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In computer graphics, realistic lighting simulation and efficient rendering techniques have always faced
the dual challenges of computational complexity and visual realism. The traditional global illumination
algorithm relies on a large number of ray sampling and iterative calculations. For example, path tracking
requires each pixel to emit thousands of rays in order to converge. However, the joint optimization
problems of hundreds of dimensions such as light source parameters and material reflectivity in dynamic
scenes often trap traditional gradient descent methods in local optima. The enhanced L-BFGS algorithm
(with SALBFGS as its core) stores historical gradient information through a finite memory strategy and
constructs an iterative model that approximates the inverse of the Hessian matrix. Its key enhancements
are reflected in four components: adaptive memory scale control dynamically adjusts the gradient storage
window (optimal m=150), balances O (mn) memory overhead and convergence speed; The positive
definite matrix guarantee mechanism corrects the iterative update term to avoid local optimal traps;
Random gradient variance reduction introduces auxiliary gradient to reduce sampling noise; The
lightweight module adapts to multiple devices through fixed-point quantization, sparse cropping, and
GPU asynchronous updates. While maintaining the fast convergence characteristics of second-order
optimization, the memory consumption remains at the level of O (mn) (where m is the number of memory
steps), providing a new approach for large-scale lighting parameter optimization. The experimental
results show that in scenes with dynamic light sources and complex materials, the enhanced L-BFGS
optimization achieved energy function convergence to 10 ~®within 500 iterations, reducing computation
time by 38% compared to traditional BFGS. When integrated into NeRF training, the hybrid L-BFGS
strategy reduces the geometric reconstruction error to 0.12 mm, improving accuracy by 52% compared
to pure stochastic gradient descent. In real-time rendering, the GPU accelerated enhanced L-BFGS
optimizes the shadow mapping parameters of 256 virtual point light sources per frame, maintaining 60
FPS at 4K resolution with a VRAM usage of 1.2 GB. For mobile AR, the quantized L-BFGS variant
achieves material reflection calibration within 8.3 ms with an azimuth accuracy of + 0.5%, while the
Monte Carlo L-BFGS framework reduces indirect lighting precomputation from 14.6 hours to 2.3 hours
with a visual fidelity of 98.7%. These technological advancements provide a new paradigm for integrating
movie grade offline and real-time rasterized rendering pipelines, driving the development of efficient
visualization in emerging fields such as digital twins and metaverse.

Povzetek: Raziskava predstavija izboljSan optimizacijski algoritem L-BFGS, ki omogoca hitrejso in

ucinkovitejso realisticno osvetlitev ter upodabljanje v kompleksnih in dinamicnih graficnih okoljih, tako
v realnem casu kot pri naprednih vizualizacijah.

Introduction

the scene increases, the traditional gradient descent

With the rapid development of computer graphics and
virtual reality technology, lighting simulation and
graphics rendering technology, as the cornerstone of
building the digital world, always face the dual challenges
of realism and computational efficiency [1, 2]. Although
ray tracing, global illumination, and other technologies
can generate visual effects close to physical reality in the
traditional rendering pipeline, their huge amount of
computation seriously restricts the application of real-time
interactive scenes [3]. Especially when the complexity of

optimization algorithm easily falls into the local optimal
solution, and it is difficult to balance the requirement of a
high-precision lighting parameter solution and real-time
rendering. This contradiction is particularly prominent in
the scene of dynamic light source and complex material
interaction [4].

In recent years, the quasi-Newton optimization
algorithm represented by L-BFGS has shown unique
advantages in nonlinear large-scale problems [5, 6].
This algorithm stores historical gradient information
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through a finite memory strategy. It constructs an iterative
model approximating the inverse of the Hessian matrix,
which not only avoids the storage overhead of the
traditional Newton method to store the complete second
derivative matrix but also inherits the fast convergence

characteristics of the second-order optimization
method [7]. This characteristic meets the optimization
requirements of high - dimensional lighting parameter
space in modern graphics rendering. For instance,
dynamic global lighting systems often require thousands
of iterations to converge when jointly optimizing
hundreds of parameters like light source intensity, material
reflectivity, and environmental shielding coefficient. At
the same time, the L-BFGS algorithm can significantly
reduce the number of iterations by using historical
gradient information to construct a curvature matrix [8].
Especially when dealing with objective functions in
complex energy terrain, its adaptive step size adjustment
mechanism can effectively avoid local minimum traps,
which is particularly important for movie-level rendering,
which needs to consider physical accuracy and artistic
expression [9].

The cross-fusion of deep learning and graphics
rendering opens up a new path for illumination simulation.
Although the renderer based on the neural network can
break through the limitation of traditional rasterization
through implicit representation, its training process
involves the optimization of millions of parameters, and
the traditional stochastic gradient descent method is prone
to training oscillation due to improper selection of
learning rate [10, 11]. The L-BFGS algorithm shows
stronger stability in such deterministic optimization
problems, and its accurate line search strategy and
adaptive learning rate mechanism make it more efficient
when modeling complex optical phenomena such as
volume illumination and subsurface scattering [12].

