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In computer graphics, realistic lighting simulation and efficient rendering techniques have always faced 

the dual challenges of computational complexity and visual realism. The traditional global illumination 

algorithm relies on a large number of ray sampling and iterative calculations. For example, path tracking 

requires each pixel to emit thousands of rays in order to converge. However, the joint optimization 

problems of hundreds of dimensions such as light source parameters and material reflectivity in dynamic 

scenes often trap traditional gradient descent methods in local optima. The enhanced L-BFGS algorithm 

(with SALBFGS as its core) stores historical gradient information through a finite memory strategy and 

constructs an iterative model that approximates the inverse of the Hessian matrix. Its key enhancements 

are reflected in four components: adaptive memory scale control dynamically adjusts the gradient storage 

window (optimal m=150), balances O (mn) memory overhead and convergence speed; The positive 

definite matrix guarantee mechanism corrects the iterative update term to avoid local optimal traps; 

Random gradient variance reduction introduces auxiliary gradient to reduce sampling noise; The 

lightweight module adapts to multiple devices through fixed-point quantization, sparse cropping, and 

GPU asynchronous updates. While maintaining the fast convergence characteristics of second-order 

optimization, the memory consumption remains at the level of O (mn) (where m is the number of memory 

steps), providing a new approach for large-scale lighting parameter optimization. The experimental 

results show that in scenes with dynamic light sources and complex materials, the enhanced L-BFGS 

optimization achieved energy function convergence to 10 ⁻⁶ within 500 iterations, reducing computation 

time by 38% compared to traditional BFGS. When integrated into NeRF training, the hybrid L-BFGS 

strategy reduces the geometric reconstruction error to 0.12 mm, improving accuracy by 52% compared 

to pure stochastic gradient descent. In real-time rendering, the GPU accelerated enhanced L-BFGS 

optimizes the shadow mapping parameters of 256 virtual point light sources per frame, maintaining 60 

FPS at 4K resolution with a VRAM usage of 1.2 GB. For mobile AR, the quantized L-BFGS variant 

achieves material reflection calibration within 8.3 ms with an azimuth accuracy of ± 0.5%, while the 

Monte Carlo L-BFGS framework reduces indirect lighting precomputation from 14.6 hours to 2.3 hours 

with a visual fidelity of 98.7%. These technological advancements provide a new paradigm for integrating 

movie grade offline and real-time rasterized rendering pipelines, driving the development of efficient 

visualization in emerging fields such as digital twins and metaverse. 

Povzetek: Raziskava predstavlja izboljšan optimizacijski algoritem L-BFGS, ki omogoča hitrejšo in 

učinkovitejšo realistično osvetlitev ter upodabljanje v kompleksnih in dinamičnih grafičnih okoljih, tako 

v realnem času kot pri naprednih vizualizacijah. 

 

1 Introduction 
With the rapid development of computer graphics and 

virtual reality technology, lighting simulation and 

graphics rendering technology, as the cornerstone of 

building the digital world, always face the dual challenges 

of realism and computational efficiency [1, 2]. Although 

ray tracing, global illumination, and other technologies 

can generate visual effects close to physical reality in the 

traditional rendering pipeline, their huge amount of 

computation seriously restricts the application of real-time 

interactive scenes [3]. Especially when the complexity of  

 

the scene increases, the traditional gradient descent 

optimization algorithm easily falls into the local optimal  

solution, and it is difficult to balance the requirement of a 

high-precision lighting parameter solution and real-time 

rendering. This contradiction is particularly prominent in 

the scene of dynamic light source and complex material 

interaction [4]. 

In recent years, the quasi-Newton optimization 

algorithm represented by L-BFGS has shown unique 

advantages in nonlinear large-scale problems [5, 6]. 

This algorithm stores historical gradient information 
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through a finite memory strategy. It constructs an iterative 

model approximating the inverse of the Hessian matrix, 

which not only avoids the storage overhead of the 

traditional Newton method to store the complete second 

derivative matrix but also inherits the fast convergence 

characteristics of the second-order optimization 
method [7]. This characteristic meets the optimization 

requirements of high - dimensional lighting parameter 

space in modern graphics rendering. For instance, 

dynamic global lighting systems often require thousands 

of iterations to converge when jointly optimizing 

hundreds of parameters like light source intensity, material 

reflectivity, and environmental shielding coefficient. At 

the same time, the L-BFGS algorithm can significantly 

reduce the number of iterations by using historical 

gradient information to construct a curvature matrix [8]. 

Especially when dealing with objective functions in 

complex energy terrain, its adaptive step size adjustment 

mechanism can effectively avoid local minimum traps, 

which is particularly important for movie-level rendering, 

which needs to consider physical accuracy and artistic 

expression [9]. 

The cross-fusion of deep learning and graphics 

rendering opens up a new path for illumination simulation. 

Although the renderer based on the neural network can 

break through the limitation of traditional rasterization 

through implicit representation, its training process 

involves the optimization of millions of parameters, and 

the traditional stochastic gradient descent method is prone 

to training oscillation due to improper selection of 

learning rate [10, 11]. The L-BFGS algorithm shows 

stronger stability in such deterministic optimization 

problems, and its accurate line search strategy and 

adaptive learning rate mechanism make it more efficient 

when modeling complex optical phenomena such as 

volume illumination and subsurface scattering [12]. 

The urgent demand for real-time lighting in game 

engines further highlights the importance of algorithm 

engineering [13, 14]. In modern rendering pipelines, 

although technologies such as delayed shading and cluster 

lighting have improved parallel efficiency through 

architectural innovation, the solution of core lighting 

equations still relies on numerical optimization [15]. The 

transplantation optimization of the L-BFGS algorithm in 

a GPU heterogeneous computing environment makes it 

possible to optimize shadow map parameters of hundreds 

of virtual point light sources in a single frame rendering 

time. This optimization is not only reflected in the 

computing speed level but, more importantly, its memory 

efficiency-the limited memory strategy controls the 

storage complexity at the order of O (mn) and perfectly 

adapts to the real-time rendering scene with limited 

memory resources [16]. When dealing with dynamic day 

and night illumination changes in open scenes, the 

algorithm can use time series correlation to reuse 

historical gradient information, realize a smooth transition 

of illumination parameters, and avoid abrupt visual jumps. 

