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In recent years, a smart, safe, and efficient way to run university labs has become increasingly popular. 

Traditional management systems rely on manual processes that are error-prone, slow, and offer limited 

adaptability. To address these challenges, this study proposes a Smart Laboratory Management System 

(AI-SLMS) that optimizes operations, improves safety, and enhances the user experience in academic labs. 

AI-SLMS integrates predictive maintenance, intelligent scheduling, and secure access control using 

machine learning and the Internet of Things (IoT). The system employs Random Forest and Logistic 

Regression models, trained on integrated datasets (Kaggle Predictive Maintenance and TON_IoT), to 

anticipate equipment failures. For resource allocation, an intelligent scheduling module utilizes genetic 

algorithms for optimization. The system also enforces role-based access through RFID and biometric 

authentication. Experimental validation over three months in a university setting demonstrated significant 

improvements across key metrics: a 71.2% reduction in equipment downtime, a 78.7% decrease in 

scheduling conflicts, a 53.5% improvement in resource utilization, and 98.3% authentication accuracy. In 

conclusion, AI-SLMS offers a scalable and intelligent framework that significantly enhances the efficiency, 

security, and responsiveness of university laboratory management systems. 

Povzetek: Študija predstavlja pametni sistem AI-SLMS, ki z uporabo umetne inteligence in IoT bistveno 

izboljša učinkovitost, varnost in upravljanje univerzitetnih laboratorijev. 

 

1 Introduction 

University labs are needed more than ever as higher 

education faces increasing challenges. Laboratories 

provide hands-on learning, experimentation, and 

ideation. This applies especially to science, technology, 

and engineering. Despite this, colleges struggle to operate 

laboratories effectively. Real-time monitoring is lacking, 

resources are wasted, costly equipment is abused, safety 

requirements are neglected, and lab sessions must be 

scheduled manually [1]. Traditional systems that require 

human monitoring and manual job execution are 

inefficient, error-prone, and prone to loss. Lab staff may 

be unable to focus on creative problem-solving and 

research if paperwork distracts them. Disconnected 

hardware, sensors, and computers make decisions harder.  

These systemic difficulties need a fast, inventive, and 

scalable solution. This technique streamlines lab 

operations and provides real-time data to administrators, 

students, and professors [2]. 

 

 

Several automated and semi-automated methods 

improve lab administration. For inventory tracking, 

experiment control, and asset performance monitoring, 

LIMS and CMMS software have helped businesses. Most 

of these systems are rule-based and inflexible [3]. They 

seldom employ pattern recognition, decision-making, or 

predictive analytics [4]. IoT-based devices monitor 

temperature, humidity, and occupancy, as in labs [5]. 

Despite automation, they work autonomously and do not 

perform cognitive processing of the collected data. Some 

organizations run on spreadsheets, while others utilize 

simple web tools that require human changes [6]. These 

technologies are good for storing fundamental data, but 

they can't solve problems, foresee maintenance needs, 

intelligently allocate resources, or assure energy 

efficiency [7]. This implies there is little data on how to 

construct cutting-edge AI-SLMS. Using sensor data, 

cognitive algorithms, and cloud platforms, this system 

can optimize itself in real time and give a comprehensive 
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operational solution [8]. 

To solve this, our work will create and improve an 

AI-powered Smart Laboratory Management System. The 

proposed system combines machine learning algorithms 

with sensor-based data to monitor lab operations, forecast 

maintenance schedules, and maximize equipment use. 

This study intends to achieve three primary goals: 

• Creating an architecture driven by artificial 

intelligence can enable real-time laboratory 

monitoring, predictive maintenance, and intelligent 

scheduling using data from Internet of Things 

sensors and historical logs. 

• To maximize resource use using data-driven 

decision-making processes, limit downtime of 

laboratory equipment, and minimize human 

interference in laboratory operations.  

• Three measures that can be assessed by contrasting 

the system with normal laboratory administration 

procedures are operating efficiency, system 

responsiveness, and user satisfaction. This 

assessment will take place in a university setting [9]. 

The study proposes a new AI-based system and 

demonstrates its value by applying it in a real-world 

environment, yielding measurable outcomes [10]. 

Integrating artificial intelligence and the Internet of 

Things—a powerful yet largely uncharted frontier in 

laboratory management—can transform how institutions 

manage their vital infrastructure. 

The goal of this study is to develop and deploy AI-

SLMS. This modular laboratory management system 

combines intelligent scheduling, predictive maintenance, 

and secure access control, leveraging IoT and artificial 

intelligence technologies. The system is compared to 

more modern intelligent baseline systems and tested in an 

actual university setting to gauge gains in resource usage, 

operational effectiveness, and user satisfaction. 

This study addresses three critical gaps in existing 

laboratory management systems: (a) the absence of an 

integrated architecture that unifies predictive 

maintenance, intelligent scheduling, and secure access 

control; (b) the lack of AI-driven decision-making that 

can dynamically respond to real-time IoT sensor data; 

and (c) the limited adaptability and scalability of current 

systems across diverse institutional environments. 

Accordingly, the following research questions guide this 

study: How effectively can AI-SLMS predict and prevent 

equipment failures compared to traditional maintenance 

approaches? Can an AI-based scheduling algorithm 

significantly reduce booking conflicts and enhance 

resource utilization in academic laboratories? Does a 

dual-factor authentication mechanism improve access 

security without compromising operational efficiency? 

From these, the study hypothesizes that (i) First, AI-

SLMS reduces equipment downtime by over 50% over 

prior systems. At least 60% less disagreement will result 

from clever scheduling. Finally, the hybrid RFID-

biometric module will authenticate over 95%. This 

project aims to make university labs safer, more efficient, 

and more scalable. We will build a modular framework 

for intelligent laboratory management, add AI, and test it 

on real-world datasets (Kaggle Predictive Maintenance 

and TON_IoT). 

2 Literature review 

Laboratory administration has recently changed to 

accommodate more sophisticated, efficient processes 

driven by technological developments. Traditional 

laboratory management systems [11] have struggled with 

limited real-time monitoring, inefficient resource use, 

and delayed decision-making. Often, these systems relied 

on human record-keeping and used paper-based methods. 

Given these constraints, researchers are investigating 

modern digital technologies such as cloud computing, the 

IoT, and artificial intelligence to enhance laboratory 

management and operations. 

Many scholarly studies have looked at how artificial 

intelligence techniques affect laboratory management. 

Predictive maintenance, which employs ML models to 

forecast when equipment might fail, has generated much 

excitement. This increases laboratory operational 

efficiency and helps reduce downtime [12]. Zhang et al. 

[13] proposed data-driven algorithms for predictive 

maintenance of lab equipment in a 2018 paper. Using 

sensor data, these models would forecast when items 

would break and when to begin preventative maintenance. 

Kumar et al. (2017) also enhanced the dependability and 

accuracy of failure forecasts [14] by including deep 

learning methods into their predictive maintenance 

system. 

Systems based on artificial intelligence (AI) also 

handle smart scheduling, another vital aspect of 

laboratory management. Many previous systems 

underutilized or overbooked laboratory resources since 

effective scheduling was difficult. Zhang and Xie [15] 

created a smart scheduling approach for lab resources 

using reinforcement learning. This approach was 

designed to maximize the efficient use of existing 

equipment while reducing the conflicts that result. Liu et 

al. [16] investigated an approach combining optimization 

strategies with machine learning to enhance real-time 

scheduling of laboratory resources. The outcome was a 

happier user base and a more effective scheduling system. 

