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The high-dimensional communication data generated by wireless sensor networks often contains
substantial redundant and irrelevant information, which hampers the effective retention of critical
features. Consequently, the characteristics of network impairment states and abnormal intrusion
behaviors become intertwined and difficult to distinguish, ultimately compromising the accuracy of
intrusion detection. Therefore, this paper studies the method of abnormal intrusion detection of wireless
sensor network communication under network impairment. First, global node perception is achieved
through the wireless sensor network networking model to obtain high-dimensional communication data.
Second, the kernel principal component analysis (KPCA) method is used to perform nonlinear
dimensionality reduction on the data, significantly reducing the data dimension and computational
complexity while retaining the key information in the data. Subsequently, a restricted Boltzmann
machine (RBM) is introduced to extract the deep features of the dimensionality-reduced data to
distinguish the feature differences between network impairment states and abnormal intrusions. Finally,
a high-precision abnormal intrusion detection is achieved through an optimized naive Bayes classifier.
This classifier effectively improves the anti-interference ability under network impairment states by
feature weighting and micro conditional probability optimization, highlights key features, and realizes
abnormal intrusion detection. The experiment was conducted on a WSN dataset containing 50000
records, simulating a damaged scenario with a 30% packet loss rate and a 40% bandwidth limitation.
The results showed that the proposed method reduced the data dimensionality from 90 to 15 dimensions,
with a variance retention rate of 94.7%; In the detection of 10 types of attacks, the F1 value reaches
0.92, which is better than CNN (0.60) and association rules (0.62); At a 75% network damage rate, the
false positive rate is only 5%, with accuracy and recall rates of 0.94 and 0.86, respectively, and a single
sample prediction time of only 0.21 ms. This method maintains high detection accuracy while having
low computational overhead and strong robustness, making it suitable for WSN security protection in
complex damaged environments.

Povzetek: Prispevek predstavija ucinkovito metodo zaznavanja vdorov v brezzicnih senzorskih omrezjih
z visoko natancnostjo in nizko racunsko zahtevnostjo tudi ob okvarah omrezZja.

1 Introduction

Wireless sensor networks (WSNs) have been widely
applied in key fields such as industrial monitoring,
environmental perception, and intelligent transportation
due to their advantages [1] of self-organization, low cost,
and high flexibility [2]. Abnormal intrusion detection in
wireless sensor network communication [3] aims to
identify and defend against malicious behaviors such as
illegal node access, data tampering, and denial-of-service
attacks in real time [4], ensuring the security and
reliability of network data transmission [5]. However, in
actual application scenarios, the network often faces

multiple impairment risks such as channel interference,
node failure, and resource constraints [6]. Conducting
research on abnormal intrusion detection under network
impairment not only concerns the stable operation of the
sensor network itself but is also crucial for avoiding
serious consequences such as industrial accidents and
data leakage [7, 8], having important practical
significance for building a solid security defense line for
the Internet of Things and promoting the healthy
development of the intelligent industry [9].

Many scholars have conducted research on intrusion
detection for abnormal communications in wireless
sensor networks. For example, Niccolo et al.
reconstructed the data packets transmitted by wireless
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sensor nodes through an autoencoder, identified abnormal
traffic based on the reconstruction error, and achieved the
detection of unknown intrusions [10]. However, the
performance of autoencoders heavily depends on the
reconstruction mode of normal traffic. Under network
damage, abnormal traffic generated by channel
interference or node failure may have reconstruction
errors that are highly similar to malicious intrusion
behavior, making it difficult for the model to effectively
distinguish at the feature representation level, resulting in
poor detection performance. Karrothu et al. adopted an
end-cloud-fog detection structure. They collected sensor
data at the endpoint layer and transmitted it. The data of
the wireless sensor network was transformed at the cloud
computing layer through the Yeo-Johnson transform, and
feature selection was carried out with the Kulczynski
similarity. Then, the selected features were sent to an
ensemble classifier optimized by the GDO (Gazelle-Dog)
algorithm, and intrusion detection was completed using
the ensemble classifier at the fog computing layer [11].
However, the Kulczynski similarity relies on the
statistical relationship between data for feature screening.
When a new attack pattern or environmental mutation
occurs in the wireless sensor network, the relationship
between data features changes, and the existing similarity
calculation may misjudge the importance of features, thus
missing key abnormal features and reducing the detection
accuracy. Arkan et al. combined the wireless sensor
network with the software-defined network by
constructing a software-defined wireless sensor network
architecture (SDWSN). The sensor runs an unsupervised
intrusion detection algorithm module locally, clusters and
analyzes the data based on entropy and cumulative point
similarity, and sends the results to the SDWSN controller.
The controller comprehensively analyzes the data
analysis results of each region to determine whether the
data is abnormal and complete abnormal intrusion
detection [12]. However, in the case of network damage,
this method uses entropy and cumulative point similarity
as clustering criteria. In the case of network damage,
packet loss and noise interference can significantly affect
the stability of entropy and cumulative point similarity
calculations, causing deviations in these clustering
criteria and ultimately incorrectly dividing normal and
abnormal data, affecting the accuracy of intrusion
detection. Mutambik adopted the IoT-FIDS (Internet of
Things Intrusion Detection Based on Data Streams)
lightweight framework to achieve abnormal intrusion
detection. This framework captures details such as node
communication patterns and service usage by checking
data streams, and only analyzes benign traffic during the
detection process to identify abnormal behaviors,
avoiding the dependence on pre-labeled data and a large
amount of computing power. While reducing resource
consumption, it can accurately detect most abnormal
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traffic, reduce false alarms, and provide practical
protection for network security [13]. However, this
method cannot highlight the role of key features and is
difficult to accurately distinguish between normal traffic
changes and malicious behaviors, resulting in
misjudgment.

In addition to the research on detection architecture
mentioned above, from the perspective of data processing
and feature engineering, existing works have also
attempted to introduce various technologies. In terms of
data dimensionality reduction, Zhang B et al. [14] used
t-SNE for nonlinear dimensionality reduction, which
focuses on preserving the local neighborhood structure of
data points and mapping high-dimensional features (such
as texture features extracted by GLCM) to a low
dimensional space. However, such methods typically
focus on maintaining the topological structure of data for
visualization, with high computational complexity and a
lack of clear inverse mapping for dimensionality
reduction results, making it difficult to directly serve
efficient online detection tasks. Shen Z et al. [15] used
UMAP  technology to reduce and visualize
high-dimensional features, effectively evaluating the
class separability of features in low dimensional space.
However, the dimensionality reduction results of UMAP
have randomness, and their output is sensitive to
initialization parameters, which can lead to inconsistent
feature representations after dimensionality reduction at
different times or network states, seriously damaging the
stability of online detection models. In terms of deep
feature extraction, Alshehri et al. [16] proposed a model
that combines Wasserstein GAN and autoencoder
(WGAN-AE), which utilizes autoencoder reconstruction
to learn robust latent feature representations. However,
the training process of such generative models is
unstable, and under the noise interference introduced by
network damage, the dynamic balance between the
generator and discriminator is more difficult to maintain,
resulting in a decrease in the reliability of feature
extraction. Brian W et al. [17] constructed a hybrid model
integrating Transformer and random forest, which utilizes
the self attention mechanism of Transformer to
dynamically screen and weight key features. However,
this model has high computational complexity and strict
hardware resource requirements, making it difficult to
deploy on wireless sensor network nodes with limited
computing power; At the same time, its powerful feature
filtering ability highly relies on a large amount of
high-quality annotated data. In practical scenarios where
the network is damaged, attack patterns are variable, and
labels are scarce, its performance faces severe challenges.

The summary of research on anomaly intrusion
detection in wireless sensor networks is shown in Table
1.



Kernel-PCA + RBM Feature Extraction with Optimised Naive...

Informatica 50 (2026) 421-442 423

Table 1: Summary of related research on wireless sensor network anomaly intrusion detection

Author(s)
(Year)

Research Method

Scenario

Key Results

Limitations

Niccolo et

al. (2024)

Karrothu et

al. (2025)

Arkan et al.
(2023)

Mutambik
(2024)

Zhang B et
al. (2025)

Shen Z et al.
(2024)

Alshehri et al.

(2025)

Brian W et al.