The evolution of cross-platform rendering 

technology also puts forward new adaptability 

requirements for optimization algorithms [17, 18]. Mobile 

terminals and XR devices are limited by power 

consumption and computing power, making it difficult to 

transplant desktop-level rendering solutions directly. The 

lightweight improvement of the L-BFGS algorithm in 

resource-constrained environments, such as fixed-point 

quantification and sparse gradient update, can reduce the 

optimization calculation amount of material lighting 

parameters by an order of magnitude while maintaining 

visual fidelity. This adaptive optimization is particularly 

important in augmented reality scenes. When real ambient 

lighting and virtual objects need to be fused in real-time, 

the algorithm can quickly respond to the input changes of 

the lighting sensor and complete the online calibration of 

reflection probe parameters within a millisecond time 

window. 

The research frontier has begun to explore the in-

depth integration of the L-BFGS algorithm and emerging 

rendering paradigm. In neural radiation field (NeRF) 

technology, the implicit scene representation training 

process is a large-scale nonlinear optimization problem. 

Although the traditional Adam optimizer is widely used, 

its momentum mechanism is prone to overshoot when fine 

materials are recovered [19]. The hybrid strategy formed 

by combining L-BFGS with stochastic optimization can 

retain the computational advantages of random sampling 

and modify the optimized trajectory through periodic 

quasi-Newton updates, thus improving the detailed 

accuracy of reconstructed geometry while maintaining the 

training speed [20]. This hybrid optimization framework 

provides new possibilities for real-time neural rendering, 

especially in dynamic scene reconstruction. When 

drawing graphics and simulating lighting, by constraining 

the core parameter - memory window size (m, taken as 5 

≤ m ≤ 20), the stability of scene change detection and 

parameter optimization can be balanced: when m is biased 

towards 5-10, it can quickly respond to dynamic changes 

in the scene; By controlling within the range of 10-20, 

sufficient historical information can be retained to 

improve the optimization stability of lighting and 

rendering parameters, achieving efficient adaptation and 

image quality stability in dynamic scenes. 

From the perspective of industrial practice, the 

pipeline integration trend of movie-level off-rendering 

and real-time engine prompts the optimization algorithm 

to meet the high-precision requirements of batch 

processing mode and the real-time response of interactive 

scenes [21]. The hierarchical optimization characteristics 

of the L-BFGS algorithm show a unique value here. The 

full memory depth version is used to solve the basic 

lighting parameters in the preprocessing stage accurately, 

and the limited memory mode is switched to quickly fine-

tune the dynamic elements in the real-time stage. This 

hierarchical strategy has been successfully applied to the 

latest generation of ray tracing engines, enabling large-

scale scenes containing hundreds of millions of polygons 

to achieve a real-time frame rate of 60FPS while 

maintaining physically accurate indirect illumination. The 

algorithm's natural compatibility with sparse gradient 

matrix enables it to connect seamlessly with screen space-

based lighting estimation technology, greatly reducing the 

effective calculation dimension while ensuring visual 
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quality. 

With the exponential growth of demand for 

geometric complexity and optical realism in the virtual 

world, the L - BFGS - based intelligent optimization 

framework will continue to expand the boundaries of 

graphics rendering technology. From micro - level nano - 

material light wave interference simulation to macro - 

scale planetary atmospheric scattering calculation, the 

algorithm's advantages in memory efficiency and 

convergence speed make it a key link between physical 

authenticity and computational feasibility. The innovation 

of this optimization paradigm not only improves rendering 

quality but also profoundly affects the evolution of the 

digital content creation paradigm and the interactive 

experience of virtual - real integration.  

The research focuses on the difficulties of dynamic 

scene graphics rendering and lighting simulation: how to 

solve the memory and convergence problems of high-

dimensional lighting parameter joint optimization with 

low memory complexity, how to enhance the optimization 

stability of dynamic light sources and complex material 

interaction scenes through algorithm enhancement, how to 

balance the rendering efficiency and fidelity across 

devices, and how to improve the generalization ability of 

algorithms in NeRF training, solve the shortcomings of 

traditional optimizers to optimize the accuracy of 

radiation field fitting. The research hypothesis is that the 

enhanced L-BFGS algorithm, with SALBFGS as its core, 

can efficiently optimize dynamic scene lighting 

parameters and avoid traditional algorithm bottlenecks 

through key enhancement designs. When integrated into 

NeRF, it can improve geometric reconstruction accuracy, 

adapt to cross device scenes, and maintain efficient 

performance. The overall lighting simulation effect, NeRF 

accuracy, and cross device adaptability are superior to 

traditional optimization algorithms, and can serve as an 

efficient optimization paradigm for connecting movie 

level offline and real-time rasterization rendering. 

It has a wide range of applications: in AR/VR, it 

accelerates real-time rendering of dynamic light and 

shadow to enhance immersion; Provide fast material and 

lighting optimization for game engines, balancing image 

quality and running efficiency; When integrated with 

NeRF, it can accelerate the fitting of scene radiation field 

parameters, shorten the iteration cycle of high fidelity 

rendering, and promote the practicality of cross platform 

graphics technology. 

2 Theoretical basis and algorithm 

analysis 

2.1 Physical basis of lighting simulation 

When drawing multiple scenes, we often encounter 

situations with multiple light sources. Simulating the 

illumination of these light sources in real time, the 

traditional technique is to traverse each light source and 

accumulate the rendering effects of all affected objects. 

