
https://doi.org/10.31449/inf.v49i37.10728 Informatica 49 (2025) 297–316 297

Static Malware Detection through Ensemble Feature Selection and Supervised
Classification

Isai Moreno-Lara, Alejandra Guadalupe Silva-Trujillo∗, Juan C. Cuevas-Tello, Jose Nunez-Varela
Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E-mail: isai.lara.dev@gmail.com, asilva@uaslp.mx, cuevas@uaslp.mx, jose.nunez@uaslp.mx
*Corresponding author

Keywords: Malware, classification, machine learning, cybersecurity, algorithms

Received: August 7, 2025

In a digital landscape where malicious software evolves faster than traditional defenses, intelligent and
proactive detection has become essential. This study presents a machine learning framework for static
malware detection based on the analysis of 138,047 Portable Executable samples, including both mal-
ware and benign files. The dataset comprises 56 static structural features extracted without code exe-
cution. Four supervised classifiers—Backpropagation Neural Network, Decision Tree, Random Forest,
and Support Vector Machine—were evaluated following the Knowledge Discovery in Databases process.
Ensemble-based feature selection methods (Random Forest and Extra Trees) were applied to identify the
most informative attributes, while random undersampling was used to mitigate class imbalance. Exper-
imental results show that the Random Forest classifier achieved the best performance, reaching 99.45%
accuracy and a 0.9909 F1-score on imbalanced data, and 99.32% accuracy on the balanced dataset. These
findings highlight the reliability and scalability of tree-based models for static malware detection. Overall,
the proposed framework demonstrates that careful feature selection and balance adjustment can signifi-
cantly enhance the performance and interpretability of cybersecurity classification systems.

Povzetek: Študija predstavi statično zaznavanje zlonamerne programske opreme iz 56 značilk PE datotek
na velikem naboru vzorcev, kjer z izbiro značilk z ansambli in uravnoteženjem razredov pokaže, da drevesni
modeli ponujajo zanesljivo in razložljivo detekcijo.

1 Introduction
In today’s hyperconnected world, malware poses a persis-
tent threat to individuals, organizations, and even critical
infrastructure. Malware, a contraction of ’malicious soft-
ware’, encompasses any software developed with the in-
tent to harm, exploit, or otherwise compromise computers,
networks, or users. The U.S. National Institute of Stan-
dards and Technology (NIST) defines malware as a pro-
gram inserted into a system with the aim of compromising
the confidentiality, integrity, or availability of the system’s
data or operations [1]. This broad category includes viruses,
worms, trojans, ransomware, spyware, and more sophisti-
cated threats that constantly evolve to evade traditional se-
curity systems.
The increasing digitalization of services and the depen-

dency on connected systems have increased the risks posed
by malware attacks. These attacks can result in massive fi-
nancial losses, data breaches, reputational damage, or even
disruptions to critical infrastructure. Global statistics from
cybersecurity firms show an upward trend inmalware activ-
ity across sectors, with new variants being generated using
automated tools and code obfuscation techniques, making
manual detection approaches increasingly infeasible [2].
To address this growing threat, machine learning (ML)

has emerged as a powerful tool for malware detection. Un-

like signature-based methods that rely on predefined rules
and known patterns, ML algorithms can learn from past
data to identify new, previously unseen malware by recog-
nizing subtle structural or behavioral indicators. This data-
driven approach allows for improved generalization, early
threat detection, and reduced reliance on expert-crafted fea-
tures.

Malware detection techniques are broadly categorized
into three types: static analysis, dynamic analysis, and
hybrid analysis [3]. Static analysis involves examining
the structure, code, and metadata of a program without
executing it. Common static features include Application
Programming Interface (API) call sequences, opcode fre-
quency, string patterns, and control flow graphs elements
that can be extracted safely and efficiently at scale. In con-
trast, dynamic analysis executes the malware in a sandbox
or controlled environment to observe its runtime behavior,
such as system calls, registry changes, or network activity.
While dynamic techniques are more resilient to obfuscation
and capable of detecting zero-day threats, they are time-
consuming and resource-intensive, and can be bypassed by
malware that detects virtualized environments. Finally, hy-
brid analysis combines static and dynamic methods to ben-
efit from both perspectives. However, it inherits the limita-
tions of both and often increases computational cost.



298 Informatica 49 (2025) 297–316 I. Moreno-Lara et al.

In this study, we have adopted a static analysis approach.
This decision is driven by the nature of our dataset and prac-
tical constraints. Static analysis allows fast, large-scale in-
spection of software without the overhead or risk of exe-
cution. Since our dataset includes pre-extracted structural
features from known samples, static analysis is both appro-
priate and scalable for building machine learning models.
Consequently, we reinforce the notion that the union of

machine learning and cybersecurity, when guided by prin-
cipled data science methodologies, has the potential to pro-
duce intelligent, adaptive, and ethically sound tools for
modern malware detection. By demonstrating the effec-
tiveness of well-calibrated models under different experi-
mental conditions, this work contributes to the ongoing de-
velopment of secure, data-driven defense mechanisms ca-
pable of facing the challenges of an increasingly hostile dig-
ital ecosystem. Moreover, this work investigates how class
balance and feature selection strategies influence the per-
formance and interpretability of supervised machine learn-
ing models for malware detection. These aspects are crit-
ical, as imbalanced datasets can bias classifiers toward the
majority class, while inadequate feature selection may in-
troduce redundancy or noise that reduces generalization.
The study systematically evaluates these factors within the
Knowledge Discovery in Databases (KDD) process, using
both balanced and unbalanced datasets, and compares mod-
els through metrics such as precision, recall, F1-score and
Area Under the Curve (AUC). This approach aims to iden-
tify the conditions that yield the most robust and explain-
able detection results.
This paper is structured as follows. Section 2 intro-

duces the Knowledge Discovery in Databases process and
explains its relevance in malware detection. The state of
the art is presented in Section 3 to contextualize this study
within existing research. Section 4 describes the dataset in
detail, including the class distribution and a statistical anal-
ysis of the feature values. The preprocessing steps are then
outlined in Section 5, with particular emphasis on the class
balancing strategy through undersampling, which resulted
in two versions of the dataset. Section 6 addresses the trans-
formation stage, detailing the feature selection algorithms
applied. The data mining phase is described in Section 7,
including the classification models used and the configura-
tion of their respective hyperparameters. Section 8 presents
the results of the evaluation metrics and reports the per-
formance of the models under both original and balanced
datasets, followed by an interpretation of the outcomes. Fi-
nally, Section 10 concludes with a summary of the key find-
ings and suggestions for future research.

2 Knowledge discovery in databases
(KDD) Process

To build an effective malware detection system, we follow
the KDD process — a systematic methodology for extract-
ing meaningful patterns from large datasets. As defined by

Fayyad et al. [4], KDD is “the nontrivial process of identi-
fying valid, novel, potentially useful, and ultimately under-
standable patterns in data”. This methodology is especially
important when the volume and complexity of data exceed
human capacity for manual analysis.
In cybersecurity contexts such as malware detection,

datasets are often high-dimensional and voluminous, mak-
ing manual exploration of correlations and anomalies in-
feasible. KDD provides a structured framework that in-
tegrates not only data mining algorithms, but also essen-
tial steps such as data selection, preprocessing, transforma-
tion, and interpretation. Moreover, blindly applying data
mining techniques — commonly referred to as data dredg-
ing — can lead to misleading conclusions. The KDD pro-
cess mitigates this risk through iterative refinement, incor-
poration of prior knowledge, and user-guided evaluation.
In our study, the KDD process structures the full pipeline,
from analyzing static malware attributes and selecting the
most informative features, to evaluating classification per-
formance across balanced and imbalanced scenarios. This
process includes the following stages:

• Data Selection: Involves choosing the subset of data
relevant to the problem domain from potentially large
and heterogeneous sources.

• Preprocessing: Selected data is cleaned and trans-
formed to improve its quality and consistency. Tasks
include removing noise, handling missing values, con-
verting data formats, and normalizing features.

• Feature Selection: Reduces the number of input vari-
ables by selecting only the most relevant features for the
task. It helps to improve model performance, reduce
overfitting, and enhance interpretability by eliminating
redundant or irrelevant attributes.

• Feature Comparison: Selected features are analyzed
to understand their properties to identify correlations,
redundancies, or informative patterns that may influ-
ence model outcomes.

• Data Mining: Algorithms are applied to extract pat-
terns or models from data. Techniques may include
classification, regression, clustering, or association rule
mining, depending on the objective of the study.

• Evaluation: Assessment of the quality and usefulness
of the knowledge discovered using performancemetrics
or validation techniques.

The core task in this study is formulated as a binary clas-
sification problem, where each software instance is labeled
either as malware or benign. To solve this, we employ
and compare the following machine learning algorithms:
Backpropagation Neural Networks, Decision Trees, Ran-
dom Forests, and Support Vector Machines. Each model
is trained and evaluated using the same dataset and prepro-
cessing pipeline. The overall workflow is illustrated in Fig-
ure 1, summarizing the steps from data acquisition to clas-
sification.