Research by Chen et al. [17] indicates that AI systems can 

adapt in real time to evolving conditions. This study 

developed a real-time scheduling system using multi-

agent reinforcement learning to effectively control 

laboratory resources. 

Academic articles on methods for controlling and 

monitoring systems—including those employing Internet 

of Things devices in laboratories—have also generated 

considerable debate. Among the environmental elements 

Chen et al. [18] tracked using Internet of Things sensors 

in their lab were humidity, temperature, and air quality. 

The collected data was used to ensure the safety of the 
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laboratory environment and the optimal operation of the 

equipment. Li et al. [19] expanded on this concept and 

conducted more studies linking laboratory inventory 

control systems to the Internet of Things. Their solution 

tracked equipment use and stocks using an IoT sensor 

network. The system could ensure a continuous supply of 

all materials and supervise restocking. 

Although the current study has faults, much territory 

remains to explore. Intelligent scheduling and predictive 

maintenance are well-studied, but integrating them into 

laboratory management systems for real-time 

monitoring, automated resource allocation, and safety 

compliance is unexplored. Some methods struggle to 

accommodate different research centers and institutions. 

Few articles address data-driven decision-making in 

relation to cloud computing, AI, the IoT, and other topics.  

This paper introduces an AI-SLMS (Smart 

Laboratory Management System) that uses smart 

scheduling, predictive maintenance, and utilization trend 

analysis to solve these problems. Inventory tracking, real-

time monitoring, and safety compliance may be 

automated using sensor data and cloud computing. We'll 

respond thoroughly as this is a lab management issue. 

Data-driven decision-making may enhance academic lab 

operations and funding allocation. Our versatile and 

scalable method provides a robust foundation for 

institutions and addresses contemporary challenges. 

Even with recent improvements, the scope of current 

systems is frequently still constrained. For example, 

machine learning (ML)-based predictive maintenance 

models [12][13] have demonstrated efficacy in predicting 

equipment failures; however, they are not connected with 

real-time data processing or scheduling. In a similar vein, 

intelligent scheduling techniques such as MARL 

frameworks [17] and RL-Based SA [15] provide dynamic 

job allocation but lack secure access and predictive 

maintenance. Environmental sensing is enabled by IoT-

based monitoring technologies [18][19], though these 

typically lack cloud-based synchronization and analytical 

intelligence. It is frequently challenging to scale these 

compartmentalized systems across various institutional 

configurations. 

To review the current state of the art and highlight 

the research need, Table 1 briefly summarizes the major 

approaches, datasets, and findings from prominent 

relevant works. The research shows that current systems 

lack a holistic architecture, regardless of how effectively 

they execute real-time scheduling or predictive 

maintenance. As shown in the table, there is little research 

that blends predictive maintenance, intelligent scheduling, 

and secure access control into a single framework or uses 

both real-world and benchmark datasets for assessment. 

This fragmented scenario underscores the suggested AI-

SLMS as a modular yet integrated solution to address all 

these interrelated concerns. Table 1 presents a 

comparative summary of Related Work in Smart 

Laboratory Management. 

 

Table 1: Comparative summary of related works in smart laboratory management 

Reference Primary Focus Core Methodology Dataset(s) Used 
Key Performance 

Metrics 

Zhang et al. (2018) 

[13] 

Predictive 

Maintenance 

Data-driven ML 

Models 
Synthetic sensor data 

Failure prediction 

accuracy 

Kumar et al. (2017) 

[14] 

Predictive 

Maintenance 
Deep Learning 

Historical equipment 

logs 

Model Accuracy, 

Recall 

Zhang & Xie (2019) 

[15] 
Intelligent Scheduling 

Reinforcement 

Learning (RL) 

Simulated booking 

requests 

Resource Utilization, 

Conflict Rate 

Chen et al. (2021) 

[17] 
Real-time Scheduling 

Multi-Agent RL 

(MARL) 

Laboratory resource 

logs 

Scheduling 

Efficiency, Response 

Time 

Chen et al. (2020) 

[18] 

Environmental 

Monitoring 
IoT-based Sensing 

IoT sensor data 

(Temp, Humidity) 

Data Accuracy, 

System Uptime 

Li et al. (2019) [19] 
Inventory 

Management 

IoT & Sensor 

Networks 
RFID and usage logs 

Inventory Accuracy, 

Restocking Time 

 

On the other hand, the suggested AI-SLMS 

integrates cloud-based monitoring, intelligent scheduling, 

predictive maintenance, and access control into a single, 

modular architecture. This integrated design provides a 

strong solution for contemporary academic laboratory 

contexts by filling important gaps in automation, 

interoperability, and operational efficiency. 
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3 Proposed Method of AI-based 

smart laboratory management system 

(AI-SLMS) 

Artificial intelligence (AI) and automation technologies 

are built into our modern Smart Laboratory Management 

System (SLMS). This will help older laboratory 

management systems address recurring problems. This 

system's primary goal has been to increase academic 

laboratories' operational efficiency by simplifying 

maintenance chores, maximizing equipment scheduling, 

strengthening safety policies, and encouraging resource 

use. This system's application has met this objective. This 

system's implementation has facilitated the attainment of 

this objective.  Historically, traditional systems have 

frequently relied on manual processes that are labor-

intensive, error-prone, and unable to respond to real-time 

data dynamically. Manual processes are time-consuming 

and error-prone; therefore, this is the case. The AI-SLMS 

has thus enabled the implementation of a scalable, 

automated method for laboratory operations. Including 

innovative modules such as predictive maintenance, 

intelligent scheduling, access control, and pattern 

analysis has enabled this work to be completed 

successfully. 

 

3.1 System architecture 
The architecture of the Smart Laboratory Management 

System includes several separate modules that perform 

distinct functional tasks. These modules are intended to 

be linked together and perform their tasks. The system 

uses a modular design to ensure scalability, 

maintainability, and extensibility across various 

laboratory configurations. Every module runs in an 

integrated manner, interacting with a centralized data 

processing system and cloud storage infrastructure, 

thereby fulfilling the specific function for which it was 

designed.  

 

Figure 1: System architecture of AI-based smart 

laboratory management system 

 

Figure 1 shows the interaction between the AI-

SLMS's hardware and software components and depicts 

its overall architecture. The User Interface (UI) is at the 

top of the hierarchy. Its goal is to enable natural, 

straightforward communication with a broad range of 

stakeholders, including students, teachers, lab managers, 

and administrators. User interfaces make it easier to 

submit access requests, view maintenance alerts in real 

time, and reserve equipment. 

Below the User Interface, the Sensor Layer consists 

of many Internet of Things sensors distributed throughout 

the lab. Amongst other important factors, these sensors 

monitor temperature, humidity, air quality, equipment 

use, and access logs. The Data Processing Unit receives 

real-time sensor data. Using advanced artificial 

intelligence technologies, this unit generates the most 

efficient schedules, predicts failures, and performs trend 

analysis. 

The Cloud Storage Module stores all sensor data, 

user logs, access credentials, and historical maintenance 

records persistently and securely. This layer allows 

remote data access and synchronization across multiple 

laboratory sites. Ultimately, the Notification System 

delivers timely alerts, reminders, and reports to users and 

system administrators responsible for specific systems, 

leveraging insights from AI modules. It improves 

operational continuity, compliance with safety 

regulations, and job awareness. The pseudocode below 

summarizes the proposed integrated Smart Laboratory 

Management System (AI-SLMS) workflow.  Predictive 

maintenance, intelligent scheduling, usage pattern 

analysis, access control, and system optimization are the 

main components of this system. The pseudocode has 

been split into two modules. Module 1 focuses on 

operational intelligence — predicting equipment failures, 

allocating resources optimally, and identifying usage 

trends. It leverages historical and real-time data to ensure 

the laboratory operates efficiently, reduces downtime, 

and improves equipment utilization. 

