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The high-dimensional communication data generated by wireless sensor networks often contains 

substantial redundant and irrelevant information, which hampers the effective retention of critical 

features. Consequently, the characteristics of network impairment states and abnormal intrusion 

behaviors become intertwined and difficult to distinguish, ultimately compromising the accuracy of 

intrusion detection. Therefore, this paper studies the method of abnormal intrusion detection of wireless 

sensor network communication under network impairment. First, global node perception is achieved 

through the wireless sensor network networking model to obtain high-dimensional communication data. 

Second, the kernel principal component analysis (KPCA) method is used to perform nonlinear 

dimensionality reduction on the data, significantly reducing the data dimension and computational 

complexity while retaining the key information in the data. Subsequently, a restricted Boltzmann 

machine (RBM) is introduced to extract the deep features of the dimensionality-reduced data to 

distinguish the feature differences between network impairment states and abnormal intrusions. Finally, 

a high-precision abnormal intrusion detection is achieved through an optimized naive Bayes classifier. 

This classifier effectively improves the anti-interference ability under network impairment states by 

feature weighting and micro conditional probability optimization, highlights key features, and realizes 

abnormal intrusion detection. The experiment was conducted on a WSN dataset containing 50000 

records, simulating a damaged scenario with a 30% packet loss rate and a 40% bandwidth limitation. 

The results showed that the proposed method reduced the data dimensionality from 90 to 15 dimensions, 

with a variance retention rate of 94.7%; In the detection of 10 types of attacks, the F1 value reaches 

0.92, which is better than CNN (0.60) and association rules (0.62); At a 75% network damage rate, the 

false positive rate is only 5%, with accuracy and recall rates of 0.94 and 0.86, respectively, and a single 

sample prediction time of only 0.21 ms. This method maintains high detection accuracy while having 

low computational overhead and strong robustness, making it suitable for WSN security protection in 

complex damaged environments. 

Povzetek: Prispevek predstavlja učinkovito metodo zaznavanja vdorov v brezžičnih senzorskih omrežjih 

z visoko natančnostjo in nizko računsko zahtevnostjo tudi ob okvarah omrežja. 

 

1 Introduction 

Wireless sensor networks (WSNs) have been widely 

applied in key fields such as industrial monitoring, 

environmental perception, and intelligent transportation 

due to their advantages [1] of self-organization, low cost, 

and high flexibility [2]. Abnormal intrusion detection in 

wireless sensor network communication [3] aims to 

identify and defend against malicious behaviors such as 

illegal node access, data tampering, and denial-of-service 

attacks in real time [4], ensuring the security and 

reliability of network data transmission [5]. However, in 

actual application scenarios, the network often faces  

 

multiple impairment risks such as channel interference, 

node failure, and resource constraints [6]. Conducting 

research on abnormal intrusion detection under network 

impairment not only concerns the stable operation of the 

sensor network itself but is also crucial for avoiding 

serious consequences such as industrial accidents and 

data leakage [7, 8], having important practical 

significance for building a solid security defense line for 

the Internet of Things and promoting the healthy 

development of the intelligent industry [9]. 

Many scholars have conducted research on intrusion 

detection for abnormal communications in wireless 

sensor networks. For example, Niccolò et al. 

reconstructed the data packets transmitted by wireless 
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sensor nodes through an autoencoder, identified abnormal 

traffic based on the reconstruction error, and achieved the 

detection of unknown intrusions [10]. However, the 

performance of autoencoders heavily depends on the 

reconstruction mode of normal traffic. Under network 

damage, abnormal traffic generated by channel 

interference or node failure may have reconstruction 

errors that are highly similar to malicious intrusion 

behavior, making it difficult for the model to effectively 

distinguish at the feature representation level, resulting in 

poor detection performance. Karrothu et al. adopted an 

end-cloud-fog detection structure. They collected sensor 

data at the endpoint layer and transmitted it. The data of 

the wireless sensor network was transformed at the cloud 

computing layer through the Yeo-Johnson transform, and 

feature selection was carried out with the Kulczynski 

similarity. Then, the selected features were sent to an 

ensemble classifier optimized by the GDO (Gazelle-Dog) 

algorithm, and intrusion detection was completed using 

the ensemble classifier at the fog computing layer [11]. 

However, the Kulczynski similarity relies on the 

statistical relationship between data for feature screening. 

When a new attack pattern or environmental mutation 

occurs in the wireless sensor network, the relationship 

between data features changes, and the existing similarity 

calculation may misjudge the importance of features, thus 

missing key abnormal features and reducing the detection 

accuracy. Arkan et al. combined the wireless sensor 

network with the software-defined network by 

constructing a software-defined wireless sensor network 

architecture (SDWSN). The sensor runs an unsupervised 

intrusion detection algorithm module locally, clusters and 

analyzes the data based on entropy and cumulative point 

similarity, and sends the results to the SDWSN controller. 

The controller comprehensively analyzes the data 

analysis results of each region to determine whether the 

data is abnormal and complete abnormal intrusion 

detection [12]. However, in the case of network damage, 

this method uses entropy and cumulative point similarity 

as clustering criteria. In the case of network damage, 

packet loss and noise interference can significantly affect 

the stability of entropy and cumulative point similarity 

calculations, causing deviations in these clustering 

criteria and ultimately incorrectly dividing normal and 

abnormal data, affecting the accuracy of intrusion 

detection. Mutambik adopted the IoT-FIDS (Internet of 

Things Intrusion Detection Based on Data Streams) 

lightweight framework to achieve abnormal intrusion 

detection. This framework captures details such as node 

communication patterns and service usage by checking 

data streams, and only analyzes benign traffic during the 

detection process to identify abnormal behaviors, 

avoiding the dependence on pre-labeled data and a large 

amount of computing power. While reducing resource 

consumption, it can accurately detect most abnormal 

traffic, reduce false alarms, and provide practical 

protection for network security [13]. However, this 

method cannot highlight the role of key features and is 

difficult to accurately distinguish between normal traffic 

changes and malicious behaviors, resulting in 

misjudgment. 

In addition to the research on detection architecture 

mentioned above, from the perspective of data processing 

and feature engineering, existing works have also 

attempted to introduce various technologies. In terms of 

data dimensionality reduction, Zhang B et al. [14] used 

t-SNE for nonlinear dimensionality reduction, which 

focuses on preserving the local neighborhood structure of 

data points and mapping high-dimensional features (such 

as texture features extracted by GLCM) to a low 

dimensional space. However, such methods typically 

focus on maintaining the topological structure of data for 

visualization, with high computational complexity and a 

lack of clear inverse mapping for dimensionality 

reduction results, making it difficult to directly serve 

efficient online detection tasks. Shen Z et al. [15] used 

UMAP technology to reduce and visualize 

high-dimensional features, effectively evaluating the 

class separability of features in low dimensional space. 

However, the dimensionality reduction results of UMAP 

have randomness, and their output is sensitive to 

initialization parameters, which can lead to inconsistent 

feature representations after dimensionality reduction at 

different times or network states, seriously damaging the 

stability of online detection models. In terms of deep 

feature extraction, Alshehri et al. [16] proposed a model 

that combines Wasserstein GAN and autoencoder 

(WGAN-AE), which utilizes autoencoder reconstruction 

to learn robust latent feature representations. However, 

the training process of such generative models is 

unstable, and under the noise interference introduced by 

network damage, the dynamic balance between the 

generator and discriminator is more difficult to maintain, 

resulting in a decrease in the reliability of feature 

extraction. Brian W et al. [17] constructed a hybrid model 

integrating Transformer and random forest, which utilizes 

the self attention mechanism of Transformer to 

dynamically screen and weight key features. However, 

this model has high computational complexity and strict 

hardware resource requirements, making it difficult to 

deploy on wireless sensor network nodes with limited 

computing power; At the same time, its powerful feature 

filtering ability highly relies on a large amount of 

high-quality annotated data. In practical scenarios where 

the network is damaged, attack patterns are variable, and 

labels are scarce, its performance faces severe challenges. 

The summary of research on anomaly intrusion 

detection in wireless sensor networks is shown in Table 

1.
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Table 1: Summary of related research on wireless sensor network anomaly intrusion detection 

 

Author(s) 

(Year) 
Research Method Scenario Key Results Limitations 

Niccolò et 

al. (2024) 

Autoencoder reconstructs data 

packets transmitted by wireless 

sensor nodes, identifies 

anomalies based on 

reconstruction error 

Wireless sensor 

networks 

Detects unknown 

intrusions 

Performance heavily depends on 

normal traffic patterns; struggles 

to distinguish between channel 

interference and malicious 

intrusion under network 

impairment. 

Karrothu et 

al. (2025) 

End-cloud-fog architecture, 

Yeo-Johnson transform + 

Kulczynski similarity + 

GDO-optimized ensemble 

classifier 

Wireless sensor 

networks 

Achieves distributed 

intrusion detection with 

optimized resources 

Feature selection relies on static 

statistical relationships; poor 

adaptability to new attack 

patterns or environmental 

changes. 

Arkan et al. 

(2023) 

SDWSN architecture, 

clustering analysis based on 

entropy and cumulative point 

similarity 

Software-defined 

wireless sensor 

networks 

Achieves unsupervised, 

hierarchical intrusion 

detection 

Clustering criteria are sensitive to 

network impairment; packet loss 

and noise affect computational 

stability. 

