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In recent years, a smart, safe, and efficient way to run university labs has become increasingly popular.
Traditional management systems rely on manual processes that are error-prone, slow, and offer limited
adaptability. To address these challenges, this study proposes a Smart Laboratory Management System
(AI-SLMS) that optimizes operations, improves safety, and enhances the user experience in academic labs.
AI-SLMS integrates predictive maintenance, intelligent scheduling, and secure access control using
machine learning and the Internet of Things (IoT). The system employs Random Forest and Logistic
Regression models, trained on integrated datasets (Kaggle Predictive Maintenance and TON _IoT), to
anticipate equipment failures. For resource allocation, an intelligent scheduling module utilizes genetic
algorithms for optimization. The system also enforces role-based access through RFID and biometric
authentication. Experimental validation over three months in a university setting demonstrated significant
improvements across key metrics: a 71.2% reduction in equipment downtime, a 78.7% decrease in
scheduling conflicts, a 53.5% improvement in resource utilization, and 98.3% authentication accuracy. In
conclusion, AI-SLMS offers a scalable and intelligent framework that significantly enhances the efficiency,
security, and responsiveness of university laboratory management systems.

Povzetek: Studija predstavlja pametni sistem AI-SLMS, ki z uporabo umetne inteligence in IoT bistveno

izboljsa ucinkovitost, varnost in upravljanje univerzitetnih laboratorijev.

1 Introduction

University labs are needed more than ever as higher
education faces increasing challenges. Laboratories
provide hands-on learning, experimentation, and
ideation. This applies especially to science, technology,
and engineering. Despite this, colleges struggle to operate
laboratories effectively. Real-time monitoring is lacking,
resources are wasted, costly equipment is abused, safety
requirements are neglected, and lab sessions must be
scheduled manually [1]. Traditional systems that require
human monitoring and manual job execution are
inefficient, error-prone, and prone to loss. Lab staff may
be unable to focus on creative problem-solving and
research if paperwork distracts them. Disconnected
hardware, sensors, and computers make decisions harder.
These systemic difficulties need a fast, inventive, and
scalable solution. This technique streamlines lab
operations and provides real-time data to administrators,
students, and professors [2].

Several automated and semi-automated methods
improve lab administration. For inventory tracking,
experiment control, and asset performance monitoring,
LIMS and CMMS software have helped businesses. Most
of these systems are rule-based and inflexible [3]. They
seldom employ pattern recognition, decision-making, or
predictive analytics [4]. loT-based devices monitor
temperature, humidity, and occupancy, as in labs [5].
Despite automation, they work autonomously and do not
perform cognitive processing of the collected data. Some
organizations run on spreadsheets, while others utilize
simple web tools that require human changes [6]. These
technologies are good for storing fundamental data, but
they can't solve problems, foresee maintenance needs,
intelligently allocate resources, or assure energy
efficiency [7]. This implies there is little data on how to
construct cutting-edge AI-SLMS. Using sensor data,
cognitive algorithms, and cloud platforms, this system
can optimize itself in real time and give a comprehensive
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operational solution [8].

To solve this, our work will create and improve an
Al-powered Smart Laboratory Management System. The
proposed system combines machine learning algorithms
with sensor-based data to monitor lab operations, forecast
maintenance schedules, and maximize equipment use.
This study intends to achieve three primary goals:

e Creating an architecture driven by artificial
intelligence can enable real-time laboratory
monitoring, predictive maintenance, and intelligent
scheduling using data from Internet of Things
sensors and historical logs.

e To maximize resource use using data-driven
decision-making processes, limit downtime of
laboratory equipment, and minimize human
interference in laboratory operations.

e Three measures that can be assessed by contrasting
the system with normal laboratory administration
procedures are operating efficiency, system
responsiveness, and user satisfaction. This
assessment will take place in a university setting [9].
The study proposes a new Al-based system and

demonstrates its value by applying it in a real-world

environment, yielding measurable outcomes [10].

Integrating artificial intelligence and the Internet of

Things—a powerful yet largely uncharted frontier in

laboratory management—can transform how institutions

manage their vital infrastructure.

The goal of this study is to develop and deploy Al-
SLMS. This modular laboratory management system
combines intelligent scheduling, predictive maintenance,
and secure access control, leveraging loT and artificial
intelligence technologies. The system is compared to
more modern intelligent baseline systems and tested in an
actual university setting to gauge gains in resource usage,
operational effectiveness, and user satisfaction.

This study addresses three critical gaps in existing
laboratory management systems: (a) the absence of an
integrated  architecture  that unifies  predictive
maintenance, intelligent scheduling, and secure access
control; (b) the lack of Al-driven decision-making that
can dynamically respond to real-time loT sensor data;
and (c) the limited adaptability and scalability of current
systems across diverse institutional environments.
Accordingly, the following research questions guide this
study: How effectively can Al-SLMS predict and prevent
equipment failures compared to traditional maintenance
approaches? Can an Al-based scheduling algorithm
significantly reduce booking conflicts and enhance
resource utilization in academic laboratories? Does a
dual-factor authentication mechanism improve access
security without compromising operational efficiency?
From these, the study hypothesizes that (i) First, Al-
SLMS reduces equipment downtime by over 50% over
prior systems. At least 60% less disagreement will result
from clever scheduling. Finally, the hybrid RFID-
biometric module will authenticate over 95%. This
project aims to make university labs safer, more efficient,
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and more scalable. We will build a modular framework
for intelligent laboratory management, add Al, and test it
on real-world datasets (Kaggle Predictive Maintenance
and TON_IaT).

2 Literature review

Laboratory administration has recently changed to
accommodate more sophisticated, efficient processes
driven by technological developments. Traditional
laboratory management systems [11] have struggled with
limited real-time monitoring, inefficient resource use,
and delayed decision-making. Often, these systems relied
on human record-keeping and used paper-based methods.
Given these constraints, researchers are investigating
modern digital technologies such as cloud computing, the
IoT, and artificial intelligence to enhance laboratory
management and operations.

Many scholarly studies have looked at how artificial
intelligence techniques affect laboratory management.
Predictive maintenance, which employs ML models to
forecast when equipment might fail, has generated much
excitement. This increases laboratory operational
efficiency and helps reduce downtime [12]. Zhang et al.
[13] proposed data-driven algorithms for predictive
maintenance of lab equipment in a 2018 paper. Using
sensor data, these models would forecast when items
would break and when to begin preventative maintenance.
Kumar et al. (2017) also enhanced the dependability and
accuracy of failure forecasts [14] by including deep
learning methods into their predictive maintenance
system.

Systems based on artificial intelligence (Al) also
handle smart scheduling, another wvital aspect of
laboratory management. Many previous systems
underutilized or overbooked laboratory resources since
effective scheduling was difficult. Zhang and Xie [15]
created a smart scheduling approach for lab resources
using reinforcement learning. This approach was
designed to maximize the efficient use of existing
equipment while reducing the conflicts that result. Liu et
al. [16] investigated an approach combining optimization
strategies with machine learning to enhance real-time
scheduling of laboratory resources. The outcome was a
happier user base and a more effective scheduling system.
Research by Chen et al. [17] indicates that Al systems can
adapt in real time to evolving conditions. This study
developed a real-time scheduling system using multi-
agent reinforcement learning to effectively control
laboratory resources.