(2024)

Autoencoder reconstructs data
packets transmitted by wireless
sensor nodes, identifies
anomalies based on

reconstruction error

End-cloud-fog architecture,
Yeo-Johnson transform +
Kulczynski similarity +
GDO-optimized ensemble

classifier

SDWSN architecture,
clustering analysis based on
entropy and cumulative point

similarity

10T-FIDS lightweight
framework, data flow pattern

inspection

t-SNE nonlinear

dimensionality reduction

UMAP dimensionality

reduction and visualization

WGAN-AE hybrid model

Transformer and random forest

hybrid model

Wireless sensor

networks

Wireless sensor

networks

Software-defined
wireless sensor

networks

10T data streams

Defect detection

(texture features)

Optical performance

monitoring data

10T intrusion detection

data

Satellite ground station

networks

Detects unknown

intrusions

Achieves distributed
intrusion detection with

optimized resources

Achieves unsupervised,
hierarchical intrusion

detection

Low resource
consumption, reduced

false positives

Effectively preserves
local data structure for

visualization

Effectively evaluates
feature class

separability

Learns robust latent

feature representations

Dynamically selects
and weights key

features

Performance heavily depends on
normal traffic patterns; struggles
to distinguish between channel
interference and malicious
intrusion under network

impairment.

Feature selection relies on static
statistical relationships; poor
adaptability to new attack
patterns or environmental

changes.

Clustering criteria are sensitive to
network impairment; packet loss
and noise affect computational

stability.

Unable to highlight key features;
normal fluctuations in complex
environments are easily confused

with attacks.

High computational complexity,
lacks inverse mapping, difficult

to use for online detection.

Dimensionality reduction results
are stochastic, compromising the
stability of online detection

models.

Unstable training process,

sensitive to noise interference.

High computational complexity,
significant resource demands,
relies on large amounts of labeled

data.
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Based on the systematic analysis of existing research
(Table 1), it can be found that the current wireless sensor
network anomaly intrusion detection faces three core
problems: firstly, in the state of network damage, existing
methods are difficult to distinguish the anomalous
features of physical damage and malicious intrusion,
resulting in high false alarm rates; Secondly, there is a
lack of efficient and stable nonlinear feature processing
solutions. Existing dimensionality reduction and feature
extraction methods are either computationally complex,
have unstable results, or have high resource requirements,
which cannot meet the real-time online detection needs;
The third issue is that the classifier lacks anti-interference
ability in damaged environments, making it unable to
adaptively highlight key features, resulting in a decrease
in detection accuracy. Therefore, in order to
systematically solve the problems faced by wireless
sensor network communication anomaly intrusion
detection under network damage and improve the
accuracy of wireless sensor network communication
anomaly intrusion detection, this paper studies a method
for detecting wireless sensor network communication
anomaly intrusion under network damage. It should be
noted that the "network damage state” focused in this
article specifically refers to systematic communication
quality collapse scenarios caused by physical damage,
malicious preemption, or sudden congestion with high
random packet loss rates (>30%), malicious bandwidth
limitations, and critical node failures. Unlike traditional
static background constraints such as limited resources or
environmental interference, this state leads to highly
distorted and incomplete data transmission in the
network, causing deep confusion between intrusion
features and physical damage features, thereby
undermining the assumption that existing detection
methods rely on "basic data reliability”. The specific
technical route is as follows:

(1) Global perceptible data acquisition: By
constructing a wireless sensor network networking model
and based on the probability formula for node automatic
identification, it ensures that the status monitoring and
communication data collection of all nodes in the entire
domain can still be achieved even when the network is
partially damaged, providing a reliable data foundation
for subsequent analysis.

(2) KPCA Nonlinear Data Dimensionality
Reduction: To address the difficulty of transmitting and
processing high-dimensional data in damaged networks,
the Kernel Principal Component Analysis (KPCA)
method is adopted. Nonlinear mapping of raw data to low
dimensional space using Gaussian radial basis kernel
function significantly reduces data dimensionality and
computational complexity while preserving key structural
information, alleviating resource pressure.

(3) RBM deep feature extraction: To effectively
distinguish the mixed features of network damage and
malicious intrusion, a restricted Boltzmann machine
(RBM) is used to perform unsupervised deep feature
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learning on the reduced dimensional data. By using its
energy model probability distribution, abstract features
that can characterize the essence of abnormal intrusion
are extracted to enhance the discriminative ability of the
features.

(4) Optimizing Naive Bayes classification decisions:
In response to noise interference in damaged
environments, perform dual optimization on the Naive
Bayes classifier: first, introduce a feature weighting
mechanism to highlight the contribution of key features;
Secondly, implement micro conditional probability
optimization to improve the robustness of the model by
iteratively modifying the conditional probability
estimation. Ultimately, the optimized classifier is utilized
to achieve high-precision and low false positive anomaly
intrusion detection.

In summary, this article constructs an end-to-end
solution through a progressive technical route of "KPCA
dimensionality reduction — RBM feature extraction —
optimized naive Bayes classification”. This solution
systematically addresses the full chain challenges from
data preprocessing, feature engineering to final
decision-making, in order to improve the accuracy,
robustness, and real-time performance of wireless sensor
network communication anomaly intrusion detection
under network damage conditions.

2 Data dimensionality reduction and
deep feature extraction of wireless
sensor network communication

network under damaged state

In wireless sensor networks, in addition to network
damage caused by communication anomaly intrusion,
physical interference, environmental interference, and
energy depletion can all lead to a damaged state of the
wireless sensor network. In order to still achieve accurate
detection of communication anomaly intrusion in the
wireless sensor network under the damaged state, it is
necessary to ensure that the entire wireless sensor
network is in a perceivable state, that is, each node in the
network can be effectively monitored and detected [18].
Through the design of the networking model, ensure the
coverage area and communication quality of the sensor
network, so as to provide a reliable data source for the
subsequent automatic identification of abnormal nodes
[19]. In this context, this study focuses on three core
objectives: firstly, to verify whether the nonlinear
dimensionality reduction method based on kernel
principal component analysis can significantly reduce
data dimensionality and computational complexity while
preserving key information, thereby improving detection
real-time performance; The second is to explore the
ability of restricted Boltzmann machines to extract deep
features from reduced dimensional data to distinguish
between network damage and malicious intrusion
behavior; The third is to evaluate the performance of the
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Naive Bayes classifier with feature weighting and micro
conditional probability optimization in maintaining high
detection accuracy and low false alarm rate in network
damaged environments, and compare its advantages and
disadvantages with traditional and deep learning methods.
Therefore, this article constructs an end-to-end detection

framework that integrates global perception data
acquisition, KPCA dimensionality reduction, RBM
feature extraction, and optimized Naive Bayes

classification, aiming to improve the accuracy, robustness,
and real-time performance of anomaly intrusion detection
in complex damage scenarios.

2.1 Data acquisition of wireless sensor
network under damaged state

To ensure accurate anomaly intrusion detection even
in the event of network damage, it is first necessary to
ensure that the entire wireless sensor network (WSN) is
in a globally perceptible state, where every node in the
network can be effectively monitored by the monitoring
system. Therefore, this article constructs a geometric
perception-based node identifiability model to evaluate
the monitoring coverage of each node in the event of
network damage. For the convenience of theoretical
modeling and analysis, this study simplifies the network
deployment area into a rectangular region. Let the entire
wireless sensor network be within the rectangle MxM
. If the sensing. coordinate of a certain wireless sensor
network node ! within M XM s (%Y, , Whether
it can be recognized when abnormal communication
occurs in this wireless sensor network node depends on
whether it is located within the optimal perception radius
of the central node 4, regardless of whether it has a
Iogiial association  with  the  central  node.
Let % ) represent the coordinates of the automatic
identification node, The formula for the condition for the
abnormal node of the wireless sensor network
communication to be automatically identified is:

P(i,j)=1li,j|<r @

In the formula, P(i,j) is the automatic
identification probability, where a value of 1 indicates
that it can be recognized and 0 indicates that it cannot be
recognized, |i, j| is the physical distance between node
i and J , reflecting the spatial relationship between
nodes, and I is the optimal sensing radius of the central
node j, which is determined by the node's communication
capability, channel quality, and environmental
interference. It can usually be estimated through actual
measurements or link budget models, representing the
maximum effective range that the node can reliably
perceive and communicate under specific network and
environmental configurations.

The expression of |i, J| is:
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i 3=l =+l -

! 1 I (2)

Through formula (1) and formula (2), it is possible to
judge whether any node 1 can be successfully
automatically identified when abnormal. If the automatic
identification probability is 1 for all nodes in the wireless
sensor network after the operation of formula (1), it
means that the entire wireless sensor network is
perceivable, and the communication data of each node in
the wireless sensor network can be obtained. Otherwise,
it indicates that there are coverage blind spots in the
network, and it is necessary to partition the network and
arrange automatic identification nodes in each partition to
ensure that the entire wireless sensor network maintains a
perceivable state and realize the acquisition of wireless
sensor network communication data under the damaged
state.