Mutambik 

(2024) 

IoT-FIDS lightweight 

framework, data flow pattern 

inspection 

IoT data streams 

Low resource 

consumption, reduced 

false positives 

Unable to highlight key features; 

normal fluctuations in complex 

environments are easily confused 

with attacks. 

Zhang B et 

al. (2025) 

t-SNE nonlinear 

dimensionality reduction 

Defect detection 

(texture features) 

Effectively preserves 

local data structure for 

visualization 

High computational complexity, 

lacks inverse mapping, difficult 

to use for online detection. 

Shen Z et al. 

(2024) 

UMAP dimensionality 

reduction and visualization 

Optical performance 

monitoring data 

Effectively evaluates 

feature class 

separability 

Dimensionality reduction results 

are stochastic, compromising the 

stability of online detection 

models. 

Alshehri et al. 

(2025) 
WGAN-AE hybrid model 

IoT intrusion detection 

data 

Learns robust latent 

feature representations 

Unstable training process, 

sensitive to noise interference. 

Brian W et al. 

(2024) 

Transformer and random forest 

hybrid model 

Satellite ground station 

networks 

Dynamically selects 

and weights key 

features 

High computational complexity, 

significant resource demands, 

relies on large amounts of labeled 

data. 
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Based on the systematic analysis of existing research 

(Table 1), it can be found that the current wireless sensor 

network anomaly intrusion detection faces three core 

problems: firstly, in the state of network damage, existing 

methods are difficult to distinguish the anomalous 

features of physical damage and malicious intrusion, 

resulting in high false alarm rates; Secondly, there is a 

lack of efficient and stable nonlinear feature processing 

solutions. Existing dimensionality reduction and feature 

extraction methods are either computationally complex, 

have unstable results, or have high resource requirements, 

which cannot meet the real-time online detection needs; 

The third issue is that the classifier lacks anti-interference 

ability in damaged environments, making it unable to 

adaptively highlight key features, resulting in a decrease 

in detection accuracy. Therefore, in order to 

systematically solve the problems faced by wireless 

sensor network communication anomaly intrusion 

detection under network damage and improve the 

accuracy of wireless sensor network communication 

anomaly intrusion detection, this paper studies a method 

for detecting wireless sensor network communication 

anomaly intrusion under network damage. It should be 

noted that the "network damage state" focused in this 

article specifically refers to systematic communication 

quality collapse scenarios caused by physical damage, 

malicious preemption, or sudden congestion with high 

random packet loss rates (>30%), malicious bandwidth 

limitations, and critical node failures. Unlike traditional 

static background constraints such as limited resources or 

environmental interference, this state leads to highly 

distorted and incomplete data transmission in the 

network, causing deep confusion between intrusion 

features and physical damage features, thereby 

undermining the assumption that existing detection 

methods rely on "basic data reliability". The specific 

technical route is as follows: 

(1) Global perceptible data acquisition: By 

constructing a wireless sensor network networking model 

and based on the probability formula for node automatic 

identification, it ensures that the status monitoring and 

communication data collection of all nodes in the entire 

domain can still be achieved even when the network is 

partially damaged, providing a reliable data foundation 

for subsequent analysis. 

(2) KPCA Nonlinear Data Dimensionality 

Reduction: To address the difficulty of transmitting and 

processing high-dimensional data in damaged networks, 

the Kernel Principal Component Analysis (KPCA) 

method is adopted. Nonlinear mapping of raw data to low 

dimensional space using Gaussian radial basis kernel 

function significantly reduces data dimensionality and 

computational complexity while preserving key structural 

information, alleviating resource pressure. 

(3) RBM deep feature extraction: To effectively 

distinguish the mixed features of network damage and 

malicious intrusion, a restricted Boltzmann machine 

(RBM) is used to perform unsupervised deep feature 

learning on the reduced dimensional data. By using its 

energy model probability distribution, abstract features 

that can characterize the essence of abnormal intrusion 

are extracted to enhance the discriminative ability of the 

features. 

(4) Optimizing Naive Bayes classification decisions: 

In response to noise interference in damaged 

environments, perform dual optimization on the Naive 

Bayes classifier: first, introduce a feature weighting 

mechanism to highlight the contribution of key features; 

Secondly, implement micro conditional probability 

optimization to improve the robustness of the model by 

iteratively modifying the conditional probability 

estimation. Ultimately, the optimized classifier is utilized 

to achieve high-precision and low false positive anomaly 

intrusion detection. 

In summary, this article constructs an end-to-end 

solution through a progressive technical route of "KPCA 

dimensionality reduction → RBM feature extraction → 

optimized naive Bayes classification". This solution 

systematically addresses the full chain challenges from 

data preprocessing, feature engineering to final 

decision-making, in order to improve the accuracy, 

robustness, and real-time performance of wireless sensor 

network communication anomaly intrusion detection 

under network damage conditions. 

2 Data dimensionality reduction and 

deep feature extraction of wireless 

sensor network communication 

network under damaged state  

In wireless sensor networks, in addition to network 

damage caused by communication anomaly intrusion, 

physical interference, environmental interference, and 

energy depletion can all lead to a damaged state of the 

wireless sensor network. In order to still achieve accurate 

detection of communication anomaly intrusion in the 

wireless sensor network under the damaged state, it is 

necessary to ensure that the entire wireless sensor 

network is in a perceivable state, that is, each node in the 

network can be effectively monitored and detected [18]. 

Through the design of the networking model, ensure the 

coverage area and communication quality of the sensor 

network, so as to provide a reliable data source for the 

subsequent automatic identification of abnormal nodes 

[19]. In this context, this study focuses on three core 

objectives: firstly, to verify whether the nonlinear 

dimensionality reduction method based on kernel 

principal component analysis can significantly reduce 

data dimensionality and computational complexity while 

preserving key information, thereby improving detection 

real-time performance; The second is to explore the 

ability of restricted Boltzmann machines to extract deep 

features from reduced dimensional data to distinguish 

between network damage and malicious intrusion 

behavior; The third is to evaluate the performance of the 
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Naive Bayes classifier with feature weighting and micro 

conditional probability optimization in maintaining high 

detection accuracy and low false alarm rate in network 

damaged environments, and compare its advantages and 

disadvantages with traditional and deep learning methods. 

Therefore, this article constructs an end-to-end detection 

framework that integrates global perception data 

acquisition, KPCA dimensionality reduction, RBM 

feature extraction, and optimized Naive Bayes 

classification, aiming to improve the accuracy, robustness, 

and real-time performance of anomaly intrusion detection 

in complex damage scenarios. 

2.1 Data acquisition of wireless sensor 

network under damaged state 

To ensure accurate anomaly intrusion detection even 

in the event of network damage, it is first necessary to 

ensure that the entire wireless sensor network (WSN) is 

in a globally perceptible state, where every node in the 

network can be effectively monitored by the monitoring 

system. Therefore, this article constructs a geometric 

perception-based node identifiability model to evaluate 

the monitoring coverage of each node in the event of 

network damage. For the convenience of theoretical 

modeling and analysis, this study simplifies the network 

deployment area into a rectangular region. Let the entire 

wireless sensor network be within the rectangle M M  

. If the sensing coordinate of a certain wireless sensor 

network node i  within M M  is 
( ),i ix y

 , whether 

it can be recognized when abnormal communication 

occurs in this wireless sensor network node depends on 

whether it is located within the optimal perception radius 

of the central node 
j

, regardless of whether it has a 

logical association with the central node. 

Let
( ),x y

represent the coordinates of the automatic 

identification node. The formula for the condition for the 

abnormal node i  of the wireless sensor network 

communication to be automatically identified is:  

( ), 1, ,P i j i j r= 
    (1) 

In the formula, ( ),P i j  is the automatic 

identification probability, where a value of 1 indicates 

that it can be recognized and 0 indicates that it cannot be 

recognized, ,i j  is the physical distance between node 

i  and j , reflecting the spatial relationship between 

nodes, and r  is the optimal sensing radius of the central 

node j, which is determined by the node's communication 

capability, channel quality, and environmental 

interference. It can usually be estimated through actual 

measurements or link budget models, representing the 

maximum effective range that the node can reliably 

perceive and communicate under specific network and 

environmental configurations. 

The expression of ,i j  is: 

2 2
, i ii j x x y y= − + −

 (2) 
Through formula (1) and formula (2), it is possible to 

judge whether any node i  can be successfully 

automatically identified when abnormal. If the automatic 

identification probability is 1 for all nodes in the wireless 

sensor network after the operation of formula (1), it 

means that the entire wireless sensor network is 

perceivable, and the communication data of each node in 

the wireless sensor network can be obtained. Otherwise, 

it indicates that there are coverage blind spots in the 

network, and it is necessary to partition the network and 

arrange automatic identification nodes in each partition to 

ensure that the entire wireless sensor network maintains a 

perceivable state and realize the acquisition of wireless 

sensor network communication data under the damaged 

state. 

