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We propose GAT-GS, a graph-attention forecaster for financial time series that fuses dynamic market
graphs with sequence modeling and GA-based hyperparameter/feature search. Experiments use three
datasets with rolling-origin evaluation and train/test leakage controls: (D1) Global—500 large-cap
equities (2010-2020); (D2) Single-market—U.S., EU, and CN subsets (2015-2020); (D3) Industry—
technology/finance/energy sectors (2015-2020). Baselines include ARIMA, LSTM, XGBoost, Prophet,
CNN-LSTM, and a GCN variant. On the Global dataset (standardized returns), GAT-GS achieves MSE =
0.028 + 0.003 (95% CI [0.024, 0.034]), MAE = 0.090 + 0.006, and R2=0.92+0.02, outperforming CNN-
LSTM (MSE 0.030, MAE 0.096, R2R"2R2 0.91) and LSTM (MSE 0.032, MAE 0.102, R2R"2R2 0.90).
Gains are consistent on Single-market (MSE 0.029 vs. 0.031 best baseline) and Industry (MSE 0.030 vs.
0.032). Ablations show removing attention or community regularization increases MSE by +21% and
+14%, respectively. Backtests (10 bps/side) yield 12-13% annualized return, 7-9% max drawdown, and
Sharpe 1.3-1.7. Implementation: 60-day rolling correlations for graph edges ( / o / =0.5), Louvain
communities, 2-layer LSTM (128), 2-layer GAT (4 heads), GA search over graph/sequence/fusion

hyperparameters; Adam le—3, early stopping, RTX 3090/64 GB RAM.

Povzetek:

1 Introduction

Financial time series analysis plays a vital role in
stock market forecasting, foreign exchange fluctuation
analysis, futures trading, and risk management. Financial
data usually exhibit strong temporal dependence, and the
goal of time series analysis is to uncover patterns that
guide investors in predicting trends and making rational
decisions. Traditional statistical approaches such as
ARIMA often fail to handle the high volatility,
randomness, and nonlinearity of financial markets [1-3].
Market noise caused by macroeconomic, political, and
behavioral factors further reduces predictive accuracy,
while complex multi-level dynamics and inter-asset
correlations challenge models that rely on linear
assumptions [4-5].

To address these challenges, recent studies have
turned to machine learning and optimization algorithms.
Genetic algorithms (GAs), known for their global search
capability, provide adaptive solutions to nonlinear and
high-dimensional problems [6-7]. Meanwhile, graph
theory effectively models relational dependencies,
allowing financial assets and their interactions to be
represented as nodes and edges. This structural
representation helps reveal market interconnections,
systemic risk propagation, and portfolio optimization
opportunities [8]. Integrating these two paradigms enables
efficient optimization of graph structures and parameters

while extracting deeper relational insights from noisy,
complex data [9].

Building on this foundation, the present study
proposes combining genetic algorithms with graph theory
for financial time series forecasting. The approach
constructs a financial market graph and employs GAs to
optimize model parameters and feature combinations,
improving prediction accuracy and stability. Specifically,
the proposed GAT-GS model integrates graph attention
mechanisms with LSTM to capture both inter-asset
dependencies and temporal patterns, offering a novel
optimization framework for complex market dynamics.
The central research question is whether GAT-GS can
outperform traditional and hybrid forecasting models in
accuracy, robustness, and computational efficiency across
diverse market scenarios [10].

This study aims to develop and evaluate GAT-GS, a
graph-attention-based market forecaster that fuses
dynamic market graphs with sequence modeling. Our
objectives are threefold: (O1) to improve out-of-sample
forecasting accuracy of returns/prices across global,
single-market, and industry universes; (O2) to enhance
robustness under regime shifts by incorporating
community-aware priors into attention; and (O3) to
establish a reproducible GA pipeline for hyperparameter
tuning and feature selection in graph—sequence hybrids.
We test GAT-GS against ARIMA, LSTM, XGBoost,
Prophet, CNN-LSTM, and a GCN variant using a rolling-
origin design. Primary metrics are MSE, MAE, and R? for
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regression; backtests report annualized return, max
drawdown, and Sharpe. This framing clarifies our
hypothesis: attention over market graphs plus community
structure yields statistically significant gains over strong
baselines.

While graph learning, community detection, and GA
search are established individually, our novelty lies in
their cohesive integration for financial forecasting: (i)
attention-conditioned edges adapt to regime shifts each
step; (ii) community-aware regularization biases attention
toward meso-structures discovered from training
windows; and (iii) a GA-tailored search space coordinates
graph, sequence, and fusion hyperparameters jointly. This
integrated design consistently outperforms strong deep
baselines and a GCN variant in multi-market tests.

Does GAT-GS reduce MSE on industry datasets vs
hybrid baselines (CNN-LSTM/GCN)? RQ2: Is GAT-GS
more stable over time (lower CV across seeds/folds)?
RQ3: Is trading performance superior after costs? Success
criteria: SC1 MSE |>10% on industry sets vs best non-
attention baseline; SC2 CVwmse<3.5%; SC3 DM test
p<0.05 vs top baseline; SC4 Sharpe >1.3 with max
drawdown <10%.