The above node identifiability model provides
theoretical criteria for evaluating the global perceptibility
of the network. To apply it to actual data collection, this
study instantiated the model as follows: the physical
coordinates of nodes and central nodes were derived from
pre deployment network topology mapping; The optimal
perception radius is determined through field link
measurement, which tests the packet reception rate of the
central node and surrounding nodes at different distances
in the deployment environment. The farthest reliable
communication distance that meets the minimum
communication quality requirements is defined as this
radius. In this experimental environment, the value of
each cluster head node is distributed between 80 meters
and 120 meters. The recognition probability is integrated
into network management software as a binary decision
function in practice, which determines whether a node
can be monitored by calculating the distance between
nodes in real-time and comparing it with the
corresponding optimal perception radius. In this
experimental deployment, by optimizing the node layout,
the recognition probability of all 150 nodes was ensured
to be 1, thus meeting the prerequisite of "global
perceptibility" and providing a complete data foundation
for subsequent analysis. Based on this network, all
communication data is collected through the actual
protocol stack to form the initial high-dimensional
dataset; The simulation of network damage state is
achieved through software injection of damage on this
normal data stream, in order to obtain a controllable
dataset of damage state.

In the actual data collection process, this study is
based on the above model to guide network deployment
and optimization, ensuring that the global perceptible
conditions are met as much as possible in the actual
physical topology. All communication data (including
normal and abnormal traffic) are collected through this
actual network, and the data collection process follows
standard communication protocols, recording
multi-dimensional information such as communication



426  Informatica 50 (2026) 421-442

timing, packet content, and signal strength of each node,
forming the original high-dimensional dataset for
subsequent  dimensionality reduction and feature
extraction.

2.2 Data dimensionality reduction of
wireless sensor network communication
network under damaged state based on
kernel principal component analysis

The wireless sensor network networking model can
achieve global state awareness of wireless sensing.
Obtaining the communication data of each node in the
wireless sensor network not only involves a huge amount
of data, but also has a very high data dimension. In this
state, data transmission will consume a large amount of
communication resources. However, due to factors such
as packet loss, channel congestion, and environmental
interference in the network damaged state, it will cause
great difficulties in the communication of the wireless
sensor network, making it difficult to transmit data.
Therefore, it is necessary to reduce the dimension of the
communication data of the wireless sensor network in the
network damaged state. By reducing the data dimension
of the wireless sensor network in the damaged state,
reducing data complexity, improving data calculation
speed, occupying less communication resources in the
damaged state, and improving the communication
anomaly intrusion detection speed of the wireless sensor
network in the network damaged state [20]. In order to
quickly and accurately reduce the dimension, the kernel
method is introduced based on the principal component
analysis method to form the kernel principal component
analysis method for data reduction [21].

The basic principle of the kernel method is as
follows: The communication data of the wireless sensor
network in the damaged state in the input data space is
mapped to a high-dimensional feature space through a
non-linear function, and data processing is carried out in
the feature space. In this process, a kernel function is
introduced to convert the inner product operation in the
feature space after non-linear transformation into the
calculation of the kernel function in the original space,
thereby reducing the computational amount. The process
of using kernel principal component analysis for
dimensionality reduction of wireless sensor network
communication data is shown in Figure 1.
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Figure 1: Kernel method framework

Based on the kernel method framework shown in
Figure 1, the KPCA dimensionality reduction process
achieves nonlinear feature extraction of high-dimensional
data through four key stages: in the kernel function
mapping stage, the original high-dimensional data is
projected into a high-dimensional feature space through a
nonlinear mapping function. This process uses kernel
functions to implicitly calculate the inner product of
samples in the feature space, avoiding complex
high-dimensional explicit calculations. In the linear
operation stage, data in the feature space is processed
through standard principal component analysis. By
calculating the eigenvalues and eigenvectors of the
covariance matrix, determine the direction of maximum
data variance and establish a low dimensional orthogonal
coordinate system. In the feature space data
reconstruction stage, the projection coordinates of the
original data on the principal components of the feature
space are obtained through mathematical transformations.
These projection coordinates form the reduced
dimensional dataset, preserving the key nonlinear features
of the original data. Finally, through the organic
combination of the above stages, nonlinear dimension
reduction was achieved, resulting in a low dimensional
data representation with discriminative power, providing
an effective data foundation for subsequent anomaly
intrusion detection. The specific process is as follows:

The nuclear method is combined with the principal
component analysis to form the kernel principal
component analysis method. The wireless sensor network
communication obtained in Section 2.1 above. The
trusted data is set as II wireless sensor network

communication data samples 7z'k(k =12, ---,H)in
the input data space, 7, € RN , such that T, = 0,
and its covariance matrix C is: k=1

I
:
Z”k”k
_ k=L

IT

C 3)
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In the formula, T is the transpose.

In the PCA algorithm, a non - linear mapping
function ¢ is introduced to transform the
communication data sample points 77y, 7y, 75, Ty

of the wireless sensor network in the damaged state in the
input data space into the communication data sample

$(7,), p(7,), (75) - P (7)) of

wireless sensor network in the damaged state in the

points the

feature space. Assume:

D d(r)=0 (@

I1
k=1

In the feature space G , the covariance matrix is:
il T
Z¢(”k)¢(”k)
C =k

I1

the the
communication data value and vector of the wireless

()

Therefore, formula  for  solving

sensor network in the feature space G is:
yv=Cv,v eG ={0} (6)

Where, ¥ and v are the wireless sensor network
communication data values and vectors in the feature
space G |, respectively.

Thus, it can be obtained that:

7(¢(”k)")=¢(”k)c" U]

The linear representation formula of the
communication data vector v of the wireless sensor
network in the feature space G is:

v= Zﬁmﬁ(m) ®)

In the equation, &, is the eigenvector.

According to formulas (5), (7), and (8), we can

obtain:
. PITEAD VIS EARTENISY
738 (8(n)-8() - 2 il
k=(1,23-1I)

Define the matrix K of TIxIT :
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(10)

Ki; :¢(7zi)'¢(771)
Then formula (9) can be transformed into:

MS=Ks (1)

By solving formula (11), the communication data
value y and vector v of the wireless sensor network

in the mapping space can be obtained. Arrange

in descending order and adjust

V1023 V3 5 7

ViiVo, Vg o)V, to the sorted

i correspond  to

V13 VorVar =y Y, - Using the Gram Schmidt orthogonal

method to normalize vectors, ensuring that the extracted
principal components are orthogonal to each other, thus
constructing a non redundant and discriminative feature
representation in a low dimensional space, and obtaining

51152!53!”'!5

n

Then the projection of the

communication data test sample of the wireless sensor

network on the vector v in the feature space G js

y:ié‘i K(;ri,zrj) 12)

If the communication data of the wireless sensor
network in the feature space does not meet the centering
condition, the matrix needs to be corrected. Replace K
in formula (12) with K , and the formula is:

ZoillKllj ZoinKnj
=] =1

2 = I1,n=1
K=K g7

11
o K 0

im” “mn~nj

(13)

In formula (13), i) =1 and O are
correction coefficients.

The specific process of dimensionality reduction of
the communication data of the wireless sensor network
by the kernel principal component analysis method
according to the above content is as follows:

(1) Suppose I1 data records are obtained from the
communication data of the wireless sensor network
sensed by the wireless sensor network networking model
(each record has n attribute components), and represent

itasa IIxN -dimensional matrix:
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Ty vt T,

T = (14)

T Ttin

(2) Select an appropriate kernel function and
calculate the kernel matrix K . Since the Gaussian
radial basis function (RBF) kernel function can implicitly
map data to a high-dimensional space to achieve
nonlinear modeling, with few parameters, strong
adaptability, and relatively efficient calculation, the
Gaussian radial basis function is selected as the kernel
function of kernel principal component analysis. The
formula of the Gaussian radial basis function is:

K(m,m;)= exp{——"”i _ :zj "2 J (15)

In the formula, Hﬂ'i —7er2 is the square of the

Euclidean distance between two communication data of
the wireless sensor network in the feature space; o is
the kernel function width.

(3) Correct the kernel matrix K to obtain K  as
shown in formula (13).

(4) Calculate the value %,,%,,%s Y, of K

and the vector v,,V,,V;,**+,V, .

(5) Arrange 4,%5,73"" Y, in descending order

and adjust v;,V,,V,,--+,V,

, to correspond to the sorted

71’7/2;73;"'17n .

(6) Use the Gram-Schmidt orthogonal method to

normalize the vector and obtain &;,0,,0,," ", 8, .

(7) Calculate the cumulative contribution rate

BlvBZ!Bga"',Bn of the sorted }/1,7/2,}/3,---’]4]

values. According to the given extraction efficiency P

if B,>p , then extract I principal components

5,,8,,8, 5,

(8) Calculate the projection yde of the

corrected kernel matrix K on the extracted
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corresponding vectors, where 8 =9,,0,,0;,***,0, ;

the obtained projection Y is the data obtained after the

data is reduced in dimension by KPCA.