The above node identifiability model provides 

theoretical criteria for evaluating the global perceptibility 

of the network. To apply it to actual data collection, this 

study instantiated the model as follows: the physical 

coordinates of nodes and central nodes were derived from 

pre deployment network topology mapping; The optimal 

perception radius is determined through field link 

measurement, which tests the packet reception rate of the 

central node and surrounding nodes at different distances 

in the deployment environment. The farthest reliable 

communication distance that meets the minimum 

communication quality requirements is defined as this 

radius. In this experimental environment, the value of 

each cluster head node is distributed between 80 meters 

and 120 meters. The recognition probability is integrated 

into network management software as a binary decision 

function in practice, which determines whether a node 

can be monitored by calculating the distance between 

nodes in real-time and comparing it with the 

corresponding optimal perception radius. In this 

experimental deployment, by optimizing the node layout, 

the recognition probability of all 150 nodes was ensured 

to be 1, thus meeting the prerequisite of "global 

perceptibility" and providing a complete data foundation 

for subsequent analysis. Based on this network, all 

communication data is collected through the actual 

protocol stack to form the initial high-dimensional 

dataset; The simulation of network damage state is 

achieved through software injection of damage on this 

normal data stream, in order to obtain a controllable 

dataset of damage state. 

In the actual data collection process, this study is 

based on the above model to guide network deployment 

and optimization, ensuring that the global perceptible 

conditions are met as much as possible in the actual 

physical topology. All communication data (including 

normal and abnormal traffic) are collected through this 

actual network, and the data collection process follows 

standard communication protocols, recording 

multi-dimensional information such as communication 
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timing, packet content, and signal strength of each node, 

forming the original high-dimensional dataset for 

subsequent dimensionality reduction and feature 

extraction. 

2.2 Data dimensionality reduction of 

wireless sensor network communication 

network under damaged state based on 

kernel principal component analysis 

The wireless sensor network networking model can 

achieve global state awareness of wireless sensing. 

Obtaining the communication data of each node in the 

wireless sensor network not only involves a huge amount 

of data, but also has a very high data dimension. In this 

state, data transmission will consume a large amount of 

communication resources. However, due to factors such 

as packet loss, channel congestion, and environmental 

interference in the network damaged state, it will cause 

great difficulties in the communication of the wireless 

sensor network, making it difficult to transmit data. 

Therefore, it is necessary to reduce the dimension of the 

communication data of the wireless sensor network in the 

network damaged state. By reducing the data dimension 

of the wireless sensor network in the damaged state, 

reducing data complexity, improving data calculation 

speed, occupying less communication resources in the 

damaged state, and improving the communication 

anomaly intrusion detection speed of the wireless sensor 

network in the network damaged state [20]. In order to 

quickly and accurately reduce the dimension, the kernel 

method is introduced based on the principal component 

analysis method to form the kernel principal component 

analysis method for data reduction [21]. 

The basic principle of the kernel method is as 

follows: The communication data of the wireless sensor 

network in the damaged state in the input data space is 

mapped to a high-dimensional feature space through a 

non-linear function, and data processing is carried out in 

the feature space. In this process, a kernel function is 

introduced to convert the inner product operation in the 

feature space after non-linear transformation into the 

calculation of the kernel function in the original space, 

thereby reducing the computational amount. The process 

of using kernel principal component analysis for 

dimensionality reduction of wireless sensor network 

communication data is shown in Figure 1. 

Data space

Feature space

Kernel 

function

Linear 

operation

(PCA）

Nonlinear 

operation

Regression of the 

feature space to the 

data space

 

Figure 1: Kernel method framework 

Based on the kernel method framework shown in 

Figure 1, the KPCA dimensionality reduction process 

achieves nonlinear feature extraction of high-dimensional 

data through four key stages: in the kernel function 

mapping stage, the original high-dimensional data is 

projected into a high-dimensional feature space through a 

nonlinear mapping function. This process uses kernel 

functions to implicitly calculate the inner product of 

samples in the feature space, avoiding complex 

high-dimensional explicit calculations. In the linear 

operation stage, data in the feature space is processed 

through standard principal component analysis. By 

calculating the eigenvalues and eigenvectors of the 

covariance matrix, determine the direction of maximum 

data variance and establish a low dimensional orthogonal 

coordinate system. In the feature space data 

reconstruction stage, the projection coordinates of the 

original data on the principal components of the feature 

space are obtained through mathematical transformations. 

These projection coordinates form the reduced 

dimensional dataset, preserving the key nonlinear features 

of the original data. Finally, through the organic 

combination of the above stages, nonlinear dimension 

reduction was achieved, resulting in a low dimensional 

data representation with discriminative power, providing 

an effective data foundation for subsequent anomaly 

intrusion detection. The specific process is as follows: 

The nuclear method is combined with the principal 

component analysis to form the kernel principal 

component analysis method. The wireless sensor network 

communication obtained in Section 2.1 above. The 

trusted data is set as   wireless sensor network 

communication data samples ( )1,2,3, ,k k =  in 

the input data space, 
N

k R  , such that 
1

0k

k




=

= , 

and its covariance matrix C  is: 

1

T

k k

k

 


==



C    

 

(3) 
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In the formula, T  is the transpose. 

In the PCA algorithm, a non - linear mapping 

function   is introduced to transform the 

communication data sample points 1 2 3, , , ,     

of the wireless sensor network in the damaged state in the 

input data space into the communication data sample 

points ( ) ( ) ( ) ( )1 2 3, , , ,       
 of the 

wireless sensor network in the damaged state in the 

feature space. Assume: 

( )
1

0k

k

 


=

=    

 

(4) 

In the feature space G  , the covariance matrix is: 

( ) ( )
1

T

k k

k

   


==



C

   

(5) 

Therefore, the formula for solving the 

communication data value and vector of the wireless 

sensor network in the feature space G  is: 

 , 0G =  C       
 

(6) 

Where,   and   are the wireless sensor network 

communication data values and vectors in the feature 

space G  , respectively. 

Thus, it can be obtained that: 

( )( ) ( )k k    = C 
    

(7) 

The linear representation formula of the 

communication data vector   of the wireless sensor 

network in the feature space G  is: 

( )
1

i i

i

 


=

= 
    

(8) 

In the equation, 
i  is the eigenvector. 

According to formulas (5), (7), and (8), we can 

obtain: 

( ) ( )( )
( ) ( ) ( ) ( )( )

( )

1 1

1

1,2,3, ,

i k k j i

i i

i k i

i

k

       

    

 


= =

=

 
  

  =


= 

 






 

(9) 

Define the matrix K  of   : 

( ) ( ),i j i j   = K
    

(10) 

Then formula (9) can be transformed into: 

 = K 
     

(11) 

By solving formula (11), the communication data 

value   and vector   of the wireless sensor network 

in the mapping space can be obtained. Arrange 

1 2 3, , , , n     in descending order and adjust 

1 2 3, , , , n     to correspond to the sorted 

1 2 3, , , , n     . Using the Gram Schmidt orthogonal 

method to normalize vectors, ensuring that the extracted 

principal components are orthogonal to each other, thus 

constructing a non redundant and discriminative feature 

representation in a low dimensional space, and obtaining 

1 2 3, , , , n     . Then the projection of the 

communication data test sample of the wireless sensor 

network on the vector 
k  in the feature space G  is: 

( )
1

,
n

i i j

i

y  
=

= K
    

(12) 

If the communication data of the wireless sensor 

network in the feature space does not meet the centering 

condition, the matrix needs to be corrected. Replace K  

in formula (12) with K  , and the formula is: 

, 11 1
, , 2

im mn nji j in nj
nm n

i j i j

o 
 

 
 == == − − +

  

  KK K

K K   

 

(13) 

In formula (13), i , 
j 1=  , and ,i jo

 are 

correction coefficients. 

The specific process of dimensionality reduction of 

the communication data of the wireless sensor network 

by the kernel principal component analysis method 

according to the above content is as follows: 

(1) Suppose   data records are obtained from the 

communication data of the wireless sensor network 

sensed by the wireless sensor network networking model 

(each record has n  attribute components), and represent 

it as a n  -dimensional matrix: 
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  

 
 =
 
  

     

 

(14) 

(2) Select an appropriate kernel function and 

calculate the kernel matrix K  . Since the Gaussian 

radial basis function (RBF) kernel function can implicitly 

map data to a high-dimensional space to achieve 

nonlinear modeling, with few parameters, strong 

adaptability, and relatively efficient calculation, the 

Gaussian radial basis function is selected as the kernel 

function of kernel principal component analysis. The 

formula of the Gaussian radial basis function is: 

( )
2

2
, exp

i j

i j

 
 



 −
 = −
 
 

K

    

(15) 

In the formula, 
2

i j −  is the square of the 

Euclidean distance between two communication data of 

the wireless sensor network in the feature space;   is 

the kernel function width. 

(3) Correct the kernel matrix K  to obtain K  , as 

shown in formula (13). 

(4) Calculate the value 1 2 3, , , , n     of K  

and the vector 1 2 3, , , , n     . 

(5) Arrange 1 2 3, , , , n     in descending order 

and adjust 1 2 3, , , , n     to correspond to the sorted 

1 2 3, , , , n     . 

(6) Use the Gram-Schmidt orthogonal method to 

normalize the vector and obtain 1 2 3, , , , n    . 

(7) Calculate the cumulative contribution rate 

1 2 3, , , , nB B B B  of the sorted 1 2 3, , , , n     

values. According to the given extraction efficiency p  , 

if iB   , then extract i  principal components 

1 2 3, , , , i     . 