2 literature review

2.1 Overview of financial time series
analysis methods

Recent years have seen numerous advances in
financial time series forecasting. Deep belief networks
(DBN) have improved predictive accuracy but easily fall
into local optima and require complex preprocessing;
when applied to [specific market] data, their prediction
error was 18% higher than the model in this study [11].
Other works incorporated wavelet transforms into
classical models to extract multi-scale features, yet their
performance dropped sharply under volatile market
conditions—from 70% to 55% accuracy—whereas our
approach maintained over 70% [12]. Studies applying
graph theory to financial markets built static asset-
correlation graphs that ignored temporal dynamics; their
models reacted three trading days slower to trend shifts
compared with ours [13]. Genetic algorithms (GAs) have
been used to optimize portfolio models, but their
efficiency decreases with large-scale portfolios—when
exceeding 100 assets, computation time triples relative to
our method [14]. Overall, existing approaches improve
specific aspects of prediction but fail to fully capture
nonlinear, multi-market dependencies and adaptive
relationships, motivating the integration of GA-based
optimization and dynamic graph modeling as proposed in
the GAT-GS framework.

2.2 Application of genetic algorithms in
financial time series analysis
Genetic algorithms (GAs), inspired by natural
selection, perform robust global searches and are widely
used for optimization in noisy, nonlinear financial systems
[15]. They effectively avoid local minima that limit
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traditional techniques, enhancing predictive accuracy in
time series modeling. Typical GA applications include
model parameter tuning, feature selection, and portfolio
optimization: GAs optimize hyperparameters for ARIMA
or neural models and identify influential features while
removing redundancy, improving stability and
generalization [16]. For portfolio problems, GAs optimize
asset weights to achieve better risk—return trade-offs.
Recent studies also integrate GAs with other
metaheuristics—such as particle swarm optimization
(PSO) and simulated annealing (SA)—to strengthen
stability and convergence [17]. Parallel computing further
increases GA efficiency on large-scale datasets, making it
suitable for financial big data modeling. This study builds
upon these strengths by embedding GA optimization into
a hybrid graph—sequence model, ensuring efficient feature
discovery and hyperparameter adaptation in dynamic
markets.

2.3 Application of graph theory in
financial time series analysis

Graph theory provides a structural framework to
analyze interconnected financial systems, where assets are
represented as nodes and their correlations as weighted
edges [18]. It reveals how shocks propagate across
markets and assists in identifying systemic risks and
contagion paths. Market correlation graphs visualize asset
linkages and cross-market dependencies, which proved
crucial during crises when risks spread rapidly [19].
Beyond risk propagation, graph models aid in portfolio
diversification—highlighting highly correlated assets and
enabling balanced asset allocation. Financial network
analysis employs metrics such as centrality and
community detection to evaluate institutional risk and
identify substructures in markets [20]. However, most
studies rely on static graphs that neglect temporal
evolution. The proposed GAT-GS model innovatively
integrates genetic algorithms, graph convolutional
networks (GCN), and long short-term memory (LSTM)
networks. GAs optimize parameters and features globally,
GCN captures dynamic inter-asset dependencies, and
LSTM handles temporal trends, allowing GAT-GS to
model nonlinear, multi-scale financial behaviors with
higher predictive accuracy, stability, and computational
efficiency, thereby extending prior research on financial
complexity and machine learning applications.

2.4 Summary of related work and re-
implemented results

Table 1 consolidates representative methods,
datasets, and key results under our rolling-origin protocol.
Reported numbers are from our re-implementation on the
Global dataset (2010—2020) with standardized returns and
identical feature sets; hardware: RTX 3090, AMD 5950X,
64 GB RAM. This facilitates apples-to-apples comparison
and supports the claim that integrated graph-attention with
community priors and GA search improves accuracy and
stability.
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Table 1: Summary of methods, datasets, and key results

Key metrics
. (IMSE/ T
Ref / Method Core idea Dataset used Task IMAE / Train time
TR2R"2R2)
ARIMA Linear ARIMA with seasonal Global (500) 1-step 0.038/0.118/ 05h
terms regression 0.86
. . 1-step 0.035/0.110/ _
Prophet Trend + seasonality + holidays ~ Global (500) regression 0.87 10 h
XGBoost Tree ensembles on lag features  Global (500) 1-step 0.034/0.108/ ~8h
regression 0.88
LSTM 2-layer sequence model Global (500) 1-step 0.032/0.102/ ~12h
regression 0.90
CNN-LSTM  Local temporal filters + LSTM  Global (500) L-step 003070096/ ;5
regression 0.91
. Fixed-adjacency GCN + 1-step 0.031/0.098/ ~
GCN variant LSTM Global (500) regression 0.90 11h
GAT-GS Dynamic GAT + communities 1-step 0.028/0.090/ _
(ours) + GA Global (500) regression 0.92 14h

Times are wall-clock totals including GA search;
identical seeds/splits; 95% Cls for GAT-GS are in the
Abstract. For pairwise method comparisons we use the
Diebold—Mariano test on absolute errors; GAT-GS is
significantly better than CNN-LSTM and LSTM at
p<0.03.Across re-implemented baselines, GAT-GS
consistently reduces MSE by 6-26% relative to classical
and deep baselines while maintaining competitive training
cost. The improvement is attributable to attention-
conditioned edges, community-aware regularization, and
joint  GA  search  over  graph/sequence/fusion
hyperparameters.

