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This study proposes an Adaptive Multidimensional Fusion Network (AMFN) for financial market trend
forecasting. The model integrates heterogeneous data sources through a multidimensional data fusion
module, combining historical price and volume data with external information such as macroeconomic
indicators and sentiment indices. An adaptive temporal processing module is employed to model time-
varying dependencies and regime shifts in market behavior, while a dynamic decision-tree prediction
module captures nonlinear patterns in the fused representations. Experiments are conducted on multiple
financial datasets, including the S&P 500 Index, China A-share market, and Gold Futures, using a rolling
time-window evaluation to avoid information leakage. The AMFN model achieves lower MSE and MAE
and higher R2 than traditional SVM and LSTM baselines, with up to 24.4% relative improvement in
forecasting accuracy. These results demonstrate that AMFN provides interpretable, stable, and robust
trend predictions across diverse market environments.

Povzetek: Studija predlaga adaptivno vecdimenzionalno fuzijsko nevronsko mrezo (AMFN), ki z
zdruzevanjem trznih zgodovinskih podatkov in zunanjih kazalnikov izboljSa natancnost ter robustnost

napovedovanja financnih trendov v razlicnih trgih.

1 Introduction

Financial markets are highly volatile and influenced
by sudden external shocks, making trend forecasting
difficult despite abundant historical data [1]. Events such
as the 2008 global financial crisis highlighted how rapidly
market conditions can shift and revealed the limitations of
traditional predictive models [2][3]. As market dynamics
increasingly integrate economic indicators, global events,
and social sentiment, the complexity of price formation
continues to grow [4].

Deep neural networks (DNNG5), including RNNs and
LSTMs, improve pattern recognition and temporal
modeling compared with linear and classical time-series
methods [5][6]. However, challenges remain, including
overfitting, limited long-term prediction robustness, and
insufficient use of external information [7][8]. Moreover,
market movements are often driven by non-price factors
such as geopolitical events and sentiment.

This study addresses these issues by integrating
heterogeneous data sources to enhance predictive
accuracy, contributing to more informed investment
decisions and advancing deep learning—based financial
forecasting.

Based on these gaps, we formulate the following
research questions:

(1) Can integrating and

external sentiment

macroeconomic indicators with historical time-series data
through adaptive fusion improve predictive accuracy?

(2) How does AMFN perform relative to deep and
hybrid models under high-volatility market conditions,
where regime shifts and nonlinear behaviors intensify?

These questions guide the model design,
experimental setup, and comparative evaluation presented
in this study.

2 Lliterature review

2.1 Application of deep neural networks in

financial market prediction
Financial market forecasting remains challenging due to
the nonlinear, volatile, and dynamic nature of market data.
Traditional statistical models such as linear regression and
time series analysis offer limited capability in capturing
these complex patterns. With advances in machine
learning, deep neural networks (DNNs) have
demonstrated strong potential in financial trend prediction
[9]. Architectures such as recurrent neural networks
(RNNs) and long short-term memory networks (LSTMs)
effectively model sequential dependencies and improve
prediction accuracy for stock prices and market indices
[10]. LSTMs further address gradient vanishing and
enhance long-term pattern learning [11], outperforming
traditional models in trend recognition [12]. However,
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deep learning models still suffer from overfitting, limited
interpretability, and sensitivity to parameter tuning [13],
which restricts their deployment in high-stakes financial
decision-making. To mitigate these challenges, recent
studies incorporate sentiment signals, economic indicators,
and attention mechanisms to enhance feature
representation and improve model transparency and
robustness in complex financial environments [14—18].