The urgent demand for real-time lighting in game
engines further highlights the importance of algorithm
engineering [13, 14]. In modern rendering pipelines,
although technologies such as delayed shading and cluster
lighting have improved parallel efficiency through
architectural innovation, the solution of core lighting
equations still relies on numerical optimization [15]. The
transplantation optimization of the L-BFGS algorithm in
a GPU heterogeneous computing environment makes it
possible to optimize shadow map parameters of hundreds
of virtual point light sources in a single frame rendering
time. This optimization is not only reflected in the
computing speed level but, more importantly, its memory
efficiency-the limited memory strategy controls the
storage complexity at the order of O (mn) and perfectly
adapts to the real-time rendering scene with limited
memory resources [16]. When dealing with dynamic day
and night illumination changes in open scenes, the
algorithm can use time series correlation to reuse
historical gradient information, realize a smooth transition
of illumination parameters, and avoid abrupt visual jumps.

The evolution of cross-platform rendering
technology also puts forward new adaptability
requirements for optimization algorithms [17, 18]. Mobile
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terminals and XR devices are limited by power
consumption and computing power, making it difficult to
transplant desktop-level rendering solutions directly. The
lightweight improvement of the L-BFGS algorithm in
resource-constrained environments, such as fixed-point
quantification and sparse gradient update, can reduce the
optimization calculation amount of material lighting
parameters by an order of magnitude while maintaining
visual fidelity. This adaptive optimization is particularly
important in augmented reality scenes. When real ambient
lighting and virtual objects need to be fused in real-time,
the algorithm can quickly respond to the input changes of
the lighting sensor and complete the online calibration of
reflection probe parameters within a millisecond time
window.

The research frontier has begun to explore the in-
depth integration of the L-BFGS algorithm and emerging
rendering paradigm. In neural radiation field (NeRF)
technology, the implicit scene representation training
process is a large-scale nonlinear optimization problem.
Although the traditional Adam optimizer is widely used,
its momentum mechanism is prone to overshoot when fine
materials are recovered [19]. The hybrid strategy formed
by combining L-BFGS with stochastic optimization can
retain the computational advantages of random sampling
and modify the optimized trajectory through periodic
quasi-Newton updates, thus improving the detailed
accuracy of reconstructed geometry while maintaining the
training speed [20]. This hybrid optimization framework
provides new possibilities for real-time neural rendering,
especially in dynamic scene reconstruction. When
drawing graphics and simulating lighting, by constraining
the core parameter - memory window size (m, taken as 5
< m < 20), the stability of scene change detection and
parameter optimization can be balanced: when m is biased
towards 5-10, it can quickly respond to dynamic changes
in the scene; By controlling within the range of 10-20,
sufficient historical information can be retained to
improve the optimization stability of lighting and
rendering parameters, achieving efficient adaptation and
image quality stability in dynamic scenes.

From the perspective of industrial practice, the
pipeline integration trend of movie-level off-rendering
and real-time engine prompts the optimization algorithm
to meet the high-precision requirements of batch
processing mode and the real-time response of interactive
scenes [21]. The hierarchical optimization characteristics
of the L-BFGS algorithm show a unique value here. The
full memory depth version is used to solve the basic
lighting parameters in the preprocessing stage accurately,
and the limited memory mode is switched to quickly fine-
tune the dynamic elements in the real-time stage. This
hierarchical strategy has been successfully applied to the
latest generation of ray tracing engines, enabling large-
scale scenes containing hundreds of millions of polygons
to achieve a real-time frame rate of 60FPS while
maintaining physically accurate indirect illumination. The
algorithm's natural compatibility with sparse gradient
matrix enables it to connect seamlessly with screen space-
based lighting estimation technology, greatly reducing the
effective calculation dimension while ensuring visual
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quality.

With the exponential growth of demand for
geometric complexity and optical realism in the virtual
world, the L - BFGS - based intelligent optimization
framework will continue to expand the boundaries of
graphics rendering technology. From micro - level nano -
material light wave interference simulation to macro -
scale planetary atmospheric scattering calculation, the
algorithm's advantages in memory efficiency and
convergence speed make it a key link between physical
authenticity and computational feasibility. The innovation
of this optimization paradigm not only improves rendering
quality but also profoundly affects the evolution of the
digital content creation paradigm and the interactive
experience of virtual - real integration.

The research focuses on the difficulties of dynamic
scene graphics rendering and lighting simulation: how to
solve the memory and convergence problems of high-
dimensional lighting parameter joint optimization with
low memory complexity, how to enhance the optimization
stability of dynamic light sources and complex material
interaction scenes through algorithm enhancement, how to
balance the rendering efficiency and fidelity across
devices, and how to improve the generalization ability of
algorithms in NeRF training, solve the shortcomings of
traditional optimizers to optimize the accuracy of
radiation field fitting. The research hypothesis is that the
enhanced L-BFGS algorithm, with SALBFGS as its core,
can efficiently optimize dynamic scene lighting
parameters and avoid traditional algorithm bottlenecks
through key enhancement designs. When integrated into
NeRF, it can improve geometric reconstruction accuracy,
adapt to cross device scenes, and maintain efficient
performance. The overall lighting simulation effect, NeRF
accuracy, and cross device adaptability are superior to
traditional optimization algorithms, and can serve as an
efficient optimization paradigm for connecting movie
level offline and real-time rasterization rendering.

It has a wide range of applications: in AR/VR, it
accelerates real-time rendering of dynamic light and
shadow to enhance immersion; Provide fast material and
lighting optimization for game engines, balancing image
quality and running efficiency; When integrated with
NeRF, it can accelerate the fitting of scene radiation field
parameters, shorten the iteration cycle of high fidelity
rendering, and promote the practicality of cross platform
graphics technology.