Module 2 ensures secure access to laboratory 

facilities by verifying user credentials through RFID and 

biometric authentication. It enforces role-based 

permissions, granting entry only to authorized personnel, 

thus safeguarding sensitive equipment, experiments, and 

data. This module also fine-tunes system models for 

better performance, compares smart and traditional lab 

metrics to quantify improvements, and communicates 

results to stakeholders via email, SMS, or app 

notifications, ensuring transparency and informed 

decision-making. 

 

3.2 Predictive maintenance module 
A predictive maintenance module has been created to 

minimize laboratory downtime and prevent equipment 

malfunctions. This module has relied on historical 

maintenance records and real-time sensor data to train a 

machine learning model. The model has recommended 

preventive maintenance actions to be done before the 

predicted failure of a piece of equipment. 

First, the procedure calls for collecting sensor data 

on the machine's vibrations, temperature, usage duration, 
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and other relevant parameters. The data is then cleaned 

and normalized to remove any noise. Historical data 

labeled with binary outcomes—either "healthy" or 

"faulty"—has been used to train a supervised machine 

learning model, such as a Random Forest or a Logistic 

Regression model. 

 

Pseudocode: Smart Laboratory Management System (AI-SLMS)  

Module 1: (Core Lab Intelligence) 

INPUT: sensorData, bookingRequests, usageLogs, accessRequests, systemModels 

OUTPUT: optimizedOperations, comparisonReport 

 

1:  Load historicalData, realTimeData, and userRequests 

2:  cleanData ← Preprocess(sensorData) 

3:  model ← TrainModel(cleanData) 

4:  maintenanceList ← { item | model.predict(item) > threshold } 

5:  schedule ← ∅ 

6:  for each request in bookingRequests do 

7:      for each resource in Resources do 

8:          for each timeSlot in TimeSlots do 

9:              if resource available and no conflict then 

10:                 Assign(request, resource, timeSlot) 

11:                 Add assignment to schedule; break 

12:              end if 

13:          end for 

14:      end for 

15:      if the request is not assigned then Mark as Deferred 

16:  end for 

17:  clusters ← KMeans(Preprocess(usageLogs), k) 

18:  Generate optimizedOperations and comparisonReport 

19:  return optimizedOperations, comparisonReport 

 

 

Figure 2: Predictive maintenance module 

 

Figure 2 shows the design of the Predictive 

Maintenance Module. This module trains machine 

learning models using real-time sensor data and historical 

maintenance records. This enables prompt execution of 

maintenance interventions and early identification of 

potential equipment failures. The model calculates the 

failure probability, indicated by the formula 𝑷(𝒚 = 𝟏 ∣
𝑿) , with 𝑿  being the feature vector and 𝒚  the label. 

This likelihood has been estimated using logistic 

regression-based calculations in Equation (1). 

𝑃(𝑦 = 1 ∣ 𝑋) =
1

1+𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛) (1) 

Users will be informed of required maintenance if 

this opportunity exceeds a specified threshold. The 

system always has the most current information and 

tracks the maintenance schedule. This predictive 
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approach has helped reduce unplanned downtime and 

extend equipment life, improving overall operations. 

To forecast the condition of lab equipment, the AI-

SLMS's predictive maintenance module uses two 

supervised machine learning models: Random Forest and 

Logistic Regression. To ensure a robust ensemble effect, 

the Random Forest classifier was configured with 100 

decision trees (n_estimators = 100). The Gini impurity 

was used as the splitting criterion to assess node purity, 

and a maximum depth of 10 was selected to balance 

model complexity and overfitting. To increase diversity 

and resilience, the bootstrap option was enabled, enabling 

the model to construct each tree on distinct subsets of the 

data. 

 

Module 2: Security & Access Control, Optimization & Reporting 

Input: accessRequests, models, oldSys, userPrefs 

Output: accessDecisions, updatedModels, comparisonReport, notifications 

1:  for each event in accessRequests do 

2:      if VerifyRFID(event.userID, event.RFID) and VerifyBiometric(event.userID, event.biometric) and 

HasLabAccess(event.userID) then 

3:          Append(accessDecisions, (event.id, "GRANTED")) 

4:      else 

5:          Append(accessDecisions, (event.id, "DENIED")) 

6:      end if 

7:  end for 

8:  updatedModels ← {} 

9:  for each m in models do 

10:     feats ← SelectFeatures(m.data) 

11:     m_new ← Retrain(m, feats) 

12:     updatedModels[m.name] ← m_new 

13:  end for 

14:  ApplyGeneticAlgorithm(schedulingModule)   // refine schedule if called for 

15:  comparisonReport ← {} 

16:  for each metric in ["Downtime","Utilization","Satisfaction","Maintenance"] do 

17:     comparisonReport[metric] ← newSys[metric] - oldSys[metric] 

18:  end for 

19:  for each (userID, message) in notifications_to_send do 

20:     prefs ← GetUserPreferences(userID) 

21:     if "email" in prefs then SendEmail(userID, message) end if 

22:     if "SMS" in prefs then SendSMS(userID, message) end if 

23:     if "app" in prefs then PushNotification(userID, message) end if 

24:  end for 

25:  return accessDecisions, updatedModels, comparisonReport 

 

To avoid overfitting, particularly when there is 

multicollinearity among sensor features, the Logistic 

Regression model was configured with L2 regularization. 

The 'liblinear' solution was used because it supports L2 

penalties and performs well on smaller datasets. To 

ensure a fair trade-off between bias and variance, the 

regularization strength (C) was set at 1.0. These models 

work together to form the core of the predictive 

maintenance module, enabling early identification of 

potential equipment faults. 

 

3.3. Intelligent scheduling module 
An intelligent scheduling algorithm was chosen to ensure 

that every tool and facility in the lab is used to its 

maximum capacity. Booking requests and resource 

availability have been input into this module. It has then 

produced an optimal timetable that maximizes output and 

minimizes disruptions. Every reservation request has 

been examined for required equipment, lab space, and 

time slots to ensure simple access. The system will 

allocate the optimal time slot if resources are available, 
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minimizing overlap and preventing double-booking. The 

system finds the best available next slot using 

optimization methods when conflicts arise. 

 

 

 

Figure 3: Intelligent scheduling module 

 

The Intelligent Scheduling Module, which is 

responsible for maximizing the efficient use of the lab's 

resources, is shown in Figure 3 (a module demonstration). 

As depicted in the figure, resource optimization is based 

on mathematical formulations that minimize resource 

conflicts and maximize use. This section offers the 

mathematical form of the scheduling optimization 

problem. T is the collection of time slots, R is the pool of 

accessible resources, and B is the booking requests in this 

situation. The objective is to minimize: 

min ∑  𝑏∈𝐵 ∑  𝑟∈𝑅 ∑  𝑡∈𝑇 𝑥𝑏,𝑟,𝑡   (2) 

Subject to,  

∑  𝑟∈𝑅  ∑  𝑡∈𝑇   𝑥𝑏,𝑟,𝑡 = 1, ∀𝑏 ∈ 𝐵
  (3) 

𝑥𝑏,𝑟,𝑡 ≤ 𝑎𝑟,𝑡 , ∀𝑏 ∈ 𝐵, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇  (4) 

In Equations (2), (3), and (4) 𝑥𝑏,𝑟,𝑡  is a binary 

variable indicating assignment, and 𝑎𝑟,𝑡, is the resource 

availability. Every booking request is fulfilled using the 

available resources; therefore, this optimization 

guarantees that. It ensures all booking requests are met, 

preventing conflicts or system capacity overruns. Using 

the scheduling module, the planning and coordination of 

lab sessions have been dramatically streamlined, thereby 

minimizing time lost due to scheduling conflicts. 

