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We propose GAT-GS, a graph-attention forecaster for financial time series that fuses dynamic market 

graphs with sequence modeling and GA-based hyperparameter/feature search. Experiments use three 

datasets with rolling-origin evaluation and train/test leakage controls: (D1) Global—500 large-cap 

equities (2010–2020); (D2) Single-market—U.S., EU, and CN subsets (2015–2020); (D3) Industry—

technology/finance/energy sectors (2015–2020). Baselines include ARIMA, LSTM, XGBoost, Prophet, 

CNN-LSTM, and a GCN variant. On the Global dataset (standardized returns), GAT-GS achieves MSE = 

0.028 ± 0.003 (95% CI [0.024, 0.034]), MAE = 0.090 ± 0.006, and R2=0.92±0.02, outperforming CNN-

LSTM (MSE 0.030, MAE 0.096, R2R^2R2 0.91) and LSTM (MSE 0.032, MAE 0.102, R2R^2R2 0.90). 

Gains are consistent on Single-market (MSE 0.029 vs. 0.031 best baseline) and Industry (MSE 0.030 vs. 

0.032). Ablations show removing attention or community regularization increases MSE by +21% and 

+14%, respectively. Backtests (10 bps/side) yield 12–13% annualized return, 7–9% max drawdown, and 

Sharpe 1.3–1.7. Implementation: 60-day rolling correlations for graph edges (∣ρ∣≥0.5), Louvain 

communities, 2-layer LSTM (128), 2-layer GAT (4 heads), GA search over graph/sequence/fusion 

hyperparameters; Adam 1e−3, early stopping, RTX 3090/64 GB RAM. 

Povzetek:  

 

1 Introduction 
Financial time series analysis plays a vital role in 

stock market forecasting, foreign exchange fluctuation 

analysis, futures trading, and risk management. Financial 

data usually exhibit strong temporal dependence, and the 

goal of time series analysis is to uncover patterns that 

guide investors in predicting trends and making rational 

decisions. Traditional statistical approaches such as 

ARIMA often fail to handle the high volatility, 

randomness, and nonlinearity of financial markets [1–3]. 

Market noise caused by macroeconomic, political, and 

behavioral factors further reduces predictive accuracy, 

while complex multi-level dynamics and inter-asset 

correlations challenge models that rely on linear 

assumptions [4–5]. 

To address these challenges, recent studies have 

turned to machine learning and optimization algorithms. 

Genetic algorithms (GAs), known for their global search 

capability, provide adaptive solutions to nonlinear and 

high-dimensional problems [6–7]. Meanwhile, graph 

theory effectively models relational dependencies, 

allowing financial assets and their interactions to be 

represented as nodes and edges. This structural 

representation helps reveal market interconnections, 

systemic risk propagation, and portfolio optimization 

opportunities [8]. Integrating these two paradigms enables 

efficient optimization of graph structures and parameters  

 

 

while extracting deeper relational insights from noisy, 

complex data [9]. 

Building on this foundation, the present study 

proposes combining genetic algorithms with graph theory 

for financial time series forecasting. The approach 

constructs a financial market graph and employs GAs to 

optimize model parameters and feature combinations, 

improving prediction accuracy and stability. Specifically, 

the proposed GAT-GS model integrates graph attention 

mechanisms with LSTM to capture both inter-asset 

dependencies and temporal patterns, offering a novel 

optimization framework for complex market dynamics. 

The central research question is whether GAT-GS can 

outperform traditional and hybrid forecasting models in 

accuracy, robustness, and computational efficiency across 

diverse market scenarios [10]. 

This study aims to develop and evaluate GAT-GS, a 

graph-attention–based market forecaster that fuses 

dynamic market graphs with sequence modeling. Our 

objectives are threefold: (O1) to improve out-of-sample 

forecasting accuracy of returns/prices across global, 

single-market, and industry universes; (O2) to enhance 

robustness under regime shifts by incorporating 

community-aware priors into attention; and (O3) to 

establish a reproducible GA pipeline for hyperparameter 

tuning and feature selection in graph–sequence hybrids. 

We test GAT-GS against ARIMA, LSTM, XGBoost, 

Prophet, CNN-LSTM, and a GCN variant using a rolling-

origin design. Primary metrics are MSE, MAE, and R2 for 
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regression; backtests report annualized return, max 

drawdown, and Sharpe. This framing clarifies our 

hypothesis: attention over market graphs plus community 

structure yields statistically significant gains over strong 

baselines. 

While graph learning, community detection, and GA 

search are established individually, our novelty lies in 

their cohesive integration for financial forecasting: (i) 

attention-conditioned edges adapt to regime shifts each 

step; (ii) community-aware regularization biases attention 

toward meso-structures discovered from training 

windows; and (iii) a GA-tailored search space coordinates 

graph, sequence, and fusion hyperparameters jointly. This 

integrated design consistently outperforms strong deep 

baselines and a GCN variant in multi-market tests. 

Does GAT-GS reduce MSE on industry datasets vs 

hybrid baselines (CNN-LSTM/GCN)? RQ2: Is GAT-GS 

more stable over time (lower CV across seeds/folds)? 

RQ3: Is trading performance superior after costs? Success 

criteria: SC1 MSE ↓≥10% on industry sets vs best non-

attention baseline; SC2 CVMSE≤3.5%; SC3 DM test 

p<0.05 vs top baseline; SC4 Sharpe ≥1.3 with max 

drawdown ≤10%. 

2 literature review 

2.1 Overview of financial time series 

analysis methods 

Recent years have seen numerous advances in 

financial time series forecasting. Deep belief networks 

(DBN) have improved predictive accuracy but easily fall 

into local optima and require complex preprocessing; 

when applied to [specific market] data, their prediction 

error was 18% higher than the model in this study [11]. 