After reducing the dimension of the wireless sensor
network communication data in the network damaged
state by the KPCA method, a certain degree of
compression is performed, redundant information is
removed, and the complexity of the data is reduced, so
that the data can be transmitted using fewer
communication resources. Occupying fewer
communication resources in the network damaged state
can transmit data faster, so the wireless sensor network
communication anomaly intrusion detection can be
completed faster.

2.3 Feature extraction of wireless sensor
network communication data in the
damaged state based on the restricted
boltzmann machine

After completing the dimension reduction of the
wireless sensor network communication data in the
network damaged state by the KPCA method, the
Restricted Boltzmann Machine (RBM) is used to extract
the data features of the data after dimension reduction in
the network damaged state. RBM is a probability
distribution function based on energy [22], and its energy
function E(y,h) formulais:

n I'Iy

E(y'h) = _2aiyi —iﬂ,—y,— —Zihja)“yi (16)

i-1 j=1

Where: h=(hl,h2,h31""hm)T
in the RBM hidden

represents the

values of the neurons layer,

y=(y1, Yor Yoo Vi )T represents the values of the

neurons in the visible layer, that is, the wireless sensor
network communication data after dimension reduction,

a; is the bias value of the visible layer neuron 1 B

is the bias value of the hidden layer neuron j , and

W = (cou.) is the connection weight matrix from the
mxn
visible layer to the hidden layer.
According to the energy function, the joint

probability distribution P(y,h) of ¥ and h canbe
obtained as:

P(y,h)= %e‘E(y'h) (17)
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Where, Z
factor):

Z — z e_E(y'h)
y,h

Formula (17) gives the "energy - probability"
relationship, from which the feature 4 of the wireless

is the partition function (normalization

(18)

sensor network communication data after dimension
reduction extracted by the hidden layer can be obtained,
and the formula is:

p=P(y, =1|h)=o(aj +Zhja)ﬂj (19)

In the equation, o is the Sigmoid function.

(20), the
dimensionality-reduced  wireless  sensor  network
communication data features & extracted by the hidden
layer of the RBM
features of the wireless sensor network in the network

According to formula

[23], that is, the communication

damaged state.

When the RBM algorithm is applied to the process of
extracting wireless sensor network communication data
features, an unsupervised learning method is adopted to
train the RBM feature extraction model. The purpose of

training the RBM is to make the distribution p(y) of
the visible layer nodes Y best fit the distribution

q(y) of the sample where the input

space

dimensionality-reduced wireless sensor network data
samples are located. From the perspective of information
entropy, it is to make the KL (Kullback-Leibler, relative
entropy) distance between P and ( the smallest, so

that the two distributions are closer. The formula is:

a(y)

KL =>» In—=

(qu) ; p(y) (20)
=>a(y)Ing(y)- > a(y)inp(y
yeY yeY

Since the input of the visible layer is the

communication data information in the wireless sensor

network, g(y) is a determined item. To ensure the

smallest KL distance, Zq(y)
yeY

In p(y) needs to be

maximized. Since the sample space Y of the wireless
sensor network communication data is unknown, the

Informatica 50 (2026) 421-442 429

Monte Carlo method is used to find the approximate

value of Zq )In p . The formula is:
yeY
i ()
Inp(y”
zwzl— (21)
>a(y)inp(y 7

yeY

In the formula: ¥ is the assumed number of

training samples; Y” represents the ¥ th training

sample.

To find the optimal RBM  parameter

0={W,a, B} . the logarithmic loss function is

adopted. The formula is:

Loss = —iln p(y“))
i=1

Thus, the training of the RBM feature extraction
model is completed, and the feature extraction of the
dimensionality-reduced  wireless  sensor  network
communication data is realized based on the trained
RBM.

To ensure the effectiveness and reproducibility of
the RBM feature extraction model, this study specifically
designed its network structure and training process. In
terms of network structure, the number of visible layer
neurons remains consistent with the dimensionality of
KPCA reduced data; The number of hidden layer neurons
has been experimentally verified to be 128, in order to
achieve a balance between feature compression and
information preservation. The model training adopts the
Contrastive  Divergence (CD-1) algorithm, which
performs one-step Monte Carlo simulation through Gibbs
sampling to efficiently approximate the negative phase
gradient of the data. Specifically, during the training
process, Gibbs sampling is used to quickly generate
visible and hidden layer samples from the current
distribution of RBM in order to approximate the expected
term of the model in formula (21). This Monte Carlo
sampling method avoids the huge computational
overhead of directly calculating the partition function,
and approximates the true gradient direction through
finite step sampling, making it possible to maximize the
logarithmic likelihood function through the random
gradient ascent method. The key hyperparameters are set
as follows: learning rate of 0.01, training epochs of 100,
and batch size of 64. This set of parameter combinations
has been experimentally verified to effectively ensure the
stable convergence of the model and extract deep features
with high discriminative power.

(22)
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3 Abnormal intrusion detection of

wireless sensor network
communication in the damaged
state based on Naive Bayes
Classifier

The naive Bayes classifier ensures that the posterior
probability of a class is higher than that of other classes
according to the maximum posterior probability rule, so
as to achieve accurate classification [24]. The extracted
wireless sensor network communication data feature
vector 4 is used as the input of the naive Bayes
network for abnormal intrusion detection of wireless
sensor network communication [25]. Since the normal
wireless sensor network in the network damaged state
will also be affected by different factors, resulting in
certain communication anomalies, but there are
differences in the performance of the abnormal feature
vector 4 between the communication anomalies caused
by the network damaged state and those caused by
intrusions. Therefore, the abnormal intrusion detection of
communication in the network damaged state can be
realized through the abnormal feature vector & .

First, set or adjust the weight vector & of the prior
probability. The formula is:

p(e|x) =f[N( ‘1) 23)
1

In the formula; &
described by O .

is the hyperparameter vector

Use S=[s,,S,,S;,,S,] to describe the set of

wireless sensor network communication data. Use

U= [,uz,,uz,;%,---,,un] to describe the set of wireless
sensor network communication data feature vectors.
Adopt the s=f(u)

criterion  for

mapping
description, where f is a classifier, which can make a
random S; € S uniquely correspond to a g €U

satisfying s = f (ﬂi) . The naive Bayes classification
method is to establish a naive Bayes classifier, and the
probability p(se |,u) that the set of homogeneous data

feature vectors g of wireless sensor network nodes that
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need to be classified as normal or abnormal belongs to

the S, class. The formula is:

p(als.)p(s.)

p(s.[#)= (24)
(s. | #) o(2)

In the formula: p(u)>0 p(s,)>0 ,
e=123---,m

In formula (24), for different wireless sensor network
states, the denominator p() is fixed, so maximizing
the numerator is sufficient. If the wireless sensor network
communication data in the network damaged state in the
training set follows a specific probability distribution or
is parameter-free, when dealing with continuous data, it is
assumed that this data follows a normal distribution. For
a certain continuous attribute in the training set,
represented by b , first classify it, and then calculate
the mean and variance of each class. Use 7. to
represent the variance of b in the S, class. The
communication abnormal intrusion probability
p(p=1z]s,) forany wireless sensor network node is:

15)-— 22

— (29
p(elk)y2r;

In the formula, Ms.~ Z are respectively used to
describe the normal distribution and the variance with the
meanat S, P (8 | K) is a naive Bayes classifier.

Since normal network communication in the network
damaged state will also be interfered and generate certain
anomalies, a threshold is set based on formula (25),
adjusted according to the actual situation based on a 60%
probability. When the abnormal probability exceeds this
threshold, it is determined that there is a communication
abnormal intrusion in this wireless sensor network, and
there is a node being invaded in the wireless sensor
network.

Since the network damaged state will bring great
interference to the intrusion detection of the naive Bayes
classifier, the features of the naive Bayes classifier are
weighted and the micro conditional probability is
optimized.

(1) Feature Weighting Optimization

The formula of the naive Bayes classifier based on

p(e=

feature weighting optimization is:
9
p(e|x)=argmaxp(e HN cle) T[N (s1e)”  (26)
1

In the formula, the weight vectors & = {a)r,a)l} , @,
is the qualitative weight calculated based on the mutual
information between features and categories, reflecting
the correlation between features and abnormal intrusion.

@, is the quantitative weight obtained based on the

1
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inverse normalization of feature variance, used to balance
the impact of differences in different feature value ranges.
The specific calculation of weights is determined on the
training set through cross validation.