(8) Calculate the projection y = K  of the 

corrected kernel matrix K  on the extracted 

corresponding vectors, where 1 2 3, , , , i=      ; 

the obtained projection y  is the data obtained after the 

data is reduced in dimension by KPCA. 

After reducing the dimension of the wireless sensor 

network communication data in the network damaged 

state by the KPCA method, a certain degree of 

compression is performed, redundant information is 

removed, and the complexity of the data is reduced, so 

that the data can be transmitted using fewer 

communication resources. Occupying fewer 

communication resources in the network damaged state 

can transmit data faster, so the wireless sensor network 

communication anomaly intrusion detection can be 

completed faster. 

2.3 Feature extraction of wireless sensor 

network communication data in the 

damaged state based on the restricted 

boltzmann machine 

After completing the dimension reduction of the 

wireless sensor network communication data in the 

network damaged state by the KPCA method, the 

Restricted Boltzmann Machine (RBM) is used to extract 

the data features of the data after dimension reduction in 

the network damaged state. RBM is a probability 

distribution function based on energy [22], and its energy 

function ( )y,E h  formula is: 

( ) ,

1 1 1 1

y,
y yh h

n nn n

i i j j j j i i

i j i j

E h y y h y 
= = = =

= − − −     (16) 

Where: ( )1 2 3, , , ,
T

mh h h h h=  represents the 

values of the neurons in the RBM hidden layer, 

( )1 2 3, , , ,
T

ny y y y y=  represents the values of the 

neurons in the visible layer, that is, the wireless sensor 

network communication data after dimension reduction, 

i  is the bias value of the visible layer neuron i  , j  

is the bias value of the hidden layer neuron j  , and 

( )ij m n
=W   is the connection weight matrix from the 

visible layer to the hidden layer. 

According to the energy function, the joint 

probability distribution ( ),P y h  of y  and h  can be 

obtained as: 

( ) ( ),1
,

E y h
P y h e

Z

−
=    (17) 
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Where, Z  is the partition function (normalization 

factor): 

( ),

,

E y h

y h

Z e
−

=
    

(18) 

Formula (17) gives the "energy - probability" 

relationship, from which the feature   of the wireless 

sensor network communication data after dimension 

reduction extracted by the hidden layer can be obtained, 

and the formula is: 

( )1|i j j ij

i

P y h h  
 

= = = + 
 

   

 

(19) 

In the equation,   is the Sigmoid function. 

According to formula (20), the 

dimensionality-reduced wireless sensor network 

communication data features   extracted by the hidden 

layer of the RBM  [23], that is, the communication 

features of the wireless sensor network in the network 

damaged state. 

When the RBM algorithm is applied to the process of 

extracting wireless sensor network communication data 

features, an unsupervised learning method is adopted to 

train the RBM feature extraction model. The purpose of 

training the RBM is to make the distribution ( )p y  of 

the visible layer nodes y  best fit the distribution 

( )q y  of the sample space where the input 

dimensionality-reduced wireless sensor network data 

samples are located. From the perspective of information 

entropy, it is to make the KL (Kullback-Leibler, relative 

entropy) distance between p  and q  the smallest, so 

that the two distributions are closer. The formula is: 

( )
( )

( )

( ) ( ) ( ) ( )

ln

ln ln

y Y

y Y y Y

q y
KL q p

p y

q y q y q y p y



 

=

= −



 

   (20) 

Since the input of the visible layer is the 

communication data information in the wireless sensor 

network, ( )q y  is a determined item. To ensure the 

smallest KL distance, ( ) ( )ln
y Y

q y p y


  needs to be 

maximized. Since the sample space Y  of the wireless 

sensor network communication data is unknown, the 

Monte Carlo method is used to find the approximate 

value of ( ) ( )ln
y Y

q y p y


  . The formula is: 

( ) ( )
( )

1

ln

ln
y Y

p y

q y p y









=






    

 

(21) 

In the formula:   is the assumed number of 

training samples; y  represents the   th training 

sample. 

To find the optimal RBM parameter 

 , ,W  =  , the logarithmic loss function is 

adopted. The formula is: 

( )( )
1

ln


=

= −
i

i

Loss p y

    

(22) 

Thus, the training of the RBM feature extraction 

model is completed, and the feature extraction of the 

dimensionality-reduced wireless sensor network 

communication data is realized based on the trained 

RBM. 

To ensure the effectiveness and reproducibility of 

the RBM feature extraction model, this study specifically 

designed its network structure and training process. In 

terms of network structure, the number of visible layer 

neurons remains consistent with the dimensionality of 

KPCA reduced data; The number of hidden layer neurons 

has been experimentally verified to be 128, in order to 

achieve a balance between feature compression and 

information preservation. The model training adopts the 

Contrastive Divergence (CD-1) algorithm, which 

performs one-step Monte Carlo simulation through Gibbs 

sampling to efficiently approximate the negative phase 

gradient of the data. Specifically, during the training 

process, Gibbs sampling is used to quickly generate 

visible and hidden layer samples from the current 

distribution of RBM in order to approximate the expected 

term of the model in formula (21). This Monte Carlo 

sampling method avoids the huge computational 

overhead of directly calculating the partition function, 

and approximates the true gradient direction through 

finite step sampling, making it possible to maximize the 

logarithmic likelihood function through the random 

gradient ascent method. The key hyperparameters are set 

as follows: learning rate of 0.01, training epochs of 100, 

and batch size of 64. This set of parameter combinations 

has been experimentally verified to effectively ensure the 

stable convergence of the model and extract deep features 

with high discriminative power. 
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3 Abnormal intrusion detection of 

wireless sensor network 

communication in the damaged 

state based on Naive Bayes 

Classifier 

The naive Bayes classifier ensures that the posterior 

probability of a class is higher than that of other classes 

according to the maximum posterior probability rule, so 

as to achieve accurate classification [24]. The extracted 

wireless sensor network communication data feature 

vector   is used as the input of the naive Bayes 

network for abnormal intrusion detection of wireless 

sensor network communication [25]. Since the normal 

wireless sensor network in the network damaged state 

will also be affected by different factors, resulting in 

certain communication anomalies, but there are 

differences in the performance of the abnormal feature 

vector   between the communication anomalies caused 

by the network damaged state and those caused by 

intrusions. Therefore, the abnormal intrusion detection of 

communication in the network damaged state can be 

realized through the abnormal feature vector   . 

First, set or adjust the weight vector   of the prior 

probability. The formula is: 

( ) ( )1

1

| 0, ip N


 −=     

 

(23) 

In the formula:   is the hyperparameter vector 

described by   . 

Use  1 2 3, , , , nS s s s s=  to describe the set of 

wireless sensor network communication data. Use 

 2 2 3, , , , n=U      to describe the set of wireless 

sensor network communication data feature vectors. 

Adopt the ( )is f=   mapping criterion for 

description, where f  is a classifier, which can make a 

random is S  uniquely correspond to a i U  , 

satisfying ( )is f=   . The naive Bayes classification 

method is to establish a naive Bayes classifier, and the 

probability ( )|ep s   that the set of homogeneous data 

feature vectors   of wireless sensor network nodes that 

need to be classified as normal or abnormal belongs to 

the es  class. The formula is: 

( )
( ) ( )

( )

|
| e e

e

p s p s
p s

p
=





   (24) 

In the formula: ( ) 0p  ； ( ) 0ep s  ，

1,2,3, ,e m=  . 

In formula (24), for different wireless sensor network 

states, the denominator ( )p   is fixed, so maximizing 

the numerator is sufficient. If the wireless sensor network 

communication data in the network damaged state in the 

training set follows a specific probability distribution or 

is parameter-free, when dealing with continuous data, it is 

assumed that this data follows a normal distribution. For 

a certain continuous attribute in the training set, 

represented by b  , first classify it, and then calculate 

the mean and variance of each class. Use 
1s

  to 

represent the variance of b  in the 1s  class. The 

communication abnormal intrusion probability 

( )1|p z s=  for any wireless sensor network node is: 

( )
( )

( )
1

1 2
|

2

e

s

p s e
p z s

p k 
= =





    (25) 

In the formula, 
1s

 、 z  are respectively used to 

describe the normal distribution and the variance with the 

mean at 1s , ( )|p   is a naive Bayes classifier. 

Since normal network communication in the network 

damaged state will also be interfered and generate certain 

anomalies, a threshold is set based on formula (25), 

adjusted according to the actual situation based on a 60% 

probability. When the abnormal probability exceeds this 

threshold, it is determined that there is a communication 

abnormal intrusion in this wireless sensor network, and 

there is a node being invaded in the wireless sensor 

network. 

Since the network damaged state will bring great 

interference to the intrusion detection of the naive Bayes 

classifier, the features of the naive Bayes classifier are 

weighted and the micro conditional probability is 

optimized. 

(1) Feature Weighting Optimization 

The formula of the naive Bayes classifier based on 

feature weighting optimization is: 

( ) ( ) ( ) ( )
1 1

| arg maxp | |i ip N N 

 
 

  =      (26) 

In the formula, the weight vectors  ,  = ，   

is the qualitative weight calculated based on the mutual 

information between features and categories, reflecting 

the correlation between features and abnormal intrusion. 

  is the quantitative weight obtained based on the 
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inverse normalization of feature variance, used to balance 

the impact of differences in different feature value ranges. 

The specific calculation of weights is determined on the 

training set through cross validation. 