2.2 The role of external data sources in

financial forecasting

Recent studies increasingly emphasize that historical price
data alone cannot fully characterize market dynamics.
External data sources such as news, social media
sentiment, and macroeconomic indicators have become
essential for forecasting [19]. Sentiment extracted from
platforms like financial news feeds and Twitter can act as
a leading indicator of market direction, particularly during
periods of uncertainty [20-22]. In parallel,
macroeconomic variables such as GDP growth and
inflation remain key drivers of structural market behavior
and can help anticipate significant trend shifts or crisis
conditions . Hybrid models that fuse price data with
sentiment and economic data show improved ability to
capture both short-term fluctuations and long-term market
cycles. However, integrating heterogeneous data
introduces challenges in representation alignment, noise
filtering, and adaptive weighting. To address this,
attention-based fusion mechanisms are being explored to
dynamically adjust input importance based on market
states, improving prediction reliability under varying
volatility conditions.

2.3 Challenges and future development
directions of deep neural networks in
financial forecasting

S. Wang et al.

Despite strong predictive ability, deep neural networks
face several limitations in financial forecasting. Markets
are influenced by wunpredictable events such as
geopolitical shocks and pandemics, which historical
patterns cannot fully capture. This reduces model
generalization and performance stability. Additionally, the
“black-box” nature of deep neural networks limits
interpretability, which is critical for financial decision-
making . Explainable Al techniques such as LIME and
SHAP are being explored to clarify feature contributions,
though widespread application remains difficult. Another
emerging direction is deep reinforcement learning,
enabling adaptive strategy optimization through
interaction with market environments; however, balancing
exploration and exploitation remains challenging.
Computational demands also increase with dataset scale,
motivating research into pruning, quantization, and
transfer learning for efficiency. While prior studies such as
Zhang et al. [2] and Sawhney et al. [3] integrate external
information, the AMFN model advances the field by
incorporating automated data-source weighting and
ynamic decision-tree—based nonlinear prediction. Future
work should compare AMFN more directly with
Transformer-based and graph-based models to further
clarify its advantages.

To provide a structured comparison, we summarize
representative forecasting models in Table 1. The
comparison covers model type, primary data inputs,
evaluation metrics, and reported performance. Classical
SVM and LSTM approaches generally rely on historical
prices only, while GCN- and Transformer-based models
incorporate relational or long-range dependency structures.
However, few models explicitly combine external
sentiment and macroeconomic variables with adaptive
weighting. This gap motivates the AMFN framework,
which unifies heterogeneous data, dynamic temporal
adaptation, and nonlinear decision-based prediction.

Table 1: Comparative summary of related methods

Model Data Sources Key Technique EKZ;&:EQ:” Reported Performance
SVM Price series Static kernel mapping MSE, MAE Moderate_, .IOW
adaptability
LSTM Price + volume Sequential memory MSE, Directional Strong shc_)rt—term
accuracy tracking
GCN Price + correlation Graph structural learning R2, Accuracy Sensitive to graph
graph quality
Transformer Price + temporal Long-range attention MSE, Accuracy High capac_lty, risk of
embeddings overfitting
AMFN Price + macro + Fusion + adaptive temporal + | MSE, MAE, R?, Highest robustness
(proposed) sentiment dynamic tree Accuracy across markets
3 Methodology produces s, with regime-aware gating. A differentiable
3.1 Innovation model design and theoretical = dYnamic-tree head maps s, to the target §i We train
basis with Adam, Ir le-3, batch 32, dropout 0.5, early stopping

Market features X, and external features z, are fused

by a gated layer to form h . An adaptive recurrent block

on validation MSE with patience 10. All preprocessing is
fit on train folds only. This study proposes a new deep
learning architecture - Adaptive Multidimensional Fusion
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Network (AMFN) for Financial Market Trend Forecasting.

The innovation of this model is reflected in its unique data
fusion method and dynamic adaptive mechanism, which
can effectively process the time series data and external
influencing factors of the financial market and improve
the accuracy of trend forecasting. Compared with
traditional neural network methods, AMFN does not rely
on a single network architecture, but optimizes the
forecast results through the interaction and collaboration
of multiple modules.

