2024.S23.69-83
https://doi.org/10.1109/ACCESS.2022.3172492
https://doi.org/10.1109/ACCESS.2022.3172492
https://doi.org/10.3390/app13020865
https://doi.org/10.14733/cadaps.2024.S14.46-62
https://doi.org/10.14733/cadaps.2024.S14.46-62
https://doi.org/10.1109/ACCESS.2025.3623285
https://doi.org/10.1109/ACCESS.2025.3623285