Static Malware Detection through Ensemble Feature Selection… Informatica 49 (2025) 297–316 299

Dataset

Preprocessing

Transformation

Training Testing

Data Mining

Interpretation
/ Evaluation

Figure 1: General workflow for malware detection using
ML and the KDD process.

3 State of the art
Malware detection remains a core challenge in modern cy-
bersecurity due to the rapid increase in novel attack variants
and the evolving sophistication of evasion techniques. Tra-
ditional defenses struggle to keep pace with the speed and
diversity of malware generation, especially in mobile and
Internet of Things (IoT) ecosystems, where constraints on
resources and real-time protection demand more intelligent
and scalable approaches.
Recent research has focused on leveraging ML tech-

niques to improve malware detection through both static
and dynamic analysis. One of the most influential studies in
this area is that of Shakib et al. [5], who introduced a bench-
mark dataset widely adopted for evaluating hybrid models
that combine Genetic Artificial Intelligence, deep neural ar-
chitectures, and Active Learning (AL). Their experiments
achieved near-perfect accuracy levels above 99%, demon-
strating the effectiveness of deep learning architectures for
malware detection. However, their work primarily empha-
sized performance metrics such as accuracy and F1-score,
without addressing potential class imbalance or feature re-
dundancy issues that could affect generalization.
Building on this line of research, Tanuwidjaja and

Kim [6] proposed an adaptation of the Deep Feature Ex-
traction and Selection (DFES) method originally designed
for intrusion detection. Their approach integrates Stacked
Autoencoders (SAE) for deep abstraction, Weighted Fea-
ture Selection, and Artificial Neural Networks (ANN), re-
sulting in a lightweight yet highly accurate pipeline. By fo-
cusing on dimensionality reduction and feature relevance,
this study highlighted the importance of feature selection
as a key factor in improving efficiency and performance in
malware classification.
Complementing these works, Roy [7] investigated the

detection of encrypted malware traffic, comparing Logistic
Regression, Convolutional Neural Networks, and Random
Forests. Despite the additional challenge of encryption,
Random Forest achieved the highest accuracy (98.28%),
reinforcing the robustness of tree-based models in con-
strained and obfuscated environments. Similarly, Baker

del Aguila et al. [8] examined lightweight static analysis
techniques under limited computational resources. Their
findings showed that Artificial Neural Networks reached
94.74% accuracy, followed closely by Support Vector Ma-
chines and Gradient Boosting Machines, proving that tra-
ditional ML models can remain competitive in memory-
restricted scenarios.
Overall, these studies illustrate the progressive refine-

ment of malware detection methods, from complex hybrid
architectures to efficient lightweight models. Neverthe-
less, most prior works—such as those by Shakib et al. [5],
Tanuwidjaja and Kim [6] and Roy [7]—focused primarily
on achieving high accuracy and F1-scores, while overlook-
ing important aspects like dataset imbalance, feature redun-
dancy, or model interpretability.
Addressing these gaps, the present study systemati-

cally evaluates the influence of class balance and feature
selection strategies within the Knowledge Discovery in
Databases process, aiming to provide more reliable and ex-
plainable results.
Table 1 summarizes the classification performance re-

ported in recent malware detection studies. Each study em-
ployed different ML models and evaluation strategies, yet
most relied primarily on accuracy as the main performance
indicator. Although each study refers to the dataset differ-
ently, all of themwere conducted using the same underlying
dataset, which contains both benign and malicious program
samples. To provide a more complete comparison, the ta-
ble includes not only accuracy but also F1-score and loss
values when available. Further details comparing these re-
sults with those obtained in the present study are discussed
in Section 9.

4 Dataset
This study relies on a benchmark dataset comprising
138,047 labeled software samples, including 96,724 iden-
tified as malware and 41,323 as legitimate. Each in-
stance is represented by 56 static features that encapsu-
late structural metadata and header-related attributes, ex-
tracted without executing the software binaries. This static
approach enables scalable and reproducible analyses, par-
ticularly suitable for pre-execution detection pipelines. To
ensure methodological consistency, the same dataset used
in the studies listed in Table 1 was adopted in this work.
This dataset was originally derived from VirusShare repos-
itory [9], which provides publicly available malware sam-
ples used for academic and security research.
Originally distributed in Comma-Separated Values

(CSV) format — a widely accepted standard for structured
data representation. For analytical processing, the dataset
was loaded into a Pandas DataFrame [10], a powerful
tabular data structure within the Python ecosystem that
provides extensive functionality for data transformation,
filtering, and statistical computation.
A preliminary structural inspection revealed that two



300 Informatica 49 (2025) 297–316 I. Moreno-Lara et al.

Table 1: Comparison of evaluation metrics achieved by different machine learning models in malware detection studies.

Ref. Model / Approach Accuracy (%) F1-score Loss

[5]

Convolutional Neural Network 99.94 0.9993 0.007
Recurrent Neural Network 99.55 0.9954 0.026
Long Short-Term Memory Network 77.66 0.8094 0.483
Gated Recurrent Unit Network 81.05 0.8050 0.422
Active Learning with Convolutional Neural Network 99.93 0.9961 0.006
Active Learning with Recurrent Neural Network 99.89 0.9989 0.001
Active Learning with Long Short-Term Memory Network 86.59 0.8673 0.325
Active Learning with Gated Recurrent Unit Network 94.01 0.9402 0.175
Genetic Artificial Intelligence with Convolutional Neural Network 95.93 0.9589 0.149
Genetic Artificial Intelligence with Recurrent Neural Network 99.36 0.9935 0.055
Genetic Artificial Intelligence with Long Short-TermMemory Network 99.27 0.9925 0.037
Genetic Artificial Intelligence with Gated Recurrent Unit Network 99.77 0.9977 0.019

[6] Original DeepAbstraction andWeighted Feature Selection with Stacked
Autoencoder and Artificial Neural Network

99.917 0.9986 -

Modified Deep Abstraction and Weighted Feature Selection with
Stacked Autoencoder and Artificial Neural Network (reduced feature
set)

99.974 0.9996 -

[7]
Random Forest 98.28 - -
Logistic Regression 70.15 - -
Convolutional Neural Network 97.00 - -

[8]
Artificial Neural Network 94.74 0.94 0.1488
Support Vector Machine 91.07 0.92 0.239
Gradient Boosting Machine 92.47 0.91 0.04

features—Name and md5—served as unique identifiers and
did not contribute meaningful semantic information for
classification purposes. Therefore, these fields were ex-
cluded from subsequent analyses. After this refinement,
the dataset contained a total of 55 columns: 54 informa-
tive features and one target class. All variables exhib-
ited a consistent and well-defined schema, with 45 stored
as 64-bit integers (int64) and 10 as 64-bit floating-point
numbers (float64). Figure 2 illustrates the distribution
of data types across the dataset after discarding the non-
informative identifiers.

Figure 2: Distribution of data types in the dataset (exclud-
ing Name and md5)

To better understand the behavior and statistical profile
of each feature across classes, descriptive metrics were
computed independently for the malware and legitimate
samples. These metrics include the minimum and max-
imum observed values, arithmetic mean, standard devia-

tion, and interquartile range boundaries (Q1 and Q3). To
enhance the readability and interpretability of the results,
a formatting scheme was applied according to the mag-
nitude of the values. Specifically, large numerical val-
ues were converted into more compact representations us-
ing metric suffixes (e.g., “K” for thousands, “M” for mil-
lions) or expressed in scientific notation for extremely large
magnitudes. This transformation not only reduces visual
clutter in the tables but also enables more efficient cross-
feature comparisons across varying scales. Tables 6 and 7
(see Appendix) present these adapted statistics, highlight-
ing relevant distributional characteristics that may differen-
tiate benign and malicious instances. For example, features
related to section entropy, import table sizes, or memory al-
location regions often show marked discrepancies between
classes, revealing potential signals for classification mod-
els.

Following the computation of descriptive statistics, the
features of the dataset were systematically grouped accord-
ing to their functional roles within the structure of Portable
Executable (PE) files. This categorization serves a dual
purpose: it not only enhances interpretability by organiz-
ing features into coherent blocks—such as file headers,
section properties, import/export statistics, and resource
descriptors—but also facilitates the identification of feature
types that may be particularly informative for static mal-
ware detection. Grouping features in this manner supports
the modeling process by allowing the analysis to reflect the
underlying structure of PE files, which in turn can capture
relevant patterns associated with malicious or benign be-
havior.



Static Malware Detection through Ensemble Feature Selection… Informatica 49 (2025) 297–316 301

During this process, attributes deemed non-informative
for the learning task—specifically Name, which serves
only as an identifier; md5, a cryptographic hash used to
reference each sample; and legitimate, the binary clas-
sification label—were excluded from the feature group-
ing to maintain clarity and focus on predictive variables.
These excluded elements were nonetheless preserved in
the dataset for tracking and evaluation purposes. Table 5
(see Appendix) provides a comprehensive summary of the
grouped features retained for modeling, including concise
descriptions of their technical significance. This structural
organization aids both in the interpretability of the dataset
and in the development of models that leverage domain-
relevant features.
While static-analysis enables large-scale and repro-

ducible experimentation, it inherently captures only struc-
tural characteristics of executables. The dynamic behav-
iors of malware—such as obfuscation or runtime evasion—
remain beyond the scope of this dataset and are discussed
further in Section 10.