(2) Micro Conditional Probability Optimization

In the training phase, first learn the estimated
information and the Naive Bayes classifier, and then
predict the training set to obtain the misclassified training
samples. In the fine-tuning phase, modify the conditional
probabilities corresponding to all misclassified samples in
each round. Increase the conditional probability of each
feature under the true class by a certain step size and
decrease the conditional probability of each feature under
the predicted class by a certain step size, so as to improve
the accuracy of classifying the training set in the next
round. Otherwise, stop the iteration. The optimal
conditional probability is the conditional probability
modified in the previous round. The formula is:

p(s 1) - R P(s) LS(,L)J;) () | 4 (1) on
p(seIu)=—p(”Ls(el)l;)(se)+wt(Pc)

Among them, TC and PC are the true class and
the predicted class of the training samples of the
communication data of the wireless sensor network
respectively. @, is the conditional probability of the ¢
-th round of iteration, and t is the number of iterations.

In the fine-tuning phase, an iterative optimization
strategy is adopted to adjust the conditional probability
estimates, specifically implemented through the
following algorithm:

Input: Training dataset, initial Naive Bayes classifier,
maximum iteration count T, convergence threshold ¢
Output:Optimized conditional probability table

1)Initialization:

Set the current iteration round t=0, train using the training
dataset to obtain the initial conditional probability table.
2)lterative Optimization:

fort=1to T do

Step 1: Use the current conditional probability table to
predict the training set and collect the set of misclassified
samples.

Step 2: Check convergence criteria:

if the number of misclassified samples stops
decreasing and the decrease magnitude is less than
threshold ¢ then

Terminate the iteration, jump to Step 5.
end if
Step 3: For each misclassified sample:
Obtain the sample's true class and predicted class.
for each feature do
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Increase the conditional probability of this feature
under the true class (increase by step size 0).
Decrease the conditional probability of this
feature under the predicted class (decrease by step size d).
end for
Step 4: Perform normalization to ensure the sum of all
conditional probabilities is 1.
end for

3)Output Result:;

Step 5: Return the final optimized conditional probability
table.

The core idea of this optimization process is: for each

misclassified  sample, increase the  conditional
probabilities of its features under the true class, while
simultaneously decreasing them under the incorrectly
predicted class. Through this bidirectional adjustment, the
model can gradually correct initial estimation biases and
better adapt to the true data distribution.
During optimization, the adjustment step size ¢ for
conditional probabilities is typically set to a small
positive number, such as 0.01 or 0.05, to ensure a smooth
and convergent optimization process. Additionally, the
algorithm incorporates dual convergence criteria: firstly,
the number of misclassified samples ceases to decrease,
and secondly, the decrease magnitude falls below a preset
threshold. These two conditions together ensure the
optimization process terminates at an appropriate point,
preventing overfitting.

By performing feature weighting on the Naive Bayes
classifier and optimizing the conditional probabilities
through fine-tuning, the influence of key features on
classification can be highlighted, the weights of features
with a high degree of association with the target category
can be enhanced, the interference of irrelevant features
can be suppressed, and at the same time, the probability
estimation deviation caused by assuming feature
independence, data sparsity, etc. can be corrected, making
the model more adaptable to the actual distribution of the
data, and increasing the accuracy of detecting abnormal
intrusions in the wireless sensor network communication
under the network damaged state.

4 Experimental analysis

4.1 Experimental object

The experiment selected a wireless sensor network
used in a company, which covers over 1000 square
meters of production, warehousing, and transportation
areas, with a total of 150 sensor nodes covering various
types such as vibration, temperature and humidity,
pressure, etc. It is used for real-time monitoring of
equipment production and environmental parameters for
intelligent control. The topology structure of the wireless
sensor network is shown in Figure 2.
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Figure 2: Topology structure of wireless sensor

network
Figure 2 illustrates the topology structure of the
Wireless Sensor Network (WSN) employed in the
experiments. This network is deployed in an industrial

environment, covering production, storage, and
transportation areas for real-time monitoring of
equipment  operating status and  environmental

parameters. A hybrid topological structure is adopted,
combining the advantages of star and mesh topologies to
enhance communication reliability and coverage. The
network comprises multiple cluster head nodes (CHs)
(e.g., Cluster Head A, B, C), which are responsible for
coordinating data aggregation and transmission from
ordinary sensor nodes within their respective regions.
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Utilizing a multi-hop communication mechanism, data is
relayed through the cluster head nodes to a gateway node,
and ultimately uploaded to the cloud or a control center.
To verify the anomaly intrusion detection capability of
the proposed method under network damage conditions,
communication damage was artificially introduced in the
experiment: a random packet loss rate of 30% was set
between cluster head C and the gateway to simulate
channel quality deterioration; Limit the communication
bandwidth of cluster heads A and B to 40% of their
original value, simulating a resource constrained
scenario. The dataset used for training and testing was
actually collected through the network, containing a total
of 50000 communication data records, including 35000
normal communication data and 15000 abnormal data.
Abnormal data is generated by simulating ten typical
attack behaviors, including Sinkhole attack, wormhole
attack, denial of service attack, replay attack, disguised
node attack, selective forwarding attack, flooding attack,
data tampering attack, key leakage attack, and topology
destruction attack. Each type of attack generates
approximately 1500 instances to ensure class balance in
the dataset, and each type of attack is injected into
specific nodes through scripts, with corresponding
timestamps and traffic characteristics recorded. The ratio
of normal and abnormal samples in the dataset is 7:3,
ensuring that the model still has good generalization
ability even in cases of class imbalance. All data are
anonymized during the collection process and feature
sequences are constructed using time window slicing to
support subsequent dimensionality reduction and feature
extraction operations.

The parameters of the wireless sensor network used
are shown in Table 2.

Table 2: Parameters of wireless sensor network

Attribute Parameters

Topological structure  Hybrid topological structure

Communication

IEEE 802.15.4g
standard
Working
band

Network capacity

frequency 2 4GH
. z

Support concurrent access of over 2000 nodes

Vibration sensor, temperature and humidity sensor, RFID reading and writing module,

Sensor type
pressure sensor

Battery life
Protection grade IP67
Computing power
Transmission distance  Single jump 150 meters
250kbps

AES - 128

Data rate
Encryption protocol
Deployment method

Lithium thionyl chloride battery, with a 5-year battery life (in low-power mode)

8-bit microcontroller, supporting edge lightweight computing

Guide rail installation + ceiling mounting + pole clamping installation
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Gateway interface

Working temperature  -20°C ~ 70°C

Ethernet (1Gbps), 4G/5G modules
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The selection of kernel functions and their
parameters has a decisive impact on the dimensionality
reduction performance of KPCA. This study uses
Gaussian radial basis function (RBF) kernel function,
whose parameter kernel width o controls the flexibility
and locality of the model. To evaluate the robustness of
parameter selection and determine the optimal value, a
sensitivity analysis experiment was designed: on the same
dataset, all other conditions were fixed, and the value of
o was systematically changed to observe its impact on
the performance of reduced dimensional data in
subsequent anomaly intrusion detection tasks (with F1
score as the core indicator).

Table 3: Sensitivity analysis results of KPCA
parameter o

Data dimension after Abnormal
Kernel . . . . . .
: dimensionality intrusion detection
width )
reduction F1 score
0.01 28 0.71
0.10 19 0.84
0.50 15 0.92
1.00 13 0.87
5.00 10 0.78

According to the results in Table 3, the performance of
KPCA is more sensitive to changes in the value of o .
When o =0.50, the reduced dimensional data achieved
the highest F1 score (0.92) in subsequent classification
tasks, indicating that under this parameter, KPCA can
most effectively extract the nonlinear features that are
most beneficial for distinguishing normal and abnormal
communication modes. Meanwhile, when o is within
the range of [0.10, 1.00], the F1 scores remain above
0.84, indicating that the method has good robustness
within this parameter range. All subsequent experiments
in this study were conducted using the optimal parameter
determined by this experiment, o =0.50.

To ensure the reproducibility and scientificity of the
proposed method, this study specifically set and
explained the hyperparameters of the model. Firstly, in
the design of a Restricted Boltzmann Machine (RBM),
the number of hidden layer neurons is set to 128 to
achieve a balance between feature compression and
information preservation; The model training uses the
Contrastive Divergence (CD-1) algorithm, with key
hyperparameters including a learning rate of 0.01, 150

training epochs, and a batch size of 64. Secondly, in the
process of optimizing the Naive Bayes classifier, the
qualitative weights (based on mutual information) and
guantitative weights (based on reciprocal variance) used
for feature weighting are fused with coefficients of 0.7
and 0.3, respectively, and determined through cross
validation; The adjustment step size for micro conditional
probability optimization is set to 0.01, the maximum
number of iterations is 50, and the convergence criterion
is to stabilize the number of misclassified samples (with a
change amplitude less than 0.001). In the process of
determining key parameters of the model, such as the
kernel width ¢ of KPCA, the number of hidden units in
RBM, and the weight coefficients of Naive Bayes, 5-fold
cross validation was used to optimize on the training set.
Specifically, divide the training set into 5 equal parts,
take turns using 4 parts as the training subset and the
remaining 1 part as the validation subset, and loop 5
times. The final parameter selection is based on the group
with the best average performance among 5 verifications.
All performance metrics reported, such as F1 score and
false positive rate, are the final results of the model on an
independent test set.