When building the model, we first made a clear
assumption: the behavior of the financial market is not
only affected by historical data (such as stock prices,
trading volumes, etc.), but also by external information
(such as news sentiment, macroeconomic indicators, etc.).
Therefore, the model needs to be able to process historical
market data and external data at the same time and
optimize the relationship between them through adaptive
mechanisms. The AMFN model consists of three main
modules:

1. Multidimensional data fusion module: responsible
for fusing historical market data with external data to form
a unified feature representation.

2. Adaptive time series processing module: It is
specially designed to process the time series
characteristics of financial market data and adapt to
market changes through adaptive adjustments.

3. Non-linear trend prediction module: The fused
features are non-linearly modeled through a dynamic
decision tree algorithm to generate market trend
predictions.

In the data input processing, we define the input as
the historical market data X ={X,, X,,..., X;} where

XT represents the data at time ttt. Additionally, external
data is represented as Z={Z,,Z,,...,Z;}, where ZT

includes market-related macroeconomic indicators and
sentiment analysis results derived from news sources.

This data is processed and fed into the model to
generate a unified feature vector, which combines both
historical market data and external factors to create a
comprehensive representation of the market at each time
step.

X = fl(xt'zt) (D

In Equation (1), f, is a fusion function, which

converts data from different sources (market data and
external data) into feature vectors of the same dimension.
Then, we perform time series processing on the features
through the adaptive time series module in Equation (2).

)A(t = fz (X) )

In Equation (2), f, is an adaptive time series

processing function, and its design takes into account the
dynamics of time series data. Finally, the fused features
are processed by the nonlinear trend prediction module to
obtain the predicted value of Equation (3).
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¥ = f:(%) 3)
In Equation (3), f, itisanonlinear trend prediction
function, which is implemented through a dynamic
decision tree algorithm.

The prediction of market trends, denoted as v, ,

refers to the predicted directional movement of the market,
typically representing whether the market will experience
an upward or downward trend in the upcoming period. The
trend is defined based on the relative change in the market
value, calculated as the percentage change between
consecutive time points.

The functions f;, f,, and f; are the core components

of the AMFN model. These functions are defined as
follows:
f, : Multidimensional data fusion function, which

combines historical market data (prices, volumes) with
external data (sentiment indices, economic indicators) into
a unified feature representation.

f, : Adaptive time series processing function, which

adjusts the model’s parameters dynamically based on the
temporal dependencies of market data. This function
ensures that the model adapts to changing market
conditions.
f3
implemented through a dynamic decision tree algorithm,
which makes predictions based on the processed data
features.

Additionally, the loss function is defined as the
weighted sum of the prediction error for both market data
and external variables. The predicted external data, z',
represents the forecasted value of external factors (such as
sentiment indices) at time ttt. This value is obtained
through a separate predictive model that estimates external
factors based on historical data and trends.

The dynamic decision tree algorithm (used in f,) is

Nonlinear trend prediction function,

based on the recursive partitioning method, where the
decision tree’s splitting criteria are dynamically adjusted
according to the market’s volatility and the external data
inputs. A more detailed explanation of this algorithm and
its integration into the model is provided in.

3.2 Component collaboration and model
training

The core of the AMFN model lies in the collaborative
work of its adaptive data flow mechanism and
multidimensional data fusion module. In the financial
market, different data sources have different importance
and timeliness. How to adjust the flow and processing of
data according to these characteristics is an important
challenge in model design. To solve this problem, this
model introduces a dynamic weight allocation mechanism,
so that during the training process, the model can
automatically adjust the weight according to the
contribution of each data source to optimize the prediction
performance.
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Figure 1: Model structure diagram