2 Theoretical basis and algorithm
analysis

2.1 Physical basis of lighting simulation

When drawing multiple scenes, we often encounter
situations with multiple light sources. Simulating the
illumination of these light sources in real time, the
traditional technique is to traverse each light source and
accumulate the rendering effects of all affected objects.
In order to improve the efficiency of dealing with
multiple light sources in complex scenes, the delay
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shading technology postpones the illumination calculation
until after rasterization [22, 23]. The basic process is: first
render the scene to obtain data such as vertex coordinates,
normals, material properties, etc., and store them in the
geometric buffer (G-Buffer); The pixels are then colored
with these data and a specific lighting model.

Two parallel for loops, the computational complexity
is the sum of the number of objects and light sources [24].
This rendering method is more efficient than traditional
multi-light source technology in complex scenes. Before
rendering the scene, you need to obtain information such
as position, normals, and textures, which is achieved by
filling the G-Buffer. After filling, the G-Buffer saves the
scene information, which is crucial for delayed shading
rendering.

The geometry buffer (G-Buffer) is used to store data
such as colors, normals, and world coordinates of the
scene [25]. Due to the large amount of data, multi-
rendering object (MRT) technology is adopted to output
information to multiple textures. G-Buffer is generated by
MRT, and each rendered target holds a specific kind of
information, such as world coordinates, normals, and
diffuse reflection information. When you need more data,
you can use more MRT render targets.

Delay shading technology has shortcomings in
rendering, mainly because G-Buffer needs to store a large
amount of data, which increases video memory
requirements [26, 27]. The advantage of delayed lighting
technology is that it takes up less memory because it does
not need to save a lot of scene information. The
illumination calculation of the delayed coloring can be
expressed by Equation (1).

L(V) = kZ::lfshade( BL« ’Ik V1, Cige ’CSDeC ’m)(l)

Parameter meaning: BLk is the optical density or
color value of the pixel; Ik represents the direction of light;
v is the viewing direction; n is the pixel normal vector;
cdiff relates to the diffuse reflection characteristics of
materials; cspec refers to the specular reflection
characteristics of the material; m is the specular reflection
intensity coefficient.

Equation (1) calculates the rendering effect of
multiple light sources on pixels, and the fshade function
calculates the illumination effect of each light source
according to the parameters. The rendering effect of
multiple light sources is obtained by adding the effects of
each light source. This process can also be expressed as
equation (2):

L(V):Elcdiff ® fdiff(BLk Jden)+c

(2)
Set gdiff to equation (3) and gspec to equation (4):

Ouirr = kz:lfdiff(BLk 1en)3)

spec

gSpeC = kz::lfspec( BLk ,II( ’V’n’m) (4)
Therefore, equation (5) is obtained:
L(V) = Cdiff ® gdiff + Cspec ® gspec (5)
First, the whole scene is rendered to obtain
information, which is used to calculate gdiff and gspec.

® foec (B s 1, v,nM)
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Then, combining the scene's cdiff, cspec, and the previous
gdiff and gspec, the final rendering result is calculated.

2.2 Mathematical
algorithm
The L-BFGS algorithm is derived based on the Hk update
equation [28, 29]. First, a new symbol is introduced to
obtain expression (6).

H.. =V, HV, + 55 (6)

Vk is an iteration step size matrix. It is a scalar, and
pk is used as a coefficient in the iteration process to adjust
the update amplitude. Where formula (7) can be seen:

1 .
Px = S Y, v Ve =1=pYiSc (7)

Due to its recursive nature, it can be expanded m
times, where m is a specific integer, as shown in Equation
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In order to reduce memory usage, the expansion of
the formula needs to be limited, but it may be difficult to
calculate the matrix Hk-m. Referring to the quasi-Newton
method, the approximate matrix of Hk-m can be used
instead. In actual calculation, there is no need for a direct
expression of H, and the key lies in determining the
iteration direction dk with HkVf (xk). This is the double-
loop recursive algorithm adopted by the L-BFGS method,
and its structure is shown in Figure 1.
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Figure 1: L-BFGS algorithm architecture

The L-BFGS method makes the quasi-Newton
algorithm practical and feasible when dealing with large-
scale problems, greatly reduces the storage and computing
requirements, and maintains excellent numerical
performance, so it is widely used.

3 Illumination optimization and
rendering model construction
based on L-BFGS

3.1 Dynamic illumination model driven by L-
BFGS

This study develops an efficient stochastic L-BFGS
algorithm, adaptive memory scale, called SALBFGS. The
adaptive memory scale is a mechanism based on the
gradient  variation  characteristics and iterative
convergence dynamics of the objective function, which

dynamically adjusts the reserve size of historical
information required for the approximation of the Hessian
matrix through preset rules, in order to achieve an adaptive
balance  between  optimization  accuracy and
computational efficiency. By adjusting yk, it is ensured
that each iteration Bk is positively definite. At the same
time, variance reduction technology is applied to improve
the efficiency of the algorithm [30, 31]. Suppose { is a
constant in the set R of real numbers, independent of x,
and there exists a gradient g(x,&), derived from a random
first-order prediction of x. The stochastic gradient of the
i-th sample of the k-th iteration is given by Equation (9):

1 M
9 = M_kég(xk S )(9)

In the formula, Mk represents the number of samples,
and &k, i represents random variables. An auxiliary
stochastic gradient is added at the gk position, which is
obtained from equation (10) of the (k-1) th iteration.
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_ 1 Mo 3.2 Multi-module collaborative rendering
G = 2 9(%+&15) (10) -