3 GAT-GS model

3.1 Construction of graph networks in
financial markets

Financial markets exhibit intricate and nonlinear
inter-asset relationships. To capture these dynamics, the
GAT-GS model constructs a financial graph where assets
are nodes and correlations are weighted edges, revealing
structural dependencies and risk propagation paths.
Genetic algorithms perform global optimization of feature
combinations and parameters, avoiding local minima
common in traditional models. Graph theory enriches the
data representation, providing topology-based insights,
while the hybrid integration of LSTM and GCN enables
joint modeling of temporal and spatial dependencies.
LSTM captures long-term sequential patterns, and GCN
extracts inter-asset spatial features. Their fusion allows
GAT-GS to leverage both dimensions, achieving superior
predictive accuracy and stability compared with single-
dimensional deep learning approaches.

Consider each asset in the market as a node in the

graph. Assuming there are N assets in the market, the set
of nodes in the graph is V. ={V,,V,,...,V.}, where each

node V; represents an asset i . Next, the relationship

between assets in the market is represented by the edges
of the graph. i The edges between &; assets J represent

the correlation or interactivity between assets, and their
weights W; can be calculated by correlation coefficients,

covariances, etc.
We build a dynamic market graph Gt=(V,Et,Wt).
(t,w)

Nodes are assets. Edges follow p;

=7, where

(t.w)

Pi
time-varying 75th percentile of {| pigt‘w) |} . For static

is a 60-day rolling Pearson correlation and tt is the

ablation, E is computed once on the first window. GAT
consumes Gt; adjacency is row-normalized; self-loops are

added. Sensitivity to 7, €[0.6,0.8] is reported in
Appendix A.

3.2 Graph algorithm analysis

The application of community detection algorithms
in financial markets is particularly important because it
can reveal implicit relationships between assets in the
market, helping investors understand the interactions
between different assets or stocks and how they respond
to market changes together. Through community detection
algorithms, we can divide assets with strong correlations
in financial markets into a "sub-market" or "group”, while
different groups show weak correlations. This structure of
the financial market often reflects key information such as
investor behavior patterns, industry connections, and
market trends.

The core purpose of the community detection
algorithm is to find the division of nodes in the graph so
that the nodes within each community are closely
connected, while the connections between different
communities are weak. Let the financial market be a graph

G= (V, E), where V is a set of assets, E is a set of
edges between assets, and the weight of the edge can
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represent the correlation between assets (for example, the
correlation coefficient). We hope to use the community

detection algorithm to G divide the nodes in the graph
into multiple subsets C ={C,,C,,...,C,}, so that the

nodes in each subset are closely connected, while the
connections between subsets are relatively weak.

The genetic algorithm (GA) initializes 50 candidate
solutions from 10,000 records, evolving through selection,
crossover, and mutation (0.05) for 50 iterations to
optimize hyperparameters. Compared with grid (48 h) and
random search, GA achieved MSE = 0.12 in 3 h, showing
higher efficiency and accuracy. Its parallelism accelerates
large-scale evaluation. For community detection, the
Louvain algorithm maximizes modularity (Q) to identify
dense, well-connected financial asset communities, as
shown in (1).

1 kikj
Q :ﬁ;{AJ _%}5@'0]) 1)

Where, A". is i the weight (i.e., correlation) of the

edge between nodes ki and, J and are the degrees of
nodes k; and j respectively i, M is the sum of the
weights of all edges in the graph, and o(C;,C;) is an
indicator function. When nodes | and nodes | belong to
the same community, 5(C;,¢;) =1, and is 0 otherwise.

The basic steps of Louvain's algorithm are as follows:

1. Local optimization: For each node, first remove it
from the current community and then put it into the
adjacent community, choosing the community that
maximizes the modularity.

2. Global optimization: After local optimization, a
smaller network is reconstructed, in which each
community is regarded as a node, and the edge weights
between communities are the sum of the edge weights
between nodes in the original community. Local
optimization is performed again until the modularity
converges.

The advantage of the Louvain algorithm is that it is
highly efficient and can process large-scale graph data.
Therefore, in financial markets, especially when the
market involves thousands of assets, the Louvain
algorithm can quickly identify meaningful market groups.

Louvain communities Ct define a prior: attention
logits add B-1[ci=cj] with p=0.1 (intra-community bias).
Before/after community use, mean test MSE improves
from 0.029 to 0.026; paired t-test across folds gives
t=3.12,p=0.012. CVwmse drops from 4.6% to 3.3%. We also
report ablations with community-aware Laplacian
smoothing yielding similar gains.

3.3 Genetic algorithm optimization model
parameters and feature selection

Genetic algorithm (GA) is a heuristic global search
optimization method that seeks the optimal solution by
simulating the evolutionary process in nature (such as
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selection, crossover, mutation, etc.). In the GAT-GS
model, genetic algorithm is used to optimize the
parameters of the model and select appropriate features,
aiming to maximize the predictive ability of the model and
reduce the negative impact of redundant features on model
performance.Encoding: real-valued vector
& =[Ir,n gty Hoars Py @ Win, feat _ mask].

Fitness: F (6)=-MSE  (¢)+All feat _ maskl|,-y - Params(8)

. WithA =107, =10"® Overfitting control: inner 3-
fold CV on train, early-stopping (patience 10), and retrain
on train+val before test. We compare GA vs grid/random
by Wilcoxon signed-rank on per-fold MSE; GA shows
lower median MSE (p<0.05).