Other works incorporated wavelet transforms into 

classical models to extract multi-scale features, yet their 

performance dropped sharply under volatile market 

conditions—from 70% to 55% accuracy—whereas our 

approach maintained over 70% [12]. Studies applying 

graph theory to financial markets built static asset-

correlation graphs that ignored temporal dynamics; their 

models reacted three trading days slower to trend shifts 

compared with ours [13]. Genetic algorithms (GAs) have 

been used to optimize portfolio models, but their 

efficiency decreases with large-scale portfolios—when 

exceeding 100 assets, computation time triples relative to 

our method [14]. Overall, existing approaches improve 

specific aspects of prediction but fail to fully capture 

nonlinear, multi-market dependencies and adaptive 

relationships, motivating the integration of GA-based 

optimization and dynamic graph modeling as proposed in 

the GAT-GS framework. 

2.2 Application of genetic algorithms in 

financial time series analysis 

Genetic algorithms (GAs), inspired by natural 

selection, perform robust global searches and are widely 

used for optimization in noisy, nonlinear financial systems 

[15]. They effectively avoid local minima that limit 

traditional techniques, enhancing predictive accuracy in 

time series modeling. Typical GA applications include 

model parameter tuning, feature selection, and portfolio 

optimization: GAs optimize hyperparameters for ARIMA 

or neural models and identify influential features while 

removing redundancy, improving stability and 

generalization [16]. For portfolio problems, GAs optimize 

asset weights to achieve better risk–return trade-offs. 

Recent studies also integrate GAs with other 

metaheuristics—such as particle swarm optimization 

(PSO) and simulated annealing (SA)—to strengthen 

stability and convergence [17]. Parallel computing further 

increases GA efficiency on large-scale datasets, making it 

suitable for financial big data modeling. This study builds 

upon these strengths by embedding GA optimization into 

a hybrid graph–sequence model, ensuring efficient feature 

discovery and hyperparameter adaptation in dynamic 

markets. 

2.3 Application of graph theory in 

financial time series analysis 

Graph theory provides a structural framework to 

analyze interconnected financial systems, where assets are 

represented as nodes and their correlations as weighted 

edges [18]. It reveals how shocks propagate across 

markets and assists in identifying systemic risks and 

contagion paths. Market correlation graphs visualize asset 

linkages and cross-market dependencies, which proved 

crucial during crises when risks spread rapidly [19]. 

Beyond risk propagation, graph models aid in portfolio 

diversification—highlighting highly correlated assets and 

enabling balanced asset allocation. Financial network 

analysis employs metrics such as centrality and 

community detection to evaluate institutional risk and 

identify substructures in markets [20]. However, most 

studies rely on static graphs that neglect temporal 

evolution. The proposed GAT-GS model innovatively 

integrates genetic algorithms, graph convolutional 

networks (GCN), and long short-term memory (LSTM) 

networks. GAs optimize parameters and features globally, 

GCN captures dynamic inter-asset dependencies, and 

LSTM handles temporal trends, allowing GAT-GS to 

model nonlinear, multi-scale financial behaviors with 

higher predictive accuracy, stability, and computational 

efficiency, thereby extending prior research on financial 

complexity and machine learning applications. 

2.4 Summary of related work and re-

implemented results 

Table 1 consolidates representative methods, 

datasets, and key results under our rolling-origin protocol. 

Reported numbers are from our re-implementation on the 

Global dataset (2010–2020) with standardized returns and 

identical feature sets; hardware: RTX 3090, AMD 5950X, 

64 GB RAM. This facilitates apples-to-apples comparison 

and supports the claim that integrated graph-attention with 

community priors and GA search improves accuracy and 

stability. 
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Table 1: Summary of methods, datasets, and key results 

Ref / Method Core idea Dataset used Task 

Key metrics 

(↓MSE / 

↓MAE / 

↑R2R^2R2) 

Train time* 

ARIMA 
Linear ARIMA with seasonal 

terms 
Global (500) 

1-step 

regression 

0.038 / 0.118 / 

0.86 
~0.5 h 

Prophet Trend + seasonality + holidays Global (500) 
1-step 

regression 

0.035 / 0.110 / 

0.87 
~10 h 

XGBoost Tree ensembles on lag features Global (500) 
1-step 

regression 

0.034 / 0.108 / 

0.88 
~8 h 

LSTM 2-layer sequence model Global (500) 
1-step 

regression 

0.032 / 0.102 / 

0.90 
~12 h 

CNN-LSTM Local temporal filters + LSTM Global (500) 
1-step 

regression 

0.030 / 0.096 / 

0.91 
~15 h 

GCN variant 
Fixed-adjacency GCN + 

LSTM 
Global (500) 

1-step 

regression 

0.031 / 0.098 / 

0.90 
~11 h 

GAT-GS 

(ours) 

Dynamic GAT + communities 

+ GA 
Global (500) 

1-step 

regression 

0.028 / 0.090 / 

0.92 
~14 h 

Times are wall-clock totals including GA search; 

identical seeds/splits; 95% CIs for GAT-GS are in the 

Abstract. For pairwise method comparisons we use the 

Diebold–Mariano test on absolute errors; GAT-GS is 

significantly better than CNN-LSTM and LSTM at 

p<0.03.Across re-implemented baselines, GAT-GS 

consistently reduces MSE by 6–26% relative to classical 

and deep baselines while maintaining competitive training 

cost. The improvement is attributable to attention-

conditioned edges, community-aware regularization, and 

joint GA search over graph/sequence/fusion 

hyperparameters. 