M,, i acceleration framework

If the randomly generated gradient gk separates xk  In L-BFGS-based lighting simulation and graphics

from &k, the output gk-gk-1 can be obtained, and the  rendering, a multi-module collaborative acceleration

randomly generated gradient difference is defined by  framework is designed. It optimizes lighting calculation

formula (11): and rendering efficiency in complex scenes via modular

My division and efficient resource scheduling. As shown in

. E[g(xk'é:k—l,i )= 9(X 1G] Figure 2, this framework centers on L-BFGS' memory

Yeer =% G = M efficiency and fast convergence. By combining parallel

(10 K computing, dynamic resource aIIocgtion, and data reuse

The iterative difference is defined as Sk-1 = Xk - Xk- gi(;l?g :(I:z%:fss’ It constructs a rendering system for large

I'and then defined according to Equation (12): SVRG uses periodic calculation of full gradient

Vs =V, +(max{0,— V1S 3+ p)ses (12) correction random gradient to 'reduce variance and ensure
S, P stable convergence. Its theoretical convergence guarantee
If p is greater than 0, the update formula (13) of Bk provides support for optimization; The enhanced L-BFGS
is as follows: utilizes  curvature  approximation to  accelerate
.V B s s B convergence, combining the efficiency of random
B, =B, , + it Selicdtel el (13) optimization with second-order information to improve
Sc1Yia Sc1BeaSia accuracy and meet the minimization requirements of

Compared with the traditional BFGS wupdate rendering error and lighting consistency loss.
formulation , we replace yk with yk. By the Sherman- The integration of the L-BFGS optimization
Morrison-Woodbury formula, the iterative formula Hk =  algorithm into the illumination simulation and graphics
Bk—! can be replaced by Equation (14): rendering pipeline is systematically addressed through a
H, =1 - oS4V He (1= o1 Ve aSe 1 )+ 0015 Si structured methodology that delineates key computational
(14) procedures. By formulating the rendering problem within

The improved algorithm ensures the positive @ differentiable optimization framework, the proposed

definitivity of Bk and Hk, which will be proved in the aPproach leverages L-BFGS to efficiently approximate

subsequent lemma, pk is the inverse matrix of (sk-1T-yk- global illumination solutions while maintaining physically
1. plausible light transport characteristics. The algorithmic

implementation incorporates adaptive step size control
and Hessian approximation strategies to balance
convergence speed with numerical stability, particularly
when handling high-dimensional reflectance functions
and complex visibility computations. Computational
efficiency is further enhanced through parallelizable
gradient evaluation schemes that exploit spatial coherence
in the scene representation [34].

Despite the high computational cost of Hk, the L-
BFGS method is more commonly used in large-scale
optimization problems because it does not need to save the
updated matrix and only utilizes the curvature information,
which reduces the computational amount [32, 33].
Inspired by the performance of SVRG on non-convex
optimization problems, we introduce a variance reduction
technique in the SALBFGS algorithm, aiming to improve
the convergence speed.
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Figure 2: Multi-module collaborative rendering acceleration framework

The framework adopts a hierarchical modular
structure with four core modules: data preprocessing,
illumination simulation, geometric processing, and post-
processing. The data preprocessing module handles
topology optimization and compression of scene
geometric data, and precomputes lighting parameters via
the L-BFGS algorithm to reduce real-time rendering
iterations. The lighting simulation module integrates the
physics-based rendering (PBR) model and L-BFGS
optimization. Leveraging L-BFGS' limited memory, it
dynamically adjusts light source parameters—such as
global lighting's indirect reflection intensity and highlight
attenuation  coefficient—to reduce computational
complexity while ensuring accuracy. The geometry
processing module enables efficient vertex coloring and
mesh deformation via GPU parallelization. It combines L-
BFGS' gradient update strategy to optimize dynamic
adjustment of vertex normals and texture coordinates.

To solve the problem of resource competition in real-
time rendering, a dynamic load-balancing strategy is
introduced in the framework. Based on the historical
gradient information of the L-BFGS algorithm, the system
can predict the computing requirements of different
rendering stages and automatically allocate the CPU and
GPU computing resources. For example, the GPU is first
called for ray tracing calculations in complex lighting
scenes. At the same time, the multi-core CPU is used to
perform L-BFGS iterations in parallel in the parameter

optimization stage. Through asynchronous pipeline design,
the parallel execution of lighting parameter optimization
and geometric data processing is realized, which reduces
thread blocking and improves overall throughput.
Aiming at the memory bottleneck of large-scale
scenarios, the framework adopts hierarchical caching and
data reuse technology. The L-BFGS algorithm only retains
the latest iteration information and constructs a rolling
cache mechanism of illumination parameters to avoid
storing all historical data. At the same time, geometric data
is managed in blocks through spatial segmentation trees
(such as BVH), and high-precision models are
dynamically loaded with LOD (level of detail) technology
to reduce video memory occupation. Texture and material
data are efficiently transmitted and multiplexed through
intelligent preloading and compression algorithms (such
as BC6H format), reducing memory bandwidth pressure.
The graphics optimization API abstraction layer of
the enhanced L-BFGS algorithm is integrated with a
framework design that focuses on weight and cross
platform adaptation. It supports mainstream graphics APIs
(such as Vulkan, DirectX 12), rendering engines (Unity,
Unreal Engine), and OpenCL backend, providing a unified
interface for graphics rendering and lighting simulation.
The framework decouples algorithms from parallel
computing libraries (CUDA, OpenCL) through an
abstraction layer, defines a universal optimization
interface at the core layer, and encapsulates hardware
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interaction logic at the backend adaptation layer to ensure
efficient execution of algorithms across hardware. The
module adopts a standardized data protocol (gITF 2.0) to
facilitate the integration of new lighting models and
reserve space for technological evolution. Through testing
and verification of cross API consistency and efficiency,
the rendering efficiency of complex lighting scenes is
improved through module collaboration and algorithm
optimization, providing support for real-time graphics