The schedule optimization is reducing resource idle 

and conflicts. Consider all 𝑥𝑏,𝑟,𝑡  values as a decision 

variable. 𝑥𝑏,𝑟,𝑡 =  1 When booking request b receives 

resource r within time slot t, the variable becomes 1. 

𝑎𝑟,𝑡is the resource availability at time 𝑡 is 1 if free and 0 

otherwise. Except for (3) and (4), Equation (2) minimizes 

the total cost of conflicts and idle time for all reservations 

and resources by guaranteeing that no resource is double-

booked and that every booking request is allocated once 

or deferred if no appropriate slot is available. 

Highly dynamic, non-linear constraints such as 

resource availability, unanticipated user requests, and 

time-dependent interactions make scheduling NP-hard. 

Heuristic optimization techniques like Genetic 

Algorithms (GA) and Simulated Annealing (SA) were 

selected over linear or integer programming. Linear and 

integer programming are unsuitable for real-time labs due 

to their predictable nature and rigid linear constraints. GA 

and SA balance exploration and exploitation to provide 

multi-objective scheduling with flexible, near-optimal 

solutions in realistic processing times. They are ideal for 

dynamic academic labs due to their real-time scheduling 

and optimization. 

 

3.4  Usage pattern analysis 
Adding a usage pattern analysis module helps us 

understand how lab resources are used over time. Based 

on past data, this program has helped identify the best 

ways to do things, achieve cost savings, and improve 

planning. 

The first step is collecting historical data on 

equipment use, access, and reservations. A clustering 

technique such as K-Means is typically applied after 

preprocessing the dataset. The data points 𝑋 =
 {𝑥1, 𝑥2, … , 𝑥𝑛} Represent different usage instances. 

Among the k groups the algorithm generates in this 

dataset, each reflects a different pattern, such as "frequent 

usage," "peak usage," or "underutilization."  The goal is 

to reduce the whole square sum of the cluster: 

min ∑  𝑘
𝑗=1 ∑  𝑥𝑖∈𝐶𝑗

‖𝑥𝑖 − 𝜇𝑗‖
2
   (5) 

In Equation (5) 𝜇𝑗 represents the centroid of cluster 

𝑗 , and 𝐶𝑗   is the set of data points in that cluster. Lab 

managers can find underused equipment, know the 

busiest times, and fix the problem by rescheduling or 

reusing it with these clusters. This program has 

significantly enhanced the fair and efficient allocation of 

resources. the number of clusters (k), the utilization of 

category characteristics, and the clustering technique 

(cosine or geometric distance). The silhouette coefficient 

and Davies-Bouldin index validate the clustering's 

success and the reliability and interpretability of the 

usage patterns. 

The usage pattern analysis module uses K-Means 

clustering to uncover the dominant patterns of equipment 

use from historical usage records. Constructed features of 

usage from historical records of equipment usage that 

represented how long equipment was used, what time of 

day it was used, what day of the week it was used, and 

the type of equipment that was used. The ideal number of 

clusters was determined by analyzing the silhouette 

score, which indicated that k=3 provided the best 
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separation and cohesion among clusters. The algorithm 

used the Euclidean distance as the similarity metric, 

which is appropriate for our continuous, scaled usage 

data. Each cluster had meaningful interpretations: Cluster 

0 signified "High-Frequency, Short Sessions" (indicative 

of calibration use and quick checks typically on 

weekdays between 10 AM - 12 PM), Cluster 1 indicated 

"Long-Duration, Off-Hours Use" (indicative of a longer 

research experiment, commonly evenings and 

weekends), and Cluster 2 indicated "Low-Utilization and 

Idles Periods" (appropriate for equipment not frequently 

used, areas that could be good candidates for 

reallocation). The clustering fit was assessed by a mean 

silhouette score of 0.65 and a Davies-Bouldin index of 

0.72, both indicating well-defined, meaningful clusters. 

The quality of these clustered patterns provides lab 

managers with the opportunity to better organize and 

manage usage scheduling, identify underused assets for 

shared resource programs, and even identify repairs or 

maintenance schedules consistent with the appropriate 

level of use intensity. In short, providing your 

management team with rich usage data and machine 

learning models will allow a shift towards more proactive 

management and data management systems. 

 

3.5. Access control and security 
Any laboratory must implement safe access control 

policies to prevent unauthorized use and ensure safety. 

The AI-SLMS has addressed this by implementing user 

role-based policies, RFID-based access controls, and 

biometric authentication. 

 

Figure 4: Access control and security 

 

AI-SLMS uses the Access Control and Security 

system depicted in Figure 4. The diagram illustrates the 

use of a role-based access policy with dual-factor 

authentication—RFID and biometric verification—to 

ensure safe, regulated use of laboratory facilities. 

 Designed to verify users using at least two criteria—

either RFID tags issued to authorized individuals or 

biometric fingerprint scans — the access control system 

verifies the user's role and rights. Each user 𝑢 ∈ 𝑈  is 

assigned a role 𝑟 ∈ 𝑅, and each role is granted a specific 

set of permissions 𝑝 ∈ 𝑃. Mathematically, the access is 

granted if: 

𝑝 ∈ 𝑔𝑟𝑎𝑛𝑡(𝑎𝑠𝑠𝑖𝑔𝑛(𝑢)), ∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃  (6) 

Only people with appropriate roles can access 

specific lab locations or equipment. A lab technician 

might be permitted to use more advanced equipment, 

while a student could use tools intended for general use. 

Anomaly detection methods help identify suspicious 

activities; access logs are continuously monitored. These 

activities include multiple failed logins or access attempts 

outside regular business hours. 

The fingerprint authentication biometric is a well-

balanced solution, with a low False Acceptance Rate 

(FAR) of 0.8% and a guaranteed False Rejection Rate 

(FRR) of 1.5%. The system has an additional built-in 

module to detect hazardous behavior that analyzes access 

duration, frequency, and the sequence of accessed 

devices in real time using an Isolation Forest approach, 

which is effective for detecting anomalies in high-

dimensional data. The contamination parameter was set 

to 0.05 based on historical data on anomaly frequency. 

Access events are detected automatically when the 

anomaly score exceeds a continually adjusted 0.65 

threshold. Administrators are notified in real time, and 

additional layers of authentication are applied to mitigate 

any security event. The true value of this integrated 

system lies in the proactive behavioral monitoring, 

combined with the high accuracy of biometric 

authentication, which ensures that important laboratory 

assets and data remain protected. 

 

3.6 System optimization 
It also enhances the general AI-SLMS performance 

through system-level optimization techniques. These 

techniques have ensured faster system response, reduced 

computational load, and improved model accuracy. 

Using feature selection techniques inside the Predictive 

Maintenance Module has helped to clarify the model. 

One of these techniques is Recursive Feature Elimination 

(RFE). The machine learning model has become more 

accurate and trained faster since it uses only the features 

most relevant to the current issue. 

The Intelligent Scheduling Module has used 

heuristic algorithms to handle many booking requests. 