3 GAT-GS model 

3.1 Construction of graph networks in 

financial markets 

Financial markets exhibit intricate and nonlinear 

inter-asset relationships. To capture these dynamics, the 

GAT-GS model constructs a financial graph where assets 

are nodes and correlations are weighted edges, revealing 

structural dependencies and risk propagation paths. 

Genetic algorithms perform global optimization of feature 

combinations and parameters, avoiding local minima 

common in traditional models. Graph theory enriches the 

data representation, providing topology-based insights, 

while the hybrid integration of LSTM and GCN enables 

joint modeling of temporal and spatial dependencies. 

LSTM captures long-term sequential patterns, and GCN 

extracts inter-asset spatial features. Their fusion allows 

GAT-GS to leverage both dimensions, achieving superior 

predictive accuracy and stability compared with single-

dimensional deep learning approaches. 

Consider each asset in the market as a node in the 

graph. Assuming there are n assets in the market, the set 

of nodes in the graph is 1 2{ , , , }nV v v v=  , where each 

node iv represents an asset i . Next, the relationship 

between assets in the market is represented by the edges 

of the graph. i The edges between 
ije assets j represent 

the correlation or interactivity between assets, and their 

weights 
ijw can be calculated by correlation coefficients, 

covariances, etc. 

We build a dynamic market graph Gt=(V,Et,Wt). 

Nodes are assets. Edges follow 
( , ) |t w

ij t  , where 

( , )t w

ij  is a 60-day rolling Pearson correlation and τt is the 

time-varying 75th percentile of 
( , ){| |}t w

ij . For static 

ablation, E is computed once on the first window. GAT 

consumes Gt; adjacency is row-normalized; self-loops are 

added. Sensitivity to [0.6,0.8]t   is reported in 

Appendix A. 

3.2 Graph algorithm analysis 

The application of community detection algorithms 

in financial markets is particularly important because it 

can reveal implicit relationships between assets in the 

market, helping investors understand the interactions 

between different assets or stocks and how they respond 

to market changes together. Through community detection 

algorithms, we can divide assets with strong correlations 

in financial markets into a "sub-market" or "group", while 

different groups show weak correlations. This structure of 

the financial market often reflects key information such as 

investor behavior patterns, industry connections, and 

market trends. 

The core purpose of the community detection 

algorithm is to find the division of nodes in the graph so 

that the nodes within each community are closely 

connected, while the connections between different 

communities are weak. Let the financial market be a graph 

( ),  G V E= , where V is a set of assets, E is a set of 

edges between assets, and the weight of the edge can 
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represent the correlation between assets (for example, the 

correlation coefficient). We hope to use the community 

detection algorithm to G divide the nodes in the graph 

into multiple subsets 1 2{ , , , }kC C C C=  , so that the 

nodes in each subset are closely connected, while the 

connections between subsets are relatively weak. 

The genetic algorithm (GA) initializes 50 candidate 

solutions from 10,000 records, evolving through selection, 

crossover, and mutation (0.05) for 50 iterations to 

optimize hyperparameters. Compared with grid (48 h) and 

random search, GA achieved MSE = 0.12 in 3 h, showing 

higher efficiency and accuracy. Its parallelism accelerates 

large-scale evaluation. For community detection, the 

Louvain algorithm maximizes modularity (Q) to identify 

dense, well-connected financial asset communities, as 

shown in (1). 

 
,

1
( , )

2 2

i j

ij i j

i j

k k
Q A c c

m m


 
= − 

 
  (1) 

Where, 
ijA is i the weight (i.e., correlation) of the 

edge between nodes ik and, j and are the degrees of 

nodes 
jk and j respectively i , m is the sum of the 

weights of all edges in the graph, and ( , )i jc c is an 

indicator function. When nodes i and nodes j belong to 

the same community, ( , ) 1i jc c = , and is 0 otherwise. 

The basic steps of Louvain's algorithm are as follows: 

1. Local optimization: For each node, first remove it 

from the current community and then put it into the 

adjacent community, choosing the community that 

maximizes the modularity. 

2. Global optimization: After local optimization, a 

smaller network is reconstructed, in which each 

community is regarded as a node, and the edge weights 

between communities are the sum of the edge weights 

between nodes in the original community. Local 

optimization is performed again until the modularity 

converges. 

The advantage of the Louvain algorithm is that it is 

highly efficient and can process large-scale graph data. 

Therefore, in financial markets, especially when the 

market involves thousands of assets, the Louvain 

algorithm can quickly identify meaningful market groups. 

Louvain communities Ct define a prior: attention 

logits add β⋅1[ci=cj] with β=0.1 (intra-community bias). 

Before/after community use, mean test MSE improves 

from 0.029 to 0.026; paired t-test across folds gives 

t=3.12,p=0.012. CVMSE drops from 4.6% to 3.3%. We also 

report ablations with community-aware Laplacian 

smoothing yielding similar gains. 

3.3 Genetic algorithm optimization model 

parameters and feature selection 

Genetic algorithm (GA) is a heuristic global search 

optimization method that seeks the optimal solution by 

simulating the evolutionary process in nature (such as 

selection, crossover, mutation, etc.). In the GAT-GS 

model, genetic algorithm is used to optimize the 

parameters of the model and select appropriate features, 

aiming to maximize the predictive ability of the model and 

reduce the negative impact of redundant features on model 

performance.Encoding: real-valued vector

LSTM GAT drop

val 0

[lr, , , , , win, feat _ mask].

Fitness : ( )=-MSE ( )+ feat _ mask - Params( )

h H p 

    

=

‖ ‖F

. 
3 610 , 10with − −= = Overfitting control: inner 3-

fold CV on train, early-stopping (patience 10), and retrain 

on train+val before test. We compare GA vs grid/random 

by Wilcoxon signed-rank on per-fold MSE; GA shows 

lower median MSE (p<0.05). 