5 Preprocessing

Following the workflow in Figure 1, the dataset underwent
basic integrity checks to ensure its suitability for further
processing. A systematic search confirmed the absence of
missing (null) values and duplicate entries across all fea-
tures. Additionally, two attributes—Name and md5—were
removed from the dataset. These fields acted solely as
unique identifiers and did not carry any semantic or sta-
tistical value relevant to the classification task. Their ex-
clusion prevents potential information leakage and ensures
that the model focuses exclusively on meaningful predic-
tive features. These validations, while straightforward, are
essential for preventing bias and ensuring that the subse-
quent modeling process is both reliable and reproducible.
According to Sharifnia et al. [11], overlooking issues such
as missing or inconsistent data can significantly compro-
mise data quality, resulting in biased parameter estimates
and misleading conclusions.
A class distribution analysis was then conducted to assess

the balance between legitimate and malicious files. The
results revealed a significant imbalance: out of a total of
138,047 samples, 96,724were labeled asmalware and only
41,323 as benign, corresponding to approximately 70.1%
and 29.9% of the dataset, respectively. This imbalance
poses a risk of biasing classifiers toward the majority class,
reducing their ability to detect minority patterns accurately.
To address this, a random undersampling technique was

applied to reduce the number of malware samples. After
undersampling, both classes contained 41,323 samples, re-
sulting in a balanced dataset of 82,646 instances. Despite
this reduction, the dataset remains sufficiently large to sup-
port meaningful statistical inference and robust model train-
ing. This strategy is supported by recent research, which
highlights that undersampling can reduce class overlap and

enhance minority class visibility, especially when the ma-
jority class includes redundant or less informative sam-
ples [12]. Additionally, it improves training efficiency and
can lead to more balanced decision boundaries, particularly
in domains where minority class detection is critical, such
as malware analysis.
To assess the effect of this resampling technique, both the

original imbalanced dataset and the balanced version were
retained for comparative modeling and evaluation. Figure 3
illustrates the class distributions before and after the under-
sampling process.

Figure 3: Class distribution before and after applying un-
dersampling

6 Transformation
Dimensionality reduction techniques are essential in ma-
chine learning to address the challenges posed by high-
dimensional data, often referred to as the “curse of dimen-
sionality” [13, 14]. These techniques aim to reduce the
number of input variables while preserving as much rele-
vant information as possible, thereby enhancing model per-
formance and interpretability. Common methods include:
• Principal Component Analysis (PCA): A linear tech-
nique that transforms the original variables into a new
set of uncorrelated variables (principal components),
ordered by the amount of variance they capture in the
data.

• Linear Discriminant Analysis (LDA): A supervised
method that seeks linear combinations of features that
best separate two or more classes, maximizing class
separability.

• Tree-based methods: Algorithms like Random Forest
and Extra Trees assess feature importance based on their
contribution to decision splits, effectively selecting the
most informative features for classification tasks. Se-
lecting the most informative features for classification
tasks.
These methods not only reduce computational complex-

ity but also help in mitigating overfitting and improving the
generalization capability of models.
In this study, two ensemble-based methods were used

to evaluate the relevance of each attribute: Random For-
est Classifier and Extra Trees Classifier, both configured



302 Informatica 49 (2025) 297–316 I. Moreno-Lara et al.

with n_estimators=50 and default parameters as per the
scikit-learn implementation [15]. These tree-based mod-
els compute feature importance based on the contribution
of each attribute to the split decisions across trees. While
Random Forests use optimized splits, Extra Trees intro-
duce greater randomness by choosing thresholds at ran-
dom, which can reduce overfitting and variance in high-
dimensional contexts. Both models were independently
trained on the original (imbalanced) dataset and the bal-
anced version. The goal was to compare the stability and
consistency of the selected attributes under varying class
distributions. In each case, 14 features were automatically
selected using the SelectFromModel method which are
presented in Table 2 for comparison.

Table 2: Features selected by extra trees and random forest
classifiers
Extra Trees Classifier Random Forest Classifier
Machine Characteristics
SizeOfOptionalHeader BaseOfData
Characteristics ImageBase
ImageBase MajorOperatingSystemVersion
MajorOperatingSystemVersion MinorImageVersion
MajorSubsystemVersion Subsystem
Subsystem DllCharacteristics
DllCharacteristics SizeOfStackReserve
SizeOfStackReserve SectionsMaxEntropy
SectionsMinEntropy ExportNb
SectionsMaxEntropy ResourcesNb
ResourcesMinEntropy ResourcesMinEntropy
ResourcesMaxEntropy ResourcesMinSize
VersionInformationSize VersionInformationSize

A comparison of the selected features reveals that both
models share 9 common attributes, including Subsystem,
DllCharacteristics, and VersionInformationSize.
These overlapping features suggest that both methods con-
sistently identify them as informative for distinguishing be-
tween legitimate and malicious files. However, each clas-
sifier also selected 5 distinct features. Extra Trees included
attributes such as Machine and SizeOfOptionalHeader,
which showed strong positive correlations with the target,
while Random Forest selected attributes like BaseOfData
and ExportNb, which exhibited lower individual correla-
tion but may provide complementary decision information.
This divergence highlights how different ensemble strate-
gies can lead to feature sets with varying levels of redun-
dancy, diversity, and interpretability.
To further analyze the relationship between the se-

lected attributes and the target variable, correlation matri-
ces were computed to measure the linear association be-
tween each feature and the legitimate label. As shown
in Figures 11 and 12, see Appendix, features selected
by the Extra Trees Classifier exhibit generally stronger
absolute correlations with the target, notably Machine
and SizeOfOptionalHeader (both r = 0.55), and
Subsystem (r = 0.51). Additionally, negatively corre-
lated features such as DllCharacteristics (r = −0.63)
and SectionsMaxEntropy (r = −0.62) show clear dis-
criminatory power.

In contrast, features selected by the Random Forest
Classifier display weaker overall correlations with the tar-
get variable, although some attributes like Subsystem
(r = 0.51), DllCharacteristics (r = −0.63), and
VersionInformationSize (r = 0.38) still demonstrate
meaningful relationships. This suggests that Extra Trees
may have prioritized features with higher individual pre-
dictive strength, while Random Forest may have selected a
more diverse feature set with complementary interactions
not solely captured by linear correlation.
Finally, four distinct experimental setups were con-

structed to evaluate model performance under different
conditions:

1. Original dataset + features selected by Extra Trees

2. Original dataset + features selected by Random Forest

3. Balanced dataset + features selected by Extra Trees

4. Balanced dataset + features selected by Random Forest

Each experimental setup was evaluated using two dif-
ferent train-test split configurations: one with 80% of the
data used for training and 20% for testing, and another
with an equal split of 50% for training and 50% for test-
ing. This dual evaluation strategy enables the assessment
of each model’s robustness, generalization capability, and
sensitivity to the amount of training data available. The in-
clusion of a 50/50 split allows us to examine model per-
formance under limited training data conditions, which is
particularly relevant in real-world scenarios where labeled
samples may be scarce. Together, these experimental varia-
tions enable a comparative analysis of how feature selection
strategies, class distribution, and training size interact to in-
fluence classifier performance, interpretability, and compu-
tational cost.

7 Data mining

Data mining has emerged as a vital component in malware
detection due to its ability to uncover hidden patterns and
generalize from labeled examples, going beyond the limi-
tations of traditional signature-based techniques. As high-
lighted by Souri and Hosseini [16], the integration of data
mining with machine learning enables robust classification
mechanisms that can detect both known and previously un-
seen malware threats.
In this study, we apply data mining techniques to per-

form supervised classification of static malware attributes.
The selected algorithms—Backpropagation Neural Net-
work (BPNN), Decision Tree, Random Forest, and Support
VectorMachine—arewidely established in the literature for
their effectiveness in modeling diverse decision boundaries
while balancing predictive performance with interpretabil-
ity.
The following subsections detail the implementation and

theoretical background of each algorithm used in this work.