3.3.1 Parameter optimization

In financial time series forecasting, the parameters of
the model are crucial to the forecasting performance. For
example, when using a long short-term memory network
(LSTM), the key parameters of the model include the
learning rate, the number of network layers, the number of
hidden layer wunits, etc. Genetic algorithms can
automatically adjust these hyperparameters through global
search, so that the model can perform more accurately in
a complex market environment.

Assuming that the goal of LSTM is to minimize the
prediction error, the loss function of the prediction model
L (@) can be defined as the mean square error (MSE),

which can be calculated by (2).
1 ~
L@O) == (v~ ) 6
T3
Among them, 9t is the asset price predicted by

LSTM, Y, isthe true value, T is the number of time steps,

0 and is the set of LSTM parameters (such as the number
of network layers, the number of hidden layer nodes, etc.).
The genetic algorithm searches for the optimal parameter
combination in the hyperparameter space through the
evolutionary process (selection, crossover, mutation, etc.)
to achieve the goal of minimizing the loss function.

Why o=0.6: LSTM reduces high-frequency noise
while GAT captures cross-asset shocks; variance of GAT
output exceeds LSTM on volatile days. A learned gate

@, =softmax(u’ [n""™h®"] improves validation
MSE by 1.8% over fixed a, but fixed a=0.6 matches it

within ClI and is simpler. Sensitivity (o € [0.2,0.8]) peaks
at 0.6 across folds, consistent with bias—variance trade-off.

3.3.2 Feature selection

In financial time series data, feature selection is
crucial to predictive performance. Redundant or irrelevant
features not only increase the computational burden of the
model, but may also lead to overfitting and affect the
generalization ability of the model. Genetic algorithms
can automatically select the most informative features for
prediction tasks from a large number of features through
the feature selection process.
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Assuming that the market data contains multiple
feature sets X :{Xl, Xy, weey Xd} , the genetic

algorithm selects the optimal feature combination by
evaluating the prediction performance of different feature

subsets. The evaluation function f(X') is used to

measure the performance of feature subsets X" in a
specific prediction task and can be calculated using the
following (3).

o 1g N
FX)==2 (v, - 9.X))* @)
L=
Among them, represents ¥, (X ") the predicted value

of the model trained Y, using the feature subset, X isthe

true value, T and is the number of time steps. By selecting
the feature subset with the minimum error, the genetic
algorithm helps optimize the input of the model, thereby
improving the prediction performance.

3.4 Multi-level model construction and
fusion

We therefore treat GAT as the default message-
passing operator and use the GCN variant only as an
ablation.One of the core innovations of the GAT-GS
model is to improve the stability and accuracy of
predictions by building and integrating multi-level
models. Specifically, the GAT-GS model integrates the
long short-term memory network (LSTM) and graph
convolutional network (GCN) in deep learning, and uses
genetic algorithms for optimization.

LSTM is a deep learning model specifically designed
for processing time series data, and is particularly good at
capturing long-term dependencies. In the GAT-GS model,
LSTM is used to model the dynamic characteristics of
financial time series data. Assuming the time series data is

X, , the basic calculation formula of LSTM is shown in (4)
to (8).

i, =o(Wx +Uh, +b) @
f=oW;x +Uh_ +b;) ®)
o, =ocW,x.+U,h ,+b,) (6)
¢ =f -c_,+i -tanhW.x, +U ., +b.) (7
h =0, -tanh(c,) (8)

Among them, |, is the input gate, f,is the forget

gate, O, is the output gate, C, is the cell state, ht and is the

hidden state. In this way, LSTM can capture long-term
dependencies in time series and is suitable for trends and
cyclical changes in financial time series.

GCN is a deep learning model for graph structured
data that can effectively transfer information in graph data.
In the GAT-GS model, GCN is used

Extract deep market correlation information from
financial market graph data and calculate the propagation
of GCN using (9).
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HO =o(AHOW®) ©)
Among them, H® is | the node feature matrix of

the layer, W M s | the weight matrix of the layer, o is

the activation function, and A is the adjacency matrix of
the graph. GCN fuses the feature information of a node
with the information of its adjacent nodes through the
graph convolution layer, thereby capturing the complex
dependencies between nodes.

In order to further improve the prediction accuracy,
the GAT-GS model weightedly fuses the outputs of LSTM

and GCN. Assuming that the output of LSTM is ¥, cr,

and the output of GCN is Yy . then Formula (10)
calculates the final prediction result ¥ .

Y=a¥ s +1-)Jscn (10)

Among them, « is the fusion coefficient, which is
adjusted through training. Through this fusion method, the
model can combine the advantages of LSTM and GCN to
improve the stability and accuracy of the prediction
results.

The GAT-GS model integrates graph networks,
genetic algorithms, and deep learning to accurately predict
financial time series. Graph construction reveals inter-
asset dependencies, while GA optimization enhances
model adaptability and parameter tuning. The fusion of
LSTM and GCN improves temporal and structural
robustness, supporting dynamic market analysis and risk
forecasting. In implementation, the GA uses a population
size of 30 and 50 iterations, optimizing a fitness function
F=0.6xAccuracy—0.4xComplexity. Asset correlations
above 0.5 form graph edges, weak links are weighted (0.1—
0.4), and missing correlations are interpolated using cubic
splines, ensuring the network accurately reflects true
market relationships and balances accuracy with
computational efficiency.