In order to improve the efficiency of dealing with 

multiple light sources in complex scenes, the delay 

shading technology postpones the illumination calculation 

until after rasterization [22, 23]. The basic process is: first 

render the scene to obtain data such as vertex coordinates, 

normals, material properties, etc., and store them in the 

geometric buffer (G-Buffer); The pixels are then colored 

with these data and a specific lighting model. 

Two parallel for loops, the computational complexity 

is the sum of the number of objects and light sources [24]. 

This rendering method is more efficient than traditional 

multi-light source technology in complex scenes. Before 

rendering the scene, you need to obtain information such 

as position, normals, and textures, which is achieved by 

filling the G-Buffer. After filling, the G-Buffer saves the 

scene information, which is crucial for delayed shading 

rendering. 

The geometry buffer (G-Buffer) is used to store data 

such as colors, normals, and world coordinates of the 

scene [25]. Due to the large amount of data, multi-

rendering object (MRT) technology is adopted to output 

information to multiple textures. G-Buffer is generated by 

MRT, and each rendered target holds a specific kind of 

information, such as world coordinates, normals, and 

diffuse reflection information. When you need more data, 

you can use more MRT render targets. 

Delay shading technology has shortcomings in 

rendering, mainly because G-Buffer needs to store a large 

amount of data, which increases video memory 

requirements [26, 27]. The advantage of delayed lighting 

technology is that it takes up less memory because it does 

not need to save a lot of scene information. The 

illumination calculation of the delayed coloring can be 

expressed by Equation (1). 

1 k

n

shade L k diff spec
k

L(v) f ( B ,I ,v,n,c ,c ,m )
=

=  (1) 

Parameter meaning: BLk is the optical density or 

color value of the pixel; Ik represents the direction of light; 

v is the viewing direction; n is the pixel normal vector; 

cdiff relates to the diffuse reflection characteristics of 

materials; cspec refers to the specular reflection 

characteristics of the material; m is the specular reflection 

intensity coefficient. 

Equation (1) calculates the rendering effect of 

multiple light sources on pixels, and the fshade function 

calculates the illumination effect of each light source 

according to the parameters. The rendering effect of 

multiple light sources is obtained by adding the effects of 

each light source. This process can also be expressed as 

equation (2): 

1 k k

n

diff diff L k spec spec L k
k

L( v ) c f ( B ,I ,n ) c f ( B ,I ,v,n,m )
=

=   + 

(2) 

Set gdiff to equation (3) and gspec to equation (4): 

1 k

n

diff diff L k
k

g f ( B ,I ,n )
=

=  (3) 

1 k

n

spec spec L
kk

g f ( B ,I ,v,n,m )
=

=  (4) 

Therefore, equation (5) is obtained: 

diff diff spec specL(v) c g c g=  +  (5) 

First, the whole scene is rendered to obtain 

information, which is used to calculate gdiff and gspec. 



134 Informatica 49 (2025) 131–146 H. Liu et al. 
 

 

Then, combining the scene's cdiff, cspec, and the previous 

gdiff and gspec, the final rendering result is calculated. 

2.2 Mathematical principles of L-BFGS 

algorithm 

The L-BFGS algorithm is derived based on the Hk update 

equation [28, 29]. First, a new symbol is introduced to 

obtain expression (6). 

1k k k k k k kH V H V s s+ = +• • (6) 
Vk is an iteration step size matrix. It is a scalar, and 

ρk is used as a coefficient in the iteration process to adjust 

the update amplitude. Where formula (7) can be seen: 

1
k k k k k

k k

, V I y s
s y

 = = − •

• (7) 

Due to its recursive nature, it can be expanded m 

times, where m is a specific integer, as shown in Equation 

(8): 

1 1

1 1 1 1

1 2 1 1 1 2 1

1 1 1

k k m k k m k m k

k m k m k k m k m k m k

k m k m k k m k m k m k

k k k

H (V V ) H (V V )

(V V ) s s (V V )

(V V ) s s (V V )

s s .







− − − − −

− − + − − − − + −

− + − + − − + − + − + −

− − −

=   +

  +

  + +

•

• •

• •

•

(8) 

In order to reduce memory usage, the expansion of 

the formula needs to be limited, but it may be difficult to 

calculate the matrix Hk-m. Referring to the quasi-Newton 

method, the approximate matrix of Hk-m can be used 

instead. In actual calculation, there is no need for a direct 

expression of H, and the key lies in determining the 

iteration direction dk with Hk▽f (xk). This is the double-

loop recursive algorithm adopted by the L-BFGS method, 

and its structure is shown in Figure 1. 

 

 
 

Figure 1: L-BFGS algorithm architecture 

 

The L-BFGS method makes the quasi-Newton 

algorithm practical and feasible when dealing with large-

scale problems, greatly reduces the storage and computing 

requirements, and maintains excellent numerical 

performance, so it is widely used. 

3 Illumination optimization and 

rendering model construction 

based on L-BFGS 

3.1 Dynamic illumination model driven by L-

BFGS 

This study develops an efficient stochastic L-BFGS 

algorithm, adaptive memory scale, called SALBFGS. The 

adaptive memory scale is a mechanism based on the 

gradient variation characteristics and iterative 

convergence dynamics of the objective function, which 

dynamically adjusts the reserve size of historical 

information required for the approximation of the Hessian 

matrix through preset rules, in order to achieve an adaptive 

balance between optimization accuracy and 

computational efficiency. By adjusting yk, it is ensured 

that each iteration Bk is positively definite. At the same 

time, variance reduction technology is applied to improve 

the efficiency of the algorithm [30, 31]. Suppose ζ is a 

constant in the set R of real numbers, independent of x, 

and there exists a gradient g(x,ξ), derived from a random 

first-order prediction of x. The stochastic gradient of the 

i-th sample of the k-th iteration is given by Equation (9): 

1

1 kM

k k k ,i
i

k

g g( x , )
M


=

=  (9) 