Academic articles on methods for controlling and
monitoring systems—including those employing Internet
of Things devices in laboratories—have also generated
considerable debate. Among the environmental elements
Chen et al. [18] tracked using Internet of Things sensors
in their lab were humidity, temperature, and air quality.
The collected data was used to ensure the safety of the
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laboratory environment and the optimal operation of the
equipment. Li et al. [19] expanded on this concept and
conducted more studies linking laboratory inventory
control systems to the Internet of Things. Their solution
tracked equipment use and stocks using an loT sensor
network. The system could ensure a continuous supply of
all materials and supervise restocking.

Although the current study has faults, much territory
remains to explore. Intelligent scheduling and predictive
maintenance are well-studied, but integrating them into
laboratory management systems for real-time
monitoring, automated resource allocation, and safety
compliance is unexplored. Some methods struggle to
accommodate different research centers and institutions.
Few articles address data-driven decision-making in
relation to cloud computing, Al, the 10T, and other topics.

This paper introduces an AI-SLMS (Smart
Laboratory Management System) that uses smart
scheduling, predictive maintenance, and utilization trend
analysis to solve these problems. Inventory tracking, real-
time monitoring, and safety compliance may be
automated using sensor data and cloud computing. We'll
respond thoroughly as this is a lab management issue.
Data-driven decision-making may enhance academic lab
operations and funding allocation. Our versatile and
scalable method provides a robust foundation for
institutions and addresses contemporary challenges.

Even with recent improvements, the scope of current
systems is frequently still constrained. For example,
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machine learning (ML)-based predictive maintenance
models [12][13] have demonstrated efficacy in predicting
equipment failures; however, they are not connected with
real-time data processing or scheduling. In a similar vein,
intelligent scheduling techniques such as MARL
frameworks [17] and RL-Based SA [15] provide dynamic
job allocation but lack secure access and predictive
maintenance. Environmental sensing is enabled by IoT-
based monitoring technologies [18][19], though these
typically lack cloud-based synchronization and analytical
intelligence. It is frequently challenging to scale these
compartmentalized systems across various institutional
configurations.

To review the current state of the art and highlight
the research need, Table 1 briefly summarizes the major
approaches, datasets, and findings from prominent
relevant works. The research shows that current systems
lack a holistic architecture, regardless of how effectively
they execute real-time scheduling or predictive
maintenance. As shown in the table, there is little research
that blends predictive maintenance, intelligent scheduling,
and secure access control into a single framework or uses
both real-world and benchmark datasets for assessment.
This fragmented scenario underscores the suggested Al-
SLMS as a modular yet integrated solution to address all
these interrelated concerns. Table 1 presents a
comparative summary of Related Work in Smart
Laboratory Management.

Table 1: Comparative summary of related works in smart laboratory management

) Key Performance
Reference Primary Focus Core Methodology Dataset(s) Used )
Metrics
Zhang et al. (2018) | Predictive Data-driven ML ) Failure prediction
) Synthetic sensor data
[13] Maintenance Models accuracy
Kumar et al. (2017) | Predictive ) Historical equipment | Model Accuracy,
) Deep Learning
[14] Maintenance logs Recall
Zhang & Xie (2019) ) ) Reinforcement Simulated  booking | Resource Utilization,
Intelligent Scheduling ) )
[15] Learning (RL) requests Conflict Rate
) Scheduling
Chen et al. (2021) ) ) Multi-Agent RL | Laboratory resource )
Real-time Scheduling Efficiency, Response
[17] (MARL) logs )
Time
Chen et al. (2020) | Environmental [IoT sensor data | Data Accuracy,
o IoT-based Sensing o )
[18] Monitoring (Temp, Humidity) System Uptime
Inventory IoT & Sensor Inventory Accuracy,
Lietal. (2019) [19] RFID and usage logs ) )
Management Networks Restocking Time
On the other hand, the suggested AI-SLMS contexts by filling important gaps in automation,

integrates cloud-based monitoring, intelligent scheduling,
predictive maintenance, and access control into a single,
modular architecture. This integrated design provides a
strong solution for contemporary academic laboratory

interoperability, and operational efficiency.
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3 Proposed Method of Al-based
smart laboratory management system
(AI-SLMS)

Artificial intelligence (Al) and automation technologies
are built into our modern Smart Laboratory Management
System (SLMS). This will help older laboratory
management systems address recurring problems. This
system's primary goal has been to increase academic
laboratories’ operational efficiency by simplifying
maintenance chores, maximizing equipment scheduling,
strengthening safety policies, and encouraging resource
use. This system's application has met this objective. This
system's implementation has facilitated the attainment of
this objective. Historically, traditional systems have
frequently relied on manual processes that are labor-
intensive, error-prone, and unable to respond to real-time
data dynamically. Manual processes are time-consuming
and error-prone; therefore, this is the case. The AI-SLMS
has thus enabled the implementation of a scalable,
automated method for laboratory operations. Including
innovative modules such as predictive maintenance,
intelligent scheduling, access control, and pattern
analysis has enabled this work to be completed
successfully.

3.1 System architecture

The architecture of the Smart Laboratory Management
System includes several separate modules that perform
distinct functional tasks. These modules are intended to
be linked together and perform their tasks. The system
uses a modular design to ensure scalability,
maintainability, and extensibility across various
laboratory configurations. Every module runs in an
integrated manner, interacting with a centralized data
processing system and cloud storage infrastructure,
thereby fulfilling the specific function for which it was
designed.

User Interface
(Students, Admin)
L

Sensor Data Processing Cloud Storage |
Layer Unit Module
) v i ) v P v
Pl:t‘dl(‘tl\’ﬂ Intnlhgc'nt Notification
Maintenance Scheduling Svstem
Module L Module be
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0 and Security
Analysis v
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Figure 1: System architecture of Al-based smart

laboratory management system

Figure 1 shows the interaction between the Al-
SLMS's hardware and software components and depicts
its overall architecture. The User Interface (Ul) is at the
top of the hierarchy. Its goal is to enable natural,
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straightforward communication with a broad range of
stakeholders, including students, teachers, lab managers,
and administrators. User interfaces make it easier to
submit access requests, view maintenance alerts in real
time, and reserve equipment.

Below the User Interface, the Sensor Layer consists
of many Internet of Things sensors distributed throughout
the lab. Amongst other important factors, these sensors
monitor temperature, humidity, air quality, equipment
use, and access logs. The Data Processing Unit receives
real-time sensor data. Using advanced artificial
intelligence technologies, this unit generates the most
efficient schedules, predicts failures, and performs trend
analysis.