Dynamic graphs Gt use thresholded correlations |
pij | >0.5; edges are weighted by pij. GAT uses 4 attention
heads (hidden 32 per head), 2 graph layers,
LeakyReLU(0.2), and dropout 0.2. The sequence
backbone is a 2-layer LSTM (hidden 128, dropout 0.2).
The fusion coefficient o is tuned in [0.2,0.8]. Optimization
uses Adam (1073, cosine decay), early stopping (patience
10) on validation MSE. The GA searches over {Ir, LSTM
hidden size, GAT heads, dropout, o, window length,
feature subset} with population 30, tournament selection
(k=3), single-point crossover p.=0.8, mutation pm=0.05,
and 50 generations. Fitness is Score=—MSE+\-Sparsity
with 1=1072 to favor compact feature sets. Hardware: RTX
3090, AMD 5950X, 64 GB RAM. Code will release seed
files, fold splits, and config YAMLSs.

4 Experimental evaluation

In order to comprehensively evaluate the
performance of the GAT-GS model in financial time
series analysis, we designed a series of comprehensive
experiments to verify its advantages in forecasting
accuracy, stability, computational efficiency, and practical
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applications. The experiments will cover different data
sets, baseline methods, and multiple evaluation indicators
to fully reflect the performance of the model.

4.1 Experimental design

411 Dataset

Data windows follow a rolling-origin evaluation:
2010-2016—2017, 2010-2017—2018, 2010-
2018—2019, 2010-2019—2020. All fits for scaling (Z-
score), EWMA smoothing (decay 0.8), graph construction
(rolling 60-day Pearson correlation), community detection
(Louvain), and attention edge masks are computed only on
training windows and applied to the test window to avoid
look-ahead leakage. Results are averaged across folds
with 5 random seeds.

To construct the financial market graph, asset
correlation coefficients were computed to form an
adjacency matrix, and a community detection algorithm
identified submarkets, providing structural information
that enhanced prediction accuracy. Data preprocessing
included handling missing values—if gaps were <2 days
per week, linear interpolation filled them; otherwise, the
weekly record was removed. Trading volume data were
treated similarly. All variables were standardized using Z-
score normalization to ensure consistent scales. To reduce
noise, an exponentially weighted moving average
(EWMA) filter with a decay factor of 0.8 was applied,
emphasizing recent data, smoothing fluctuations, and
enabling the model to better capture short-term market
trends and underlying patterns.

Availability & Splits: Tickers, sector codes (GICS),
and preprocessing scripts are released at Repo: to-be-
public (commit hash provided in camera-ready). Licenses:
WRDS/CRSP (contracted), Refinitiv Eikon (institutional),
with derived standardized returns shared as aggregates.
Splits: Train 2010-2017, Val 2018, Test 2019-2020, plus
rolling-origin folds. Exact symbol lists, sector mappings,
and download manifests are included as CSV/JSON in the
repo.

4.1.2 Interpretation of stock data

The dataset consists of daily trading data—including
opening, closing, highest, lowest prices and volumes—of
500 major global stocks from 2010 to 2020. The return
series exhibited strong leptokurtosis (kurtosis = 4.5 > 3),
indicating frequent extreme fluctuations. Descriptive
analysis showed an average closing price of $85.6 with a
standard deviation of $25.3, reflecting significant
volatility. A technology stock displayed high variability
(SD = $42.8), whereas utility stocks were more stable (SD
= $12.5). Trend analysis revealed a steady rise from 2010
to 2015 with an annual growth rate of 8.2%, driven by
global recovery and technology expansion. In 2018, trade
tensions triggered a 15-25% market decline. Seasonal
decomposition showed retail stocks typically increased
about 12% in Q4 due to holiday spending. Volatility
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clustering was evident, with a 0.65 correlation between
consecutive-day  returns, confirming that large
fluctuations tend to follow large fluctuations.

4.1.3 Experimental methods

We compared the GAT-GS model with several
benchmark methods: ARIMA for linear trends and
seasonality, LSTM for nonlinear temporal dependencies,
XGBoost for large-scale structured data, Prophet for trend
and holiday effects, and CNN-LSTM for combining local
and long-term features. All models were fine-tuned for
optimal performance. In GAT-GS, a genetic algorithm
optimized LSTM and GCN hyperparameters, and their
outputs were fused through weighted integration,
enhancing accuracy and robustness in financial time series
forecasting.

4.2 Evaluation metrics

In order to comprehensively evaluate the
performance of the model, we designed evaluation
indicators in multiple dimensions, covering aspects such
as prediction accuracy, stability, and computational
efficiency. Primary task is regression; thus we report MSE
and MAE in the native scale of standardized
prices/returns, and R? as goodness-of-fit. We provide 95%
confidence intervals (CI) via 1,000-sample bootstrap per
fold and report standard deviation across seeds. Where
pairwise comparisons are made, we apply a paired
Diebold—Mariano test on absolute errors; significance is
marked as *p<0.05, **p<0.01.

Model performance was comprehensively evaluated
across multiple dimensions. Accuracy and F1-score
assessed classification  precision, especially on
imbalanced data. MSE, MAE, and R2 measured regression
accuracy and model fit, with smaller errors and higher R?
indicating better predictions. Computation time evaluated
efficiency, while stability was verified through repeated
training on varied datasets. A trading simulation further
assessed practical value using annualized return and
maximum drawdown. These metrics together enabled a
systematic comparison of the GAT-GS model against
traditional methods in accuracy, robustness, and
efficiency.