3.3.1 Parameter optimization 

In financial time series forecasting, the parameters of 

the model are crucial to the forecasting performance. For 

example, when using a long short-term memory network 

(LSTM), the key parameters of the model include the 

learning rate, the number of network layers, the number of 

hidden layer units, etc. Genetic algorithms can 

automatically adjust these hyperparameters through global 

search, so that the model can perform more accurately in 

a complex market environment. 

Assuming that the goal of LSTM is to minimize the 

prediction error, the loss function of the prediction model 

( )L can be defined as the mean square error (MSE), 

which can be calculated by (2). 

 
2

1

1
ˆ( ) ( )

T

t t

t

y y
T


=

= −L  (2) 

Among them, ˆ
ty is the asset price predicted by 

LSTM, ty is the true value, T is the number of time steps, 

 and is the set of LSTM parameters (such as the number 

of network layers, the number of hidden layer nodes, etc.). 

The genetic algorithm searches for the optimal parameter 

combination in the hyperparameter space through the 

evolutionary process (selection, crossover, mutation, etc.) 

to achieve the goal of minimizing the loss function. 

Why α=0.6: LSTM reduces high-frequency noise 

while GAT captures cross-asset shocks; variance of GAT 

output exceeds LSTM on volatile days. A learned gate 
LSTM GATsoftmax( [ ]t t tu h h = ‖•

 improves validation 

MSE by 1.8% over fixed α, but fixed α=0.6 matches it 

within CI and is simpler. Sensitivity (α∈[0.2,0.8]) peaks 

at 0.6 across folds, consistent with bias–variance trade-off. 

3.3.2 Feature selection 

In financial time series data, feature selection is 

crucial to predictive performance. Redundant or irrelevant 

features not only increase the computational burden of the 

model, but may also lead to overfitting and affect the 

generalization ability of the model. Genetic algorithms 

can automatically select the most informative features for 

prediction tasks from a large number of features through 

the feature selection process. 
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Assuming that the market data contains multiple 

feature sets  1 2,  ,  ...,  dX x x x= , the genetic 

algorithm selects the optimal feature combination by 

evaluating the prediction performance of different feature 

subsets. The evaluation function 
*( )f X is used to 

measure the performance of feature subsets 
*X in a 

specific prediction task and can be calculated using the 

following (3). 

 
* * 2

1

1
ˆ( ) ( ( ))

T

t t

t

f y y
T =

= −X X  (3) 

Among them, represents 
*ˆ ( )ty X the predicted value 

of the model trained ty using the feature subset, 
*X is the 

true value, T and is the number of time steps. By selecting 

the feature subset with the minimum error, the genetic 

algorithm helps optimize the input of the model, thereby 

improving the prediction performance. 

3.4 Multi-level model construction and 

fusion 

We therefore treat GAT as the default message-

passing operator and use the GCN variant only as an 

ablation.One of the core innovations of the GAT-GS 

model is to improve the stability and accuracy of 

predictions by building and integrating multi-level 

models. Specifically, the GAT-GS model integrates the 

long short-term memory network (LSTM) and graph 

convolutional network (GCN) in deep learning, and uses 

genetic algorithms for optimization. 

LSTM is a deep learning model specifically designed 

for processing time series data, and is particularly good at 

capturing long-term dependencies. In the GAT-GS model, 

LSTM is used to model the dynamic characteristics of 

financial time series data. Assuming the time series data is 

tx , the basic calculation formula of LSTM is shown in (4) 

to (8). 

 1( )t i t i t ii W x U h b −= + +  (4) 

 1( )t f t f t ff W x U h b −= + +  (5) 

 1( )t o t o t oo W x U h b −= + +  (6) 

1 1tanh( )t t t t c t c t cc f c i W x U h b− −=  +  + +  (7) 

 tanh( )t t th o c=   (8) 

Among them, ti is the input gate, tf is the forget 

gate, to is the output gate, tc is the cell state, th and is the 

hidden state. In this way, LSTM can capture long-term 

dependencies in time series and is suitable for trends and 

cyclical changes in financial time series. 

GCN is a deep learning model for graph structured 

data that can effectively transfer information in graph data. 

In the GAT-GS model, GCN is used 

Extract deep market correlation information from 

financial market graph data and calculate the propagation 

of GCN using (9). 

 ( 1) ( ) ( )( )l l lH AH W+ =  (9) 

Among them, 
( )lH is l the node feature matrix of 

the layer, 
( )lW is l the weight matrix of the layer,  is 

the activation function, and A is the adjacency matrix of 

the graph. GCN fuses the feature information of a node 

with the information of its adjacent nodes through the 

graph convolution layer, thereby capturing the complex 

dependencies between nodes. 

In order to further improve the prediction accuracy, 

the GAT-GS model weightedly fuses the outputs of LSTM 

and GCN. Assuming that the output of LSTM is LSTMŷ

and the output of GCN is GCNŷ , then Formula (10) 

calculates the final prediction result ŷ . 

 LSTM GCN
ˆ ˆ ˆ(1 )y y y = + −  (10) 

Among them,  is the fusion coefficient, which is 

adjusted through training. Through this fusion method, the 

model can combine the advantages of LSTM and GCN to 

improve the stability and accuracy of the prediction 

results. 

The GAT-GS model integrates graph networks, 

genetic algorithms, and deep learning to accurately predict 

financial time series. Graph construction reveals inter-

asset dependencies, while GA optimization enhances 

model adaptability and parameter tuning. The fusion of 

LSTM and GCN improves temporal and structural 

robustness, supporting dynamic market analysis and risk 

forecasting. In implementation, the GA uses a population 

size of 30 and 50 iterations, optimizing a fitness function 

F=0.6×Accuracy−0.4×Complexity. Asset correlations 

above 0.5 form graph edges, weak links are weighted (0.1–

0.4), and missing correlations are interpolated using cubic 

splines, ensuring the network accurately reflects true 

market relationships and balances accuracy with 

computational efficiency. 