Static Malware Detection through Ensemble Feature Selection… Informatica 49 (2025) 297–316 303

7.1 Backpropagation neural network
(BPNN)

BPNN are fundamental due to their ability to model com-
plex, nonlinear relationships by automatically learning
hierarchical feature representations from raw data [17].
BPNN is a type of supervised learning model based on ar-
tificial neural networks, composed of an input layer, one or
more hidden layers, and an output layer [17]. Each neu-
ron in a given layer is fully connected to all neurons in
the subsequent layer, and these connections are associated
with weights that determine the strength and direction of in-
fluence between neurons. Weights and biases are the core
trainable parameters of the network and are adjusted during
training to reduce prediction error.
The training process in BPNN consists of two main

phases: forward propagation and backpropagation. During
forward propagation, input data is passed through the net-
work layer by layer to produce an output. The network’s
error is then calculated by comparing this output to the ex-
pected target. In the backward pass, the error is propa-
gated backward through the network to compute gradients
for each weight, using the chain rule of calculus. These gra-
dients are then used to update the weights in a way that min-
imizes the loss function. This process is repeated for several
iterations or epochs until convergence is achieved [17].
Figure 4 illustrates the general architecture of the BPNN

implemented in this study. While each hidden layer in the
actual model consists of 128 neurons, the figure provides
a simplified visualization using ellipses to indicate addi-
tional units. The network receives an input vector of length
n, processes it through two fully connected hidden layers,
and produces a single binary output via a sigmoid-activated
neuron.

x1

x2

...

xn

...
...

ŷ

Input layer Hidden layer 1 Hidden layer 2

Output layer

Figure 4: Simplified architecture of the BPNN.

In this study, we implemented a fully connected feed-
forward BPNN using the Keras API with TensorFlow
as the backend. The architecture consisted of two
hidden layers, each with 128 neurons and ReLU ac-
tivation functions (activation="relu"), and an
output layer with a single neuron and a sigmoid
activation function (activation="sigmoid") for
binary classification. The model was compiled us-
ing the Adam optimizer with a learning rate of 10−3

(learning_rate=1e-3) and the binary cross-entropy

loss function (loss="binary_crossentropy"). Binary
accuracy (metrics=["BinaryAccuracy"]) was used as
the evaluation metric. All other hyperparameters were kept
at their default values.

7.2 Decision tree (DT)
DT are simple, interpretable models that construct tree
structures by recursively splitting the dataset based on fea-
ture values. While easy to understand and implement, their
performance can degrade in high-variance or noisy envi-
ronments due to overfitting [18]. DT is a supervised learn-
ing algorithm that recursively partitions the instance space
using a rooted and directed tree structure, where each in-
ternal node performs a test on an input attribute, and each
leaf node represents a decision outcome or a probability
distribution over target classes [19]. This top-down ap-
proach, also known as recursive partitioning or “divide
and conquer”, results in a hierarchical model that is both
interpretable and easy to visualize. In each step of the
tree construction, the algorithm selects the attribute and
corresponding split point that maximize a given splitting
criterion—typically the information gain, Gini index, or re-
duction in variance—depending on the nature of the task
(classification or regression).
The algorithm proceeds until a stopping criterion is met,

such as reaching a maximum tree depth, a minimum num-
ber of samples per node, or the absence of further infor-
mation gain. Each path from the root to a leaf node can
be interpreted as a decision rule, which enables rule-based
reasoning and transparent decision-making. In fact, each
internal node acts as a conditional if statement, and each
branch corresponds to a possible outcome (else), making
the entire path a sequence of nested if-else conditions.
This logic-based structure is visually illustrated in Figure 5,
where each decision node leads to a branch representing
a binary condition and eventually a classification output.
Each branch reflects a conditional rule, and leaves repre-
sent final decisions.

Figure 5: General structure of a binary DT.

In this study, we employed the scikit-learn imple-
mentation of DTs [15], which is based on the CART algo-
rithm (Classification and Regression Trees), originally in-
troduced by Breiman et al. (as summarized in [19]). Un-
like other tree algorithms such as ID3 or C4.5, CART con-
structs strictly binary trees and supports both classification
and regression tasks by using the Gini impurity and mean
squared error as default criteria, respectively. In our config-
uration, the DTwas initialized with a maximum depth of 10



304 Informatica 49 (2025) 297–316 I. Moreno-Lara et al.

Figure 6: Simplified representation of a RF.

(max_depth=10) to control model complexity and reduce
the risk of overfitting, while the remaining hyperparameters
were left at their default values.

7.3 Random forest (RF)

RF address the limitation of DT by aggregating the predic-
tions of multiple decision trees trained on random subsets
of the data, leading to improved accuracy, reduced vari-
ance, and robustness across diverse data distributions [18].
Therefore, RF is a widely used ensemble learning method
designed to improve the performance and robustness of de-
cision tree classifiers by combining the predictions of mul-
tiple trees into a single output. RF was proposed by Leo
Breiman and Adele Cutler and is considered an extension
of the bagging method [20]. The core idea behind RF is to
build a large collection of de-correlated decision trees and
aggregate their outputs, using majority voting for classifi-
cation or averaging for regression.
The algorithm constructs each tree using a bootstrap sam-

ple of the training data (sampling with replacement), and at
each split, it selects the best feature from a randomly cho-
sen subset of features—rather than considering all features
as in a traditional decision tree. This dual randomness, in
both data and feature selection, introduces diversity among
the trees, which reduces overfitting and improves general-
ization performance. The underlying decision trees are typ-
ically trained using the CART algorithm, which employs
criteria such as Gini impurity or mean squared error to de-
termine optimal splits [20].
Figure 6 shows a simplified representation of a RF. Each

tree in the ensemble produces its own prediction based on
different subsets of data and features. Multiple decision
trees are trained independently, and their predictions are ag-
gregated through a majority voting mechanism (for classifi-
cation), illustrated by the green node labeled Voting, which
determines the final output of the model.
In this study, we used the scikit-learn imple-

mentation of RF [15], configuring the model with 100
trees (n_estimators=100) and a fixed random seed
(random_state=42) to ensure reproducibility. All other
hyperparameters were left at their default values.

7.4 Support vector machine (SVM)

SVM is a supervised learning algorithm that aims to find
the optimal hyperplane that separates data points of differ-
ent classes in an N-dimensional space [21]. This hyper-
plane is chosen to maximize the margin, defined as the dis-
tance between the closest points (support vectors) of oppos-
ing classes. The idea is to achieve the most generalizable
separation between classes, reducing the risk of overfitting
and improving performance on unseen data. Studies have
demonstrated their strong discriminative power in educa-
tional and cybersecurity datasets, particularly when using
sigmoid or radial basis kernels [22].
Figure 7 illustrates a typical linear SVM scenario in a 2D

space. The solid line represents the optimal separating hy-
perplane, while the dashed lines define the margin bound-
aries. The hyperplane separates the two classes while max-
imizing the margin between the closest points, known as
support vectors, which determine its position and orienta-
tion.

Figure 7: Linear SVM classification

Developed in the 1990s by Vladimir Vapnik and col-
leagues, SVMs support both linear and non-linear classifi-
cation tasks. When data is linearly separable, a linear SVM
fits the widest possible margin between classes. However,
for more complex data distributions, SVMs use the kernel
trick—a mathematical technique that implicitly maps the
input features into a higher-dimensional space where linear
separation becomes feasible. Common kernel functions in-



Static Malware Detection through Ensemble Feature Selection… Informatica 49 (2025) 297–316 305

clude the polynomial kernel, sigmoid kernel, and radial ba-
sis function (RBF) kernel [21].
In this study, the SVM model was implemented using

the scikit-learn library [15]. We employed the radial
basis function (RBF) as the kernel (kernel="rbf"), with
the regularization parameter set to C=1.0 and gamma=0.7,
which controls the influence of individual training samples.
The remaining hyperparameters were kept at their default
values.

8 Results
Building on the experimental setups introduced earlier, this
section presents a detailed evaluation of the models across
all scenarios. The goal is to analyze how the feature selec-
tion strategy, class distribution, and training data size affect
classification performance.
To quantify the performance of each classifier, we used

standard metrics: accuracy, F1-score, mean squared error
(MSE), and the Area Under the Receiver Operating Charac-
teristic Curve (AUC–ROC, hereafter AUC). These metrics
were computed using scikit-learn [15], and are comple-
mented by confusion matrices to visualize prediction out-
comes.

8.1 Evaluation metrics
The evaluation metrics were calculated based on the con-
fusion matrix, which summarizes prediction outcomes as
illustrated in Figure 8. The formulas follow standard defi-
nitions in classification evaluation [23].
• Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN

• F1-score:

F1-score = 2 · Precision · Recall
Precision+ Recall

,

with Precision =
TP

TP + FP
, Recall =

TP

TP + FN

• Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

• AUC:

AUC =

∫ 1

0

TPR(x) d(FPR(x))

where TPR (True Positive Rate) is defined as TPR =
TP

TP+FN and FPR (False Positive Rate) is defined as
FPR = FP

FP+TN .

TP FN

FP TNA
ct
ua
lv
al
ue Po
si
tiv
e

N
eg
at
iv
e

Predicted value

Positive Negative

Figure 8: Structure of a confusion matrix

In this context, TP (True Positives) refers to instances
correctly predicted as belonging to the positive class, TN
(True Negatives) to instances correctly predicted as nega-
tive, FP (False Positives) to negative instances incorrectly
classified as positive, and FN (False Negatives) to positive
instances incorrectly classified as negative.