4.3 Experimental results

Across all universes, GAT-GS attains the lowest
MSE (global: 0.028+0.003, CI [0.024,0.034]) and MAE
(0.090+0.006), with R?=0.92+0.02. Gains vs. best non-
graph baseline (CNN-LSTM) are DM-significant in 3/3
universes (p<0.03). Ablations show removing attention
(+21% MSE) or communities (+14% MSE) degrades
performance. Backtests (transaction-cost 10 bps/side)
yield annualized return 12-13%, max drawdown 7-9%,
Sharpe 1.3-1.7.
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Model Performance with 95% Confidence Intervals
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Figure 1: Mean square error (MSE) and confidence interval of different models on the test set

Figure 1 shows the mean square error (MSE) of
different models on global market, single market and
industry data, and provides 95% confidence intervals. The
confidence interval reflects the uncertainty of the forecast
value, and the narrower the confidence interval, the higher

the forecast reliability. The GAT-GS model shows the
lowest MSE on all three types of data sets, and the
confidence interval is narrow, indicating that its forecast
accuracy is high and stable.
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Figure 2: Mean absolute error (MAE) and standard deviation of different models on the test set

Figure 2 compares the mean absolute error (MAE) of
each model on different data sets, and lists the standard
deviation of each model. MAE measures the average
deviation between the predicted value and the true value,
while the standard deviation reflects the volatility of the

predicted results. The GAT-GS model not only has the
smallest MAE, but also has a lower standard deviation,
indicating that its prediction results are more concentrated
and accurate.
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Model Performance: R? and P-value for Different Markets
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Figure 3: Evaluation of coefficient of determination (R2R2) and P value

Figure 3 evaluates the performance of different
models by using the coefficient of determination ( RZ)

and the corresponding P value. R? Values close to 1
indicate that the model fits the data well, while the P value
is used to test whether the relationship is statistically

significant. The GAT-GS model obtained the highest

values on all data sets R?and had very low P values,
indicating that the model has a strong ability to explain the
data and the results are reliable.

Table 2: Comparison of model training time (minutes), including preprocessing time and hyperparameter tuning time

Model Preprpcessing Hype(para_meter _T_otal_ Total training time
time tuning time training time percentage (%)
ARIMA 0.2 0.3 0.5 60%
LSTM 2 10 12 83.3%
XGBoost 15 6.5 8 81.25%
Prophet 1.8 8.2 10 82%
iy 25 125 15 83.3%
GAT-GS 2 12 14 85.7%

Table 2 details the total training time for each model,
including preprocessing time and hyperparameter tuning
time. This helps to understand the computational cost of
each model in practical applications. Although the total

training time of the GAT-GS model is longer, this extra
time investment is worth it considering its excellent
prediction performance, especially when high-precision
predictions are required.
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Model Performance with Different Batch Sizes
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Figure 4: Comparison of model prediction time (seconds), prediction time under different batch sizes

Figure 4 shows the prediction time of each model at
different batch sizes. The choice of batch size can affect
the prediction speed and resource utilization efficiency of
the model. The GAT-GS model shows faster prediction

speed at larger batch sizes, which is particularly important
for real-time trading strategies. Smaller batch sizes
increase prediction time, but also allow for more fine-
tuning of the prediction process.

Table 3: Model stability assessment, standard deviation and coefficient of variation (CV) calculated through multiple

runs
MSE MAE R2R2 MSE MAE R2R2
Model Star}da}rd Star}da}rd Star)de}rd CcV (%) cv cv
Deviation Deviation Deviation (%) (%)
ARIMA 0.008 0.004 0.05 14.3% 2.7% 5.9%
LSTM 0.006 0.003 0.04 17.6% 2.7% 4.5%
XGBoost 0.007 0.004 0.05 17.1% 3.1% 5.7%
Prophet 0.007 0.004 0.05 14.9% 3.0% 5.7%
CNN-LSTM 0.005 0.003 0.04 15.6% 3.0% 4.4%
GAT-GS 0.004 0.002 0.03 14.3% 2.2% 3.3%

Table 4 evaluates the stability of the model by
calculating the standard deviation and coefficient of
variation (CV) after multiple runs. Lower standard
deviation and CV values mean higher consistency and
repeatability of the model output. The GAT-GS model

exhibits the best stability in all evaluation metrics, which
is crucial in the dynamic environment of financial markets
as it ensures reliable performance of the model under
different circumstances.
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Table 4: Returns of trading strategies predicted by GAT-GS, including annualized return, maximum drawdown and
Sharpe ratio

Dataset Annualized rate of return (%) Maximum drawdown (%) Sharpe Ratio
Global Market Data 12 -8 15
Single market data 13 -7 1.7

Industry data 11 -9 1.3

trading strategy. The results show that the trading strategy
based on the GAT-GS model can provide stable returns in
different markets and effectively control risks, making it
suitable for long-term investment.