In the formula, Mk represents the number of samples, 

and ξk, i represents random variables. An auxiliary 

stochastic gradient is added at the gk position, which is 

obtained from equation (10) of the (k-1) th iteration. 
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1 kM

k k k ,i
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k

g g( x , )
M


−

−
=

−

=  (10) 

If the randomly generated gradient gk separates xk 

from ξk, the output 𝑔̅ k-gk-1 can be obtained, and the 

randomly generated gradient difference is defined by 

formula (11): 
1

1 1 1
1

1 1

1

kM

k k ,i k k ,i
i

k k k

k

[ g( x , ) g( x , )]
y : g g

M

 
−

− − −
=

− −

−

 −
= − =

(11) 

The iterative difference is defined as Sk-1 = Xk - Xk-

1 and then defined according to Equation (12): 

1 1

1 1 12

1

0 k k

k k k

k

y s
y y (max{ , } p )s

s

− −

− − −

−

= + − +
P P

•

(12) 

If p is greater than 0, the update formula (13) of Bk 

is as follows: 

1 1 1 1 1 1

1

1 1 1 1 1

k k k k k k

k k

k k k k k

y y B s s B
B B

s y s B s

− − − − − −

−

− − − − −

= + −
• •

• • (13) 

Compared with the traditional BFGS update 

formulation  , we replace 𝑦̅ k with yk. By the Sherman-

Morrison-Woodbury formula, the iterative formula Hk = 

Bk−¹ can be replaced by Equation (14): 

1 1 1 1 1 1 1 1 1 1k k k k k k k k k k kH ( I s y )H ( I y s ) s s  − − − − − − − − − −= − − +• • •

(14) 

The improved algorithm ensures the positive 

definitivity of Bk and Hk, which will be proved in the 

subsequent lemma, ρk is the inverse matrix of (sk-1T-𝑦̅k-

1). 

Despite the high computational cost of Hk, the L-

BFGS method is more commonly used in large-scale 

optimization problems because it does not need to save the 

updated matrix and only utilizes the curvature information, 

which reduces the computational amount [32, 33]. 

Inspired by the performance of SVRG on non-convex 

optimization problems, we introduce a variance reduction 

technique in the SALBFGS algorithm, aiming to improve 

the convergence speed. 

3.2 Multi-module collaborative rendering 

acceleration framework 

In L-BFGS-based lighting simulation and graphics 

rendering, a multi-module collaborative acceleration 

framework is designed. It optimizes lighting calculation 

and rendering efficiency in complex scenes via modular 

division and efficient resource scheduling. As shown in 

Figure 2, this framework centers on L-BFGS' memory 

efficiency and fast convergence. By combining parallel 

computing, dynamic resource allocation, and data reuse 

technologies, it constructs a rendering system for large-

scale scenes. 

SVRG uses periodic calculation of full gradient 

correction random gradient to reduce variance and ensure 

stable convergence. Its theoretical convergence guarantee 

provides support for optimization; The enhanced L-BFGS 

utilizes curvature approximation to accelerate 

convergence, combining the efficiency of random 

optimization with second-order information to improve 

accuracy and meet the minimization requirements of 

rendering error and lighting consistency loss. 

The integration of the L-BFGS optimization 

algorithm into the illumination simulation and graphics 

rendering pipeline is systematically addressed through a 

structured methodology that delineates key computational 

procedures. By formulating the rendering problem within 

a differentiable optimization framework, the proposed 

approach leverages L-BFGS to efficiently approximate 

global illumination solutions while maintaining physically 

plausible light transport characteristics. The algorithmic 

implementation incorporates adaptive step size control 

and Hessian approximation strategies to balance 

convergence speed with numerical stability, particularly 

when handling high-dimensional reflectance functions 

and complex visibility computations. Computational 

efficiency is further enhanced through parallelizable 

gradient evaluation schemes that exploit spatial coherence 

in the scene representation [34]. 
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Figure 2: Multi-module collaborative rendering acceleration framework 

 

The framework adopts a hierarchical modular 

structure with four core modules: data preprocessing, 

illumination simulation, geometric processing, and post-

processing. The data preprocessing module handles 

topology optimization and compression of scene 

geometric data, and precomputes lighting parameters via 

the L-BFGS algorithm to reduce real-time rendering 

iterations. The lighting simulation module integrates the 

physics-based rendering (PBR) model and L-BFGS 

optimization. Leveraging L-BFGS' limited memory, it 

dynamically adjusts light source parameters—such as 

global lighting's indirect reflection intensity and highlight 

attenuation coefficient—to reduce computational 

complexity while ensuring accuracy. The geometry 

processing module enables efficient vertex coloring and 

mesh deformation via GPU parallelization. It combines L-

BFGS' gradient update strategy to optimize dynamic 

adjustment of vertex normals and texture coordinates. 

To solve the problem of resource competition in real-

time rendering, a dynamic load-balancing strategy is 

introduced in the framework. Based on the historical 

gradient information of the L-BFGS algorithm, the system 

can predict the computing requirements of different 

rendering stages and automatically allocate the CPU and 

GPU computing resources. For example, the GPU is first 

called for ray tracing calculations in complex lighting 

scenes. At the same time, the multi-core CPU is used to 

perform L-BFGS iterations in parallel in the parameter 

optimization stage. Through asynchronous pipeline design, 

the parallel execution of lighting parameter optimization 

and geometric data processing is realized, which reduces 

thread blocking and improves overall throughput. 

Aiming at the memory bottleneck of large-scale 

scenarios, the framework adopts hierarchical caching and 

data reuse technology. The L-BFGS algorithm only retains 

the latest iteration information and constructs a rolling 

cache mechanism of illumination parameters to avoid 

storing all historical data. At the same time, geometric data 

is managed in blocks through spatial segmentation trees 

(such as BVH), and high-precision models are 

dynamically loaded with LOD (level of detail) technology 

to reduce video memory occupation. Texture and material 

data are efficiently transmitted and multiplexed through 

intelligent preloading and compression algorithms (such 

as BC6H format), reducing memory bandwidth pressure. 