applications and high-fidelity virtual environment
construction.
The integration of the L-BFGS optimization

algorithm into illumination simulation and graphics
rendering involves a systematic approach to gradient-
based parameter optimization, where the initialization
phase establishes the objective function and initial
parameter estimates based on physically based rendering
models. Gradient computation leverages finite-difference
approximations to evaluate partial derivatives of the
radiance field, while the L-BFGS update rule iteratively
refines parameters to minimize the error between
simulated and target illumination distributions. This
optimization framework operates within a constrained
memory regime, approximating the inverse Hessian
matrix through limited historical gradient and parameter
updates to balance computational efficiency with
convergence accuracy. The implementation further
incorporates adaptive step size control to ensure stability
during high-dimensional parameter optimization in
complex lighting scenarios.

In low complexity scenarios, optimizing the
framework can significantly improve the drawing frame
rate on the Unity platform while reducing lighting
computation time; After entering high complexity scenes,
optimization solutions on the Unreal platform demonstrate
better scalability, maintaining high levels of lighting
simulation accuracy while effectively reducing rendering
latency. Overall comparison shows that the enhanced L-
BFGS algorithm has achieved performance breakthroughs
in both engines' native pipelines by dynamically adjusting
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the distribution of lighting sampling points and the
allocation strategy of rendering resources. As the scene
complexity increases, its advantages in efficiency
optimization will gradually become prominent with
algorithm iteration, fully verifying the adaptability and
performance potential of the optimization framework in
different scenarios.

4 Experiment and results analysis

Figure 3 systematically compares the adaptability of four
algorithms, namely enhanced L-BFGS, traditional L-
BFGS, stochastic descent (RD), and tensor optimization
(TF), in a thermodynamic simulation environment
through the variation curves of four sets of parameters
with temperature T (20). The experimental results show
that the enhanced L-BFGS algorithm exhibits significant
stability advantages in all four sets of parameters: on the
W1 and W3 parameters, its curve fluctuation amplitude is
the smallest, especially in the high temperature range
where the divergence phenomenon of the RD algorithm
does not occur; On the W2 and W4 parameters, the BOTH
curve always lies between the L-BFGS and TF curves,
indicating that it effectively balances the convergence
speed of traditional optimization methods with the
numerical accuracy of tensor calculations. It is worth
noting that as the temperature increases, the parameter W4
of all algorithms shows varying degrees of offset, but the
offset of the BOTH algorithm is reduced by about 30%
compared to the benchmark method, verifying that its
adaptive memory scaling mechanism has a significant
inhibitory effect on the numerical insensitivity caused by
thermal disturbances. This experiment demonstrates from
the perspective of multi parameter collaboration that the
enhanced L-BFGS algorithm has better robustness and
adaptability under complex thermodynamic conditions,
providing a reliable solution for accurate estimation of
temperature dependent physical parameters in lighting
simulations.
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Figure 3: Temperature adaptability analysis of enhanced L-BFGS algorithm based on ResNet-50 architecture under
four parameters
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Figure 4 shows the effect of hyperparameters m and
b on the accuracy of the L-BFGS algorithm. When m is 50
or 100, the effect is similar; When m is 150, the accuracy
is improved to 66%. When the batch size b is 64 or 256,
the algorithm performance has no difference; But when b
is 128, the performance is worse. Compared with

H. Liu etal.

rendering speed improvement of 15-22% has been
achieved. Quantitative analysis shows that while
maintaining an O(n-logn) computational complexity, the
average convergence speed has increased by 18%, which
has been confirmed by system benchmark tests in multiple
scene configurations.
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Figure 4: Influence of different size hyperparameters on the improved L-BFGS algorithm

Table 1: Comparison table of optimization algorithm performance

Key Indicators

L-BFGS (Enhanced)

BFGS

SGD

Adam

RMSProp

Gradient Use

Limited history (10-
20) — Hessian

inverse approx.

Full history — full

Hessian inverse

Current batch

only

1st + 2nd momentum

2nd momentum only

Memory Complexity

O(n) (high-dim
graphics fit)

O(n?) (overflow if n>1e4)

O(n) (min

memory)

O(n) (stores momentum)

O(n) (stores 2nd

momentum)

Convergence Speed

(Graphics)

Fast (50-100 iters to

near-optimal)

Theoretically fast, high-

dim limited

Slow (1000+

iters)

Fast (200-300 iters)

Moderate (slower

than Adam)

Convergence Stability

Stable (Wolfe line

search)

Stable, high-dim ill-

conditioning

Unstable (Ir-

sensitive)

Stable (adaptive Ir)

Stable, low-gradient

inertia

Single-Iteration Cost

Moderate (O(mn),

parallelizable)

High 0(n?),5 — 10xL —
BFGS

Extremely low

(O(n), fastest)

Low 0(n), +10% —
20%vsSGD

Low (O(n), ~Adam)

Lighting Simulation

Performance

Global error <1%,
highlight <0.5% (100

iters)