The Cloud Storage Module stores all sensor data,
user logs, access credentials, and historical maintenance
records persistently and securely. This layer allows
remote data access and synchronization across multiple
laboratory sites. Ultimately, the Notification System
delivers timely alerts, reminders, and reports to users and
system administrators responsible for specific systems,
leveraging insights from Al modules. It improves
operational  continuity, compliance with  safety
regulations, and job awareness. The pseudocode below
summarizes the proposed integrated Smart Laboratory
Management System (Al-SLMS) workflow. Predictive
maintenance, intelligent scheduling, usage pattern
analysis, access control, and system optimization are the
main components of this system. The pseudocode has
been split into two modules. Module 1 focuses on
operational intelligence — predicting equipment failures,
allocating resources optimally, and identifying usage
trends. It leverages historical and real-time data to ensure
the laboratory operates efficiently, reduces downtime,
and improves equipment utilization.

Module 2 ensures secure access to laboratory
facilities by verifying user credentials through RFID and
biometric authentication. It enforces role-based
permissions, granting entry only to authorized personnel,
thus safeguarding sensitive equipment, experiments, and
data. This module also fine-tunes system models for
better performance, compares smart and traditional lab
metrics to quantify improvements, and communicates
results to stakeholders via email, SMS, or app
notifications, ensuring transparency and informed
decision-making.

3.2 Predictive maintenance module
A predictive maintenance module has been created to
minimize laboratory downtime and prevent equipment
malfunctions. This module has relied on historical
maintenance records and real-time sensor data to train a
machine learning model. The model has recommended
preventive maintenance actions to be done before the
predicted failure of a piece of equipment.

First, the procedure calls for collecting sensor data
on the machine's vibrations, temperature, usage duration,
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and other relevant parameters. The data is then cleaned
and normalized to remove any noise. Historical data
labeled with binary outcomes—either "healthy" or
"faulty"—has been used to train a supervised machine
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learning model, such as a Random Forest or a Logistic
Regression model.

Pseudocode: Smart Laboratory Management System (Al-SLMS)

Module 1: (Core Lab Intelligence)

OUTPUT: optimizedOperations, comparisonReport

cleanData < Preprocess(sensorData)

model « TrainModel(cleanData)

schedule < @
for each request in bookingRequests do
for each resource in Resources do
for each timeSlot in TimeSlots do
if resource available and no conflict then

[EY
e

Assign(request, resource, timeSlot)
Add assignment to schedule; break
end if
end for

e e

end for

=

end for

_.
~

clusters <« KMeans(Preprocess(usageLogs), k)

[EY
*®

[EY
©

return optimizedOperations, comparisonReport

INPUT: sensorData, bookingRequests, usagelLogs, accessRequests, systemModels

Load historicalData, realTimeData, and userRequests

maintenanceList < { item | model.predict(item) > threshold }

if the request is not assigned then Mark as Deferred

Generate optimizedOperations and comparisonReport

PR\ N 7~ N
()-8

Sensor Data Data Preprocessing

Machine Learning

X0 Maintenance
NETT ! Scheduled
\ doj a /

Failure
Prediction

Model

Figure 2: Predictive maintenance module

Figure 2 shows the design of the Predictive
Maintenance Module. This module trains machine
learning models using real-time sensor data and historical
maintenance records. This enables prompt execution of
maintenance interventions and early identification of
potential equipment failures. The model calculates the
failure probability, indicated by the formula P(y =1 |
X), with X being the feature vector and y the label.

This likelihood has been estimated using logistic
regression-based calculations in Equation (1).

1
Ply=11X) = 1+e-(BotB1X1+B2Xz++BnXn) (1

Users will be informed of required maintenance if
this opportunity exceeds a specified threshold. The
system always has the most current information and
tracks the maintenance schedule. This predictive
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approach has helped reduce unplanned downtime and
extend equipment life, improving overall operations.

To forecast the condition of lab equipment, the Al-
SLMS's predictive maintenance module uses two
supervised machine learning models: Random Forest and
Logistic Regression. To ensure a robust ensemble effect,
the Random Forest classifier was configured with 100
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decision trees (n_estimators = 100). The Gini impurity
was used as the splitting criterion to assess node purity,
and a maximum depth of 10 was selected to balance
model complexity and overfitting. To increase diversity
and resilience, the bootstrap option was enabled, enabling
the model to construct each tree on distinct subsets of the
data.

Module 2: Security & Access Control, Optimization & Reporting

Input: accessRequests, models, oldSys, userPrefs

1: for each event in accessRequests do

HasLabAccess(event.userID) then

14:  ApplyGeneticAlgorithm(schedulingModule)

15: comparisonReport « {}

Output: accessDecisions, updatedModels, comparisonReport, notifications

2: if VerifyRFID(event.userlD, event.RFID) and VerifyBiometric(event.userlD, event.biometric) and

3 Append(accessDecisions, (event.id, "GRANTED"))
4 else

5 Append(accessDecisions, (event.id, "DENIED"))
6: end if

7: end for

8: updatedModels < {}

9: for each m in models do

10: feats < SelectFeatures(m.data)

11: m_new «— Retrain(m, feats)

12: updatedModels[m.name] <— m_new

13:  end for

// refine schedule if called for

16: for each metric in ["Downtime","Utilization","Satisfaction","Maintenance"] do

17: comparisonReport[metric] «— newSys[metric] - oldSys[metric]
18: end for

19: for each (userID, message) in notifications to send do

20: prefs « GetUserPreferences(userID)

21: if "email" in prefs then SendEmail(userID, message) end if

22: if "SMS" in prefs then SendSMS(userID, message) end if

23: if "app" in prefs then PushNotification(userID, message) end if
24: end for

25: return accessDecisions, updatedModels, comparisonReport

To avoid overfitting, particularly when there is
multicollinearity among sensor features, the Logistic
Regression model was configured with L2 regularization.
The 'liblinear' solution was used because it supports L2
penalties and performs well on smaller datasets. To
ensure a fair trade-off between bias and variance, the
regularization strength (C) was set at 1.0. These models
work together to form the core of the predictive
maintenance module, enabling early identification of
potential equipment faults.

3.3. Intelligent scheduling module

An intelligent scheduling algorithm was chosen to ensure
that every tool and facility in the lab is used to its
maximum capacity. Booking requests and resource
availability have been input into this module. It has then
produced an optimal timetable that maximizes output and
minimizes disruptions. Every reservation request has
been examined for required equipment, lab space, and
time slots to ensure simple access. The system will
allocate the optimal time slot if resources are available,
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minimizing overlap and preventing double-booking. The
system finds the best available next slot using
optimization methods when conflicts arise.

Booking Requests
(Students, Faculty, or Lab

Staff)

{ Evaluate Requests J

L
y 3

bEB TrER teT

Z z Xpr: =1,VbEB

TER teT
Xprt =, YVDEB,r€ER,tET

!

Optimization
Formulation

l

Optimized Schedule }

Figure 3: Intelligent scheduling module

The Intelligent Scheduling Module, which is
responsible for maximizing the efficient use of the lab's

resources, is shown in Figure 3 (a module demonstration).