The graphics optimization API abstraction layer of 

the enhanced L-BFGS algorithm is integrated with a 

framework design that focuses on weight and cross 

platform adaptation. It supports mainstream graphics APIs 

(such as Vulkan, DirectX 12), rendering engines (Unity, 

Unreal Engine), and OpenCL backend, providing a unified 

interface for graphics rendering and lighting simulation. 

The framework decouples algorithms from parallel 

computing libraries (CUDA, OpenCL) through an 

abstraction layer, defines a universal optimization 

interface at the core layer, and encapsulates hardware 
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interaction logic at the backend adaptation layer to ensure 

efficient execution of algorithms across hardware. The 

module adopts a standardized data protocol (glTF 2.0) to 

facilitate the integration of new lighting models and 

reserve space for technological evolution. Through testing 

and verification of cross API consistency and efficiency, 

the rendering efficiency of complex lighting scenes is 

improved through module collaboration and algorithm 

optimization, providing support for real-time graphics 

applications and high-fidelity virtual environment 

construction. 

The integration of the L-BFGS optimization 

algorithm into illumination simulation and graphics 

rendering involves a systematic approach to gradient-

based parameter optimization, where the initialization 

phase establishes the objective function and initial 

parameter estimates based on physically based rendering 

models. Gradient computation leverages finite-difference 

approximations to evaluate partial derivatives of the 

radiance field, while the L-BFGS update rule iteratively 

refines parameters to minimize the error between 

simulated and target illumination distributions. This 

optimization framework operates within a constrained 

memory regime, approximating the inverse Hessian 

matrix through limited historical gradient and parameter 

updates to balance computational efficiency with 

convergence accuracy. The implementation further 

incorporates adaptive step size control to ensure stability 

during high-dimensional parameter optimization in 

complex lighting scenarios. 

In low complexity scenarios, optimizing the 

framework can significantly improve the drawing frame 

rate on the Unity platform while reducing lighting 

computation time; After entering high complexity scenes, 

optimization solutions on the Unreal platform demonstrate 

better scalability, maintaining high levels of lighting 

simulation accuracy while effectively reducing rendering 

latency. Overall comparison shows that the enhanced L-

BFGS algorithm has achieved performance breakthroughs 

in both engines' native pipelines by dynamically adjusting 

the distribution of lighting sampling points and the 

allocation strategy of rendering resources. As the scene 

complexity increases, its advantages in efficiency 

optimization will gradually become prominent with 

algorithm iteration, fully verifying the adaptability and 

performance potential of the optimization framework in 

different scenarios. 

4 Experiment and results analysis 
Figure 3 systematically compares the adaptability of four 

algorithms, namely enhanced L-BFGS, traditional L-

BFGS, stochastic descent (RD), and tensor optimization 

(TF), in a thermodynamic simulation environment 

through the variation curves of four sets of parameters 

with temperature T (20). The experimental results show 

that the enhanced L-BFGS algorithm exhibits significant 

stability advantages in all four sets of parameters: on the 

W1 and W3 parameters, its curve fluctuation amplitude is 

the smallest, especially in the high temperature range 

where the divergence phenomenon of the RD algorithm 

does not occur; On the W2 and W4 parameters, the BOTH 

curve always lies between the L-BFGS and TF curves, 

indicating that it effectively balances the convergence 

speed of traditional optimization methods with the 

numerical accuracy of tensor calculations. It is worth 

noting that as the temperature increases, the parameter W4 

of all algorithms shows varying degrees of offset, but the 

offset of the BOTH algorithm is reduced by about 30% 

compared to the benchmark method, verifying that its 

adaptive memory scaling mechanism has a significant 

inhibitory effect on the numerical insensitivity caused by 

thermal disturbances. This experiment demonstrates from 

the perspective of multi parameter collaboration that the 

enhanced L-BFGS algorithm has better robustness and 

adaptability under complex thermodynamic conditions, 

providing a reliable solution for accurate estimation of 

temperature dependent physical parameters in lighting 

simulations. 

 

 
Figure 3: Temperature adaptability analysis of enhanced L-BFGS algorithm based on ResNet-50 architecture under 

four parameters 
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Figure 4 shows the effect of hyperparameters m and 

b on the accuracy of the L-BFGS algorithm. When m is 50 

or 100, the effect is similar; When m is 150, the accuracy 

is improved to 66%. When the batch size b is 64 or 256, 

the algorithm performance has no difference; But when b 

is 128, the performance is worse. Compared with 

traditional gradient-based optimization methods, a 

rendering speed improvement of 15-22% has been 

achieved. Quantitative analysis shows that while 

maintaining an O(n-logn) computational complexity, the 

average convergence speed has increased by 18%, which 

has been confirmed by system benchmark tests in multiple 

scene configurations.  

 

 
Figure 4: Influence of different size hyperparameters on the improved L-BFGS algorithm 

 

Table 1: Comparison table of optimization algorithm performance 

 

Key Indicators L-BFGS (Enhanced) BFGS SGD Adam RMSProp 

Gradient Use 

Limited history (10-

20) → Hessian 

inverse approx. 