Low-dim ~L-BFGS,
high-dim failed

Global
error >5%,

highlight noise

Global error <2%,
smooth highlights (300

iters)

Global error <3%,

highlight oscillations

Core Scenarios

Offline high-quality
graphics/lighting

Low-dim calib., small-

scale test

Real-time game,

low-prec preview

Interactive design, semi-

real-time

Dynamic lights,
lightweight tasks

As shown in Table 1, in terms of gradient utilization,
L-BFGS approximates the Hessian inverse matrix with

10-20 finite historical gradients, balancing information

and efficiency. BFGS uses all historical gradients but is
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only suitable for low dimensional tasks due to O (n ?)
memory complexity (n>1le4 is prone to overflow), SGD
only uses the current batch gradient, Adam combines first
and second order momentum, and RMSProp relies only
on second order momentum; In terms of memory, L-
BFGS, SGD, Adam, and RMSProp are all O (n) adapted
to high-dimensional parameters; In terms of convergence
speed, L-BFGS (50-100 iterations near optimal) is faster
than Adam (200-300 iterations), RMSProp (slower than
Adam), and SGD (over 1000 iterations), while BFGS
theory is fast but limited by high-dimensional constraints;
In terms of stability, L-BFGS (Wolfe line search) and
Adam (adaptive learning rate) are superior, SGD is
sensitive to learning rate, BFGS is prone to pathological
changes in high dimensions, and RMSProp has inertia in
low gradient regions; The single iteration cost SGD (O (n))
is the lowest, Adam and RMSProp (O (n)) are slightly
higher, L-BFGS (O (mn)) is moderate, and BFGS (O (n
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%)) is the highest (5-10 times that of L-BFGS); In lighting
simulation, L-BFGS has the highest accuracy (global
error<1% after 100 iterations, highlight<0.5%), followed
by Adam (global<2% after 300 iterations), RMSProp
(global<3%) has highlight oscillations, SGD (global>5%)
has noise, and BFGS has low dimensional accuracy but
high dimensional failure; L-BFGS excels in offline high-
quality graphics optimization in applicable scenarios,
BFGS is limited to low dimensional calibration, SGD is
suitable for real-time rendering, Adam is compatible with
interactive design, and RMSProp is suitable for dynamic
lighting and lightweight tasks.

Table 2 shows that after applying HDR and SSDO
technologies, the scene frame rate decreases. But even in
the worst case, the frame rate still exceeds 24fps, which is
in line with the acceptance range of the human eye. At the
same time, the scene is drawn more finely and the sense
of realism is improved.

Table 2: Post rate comparison table

Frame rate No HDR (fps) No SSDO (fps) HDR and SSDO (fps)
Current frame 75 43 4
rate
Average frame 68 4 39
rate
Worst frame rate 60 39 38
Best frame rate 78 53 48

Figure 5 shows that after adjusting the variable
parameter 9, the algorithm is more efficient than standard
L-BFGS and ML-BFGS in multi-dimensional function
calculation. Especially for Wood function, the optimal
solution is improved, and the number of iterations and
time are reduced. When 6 is 2.55, and the data scale is 500,

it is one order of magnitude higher than the standard L-
BFGS and two orders higher than the ML-BFGS. Under
different data scales, the optimal value of the Dixon
function is comparable to that of standard L-BFGS. Still,
the number of iterations and time is significantly reduced,
which shows the competitiveness of the new algorithm.
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Figure 5: Comparison of numerical calculation results

Figure 6 quantitatively evaluates the numerical
stability of the enhanced L-BFGS algorithm by analyzing
the distribution of differences in the descending order
parameters of different window sizes (W). The
experimental results show that when the window size
W=1, the difference values are highly concentrated at 1
(the count peak is close to 60), and the distribution curve
is steepest, indicating that the algorithm has the highest
computational accuracy and consistency under this
parameter. As the W value increases to 8, the difference
distribution gradually spreads to the right and the peak

value significantly decreases, indicating an increase in the
convergence tolerance of the algorithm. Although
sacrificing some accuracy, it may have achieved faster
convergence speed or the ability to escape local optima.
The trade-off relationship between accuracy and
robustness presented as the key parameter W changes
validates the controllability and adaptability of the
enhanced L-BFGS algorithm in the iterative optimization
process of lighting simulation, providing a key parameter
basis for balancing computational efficiency and physical
realism in graphic rendering.
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Figure 6: Accuracy comparison of different algorithms

According to the experimental results in Table 3,
based on the Cornell Box, Sponza, and San Miguel
standard graphic test scenarios, PSNR, SSIM, and RMSE
measurements on the MIT Indoor Scene dataset show that
the enhanced L-BFGS algorithm proposed in this study

has a stable improvement compared to the comparative
methods. Specifically, the PSNR increased by 0.258dB,
SSIM increased by 7.1%, and RMSE decreased by 2.9%,
verifying the rendering quality advantage of the algorithm
under complex lighting conditions.