4.2 Analysis of the effectiveness of the
proposed method

To verify the effect of the KPCA method used in this
article on dimensionality reduction of original wireless
sensor network communication data, wireless sensor
network communication data was randomly collected and
dimensionality reduction was performed using the KPCA
method proposed in this article. The original wireless
sensor network communication dataset contains 90
features (attributes), and the reduced wireless sensor
network communication data is shown in Figure 3.
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Figure 3: Data dimensionality reduction effect of the
KPCA method

From Figure 3, it can be seen that the KPCA method
proposed in this paper can achieve efficient
dimensionality reduction of wireless sensor network
communication data. In the original state, the feature
dimensions of wireless sensor network communication
data without dimensionality reduction are mainly
concentrated in 60-80 features, but there are also a large
number of fluctuations between 10-90 features, resulting
in extremely high data dimensions. In the state of
network damage, the computing power of the network
decreases, and it is difficult to ensure the accuracy of
anomaly intrusion detection by processing
high-dimensional data. After using the KPCA method in
this article for data dimensionality reduction (as shown in
Figure 3 (b)), the projected values of the data in the
KPCA principal component space were standardized to
around 15 features, which cumulatively explained about
94.7% of the original variance, indicating that the
reduced features had been effectively compressed and
concentrated, with slight fluctuations but almost
negligible. The data fluctuation is reduced and the
dimensionality  is  significantly  reduced  after
dimensionality reduction using the method described in
this article. In situations where the network is damaged
and communication resources are tight, very few
resources can be used for anomaly intrusion detection to
ensure real-time detection. Moreover, the reduced
dimensional data reduces interference, improves the
accuracy of anomaly intrusion detection, and ensures that
the proposed method can quickly and accurately detect
communication anomalies in wireless sensor networks,
thereby ensuring the security of wireless sensor networks.

The data fluctuates less after dimensionality
reduction by this method, and the dimension is
significantly reduced. In the case of network damage and
tight communication resources, extremely few resources
can be used for anomaly intrusion detection, ensuring the
real - time performance of detection. Moreover, the
dimensionality - reduced data reduces interference and
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improves the accuracy of anomaly intrusion detection,
ensuring that the method in this paper can quickly and
accurately detect the abnormal intrusion of wireless
sensor network communication, thus ensuring the
security of the wireless sensor network.

To quantitatively evaluate the data dimensionality
reduction performance of the kernel principal component
analysis (KPCA) method used in this paper, we compared
it with two widely used nonlinear dimensionality
reduction methods - t-distributed random neighbor
embedding (t-SNE) and uniform manifold approximation
and projection (UMAP). The evaluation metric is the
cumulative variance contribution rate, which reflects the
ability of the reduced data to retain the original data
information and is a key quantitative standard for
measuring the effectiveness of dimensionality reduction.
The cumulative variance contribution rates of the three
methods in extracting different numbers of principal
components are shown in Table 4.

Table 4: Cumulative variance contribution rate of
different dimensionality reduction methods (%)

Number of
Principal KPCA t-SNE UMAP
Components
5 68.5 45.2 52.7
10 86.3 61.8 70.4
15 94.7 73.1 81.9
20 98.2 80.5 88.3
25 99.5 85.0 92.1

The following conclusion can be drawn from Table
3: The KPCA method used in this article is significantly
better than the comparative method in terms of
cumulative variance contribution rate. Specifically, with
only 15 principal components, KPCA can retain 94.7% of
the variance information in the original data; However,
t-SNE and UMAP can only retain 73.1% and 81.9% of
the information under the same principal component
score. To achieve information retention levels similar to
KPCA (approximately 94%), t-SNE and UMAP require
more dimensions, which undoubtedly increases the
burden of subsequent computation and communication.
This result demonstrates that KPCA can capture key
nonlinear structures in wireless sensor network
communication data with fewer dimensions and higher
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efficiency, and its dimensionality reduction performance
is superior to t-SNE and UMAP. This advantage stems
from the ability of kernel methods to implicitly handle
inner product operations in high-dimensional feature
spaces, avoiding the computational complexity of direct
high-dimensional mapping while preserving key
structural information of the data. In the event of network
damage, KPCA not only reduces the dimensionality of
the data, but more importantly, extracts more
discriminative features through nonlinear mapping,
providing higher quality and less noisy input data for
subsequent anomaly intrusion detection, thereby
improving the overall robustness and detection efficiency
of the system.

4.3 Experimental comparison results

To verify the effectiveness of the RBM method used
in this paper for extracting reduced dimensional wireless
sensor network features, we compared our method with
three feature extraction methods: CNN (Convolutional
Neural Network), LSTM (Long Short-Term Memory
Neural Network), and LLE (Local Linear Embedding).
The features extracted by the above methods were input
into a Bayesian classifier for communication anomaly
intrusion detection. To ensure fairness in comparison,
CNN adopts a typical structure consisting of two
convolutional layers (kernel sizes of 3 and 5 respectively)
and one fully connected layer; LSTM uses a single-layer
network with 128 hidden units to capture temporal
dependencies. All models use the Adam optimizer and
learn until convergence on the same training set. All the
features extracted by the methods were input into the
same Naive Bayes classifier for communication anomaly
intrusion detection, and the F1 score was used as the
evaluation metric. The results are shown in Figure 4.
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Figure 4: F1 values of different feature extraction
methods under 75% network damage rate

From Figure 4, it can be seen that among the
different feature extraction methods mentioned above, the
RBM method proposed in this paper combines Naive
Bayes classifier for anomaly intrusion detection after
feature extraction, with an F1 value of 0.9, significantly
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higher than other methods. This indicates that the RBM
method can more effectively extract key features from
wireless sensor network communication data, thereby
improving the accuracy of classification. This is mainly
due to the fact that RBM, as an energy based
unsupervised deep learning model, can effectively
capture nonlinear feature distributions in
high-dimensional data, especially suitable for complex
and nonlinear abnormal patterns caused by network
damage in  wireless sensor networks. WSN
communication data usually has the characteristics of
high dimensionality, strong noise, and pattern mutation.
The probability generation model of RBM can learn its
underlying distribution well and is insensitive to noise,
thus robustly extracting key features. In contrast,
although CNN performs well in image and sequence data
processing, its deep structure is prone to overfitting in the
small sample, high noise wireless sensor network
communication data used in this experiment, and the
assumption of local correlation in the data may not
always hold true in this task, resulting in limited feature
extraction ability, with an F1 value of only about 0.6.
LSTM is also difficult to learn effective long-term time
dependencies due to limited data volume and noise
interference, and its F1 value is similar to CNN. The LLE
method has the lowest F1 value after feature extraction,
and there is a decrease in F1 value during the iteration
process. This may be due to the poor performance of LLE
methods in processing high-dimensional and nonlinear
data, resulting in extracted features that cannot effectively
distinguish between normal and abnormal communication
data. The above results indicate that the proposed RBM
feature extraction method has significant advantages in
wireless sensor network communication anomaly
intrusion detection, which can more effectively extract
key features and improve classification accuracy.

In order to verify the effectiveness of intrusion
detection for abnormal communication in wireless sensor
networks under network damage conditions, the
company's wireless sensor network topology caused a
certain amount of packet loss in the communication
between cluster head C and gateway nodes, and reduced
the bandwidth of the wireless sensor network, reducing
the communication resources of cluster head A and
cluster head B, simulating a network damage state. In this
state, 10 attacks were carried out on random nodes in
cluster heads A and B. The attack intrusion detection was
performed using the method proposed in this paper, and
the detection results are shown in Table 5.