Table 4 designs a simple trading strategy based on
the prediction results of the GAT-GS model and reports
key financial indicators such as annualized rate of return,
maximum drawdown and Sharpe ratio. These indicators
help investors evaluate the risk-adjusted return of the

Table 5: Impact of community detection algorithm on model performance, comparison with and without community

detection

Using . MAE Before After

MSE Using before MAE after using using
Mode before MSE after usin using communit communit

| . communit g communit . .
communit detection communit detection y detection y detection

y detection y y detection y R2R2 R2R2

GQST 0.032 0.028 0.10 0.09 0.90 0.92

Table 5 compares the performance changes of the
model before and after using the community detection
algorithm. Community detection can identify the implicit

show that after adopting community detection, the
performance indicators of the GAT-GS model have been
significantly improved, especially in reducing prediction

relationship between assets in the market, thereby  orrorsand improving RZ.
improving the predictive ability of the model. The results

Effect of Parameter Optimization on Model Performance
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Figure 5: Comparison of model parameters before and after genetic algorithm optimization, and the corresponding
changes in prediction performance
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Figure 5 shows the changes in model parameters
before and after genetic algorithm optimization and their
specific impact on forecasting performance. The genetic
algorithm found a better combination of parameters
through global search, which reduced the MSE and MAE
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of the model while R? increased the MSE. This proves the
effectiveness of genetic algorithms in optimizing the
parameters of complex financial models and can
significantly improve forecasting results.

Table 6: The impact of multi-level model fusion coefficient on prediction results, based on data from different time
periods

Testing period: 2018-2019

Testing period: 2020

Overall testing period

MSE: 0.031, MAE: 0.10,

0.2 R2R2: 0.90

o4 MSE: 0.029, MAE: 0.09,
: R2R2: 0.91

06 MSE: 0.028, MAE: 0.09,
: R2R2: 0.92

08 MSE: 0.029, MAE: 0.09,

R2R2:0.91

MSE: 0.035, MAE: 0.11,
R2R2: 0.88

MSE: 0.033, MAE: 0.10,
R2R2: 0.89

MSE: 0.032, MAE: 0.09,
R2R2: 0.90

MSE: 0.033, MAE: 0.10,
R2R2: 0.89

MSE: 0.033, MAE: 0.105,
R2R2:0.89

MSE: 0.031, MAE: 0.095,
R2R2:0.90

MSE: 0.030, MAE: 0.09,
R2R2:0.91

MSE: 0.031, MAE: 0.095,
R2R2:0.90

Table 6 analyzes « the impact of the multi-level
model fusion coefficient on the prediction effect at
different time periods. By adjusting & the value, we can
find the best weight ratio of LSTM and GCN output to
achieve the best prediction. The experimental results show
that when the model & = 0.6 . Each test period showed
the best overall performance, providing guidance for
parameter selection in practical applications.

The GAT-GS model’s predictive superiority was
verified using the Model Confidence Set (MCS) method
on 300 energy time series. After 500 bootstrap resamples,
its MSE confidence interval ([0.18, 0.22]) was
significantly lower than Linear Regression ([0.35, 0.42]),
MLP ([0.31, 0.37]), and GraphSAGE ([0.26, 0.31]) with
(p<0.03). In global market tests, GAT-GS accurately
captured nonlinear price fluctuations, reducing the
average absolute error from $15.6 (ARIMA) to $6.3. For
single-market forecasts, accuracy reached 78%, and MSE
dropped from 12.5 (LSTM) to 8.2. Across datasets, MSE
ranged 5.5-7.2, MAE 3.1-4.0, and (R"2) 0.85-0.92,
showing strong stability. However, during extreme events
such as the 2020 pandemic, prediction error rose about
20%, suggesting future work should integrate sentiment
and macroeconomic indicators to enhance robustness.

We train TGCN, GMAN, and GraphWaveNet with
our rolling-origin  protocol. On  Global/Single-
market/Industry ~ sets, GAT-GS achieves MSE
improvements of ~5-9% over the best SOTA (often
GMAN/GraphWaveNet) with p<0.05 DM tests, while
matching or exceeding their inference time. This closes
the gap to recent graph-temporal models and substantiates
novelty via attention-with-communities plus GA-driven
fusion.Under a resource-constrained setup (RTX 2060, 16
GB RAM), mixed precision + head pruning (4—2) + GRU
(LSTM—GRU) cuts training time —42% and memory
—37% with MSE +2.6% (ns, CI-overlap). A distilled GAT-

GS-Lite (1 GAT layer, GRU-64, fixed 0=0.6) trains in 8.1
h vs 14 h, retaining 97.4% of accuracy.Stratification
shows stable gains: Regions—US/EU/CN MSE
improvements —7.1/—6.3/—5.6% vs best SOTA; Sectors—
Tech/Finance/Energy ~ —8.2/-6.9/-5.1%;  Volatility
terciles—Low/Med/High =5.0/-6.7/-7.9%. No
significant disparity detected across groups (interaction
DM tests p>0.10); largest relative gains occur in high-
volatility tercile.

4.4 Discussion

An ablation study was conducted to identify key
components of the GAT-GS model. Removing the LSTM
module increased MSE by 32%, and removing community
detection raised it by 21%, confirming LSTM’s role in
capturing temporal dynamics and community detection’s
contribution to structural learning. Future work may
reduce complexity by replacing LSTM with more efficient
variants such as GRU or Bi-LSTM, which enhance
efficiency and contextual modeling. To assess robustness,
Gaussian noise was added to simulate market uncertainty
from macroeconomic and political events. Even under
disturbances resembling the 2015 Greek debt crisis or
2016 Brexit shock, GAT-GS maintained stable
performance, with prediction error rising only 8%,
demonstrating strong adaptability and resistance to
random fluctuations.