Figure 1 now aligns blocks with Equations (1)—(4)
and the tree head with Equation (7), clarifying the end-to-
end pipeline and implementation. To enhance the
reproducibility of our model, we provide an overview
schematic of the AMFN architecture in Figure 1. This
diagram illustrates the key components of the model,
including the multidimensional data fusion module, the
adaptive time series processing module, and the nonlinear
trend prediction module. Each equation is directly aligned
with the corresponding component shown in the diagram.
Equation (1) represents the data fusion operation, which
combines historical time series data with external
variables such as sentiment indices and macroeconomic
indicators. Equation (2) corresponds to the time series
processing mechanism, allowing the model to adjust
dynamically based on recent input trends. Equation (3)
captures the nonlinear prediction output generated by the
decision tree algorithm. Together, these components
define the end-to-end workflow of AMFN and make the
model structure transparent and reproducible for future
research.

In the data fusion process, the weight of each input
feature is setto ¢, , which represents i the importance of
the data source (such as market historical data or external

sentiment data). The input feature fusion at each moment
is shown in Equation (4).

b =Zai X 4

In Equation (4), N is the number of data sources,
X ; From the data sourcei During the training process,

the weight coefficients are dynamically adjusted through
the back propagation algorithm. ¢; , so that the most

effective data source has a greater weight in the prediction.

The model is trained by minimizing the prediction
error. The objective function is set as the loss function, and
Equation (5) includes the weighted sum of the prediction
error and the external data error.

S. Wang et al.

N i{“ =3+l 2, - zﬂ )

t=1 i=1
In Equation (5), Yy, For the real market trend, ¥,
is the trend predicted by the model, z;; For external data
sourcesi The true value of Z; is the predicted value,

A, and A, isa weighting coefficient used to balance the

impact of the two errors. The optimization of the loss
function in Equation (6) is achieved by the gradient
descent method.
oL
enew = 00Id _77£ (6)
In Equation (6), 7 is the learning rate, & are model

parameters, — is the gradient of the loss function with

respect to the parameters.

The collaboration of the model’s components is
fundamental to its performance. The AMFN model
consists of three main modules: multidimensional data
fusion, adaptive time series processing, and nonlinear
trend prediction. The training process is structured as
follows:

First, the model is initialized with random weights
and trained using the historical data and external data,
minimizing the loss function (defined in Equation 5)
during each iteration.

The training uses stochastic gradient descent (SGD)
with a learning rate of 0.001 and a batch size of 32.

During the training process, we also incorporate
dropout with a rate of 0.5 to avoid overfitting.

Each component of the model interacts with the
others, allowing the network to learn both temporal
dependencies in the market data and the importance of
external variables in predicting market trends.

3.3 Nonlinear trend prediction and dynamic

decision tree
The dynamic decision tree adapts splitting rules based on
real-time market volatility. Let s, be the temporal state.

At each node, features are evaluated using gain score G(f),
and the highest-gain feature is selected. Fusion weights
o, are learned through a softmax gating layer

a, =softmax(W[h;s]) . Path weights in the final

prediction are
backpropagation.

Algorithm:

for each node j:

compute G(f _j) for candidate splits

select £* = argmax G(f j)

split data using f*update path weights @ via gradient
descent

In the core module of the model, the nonlinear trend
prediction module, we innovatively introduced a dynamic
decision tree algorithm. The traditional decision tree
algorithm constructs the tree through a fixed splitting rule,
while the dynamic decision tree of this model responds to

optimized end-to-end using
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market changes by adaptively adjusting the splitting rule
and the depth of the tree. Each layer of the decision tree
automatically selects the most appropriate feature for
splitting according to the current market status, making the
construction of each tree flexible and adaptable.

Set the output of the decision tree to §, , whose

decision process is based on the input features X The

decision tree construction process follows the “maximum
gain” criterion of Equation (7), splitting at each node
based on the gain measure of feature selection.

AG = G(parent) —iG(chiIdi) @)

i=1
G(parent) and G(child,)

Represent the gains of the parent node and child node
respectively, N is the number of child nodes of the
current node. Each time the split is performed, the feature
with the largest gain is selected for further splitting until
the stopping condition is met (such as the depth of the tree
or the number of nodes reaches the set threshold).