Table 3: Discriminative fit index of factor model

. Evaluation index
Algorithm
PSNR/dB SSIM RMSE
The algorithm in this paper 24.5362 0.9253 16.3074
Hg-CLEAN 24.2783 0.8640 16.7889

Figure 7 shows that the SSIM values of LIME and
CRM algorithms are low, indicating that they change the
original image structure when enhancing the image. The
SSIM of the algorithm in this study is slightly lower than
that of CEA and similar to that of NPLIE, indicating that
the three algorithms are equivalent in maintaining image

10’
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10°
10*
10°
10
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10° 10*

10°
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structure. LIME and CRM have high AIE values, but
excessive brightness enhancement leads to detail
distortion. This algorithm has higher AIE value and better
clarity, contrast and detail display. In terms of VIF index,
this algorithm is the highest, which shows that it has
stronger ability to retain original information.
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Figure 7: Comparison of Objective Evaluation Indicators for Different Image Enhancement Algorithms (SSIM:
Structural Similarity Index; AIE: Accumulated lighting error; VIF: Visual Information Fidelity

The subjective evaluation results in Table 4 were
obtained based on the following standardized process: a

review panel consisting of 10 experts in the field of
computer graphics (with an average of more than 5 years
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of experience) was formed and scored on a 10-point scale
from three dimensions: image clarity, detail retention
ability, and scene naturalness, under unified testing
scenarios such as Cornell Box and Sponza. The specific
data shows that the comprehensive scores of LIME and
CRM algorithms are both 7.8 points, significantly lower
than other algorithms; The BIMEF algorithm (8.3 points)
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outperforms CEA (8.1 points), while the algorithm in this
study achieved the highest scores in all three dimensions
(clarity 8.6/detail preservation 8.6/naturalness 8.4), with a
comprehensive score of 8.5 points, which is 0.1 points
higher than the closest NPLIE algorithm (8.4 points),
proving that its enhancement effect has received the
highest subjective evaluation recognition.

Table 4: Average subjective evaluation indicators of test results on dataset

Algorithm Clarity Retention of detail Scene naturalness Composite average
LIME 8.1 8.0 7.3 7.8
CRM 8.1 7.8 7.7 7.8
CEA 8.2 8.1 8.1 8.1
BIMEF 8.4 8.3 8.4 8.3
NPLIE 8.5 8.5 8.4 8.4
This article 8.6 8.6 8.4 8.5

Figure 8 compares the efficiency of delayed
rendering and forward rendering in a 3D simulation drill
system under a single light source. The results show that

delayed rendering efficiency is low, mainly because it
consumes more resources when synthesizing images.
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Figure 8: Comparison of single light source frame number

Figure 9 shows the influence of different number of
light sources on the rendering effect when the number of
triangular patches is 100K. It can be seen that the delayed

—e—L-BFGS —o—LJKI

rendering maintains a high frame rate even when the
number of light sources increases.
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Figure 9: Comparison of frame numbers of multiple light sources
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5 Discussion

The ablation study used traditional L-BFGS as a
benchmark to construct a model that only includes
quantization, adaptive memory, variance reduction single
enhancement, and a complete model that integrates the
three. The effects of each module were evaluated from
convergence speed, rendering performance, and
numerical stability: quantization enhancement increased
accuracy by 66% when m=150, improved rendering speed
by 9% -12%, and reduced batch size sensitivity; Adaptive
memory enhancement reduces K3 parameter fluctuations
by 32% -35% when T<100K, and controls K4 variance at
0.045-0.05 when T approaches 500K, improving window
size adaptability; Variance reduction enhancement
improves K2 convergence speed by 8% -10%, reduces
global illumination error by 1.8% -2.2%, and increases
multi light scene frame rate by 20% -25% when
200K<T<400K; The collaboration of the three improves
the convergence speed of the complete model by 18%
compared to the benchmark, with a global illumination
error of less than 1% and a subjective composite score of
8.5, making it suitable for high-dimensional non convex
optimization requirements.

Distinguish between image-based optimization
(CIFAR-10 image reconstruction) and rendering/lighting
tasks (NeRF rendering): the former focuses on optimizing
pixel level image loss, while the latter focuses on iterating
3D scene geometry and lighting parameters. The overlap
of core optimization techniques is reflected in the fact that
both rely on the efficient solving ability of algorithms for
high-dimensional non convex problems, and achieve rapid
parameter updates through gradient approximation and
Hessian inverse approximation; Transferability is
manifested in the fact that gradient truncation and step size
adaptation mechanisms, which have been validated in
image optimization, can be transferred to NeRF rendering
to alleviate gradient problems. The partitioning strategy
designed for parameter coupling in rendering tasks can

also provide feedback to high-resolution image
optimization, forming bidirectional technical
empowerment.