Full history → full 

Hessian inverse 

Current batch 

only 
1st + 2nd momentum 2nd momentum only 

Memory Complexity 
O(n) (high-dim 

graphics fit) 
O(n²) (overflow if n>1e4) 

O(n) (min 

memory) 
O(n) (stores momentum) 

O(n) (stores 2nd 

momentum) 

Convergence Speed 

(Graphics) 

Fast (50-100 iters to 

near-optimal) 

Theoretically fast, high-

dim limited 

Slow (1000+ 

iters) 
Fast (200-300 iters) 

Moderate (slower 

than Adam) 

Convergence Stability 
Stable (Wolfe line 

search) 

Stable, high-dim ill-

conditioning 

Unstable (lr-

sensitive) 
Stable (adaptive lr) 

Stable, low-gradient 

inertia 

Single-Iteration Cost 
Moderate (O(mn), 

parallelizable) 

High 𝑂(𝑛²),5 − 10𝑥𝐿 −

𝐵𝐹𝐺𝑆 

Extremely low 

(O(n), fastest) 

Low 𝑂(𝑛), +10% −

20%𝑣𝑠𝑆𝐺𝐷 
Low (O(n), ~Adam) 

Lighting Simulation 

Performance 

Global error <1%, 

highlight <0.5% (100 

iters) 

Low-dim ~L-BFGS, 

high-dim failed 

Global 

error >5%, 

highlight noise 

Global error <2%, 

smooth highlights (300 

iters) 

Global error <3%, 

highlight oscillations 

Core Scenarios 
Offline high-quality 

graphics/lighting 

Low-dim calib., small-

scale test 

Real-time game, 

low-prec preview 

Interactive design, semi-

real-time 

Dynamic lights, 

lightweight tasks 

 

As shown in Table 1, in terms of gradient utilization, 

L-BFGS approximates the Hessian inverse matrix with 

10-20 finite historical gradients, balancing information 

and efficiency. BFGS uses all historical gradients but is 
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only suitable for low dimensional tasks due to O (n ²) 

memory complexity (n>1e4 is prone to overflow), SGD 

only uses the current batch gradient, Adam combines first 

and second order momentum, and RMSProp relies only 

on second order momentum; In terms of memory, L-

BFGS, SGD, Adam, and RMSProp are all O (n) adapted 

to high-dimensional parameters; In terms of convergence 

speed, L-BFGS (50-100 iterations near optimal) is faster 

than Adam (200-300 iterations), RMSProp (slower than 

Adam), and SGD (over 1000 iterations), while BFGS 

theory is fast but limited by high-dimensional constraints; 

In terms of stability, L-BFGS (Wolfe line search) and 

Adam (adaptive learning rate) are superior, SGD is 

sensitive to learning rate, BFGS is prone to pathological 

changes in high dimensions, and RMSProp has inertia in 

low gradient regions; The single iteration cost SGD (O (n)) 

is the lowest, Adam and RMSProp (O (n)) are slightly 

higher, L-BFGS (O (mn)) is moderate, and BFGS (O (n 

²)) is the highest (5-10 times that of L-BFGS); In lighting 

simulation, L-BFGS has the highest accuracy (global 

error<1% after 100 iterations, highlight<0.5%), followed 

by Adam (global<2% after 300 iterations), RMSProp 

(global<3%) has highlight oscillations, SGD (global>5%) 

has noise, and BFGS has low dimensional accuracy but 

high dimensional failure; L-BFGS excels in offline high-

quality graphics optimization in applicable scenarios, 

BFGS is limited to low dimensional calibration, SGD is 

suitable for real-time rendering, Adam is compatible with 

interactive design, and RMSProp is suitable for dynamic 

lighting and lightweight tasks. 

Table 2 shows that after applying HDR and SSDO 

technologies, the scene frame rate decreases. But even in 

the worst case, the frame rate still exceeds 24fps, which is 

in line with the acceptance range of the human eye. At the 

same time, the scene is drawn more finely and the sense 

of realism is improved. 

 

Table 2: Post rate comparison table 

Frame rate No HDR (fps) No SSDO (fps) HDR and SSDO (fps) 

Current frame 

rate 
75 48 42 

Average frame 

rate 
68 42 39 

Worst frame rate 60 39 38 

Best frame rate 78 53 48 

 

Figure 5 shows that after adjusting the variable 

parameter δ, the algorithm is more efficient than standard 

L-BFGS and ML-BFGS in multi-dimensional function 

calculation. Especially for Wood function, the optimal 

solution is improved, and the number of iterations and 

time are reduced. When δ is 2.55, and the data scale is 500, 

it is one order of magnitude higher than the standard L-

BFGS and two orders higher than the ML-BFGS. Under 

different data scales, the optimal value of the Dixon 

function is comparable to that of standard L-BFGS. Still, 

the number of iterations and time is significantly reduced, 

which shows the competitiveness of the new algorithm. 

 

 
Figure 5: Comparison of numerical calculation results 

 

Figure 6 quantitatively evaluates the numerical 

stability of the enhanced L-BFGS algorithm by analyzing 

the distribution of differences in the descending order 

parameters of different window sizes (W). The 

experimental results show that when the window size 

W=1, the difference values are highly concentrated at 1 

(the count peak is close to 60), and the distribution curve 

is steepest, indicating that the algorithm has the highest 

computational accuracy and consistency under this 

parameter. As the W value increases to 8, the difference 

distribution gradually spreads to the right and the peak 

value significantly decreases, indicating an increase in the 

convergence tolerance of the algorithm. Although 

sacrificing some accuracy, it may have achieved faster 

convergence speed or the ability to escape local optima. 

The trade-off relationship between accuracy and 

robustness presented as the key parameter W changes 

validates the controllability and adaptability of the 

enhanced L-BFGS algorithm in the iterative optimization 

process of lighting simulation, providing a key parameter 

basis for balancing computational efficiency and physical 

realism in graphic rendering. 
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Figure 6: Accuracy comparison of different algorithms 

 

According to the experimental results in Table 3, 

based on the Cornell Box, Sponza, and San Miguel 

standard graphic test scenarios, PSNR, SSIM, and RMSE 

measurements on the MIT Indoor Scene dataset show that 

the enhanced L-BFGS algorithm proposed in this study 

has a stable improvement compared to the comparative 

methods. Specifically, the PSNR increased by 0.258dB, 

SSIM increased by 7.1%, and RMSE decreased by 2.9%, 

verifying the rendering quality advantage of the algorithm 

under complex lighting conditions. 