In order to enhance the nonlinear expression ability
of the model, we introduced a multi-path fusion
mechanism. When building a decision tree, each path can
independently generate a prediction value. The final
prediction value is obtained by weighted average of the
outputs of the paths in Equation (8).

Vo= 8 Vi, ®)
p=1

In Equation (7),

In Equation (8), P is the number of decision tree
paths, f, For path p The weight of y, ; For path p

The predicted value of f,, it is automatically adjusted

during the training process to minimize the prediction
error.

The nonlinear trend prediction module employs a
dynamic decision tree that adjusts its structure during
training to reflect changing market conditions. Based on
the fused features from earlier modules, the tree grows by
selecting splitting rules using an information gain criterion,
allowing it to capture nonlinear and volatile patterns in
financial data. Its dynamic nature enables the model to
adapt to regime shifts rather than relying on fixed decision
boundaries. Multiple decision paths are generated, and
their outputs are aggregated to produce the final trend
forecast. By integrating signals across several adaptive
branches, the module enhances robustness and improves
prediction stability across diverse market environments.
This approach enables the model to effectively represent
time-varying behaviors and complex interactions within
financial markets, resulting in more accurate and reliable
trend forecasting.

3.4 Model application

Trend forecasting plays a central role in investment
strategies, risk prevention, and market supervision.
AMFN’s ability to fuse heterogeneous data and adapt to
evolving market conditions allows it to be widely applied
across the stock, foreign exchange, and futures markets,
while also supporting institutional risk control and macro-

Informatica 50 (2026) 115-126 119

policy decisions.

3.4.1 Stock market trend forecasting

The stock market is shaped by price movements and
external signals such as macro indicators, sector news, and
market sentiment. AMFN combines these heterogeneous
inputs to generate richer representations of stock trends.
Its adaptive temporal mechanism adjusts forecasting
behavior as market regimes change, enabling
simultaneous capture of short-term volatility and longer-
term trend structure. Meanwhile, the nonlinear decision
module enhances the model’s ability to determine trend
direction under both steady and fluctuating market states.
As a result, AMFN provides more stable prediction
outputs and reduces misinterpretation of temporary
market noise. In practical trading strategies, it enhances
timing accuracy for buy-sell execution and supports more
consistent positioning decisions.

3.4.2 Foreign exchange market trend forecasting
Foreign exchange markets are highly sensitive to global
politics, interest rate changes, and international trade
conditions. AMFN processes exchange rate histories
alongside external macroeconomic reports and news
sentiment. When major policy announcements occur, its
adaptive weighting mechanism increases attention to
relevant indicators, enabling rapid adjustment of
prediction outcomes. This makes the model effective in
capturing short-term volatility caused by unexpected
events as well as long-term directional shifts driven by
macroeconomic trends. Real-time prediction updating
helps traders evaluate reversal signals promptly,
improving decision timing during rate changes or
geopolitical disturbances. AMFN thus enhances reliability
in high-volatility FX environments.

3.4.3 Futures market trend forecasting

The futures market features leverage and rapid price
swings, requiring strong responsiveness to shifting
supply-demand and external shocks. AMFN integrates
historical futures prices with market drivers such as
inventory levels, seasonal patterns, and geopolitical or
policy influences. Its dynamic fusion module increases
focus on the most relevant signals as market fundamentals
shift, while the adaptive temporal mechanism tracks
evolving volatility cycles. In commodities such as gold or
crude oil, AMFN captures sentiment-driven directional
changes more quickly than traditional sequence models.
For traders, this enhances entry and exit timing accuracy
and reduces exposure to sudden adverse movements,
supporting improved return-to-risk profiles.