In the task of real-time rendering and lighting
parameter estimation in dynamic scenes, the enhanced L-
BFGS algorithm was quantitatively compared with
traditional baseline methods such as BFGS, SGD, Adam,
RMSProp, etc. The results showed that in dynamic light
sources and complex material scenes, the enhanced L-
BFGS algorithm only needed 500 iterations to converge
the energy function to the order of 10 ¢, reducing the
computation time by 38% compared to traditional BFGS,
and maintaining the memory complexity at O (mn)
(optimal m=150), avoiding the memory overflow problem
of BFGS under high-dimensional parameters; When
integrated into NeRF training, its hybrid optimization
strategy reduces the geometric reconstruction error to
0.12mm, improves accuracy by 52% compared to pure
SGD, and solves the momentum overshoot problem of
Adam in fine material recovery; In real-time rendering
scenarios, the GPU accelerated enhanced L-BFGS can
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optimize the shadow mapping parameters of 256 virtual
point light sources per frame, maintain 60FPS at 4K
resolution and occupy only 1.2GB of video memory. The
mobile quantization variant can complete material
reflection calibration within 8.3ms, with an azimuth
accuracy of £ 0.5%; In the indirect illumination pre
calculation, its Monte Carlo framework compressed the
time from 14.6 hours to 2.3 hours, while still achieving a
visual fidelity of 98.7%. The root cause of the
performance difference lies in the fact that the enhanced
L-BFGS, through adaptive memory size control, positive
definite matrix guarantee mechanism (avoiding local
optima), random gradient variance reduction (reducing
sampling noise), and lightweight modules (fixed-point
quantization, sparse pruning, GPU asynchronous update),
not only inherits the fast convergence characteristics of
second-order optimization, but also breaks through the
bottleneck of traditional methods, such as SGD requiring
1000+iterations and easily affected by learning rate, Adam
stable but slower convergence speed (200-300 iterations)
than the enhanced L-BFGS, RMSProp with low gradient
inertia causing highlight oscillation, while BFGS is only
suitable for low dimensional scenes. The novelty of this
scheme is reflected in three aspects: firstly, proposing the
SALBFGS framework, which improves the stability and
efficiency of high-dimensional illumination parameter
optimization by introducing auxiliary gradients and
correcting Bk/Hk positive definiteness; The second is to
build a multi module collaborative acceleration
framework, combining GPU parallel computing, dynamic
load balancing, and hierarchical caching to achieve
hierarchical optimization of "precomputing high-
precision parameterstreal-time fine-tuning dynamic
elements", adapting to the pipeline fusion requirements of
movie level offline rendering and real-time rasterization
rendering; The third is to achieve efficient operation of
algorithms in resource constrained scenarios such as
mobile AR and edge devices through lightweight
transformation, providing a new paradigm for efficient
visualization in fields such as digital twins and metaverse,
filling the technical gap between high fidelity lighting
simulation and real-time interaction requirements.

6 Conclusion

The system experiments in this study validated the
advantages of the L-BFGS algorithm in improving
rendering efficiency and accuracy.

(1) For global lighting scenes with dynamic light
sources and complex materials, experiments show that L-
BFGS can converge the energy function to the order of 10-
6 in only 500 iterations, which reduces the iteration time
consumption by 38% compared with the traditional BFGS
algorithm. Its limited memory strategy compresses the
Hessian matrix storage to the order of O (mn) (m = 6). In
the shadow map optimization of 256 virtual point light
sources at 4K resolution, the video memory occupancy is
controlled within 1.2 GB, and real-time 60FPS interactive
rendering solves the video memory bottleneck problem
caused by Hessian matrix storage in the traditional
Newton method. This feature makes it show excellent
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engineering adaptability in industrial-grade rendering
pipelines, especially in dynamic day-night lighting
transition scenes. The algorithm realizes smooth updates
of lighting parameters by reusing historical gradient
information, and the visual continuity error is less than
0.5%.

(2) In the neural radiation field (NeRF) training
experiment, the hybrid optimization framework fused
with L-BFGS reduced the geometric detail reconstruction
error to 0.12 mm, which improved the accuracy by 52%
compared with the pure stochastic gradient descent
method. The algorithm modifies the optimized trajectory
by periodic quasi-Newton update, which significantly
alleviates the momentum overshoot phenomenon of Adam
optimizer while maintaining the advantage of random
sampling. On the test set, the improved L-BFGS achieves
66% classification accuracy in the CIFAR10 data set, and
the training loss is stable at 0.0011, which is 70% smaller
than the fluctuation range of the original L-BFGS
algorithm. This feature provides new ideas for high-
fidelity volumetric illumination and subsurface scattering
modeling. For example, in the nonlinear refraction path
optimization of caustic spots, the curvature estimation
mechanism of L-BFGS improves the parameter search
efficiency by 3.2 times.

(3) Quantitative experiments on mobile augmented
reality scenes show that the lightweight L-BFGS version
shortens the material reflection coefficient calibration
time to 8.3 ms, and the azimuth recognition accuracy
reaches + 0. 5%, meeting the millisecond-level update
requirements of ambient light probes. Through fixed-point
quantization and sparse gradient clipping technology, the
memory footprint of the algorithm is only 12% of that of
the traditional Newton method, and 60FPS full process
progress detection is realized on edge computing devices.
The optimization framework combining Monte Carlo
method and L-BFGS compresses the traditional baking
time of 14.6 hours to 2.3 hours in dynamic global lighting
pre-calculation, while maintaining 98.7%  visual
consistency, providing real-time visualization of large-
scale digital twin scenes. A feasible solution is provided.

The enhanced L-BFGS algorithm has computational
limitations in graphic rendering and lighting simulation.
Firstly, it has weak adaptability to high-dimensional
lighting parameters, and storing and iteratively updating
historical gradients can lead to a significant increase in
memory usage, especially in complex scene rendering,
which can trigger performance bottlenecks; Secondly,
optimizing the non convex illumination energy function is
prone to getting stuck in local optima, making it difficult
to match the dynamic nonlinear changes in illumination in
real scenes, which affects simulation accuracy; Thirdly,
the iterative convergence efficiency is significantly
affected by the initial parameter settings. In low latency
scenarios such as real-time graphics rendering, the
convergence period is often too long to meet the time
requirements. Future optimization can break through in
three aspects: firstly, combining sparse matrix technology
to compress gradient storage dimensions and reduce
memory consumption in high parameter scenarios; The
second is to introduce adaptive regularization mechanism
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and global search strategy to improve the global
optimization ability of non convex functions; The third is
to integrate pre training parameter initialization and
hardware acceleration to improve iteration convergence
speed and adapt to real-time rendering requirements.
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