As depicted in the figure, resource optimization is based
on mathematical formulations that minimize resource
conflicts and maximize use. This section offers the
mathematical form of the scheduling optimization
problem. T is the collection of time slots, R is the pool of
accessible resources, and B is the booking requests in this
situation. The objective is to minimize:

min Ypep Yrer Dter Xp,rt 2
Subject to,
X, =1,VvbeBRB
ZTER ZtET b,rt (3)
Xpre < re, VPEB,TERTLET 4

In Equations (2), (3), and (4) xp,. is a binary
variable indicating assignment, and a,,, is the resource
availability. Every booking request is fulfilled using the
available resources; therefore, this optimization
guarantees that. It ensures all booking requests are met,
preventing conflicts or system capacity overruns. Using
the scheduling module, the planning and coordination of
lab sessions have been dramatically streamlined, thereby
minimizing time lost due to scheduling conflicts.

The schedule optimization is reducing resource idle
and conflicts. Consider all x;, . values as a decision
variable. x,,. = 1 When booking request b receives
resource r within time slot t, the variable becomes 1.
a, s the resource availability at time ¢ is 1 if free and 0

Informatica 50 (2026) 357-374 363

otherwise. Except for (3) and (4), Equation (2) minimizes
the total cost of conflicts and idle time for all reservations
and resources by guaranteeing that no resource is double-
booked and that every booking request is allocated once
or deferred if no appropriate slot is available.

Highly dynamic, non-linear constraints such as
resource availability, unanticipated user requests, and
time-dependent interactions make scheduling NP-hard.
Heuristic  optimization techniques like Genetic
Algorithms (GA) and Simulated Annealing (SA) were
selected over linear or integer programming. Linear and
integer programming are unsuitable for real-time labs due
to their predictable nature and rigid linear constraints. GA
and SA balance exploration and exploitation to provide
multi-objective scheduling with flexible, near-optimal
solutions in realistic processing times. They are ideal for
dynamic academic labs due to their real-time scheduling
and optimization.

3.4 Usage pattern analysis

Adding a usage pattern analysis module helps us
understand how lab resources are used over time. Based
on past data, this program has helped identify the best
ways to do things, achieve cost savings, and improve
planning.

The first step is collecting historical data on
equipment use, access, and reservations. A clustering
technique such as K-Means is typically applied after
preprocessing the dataset. The data points X =
{x1, x5, ..., x,} Represent different usage instances.

Among the k groups the algorithm generates in this
dataset, each reflects a different pattern, such as "frequent
usage,” "peak usage," or "underutilization." The goal is
to reduce the whole square sum of the cluster:

min Z?:l inecj ”xi - HJ'HZ )

In Equation (5) u; represents the centroid of cluster
J, and Cj is the set of data points in that cluster. Lab
managers can find underused equipment, know the
busiest times, and fix the problem by rescheduling or
reusing it with these clusters. This program has
significantly enhanced the fair and efficient allocation of
resources. the number of clusters (k), the utilization of
category characteristics, and the clustering technique
(cosine or geometric distance). The silhouette coefficient
and Davies-Bouldin index validate the clustering's
success and the reliability and interpretability of the
usage patterns.

The usage pattern analysis module uses K-Means
clustering to uncover the dominant patterns of equipment
use from historical usage records. Constructed features of
usage from historical records of equipment usage that
represented how long equipment was used, what time of
day it was used, what day of the week it was used, and
the type of equipment that was used. The ideal number of
clusters was determined by analyzing the silhouette
score, which indicated that k=3 provided the best
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separation and cohesion among clusters. The algorithm
used the Euclidean distance as the similarity metric,
which is appropriate for our continuous, scaled usage
data. Each cluster had meaningful interpretations: Cluster
0 signified "High-Frequency, Short Sessions" (indicative
of calibration use and quick checks typically on
weekdays between 10 AM - 12 PM), Cluster 1 indicated
"Long-Duration, Off-Hours Use" (indicative of a longer
research  experiment, commonly evenings and
weekends), and Cluster 2 indicated "Low-Utilization and
Idles Periods" (appropriate for equipment not frequently
used, areas that could be good candidates for
reallocation). The clustering fit was assessed by a mean
silhouette score of 0.65 and a Davies-Bouldin index of
0.72, both indicating well-defined, meaningful clusters.
The quality of these clustered patterns provides lab
managers with the opportunity to better organize and
manage usage scheduling, identify underused assets for
shared resource programs, and even identify repairs or
maintenance schedules consistent with the appropriate
level of wuse intensity. In short, providing your
management team with rich usage data and machine
learning models will allow a shift towards more proactive
management and data management systems.

3.5. Access control and security
Any laboratory must implement safe access control
policies to prevent unauthorized use and ensure safety.
The AI-SLMS has addressed this by implementing user
role-based policies, RFID-based access controls, and

biometric authentication.

[ USER

UTHENTICATION

[CHECK ROLE & PERMISSIONSJ

ACCESS ACCESS
GRANTED DENIED

[ ACCESS LOGS ]

Figure 4: Access control and security

AI-SLMS uses the Access Control and Security
system depicted in Figure 4. The diagram illustrates the
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use of a role-based access policy with dual-factor
authentication—RFID and biometric verification—to
ensure safe, regulated use of laboratory facilities.
Designed to verify users using at least two criteria—
either RFID tags issued to authorized individuals or
biometric fingerprint scans — the access control system
verifies the user's role and rights. Each user u € U is
assigned a role r € R, and each role is granted a specific
set of permissions p € P. Mathematically, the access is
granted if:
p € grant(assign(u)),Yu € U,p € P (6)

Only people with appropriate roles can access
specific lab locations or equipment. A lab technician
might be permitted to use more advanced equipment,
while a student could use tools intended for general use.
Anomaly detection methods help identify suspicious
activities; access logs are continuously monitored. These
activities include multiple failed logins or access attempts
outside regular business hours.

The fingerprint authentication biometric is a well-
balanced solution, with a low False Acceptance Rate
(FAR) of 0.8% and a guaranteed False Rejection Rate
(FRR) of 1.5%. The system has an additional built-in
module to detect hazardous behavior that analyzes access
duration, frequency, and the sequence of accessed
devices in real time using an Isolation Forest approach,
which is effective for detecting anomalies in high-
dimensional data. The contamination parameter was set
to 0.05 based on historical data on anomaly frequency.
Access events are detected automatically when the
anomaly score exceeds a continually adjusted 0.65
threshold. Administrators are notified in real time, and
additional layers of authentication are applied to mitigate
any security event. The true value of this integrated
system lies in the proactive behavioral monitoring,
combined with the high accuracy of biometric
authentication, which ensures that important laboratory
assets and data remain protected.

3.6 System optimization

It also enhances the general AI-SLMS performance
through system-level optimization techniques. These
techniques have ensured faster system response, reduced
computational load, and improved model accuracy.
Using feature selection techniques inside the Predictive
Maintenance Module has helped to clarify the model.
One of these techniques is Recursive Feature Elimination
(RFE). The machine learning model has become more
accurate and trained faster since it uses only the features
most relevant to the current issue.