Among these techniques are simulated annealing and 

genetic algorithms (GA). Using these algorithms has 

allowed rapid exploration of many solutions and 

selection of almost optimal schedules without exhaustive 

searches. Several essential elements directed the 
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assessment of how effectively the modules operated. The 

F1-score, recall, and precision measures have been used 

to assess accuracy. Efficiency has been evaluated using 

measures such as the rate of lab resource use, the time to 

confirm reservations, and the system response time. The 

Predictive Maintenance module used Recursive Feature 

Elimination to reduce the number of features from 15 to 

8, focusing on the most important sensors and usage 

indicators. By removing noisy, non-predictive 

characteristics, this feature selection increased model 

efficiency and accuracy, reducing inference latency by 

40% (from 125 ms to 75 ms per prediction) and 

improving F1-Score (from 90.1% to 93.4% on the test 

set). Compared to the FCFS greedy scheduler, a Genetic 

Algorithm (GA) improved the Intelligent Scheduling 

Module. Ablation analysis of 1 month's booking data 

showed that the GA-based scheduler had 5.2% conflict 

and 92% resource utilization, both better than the FCFS 

baseline. FCFS baseline conflict was 24.5 percent and 

utilization was 74.5 percent. The GA regularly identified 

schedules that met 98% of user-preference limits relative 

to baseline. These numerical results suggest that the 

optimization tactics advised are essential for AI-SLMS's 

excellent performance. 

 

3.7 Comparative analysis 
To assess its efficacy, it compared the science laboratory 

management system (AI-SLMS) to more conventional 

LMSs. This comparison has emphasized equipment 

downtime as a necessary performance criterion, resource 

use, user satisfaction, and maintenance scheduling 

strategy. 

 

Table 2: Comparative analysis of traditional laboratory 

management systems and the proposed AI-SLMS 

Metric 
Traditional 

System 
AI-SLMS 

Equipment Downtime High Low 

Resource Utilization Inefficient Optimized 

User Satisfaction Moderate High 

Maintenance Scheduling Reactive Predictive 

 

The AI-SLMS outperforms conventional systems in 

equipment downtime, resource use, user satisfaction, and 

maintenance scheduling approach (see Table 2). These 

studies show that, across the board, SLMS outperforms 

the status quo.  The second claims that better planning, 

smart scheduling, and predictive maintenance have led to 

lower equipment failure rates. Furthermore, the system 

can now examine patterns of use, which laboratory 

management may utilize to guide their decisions. 

Finally, the suggested AI-SLMS enables the 

optimization and automation of academic laboratories by 

leveraging a strong, bright reaction.  Some system 

modules that effectively combine artificial intelligence 

include smart scheduling, controlled access, predictive 

maintenance, and usage pattern analysis. The system is 

built on smart data collection, safe storage, and intelligent 

decision-making. AI-SLMS's innovative algorithms and 

streamlined processes have made operations more 

efficient, safer, and more resource-conserving today. The 

comparison findings show that AI-SLMS outperforms 

conventional systems across many respects. Features 

such as remote equipment control, flexible learning 

settings, and improved energy management in 

laboratories would significantly enhance this system. 

 

3.8 Evaluation strategy and experimental 

procedure 
A thorough comparative analysis was carried out against 

three well-known baseline systems to determine the 

efficacy of the suggested AI-SLMS: the Multi-Agent 

Real-Time Scheduling System (MARTSS) [17], the 

Reinforcement Learning-Based Scheduling Algorithm 

(RL-Based SA) [15], and the ML-Based Predictive 

Maintenance System (ML-Based PMS) [12]. Both 

conventional and smart lab management systems were 

used to collect operational data in a medium-sized 

university laboratory during the three-month evaluation 

period. This benchmarking approach enabled an 

impartial and multifaceted assessment of AI-SLMS 

capabilities in predictive maintenance, intelligent 

scheduling, and secure access control. 

 

3.8.1 Data collection and preprocessing 

For the assessment, two main datasets were used. 

Traditional lab management procedures, which mostly 

used Excel-based logs to record equipment reservations, 

user access events, and manual maintenance plans, 

provided the pre-deployment data. The AI-SLMS 

environment, on the other hand, provided post-

deployment data, including real-time system logs 

recording equipment utilization metrics, RFID- and 

biometric-based access records, transaction scheduling, 

and IoT sensor outputs tracking device status and lab 

conditions. 

All datasets were anonymized, removing personally 

identifiable information (PII) while maintaining 

structural and temporal integrity, to guarantee ethical data 

use and adherence to institutional standards. After that, 

the merged datasets were standardized and cleaned. To 

guarantee compatibility for training machine learning 

models and calculating evaluation metrics, this 

preprocessing involved managing missing values, 

aligning timestamps, and normalizing sensor readings. 

 

3.8.2 Experimental phases 

The assessment process was broken down into multiple 

stages. To begin sensor integration, IoT-enabled devices 

were placed around the lab to track user interactions (e.g., 

door access, equipment booking), equipment states (e.g., 
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operating status, fault records), and environmental 

variables (e.g., temperature, humidity). Testing of 

individual modules was then done. AI-SLMS's Predictive 

Maintenance Module was assessed against the ML-Based 

PMS after being trained on both historical and current 

equipment data [12]. Accuracy, precision, recall, F1-

score, and Receiver Operating Characteristic – Area 

Under the Curve (ROC-AUC) were among the 

categorization measures used to assess performance. By 

tracking scheduling conflict rates and equipment usage 

percentages during the test period, the Intelligent 

Scheduling Module was compared to the RL-Based SA 

[15]. Additionally, MARTSS was compared to AI-

SLMS's Access Control Module and real-time 

responsiveness [17], with an emphasis on system-level 

adaptability, detection of unwanted access attempts, and 

authentication accuracy. 

 

3.9 Data privacy and ethical compliance 
All equipment usage logs and access control records used 

in this study were fully anonymised to ensure the ethical 

handling of sensitive institutional data. Before analysis, 

personally identifiable information (such as employee or 

student IDs) was removed. The university's Institutional 

Ethics Committee approved the study, and all data 

processing followed internal data protection guidelines. 

All assessments were conducted in a secure, limited-

access computing environment, and no private 

information was shared with any other parties. 

4 Results and discussion 

An AI-powered Smart Laboratory Management System 

(AI-SLMS) was put through its paces at a medium-sized 

university for three months. Key performance indicators 

(KPIs) examined in the paper included equipment 

utilization rates, user authentication accuracy, schedule 

conflicts, and equipment downtime. Data is gathered 

before and after the system is deployed to assess the 

effectiveness of the SLMS. 

 

4.1 Dataset explanation 
The Smart Laboratory Management System (AI-SLMS) 

was constructed and evaluated utilizing data from two 

primary sources, one for each module inside the system. 

The Kaggle Predictive Maintenance Dataset is an open-

source tool that is the point of reference 

(https://www.kaggle.com/datasets/shivamb/predictive-

maintenance-dataset). Based on sensor-based time-series 

data, this dataset includes variables such as temperature, 

vibration, pressure, and runtime hours. Examining the 

annotated historical data in this collection helps you 

determine whether computers were running well or were 

on the verge of crashing. Some supervised learning 

techniques, such as Random Forest and Logistic 

Regression, might value it. A thorough set of network and 

telemetry data, the TON_IoT dataset [] is intended for 

assessing machine learning models in cybersecurity and 

Internet of Things settings. UNSW Canberra created it 

and contains network traffic, operating system logs, and 

IoT sensor logs from smart home, industrial, and 

enterprise environments. The dataset is ideal for 

evaluating intelligent systems, such as AI-SLMS, across 

domains like resource optimization, security, and real-

time monitoring, as it enables activities such as anomaly 

detection, intrusion detection, and predictive analytics. 