8.2 Results on the original dataset
(unbalanced)

Table 3 summarizes the metrics obtained when training the
models with the original imbalanced dataset. Two differ-
ent feature selectors were evaluated: Extra Trees Classi-
fier and Random Forest Classifier, each under 80/20 and
50/50 train-test splits. In general, the best performance was
consistently achieved by the RF model, followed closely
by DT, especially in terms of F1-score and MSE. The
BPNN model showed the lowest accuracy and F1-score
across most configurations, particularly under the Extra
Trees 80/20 split.
Confusion matrices corresponding to these results are

shown in Figures 9(a) to 9(d).

8.3 Results on the balanced dataset
Table 4 presents the results when the dataset was bal-
anced through undersampling. In this case, BPNN per-
formance improved significantly in both accuracy and F1-
score across all settings. While tree-based models such as
RF and DT retained their strong performance, the perfor-
mance gap between them and BPNN/SVM narrowed con-
siderably.
The corresponding confusion matrices are shown in Fig-

ures 10(a) to 10(d).

8.4 Interpretation
The evaluation results and confusion matrices across all ex-
perimental setups reveal critical insights into how the fea-
ture selection strategy, class distribution, and training size
affect the behavior of different classifiers.



306 Informatica 49 (2025) 297–316 I. Moreno-Lara et al.

Table 3: Evaluation results on the original (unbalanced) dataset.

Feature Selector Train/Test Model Accuracy (%) F1-score MSE AUC

Extra Trees Classifier

80/20

BPNN 91.84 0.8458 0.0816 0.9404
DT 99.11 0.9853 0.0089 0.9943
RF 99.43 0.9906 0.0057 0.9995
SVM 98.45 0.9749 0.0155 0.9958

50/50

BPNN 96.04 0.9318 0.0396 0.9392
DT 99.01 0.9834 0.0099 0.9934
RF 99.34 0.9890 0.0066 0.9995
SVM 98.06 0.9683 0.0194 0.9945

Random Forest Classifier

80/20

BPNN 96.73 0.9452 0.0327 0.9588
DT 99.03 0.9840 0.0097 0.9944
RF 99.45 0.9909 0.0055 0.9995
SVM 95.96 0.9374 0.0404 0.9897

50/50

BPNN 96.60 0.9422 0.0340 0.9568
DT 99.06 0.9842 0.0094 0.9929
RF 99.37 0.9894 0.0063 0.9995
SVM 95.45 0.9290 0.0455 0.9871

Table 4: Evaluation results on the balanced dataset.
Feature Selector Train/Test Model Accuracy (%) F1-score MSE AUC

Extra Trees Classifier

80/20

BPNN 93.07 0.9327 0.0693 0.9572
DT 98.96 0.9897 0.0104 0.9950
RF 99.32 0.9932 0.0068 0.9994
SVM 98.28 0.9832 0.0172 0.9954

50/50

BPNN 94.36 0.9414 0.0564 0.9438
DT 98.93 0.9894 0.0107 0.9944
RF 99.25 0.9925 0.0075 0.9993
SVM 97.98 0.9802 0.0202 0.9949

Random Forest Classifier

80/20

BPNN 94.59 0.9456 0.0541 0.9247
DT 98.86 0.9887 0.0114 0.9952
RF 99.27 0.9928 0.0073 0.9993
SVM 96.37 0.9652 0.0363 0.9871

50/50

BPNN 96.34 0.9630 0.0366 0.9353
DT 98.82 0.9883 0.0118 0.9933
RF 99.23 0.9923 0.0077 0.9990
SVM 96.20 0.9634 0.0380 0.9846

Under the original (unbalanced) dataset, both the Extra
Trees Classifier and the Random Forest Classifier en-
abled the tree-based models (DT and RF) to achieve out-
standing performance. In particular, RF consistently deliv-
ered the best results across nearly all configurations. For
instance, when using the Random Forest Classifier with an
80/20 split on the unbalanced dataset, RF achieved an F1-
score of 0.9909 and an MSE of 0.0055, with only 57 false
negatives and 96 false positives (Figure 9(c)). Similarly,
DT obtained 99.03% accuracy with only 134 false nega-
tives and 134 false positives in the same setting.
The performance of BPNN under unbalanced data was

comparatively lower, particularly with the Extra Trees
Classifier in the 80/20 setting. As shown in Figure 9(a),
BPNN misclassified 2179 legitimate samples as false neg-
atives and 74 non-legitimate samples as false positives, re-
sulting in a relatively low F1-score of 0.8458 and the high-
est MSE among all models (0.0816). Although its accuracy
and F1-score improved with more training data (96.04% ac-

curacy and 0.9318 F1-score in the 50/50 split), the gap with
tree-based models remained noticeable (Figure 9(b)).
SVM also exhibited sensitivity to class imbalance. Par-

ticularly, in the Random Forest Classifier with 50/50 split
(Figure 9(d)), SVM produced the highest number of false
positives (3115) among all models evaluated and an F1-
score of 0.9290, indicating potential overfitting or misclas-
sification of non-legitimate samples.
After applying class balancing through random under-

sampling, substantial improvements were observed for both
BPNN and SVM. The most dramatic gains were evident in
the confusion matrices and F1-scores. For example, in the
Extra Trees Classifier with 80/20 split, BPNNs number of
false negatives decreased sharply from 2179 (Figure 9(a))
to 396 (Figure 10(a)), and its F1-score rose from 0.8458 to
0.9327. A similar trend occurred in the 50/50 split (Fig-
ure 10(b)), where BPNN reached an F1-score of 0.9414,
rivaling the performance of the DT model.
SVM also benefited from class balancing. Its false posi-



Static Malware Detection through Ensemble Feature Selection… Informatica 49 (2025) 297–316 307

(a) Feature selector = Extra Trees Classifier (80/20 split)

(b) Feature selector = Extra Trees Classifier (50/50 split)

(c) Feature selector = Random Forest Classifier (80/20 split)

(d) Feature selector = Random Forest Classifier (50/50 split)

Figure 9: Confusion matrices derived from unbalanced datasets.

tives dropped from 373 (Figure 9(a)) to 254 (Figure 10(a))
and its F1-score improved to 0.9832. In the Random Forest
Classifier 50/50 split (Figure 10(d)), SVM reached an F1-
score of 0.9634, which was a significant leap compared to
its previous 0.9290 under unbalanced conditions.
The Random Forest Classifier again proved to be the

most stable and performant model, maintaining F1-scores
above 0.99 in all conditions. Its robustness was evident
not only in metrics but also in the confusion matrices (Fig-
ures 9(c) and 10(c)), where it consistently minimized both
types of errors.
DT also demonstrated solid performance, though it was



308 Informatica 49 (2025) 297–316 I. Moreno-Lara et al.

(a) Feature selector = Extra Trees Classifier (80/20 split)

(b) Feature selector = Extra Trees Classifier (50/50 split)

(c) Feature selector = Random Forest Classifier (80/20 split)

(d) Feature selector = Random Forest Classifier (50/50 split)

Figure 10: Confusion matrices derived from balanced datasets.

slightly less robust than RF when evaluated across multiple
conditions. Nevertheless, DTs simplicity and interpretabil-
ity, combined with its consistent accuracy above 98.8%,
make it a compelling alternative in scenarios where model
transparency is essential.
Taken together, class balancing emerged as a critical

factor in enhancing the performance of BPNN and SVM.
BPNN in particular showed the largest relative improve-
ment, validating its ability to generalize well when trained
with balanced data. The change was evident from the pat-
terns observed in the confusion matrices, where the mis-
classification of legitimate samples drastically declined.



Static Malware Detection through Ensemble Feature Selection… Informatica 49 (2025) 297–316 309

The findings also underline the importance of evaluating
model performance not only through scalar metrics like ac-
curacy and F1-score but also through the detailed inspection
of confusion matrices, which reveal nuanced differences in
behavior under various training conditions.
Ultimately, the RF and DT models consistently out-

performed other classifiers, regardless of feature selection
method or class balance. However, BPNN proved to be
a viable and competitive option when supported with bal-
anced data, highlighting the potential of neural models in
binary classification tasks involving skewed class distribu-
tions.
In addition to the evaluation results, it is important to

note that extensive experimentation was conducted to de-
termine optimal hyperparameter settings for each model.
The configurations reported in this studywere selected after
testing multiple combinations and correspond to those that
yielded the best trade-off between accuracy and generaliza-
tion. Notably, BPNN and SVMmodels required more care-
ful tuning and exhibited longer training times compared to
tree-based models. This difference in computational cost
was particularly evident during iterative experimentation,
where DT and RF consistently trained faster, making them
more suitable for rapid prototyping and scenarios with lim-
ited computational resources.
In the case of BPNN, the architectural decision to use

two hidden layers with moderate size was guided by empir-
ical testing. Configurations with 128 neurons per layer of-
fered a practical balance between representational capacity
and computational efficiency, capturing complex patterns
without overfitting or incurring excessive training costs.
Although other configurations were considered, larger net-
works did not show meaningful improvements, reinforcing
this choice as an effective trade-off.