(2) Micro Conditional Probability Optimization 

In the training phase, first learn the estimated 

information and the Naive Bayes classifier, and then 

predict the training set to obtain the misclassified training 

samples. In the fine-tuning phase, modify the conditional 

probabilities corresponding to all misclassified samples in 

each round. Increase the conditional probability of each 

feature under the true class by a certain step size and 

decrease the conditional probability of each feature under 

the predicted class by a certain step size, so as to improve 

the accuracy of classifying the training set in the next 

round. Otherwise, stop the iteration. The optimal 

conditional probability is the conditional probability 

modified in the previous round. The formula is: 

( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( )

|
|

|
|

e e

e t

e e

e t

p s p s
p s TC

p

p s p s
p s PC

p





= +

= +











    (27) 

Among them, TC  and PC  are the true class and 

the predicted class of the training samples of the 

communication data of the wireless sensor network 

respectively. t  is the conditional probability of the 𝑡 
-th round of iteration, and t  is the number of iterations. 

In the fine-tuning phase, an iterative optimization 

strategy is adopted to adjust the conditional probability 

estimates, specifically implemented through the 

following algorithm: 

Input: Training dataset, initial Naive Bayes classifier, 

maximum iteration count T, convergence threshold ε 

Output:Optimized conditional probability table 

1)Initialization: 

Set the current iteration round t=0, train using the training 

dataset to obtain the initial conditional probability table. 

2)Iterative Optimization: 

for t=1 to T do 

 Step 1: Use the current conditional probability table to 

predict the training set and collect the set of misclassified 

samples. 

 Step 2: Check convergence criteria: 

  if the number of misclassified samples stops 

decreasing and the decrease magnitude is less than 

threshold ε then 

   Terminate the iteration, jump to Step 5. 

  end if 

 Step 3: For each misclassified sample: 

   Obtain the sample's true class and predicted class. 

   for each feature do 

     

 

 

 

 

 Increase the conditional probability of this feature 

under the true class (increase by step size δ). 

    Decrease the conditional probability of this 

feature under the predicted class (decrease by step size δ). 

   end for 

 Step 4: Perform normalization to ensure the sum of all 

conditional probabilities is 1. 

end for 

3)Output Result: 

Step 5: Return the final optimized conditional probability 

table. 

The core idea of this optimization process is: for each 

misclassified sample, increase the conditional 

probabilities of its features under the true class, while 

simultaneously decreasing them under the incorrectly 

predicted class. Through this bidirectional adjustment, the 

model can gradually correct initial estimation biases and 

better adapt to the true data distribution. 

During optimization, the adjustment step size δ for 

conditional probabilities is typically set to a small 

positive number, such as 0.01 or 0.05, to ensure a smooth 

and convergent optimization process. Additionally, the 

algorithm incorporates dual convergence criteria: firstly, 

the number of misclassified samples ceases to decrease, 

and secondly, the decrease magnitude falls below a preset 

threshold. These two conditions together ensure the 

optimization process terminates at an appropriate point, 

preventing overfitting. 

By performing feature weighting on the Naive Bayes 

classifier and optimizing the conditional probabilities 

through fine-tuning, the influence of key features on 

classification can be highlighted, the weights of features 

with a high degree of association with the target category 

can be enhanced, the interference of irrelevant features 

can be suppressed, and at the same time, the probability 

estimation deviation caused by assuming feature 

independence, data sparsity, etc. can be corrected, making 

the model more adaptable to the actual distribution of the 

data, and increasing the accuracy of detecting abnormal 

intrusions in the wireless sensor network communication 

under the network damaged state. 

4 Experimental analysis 

4.1 Experimental object 

The experiment selected a wireless sensor network 

used in a company, which covers over 1000 square 

meters of production, warehousing, and transportation 

areas, with a total of 150 sensor nodes covering various 

types such as vibration, temperature and humidity, 

pressure, etc. It is used for real-time monitoring of 

equipment production and environmental parameters for 

intelligent control. The topology structure of the wireless 

sensor network is shown in Figure 2. 
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Figure 2: Topology structure of wireless sensor 

network 

Figure 2 illustrates the topology structure of the 

Wireless Sensor Network (WSN) employed in the 

experiments. This network is deployed in an industrial 

environment, covering production, storage, and 

transportation areas for real-time monitoring of 

equipment operating status and environmental 

parameters. A hybrid topological structure is adopted, 

combining the advantages of star and mesh topologies to 

enhance communication reliability and coverage. The 

network comprises multiple cluster head nodes (CHs) 

(e.g., Cluster Head A, B, C), which are responsible for 

coordinating data aggregation and transmission from 

ordinary sensor nodes within their respective regions. 

Utilizing a multi-hop communication mechanism, data is 

relayed through the cluster head nodes to a gateway node, 

and ultimately uploaded to the cloud or a control center. 

To verify the anomaly intrusion detection capability of 

the proposed method under network damage conditions, 

communication damage was artificially introduced in the 

experiment: a random packet loss rate of 30% was set 

between cluster head C and the gateway to simulate 

channel quality deterioration; Limit the communication 

bandwidth of cluster heads A and B to 40% of their 

original value, simulating a resource constrained 

scenario. The dataset used for training and testing was 

actually collected through the network, containing a total 

of 50000 communication data records, including 35000 

normal communication data and 15000 abnormal data. 

Abnormal data is generated by simulating ten typical 

attack behaviors, including Sinkhole attack, wormhole 

attack, denial of service attack, replay attack, disguised 

node attack, selective forwarding attack, flooding attack, 

data tampering attack, key leakage attack, and topology 

destruction attack. Each type of attack generates 

approximately 1500 instances to ensure class balance in 

the dataset, and each type of attack is injected into 

specific nodes through scripts, with corresponding 

timestamps and traffic characteristics recorded. The ratio 

of normal and abnormal samples in the dataset is 7:3, 

ensuring that the model still has good generalization 

ability even in cases of class imbalance. All data are 

anonymized during the collection process and feature 

sequences are constructed using time window slicing to 

support subsequent dimensionality reduction and feature 

extraction operations. 

The parameters of the wireless sensor network used 

are shown in Table 2. 

 

Table 2: Parameters of wireless sensor network 

Attribute Parameters 

Topological structure Hybrid topological structure 

Communication 

standard 
IEEE 802.15.4g 

Working frequency 

band 
2.4GHz 

Network capacity Support concurrent access of over 2000 nodes 

Sensor type 
Vibration sensor, temperature and humidity sensor, RFID reading and writing module, 

pressure sensor 

Battery life Lithium thionyl chloride battery, with a 5-year battery life (in low-power mode) 

Protection grade IP67 

Computing power 8-bit microcontroller, supporting edge lightweight computing 

Transmission distance Single jump 150 meters 

Data rate 250kbps 

Encryption protocol AES - 128  

Deployment method Guide rail installation + ceiling mounting + pole clamping installation 
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Gateway interface Ethernet (1Gbps), 4G/5G modules 

Working temperature -20℃ ~ 70℃ 

 

The selection of kernel functions and their 

parameters has a decisive impact on the dimensionality 

reduction performance of KPCA. This study uses 

Gaussian radial basis function (RBF) kernel function, 

whose parameter kernel width   controls the flexibility 

and locality of the model. To evaluate the robustness of 

parameter selection and determine the optimal value, a 

sensitivity analysis experiment was designed: on the same 

dataset, all other conditions were fixed, and the value of 

  was systematically changed to observe its impact on 

the performance of reduced dimensional data in 

subsequent anomaly intrusion detection tasks (with F1 

score as the core indicator). 

Table 3: Sensitivity analysis results of KPCA 

parameter   

Kernel 

width 

Data dimension after 

dimensionality 

reduction 

Abnormal 

intrusion detection 

F1 score 

0.01 28 0.71 

0.10 19 0.84 

0.50 15 0.92 

1.00 13 0.87 

5.00 10 0.78 

According to the results in Table 3, the performance of 

KPCA is more sensitive to changes in the value of  . 

When  =0.50, the reduced dimensional data achieved 

the highest F1 score (0.92) in subsequent classification 

tasks, indicating that under this parameter, KPCA can 

most effectively extract the nonlinear features that are 

most beneficial for distinguishing normal and abnormal 

communication modes. Meanwhile, when   is within 

the range of [0.10, 1.00], the F1 scores remain above 

0.84, indicating that the method has good robustness 

within this parameter range. All subsequent experiments 

in this study were conducted using the optimal parameter 

determined by this experiment,  =0.50. 

To ensure the reproducibility and scientificity of the 

proposed method, this study specifically set and 

explained the hyperparameters of the model. Firstly, in 

the design of a Restricted Boltzmann Machine (RBM), 

the number of hidden layer neurons is set to 128 to 

achieve a balance between feature compression and 

information preservation; The model training uses the 

Contrastive Divergence (CD-1) algorithm, with key 

hyperparameters including a learning rate of 0.01, 150 

training epochs, and a batch size of 64. Secondly, in the 

process of optimizing the Naive Bayes classifier, the 

qualitative weights (based on mutual information) and 

quantitative weights (based on reciprocal variance) used 

for feature weighting are fused with coefficients of 0.7 

and 0.3, respectively, and determined through cross 

validation; The adjustment step size for micro conditional 

probability optimization is set to 0.01, the maximum 

number of iterations is 50, and the convergence criterion 

is to stabilize the number of misclassified samples (with a 

change amplitude less than 0.001). In the process of 

determining key parameters of the model, such as the 

kernel width σ of KPCA, the number of hidden units in 

RBM, and the weight coefficients of Naive Bayes, 5-fold 

cross validation was used to optimize on the training set. 