The Intelligent Scheduling Module has used
heuristic algorithms to handle many booking requests.
Among these techniques are simulated annealing and
genetic algorithms (GA). Using these algorithms has
allowed rapid exploration of many solutions and
selection of almost optimal schedules without exhaustive
searches. Several essential elements directed the
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assessment of how effectively the modules operated. The
F1-score, recall, and precision measures have been used
to assess accuracy. Efficiency has been evaluated using
measures such as the rate of lab resource use, the time to
confirm reservations, and the system response time. The
Predictive Maintenance module used Recursive Feature
Elimination to reduce the number of features from 15 to
8, focusing on the most important sensors and usage
indicators. By removing noisy, non-predictive
characteristics, this feature selection increased model
efficiency and accuracy, reducing inference latency by
40% (from 125 ms to 75 ms per prediction) and
improving F1-Score (from 90.1% to 93.4% on the test
set). Compared to the FCFS greedy scheduler, a Genetic
Algorithm (GA) improved the Intelligent Scheduling
Module. Ablation analysis of 1 month's booking data
showed that the GA-based scheduler had 5.2% conflict
and 92% resource utilization, both better than the FCFS
baseline. FCFS baseline conflict was 24.5 percent and
utilization was 74.5 percent. The GA regularly identified
schedules that met 98% of user-preference limits relative
to baseline. These numerical results suggest that the
optimization tactics advised are essential for AI-SLMS's
excellent performance.

3.7 Comparative analysis

To assess its efficacy, it compared the science laboratory
management system (Al-SLMS) to more conventional
LMSs. This comparison has emphasized equipment
downtime as a necessary performance criterion, resource
use, user satisfaction, and maintenance scheduling
strategy.

Table 2: Comparative analysis of traditional laboratory
management systems and the proposed AI-SLMS

Metric Traditional ;o1 s
System
Equipment Downtime High Low

Resource Utilization Inefficient Optimized
Moderate  High

Reactive Predictive

User Satisfaction

Maintenance Scheduling

The AI-SLMS outperforms conventional systems in
equipment downtime, resource use, user satisfaction, and
maintenance scheduling approach (see Table 2). These
studies show that, across the board, SLMS outperforms
the status quo. The second claims that better planning,
smart scheduling, and predictive maintenance have led to
lower equipment failure rates. Furthermore, the system
can now examine patterns of use, which laboratory
management may utilize to guide their decisions.

Finally, the suggested AI-SLMS enables the
optimization and automation of academic laboratories by
leveraging a strong, bright reaction. Some system
modules that effectively combine artificial intelligence
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include smart scheduling, controlled access, predictive
maintenance, and usage pattern analysis. The system is
built on smart data collection, safe storage, and intelligent
decision-making. AlI-SLMS's innovative algorithms and
streamlined processes have made operations more
efficient, safer, and more resource-conserving today. The
comparison findings show that AI-SLMS outperforms
conventional systems across many respects. Features
such as remote equipment control, flexible learning
settings, and improved energy management in
laboratories would significantly enhance this system.

3.8 Evaluation strategy and experimental

procedure

A thorough comparative analysis was carried out against
three well-known baseline systems to determine the
efficacy of the suggested AI-SLMS: the Multi-Agent
Real-Time Scheduling System (MARTSS) [17], the
Reinforcement Learning-Based Scheduling Algorithm
(RL-Based SA) [15], and the ML-Based Predictive
Maintenance System (ML-Based PMS) [12]. Both
conventional and smart lab management systems were
used to collect operational data in a medium-sized
university laboratory during the three-month evaluation
period. This benchmarking approach enabled an
impartial and multifaceted assessment of AI-SLMS
capabilities in predictive maintenance, intelligent
scheduling, and secure access control.

3.8.1 Data collection and preprocessing

For the assessment, two main datasets were used.
Traditional lab management procedures, which mostly
used Excel-based logs to record equipment reservations,
user access events, and manual maintenance plans,
provided the pre-deployment data. The AI-SLMS
environment, on the other hand, provided post-
deployment data, including real-time system logs
recording equipment utilization metrics, RFID- and
biometric-based access records, transaction scheduling,
and loT sensor outputs tracking device status and lab
conditions.

All datasets were anonymized, removing personally
identifiable information (PIl) while maintaining
structural and temporal integrity, to guarantee ethical data
use and adherence to institutional standards. After that,
the merged datasets were standardized and cleaned. To
guarantee compatibility for training machine learning
models and calculating evaluation metrics, this
preprocessing involved managing missing values,
aligning timestamps, and normalizing sensor readings.

3.8.2 Experimental phases

The assessment process was broken down into multiple
stages. To begin sensor integration, 10T-enabled devices
were placed around the lab to track user interactions (e.g.,
door access, equipment booking), equipment states (e.g.,
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operating status, fault records), and environmental
variables (e.g., temperature, humidity). Testing of
individual modules was then done. AI-SLMS's Predictive
Maintenance Module was assessed against the ML-Based
PMS after being trained on both historical and current
equipment data [12]. Accuracy, precision, recall, F1-
score, and Receiver Operating Characteristic — Area
Under the Curve (ROC-AUC) were among the
categorization measures used to assess performance. By
tracking scheduling conflict rates and equipment usage
percentages during the test period, the Intelligent
Scheduling Module was compared to the RL-Based SA
[15]. Additionally, MARTSS was compared to Al-
SLMS's Access Control Module and real-time
responsiveness [17], with an emphasis on system-level
adaptability, detection of unwanted access attempts, and
authentication accuracy.

3.9 Data privacy and ethical compliance

All equipment usage logs and access control records used
in this study were fully anonymised to ensure the ethical
handling of sensitive institutional data. Before analysis,
personally identifiable information (such as employee or
student IDs) was removed. The university's Institutional
Ethics Committee approved the study, and all data
processing followed internal data protection guidelines.
All assessments were conducted in a secure, limited-
access computing environment, and no private
information was shared with any other parties.

4 Results and discussion

An Al-powered Smart Laboratory Management System
(Al-SLMS) was put through its paces at a medium-sized
university for three months. Key performance indicators
(KPIs) examined in the paper included equipment
utilization rates, user authentication accuracy, schedule
conflicts, and equipment downtime. Data is gathered
before and after the system is deployed to assess the
effectiveness of the SLMS.