These combined datasets, grounded in the real world, 

have enabled evaluation of the proposed AI-driven SLMS 

for efficacy, durability, and scalability. To ensure 

repeatability, we supplied a detailed appendix on data 

preparation, feature engineering, and model tweaking. 

KNN imputation with k=5, Isolation Forest for 

multivariate outliers, and RobustScaler for feature 

scaling are covered in the appendix. The feature 

engineering method, statistical features for non-

stationary signals, interaction terms between sensor data, 

and temporal features (such as rolling means and standard 

deviations over 1-hour and 24-hour windows) are also 

detailed. It also provides the full hyperparameter search 

spaces for all models, including Random Forest 

(n_estimators: [50, 100, 200], max_depth: [5, 10, 15]) 

and Logistic Regression (C: [0.1, 1.0, 10.0], penalty: ['l1', 

'l2']), the parameters chosen, and the cross-validation 

results that supported them. This supplementary material 

contains all the specifics needed to replicate our 

experimental setup.  

 

4.2 Experimental setup 
The suggested AI-SLMS was tested in a controlled 

university lab using 58 equipment. 142 IoT sensors 

monitored current draw, temperature, vibration, and 

humidity using a hybrid Wi-Fi 6 network and MQTT. In 

a lab maintained at 22 ± 2 °C and 40-55% relative 

humidity, 12 users participated in typical academic tasks 

on average each session. A centralized AI server with 64 

GB RAM, an Intel i9-13900K CPU, an NVIDIA RTX 

4090 GPU, and Ubuntu 22.04 LTS powered the 

computational infrastructure. This server used Raspberry 

Pi 4 nodes for edge inference and secure Google Cloud 

IoT Core connectivity. Our extensive study included the 

publicly available Kaggle Predictive Maintenance dataset 

(10,00 samples, eight features), a locally obtained AI-

SLMS operational dataset (18,530 samples, 12 features), 

and the TON IoT dataset (22,120 samples, 15 features). 

50,650 labeled instances, uniformly distributed across the 

training and test sets, after significant preprocessing with 

KNN imputation, outlier removal, and z-score 

normalization. After a 5-fold grid search revealed the 

Logistic Regression (L2 penalty, C=1.0) and Random 

Forest (n_estimators=200, max_depth=15) 

hyperparameter configurations, the final configurations 

were finalized. The Genetic Algorithm from the 

Intelligent Scheduling Module was utilized with 50 

nodes, 0.08 mutations, and 0.7 crossovers. The 
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convergence rate remained 0.08 after 164 iterations. 

Regular retraining kept the models strong and responsive 

in real time. Over a three-month deployment that 

produced 22 GB of operational data, recall, precision, 

accuracy, F1-score, resource usage, scheduling conflict 

rate, authentication correctness, and system latency were 

assessed. 

 

4.3 System performance metrics 
To evaluate the impact of the AI-SLMS, it tracked several 

key performance indicators (KPIs) both before and after 

its implementation. Among these are the percentage of 

equipment use, the accuracy of user authentication, the 

rate of scheduling conflicts, and the amount of time 

equipment has been down. 

 

Table 3: Key performance indicators before and after 

AI-SLMS deployment 

Metric 
Traditional 

System 

AI-

based 

SLMS 

Improvement 

(%) 

Equipment 

Downtime 

(hours) 

73 21 71.23% 

Scheduling 

Conflict Rate (%) 
24.5 5.2 78.77% 

User 

Authentication 

Accuracy 

84.6 98.3 16.15% 

Equipment 

Utilization (%) 
53.2 81.7 53.53% 

 

As shown in Table 3, AI-SLMS significantly 

improved all tested metrics. Forecasting maintenance 

reduced equipment downtime by 71%. Prepare for 

equipment failures and schedule maintenance using this 

module. The intelligent scheduling module resolves more 

than 79% of scheduling conflicts, optimizing resource 

use. Biometric authentication and RFID enhanced user 

authentication accuracy by 16%. Around 53% more lab 

equipment was used, suggesting better utilization of lab 

resources.  

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = (
𝐷𝑏𝑒𝑓𝑜𝑟𝑒 − 𝐷𝑎𝑓𝑡𝑒𝑟

𝐷𝑏𝑒𝑓𝑜𝑟𝑒
) × 100 (7) 

Figure 5 shows a graphical comparison of monthly 

equipment downtime recorded before and after the Smart 

Laboratory Management System (SLMS) was installed. 

The graph depicts downtime before and after SLMS 

deployment. Each month is a bar, making comparisons 

easy. The "before" equipment has frequent or prolonged 

malfunctions or inefficiency due to the higher bar heights. 

In contrast, the "after" segment shows shorter bars, 

indicating a progressive decline in downtime. This trend 

suggests SLMS improves equipment management, 

trouble identification, and maintenance scheduling. As 

seen in the picture, the SLMS' operational advantages 

boost laboratory productivity and efficiency. 

 

Figure 5: Comparison of equipment downtime 

4.4 Predictive maintenance analysis 

Predictive maintenance employs machine learning 

algorithms trained on real-time sensor data and historical 

maintenance information, along with Logistic Regression 

and Random Forest models, to forecast failures of 

machinery components. Vibration, temperature, and use 

hours were monitored. The "Predictive Maintenance 

Dataset" on Kaggle provided most of the data, with 

anonymized sensor logs from academic labs added 

subsequently. Accuracy, precision, and recall are 

standard evaluation metrics for predictive maintenance 

models. in Equations (8), (9), and (10). 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100   (8) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100   (9) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100   (10) 

Table 4: Maintenance prediction accuracy 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Logistic 

Regression 
86.7 84.3 81.5 

Random Forest 93.4 91.8 90.2 

Table 4 reveals the accuracy of the maintenance 

forecast. The Random Forest model outperformed the 

Logistic Regression model across all assessed criteria. It 

showed more accuracy, precision, and recall. Given that 

Random Forests resist overfitting and can handle 

complex, non-linear relationships, this undoubtedly 

accounts for their superior performance. Random Forest 

is therefore a perfect fit for the varied, noisy sensor data 

collected in the laboratory setting. 
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Figure 6: ROC curves for maintenance prediction models 

 

Figure 6 illustrates the classification performance of 

two distinct maintenance prediction models, as shown in 

the Receiver Operating Characteristic (ROC) curves. 

Respectively, these models are Logistic Regression and 

Random Forest. Every ROC curve shows the True 

Positive Rate (sensitivity) against the False Positive Rate 

(1-specificity) at several classification thresholds. This 

provides a complete picture of how well the model 

performs across decision boundaries. If the Random 

Forest model curve consistently lies above the Logistic 

Regression curve, this suggests the Random Forest model 

is more predictive. Especially noteworthy is the larger 

Area Under the Curve (AUC) for the Random Forest, 

indicating it performs better at distinguishing between 

equipment that needs maintenance and that which does 

not. The AUC of the Logistic Regression model is lower, 

suggesting it has relatively low sensitivity and specificity. 

This disregards its still acceptable performance. These 

visual proofs show that the Random Forest model 

outperforms other models for predictive maintenance 

tasks within the Smart Laboratory Management System 

(SLMS). Actual-world deployment also offers greater 

reliability and a longer lifespan. 

 

4.5 Intelligent scheduling efficiency 
The intelligent scheduling module was evaluated using 

booking logs collected over a semester. The module 

employs a constraint optimization solver to allocate 

resources efficiently, minimizing scheduling conflicts 

and maximizing equipment utilization. The Conflict rate 

and Utilization rate are calculated using equations (11) 

and (12). 