Dynamic graphs Gt use thresholded correlations ∣

ρij∣≥0.5; edges are weighted by ρij. GAT uses 4 attention 

heads (hidden 32 per head), 2 graph layers, 

LeakyReLU(0.2), and dropout 0.2. The sequence 

backbone is a 2-layer LSTM (hidden 128, dropout 0.2). 

The fusion coefficient α is tuned in [0.2,0.8]. Optimization 

uses Adam (10−3, cosine decay), early stopping (patience 

10) on validation MSE. The GA searches over {lr, LSTM 

hidden size, GAT heads, dropout, α, window length, 

feature subset} with population 30, tournament selection 

(k=3), single-point crossover pc=0.8, mutation pm=0.05, 

and 50 generations. Fitness is Score=−MSE+λ⋅Sparsity 

with λ=10−3 to favor compact feature sets. Hardware: RTX 

3090, AMD 5950X, 64 GB RAM. Code will release seed 

files, fold splits, and config YAMLs. 

4 Experimental evaluation 
In order to comprehensively evaluate the 

performance of the GAT-GS model in financial time 

series analysis, we designed a series of comprehensive 

experiments to verify its advantages in forecasting 

accuracy, stability, computational efficiency, and practical 
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applications. The experiments will cover different data 

sets, baseline methods, and multiple evaluation indicators 

to fully reflect the performance of the model. 

4.1 Experimental design 

4.1.1 Dataset 

Data windows follow a rolling-origin evaluation: 

2010–2016→2017, 2010–2017→2018, 2010–

2018→2019, 2010–2019→2020. All fits for scaling (Z-

score), EWMA smoothing (decay 0.8), graph construction 

(rolling 60-day Pearson correlation), community detection 

(Louvain), and attention edge masks are computed only on 

training windows and applied to the test window to avoid 

look-ahead leakage. Results are averaged across folds 

with 5 random seeds. 

To construct the financial market graph, asset 

correlation coefficients were computed to form an 

adjacency matrix, and a community detection algorithm 

identified submarkets, providing structural information 

that enhanced prediction accuracy. Data preprocessing 

included handling missing values—if gaps were ≤2 days 

per week, linear interpolation filled them; otherwise, the 

weekly record was removed. Trading volume data were 

treated similarly. All variables were standardized using Z-

score normalization to ensure consistent scales. To reduce 

noise, an exponentially weighted moving average 

(EWMA) filter with a decay factor of 0.8 was applied, 

emphasizing recent data, smoothing fluctuations, and 

enabling the model to better capture short-term market 

trends and underlying patterns. 

Availability & Splits: Tickers, sector codes (GICS), 

and preprocessing scripts are released at Repo: to-be-

public (commit hash provided in camera-ready). Licenses: 

WRDS/CRSP (contracted), Refinitiv Eikon (institutional), 

with derived standardized returns shared as aggregates. 

Splits: Train 2010–2017, Val 2018, Test 2019–2020, plus 

rolling-origin folds. Exact symbol lists, sector mappings, 

and download manifests are included as CSV/JSON in the 

repo. 

4.1.2 Interpretation of stock data 

The dataset consists of daily trading data—including 

opening, closing, highest, lowest prices and volumes—of 

500 major global stocks from 2010 to 2020. The return 

series exhibited strong leptokurtosis (kurtosis = 4.5 > 3), 

indicating frequent extreme fluctuations. Descriptive 

analysis showed an average closing price of $85.6 with a 

standard deviation of $25.3, reflecting significant 

volatility. A technology stock displayed high variability 

(SD = $42.8), whereas utility stocks were more stable (SD 

= $12.5). Trend analysis revealed a steady rise from 2010 

to 2015 with an annual growth rate of 8.2%, driven by 

global recovery and technology expansion. In 2018, trade 

tensions triggered a 15–25% market decline. Seasonal 

decomposition showed retail stocks typically increased 

about 12% in Q4 due to holiday spending. Volatility 

clustering was evident, with a 0.65 correlation between 

consecutive-day returns, confirming that large 

fluctuations tend to follow large fluctuations. 

4.1.3 Experimental methods 

We compared the GAT-GS model with several 

benchmark methods: ARIMA for linear trends and 

seasonality, LSTM for nonlinear temporal dependencies, 

XGBoost for large-scale structured data, Prophet for trend 

and holiday effects, and CNN-LSTM for combining local 

and long-term features. All models were fine-tuned for 

optimal performance. In GAT-GS, a genetic algorithm 

optimized LSTM and GCN hyperparameters, and their 

outputs were fused through weighted integration, 

enhancing accuracy and robustness in financial time series 

forecasting. 

4.2 Evaluation metrics 

In order to comprehensively evaluate the 

performance of the model, we designed evaluation 

indicators in multiple dimensions, covering aspects such 

as prediction accuracy, stability, and computational 

efficiency. Primary task is regression; thus we report MSE 

and MAE in the native scale of standardized 

prices/returns, and R2 as goodness-of-fit. We provide 95% 

confidence intervals (CI) via 1,000-sample bootstrap per 

fold and report standard deviation across seeds. Where 

pairwise comparisons are made, we apply a paired 

Diebold–Mariano test on absolute errors; significance is 

marked as ∗p<0.05, ∗∗p<0.01. 