Specifically, divide the training set into 5 equal parts, 

take turns using 4 parts as the training subset and the 

remaining 1 part as the validation subset, and loop 5 

times. The final parameter selection is based on the group 

with the best average performance among 5 verifications. 

All performance metrics reported, such as F1 score and 

false positive rate, are the final results of the model on an 

independent test set. 

4.2 Analysis of the effectiveness of the 

proposed method 

To verify the effect of the KPCA method used in this 

article on dimensionality reduction of original wireless 

sensor network communication data, wireless sensor 

network communication data was randomly collected and 

dimensionality reduction was performed using the KPCA 

method proposed in this article. The original wireless 

sensor network communication dataset contains 90 

features (attributes), and the reduced wireless sensor 

network communication data is shown in Figure 3. 
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(a)The distribution of original wireless sensor 

network communication data 
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(b)Data distribution of wireless sensor network 

communication after KPCA dimension reduction 

Figure 3: Data dimensionality reduction effect of the 

KPCA method 

From Figure 3, it can be seen that the KPCA method 

proposed in this paper can achieve efficient 

dimensionality reduction of wireless sensor network 

communication data. In the original state, the feature 

dimensions of wireless sensor network communication 

data without dimensionality reduction are mainly 

concentrated in 60-80 features, but there are also a large 

number of fluctuations between 10-90 features, resulting 

in extremely high data dimensions. In the state of 

network damage, the computing power of the network 

decreases, and it is difficult to ensure the accuracy of 

anomaly intrusion detection by processing 

high-dimensional data. After using the KPCA method in 

this article for data dimensionality reduction (as shown in 

Figure 3 (b)), the projected values of the data in the 

KPCA principal component space were standardized to 

around 15 features, which cumulatively explained about 

94.7% of the original variance, indicating that the 

reduced features had been effectively compressed and 

concentrated, with slight fluctuations but almost 

negligible. The data fluctuation is reduced and the 

dimensionality is significantly reduced after 

dimensionality reduction using the method described in 

this article. In situations where the network is damaged 

and communication resources are tight, very few 

resources can be used for anomaly intrusion detection to 

ensure real-time detection. Moreover, the reduced 

dimensional data reduces interference, improves the 

accuracy of anomaly intrusion detection, and ensures that 

the proposed method can quickly and accurately detect 

communication anomalies in wireless sensor networks, 

thereby ensuring the security of wireless sensor networks. 

The data fluctuates less after dimensionality 

reduction by this method, and the dimension is 

significantly reduced. In the case of network damage and 

tight communication resources, extremely few resources 

can be used for anomaly intrusion detection, ensuring the 

real - time performance of detection. Moreover, the 

dimensionality - reduced data reduces interference and 

improves the accuracy of anomaly intrusion detection, 

ensuring that the method in this paper can quickly and 

accurately detect the abnormal intrusion of wireless 

sensor network communication, thus ensuring the 

security of the wireless sensor network. 

To quantitatively evaluate the data dimensionality 

reduction performance of the kernel principal component 

analysis (KPCA) method used in this paper, we compared 

it with two widely used nonlinear dimensionality 

reduction methods - t-distributed random neighbor 

embedding (t-SNE) and uniform manifold approximation 

and projection (UMAP). The evaluation metric is the 

cumulative variance contribution rate, which reflects the 

ability of the reduced data to retain the original data 

information and is a key quantitative standard for 

measuring the effectiveness of dimensionality reduction. 

The cumulative variance contribution rates of the three 

methods in extracting different numbers of principal 

components are shown in Table 4. 

 

Table 4: Cumulative variance contribution rate of 

different dimensionality reduction methods (%) 

Number of 

Principal 

Components 

KPCA t-SNE UMAP 

5 68.5 45.2 52.7 

10 86.3 61.8 70.4 

15 94.7 73.1 81.9 

20 98.2 80.5 88.3 

25 99.5 85.0 92.1 

 

The following conclusion can be drawn from Table 

3: The KPCA method used in this article is significantly 

better than the comparative method in terms of 

cumulative variance contribution rate. Specifically, with 

only 15 principal components, KPCA can retain 94.7% of 

the variance information in the original data; However, 

t-SNE and UMAP can only retain 73.1% and 81.9% of 

the information under the same principal component 

score. To achieve information retention levels similar to 

KPCA (approximately 94%), t-SNE and UMAP require 

more dimensions, which undoubtedly increases the 

burden of subsequent computation and communication. 

This result demonstrates that KPCA can capture key 

nonlinear structures in wireless sensor network 

communication data with fewer dimensions and higher 
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efficiency, and its dimensionality reduction performance 

is superior to t-SNE and UMAP. This advantage stems 

from the ability of kernel methods to implicitly handle 

inner product operations in high-dimensional feature 

spaces, avoiding the computational complexity of direct 

high-dimensional mapping while preserving key 

structural information of the data. In the event of network 

damage, KPCA not only reduces the dimensionality of 

the data, but more importantly, extracts more 

discriminative features through nonlinear mapping, 

providing higher quality and less noisy input data for 

subsequent anomaly intrusion detection, thereby 

improving the overall robustness and detection efficiency 

of the system. 

4.3 Experimental comparison results 

To verify the effectiveness of the RBM method used 

in this paper for extracting reduced dimensional wireless 

sensor network features, we compared our method with 

three feature extraction methods: CNN (Convolutional 

Neural Network), LSTM (Long Short-Term Memory 

Neural Network), and LLE (Local Linear Embedding). 

The features extracted by the above methods were input 

into a Bayesian classifier for communication anomaly 

intrusion detection. To ensure fairness in comparison, 

CNN adopts a typical structure consisting of two 

convolutional layers (kernel sizes of 3 and 5 respectively) 

and one fully connected layer; LSTM uses a single-layer 

network with 128 hidden units to capture temporal 

dependencies. All models use the Adam optimizer and 

learn until convergence on the same training set. All the 

features extracted by the methods were input into the 

same Naive Bayes classifier for communication anomaly 

intrusion detection, and the F1 score was used as the 

evaluation metric. The results are shown in Figure 4. 
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Figure 4: F1 values of different feature extraction 

methods under 75% network damage rate 

From Figure 4, it can be seen that among the 

different feature extraction methods mentioned above, the 

RBM method proposed in this paper combines Naive 

Bayes classifier for anomaly intrusion detection after 

feature extraction, with an F1 value of 0.9, significantly 

higher than other methods. This indicates that the RBM 

method can more effectively extract key features from 

wireless sensor network communication data, thereby 

improving the accuracy of classification. This is mainly 

due to the fact that RBM, as an energy based 

unsupervised deep learning model, can effectively 

capture nonlinear feature distributions in 

high-dimensional data, especially suitable for complex 

and nonlinear abnormal patterns caused by network 

damage in wireless sensor networks. WSN 

communication data usually has the characteristics of 

high dimensionality, strong noise, and pattern mutation. 

The probability generation model of RBM can learn its 

underlying distribution well and is insensitive to noise, 

thus robustly extracting key features. In contrast, 

although CNN performs well in image and sequence data 

processing, its deep structure is prone to overfitting in the 

small sample, high noise wireless sensor network 

communication data used in this experiment, and the 

assumption of local correlation in the data may not 

always hold true in this task, resulting in limited feature 

extraction ability, with an F1 value of only about 0.6. 

LSTM is also difficult to learn effective long-term time 

dependencies due to limited data volume and noise 

interference, and its F1 value is similar to CNN. The LLE 

method has the lowest F1 value after feature extraction, 

and there is a decrease in F1 value during the iteration 

process. This may be due to the poor performance of LLE 

methods in processing high-dimensional and nonlinear 

data, resulting in extracted features that cannot effectively 

distinguish between normal and abnormal communication 

data. The above results indicate that the proposed RBM 

feature extraction method has significant advantages in 

wireless sensor network communication anomaly 

intrusion detection, which can more effectively extract 

key features and improve classification accuracy. 

In order to verify the effectiveness of intrusion 

detection for abnormal communication in wireless sensor 

networks under network damage conditions, the 

company's wireless sensor network topology caused a 

certain amount of packet loss in the communication 

between cluster head C and gateway nodes, and reduced 

the bandwidth of the wireless sensor network, reducing 

the communication resources of cluster head A and 

cluster head B, simulating a network damage state. In this 

state, 10 attacks were carried out on random nodes in 

cluster heads A and B. The attack intrusion detection was 

performed using the method proposed in this paper, and 

the detection results are shown in Table 5. 