9 Discussion

The experimental findings presented in Tables 3 and 4 re-
veal that the proposed models achieve performance levels
comparable to those reported in previous malware detec-
tion studies (Table 1). Earlier works based on deep neural
networks—such as Convolutional Neural Network, Recur-
rent Neural Network, or Active Learning architectures—
reported accuracies above 99%. In contrast, the RF model
in the present study reached a peak accuracy of 99.45%
and an F1-score of 0.9909 on the unbalanced dataset, while
maintaining similar performance (99.27% accuracy and
0.9928 F1-score) on the balanced dataset. These results po-
sition RF on par with advanced deep-learning approaches,
despite its substantially lower computational complexity
and training time.
It is important to note that although previous studies re-

ported high accuracy values (while some also showed re-
sults around 70–80%), this metric alone can be misleading
when the dataset is imbalanced. When one class is signif-
icantly more frequent than the other, a model can achieve

high accuracy without truly learning to distinguish between
classes. Therefore, complementary metrics such as Recall,
F1-score, and AUC provide a more complete and fair as-
sessment of model performance. In particular, AUC eval-
uates how well the model separates positive and negative
samples—that is, the probability that the model assigns a
higher score to a positive instance than to a negative one.
As shown in Tables 3 and 4, the RFmodel achieved anAUC
value of 0.9995, which is nearly perfect.

A notable finding is the consistent superiority of tree-
based methods—particularly RF and DT—over both neu-
ral and kernel-based models. Several factors explain this
behavior. First, tree ensembles inherently manage nonlin-
ear feature interactions and handle irrelevant attributes ef-
fectively, which is a crucial advantage when using static
features extracted from PE files. Second, tree-based algo-
rithms are less sensitive to feature scaling and class imbal-
ance, leading to stable convergence without extensive hy-
perparameter tuning. Moreover, the feature selection meth-
ods (Extra Trees and Random Forest) used in this work syn-
ergize naturally with DT and RF models, as they rely on the
same impurity-based importance measures. This alignment
likely amplified their discriminative power, yielding near-
perfect accuracy and minimal MSE.

Although RF achieved near-perfect accuracy, its excep-
tional performance must be interpreted cautiously. Ensem-
ble models can overfit when trained on high-dimensional
data or when feature redundancy is high. Nevertheless, the
low MSE and consistent results across training/test splits
suggest strong generalization rather than overfitting. RF
also offers partial interpretability through feature impor-
tance metrics, making it more explainable than most deep-
learning approaches that function as black boxes. Run-
time efficiency was another advantage: DT and RF re-
quired significantly shorter training and inference times
than BPNN and SVM, supporting their suitability for real-
time or resource-limited malware detection scenarios.

Regarding novelty, this work does not introduce a new
algorithmic architecture but rather provides a systematic
comparative evaluation of established ML techniques un-
der a new dataset configuration with explicit class balanc-
ing and feature selection strategies. This approach bridges a
gap left by previous studies that primarily emphasized raw
accuracy without addressing imbalance or interpretability.
The contribution therefore lies in demonstrating that tra-
ditional, interpretable methods—when properly tuned and
combined with informed feature selection—can achieve
state-of-the-art performance comparable to deep neural net-
works while remaining computationally efficient and trans-
parent.

In summary, the discussion reinforces three core in-
sights: (1) tree-based models remain a competitive and in-
terpretable choice for static malware detection; (2) data bal-
ancing and feature selection significantly enhance neural
and kernel-based classifiers; and (3) explainability, runtime
efficiency, and model simplicity are decisive factors when



310 Informatica 49 (2025) 297–316 I. Moreno-Lara et al.

translating research findings into operational cybersecurity
systems.

10 Conclusions and future work

This study presented an approach to the detection of mal-
ware using supervised machine learning models trained
on static features extracted from malware and benign ex-
ecutable samples. The problem was addressed through
the lens of binary classification, with a clear experimen-
tal structure grounded in the KDD process. By evaluating
four well-known classifiers—BPNN, DT, RF, and SVM—
across different training sizes, feature selection strategies,
and class balance conditions, the work offers an in-depth
perspective on the capabilities and limitations of each algo-
rithm in real-world scenarios.
The integration of the KDD process provided a struc-

tured and reproducible pipeline, encompassing data selec-
tion, preprocessing, transformation, feature selection, and
evaluation. This methodology allowed for a disciplined ex-
perimentation strategy that ensured consistency across tests
while providing room for targeted insights. In particular,
the use of tree-based feature selection methods, namely Ex-
tra Trees and Random Forest classifiers, was effective in re-
ducing input dimensionality while preserving high predic-
tive performance. These selectors not only improved train-
ing efficiency but also helped mitigate potential noise and
redundancy in the feature space.
Quantitative results showed that the RF and DT mod-

els consistently outperformed other classifiers in nearly all
configurations, achieving F1-scores above 0.99 and mini-
mum MSE across both unbalanced and balanced datasets.
Their robustness to class imbalance and their ability to pro-
duce reliable predictions make them strong candidates for
malware detection systems in high-stakes environments.
Notably, RF achieved outstanding performance even with
fewer training samples, suggesting that it can generalize
well with limited labeled data.
BPNN, on the other hand, initially struggled under un-

balanced data conditions, presenting higher false negative
rates and lower F1-scores. However, after balancing the
dataset via undersampling, BPNN showed the most signif-
icant performance improvement among all classifiers. Its
F1-score increased by nearly 10 percentage points in some
scenarios, and its error rates decreased substantially. These
results confirm that while neural networks may be more
sensitive to class distribution, they also possess strong gen-
eralization capabilities when trained under balanced condi-
tions with representative data. Similarly, SVM exhibited
sensitivity to class imbalance, with a tendency to produce
high false positive rates. Nevertheless, it also benefitted
from class balancing, improving its F1-score and reducing
misclassification rates.
Beyond model performance, this study highlights the

strategic convergence of three core domains: data science,
machine learning, and cybersecurity. The use of static

malware analysis aligns with practices in ethical hacking,
where reverse engineering and behavioral understanding of
malicious software support the development of robust de-
fense mechanisms. The incorporation of automated clas-
sification models into malware detection workflows repre-
sents a step forward toward proactive and intelligent cy-
bersecurity systems capable of adapting to ever-evolving
threats. In this context, data-driven approaches not only im-
prove detection accuracy but also enable scalable and inter-
pretable systems that align with ethical standards of cyber
defense.

10.1 Limitations
Although the proposed approach demonstrates strong per-
formance in detecting malware through static analysis, cer-
tain limitations should be acknowledged. The methodol-
ogy relies exclusively on static features extracted from PE
files, which may not capture behaviors exhibited only dur-
ing runtime. As a result, malware employing advanced
obfuscation or dynamic evasion techniques could remain
undetected. Previous studies, such as the ARMED frame-
work by Castro et al. [24], have shown that minor modifica-
tions to executable files can drastically reduce the effective-
ness of static detectors, underscoring the inherent fragility
of static-only approaches. Furthermore, the dataset used—
while extensive—may not fully represent the diversity of
emerging threats in real-world environments. These factors
highlight the need for further research integrating comple-
mentary behavioral insights and broader datasets to address
evolving malware techniques.

10.2 Future work
Future work should explore several avenues to extend the
present findings. One direction involves incorporating dy-
namic features, such as runtime behavior, system calls, and
network activity, which can provide richer contextual infor-
mation and enhance the model’s ability to detect complex
or evasive behaviors. Another promising path includes the
integration of hybrid or ensemble architectures that com-
bine the strengths of multiple classifiers—e.g., a BPNN-
RF stack—to capture both nonlinear patterns and decision-
level robustness. Additionally, future research should con-
sider adversarial robustness, particularly the model’s re-
sistance to manipulated input data, by exploring adver-
sarial training or applying explainability frameworks such
as SHapley Additive exPlanations (SHAP) or Local In-
terpretable Model-agnostic Explanations (LIME) to pro-
mote interpretability and accountability. Finally, applying
the methodology to real-time or online detection settings,
and generalizing it across platforms and malware families,
would enhance the applicability and operational value of
the proposed solutions.



Static Malware Detection through Ensemble Feature Selection… Informatica 49 (2025) 297–316 311

References
[1] National Institute of Standards and Technology,

“Malware definition.” https://csrc.nist.gov/
glossary/term/malware, 2023. Accessed: 2025-
05-17.

[2] Symantec, “Internet security threat report 2023.”
https://symantec-enterprise-blogs.
security.com, 2023. Accessed: 2025-05-17.

[3] R. Sihwail, K. Omar, and K. A. Z. Ariffin, “A sur-
vey on malware analysis techniques: Static, dynamic,
hybrid and memory analysis,” International Journal
on Advanced Science, Engineering and Information
Technology, vol. 8, no. 4-2, pp. 1662–1671, 2018.

[4] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The
kdd process for extracting useful knowledge from vol-
umes of data,” Communications of the ACM, vol. 39,
no. 11, pp. 27–34, 1996.

[5] M. Shakib, “Android Malware Detection Approach’s
Based on Genetic Ai, Cnn, Rnn, Lstm, Gru, and
Active Learning.” Social Science Research Network,
2023.