4.1 Dataset explanation

The Smart Laboratory Management System (Al-SLMS)
was constructed and evaluated utilizing data from two
primary sources, one for each module inside the system.
The Kaggle Predictive Maintenance Dataset is an open-
source tool that is the point of reference
(https://iwww.kaggle.com/datasets/shivamb/predictive-
maintenance-dataset). Based on sensor-based time-series
data, this dataset includes variables such as temperature,
vibration, pressure, and runtime hours. Examining the
annotated historical data in this collection helps you
determine whether computers were running well or were
on the verge of crashing. Some supervised learning
techniques, such as Random Forest and Logistic
Regression, might value it. A thorough set of network and
telemetry data, the TON IoT dataset [] is intended for
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assessing machine learning models in cybersecurity and
Internet of Things settings. UNSW Canberra created it
and contains network traffic, operating system logs, and
IoT sensor logs from smart home, industrial, and
enterprise environments. The dataset is ideal for
evaluating intelligent systems, such as AI-SLMS, across
domains like resource optimization, security, and real-
time monitoring, as it enables activities such as anomaly
detection, intrusion detection, and predictive analytics.
These combined datasets, grounded in the real world,
have enabled evaluation of the proposed Al-driven SLMS
for efficacy, durability, and scalability. To ensure
repeatability, we supplied a detailed appendix on data
preparation, feature engineering, and model tweaking.
KNN imputation with k=5, Isolation Forest for
multivariate outliers, and RobustScaler for feature
scaling are covered in the appendix. The feature
engineering method, statistical features for non-
stationary signals, interaction terms between sensor data,
and temporal features (such as rolling means and standard
deviations over 1-hour and 24-hour windows) are also
detailed. It also provides the full hyperparameter search
spaces for all models, including Random Forest
(n_estimators: [50, 100, 200], max_depth: [5, 10, 15])
and Logistic Regression (C: [0.1, 1.0, 10.0], penalty: ['l1',
'12'), the parameters chosen, and the cross-validation
results that supported them. This supplementary material
contains all the specifics needed to replicate our
experimental setup.

4.2 Experimental setup

The suggested AI-SLMS was tested in a controlled
university lab using 58 equipment. 142 loT sensors
monitored current draw, temperature, vibration, and
humidity using a hybrid Wi-Fi 6 network and MQTT. In
a lab maintained at 22 + 2 °C and 40-55% relative
humidity, 12 users participated in typical academic tasks
on average each session. A centralized Al server with 64
GB RAM, an Intel i9-13900K CPU, an NVIDIA RTX
4090 GPU, and Ubuntu 22.04 LTS powered the
computational infrastructure. This server used Raspberry
Pi 4 nodes for edge inference and secure Google Cloud
10T Core connectivity. Our extensive study included the
publicly available Kaggle Predictive Maintenance dataset
(10,00 samples, eight features), a locally obtained Al-
SLMS operational dataset (18,530 samples, 12 features),
and the TON IloT dataset (22,120 samples, 15 features).
50,650 labeled instances, uniformly distributed across the
training and test sets, after significant preprocessing with
KNN imputation, outlier removal, and z-score
normalization. After a 5-fold grid search revealed the
Logistic Regression (L2 penalty, C=1.0) and Random
Forest (n_estimators=200, max_depth=15)
hyperparameter configurations, the final configurations
were finalized. The Genetic Algorithm from the
Intelligent Scheduling Module was utilized with 50
nodes, 0.08 mutations, and 0.7 crossovers. The
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convergence rate remained 0.08 after 164 iterations.
Regular retraining kept the models strong and responsive
in real time. Over a three-month deployment that
produced 22 GB of operational data, recall, precision,
accuracy, F1-score, resource usage, scheduling conflict
rate, authentication correctness, and system latency were
assessed.

4.3 System performance metrics

To evaluate the impact of the AI-SLMS, it tracked several
key performance indicators (KPIs) both before and after
its implementation. Among these are the percentage of
equipment use, the accuracy of user authentication, the
rate of scheduling conflicts, and the amount of time
equipment has been down.

Table 3: Key performance indicators before and after
AI-SLMS deployment

. Traditional Improvement
Metric ase
System (%)
SLMS
Equipment
Downtime 73 21 71.23%
(hours)
Scheduling
. 24.5 5.2 78.77%
Conflict Rate (%)
User
Authentication 84.6 98.3 16.15%
Accuracy
Equipment
53.2 81.7 53.53%

Utilization (%)

As shown in Table 3, AI-SLMS significantly
improved all tested metrics. Forecasting maintenance
reduced equipment downtime by 71%. Prepare for
equipment failures and schedule maintenance using this
module. The intelligent scheduling module resolves more
than 79% of scheduling conflicts, optimizing resource
use. Biometric authentication and RFID enhanced user
authentication accuracy by 16%. Around 53% more lab
equipment was used, suggesting better utilization of lab
resources.

D -D
Improvementpyyntime = <w> x 100 (7)

Figure 5 shows a graphical comparison of monthly
equipment downtime recorded before and after the Smart
Laboratory Management System (SLMS) was installed.
The graph depicts downtime before and after SLMS
deployment. Each month is a bar, making comparisons
easy. The "before" equipment has frequent or prolonged
malfunctions or inefficiency due to the higher bar heights.
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In contrast, the "after" segment shows shorter bars,
indicating a progressive decline in downtime. This trend
suggests SLMS improves equipment management,
trouble identification, and maintenance scheduling. As
seen in the picture, the SLMS' operational advantages
boost laboratory productivity and efficiency.

20
70
60
50
40
30
20
10

Equipment Downtime (hours)
Figure 5: Comparison of equipment downtime

4.4 Predictive maintenance analysis

Predictive maintenance employs machine learning
algorithms trained on real-time sensor data and historical
maintenance information, along with Logistic Regression
and Random Forest models, to forecast failures of
machinery components. Vibration, temperature, and use
hours were monitored. The "Predictive Maintenance
Dataset” on Kaggle provided most of the data, with
anonymized sensor logs from academic labs added
subsequently. Accuracy, precision, and recall are
standard evaluation metrics for predictive maintenance
models. in Equations (8), (9), and (10).

TP+TN

Accuracy = TPITNTFPTFN x 100 (8)
Precision = % x 100 %)
Recall = ——— x 100 (10)

TP+FN

Table 4: Maintenance prediction accuracy

Accuracy  Precision  Recall
Model
(%) (%) (%)
Logistic
. 86.7 84.3 81.5
Regression
Random Forest 93.4 91.8 90.2

Table 4 reveals the accuracy of the maintenance
forecast. The Random Forest model outperformed the
Logistic Regression model across all assessed criteria. It
showed more accuracy, precision, and recall. Given that
Random Forests resist overfitting and can handle
complex, non-linear relationships, this undoubtedly
accounts for their superior performance. Random Forest
is therefore a perfect fit for the varied, noisy sensor data
collected in the laboratory setting.
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Figure 6: ROC curves for maintenance prediction models

Figure 6 illustrates the classification performance of
two distinct maintenance prediction models, as shown in
the Receiver Operating Characteristic (ROC) curves.
Respectively, these models are Logistic Regression and
Random Forest. Every ROC curve shows the True
Positive Rate (sensitivity) against the False Positive Rate
(1-specificity) at several classification thresholds. This
provides a complete picture of how well the model
performs across decision boundaries. If the Random
Forest model curve consistently lies above the Logistic
Regression curve, this suggests the Random Forest model
is more predictive. Especially noteworthy is the larger
Area Under the Curve (AUC) for the Random Forest,
indicating it performs better at distinguishing between
equipment that needs maintenance and that which does
not. The AUC of the Logistic Regression model is lower,
suggesting it has relatively low sensitivity and specificity.
This disregards its still acceptable performance. These
visual proofs show that the Random Forest model
outperforms other models for predictive maintenance
tasks within the Smart Laboratory Management System
(SLMS). Actual-world deployment also offers greater
reliability and a longer lifespan.