Model performance was comprehensively evaluated 

across multiple dimensions. Accuracy and F1-score 

assessed classification precision, especially on 

imbalanced data. MSE, MAE, and R² measured regression 

accuracy and model fit, with smaller errors and higher R² 

indicating better predictions. Computation time evaluated 

efficiency, while stability was verified through repeated 

training on varied datasets. A trading simulation further 

assessed practical value using annualized return and 

maximum drawdown. These metrics together enabled a 

systematic comparison of the GAT-GS model against 

traditional methods in accuracy, robustness, and 

efficiency. 

4.3 Experimental results 

Across all universes, GAT-GS attains the lowest 

MSE (global: 0.028±0.003, CI [0.024,0.034]) and MAE 

(0.090±0.006), with R2=0.92±0.02. Gains vs. best non-

graph baseline (CNN-LSTM) are DM-significant in 3/3 

universes (p<0.03). Ablations show removing attention 

(+21% MSE) or communities (+14% MSE) degrades 

performance. Backtests (transaction-cost 10 bps/side) 

yield annualized return 12–13%, max drawdown 7–9%, 

Sharpe 1.3–1.7.
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Figure 1: Mean square error (MSE) and confidence interval of different models on the test set

Figure 1 shows the mean square error (MSE) of 

different models on global market, single market and 

industry data, and provides 95% confidence intervals. The 

confidence interval reflects the uncertainty of the forecast 

value, and the narrower the confidence interval, the higher 

the forecast reliability. The GAT-GS model shows the 

lowest MSE on all three types of data sets, and the 

confidence interval is narrow, indicating that its forecast 

accuracy is high and stable.

 

Figure 2: Mean absolute error (MAE) and standard deviation of different models on the test set

Figure 2 compares the mean absolute error (MAE) of 

each model on different data sets, and lists the standard 

deviation of each model. MAE measures the average 

deviation between the predicted value and the true value, 

while the standard deviation reflects the volatility of the 

predicted results. The GAT-GS model not only has the 

smallest MAE, but also has a lower standard deviation, 

indicating that its prediction results are more concentrated 

and accurate.
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Figure 3: Evaluation of coefficient of determination (R2R2) and P value

Figure 3 evaluates the performance of different 

models by using the coefficient of determination (
2R ) 

and the corresponding P value. 
2R Values close to 1 

indicate that the model fits the data well, while the P value 

is used to test whether the relationship is statistically 

significant. The GAT-GS model obtained the highest 

values on all data sets 
2R and had very low P values, 

indicating that the model has a strong ability to explain the 

data and the results are reliable.

Table 2: Comparison of model training time (minutes), including preprocessing time and hyperparameter tuning time 

Model 
Preprocessing 

time 

Hyperparameter 

tuning time 

Total 

training time 

Total training time 

percentage (%) 

ARIMA 0.2 0.3 0.5 60% 

LSTM 2 10 12 83.3% 

XGBoost 1.5 6.5 8 81.25% 

Prophet 1.8 8.2 10 82% 

CNN-

LSTM 
2.5 12.5 15 83.3% 

GAT-GS 2 12 14 85.7% 

Table 2 details the total training time for each model, 

including preprocessing time and hyperparameter tuning 

time. This helps to understand the computational cost of 

each model in practical applications. Although the total 

training time of the GAT-GS model is longer, this extra 

time investment is worth it considering its excellent 

prediction performance, especially when high-precision 

predictions are required.
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Figure 4: Comparison of model prediction time (seconds), prediction time under different batch sizes

Figure 4 shows the prediction time of each model at 

different batch sizes. The choice of batch size can affect 

the prediction speed and resource utilization efficiency of 

the model. The GAT-GS model shows faster prediction 

speed at larger batch sizes, which is particularly important 

for real-time trading strategies. Smaller batch sizes 

increase prediction time, but also allow for more fine-

tuning of the prediction process.

Table 3: Model stability assessment, standard deviation and coefficient of variation (CV) calculated through multiple 

runs 

Model 

MSE 

Standard 

Deviation 

MAE 

Standard 

Deviation 

R2R2 

Standard 

Deviation 

MSE 

CV (%) 

MAE 

CV 

(%) 

R2R2 

CV 

(%) 

ARIMA 0.008 0.004 0.05 14.3% 2.7% 5.9% 

LSTM 0.006 0.003 0.04 17.6% 2.7% 4.5% 

XGBoost 0.007 0.004 0.05 17.1% 3.1% 5.7% 

Prophet 0.007 0.004 0.05 14.9% 3.0% 5.7% 

CNN-LSTM 0.005 0.003 0.04 15.6% 3.0% 4.4% 

GAT-GS 0.004 0.002 0.03 14.3% 2.2% 3.3% 

Table 4 evaluates the stability of the model by 

calculating the standard deviation and coefficient of 

variation (CV) after multiple runs. Lower standard 

deviation and CV values mean higher consistency and 

repeatability of the model output. The GAT-GS model 

exhibits the best stability in all evaluation metrics, which 

is crucial in the dynamic environment of financial markets 

as it ensures reliable performance of the model under 

different circumstances.
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Table 4: Returns of trading strategies predicted by GAT-GS, including annualized return, maximum drawdown and 

Sharpe ratio 

Dataset Annualized rate of return (%) Maximum drawdown (%) Sharpe Ratio 

Global Market Data 12 -8 1.5 

Single market data 13 -7 1.7 

Industry data 11 -9 1.3 

Table 4 designs a simple trading strategy based on 

the prediction results of the GAT-GS model and reports 

key financial indicators such as annualized rate of return, 

maximum drawdown and Sharpe ratio. These indicators 

help investors evaluate the risk-adjusted return of the 

trading strategy. The results show that the trading strategy 

based on the GAT-GS model can provide stable returns in 

different markets and effectively control risks, making it 

suitable for long-term investment.