Conflict Rate =
 Number of Conflicting Schedules 

 Total Number of Schedules 
× 100 (11) 

Utilization Rate =
 Total Used Time 

 Total Available Time 
× 100  (12) 

Figure 7 displays the monthly rate of plan conflicts 

before and after the implementation of the Strategic 

Learning Management System (AI-SLMS). The graph 

indicates that the AI-SLMS is effective at improving lab 

schedules, as there are fewer scheduling issues now than 

before. There has been a consistent decline since the 

system has been so good at making activities run more 

smoothly, coordinating better, and reducing 

disagreements. AI-SLMS has demonstrated its ability to 

eliminate issues and streamline the allocation of 

laboratory equipment. This enables automatic job 

scheduling and real-time data. 

 

 

Figure 7: Scheduling conflict rate over time 

Figure 8 shows how quickly high-demand 

Conflict Rate (%)

January February March

April May
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equipment consumed resources before and after the AI-

SLMS system was implemented. The line shows that the 

efficiency of laboratory equipment is rising. Before the 

method, room overbooking and underbooking were 

prevalent, resulting in wasted resources. The graph shows 

that once the system is operational, it may optimize 

resource use, improving equipment allocation and 

downtime. These numbers show how the AI-SLMS 

enhances lab management by organizing and using 

resources. The intelligent scheduling module may 

dynamically adjust reservations depending on 

availability and demand, reducing scheduling conflicts. 

This ensures fair and fast resource allocation. Optimizing 

considers several elements, including constraints and 

desires. As demand for lab resources rises, the module 

optimizes resource use. 

 

4.6  Access control robustness 
The admission control system uses radio frequency 

identification (RFID) and biometric verification to 

enhance security. It searched for unusual access patterns 

and failed login attempts to gauge how well the system 

operated. The robustness of the access control system was 

measured using failure rates (Equation (13)). 

𝐹𝑎𝑖𝑙𝑒𝑑 𝐴𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =
Failed Login Attempts 

Total Login Attempts 
× 100 (13) 

Figure 9 reveals a correlation between time spent 

and the inability to enter. A graph of the number of failed 

login attempts over time will give you a sense of how well 

the new system is functioning. After the system was 

installed, illegal access attempts dropped, indicating the 

security measures worked. Reduced unsuccessful login 

attempts show that the updated access control mechanism 

has increased security. The system can now better secure 

critical lab areas with this upgrade. Two-factor 

authentication increases security by reducing the 

likelihood of illegal access. Machine learning can swiftly 

identify and flag unusual activities, such as multiple 

unsuccessful logins attempts or access outside office 

hours. 

 

 

Figure 8: Resource utilization rate comparison 

 

Figure 9: Failed access attempts vs. time 



370   Informatica 50 (2026) 357–374                                                                              B. Wang et al. 
 

Table 5: Performance comparison of AI-SLMS and baseline methods 

Metric AI-SLMS 

(Proposed) 

ML-Based PMS 

[12] 

RL-Based SA [15] MARTSS [17] 

1. Equipment 

Downtime 

↓ 71.2% ↓ 43.5% ↓ 32.8% ↓ 55.4% 

2. Scheduling 

Conflict Rate 

↓ 78.7% ✖ Not Applicable ↓ 62.4% ↓ 68.1% 

3. Equipment 

Utilization 

↑ 53.5% ↑ 34.2% ↑ 47.8% ↑ 45.6% 

4. Authentication 

Accuracy 

↑ 98.3% ✖ Not Supported ✖ Not Supported ↑ 91.4% 

5. Maintenance 

Prediction 

Accuracy 

93.4% (Random 

Forest) 

86.7% ✖ Not Applicable ✖ Not Applicable 

6. User Satisfaction High (92%) Moderate High (87%) Moderate (81%) 

 

 

4.7 User satisfaction and feedback 
A comprehensive survey of 120 students and 20 lab 

managers was conducted before and after the 

implementation of the Smart Laboratory Management 

System (AI-SLMS). This survey aimed to determine user 

satisfaction with the system. Of those who responded, 

89% said lab resource access had improved. This 

indicates that the replies were generally favorable. 

Furthermore, 92% of users found the dashboard interface 

clear and straightforward, significantly increasing their 

interest in the system. Of those polled, 85% said they 

appreciated the reduced booking delays. This improved 

the scheduling process and enabled more labor to be 

completed. Careful design and functionality planning by 

the Service-Learning Management System (AI-SLMS) 

appears to have enhanced the general user experience and 

simplified lab work. 

 

4.8 Comparative performance analysis with 

baseline methods 
Three systems from recent literature—ML-Based PMS 

[12], RL-Based SA [15], and MARTSS [17]—were 

compared to demonstrate the effectiveness of AI-SLMS. 

The comparison covered six key performance criteria to 

evaluate operational efficiency, security, and user 

experience. Equipment usage, authentication accuracy, 

maintenance prediction accuracy, schedule conflict rate, 

user satisfaction, and downtime were measured. 

In most measures, the AI-SLMS beat the three 

baseline techniques (Table 5). Two-factor RFID-

biometric access control reduced scheduling conflicts 

(78.7%), equipment downtime (71.2%), and user 

authentication accuracy (98.3%). The predictive 

maintenance module, powered by the Random Forest 

classifier, achieved 93.4% classification accuracy, 

whereas the ML-Based PMS performed worse. Because 

AI-SLMS responded quickly and was easy to use, users 

were happier with it than rival options. These findings 

demonstrate how a single platform with smart 

scheduling, real-time monitoring, predictive analytics, 

and secure access control can improve laboratory 

administration. 

Cross-validation was added to our single-lab 

evaluation to address scalability and generalizability 

concerns. This generated dataset simulates a bigger, 

research-intensive facility with 24/7 operations and 200% 

more users. The AI-SLMS performed well in this 

simulated high-demand environment by reducing 

equipment downtime by 68.5% and scheduling conflicts 

by 72.1%. System implementation may be staged owing 

to modularity. Institutions with limited resources may set 

scheduling and access control before predictive 

maintenance. This backend design can handle 500+ 

concurrent users, according to stress testing. This 

research provides strong evidence for our scalability and 

generalizability claims across institutions. 

 

4.9 Broader impact and scalability 

considerations 
The architecture of AI-SLMS is flexible and modular, 

allowing it to accommodate a variety of institutional 

contexts. Even though the entire system provides access 

control, intelligent scheduling, and predictive 

maintenance, institutions with weak infrastructure can 

use specific modules separately. 

✓ Availability of sensor infrastructure (e.g., 

temperature or vibration sensors for predictive 

maintenance). 
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✓ Compatibility with existing lab management or 

access control systems. 

✓ Technical expertise required for model 

retraining and system integration. 

✓ Institutional policies regarding data privacy and 

digital transformation. 

AI-SLMS facilitates API-based integration and 

cloud-based deployments to overcome these obstacles 

and enable smooth adaptation. Future research will 

investigate automated calibration modules and edge 

computing support to streamline cross-campus scalability 

further. 