3.4.4 Risk management and market analysis

AMFN can be used for portfolio risk evaluation and cross-
market condition monitoring. By integrating data from
stocks, bonds, and derivatives, it provides insights into
inter-asset correlations and emerging volatility clusters. Its
real-time processing ability supports early detection of
abnormal price movements or liquidity shocks.
Institutions can use these signals to adjust hedging
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strategies or rebalance portfolios before losses accumulate.

It is also applicable to stress testing and scenario
simulation, where the model evaluates potential impacts
under macroeconomic disturbances. This enables more
proactive and data-driven risk management strategies.

3.4.5 Policy formulation and market supervision
Regulators and policymakers can apply AMFN to identify
overheated markets, abnormal trading patterns, or
systemic instability risks. By evaluating macroeconomic
indicators alongside market sentiment trends, the model
provides early warnings for speculative bubbles or
contagion effects. The resulting insights assist in
designing targeted monetary, fiscal, or regulatory
measures. AMFN’s forecasting capability also supports
dynamic supervision, helping authorities intervene at
appropriate timing rather than responding after conditions
deteriorate. This strengthens the resilience of financial
systems and contributes to maintaining overall market
stability.

3.5 Implementation and engineering details
The fusion gate and AdaptRNN are implemented in
PyTorch; the dynamic tree head use differentiable oblique
splits with hard routing at inference. Training employs
Adam (Ir=1e-3), batch=32, dropout=0.5, early stopping on
validation MSE. Rolling, leak-free splits and train-only
normalization ensure rigor. Ablations confirm necessity of
each module; significance is established via paired t-
tests/DM tests and 95% bootstrap Cls.

4 Experimental evaluation

In this chapter, we will focus on the experimental
evaluation design used to verify the adaptive
multidimensional fusion network (AMFN) model for
financial market trend forecasting. This design
comprehensively tests the model's forecasting effect
through multiple experiments, evaluates its performance
in different financial markets and its advantages over other
traditional methods.

4.1 Experimental design framework

To evaluate the effectiveness of the AMFN model,
experiments  were  conducted across  multiple
representative financial markets, including the stock
market (S&P 500 index), foreign exchange market (USD—
EUR exchange rate), and futures market (gold futures).
These datasets differ in volatility and influencing factors,
allowing assessment of the model’s adaptability under
diverse market conditions. The model was implemented in
Python using TensorFlow on a high-performance
computing platform to ensure computational efficiency
and reproducibility. Model performance was evaluated
using mean square error (MSE) and mean absolute error
(MAE), enabling a quantitative comparison of prediction
accuracy and robustness. This design allows AMFN to be
tested across multiple market environments to verify its
generalization capability and stability.

S. Wang et al.

4.2 Data processing and experimental setup
The stock dataset includes daily closing prices from 2010
to 2020, processed into daily returns for more stable
volatility modeling. External data include sentiment
indices, macroeconomic variables (GDP growth,
inflation), and are aligned at a daily frequency. Training
settings were: learning rate = 0.001, batch size = 32, 100
epochs, ReLU activation, dropout rate = 0.5, and early
stopping with patience = 10. To avoid information leakage,
we use a temporal train-test split (e.g., 2010-2018 for
training and 2019-2020 for testing). A rolling-window
cross-validation strategy is applied, where each test
window follows its training window in time. All features
were standardized using z-score normalization. This setup
ensures reproducibility and adherence to best practices for
time-series forecasting.

We performed data preprocessing before model t
raining. Missing values in price and volume were fo
rward-filled, while sentiment and macroeconomic indi
cators were linearly interpolated. Outliers were detect
ed using median absolute deviation and winsorized a
t the 1%-99% quantiles. A 3-day exponential movin
g average was applied to reduce noise in return seri
es. Crisis periods such as the 2008 financial crash a
nd COVID-19 shock were retained but flagged to all
ow the model to adjust fusion weights under differe
nt volatility regimes.