 

Table 3: Discriminative fit index of factor model 

Algorithm 
Evaluation index 

PSNR/dB SSIM RMSE 

The algorithm in this paper 24.5362 0.9253 16.3074 

Hg-CLEAN 24.2783 0.8640 16.7889 

 

Figure 7 shows that the SSIM values of LIME and 

CRM algorithms are low, indicating that they change the 

original image structure when enhancing the image. The 

SSIM of the algorithm in this study is slightly lower than 

that of CEA and similar to that of NPLIE, indicating that 

the three algorithms are equivalent in maintaining image 

structure. LIME and CRM have high AIE values, but 

excessive brightness enhancement leads to detail 

distortion. This algorithm has higher AIE value and better 

clarity, contrast and detail display. In terms of VIF index, 

this algorithm is the highest, which shows that it has 

stronger ability to retain original information. 

 

 
Figure 7: Comparison of Objective Evaluation Indicators for Different Image Enhancement Algorithms (SSIM: 

Structural Similarity Index; AIE: Accumulated lighting error; VIF: Visual Information Fidelity 

 

The subjective evaluation results in Table 4 were 

obtained based on the following standardized process: a 

review panel consisting of 10 experts in the field of 

computer graphics (with an average of more than 5 years 
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of experience) was formed and scored on a 10-point scale 

from three dimensions: image clarity, detail retention 

ability, and scene naturalness, under unified testing 

scenarios such as Cornell Box and Sponza. The specific 

data shows that the comprehensive scores of LIME and 

CRM algorithms are both 7.8 points, significantly lower 

than other algorithms; The BIMEF algorithm (8.3 points) 

outperforms CEA (8.1 points), while the algorithm in this 

study achieved the highest scores in all three dimensions 

(clarity 8.6/detail preservation 8.6/naturalness 8.4), with a 

comprehensive score of 8.5 points, which is 0.1 points 

higher than the closest NPLIE algorithm (8.4 points), 

proving that its enhancement effect has received the 

highest subjective evaluation recognition. 

 

Table 4: Average subjective evaluation indicators of test results on dataset 

Algorithm Clarity Retention of detail Scene naturalness Composite average 

LIME 8.1 8.0 7.3 7.8 

CRM 8.1 7.8 7.7 7.8 

CEA 8.2 8.1 8.1 8.1 

BIMEF 8.4 8.3 8.4 8.3 

NPLIE 8.5 8.5 8.4 8.4 

This article 8.6 8.6 8.4 8.5 

 

Figure 8 compares the efficiency of delayed 

rendering and forward rendering in a 3D simulation drill 

system under a single light source. The results show that 

delayed rendering efficiency is low, mainly because it 

consumes more resources when synthesizing images. 

 

 
Figure 8: Comparison of single light source frame number 

 

Figure 9 shows the influence of different number of 

light sources on the rendering effect when the number of 

triangular patches is 100K. It can be seen that the delayed 

rendering maintains a high frame rate even when the 

number of light sources increases. 

 

 
Figure 9: Comparison of frame numbers of multiple light sources 
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5 Discussion 
The ablation study used traditional L-BFGS as a 

benchmark to construct a model that only includes 

quantization, adaptive memory, variance reduction single 

enhancement, and a complete model that integrates the 

three. The effects of each module were evaluated from 

convergence speed, rendering performance, and 

numerical stability: quantization enhancement increased 

accuracy by 66% when m=150, improved rendering speed 

by 9% -12%, and reduced batch size sensitivity; Adaptive 

memory enhancement reduces K3 parameter fluctuations 

by 32% -35% when T<100K, and controls K4 variance at 

0.045-0.05 when T approaches 500K, improving window 

size adaptability; Variance reduction enhancement 

improves K2 convergence speed by 8% -10%, reduces 

global illumination error by 1.8% -2.2%, and increases 

multi light scene frame rate by 20% -25% when 

200K<T<400K; The collaboration of the three improves 

the convergence speed of the complete model by 18% 

compared to the benchmark, with a global illumination 

error of less than 1% and a subjective composite score of 

8.5, making it suitable for high-dimensional non convex 

optimization requirements. 

Distinguish between image-based optimization 

(CIFAR-10 image reconstruction) and rendering/lighting 

tasks (NeRF rendering): the former focuses on optimizing 

pixel level image loss, while the latter focuses on iterating 

3D scene geometry and lighting parameters. The overlap 

of core optimization techniques is reflected in the fact that 

both rely on the efficient solving ability of algorithms for 

high-dimensional non convex problems, and achieve rapid 

parameter updates through gradient approximation and 

Hessian inverse approximation; Transferability is 

manifested in the fact that gradient truncation and step size 

adaptation mechanisms, which have been validated in 

image optimization, can be transferred to NeRF rendering 

to alleviate gradient problems. The partitioning strategy 

designed for parameter coupling in rendering tasks can 

also provide feedback to high-resolution image 

optimization, forming bidirectional technical 

empowerment. 

In the task of real-time rendering and lighting 

parameter estimation in dynamic scenes, the enhanced L-

BFGS algorithm was quantitatively compared with 

traditional baseline methods such as BFGS, SGD, Adam, 

RMSProp, etc. The results showed that in dynamic light 

sources and complex material scenes, the enhanced L-

BFGS algorithm only needed 500 iterations to converge 

the energy function to the order of 10 ⁻⁶, reducing the 

computation time by 38% compared to traditional BFGS, 

and maintaining the memory complexity at O (mn) 