As can be seen from Table 5, the proposed anomaly 

intrusion detection method in this paper shows excellent 

performance under the network damaged state. For each 

type of attack, the proposed method in this paper can 

accurately detect and determine the type of attack. For 

example, in the Sinkhole attack, the proposed method in 

this paper detected the abnormal nodes and abnormal 

aggregated traffic and determined it as the Sinkhole 

attack; in the wormhole attack, it detected the abnormal 
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high-speed data transmission path across regions and 

determined it as the wormhole attack. The results show 

that the proposed detection method can accurately 

identify and defend against various wireless sensor 

network anomaly intrusion behaviors under the network 

damaged state. Facing different types of attacks, the 

proposed method can quickly respond and accurately 

judge the type of attack, providing a strong guarantee for 

the security protection of wireless sensor networks. It not 

only provides a new technical idea for the anomaly 

intrusion detection of wireless sensor networks in 

emergency situations, but also provides a valuable 

practical reference for the construction of network 

security protection systems in fields such as industrial 

Internet of Things and intelligent transportation. This is 

because the method in this article adopts a multi-level 

feature decoupling and adaptive decision-making 

mechanism. Specifically, KPCA maps raw 

high-dimensional data to a renewable Hilbert space using 

kernel techniques, effectively separating background 

noise features caused by network damage such as channel 

packet loss and bandwidth limitations from structural 

anomaly features generated by attack behavior. 

Subsequently, RBM uses an energy model to perform 

deep representation learning on the reduced dimensional 

data, and its hidden layer neurons capture the clustering 

distribution characteristics of different attack patterns in 

the feature space through probabilistic activation. For 

example, for Sinkhole attacks, RBM hidden layer features 

will highlight abnormal data aggregation patterns; For 

wormhole attacks, it will enhance the time 

synchronization anomaly characteristics of cross regional 

transmission paths. Finally, the Naive Bayes classifier 

optimized by feature weighting integrates the likelihood 

ratio decision boundaries of different attack types through 

the Bayesian probability framework, and dynamically 

adjusts the prior distribution estimation under network 

damage conditions using the micro conditional 

probability optimization mechanism, thereby achieving 

high-precision attack classification and low false alarm 

detection in complex damaged environments. This 

technical route of "feature decoupling deep learning 

adaptive decision-making" enables our method to 

effectively resist the feature confusion problem caused by 

network damage, providing a reliable intrusion detection 

solution for practical WSN deployment.  

 

Table 5: Detection results of our method under network damage conditions 

Number Attack name Attack time The detection results of the method in this paper 

1 Sinkhole attack 0:15:23 
Abnormal node and abnormal aggregated traffic were detected and determined 

to be a Sinkhole attack 

2 Wormhole attack 1:08:17 
An abnormal high-speed data transmission path across regions was discovered 

and determined to be a wormhole attack 

3 Denial-of-service attack 2:30:05 
A large number of invalid requests were detected, causing channel congestion, 

and it was determined to be a DoS attack 

4 Replay attack 3:12:40 Duplicate historical data packets were detected and determined as replay attacks 

5 Disguised node attack 4:45:32 
t was found that the ID of the new node conflicted with that of the normal node, 

and it was determined as a masquerade node attack 

6 
Selective forwarding 

attack 
5:20:18 

Some data packet transmission paths are abnormal and are determined to be 

selective forwarding attacks 

7 Flood attack 6:03:55 
The channel traffic surges sharply in a short period of time and is determined to 

be a flooding attack 

8 Data tampering attack 7:10:09 
Verify the abnormal hash value of the data packet content and determine it as a 

data tampering attack 

9 Key leakage attack 8:33:21 
Unauthorized decryption data packets were discovered and determined to be a 

key leakage attack 

10 
Topological structure 

destruction attack 
9:17:44 

A large number of node connection interruptions were detected and determined 

to be a topological structure failure attack 

 

First of all, in the case of network damage, the 

communication efficiency of wireless sensor network 

nodes is greatly reduced. This situation is very similar to 

that of nodes after being invaded. Therefore, the detection 

method is very likely to produce false alarms. To verify 

the sensitivity of the method proposed in this paper to 

abnormal intrusion detection in the case of network 

damage, it is compared with SVM (Support Vector 

Machine), association rule mining and CNN methods. 

The network damage rate is used to represent the degree 

of network damage. The effects of different methods on 

abnormal intrusion detection under different network 

damage rates are shown in Figure 5. In the experimental 

setup, to ensure the physical feasibility of the simulated 

scene and its compatibility with the actual industrial 

environment, this study set the upper limit of network 

damage rate to 75%. This setting is based on the 

following considerations: In actual industrial wireless 

sensor networks, when the link packet loss rate or 

bandwidth limitation exceeds 75%, the basic 
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communication functions of the network are almost 

paralyzed, and the regular monitoring data flow will be 

interrupted. At this time, discussing intrusion detection 

based on communication traffic is no longer practically 

meaningful. Therefore, a 75% damage rate represents the 

extreme pressure conditions that the system faces while 

maintaining a minimum operational state. 
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Figure 5: shows the abnormal intrusion detection effects 

of different monitoring methods under the condition of 

network damage 

From Figure 5, it can be seen that as the degree of 

network damage increases, the false alarms of abnormal 

intrusion detection in wireless sensor networks under 

damaged conditions will correspondingly increase. The 

reason for this situation is that the state of network 

damage is similar to that under abnormal intrusion, and 

the difficulty of information transmission increases in 

network damage, making it more likely for detection 

results to be inconsistent with the actual state. Among 

them, the performance of anomaly intrusion detection 

through association rule mining is the worst. This method 

maintains the highest false alarm rate for anomaly 

intrusion detection under different network damage rates, 

and the false alarm rate significantly increases with the 

increase of network damage rate, reaching a final false 

alarm rate of 50%. At the same time, the false alarm rates 

of SVM and CNN reached 33% and 28%, respectively. 

On the other hand, although the false alarm rate of our 

method is also increasing, the degree of increase is not 

significant. In the case where the final network damage 

rate reaches the highest 75%, the false alarm rate of 

abnormal intrusion detection is only 5%. This result is 

derived from the multi-level anti-interference mechanism 

constructed by the method in this paper: KPCA achieves 

structural separation of noise and attack features in a 

high-dimensional feature space through kernel mapping, 

reducing feature confusion caused by network damage; 

The deep features extracted by RBM based on probability 

generation models have robust representation ability for 

damages such as random packet loss and bandwidth 

fluctuations; The optimized naive Bayes classifier 

enhances the discriminative contribution of attack related 

features through feature weighting, and dynamically 

adapts to changes in network state by combining micro 

conditional probability optimization, thereby maintaining 

stable decision boundaries in extremely damaged 

environments. These 5% false positives are mainly due to 

brief communication interruptions caused by extreme 

network congestion, which were mistakenly identified as 

denial of service attacks by the model. In practical WSN 

applications, this type of false alarm can be effectively 

filtered by setting a short time window for secondary 

verification, thereby avoiding unnecessary system alerts. 

From this, it can be seen that the method proposed in this 

paper can still maintain extremely high accuracy in 

anomaly intrusion detection under network damage, with 

excellent robustness and detection accuracy, further 

verifying the effectiveness and practicality of the method 

proposed in this paper. 

To further verify the effectiveness of the method 

proposed in this paper, accuracy and recall were used as 

evaluation indicators to compare the detection 

performance of different methods. The comparison 

results of accuracy and recall of different detection 

methods under different degrees of network damage are 

shown in Table 6. 

 

Table 6: Comparison of accuracy and recall rates of 

different detection methods under different degrees of 

network damage 

Network 

Impairment 

Rate 

Method Precision Recall 

0% 
Proposed 

Method 
0.96 0.93 

 SVM 0.89 0.85 

 

Association 

Rule 

Mining 

0.75 0.70 

 CNN 0.88 0.87 

25% 
Proposed 

Method 
0.95 0.91 

 SVM 0.85 0.80 

 

Association 

Rule 

Mining 

0.70 0.65 

 CNN 0.84 0.82 

50% 
Proposed 

Method 
0.94 0.88 

 SVM 0.78 0.72 
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Network 

Impairment 

Rate 

Method Precision Recall 

 

Association 

Rule 

Mining 

0.62 0.55 

 CNN 0.77 0.75 

75% 
Proposed 

Method 
0.94 0.86 

 SVM 0.68 0.60 

 

Association 

Rule 

Mining 

0.50 0.42 

 CNN 0.65 0.63 

 

According to the analysis of the results in Table 5, it 

can be concluded that our method outperforms the 

comparative methods in terms of accuracy and recall. To 

scientifically verify the statistical significance of this 

advantage, paired sample t-tests were conducted on the 

performance indicators of four methods on the same test 

set. The results showed that under different degrees of 

network damage, the accuracy and recall of our method 

were significantly different from those of SVM, 

association rule mining, and CNN methods (p values 

were all less than 0.01). Specifically, under the harsh 

condition of 75% network damage rate, our method 

(accuracy=0.94 ± 0.01, recall=0.86 ± 0.02) has a t-test 

statistic of t=15.73 (p<0.001) for accuracy and t=12.45 

(p<0.001) for recall compared to the suboptimal CNN 

method (accuracy=0.65 ±  0.03, recall=0.63 ±  0.04). 

This proves that the performance advantage of the 

method proposed in this article is not accidental, but 

stems from its unique technical architecture. This 

architecture effectively decouples damage noise and 

intrusion features through KPCA nonlinear 

dimensionality reduction, extracts deep representations 

with strong discriminative power through RBM, and 

finally achieves robust decision-making through a Naive 

Bayes classifier optimized by feature weighting and 

micro conditional probability. In contrast, when the 

feature quality of SVM and CNN methods deteriorates 

due to network damage, the optimization objectives they 

rely on (such as classification interval and convolution 

kernel response) are prone to shift, resulting in significant 

performance degradation; However, association rule 

mining is completely ineffective in complex damage 

environments due to its inability to adapt to the dynamic 

changes in association relationships between features. In 

summary, statistical testing and mechanism analysis 

jointly confirm that the method proposed in this paper not 

only has higher detection accuracy under network 

damage conditions, but also has statistically significant 

performance advantages, providing a more reliable 

solution for practical wireless sensor network security 

protection. 