[6] H. C. Tanuwidjaja and K.-j. Kim, “Enhancing mal-
ware detection by modified deep abstraction and
weighted feature selection,” in In Proceedings of the
2020 Symposium on Cryptography and Information
Security, Seoul, Republic of Korea, pp. 1–8, 2020.

[7] R. K. ROY, “A few approaches in encrypted malware
classifications.” Zenodo, 2022.

[8] R. Baker del Aguila, C. D. Contreras Pérez, A. G.
Silva-Trujillo, J. C. Cuevas-Tello, and J. Nunez-
Varela, “Static malware analysis using low-parameter
machine learning models,” Computers, vol. 13, no. 3,
p. 59, 2024.

[9] VirusShare. https://virusshare.com/, Accessed
on March 25, 2025.

[10] The pandas development team, “pandas-dev/pandas:
Pandas.” Zenodo, Sept. 2025.

[11] A. M. Sharifnia, D. E. Kpormegbey, D. K. Thapa, and
M. Cleary, “A primer of data cleaning in quantita-
tive research: Handling missing values and outliers,”
Journal of Advanced Nursing, vol. 0, pp. 1–6.

[12] M. Carvalho, A. J. Pinho, and S. Brás, “Resampling
approaches to handle class imbalance: a review from a
data perspective,” Journal of Big Data, vol. 12, no. 1,
p. 71, 2025.

[13] R. E. Bellman, Dynamic Programming. Princeton,
NJ: Princeton University Press, 1957.

[14] D. Peng, Z. Gui, and H.Wu, “Interpreting the curse of
dimensionality from distance concentration and man-
ifold effect,” arXiv preprint arXiv:2401.00422, 2023.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python.”
https://scikit-learn.org/stable/, 2011. Ac-
cessed: 2025-05-20.

[16] A. Souri and R. Hosseini, “A state-of-the-art survey of
malware detection approaches using datamining tech-
niques,” Human-centric Computing and Information
Sciences, vol. 8, no. 1, p. 3, 2018.

[17] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
nature, vol. 521, no. 7553, pp. 436–444, 2015.

[18] A. Kinasih, A. Handayani, J. Ardiansah, and
N. Damanhuri, “Comparative analysis of decision tree
and random forest classifiers for structured data clas-
sification in machine learning,” Science in Informa-
tion Technology Letters, vol. 5, pp. 13–24, 11 2024.

[19] L. Rokach and O. Maimon, Decision Trees, pp. 165–
192. Boston, MA: Springer US, 2005.

[20] IBM, “What is random forest?.” https://www.ibm.
com/think/topics/random-forest, 2021. Ac-
cessed: 2025-05-24.

[21] N. Cristianini and E. Ricci, “Support vector ma-
chines,” in Encyclopedia of algorithms, pp. 928–932,
Springer, 2008.

[22] T. Admassu, A. Salau, G. Chhabra, K. Kaushik, and
S. Braide, “Evaluation of random forest and support
vector machine models in educational data mining,”
06 2024.

[23] A. Geron, Hands-On Machine Learning with Scikit-
Learn, Keras, and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. O’ReillyMe-
dia, Inc., 2nd ed., 2019.

[24] R. Castro, C. Schmitt, and G. Rodosek, “Armed: How
automatic malware modifications can evade static de-
tection?,” pp. 20–27, 03 2019.

Appendix
In this section we present the grouped features and their de-
scriptions for static malware analysis (Table 5), the descrip-
tive statistics for the features separated by class (Tables 6
and 7), and the correlation matrices (Figures 11 and 12),.



312 Informatica 49 (2025) 297–316 I. Moreno-Lara et al.

Table 5: Grouped features and descriptions for static malware analysis
Group Feature Description

File Header
Machine Identifies the required architecture for execution and helps determine compatibility with system hard-

ware.
SizeOfOptionalHeader Defines the byte size of the optional header that contains execution-specific fields.
Characteristics Specifies attributes of the file such as its type and layout via a set of binary flags.

Optional Header

MajorLinkerVersion Stores the primary version number of the linker used during compilation.
MinorLinkerVersion Stores the secondary version number of the linker.
SizeOfCode Indicates the combined size in bytes of all executable code sections.
SizeOfInitializedData Indicates the total size in bytes of initialized data sections.
SizeOfUninitializedData Refers to the size of memory blocks declared but not initialized during compilation.
AddressOfEntryPoint Represents the memory offset where execution starts once the binary is loaded.
BaseOfCode Marks the beginning memory address of the code section.
BaseOfData Marks the beginning memory address of the initialized data section.
ImageBase Indicates the default memory location where the file should be loaded by the operating system.
SectionAlignment Describes how the sections are aligned in virtual memory during load time.
FileAlignment Describes how the sections are aligned on disk.
MajorOperatingSystemVersion Declares the major version of the minimum supported operating system.
MinorOperatingSystemVersion Declares the minor version of the minimum supported operating system.
MajorImageVersion Indicates the major version label assigned to the image by the developer.
MinorImageVersion Indicates the minor version label assigned to the image.
MajorSubsystemVersion Provides the major version of the subsystem environment required.
MinorSubsystemVersion Provides the minor version of the subsystem environment required.
SizeOfImage Specifies the full size in memory of the loaded binary including headers and sections.
SizeOfHeaders Indicates the total byte size of all headers in the file.
CheckSum Used to verify integrity of the file; often unused during execution.
Subsystem Determines the expected runtime environment required to execute the binary.
DllCharacteristics Contains binary flags that determine runtime features related to memory and execution behavior.
SizeOfStackReserve Declares the total memory reserved for the process stack.
SizeOfStackCommit Declares the portion of the stack that is initially committed.
SizeOfHeapReserve Declares the total memory reserved for the process heap.
SizeOfHeapCommit Declares the portion of the heap that is initially committed.
LoaderFlags Reserved field used for system-specific loading behaviors.
NumberOfRvaAndSizes Number of data directory entries present in the optional header.

Section Entropy

SectionsNb Counts the number of sections defined within the binary.
SectionsMeanEntropy Measures the average entropy across all sections indicating data randomness.
SectionsMinEntropy Identifies the lowest entropy score among all sections.
SectionsMaxEntropy Identifies the highest entropy score among all sections.

Section Size

SectionsMeanRawsize Reports the average disk size of all sections.
SectionsMinRawsize Records the smallest section size on disk.
SectionMaxRawsize Records the largest section size on disk.
SectionsMeanVirtualsize Reports the average size of all sections when loaded in memory.
SectionsMinVirtualsize Records the smallest memory size among sections.
SectionMaxVirtualsize Records the largest memory size among sections.

Imports
ImportsNbDLL Counts the total number of dynamic link libraries used.
ImportsNb Counts all imported functions across all libraries.
ImportsNbOrdinal Counts functions imported using ordinal references rather than names.

Exports ExportNb Counts the number of functions made accessible to other modules.

Resources

ResourcesNb Counts the embedded assets included in the binary.
ResourcesMeanEntropy Measures the average entropy of the embedded resources.
ResourcesMinEntropy Identifies the lowest entropy score across the embedded resources.
ResourcesMaxEntropy Identifies the highest entropy score across the embedded resources.
ResourcesMeanSize Measures the average size of the embedded resources.
ResourcesMinSize Records the smallest embedded resource by size.
ResourcesMaxSize Records the largest embedded resource by size.

Configuration LoadConfigurationSize Declares the byte size of the load configuration structure.
VersionInformationSize Declares the byte size of the file versioning metadata.



Static Malware Detection through Ensemble Feature Selection… Informatica 49 (2025) 297–316 313