As can be seen from Table 5, the proposed anomaly
intrusion detection method in this paper shows excellent
performance under the network damaged state. For each
type of attack, the proposed method in this paper can
accurately detect and determine the type of attack. For
example, in the Sinkhole attack, the proposed method in
this paper detected the abnormal nodes and abnormal
aggregated traffic and determined it as the Sinkhole
attack; in the wormhole attack, it detected the abnormal
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high-speed data transmission path across regions and
determined it as the wormhole attack. The results show
that the proposed detection method can accurately
identify and defend against various wireless sensor
network anomaly intrusion behaviors under the network
damaged state. Facing different types of attacks, the
proposed method can quickly respond and accurately
judge the type of attack, providing a strong guarantee for
the security protection of wireless sensor networks. It not
only provides a new technical idea for the anomaly
intrusion detection of wireless sensor networks in
emergency situations, but also provides a valuable
practical reference for the construction of network
security protection systems in fields such as industrial
Internet of Things and intelligent transportation. This is
because the method in this article adopts a multi-level
feature decoupling and adaptive decision-making
mechanism. Specifically, KPCA maps raw
high-dimensional data to a renewable Hilbert space using
kernel techniques, effectively separating background
noise features caused by network damage such as channel
packet loss and bandwidth limitations from structural
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Subsequently, RBM uses an energy model to perform
deep representation learning on the reduced dimensional
data, and its hidden layer neurons capture the clustering
distribution characteristics of different attack patterns in
the feature space through probabilistic activation. For
example, for Sinkhole attacks, RBM hidden layer features
will highlight abnormal data aggregation patterns; For
wormhole attacks, it will enhance the time
synchronization anomaly characteristics of cross regional
transmission paths. Finally, the Naive Bayes classifier
optimized by feature weighting integrates the likelihood
ratio decision boundaries of different attack types through
the Bayesian probability framework, and dynamically
adjusts the prior distribution estimation under network
damage conditions using the micro conditional
probability optimization mechanism, thereby achieving
high-precision attack classification and low false alarm
detection in complex damaged environments. This
technical route of "feature decoupling deep learning
adaptive decision-making” enables our method to
effectively resist the feature confusion problem caused by
network damage, providing a reliable intrusion detection

anomaly features

generated by attack behavior.

solution for practical WSN deployment.

Table 5: Detection results of our method under network damage conditions

Number Attack name Attack time The detection results of the method in this paper
. Abnormal node and abnormal aggregated traffic were detected and determined
1 Sinkhole attack 0:15:23 ]
to be a Sinkhole attack
An abnormal high-speed data transmission path across regions was discovered
2 Wormhole attack 1:08:17 .
and determined to be a wormhole attack
. . A large number of invalid requests were detected, causing channel congestion,
3 Denial-of-service attack 2:30:05 . .
and it was determined to be a DoS attack
4 Replay attack 3:12:40 Duplicate historical data packets were detected and determined as replay attacks
o t was found that the ID of the new node conflicted with that of the normal node,
5 Disguised node attack 4:45:32 . .
and it was determined as a masquerade node attack
6 Selective forwarding 5:20:18 Some data packet transmission paths are abnormal and are determined to be
attack o selective forwarding attacks
The channel traffic surges sharply in a short period of time and is determined to
7 Flood attack 6:03:55 .
be a flooding attack
. Verify the abnormal hash value of the data packet content and determine it as a
8 Data tampering attack 7:10:09 .
data tampering attack
Unauthorized decryption data packets were discovered and determined to be a
9 Key leakage attack 8:33:21
key leakage attack
10 Topological structure 9:17:44 A large number of node connection interruptions were detected and determined

destruction attack

to be a topological structure failure attack

First of all, in the case of network damage, the
communication efficiency of wireless sensor network
nodes is greatly reduced. This situation is very similar to
that of nodes after being invaded. Therefore, the detection
method is very likely to produce false alarms. To verify
the sensitivity of the method proposed in this paper to
abnormal intrusion detection in the case of network
damage, it is compared with SVM (Support Vector
Machine), association rule mining and CNN methods.
The network damage rate is used to represent the degree

of network damage. The effects of different methods on
abnormal intrusion detection under different network
damage rates are shown in Figure 5. In the experimental
setup, to ensure the physical feasibility of the simulated
scene and its compatibility with the actual industrial
environment, this study set the upper limit of network
damage rate to 75%. This setting is based on the
following considerations: In actual industrial wireless
sensor networks, when the link packet loss rate or
bandwidth  limitation exceeds 75%, the basic
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communication functions of the network are almost
paralyzed, and the regular monitoring data flow will be
interrupted. At this time, discussing intrusion detection
based on communication traffic is no longer practically
meaningful. Therefore, a 75% damage rate represents the
extreme pressure conditions that the system faces while
maintaining a minimum operational state.

50

— Xg - The method of this article
<A CNN
—@— SVM

40

—@l— Association rule mining

False alarm rate /%

Network damage rate /%

Figure 5: shows the abnormal intrusion detection effects
of different monitoring methods under the condition of
network damage

From Figure 5, it can be seen that as the degree of
network damage increases, the false alarms of abnormal
intrusion detection in wireless sensor networks under
damaged conditions will correspondingly increase. The
reason for this situation is that the state of network
damage is similar to that under abnormal intrusion, and
the difficulty of information transmission increases in
network damage, making it more likely for detection
results to be inconsistent with the actual state. Among
them, the performance of anomaly intrusion detection
through association rule mining is the worst. This method
maintains the highest false alarm rate for anomaly
intrusion detection under different network damage rates,
and the false alarm rate significantly increases with the
increase of network damage rate, reaching a final false
alarm rate of 50%. At the same time, the false alarm rates
of SVM and CNN reached 33% and 28%, respectively.
On the other hand, although the false alarm rate of our
method is also increasing, the degree of increase is not
significant. In the case where the final network damage
rate reaches the highest 75%, the false alarm rate of
abnormal intrusion detection is only 5%. This result is
derived from the multi-level anti-interference mechanism
constructed by the method in this paper: KPCA achieves
structural separation of noise and attack features in a
high-dimensional feature space through kernel mapping,
reducing feature confusion caused by network damage;
The deep features extracted by RBM based on probability
generation models have robust representation ability for
damages such as random packet loss and bandwidth
fluctuations; The optimized naive Bayes classifier
enhances the discriminative contribution of attack related
features through feature weighting, and dynamically
adapts to changes in network state by combining micro
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conditional probability optimization, thereby maintaining
stable decision boundaries in extremely damaged
environments. These 5% false positives are mainly due to
brief communication interruptions caused by extreme
network congestion, which were mistakenly identified as
denial of service attacks by the model. In practical WSN
applications, this type of false alarm can be effectively
filtered by setting a short time window for secondary
verification, thereby avoiding unnecessary system alerts.
From this, it can be seen that the method proposed in this
paper can still maintain extremely high accuracy in
anomaly intrusion detection under network damage, with
excellent robustness and detection accuracy, further
verifying the effectiveness and practicality of the method
proposed in this paper.

To further verify the effectiveness of the method
proposed in this paper, accuracy and recall were used as
evaluation indicators to compare the detection
performance of different methods. The comparison
results of accuracy and recall of different detection
methods under different degrees of network damage are
shown in Table 6.

Table 6: Comparison of accuracy and recall rates of
different detection methods under different degrees of
network damage

Network
Impairment Method Precision Recall
Rate
Proposed
0% 0.96 0.93

Method
SVM 0.89 0.85
Association
Rule 0.75 0.70
Mining
CNN 0.88 0.87
Proposed

25% 0.95 0.91
Method
SVM 0.85 0.80
Association
Rule 0.70 0.65
Mining
CNN 0.84 0.82
Proposed

50% 0.94 0.88
Method
SVM 0.78 0.72
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Network
Impairment Method Precision Recall
Rate

Association
Rule 0.62 0.55
Mining
CNN 0.77 0.75
Proposed

75% 0.94 0.86
Method
SVM 0.68 0.60
Association
Rule 0.50 0.42
Mining
CNN 0.65 0.63

According to the analysis of the results in Table 5, it
can be concluded that our method outperforms the
comparative methods in terms of accuracy and recall. To
scientifically verify the statistical significance of this
advantage, paired sample t-tests were conducted on the
performance indicators of four methods on the same test
set. The results showed that under different degrees of
network damage, the accuracy and recall of our method
were significantly different from those of SVM,
association rule mining, and CNN methods (p values
were all less than 0.01). Specifically, under the harsh
condition of 75% network damage rate, our method
(accuracy=0.94 + 0.01, recall=0.86 + 0.02) has a t-test
statistic of t=15.73 (p<0.001) for accuracy and t=12.45
(p<0.001) for recall compared to the suboptimal CNN
method (accuracy=0.65 + 0.03, recall=0.63 + 0.04).
This proves that the performance advantage of the
method proposed in this article is not accidental, but
stems from its unique technical architecture. This
architecture effectively decouples damage noise and
intrusion  features  through KPCA  nonlinear
dimensionality reduction, extracts deep representations
with strong discriminative power through RBM, and
finally achieves robust decision-making through a Naive
Bayes classifier optimized by feature weighting and
micro conditional probability. In contrast, when the
feature quality of SVM and CNN methods deteriorates
due to network damage, the optimization objectives they
rely on (such as classification interval and convolution
kernel response) are prone to shift, resulting in significant
performance degradation; However, association rule
mining is completely ineffective in complex damage
environments due to its inability to adapt to the dynamic
changes in association relationships between features. In
summary, statistical testing and mechanism analysis
jointly confirm that the method proposed in this paper not
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only has higher detection accuracy under network
damage conditions, but also has statistically significant
performance advantages, providing a more reliable
solution for practical wireless sensor network security
protection.