To further evaluate the performance trade-off of the 

proposed method under extreme damage conditions, the 

method proposed in this paper was adopted at a 75% 

network damage rate SVM、CNN、 Association rule 

mining is used for intrusion detection, and the confusion 

matrix results of different methods are shown in Figure 6. 
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Figure 6: Confusion matrix results of different methods 
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From Figure 6, it can be seen that the average main 

diagonal value of the confusion matrix in this method 

reaches 0.944, and the recognition accuracy of various 

types of attacks is above 92.8%, and the inter class 

misjudgment rate is generally lower than 5.0%. In 

contrast, the attack recognition accuracy of the 

comparative method is lower. This is because the method 

in this article adopts a targeted technical architecture of 

"KPCA nonlinear dimensionality reduction →  RBM 

deep feature extraction →  optimized naive Bayes 

classification": KPCA maps damaged data to a 

high-dimensional feature space through kernel 

techniques, effectively removing channel noise and attack 

features; RBM enhances the discriminative differences 

between different attack modes by extracting deep 

representations based on energy models; The Naive 

Bayes classifier, which has undergone feature weighting 

and micro conditional probability optimization, has 

constructed an adaptive decision boundary. This system 

systematically overcomes the problem of feature 

confusion caused by network damage, enabling the model 

to maintain high accuracy even under extreme damage 

conditions. 

The specific AUC curves of the above four methods 

are shown in Figure 7. 

 

Figure 7: Comparative analysis of AUC curves of four 

methods 

 

As shown in Figure 7, the AUC curve of our method 

and the area enclosed by the coordinate axis are higher 

than other methods, which effectively verifies the 

performance of our design method and the accuracy of its 

estimation results is relatively high. This is because the 

method proposed in this article constructs a complete 

robustness link from feature decoupling to adaptive 

decision-making: KPCA achieves structural separation of 

damage noise and attack features in high-dimensional 

space through kernel mapping, providing a pure feature 

base for subsequent processing; RBM extracts deep 

discriminative features that are insensitive to random 

packet loss and bandwidth fluctuations from reduced 

dimensional data based on probability generation models; 

The naive Bayes classifier, which has undergone dual 

optimization, enhances the contribution of key attack 

patterns through feature weighting and dynamically 

adapts to changes in network state through micro 

conditional probability optimization. This technical 

system enables the model to maintain a stable high true 

positive rate and low false positive rate under different 

decision thresholds, with a high AUC value. 

Wireless sensor network (WSN) nodes typically 

have weak computing power, limited storage resources, 

and energy constraints. Therefore, intrusion detection 

methods must have low computational and resource 

consumption while ensuring detection performance. The 

detection pipeline (KPCA+RBM+NB) of the proposed 

method is designed to be executed in cluster head nodes 

or gateways with relatively sufficient resources, using a 

hierarchical deployment architecture of "edge collection 

aggregation analysis". The terminal sensor node is only 

responsible for lightweight data collection and uploading, 

avoiding complex calculations; And cluster 

heads/gateways run complete algorithms with their 

stronger processing capabilities, such as the ARM 

Cortex-A series. To evaluate the practical deployment 

feasibility of the proposed methods, a quantitative 

comparison of the computational complexity and 

resource consumption of all methods was conducted on 

the same experimental platform, and the results are 

shown in Table 7. 

 

Table 7: Comparison of computational overhead 

under 75% network impairment rate 

Method 
Training 

Time (s) 

Inference 

Time per 

Sample (ms) 

Peak 

Memory 

Usage 

(MB) 

Proposed 

Method 
52.3 0.21 45.7 

SVM 189.5 1.85 210.4 

CNN 425.6 3.42 550.1 

Association 

Rule Mining 
510.2 4.15 480.3 

 

The result analysis shows that the method proposed 

in this paper has significant advantages in computational 

efficiency. Its training time (52.3 seconds) and single 

sample prediction time (0.21 milliseconds) are much 

lower than the comparison method, and its peak memory 
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usage (45.7 MB) is also at the lowest level. This is mainly 

due to its cascaded lightweight design: KPCA 

dimensionality reduction significantly compresses the 

data scale and reduces the computational load of 

subsequent processing; Although RBM feature extraction 

involves unsupervised learning, its efficiency is higher 

compared to the divergence algorithm; Optimizing the 

Naive Bayes classifier itself has the characteristic of low 

computational complexity. Therefore, this method 

ensures high detection accuracy while achieving low cost 

and low latency characteristics that meet the resource 

constraints of wireless sensor networks, making it 

feasible for edge deployment. 

To verify the necessity and contribution of each 

component in the proposed technical route of "KPCA 

dimensionality reduction → RBM feature extraction → 

optimized naive Bayes classification", a systematic 

ablation experiment was designed. Under extreme 

conditions of 75% network damage rate, the performance 

of the model was observed by removing or replacing key 

components one by one, and the results are shown in 

Table 8. 

 

Table 8: Performance comparison of different model 

variants under 75% network impairment rate 

Variant ID Model Variant Precision Recall 

A 

KPCA + RBM 

+ Optimized NB 

(Full Model) 

0.94 0.86 

B 

Raw Data + 

RBM + 

Optimized NB 

0.71 0.65 

C 

KPCA + Raw 

Features + 

Optimized NB 

0.82 0.78 

D 
KPCA + RBM 

+ Standard NB 
0.85 0.80 

E 
KPCA + RBM 

+ SVM 
0.88 0.83 

F 
PCA + RBM + 

Optimized NB 
0.79 0.72 

 

Analysis of ablation experiment results: The 

complete model (A) maintains the highest performance 

among all variants, verifying the necessity of 

collaborative design among various components. 

Removing KPCA (variant B) resulted in a significant 

decrease in performance (accuracy dropped from 0.94 to 

0.71), proving that non-linear dimensionality reduction 

using kernel methods is crucial for separating network 

damage noise and attack features; After removing RBM 

(variant C), the performance also significantly decreased, 

indicating that deep feature extraction can capture more 

essential attack pattern discrimination information; 

Replacing the optimized classifier with standard naive 

Bayes (variant D) or SVM (variant E) resulted in a 

decrease in performance, confirming that feature 

weighting and micro conditional probability optimization 

effectively improved the model's adaptability to damaged 

environments; The use of linear PCA (variant F) instead 

of KPCA resulted in a decrease in performance, further 

demonstrating the superiority of nonlinear mapping in 

this scenario. All components together form a complete 

enhancement chain from noise robustness, feature 

discriminative power to decision adaptation. 

5 Conclusion 

This article proposes a detection method that 

combines kernel principal component analysis (KPCA), 

restricted Boltzmann machine (RBM), and optimized 

naive Bayes classifier to address the core challenges of 

highly confused features and significantly reduced data 

quality in anomaly intrusion detection of wireless sensor 

networks under network damage. This method uses 

KPCA nonlinear dimensionality reduction to remove 

damage noise, extracts deep discriminative features 

robust to packet loss and interference using RBM, and 

achieves high-precision decision-making with the help of 

a Naive Bayes classifier optimized by feature weighting 

and micro conditional probability. Experiments have 

shown that the proposed method can maintain an 

accuracy of 0.94 and a recall of 0.86, with a false positive 

rate of less than 5%, even at a network damage rate of up 

to 75%. Its comprehensive performance (F1 value 0.90, 

AUC 0.96) is significantly better than traditional machine 

learning and deep learning methods, verifying its 

effectiveness and robustness in extreme damage 

environments. However, this study also has several 

limitations, and based on this, future directions are 

indicated. Firstly, the experiment is based on the WSN 

topology and data of a single industrial scenario. In the 

future, its universality needs to be verified in more 

heterogeneous and large-scale networks, and more 

complex damage models such as time-varying fading and 

mobile intermittent connections need to be included. 

Secondly, although it covers ten mainstream attacks, the 

defense capabilities against unknown attacks and 

adaptive attackers need further evaluation. In order to 

promote the actual deployment, the current "edge 

collection gateway analysis" architecture can be extended 

in depth: explore the deployment of lightweight KPCA or 
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RBM feature extraction modules on cluster head nodes to 

achieve early threat awareness on the edge side, so as to 

deeply integrate with the edge computing framework; At 

the same time, blockchain technology can be introduced 

to store and trace the detection logs and model updates, in 

order to enhance the system's resistance to tampering and 

credibility. In the face of continuously evolving threats, 

future work can introduce deep reinforcement learning 

frameworks to dynamically adjust feature weights and 

classification thresholds, enabling the system to have 

online learning and adaptive defense capabilities, thus 

completing the evolution from static detection to dynamic 

adversarial. In summary, this work provides an effective 

solution to the security monitoring problem in damaged 

networks, and through the analysis of its limitations and 

the prospect of integrating edge intelligence, blockchain, 

and adaptive learning, lays the foundation for building the 

next generation of robust, trustworthy, and adaptive IoT 

security protection system. 
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