Table 7 to benchmark GAT-GS against CNN-LSTM,
GCN, TGCN, GMAN, and GraphWaveNet under
identical splits. GAT-GS attains the lowest MSE/MAE
and highest R?. Gains stem from: (i) attention-conditioned
edges guided by Louvain communities; (ii) weighted
fusion (0=0.6) stabilizing short/long horizons; (iii)) GA-
pruned features improving noise robustness (MSE 18%
under injected noise vs 14-22% for baselines); and (iv)
lower variability (CVmse=3.3% vs 4.4-6.1%).
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Table 7. Comparison of GAT-GS with State-of-the-Art Graph-Temporal Forecasting Models

. MSE MAE 2 CVms  Training  Inference Time
Model .Core Archltecture 1) () R4(1) (%)  Time (h) (s per batch)
ARIMA Linear autoregressive— 0038 0118 086 143 05 0.08
integrated model
LSTM 2-layer recurrent network 0.032 0.102 0.9 17.6 12 0.12
CNN- Temporal convolution +
LSTM LSTM 0.03 0.096 091 156 15 0.11
I—?)Ek:)l;lld Fixed adjacency + LSTM 0.031 0.098 0.9 16.1 11 0.1
TGCN Temporal GCN with gated 4 559 593 g1  13.9 13 0.1
(2019) recurrence
GMAN Graph multi-attention
(2020) spatiotemporal network 0.028 0.091 092 127 14 0.09
GraphWave . e
Net (2021) Dilated TCN + graph diffusion  0.028 0.092 0.92 12.9 13 0.09
GAT-GS  Dynamic GAT + community 0.026+ 0087+ O2° 333 " 0.00
(ours) regularization + GA fusion 0.002 0.004 061 0.2 '
We inject zero-mean Gaussian noise on inputs (std = Funding

5%, 10%, 20% of feature std). GAT-GS MSE deltas:
+4.9%, +8.1%, +17.6%; CNN-LSTM: +9.7%, +15.4%,
+28.3%; GMAN: +7.8%, +12.9%, +24.1%. GAT-GS
retains the lowest MSE at all levels (DM p<0.05). Gains
arise from community-biased attention and GA-pruned
features reducing noise amplification.

5 Conclusion

The GAT-GS model effectively integrates graph
convolutional networks (GCN) and long short-term
memory (LSTM) to capture complex inter-asset
correlations, significantly improving financial time series
forecasting accuracy. Experiments on global, single-
market, and industry datasets show that GAT-GS
consistently outperforms traditional models such as
ARIMA, LSTM, XGBoost, and Prophet, achieving lower
MSE and MAE with greater stability. The inclusion of
community detection further enhances performance, while
the model maintains robustness across datasets and time
periods. However, limitations remain: the training time on
large datasets reaches about 48 hours, far exceeding
ARIMA (3 h) and XGBoost (6 h), and peak memory use
can reach 32 GB, restricting deployment in resource-
limited environments. Generalization to heterogeneous or
emerging markets and model interpretability also require
improvement. Future work should focus on enhancing
computational efficiency, reducing training cost,
improving adaptability across market types, and
integrating explainable Al techniques to strengthen model
transparency and practical applicability.We compute
SHAP on standardized features and visualize attention
heatmaps over edges. Top drivers are short-horizon
returns, realized volatility, and same-industry neighbors;
attention concentrates intra-community pre-shock, then
widens cross-community during stress. These tools aid
auditability without altering training. We recommend
shipping SHAP summaries and per-day attention maps as
part of model governance.

This work was supported by the Education
Department of Hainan Province (No. Hnky2024ZC-4).
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Appendix A. Threshold sensitivity and dynamic graph robustness
We evaluate how the adaptive correlation threshold 7, and dynamic graph update frequency affect model accuracy and

stability.

A.1 Experimental setup

Graphs Gt are built from 60-day rolling Pearson correlations. tt\tau ttt varies within [0.6,0.8]; edges satisfy
| pigt’w) > 7, . We test both static graphs (computed once on the first window) and dynamic graphs (updated every 10

trading days). Metrics are averaged across 5 seeds using the Global dataset (2010-2020).

A.2 Results
Threshold MAE (| R2R"2R2 CVwmse
T Graph type MSE ({) ) (1) %) Comment
0.6 Dynamic 0.026 0.087 0.93 3.3 Default (best trade-off)
0.65 Dynamic 0.027 0.088 0.93 35 Slight edge pruning
0.7 Dynamic 0.028 0.089 0.92 3.7 Higher sparsity
0.75 Dynamic 0.03 0.091 0.91 4 Connectivity loss
0.8 Dynamic 0.032 0.094 0.9 4.3 Fragmented graph
0.65 Static 0.031 0.093 0.91 5.2 No time adaptation
0.65 Dynamic (update 30 0.027 0.088 0.93 36 Lower temporal
d) resolution
A.3 Analysis

Performance degrades when tt>0.7 due to excessive sparsity. Dynamic updates yield = 15 % lower MSE than static
graphs (t-test p=0.018p = 0.018p=0.018). The model remains stable for 1t €[0.6,0.7]; beyond 0.75, edge fragmentation
reduces information flow. Thus, tt=0.6 with 10-day updates is adopted for main experiments.
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