4.5 Intelligent scheduling efficiency

The intelligent scheduling module was evaluated using
booking logs collected over a semester. The module
employs a constraint optimization solver to allocate
resources efficiently, minimizing scheduling conflicts
and maximizing equipment utilization. The Conflict rate
and Utilization rate are calculated using equations (11)
and (12).

__ Number of Conflicting Schedules
- Total Number of Schedules

Conflict Rate x 100 (11)

Utilization Rate = —o2edlme o100 (12)

Total Available Time

Figure 7 displays the monthly rate of plan conflicts
before and after the implementation of the Strategic
Learning Management System (AI-SLMS). The graph
indicates that the AI-SLMS is effective at improving lab
schedules, as there are fewer scheduling issues now than
before. There has been a consistent decline since the
system has been so good at making activities run more
smoothly,  coordinating  better, and reducing
disagreements. AI-SLMS has demonstrated its ability to
eliminate issues and streamline the allocation of
laboratory equipment. This enables automatic job
scheduling and real-time data.

Conflict Rate (%)

QA

&>

= January = February = March

= April = May

Figure 7: Scheduling conflict rate over time

Figure 8 shows how quickly high-demand
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equipment consumed resources before and after the Al-
SLMS system was implemented. The line shows that the
efficiency of laboratory equipment is rising. Before the
method, room overbooking and underbooking were
prevalent, resulting in wasted resources. The graph shows
that once the system is operational, it may optimize
resource use, improving equipment allocation and
downtime. These numbers show how the AI-SLMS
enhances lab management by organizing and using
resources. The intelligent scheduling module may
dynamically adjust reservations depending on
availability and demand, reducing scheduling conflicts.
This ensures fair and fast resource allocation. Optimizing
considers several elements, including constraints and
desires. As demand for lab resources rises, the module
optimizes resource use.

4.6 Access control robustness
The admission control system uses radio frequency
identification (RFID) and biometric verification to
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enhance security. It searched for unusual access patterns
and failed login attempts to gauge how well the system
operated. The robustness of the access control system was
measured using failure rates (Equation (13)).

Failed Login Attempts

Failed Access Rate = x 100 (13)

Total Login Attempts

Figure 9 reveals a correlation between time spent
and the inability to enter. A graph of the number of failed
login attempts over time will give you a sense of how well
the new system is functioning. After the system was
installed, illegal access attempts dropped, indicating the
security measures worked. Reduced unsuccessful login
attempts show that the updated access control mechanism
has increased security. The system can now better secure
critical lab areas with this upgrade. Two-factor
authentication increases security by reducing the
likelihood of illegal access. Machine learning can swiftly
identify and flag unusual activities, such as multiple
unsuccessful logins attempts or access outside office
hours.

Comparison of Resource Utilization: Traditional vs Al-SLMS
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Figure 9: Failed access attempts vs. time
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Table 5: Performance comparison of Al-SLMS and baseline methods

Metric AI-SLMS ML-Based  PMS | RL-Based SA[15] | MARTSS [17]
(Proposed) [12]

1. Equipment | | 71.2% 143.5% 132.8% 1 55.4%

Downtime

2. Scheduling | | 78.7% X Not Applicable 162.4% 1 68.1%

Conflict Rate

3. Equipment | 1 53.5% 134.2% 147.8% 145.6%

Utilization

4.  Authentication | 1 98.3% X Not Supported X Not Supported 191.4%

Accuracy

5. Maintenance | 93.4%  (Random | 86.7% X Not Applicable X Not Applicable

Prediction Forest)

Accuracy

6. User Satisfaction | High (92%) Moderate High (87%) Moderate (81%)

4.7 User satisfaction and feedback

A comprehensive survey of 120 students and 20 lab
managers was conducted before and after the
implementation of the Smart Laboratory Management
System (AI-SLMS). This survey aimed to determine user
satisfaction with the system. Of those who responded,
89% said lab resource access had improved. This
indicates that the replies were generally favorable.
Furthermore, 92% of users found the dashboard interface
clear and straightforward, significantly increasing their
interest in the system. Of those polled, 85% said they
appreciated the reduced booking delays. This improved
the scheduling process and enabled more labor to be
completed. Careful design and functionality planning by
the Service-Learning Management System (Al-SLMS)
appears to have enhanced the general user experience and
simplified lab work.

4.8 Comparative performance analysis with

baseline methods

Three systems from recent literature—ML-Based PMS
[12], RL-Based SA [15], and MARTSS [17]—were
compared to demonstrate the effectiveness of AI-SLMS.
The comparison covered six key performance criteria to
evaluate operational efficiency, security, and user
experience. Equipment usage, authentication accuracy,
maintenance prediction accuracy, schedule conflict rate,
user satisfaction, and downtime were measured.

In most measures, the AI-SLMS beat the three
baseline techniques (Table 5). Two-factor RFID-
biometric access control reduced scheduling conflicts
(78.7%), equipment downtime (71.2%), and user
authentication accuracy (98.3%). The predictive
maintenance module, powered by the Random Forest

classifier, achieved 93.4% classification accuracy,
whereas the ML-Based PMS performed worse. Because
AI-SLMS responded quickly and was easy to use, users
were happier with it than rival options. These findings
demonstrate how a single platform with smart
scheduling, real-time monitoring, predictive analytics,
and secure access control can improve laboratory
administration.

Cross-validation was added to our single-lab
evaluation to address scalability and generalizability
concerns. This generated dataset simulates a bigger,
research-intensive facility with 24/7 operations and 200%
more users. The AI-SLMS performed well in this
simulated high-demand environment by reducing
equipment downtime by 68.5% and scheduling conflicts
by 72.1%. System implementation may be staged owing
to modularity. Institutions with limited resources may set
scheduling and access control before predictive
maintenance. This backend design can handle 500+
concurrent users, according to stress testing. This
research provides strong evidence for our scalability and
generalizability claims across institutions.

4.9 Broader impact and

considerations
The architecture of AI-SLMS is flexible and modular,
allowing it to accommodate a variety of institutional
contexts. Even though the entire system provides access
control, intelligent scheduling, and predictive
maintenance, institutions with weak infrastructure can
use specific modules separately.

v" Auvailability of sensor infrastructure (e.g.,
temperature or vibration sensors for predictive
maintenance).

scalability
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v" Compatibility with existing lab management or

access control systems.

v" Technical expertise required for

retraining and system integration.

v Institutional policies regarding data privacy and

digital transformation.

AlI-SLMS facilitates API-based integration and
cloud-based deployments to overcome these obstacles
and enable smooth adaptation. Future research will
investigate automated calibration modules and edge
computing support to streamline cross-campus scalability
further.