To further evaluate the performance trade-off of the
proposed method under extreme damage conditions, the
method proposed in this paper was adopted at a 75%
network damage rate SVM. CNN. Association rule
mining is used for intrusion detection, and the confusion
matrix results of different methods are shown in Figure 6.
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Figure 6: Confusion matrix results of different methods
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From Figure 6, it can be seen that the average main
diagonal value of the confusion matrix in this method
reaches 0.944, and the recognition accuracy of various
types of attacks is above 92.8%, and the inter class
misjudgment rate is generally lower than 5.0%. In
contrast, the attack recognition accuracy of the
comparative method is lower. This is because the method
in this article adopts a targeted technical architecture of
"KPCA nonlinear dimensionality reduction — RBM
deep feature extraction — optimized naive Bayes
classification": KPCA maps damaged data to a
high-dimensional ~ feature  space through kernel
techniques, effectively removing channel noise and attack
features; RBM enhances the discriminative differences
between different attack modes by extracting deep
representations based on energy models; The Naive
Bayes classifier, which has undergone feature weighting
and micro conditional probability optimization, has
constructed an adaptive decision boundary. This system
systematically overcomes the problem of feature
confusion caused by network damage, enabling the model
to maintain high accuracy even under extreme damage
conditions.

The specific AUC curves of the above four methods
are shown in Figure 7.
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Figure 7: Comparative analysis of AUC curves of four
methods

As shown in Figure 7, the AUC curve of our method
and the area enclosed by the coordinate axis are higher
than other methods, which effectively verifies the
performance of our design method and the accuracy of its
estimation results is relatively high. This is because the
method proposed in this article constructs a complete
robustness link from feature decoupling to adaptive
decision-making: KPCA achieves structural separation of
damage noise and attack features in high-dimensional
space through kernel mapping, providing a pure feature
base for subsequent processing; RBM extracts deep
discriminative features that are insensitive to random

Informatica 50 (2026) 421-442 439

packet loss and bandwidth fluctuations from reduced
dimensional data based on probability generation models;
The naive Bayes classifier, which has undergone dual
optimization, enhances the contribution of key attack
patterns through feature weighting and dynamically
adapts to changes in network state through micro
conditional probability optimization. This technical
system enables the model to maintain a stable high true
positive rate and low false positive rate under different
decision thresholds, with a high AUC value.

Wireless sensor network (WSN) nodes typically
have weak computing power, limited storage resources,
and energy constraints. Therefore, intrusion detection
methods must have low computational and resource
consumption while ensuring detection performance. The
detection pipeline (KPCA+RBM+NB) of the proposed
method is designed to be executed in cluster head nodes
or gateways with relatively sufficient resources, using a
hierarchical deployment architecture of “edge collection
aggregation analysis”. The terminal sensor node is only
responsible for lightweight data collection and uploading,
avoiding  complex  calculations;  And  cluster
heads/gateways run complete algorithms with their
stronger processing capabilities, such as the ARM
Cortex-A series. To evaluate the practical deployment
feasibility of the proposed methods, a quantitative
comparison of the computational complexity and
resource consumption of all methods was conducted on
the same experimental platform, and the results are
shown in Table 7.

Table 7: Comparison of computational overhead
under 75% network impairment rate

Peak
. Inference
Training ) Memory
Method . Time per
Time (s) Usage
Sample (ms)
(MB)
Proposed
52.3 0.21 45.7
Method
SVM 189.5 1.85 2104
CNN 425.6 3.42 550.1
Association
o 510.2 4.15 480.3
Rule Mining

The result analysis shows that the method proposed
in this paper has significant advantages in computational
efficiency. Its training time (52.3 seconds) and single
sample prediction time (0.21 milliseconds) are much
lower than the comparison method, and its peak memory
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usage (45.7 MB) is also at the lowest level. This is mainly
due to its cascaded lightweight design: KPCA
dimensionality reduction significantly compresses the
data scale and reduces the computational load of
subsequent processing; Although RBM feature extraction
involves unsupervised learning, its efficiency is higher
compared to the divergence algorithm; Optimizing the
Naive Bayes classifier itself has the characteristic of low
computational complexity. Therefore, this method
ensures high detection accuracy while achieving low cost
and low latency characteristics that meet the resource
constraints of wireless sensor networks, making it
feasible for edge deployment.

To verify the necessity and contribution of each
component in the proposed technical route of "KPCA
dimensionality reduction — RBM feature extraction —
optimized naive Bayes classification”, a systematic
ablation experiment was designed. Under extreme
conditions of 75% network damage rate, the performance
of the model was observed by removing or replacing key
components one by one, and the results are shown in
Table 8.

Table 8: Performance comparison of different model
variants under 75% network impairment rate

Variant ID Model Variant Precision Recall

KPCA + RBM

A + Optimized NB 0.94 0.86
(Full Model)
Raw Data +

B RBM + 0.71 0.65
Optimized NB
KPCA + Raw

Cc Features + 0.82 0.78
Optimized NB
KPCA + RBM

D 0.85 0.80
+ Standard NB
KPCA + RBM

E 0.88 0.83
+SVM
PCA + RBM +

F o 0.79 0.72
Optimized NB

Analysis of ablation experiment results: The

complete model (A) maintains the highest performance
among all variants, verifying the necessity of
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collaborative design among various components.
Removing KPCA (variant B) resulted in a significant
decrease in performance (accuracy dropped from 0.94 to
0.71), proving that non-linear dimensionality reduction
using kernel methods is crucial for separating network
damage noise and attack features; After removing RBM
(variant C), the performance also significantly decreased,
indicating that deep feature extraction can capture more
essential attack pattern discrimination information;
Replacing the optimized classifier with standard naive
Bayes (variant D) or SVM (variant E) resulted in a
decrease in performance, confirming that feature
weighting and micro conditional probability optimization
effectively improved the model's adaptability to damaged
environments; The use of linear PCA (variant F) instead
of KPCA resulted in a decrease in performance, further
demonstrating the superiority of nonlinear mapping in
this scenario. All components together form a complete
enhancement chain from noise robustness, feature
discriminative power to decision adaptation.

5 Conclusion

This article proposes a detection method that
combines Kkernel principal component analysis (KPCA),
restricted Boltzmann machine (RBM), and optimized
naive Bayes classifier to address the core challenges of
highly confused features and significantly reduced data
quality in anomaly intrusion detection of wireless sensor
networks under network damage. This method uses
KPCA nonlinear dimensionality reduction to remove
damage noise, extracts deep discriminative features
robust to packet loss and interference using RBM, and
achieves high-precision decision-making with the help of
a Naive Bayes classifier optimized by feature weighting
and micro conditional probability. Experiments have
shown that the proposed method can maintain an
accuracy of 0.94 and a recall of 0.86, with a false positive
rate of less than 5%, even at a network damage rate of up
to 75%. Its comprehensive performance (F1 value 0.90,
AUC 0.96) is significantly better than traditional machine
learning and deep learning methods, verifying its
effectiveness and robustness in extreme damage
environments. However, this study also has several
limitations, and based on this, future directions are
indicated. Firstly, the experiment is based on the WSN
topology and data of a single industrial scenario. In the
future, its universality needs to be verified in more
heterogeneous and large-scale networks, and more
complex damage models such as time-varying fading and
mobile intermittent connections need to be included.
Secondly, although it covers ten mainstream attacks, the
defense capabilities against unknown attacks and
adaptive attackers need further evaluation. In order to
promote the actual deployment, the current "edge
collection gateway analysis" architecture can be extended
in depth: explore the deployment of lightweight KPCA or
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RBM feature extraction modules on cluster head nodes to
achieve early threat awareness on the edge side, so as to
deeply integrate with the edge computing framework; At
the same time, blockchain technology can be introduced
to store and trace the detection logs and model updates, in
order to enhance the system's resistance to tampering and
credibility. In the face of continuously evolving threats,
future work can introduce deep reinforcement learning
frameworks to dynamically adjust feature weights and
classification thresholds, enabling the system to have
online learning and adaptive defense capabilities, thus
completing the evolution from static detection to dynamic
adversarial. In summary, this work provides an effective
solution to the security monitoring problem in damaged
networks, and through the analysis of its limitations and
the prospect of integrating edge intelligence, blockchain,
and adaptive learning, lays the foundation for building the
next generation of robust, trustworthy, and adaptive 10T
security protection system.
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