Table 6: Descriptive statistics for features (Malware class only)
Feature Range Mean Std Q1 Q3
Machine 332 – 34404 355.95 903.10 332.00 332.00
SizeOfOptionalHeader 224 – 352 224.01 0.597 224.00 224.00
Characteristics 2 – 49551 3.3K 9.3K 258.00 259.00
MajorLinkerVersion 0 – 255 8.57 4.82 8.00 10.00
MinorLinkerVersion 0 – 255 4.96 13.83 0.000 0.000
SizeOfCode 0 – 1818586738 176.9K 6.8M 37.9K 120.3K
SizeOfInitializedData 0 – 4294966272 518.6K 25.1M 119.8K 385.0K
SizeOfUninitializedData 0 – 4294940713 143.7K 19.5M 0.000 0.000
AddressOfEntryPoint 0 – 1074484297 172.3K 4.1M 14.8K 61.6K
BaseOfCode 0 – 2028711251 80.3K 6.6M 4.1K 4.1K
BaseOfData 0 – 268435456 223.0K 2.5M 45.1K 127.0K
ImageBase 65536.0 – 6442450944.0 13.1M 148.8M 4.2M 4.2M
SectionAlignment 16 – 134217728 8.3K 747.5K 4.1K 4.1K
FileAlignment 16 – 4096 588.85 519.26 512.00 512.00
MajorOperatingSystemVersion 0 – 36868 4.94 118.53 4.00 5.00
MinorOperatingSystemVersion 0 – 17757 1.18 92.65 0.000 1.00
MajorImageVersion 0 – 28619 3.32 190.06 0.000 0.000
MinorImageVersion 0 – 20512 2.86 168.51 0.000 0.000
MajorSubsystemVersion 3 – 6 4.70 0.461 4.00 5.00
MinorSubsystemVersion 0 – 47600 1.59 216.45 0.000 1.00
SizeOfImage 0 – 1410035712 827.1K 7.5M 311.3K 528.4K
SizeOfHeaders 448 – 786432 1.3K 6.5K 1.0K 1.0K
CheckSum 0 – 4294967295 256.1M 699.7M 300.4K 573.7K
Subsystem 1 – 3 2.01 0.076 2.00 2.00
DllCharacteristics 0 – 36864 28.7K 11.3K 32.8K 33.1K
SizeOfStackReserve 0 – 33554432 1.1M 484.2K 1.0M 1.0M
SizeOfStackCommit 0 – 2097152 5.5K 17.8K 4.1K 4.1K
SizeOfHeapReserve 0 – 13631488 1.1M 137.4K 1.0M 1.0M
SizeOfHeapCommit 0 – 2077323491 47.3K 9.4M 4.1K 4.1K
LoaderFlags 0 – 2328297507 51.5K 10.6M 0.000 0.000
NumberOfRvaAndSizes 7 – 3402309701 112.9K 17.5M 16.00 16.00
SectionsNb 1 – 40 5.25 1.81 5.00 5.00
SectionsMeanEntropy 0.0 – 7.98994115645 4.88 1.02 4.26 5.65
SectionsMinEntropy 0.0 – 7.98994115645 2.44 1.92 0.000 4.15
SectionsMaxEntropy 0.0 – 7.99999379205 7.38 0.732 6.59 7.96
SectionsMeanRawsize 64.0 – 1431641941.33 181.2K 9.2M 38.3K 101.1K
SectionsMinRawsize 0 – 2754048 5.8K 11.2K 0.000 9.7K
SectionMaxRawsize 64 – 4294885376 666.2K 35.9M 105.5K 330.8K
SectionsMeanVirtualsize 0.0 – 1431673348.0 183.7K 5.0M 46.3K 102.6K
SectionsMinVirtualsize 0 – 3399680 8.0K 20.1K 1.2K 9.4K
SectionMaxVirtualsize 0 – 4294884876 646.2K 15.3M 161.5K 339.7K
ImportsNbDLL 0 – 280 5.35 3.87 3.00 8.00
ImportsNb 0 – 3046 103.86 75.23 87.00 113.00
ImportsNbOrdinal 0 – 1051 1.43 11.11 0.000 1.00
ExportNb 0 – 8015 1.53 61.04 0.000 0.000
ResourcesNb 0 – 3060 13.99 32.64 6.00 14.00
ResourcesMeanEntropy 0.0 – 7.99972286753 4.15 1.23 3.50 4.45
ResourcesMinEntropy 0.0 – 7.99972286753 2.28 0.686 2.16 2.46
ResourcesMaxEntropy 0.0 – 7.99999295933 5.93 1.48 5.22 7.39
ResourcesMeanSize 0.0 – 2415919166.0 74.9K 9.3M 1.8K 12.7K
ResourcesMinSize 0 – 2415919166 25.7K 7.8M 48.00 48.00
ResourcesMaxSize 0 – 4294902624 323.4K 25.4M 7.3K 28.8K
LoadConfigurationSize 0 – 4294967294 664.6K 31.2M 0.000 72.00
VersionInformationSize 0 – 26 10.68 7.38 0.000 15.00



314 Informatica 49 (2025) 297–316 I. Moreno-Lara et al.

Table 7: Descriptive statistics for features (Legitimate class only)
Feature Range Mean Std Q1 Q3
Machine 332 – 34404 13.4K 16.6K 332.00 34.4K
SizeOfOptionalHeader 224 – 240 230.14 7.78 224.00 240.00
Characteristics 2 – 33679 7.2K 3.0K 8.2K 8.4K
MajorLinkerVersion 2 – 48 8.73 1.16 8.00 9.00
MinorLinkerVersion 0 – 60 1.16 3.51 0.000 0.000
SizeOfCode 0 – 51634176 396.5K 1.4M 7.2K 264.2K
SizeOfInitializedData 0 – 322908160 291.1K 2.2M 6.1K 112.6K
SizeOfUninitializedData 0 – 4197376 951.22 51.5K 0.000 0.000
AddressOfEntryPoint 0 – 45251088 171.3K 654.8K 4.6K 97.4K
BaseOfCode 0 – 3014656 5.1K 28.7K 4.1K 4.1K
BaseOfData 0 – 33599488 217.6K 939.5K 0.000 106.5K
ImageBase 65536.0 – 1.844673527761653e+19 1.8e+15 1.8e+17 268.4M 6442.5M
SectionAlignment 16 – 2097152 5.0K 21.1K 4.1K 4.1K
FileAlignment 16 – 65536 941.40 2.2K 512.00 512.00
MajorOperatingSystemVersion 0 – 10 5.46 0.806 5.00 6.00
MinorOperatingSystemVersion 0 – 3 0.891 0.679 1.00 1.00
MajorImageVersion 0 – 21315 221.90 2.1K 1.00 6.00
MinorImageVersion 0 – 20512 209.96 2.1K 0.000 1.00
MajorSubsystemVersion 1 – 10 5.24 0.838 5.00 6.00
MinorSubsystemVersion 0 – 50 1.11 1.77 0.000 1.00
SizeOfImage 3072 – 324210688 790.0K 3.1M 49.2K 540.7K
SizeOfHeaders 512 – 65536 1.4K 2.1K 1.0K 1.0K
CheckSum 0 – 4257612032 1.2M 38.6M 64.0K 488.7K
Subsystem 1 – 16 2.51 0.700 2.00 3.00
DllCharacteristics 0 – 49504 7.4K 13.4K 320.00 1.3K
SizeOfStackReserve 0 – 10000000 487.3K 447.6K 262.1K 1.0M
SizeOfStackCommit 0 – 1048576 5.4K 18.7K 4.1K 4.1K
SizeOfHeapReserve 0 – 4194304 988.5K 252.0K 1.0M 1.0M
SizeOfHeapCommit 0 – 65536 4.0K 1.6K 4.1K 4.1K
LoaderFlags 0 – 0 0.000 0.000 0.000 0.000
NumberOfRvaAndSizes 16 – 16 16.00 0.000 16.00 16.00
SectionsNb 1 – 38 4.39 2.01 3.00 5.00
SectionsMeanEntropy 0.173444442902 – 7.99555757619 4.06 1.05 3.25 4.83
SectionsMinEntropy 0.0 – 7.99555757619 1.83 1.51 0.334 2.96
SectionsMaxEntropy 1.11230271386 – 7.99999271595 5.96 0.984 5.78 6.54
SectionsMeanRawsize 333.714285714 – 92973226.6667 201.1K 1.1M 8.5K 114.7K
SectionsMinRawsize 0 – 29000704 51.7K 645.8K 512.00 4.1K
SectionMaxRawsize 512 – 321623040 614.3K 3.1M 26.6K 401.9K
SectionsMeanVirtualsize 226.0 – 64839490.2 199.5K 952.0K 8.4K 116.8K
SectionsMinVirtualsize 1 – 29000672 51.7K 645.8K 131.00 2.3K
SectionMaxVirtualsize 288 – 321622732 608.8K 2.7M 25.6K 407.9K
ImportsNbDLL 0 – 39 5.72 5.34 1.00 9.00
ImportsNb 0 – 4432 135.16 191.62 1.00 179.00
ImportsNbOrdinal 0 – 3450 11.15 60.70 0.000 4.00
ExportNb 0 – 16596 75.51 446.93 0.000 11.00
ResourcesNb 0 – 7694 40.93 243.39 1.00 8.00
ResourcesMeanEntropy 0.0 – 7.41281622478 3.66 0.648 3.41 3.92
ResourcesMinEntropy 0.0 – 5.14079953855 2.81 0.961 2.47 3.54
ResourcesMaxEntropy 0.0 – 7.99999997868 4.56 1.44 3.54 5.17
ResourcesMeanSize 0.0 – 3907290.66667 9.8K 89.9K 832.00 2.0K
ResourcesMinSize 0 – 7224 528.41 433.61 126.00 928.00
ResourcesMaxSize 0 – 312479744 66.8K 1.7M 928.00 9.6K
LoadConfigurationSize 0 – 160 30.78 40.25 0.000 72.00
VersionInformationSize 0 – 26 16.31 2.15 16.00 17.00



Static Malware Detection through Ensemble Feature Selection… Informatica 49 (2025) 297–316 315

Figure 11: Correlation matrix of features selected by Extra Trees



316 Informatica 49 (2025) 297–316 I. Moreno-Lara et al.

Figure 12: Correlation matrix of features selected by Random Forest