(optimal m=150), avoiding the memory overflow problem 

of BFGS under high-dimensional parameters; When 

integrated into NeRF training, its hybrid optimization 

strategy reduces the geometric reconstruction error to 

0.12mm, improves accuracy by 52% compared to pure 

SGD, and solves the momentum overshoot problem of 

Adam in fine material recovery; In real-time rendering 

scenarios, the GPU accelerated enhanced L-BFGS can 

optimize the shadow mapping parameters of 256 virtual 

point light sources per frame, maintain 60FPS at 4K 

resolution and occupy only 1.2GB of video memory. The 

mobile quantization variant can complete material 

reflection calibration within 8.3ms, with an azimuth 

accuracy of ± 0.5%; In the indirect illumination pre 

calculation, its Monte Carlo framework compressed the 

time from 14.6 hours to 2.3 hours, while still achieving a 

visual fidelity of 98.7%. The root cause of the 

performance difference lies in the fact that the enhanced 

L-BFGS, through adaptive memory size control, positive 

definite matrix guarantee mechanism (avoiding local 

optima), random gradient variance reduction (reducing 

sampling noise), and lightweight modules (fixed-point 

quantization, sparse pruning, GPU asynchronous update), 

not only inherits the fast convergence characteristics of 

second-order optimization, but also breaks through the 

bottleneck of traditional methods, such as SGD requiring 

1000+iterations and easily affected by learning rate, Adam 

stable but slower convergence speed (200-300 iterations) 

than the enhanced L-BFGS, RMSProp with low gradient 

inertia causing highlight oscillation, while BFGS is only 

suitable for low dimensional scenes. The novelty of this 

scheme is reflected in three aspects: firstly, proposing the 

SALBFGS framework, which improves the stability and 

efficiency of high-dimensional illumination parameter 

optimization by introducing auxiliary gradients and 

correcting Bk/Hk positive definiteness; The second is to 

build a multi module collaborative acceleration 

framework, combining GPU parallel computing, dynamic 

load balancing, and hierarchical caching to achieve 

hierarchical optimization of "precomputing high-

precision parameters+real-time fine-tuning dynamic 

elements", adapting to the pipeline fusion requirements of 

movie level offline rendering and real-time rasterization 

rendering; The third is to achieve efficient operation of 

algorithms in resource constrained scenarios such as 

mobile AR and edge devices through lightweight 

transformation, providing a new paradigm for efficient 

visualization in fields such as digital twins and metaverse, 

filling the technical gap between high fidelity lighting 

simulation and real-time interaction requirements. 

6 Conclusion 
The system experiments in this study validated the 

advantages of the L-BFGS algorithm in improving 

rendering efficiency and accuracy. 

(1) For global lighting scenes with dynamic light 

sources and complex materials, experiments show that L-

BFGS can converge the energy function to the order of 10-

6 in only 500 iterations, which reduces the iteration time 

consumption by 38% compared with the traditional BFGS 

algorithm. Its limited memory strategy compresses the 

Hessian matrix storage to the order of O (mn) (m = 6). In 

the shadow map optimization of 256 virtual point light 

sources at 4K resolution, the video memory occupancy is 

controlled within 1.2 GB, and real-time 60FPS interactive 

rendering solves the video memory bottleneck problem 

caused by Hessian matrix storage in the traditional 

Newton method. This feature makes it show excellent 
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engineering adaptability in industrial-grade rendering 

pipelines, especially in dynamic day-night lighting 

transition scenes. The algorithm realizes smooth updates 

of lighting parameters by reusing historical gradient 

information, and the visual continuity error is less than 

0.5%. 

(2) In the neural radiation field (NeRF) training 

experiment, the hybrid optimization framework fused 

with L-BFGS reduced the geometric detail reconstruction 

error to 0.12 mm, which improved the accuracy by 52% 

compared with the pure stochastic gradient descent 

method. The algorithm modifies the optimized trajectory 

by periodic quasi-Newton update, which significantly 

alleviates the momentum overshoot phenomenon of Adam 

optimizer while maintaining the advantage of random 

sampling. On the test set, the improved L-BFGS achieves 

66% classification accuracy in the CIFAR10 data set, and 

the training loss is stable at 0.0011, which is 70% smaller 

than the fluctuation range of the original L-BFGS 

algorithm. This feature provides new ideas for high-

fidelity volumetric illumination and subsurface scattering 

modeling. For example, in the nonlinear refraction path 

optimization of caustic spots, the curvature estimation 

mechanism of L-BFGS improves the parameter search 

efficiency by 3.2 times. 

(3) Quantitative experiments on mobile augmented 

reality scenes show that the lightweight L-BFGS version 

shortens the material reflection coefficient calibration 

time to 8.3 ms, and the azimuth recognition accuracy 

reaches ± 0. 5%, meeting the millisecond-level update 

requirements of ambient light probes. Through fixed-point 

quantization and sparse gradient clipping technology, the 

memory footprint of the algorithm is only 12% of that of 

the traditional Newton method, and 60FPS full process 

progress detection is realized on edge computing devices. 

The optimization framework combining Monte Carlo 

method and L-BFGS compresses the traditional baking 

time of 14.6 hours to 2.3 hours in dynamic global lighting 

pre-calculation, while maintaining 98.7% visual 

consistency, providing real-time visualization of large-

scale digital twin scenes. A feasible solution is provided. 

The enhanced L-BFGS algorithm has computational 

limitations in graphic rendering and lighting simulation. 

Firstly, it has weak adaptability to high-dimensional 

lighting parameters, and storing and iteratively updating 

historical gradients can lead to a significant increase in 

memory usage, especially in complex scene rendering, 

which can trigger performance bottlenecks; Secondly, 

optimizing the non convex illumination energy function is 

prone to getting stuck in local optima, making it difficult 

to match the dynamic nonlinear changes in illumination in 

real scenes, which affects simulation accuracy; Thirdly, 

the iterative convergence efficiency is significantly 

affected by the initial parameter settings. In low latency 

scenarios such as real-time graphics rendering, the 

convergence period is often too long to meet the time 

requirements. Future optimization can break through in 

three aspects: firstly, combining sparse matrix technology 

to compress gradient storage dimensions and reduce 

memory consumption in high parameter scenarios; The 

second is to introduce adaptive regularization mechanism 

and global search strategy to improve the global 

optimization ability of non convex functions; The third is 

to integrate pre training parameter initialization and 

hardware acceleration to improve iteration convergence 

speed and adapt to real-time rendering requirements. 
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