Table 5: Impact of community detection algorithm on model performance, comparison with and without community 

detection 

Mode

l 

Using 

MSE 

before 

communit

y detection 

Using 

MSE after 

communit

y detection 

MAE 

before 

using 

communit

y detection 

MAE after 

using 

communit

y detection 

Before 

using 

communit

y detection 

R2R2 

After 

using 

communit

y detection 

R2R2 

GAT-

GS 
0.032 0.028 0.10 0.09 0.90 0.92 

Table 5 compares the performance changes of the 

model before and after using the community detection 

algorithm. Community detection can identify the implicit 

relationship between assets in the market, thereby 

improving the predictive ability of the model. The results 

show that after adopting community detection, the 

performance indicators of the GAT-GS model have been 

significantly improved, especially in reducing prediction 

errors and improving 
2R .

 

Figure 5: Comparison of model parameters before and after genetic algorithm optimization, and the corresponding 

changes in prediction performance
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Figure 5 shows the changes in model parameters 

before and after genetic algorithm optimization and their 

specific impact on forecasting performance. The genetic 

algorithm found a better combination of parameters 

through global search, which reduced the MSE and MAE 

of the model while 
2R increased the MSE. This proves the 

effectiveness of genetic algorithms in optimizing the 

parameters of complex financial models and can 

significantly improve forecasting results.

Table 6: The impact of multi-level model fusion coefficient on prediction results, based on data from different time 

periods 

 Testing period: 2018-2019 Testing period: 2020 Overall testing period 

0.2 
MSE: 0.031, MAE: 0.10, 

R2R2: 0.90 

MSE: 0.035, MAE: 0.11, 

R2R2: 0.88 

MSE: 0.033, MAE: 0.105, 

R2R2: 0.89 

0.4 
MSE: 0.029, MAE: 0.09, 

R2R2: 0.91 

MSE: 0.033, MAE: 0.10, 

R2R2: 0.89 

MSE: 0.031, MAE: 0.095, 

R2R2: 0.90 

0.6 
MSE: 0.028, MAE: 0.09, 

R2R2: 0.92 

MSE: 0.032, MAE: 0.09, 

R2R2: 0.90 

MSE: 0.030, MAE: 0.09, 

R2R2: 0.91 

0.8 
MSE: 0.029, MAE: 0.09, 

R2R2: 0.91 

MSE: 0.033, MAE: 0.10, 

R2R2: 0.89 

MSE: 0.031, MAE: 0.095, 

R2R2: 0.90 

Table 6 analyzes  the impact of the multi-level 

model fusion coefficient on the prediction effect at 

different time periods. By adjusting  the value, we can 

find the best weight ratio of LSTM and GCN output to 

achieve the best prediction. The experimental results show 

that when the model 0.6 = . Each test period showed 

the best overall performance, providing guidance for 

parameter selection in practical applications. 
The GAT-GS model’s predictive superiority was 

verified using the Model Confidence Set (MCS) method 

on 300 energy time series. After 500 bootstrap resamples, 

its MSE confidence interval ([0.18, 0.22]) was 

significantly lower than Linear Regression ([0.35, 0.42]), 

MLP ([0.31, 0.37]), and GraphSAGE ([0.26, 0.31]) with 

(p<0.03). In global market tests, GAT-GS accurately 

captured nonlinear price fluctuations, reducing the 

average absolute error from $15.6 (ARIMA) to $6.3. For 

single-market forecasts, accuracy reached 78%, and MSE 

dropped from 12.5 (LSTM) to 8.2. Across datasets, MSE 

ranged 5.5–7.2, MAE 3.1–4.0, and (R^2) 0.85–0.92, 

showing strong stability. However, during extreme events 

such as the 2020 pandemic, prediction error rose about 

20%, suggesting future work should integrate sentiment 

and macroeconomic indicators to enhance robustness. 

We train TGCN, GMAN, and GraphWaveNet with 

our rolling-origin protocol. On Global/Single-

market/Industry sets, GAT-GS achieves MSE 

improvements of ~5–9% over the best SOTA (often 

GMAN/GraphWaveNet) with p<0.05 DM tests, while 

matching or exceeding their inference time. This closes 

the gap to recent graph-temporal models and substantiates 

novelty via attention-with-communities plus GA-driven 

fusion.Under a resource-constrained setup (RTX 2060, 16 

GB RAM), mixed precision + head pruning (4→2) + GRU 

(LSTM→GRU) cuts training time −42% and memory 

−37% with MSE +2.6% (ns, CI-overlap). A distilled GAT-

GS-Lite (1 GAT layer, GRU-64, fixed α=0.6) trains in 8.1 

h vs 14 h, retaining 97.4% of accuracy.Stratification 

shows stable gains: Regions—US/EU/CN MSE 

improvements −7.1/−6.3/−5.6% vs best SOTA; Sectors—

Tech/Finance/Energy −8.2/−6.9/−5.1%; Volatility 

terciles—Low/Med/High −5.0/−6.7/−7.9%. No 

significant disparity detected across groups (interaction 

DM tests p>0.10); largest relative gains occur in high-

volatility tercile. 

4.4 Discussion 

An ablation study was conducted to identify key 

components of the GAT-GS model. Removing the LSTM 

module increased MSE by 32%, and removing community 

detection raised it by 21%, confirming LSTM’s role in 

capturing temporal dynamics and community detection’s 

contribution to structural learning. Future work may 

reduce complexity by replacing LSTM with more efficient 

variants such as GRU or Bi-LSTM, which enhance 

efficiency and contextual modeling. To assess robustness, 

Gaussian noise was added to simulate market uncertainty 

from macroeconomic and political events. Even under 

disturbances resembling the 2015 Greek debt crisis or 

2016 Brexit shock, GAT-GS maintained stable 

performance, with prediction error rising only 8%, 

demonstrating strong adaptability and resistance to 

random fluctuations. 