We have greatly bolstered our validation through
three components: first, we performed statistical
significance testing (paired t-tests, p < 0.01) for all
primary KPls—downtime, conflict rate, and utilization—
by comparing Al-SLMS to baseline systems. This testing
validated that the improvements to each performance
indicator would not be occurrence-based. Second, we
completed our extensive scalability and stress testing by
running Al-SLMS in a simulated environment replicating
a larger institution. This testing demonstrated that our
backend, powered by the cloud, was capable of sub-2-
second response times under load of 500+ concurrent
users, and further demonstrated that the scheduling
algorithm was effective in handling a 300% increase in
booking requests. Finally, we included a cross-validation
(5-fold) procedure for all machine learning models to
validate the reliability (93.4% £ 1.2%) of the predictive
maintenance accuracy and safeguard against overfitting.
These enhance validation of the proposed AI-SLMS
framework by providing a more robust, statistically
reliable procedure.

model

4.10 Justification of proposed method
Optimization, strong authentication, and machine
learning algorithms are used in an Al-powered SLMS to
automate all lab administration tasks. The predictive
maintenance module may avoid equipment issues. This
will halve downtime and maintenance expenditures. The
unique scheduling strategy optimizes resource allocation
to increase consumption and reduce conflicts. The strong
access control system ensures policy compliance and
safety.

We assume the system's performance is improving
as demonstrated by considerable improvements in key
metrics and positive user feedback. Al technology can
adapt to changing laboratory demands and make real-
time decisions. Because of this, AI-SLMS can operate
modern laboratories sustainably and scalable.

5 Discussion

The trials show that the AI-SLMS improves all lab
management operational metrics. We contextualize these
data, explore the system's performance characteristics,
and compare its performance with the state of the art.
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5.1 Performance analysis and comparative

advantage

Section 4.7 (Table 3) indicates that AI-SLMS routinely
outperforms specialized baseline systems. Schedule
conflicts and equipment downtime dropped 78.7% and
71.2%, respectively. Our modules' synergistic integration
creates a positive feedback loop that isolated systems
cannot achieve, resulting in excellent performance. For
instance, the Intelligent Scheduling module reschedules
bookings before expected low-utilization times using
Predictive Maintenance data. ML-Based PMS [12]
predicts failures without impacting the timetable,
whereas RL-Based SA [15] plans resources without
knowing their health. These interdependencies make our
integrated system better at reducing downtime and
resolving disputes than ML-Based PMS and RL-Based
SA.

Due to its unified design, the AI-SLMS has excellent
user satisfaction (92%) and authentication accuracy
(98.3%). Instead of separate security systems, it
incorporates effective two-factor authentication, and lab
entrance and equipment booking improve security
without friction.

5.2 Rationale for method selection and

system generalizability
The Random Forest (RF) technique outperforms
XGBoost and LSTM for non-linear sensor datasets with
heterogeneity without hyperparameter tinkering or
massive time series data. Tree-based ensemble
approaches perform better on laboratory data than deep
temporal models like LSTM, which require longer time-
series continuity and more processing resources. Testing
data frequently involves mixed feature types (e.g.,
vibration, temperature, humidity, and runtime hours)
with low sequential relationships. When sensor noise or
missing data occurs, RF's built-in feature bagging and
ensemble averaging avoid overfitting.  Logistic
Regression is used on low-power edge devices due to its
interpretability and lightweight nature.

For maximum generalizability, the AlI-SLMS was
developed as a modular framework that can be readily
modified to different labs, lab sizes, and user patterns.
Merging the Kaggle Predictive Maintenance and TON
l0T datasets enabled our models to operate across a range
of conditions in academic and industrial settings. Due to
cloud model updates and retraining, the system may
automatically recalibrate using fresh sensor data,
ensuring adaptability across labs with varying activity
patterns and workloads. Next research will test the
technique in other smart lab settings at other universities
and departments to ensure its viability.

5.3 Analysis of

performance
Sensor data may explain the 6.7% difference in predictive

predictive  model
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maintenance accuracy between the Random Forest
classifier and Logistic Regression. Laboratory sensor
data typically contains complex, non-linear interactions
and correlations. Vibration, current draw, and
temperature are included. Due to its ensemble of decision
trees, Random Forest captures feature interactions and
non-linearities well. It's dependable because it handles
real-world sensor data well, even with outliers and noise.
Logistic Regression provides a solid basis, but its linear
nature limits its ability to capture complex patterns.
Internet of Things operational data is complicated; thus,
model architectures must be able to manage it.

5.4 The merits of a modular-integrated

architecture

AI-SLMS uses a module that shows that the overall
performance may be superior to that of individual
components, unlike methods that optimize a particular
function. As an example: The Intelligent Scheduler can
better allocate resources during peak demand by
leveraging Usage Pattern Analysis data. Predictive
Maintenance draws vital data from Access Control
records. Failure prediction depends on equipment usage
and access occurrences. By storing data in the cloud, all
modules can access the latest version, improving
consistency and enabling cross-module analytics that
drive synergies. This design improves scalability,
usability, and performance. Institutions may install the
full system or choose components to suit their
requirements and infrastructure. As they develop, they
may add modules.

In a single university laboratory, the suggested Al-
SLMS is effective, but this work admits certain
limitations, notably scalability and integration in
environments with limited resources. Schools in less
developed areas or with older campus buildings may lack
the digital infrastructure needed for modular design. loT
sensor installation requires a solid Wi-Fi network, a
consistent electrical supply, and money. Legacy
equipment's lack of digital interfaces and multiple data
standards necessitates the use of custom adapters and
extensive data engineering for integration, hindering
expansion across institutions. Institutions without IT
support personnel may struggle with system design,
model localization, and maintenance. Even if they were
reasonable for our pilot, the computational and financial
costs of cloud services and a central server may be
untenable for an entire school or multiple campuses.
Thus, future work will focus on standardizing data
protocols for common laboratory equipment, creating
affordable sensor packages to make them more accessible
and encourage institutional adoption, and optimizing the
AI-SLMS for lightweight edge computing.

B. Wang et al.

6 Conclusion

The proposed Smart Laboratory Management System
(Al-SLMS), operated by artificial intelligence, addresses
typical lab management issues. The Smart Laboratory
Management System (AI-SLMS) cited addresses these
problems using artificial intelligence. Running and
managing university labs has become far easier with
intelligent scheduling, predictive maintenance, access
control, and cloud monitoring of the AI-SLMS. Machine
learning techniques enable the system to examine
patterns in equipment use, predict when it could fail, and
perform routine tasks autonomously. This significantly
reduced the manual labor required of managers and staff
members. Testing indicated that the approach increased
user happiness, resource utilization, and reaction time in
a real-life academic environment. The method functioned
properly. All indications that AI-SLMS is functioning are
automated access control, improved tool utilization, and
fewer scheduling problems. Management duties
progressed more quickly, and user decisions improved
thanks to the straightforward design, which included
automatic reporting capabilities. This work challenges us
to develop going forward. Adding more complex
artificial intelligence models, such as reinforcement
learning, may help determine how to allocate adaptive
resources in the future. One can enlarge the Internet of
Things (1oT) to provide more sensory input. Blockchain
technology might also help to secure data. The system
can also be modified to enable cooperation and data
sharing among professionals from several colleges.
These developments will soon make labs more
innovative, safe, and user-friendly. This will result in
additional innovations. The AI-SLMS is the initial step in
converting college laboratories into digital environments.
It improves the efficiency, sustainability, and
inventiveness of the education system.
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