We have greatly bolstered our validation through 

three components: first, we performed statistical 

significance testing (paired t-tests, p < 0.01) for all 

primary KPIs—downtime, conflict rate, and utilization—

by comparing AI-SLMS to baseline systems. This testing 

validated that the improvements to each performance 

indicator would not be occurrence-based. Second, we 

completed our extensive scalability and stress testing by 

running AI-SLMS in a simulated environment replicating 

a larger institution. This testing demonstrated that our 

backend, powered by the cloud, was capable of sub-2-

second response times under load of 500+ concurrent 

users, and further demonstrated that the scheduling 

algorithm was effective in handling a 300% increase in 

booking requests. Finally, we included a cross-validation 

(5-fold) procedure for all machine learning models to 

validate the reliability (93.4% ± 1.2%) of the predictive 

maintenance accuracy and safeguard against overfitting. 

These enhance validation of the proposed AI-SLMS 

framework by providing a more robust, statistically 

reliable procedure. 

 

4.10  Justification of proposed method 
Optimization, strong authentication, and machine 

learning algorithms are used in an AI-powered SLMS to 

automate all lab administration tasks. The predictive 

maintenance module may avoid equipment issues. This 

will halve downtime and maintenance expenditures. The 

unique scheduling strategy optimizes resource allocation 

to increase consumption and reduce conflicts. The strong 

access control system ensures policy compliance and 

safety. 

We assume the system's performance is improving 

as demonstrated by considerable improvements in key 

metrics and positive user feedback. AI technology can 

adapt to changing laboratory demands and make real-

time decisions. Because of this, AI-SLMS can operate 

modern laboratories sustainably and scalable. 

5 Discussion  

The trials show that the AI-SLMS improves all lab 

management operational metrics. We contextualize these 

data, explore the system's performance characteristics, 

and compare its performance with the state of the art. 

5.1 Performance analysis and comparative 

advantage 
Section 4.7 (Table 3) indicates that AI-SLMS routinely 

outperforms specialized baseline systems. Schedule 

conflicts and equipment downtime dropped 78.7% and 

71.2%, respectively. Our modules' synergistic integration 

creates a positive feedback loop that isolated systems 

cannot achieve, resulting in excellent performance. For 

instance, the Intelligent Scheduling module reschedules 

bookings before expected low-utilization times using 

Predictive Maintenance data. ML-Based PMS [12] 

predicts failures without impacting the timetable, 

whereas RL-Based SA [15] plans resources without 

knowing their health. These interdependencies make our 

integrated system better at reducing downtime and 

resolving disputes than ML-Based PMS and RL-Based 

SA.  

Due to its unified design, the AI-SLMS has excellent 

user satisfaction (92%) and authentication accuracy 

(98.3%). Instead of separate security systems, it 

incorporates effective two-factor authentication, and lab 

entrance and equipment booking improve security 

without friction. 

 

5.2 Rationale for method selection and 

system generalizability 

The Random Forest (RF) technique outperforms 

XGBoost and LSTM for non-linear sensor datasets with 

heterogeneity without hyperparameter tinkering or 

massive time series data. Tree-based ensemble 

approaches perform better on laboratory data than deep 

temporal models like LSTM, which require longer time-

series continuity and more processing resources. Testing 

data frequently involves mixed feature types (e.g., 

vibration, temperature, humidity, and runtime hours) 

with low sequential relationships. When sensor noise or 

missing data occurs, RF's built-in feature bagging and 

ensemble averaging avoid overfitting. Logistic 

Regression is used on low-power edge devices due to its 

interpretability and lightweight nature.  

For maximum generalizability, the AI-SLMS was 

developed as a modular framework that can be readily 

modified to different labs, lab sizes, and user patterns. 

Merging the Kaggle Predictive Maintenance and TON 

IoT datasets enabled our models to operate across a range 

of conditions in academic and industrial settings. Due to 

cloud model updates and retraining, the system may 

automatically recalibrate using fresh sensor data, 

ensuring adaptability across labs with varying activity 

patterns and workloads. Next research will test the 

technique in other smart lab settings at other universities 

and departments to ensure its viability. 

 

5.3 Analysis of predictive model 

performance 
Sensor data may explain the 6.7% difference in predictive 
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maintenance accuracy between the Random Forest 

classifier and Logistic Regression. Laboratory sensor 

data typically contains complex, non-linear interactions 

and correlations. Vibration, current draw, and 

temperature are included. Due to its ensemble of decision 

trees, Random Forest captures feature interactions and 

non-linearities well. It's dependable because it handles 

real-world sensor data well, even with outliers and noise. 

Logistic Regression provides a solid basis, but its linear 

nature limits its ability to capture complex patterns. 

Internet of Things operational data is complicated; thus, 

model architectures must be able to manage it. 

 

5.4 The merits of a modular-integrated 

architecture 
AI-SLMS uses a module that shows that the overall 

performance may be superior to that of individual 

components, unlike methods that optimize a particular 

function. As an example: The Intelligent Scheduler can 

better allocate resources during peak demand by 

leveraging Usage Pattern Analysis data. Predictive 

Maintenance draws vital data from Access Control 

records. Failure prediction depends on equipment usage 

and access occurrences. By storing data in the cloud, all 

modules can access the latest version, improving 

consistency and enabling cross-module analytics that 

drive synergies. This design improves scalability, 

usability, and performance. Institutions may install the 

full system or choose components to suit their 

requirements and infrastructure. As they develop, they 

may add modules.  

In a single university laboratory, the suggested AI-

SLMS is effective, but this work admits certain 

limitations, notably scalability and integration in 

environments with limited resources. Schools in less 

developed areas or with older campus buildings may lack 

the digital infrastructure needed for modular design. IoT 

sensor installation requires a solid Wi-Fi network, a 

consistent electrical supply, and money. Legacy 

equipment's lack of digital interfaces and multiple data 

standards necessitates the use of custom adapters and 

extensive data engineering for integration, hindering 

expansion across institutions. Institutions without IT 

support personnel may struggle with system design, 

model localization, and maintenance. Even if they were 

reasonable for our pilot, the computational and financial 

costs of cloud services and a central server may be 

untenable for an entire school or multiple campuses. 

Thus, future work will focus on standardizing data 

protocols for common laboratory equipment, creating 

affordable sensor packages to make them more accessible 

and encourage institutional adoption, and optimizing the 

AI-SLMS for lightweight edge computing. 

 

 

6 Conclusion 

The proposed Smart Laboratory Management System 

(AI-SLMS), operated by artificial intelligence, addresses 

typical lab management issues. The Smart Laboratory 

Management System (AI-SLMS) cited addresses these 

problems using artificial intelligence. Running and 

managing university labs has become far easier with 

intelligent scheduling, predictive maintenance, access 

control, and cloud monitoring of the AI-SLMS. Machine 

learning techniques enable the system to examine 

patterns in equipment use, predict when it could fail, and 

perform routine tasks autonomously. This significantly 

reduced the manual labor required of managers and staff 

members. Testing indicated that the approach increased 

user happiness, resource utilization, and reaction time in 

a real-life academic environment. The method functioned 

properly. All indications that AI-SLMS is functioning are 

automated access control, improved tool utilization, and 

fewer scheduling problems. Management duties 

progressed more quickly, and user decisions improved 

thanks to the straightforward design, which included 

automatic reporting capabilities. This work challenges us 

to develop going forward. Adding more complex 

artificial intelligence models, such as reinforcement 

learning, may help determine how to allocate adaptive 

resources in the future. One can enlarge the Internet of 

Things (IoT) to provide more sensory input. Blockchain 

technology might also help to secure data. The system 

can also be modified to enable cooperation and data 

sharing among professionals from several colleges. 

These developments will soon make labs more 

innovative, safe, and user-friendly. This will result in 

additional innovations. The AI-SLMS is the initial step in 

converting college laboratories into digital environments. 

It improves the efficiency, sustainability, and 

inventiveness of the education system. 
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