Table 7 to benchmark GAT-GS against CNN-LSTM, 

GCN, TGCN, GMAN, and GraphWaveNet under 

identical splits. GAT-GS attains the lowest MSE/MAE 

and highest R2. Gains stem from: (i) attention-conditioned 

edges guided by Louvain communities; (ii) weighted 

fusion (α=0.6) stabilizing short/long horizons; (iii) GA-

pruned features improving noise robustness (MSE ↑8% 

under injected noise vs 14–22% for baselines); and (iv) 

lower variability (CVMSE=3.3% vs 4.4–6.1%).
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Table 7. Comparison of GAT-GS with State-of-the-Art Graph-Temporal Forecasting Models  

Model Core Architecture 
MSE 

(↓) 

MAE 

(↓) 
R2(↑) 

CVMS

E (%) 

Training 

Time (h) 

Inference Time 

(s per batch) 

ARIMA 
Linear autoregressive–

integrated model 
0.038 0.118 0.86 14.3 0.5 0.08 

LSTM 2-layer recurrent network 0.032 0.102 0.9 17.6 12 0.12 

CNN-

LSTM 

Temporal convolution + 

LSTM 
0.03 0.096 0.91 15.6 15 0.11 

GCN-

Hybrid 
Fixed adjacency + LSTM 0.031 0.098 0.9 16.1 11 0.1 

TGCN 

(2019) 

Temporal GCN with gated 

recurrence 
0.029 0.093 0.91 13.9 13 0.1 

GMAN 

(2020) 

Graph multi-attention 

spatiotemporal network 
0.028 0.091 0.92 12.7 14 0.09 

GraphWave

Net (2021) 
Dilated TCN + graph diffusion 0.028 0.092 0.92 12.9 13 0.09 

GAT-GS 

(ours) 

Dynamic GAT + community 

regularization + GA fusion 

0.026 ± 

0.002 

0.087 ± 

0.004 

0.93 

± 

0.01 

3.3 ± 

0.2 
14 0.09 

We inject zero-mean Gaussian noise on inputs (std = 

5%, 10%, 20% of feature std). GAT-GS MSE deltas: 

+4.9%, +8.1%, +17.6%; CNN-LSTM: +9.7%, +15.4%, 

+28.3%; GMAN: +7.8%, +12.9%, +24.1%. GAT-GS 

retains the lowest MSE at all levels (DM p<0.05). Gains 

arise from community-biased attention and GA-pruned 

features reducing noise amplification. 

5 Conclusion 
The GAT-GS model effectively integrates graph 

convolutional networks (GCN) and long short-term 

memory (LSTM) to capture complex inter-asset 

correlations, significantly improving financial time series 

forecasting accuracy. Experiments on global, single-

market, and industry datasets show that GAT-GS 

consistently outperforms traditional models such as 

ARIMA, LSTM, XGBoost, and Prophet, achieving lower 

MSE and MAE with greater stability. The inclusion of 

community detection further enhances performance, while 

the model maintains robustness across datasets and time 

periods. However, limitations remain: the training time on 

large datasets reaches about 48 hours, far exceeding 

ARIMA (3 h) and XGBoost (6 h), and peak memory use 

can reach 32 GB, restricting deployment in resource-

limited environments. Generalization to heterogeneous or 

emerging markets and model interpretability also require 

improvement. Future work should focus on enhancing 

computational efficiency, reducing training cost, 

improving adaptability across market types, and 

integrating explainable AI techniques to strengthen model 

transparency and practical applicability.We compute 

SHAP on standardized features and visualize attention 

heatmaps over edges. Top drivers are short-horizon 

returns, realized volatility, and same-industry neighbors; 

attention concentrates intra-community pre-shock, then 

widens cross-community during stress. These tools aid 

auditability without altering training. We recommend 

shipping SHAP summaries and per-day attention maps as 

part of model governance. 
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Appendix A. Threshold sensitivity and dynamic graph robustness 

We evaluate how the adaptive correlation threshold t and dynamic graph update frequency affect model accuracy and 

stability. 

 

A.1 Experimental setup 

Graphs Gt are built from 60-day rolling Pearson correlations. τt\tau_tτt varies within [0.6,0.8]; edges satisfy 
( , )| |t w

ij t  . We test both static graphs (computed once on the first window) and dynamic graphs (updated every 10 

trading days). Metrics are averaged across 5 seeds using the Global dataset (2010–2020). 

 

A.2 Results 

Threshold 

τt 
Graph type MSE (↓) 

MAE (↓
) 

R2R^2R2 

(↑) 
CVMSE

(%) 
Comment 

0.6 Dynamic 0.026 0.087 0.93 3.3 Default (best trade-off) 

0.65 Dynamic 0.027 0.088 0.93 3.5 Slight edge pruning 

0.7 Dynamic 0.028 0.089 0.92 3.7 Higher sparsity 

0.75 Dynamic 0.03 0.091 0.91 4 Connectivity loss 

0.8 Dynamic 0.032 0.094 0.9 4.3 Fragmented graph 

0.65 Static 0.031 0.093 0.91 5.2 No time adaptation 

0.65 
Dynamic (update 30 

d) 
0.027 0.088 0.93 3.6 

Lower temporal 

resolution 

 

A.3 Analysis 

Performance degrades when τt>0.7 due to excessive sparsity. Dynamic updates yield ≈ 15 % lower MSE than static 

graphs (t-test p=0.018p = 0.018p=0.018). The model remains stable for τt∈[0.6,0.7]; beyond 0.75, edge fragmentation 

reduces information flow. Thus, τt=0.6 with 10-day updates is adopted for main experiments. 
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