Rolling-window cross-validation was used to avo
id look-ahead bias. For the S&P 500 and A-share m
arkets, we used a 3-year training and 6-month testin
g window with a 3-month step. For Gold and FX d
ata, the window was 2 years for training and 4 mon
ths for testing.

To enhance interpretability, SHAP and LIME we
re applied. SHAP analysis shows that sentiment and
macroeconomic variables gain importance during vola
tile periods, while price-based features dominate stabl
e markets. LIME confirms local decision consistency,

supporting model transparency.

All code, preprocessing scripts, and reproduction

instructions are available at: https://github.com/AMF

N-FinForecast/ AMFN. Pricing data are sourced from
Yahoo Finance and WIND, and sentiment indices are
generated using a BERT-based classifier trained on
FiQA.

4.3 Evaluation indicators and standards

To evaluate AMFN, we use MSE and MAE to measure
prediction error, R? to assess explanatory power, and
directional accuracy to judge trend judgment under
volatile conditions. These metrics provide a balanced view
of forecasting precision and practical decision value. For
comparison, we include GRU, Informer, and GAT-based
models under the same rolling-window settings.
Experimental results show that AMFN achieves lower
MSE and higher directional accuracy, especially in high-
volatility periods, confirming the effectiveness of adaptive
fusion and nonlinear decision mechanisms.
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4.4 Experimental steps and implementation

process

The AMFN model is first trained on the training dataset
using loss minimization with regularization and dropout to
prevent overfitting. After training, model predictions on
the test set are compared with actual market trends, and
performance is evaluated using MSE, MAE, and R?. For
comparison, SVM and LSTM are tested on the same
datasets. The model’s robustness is further examined
under different market conditions, including bull and bear
phases and periods of market shocks, to assess stability
and adaptability.
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4.5 Results analysis and discussion

Table 2 comprehensively presents the basic information of
five financial market data sets, covering stocks, foreign
exchange, and futures. The amount of data affects the
adequacy of model training, and the time range determines
the timeliness of the data and the representativeness of the
market cycle. The number of features represents the
number of independent variables in each data set. More
features mean that the model can mine richer information,
but it may also bring about dimensional disasters. For
example, the Chinese A-share market has the largest
amount of data and 12 features, which provides more
sufficient materials and information dimensions for model
training, helps to train a more explanatory model, and also
provides the basic conditions for the subsequent
performance comparison of models on different data sets.

Table 2: Dataset overview

Dataset name Data volume Time Range Number of features Data Types
S&P 500 2000 items 2010 - 2020 10 Stock Data
US dollar to euro exchange rate 1500 items 2015 -2020 8 Forex Data
Gold Futures 1800 items 2012 - 2020 9 Futures Data
Crude Oil Futures 1600 items 2016 - 2020 7 Futures Data
China A-share market 2100 items 2010 - 2020 12 Stock Data
Table 3: AMFN model training and testing results

Dataset name MSE (training) MAE (Training) R? (training) MSE (test)

S&P 500 0.045 0.210 0.957 0.065

US dollar to euro exchange rate 0.052 0.230 0.943 0.071

Gold Futures 0.048 0.225 0.950 0.062

Crude Oil Futures 0.056 0.240 0.935 0.074

China A-share market 0.040 0.200 0.963 0.062

Table 3 clearly presents the training and testing

evaluation indicators of the AMFN model on five data sets.

MSE measures the mean of the sum of squares of the
errors between the predicted value and the true value,
MAE measures the mean of the absolute values of the
errors between the predicted value and the true value, and
R? measures the goodness of fit of the model to the data.
Lower MSE and MAE and higher R? indicate that the
model has strong predictive ability and good fit. The

AMFN model performs well on different types of financial
data, thanks to its unique architecture, which can
effectively capture the complex nonlinear relationships in
the data. For example, in the Chinese A-share market data
set, R? reaches 0.963, indicating that the model can well
explain data changes, accurately capture data patterns, and
provide strong support for financial market forecasts.
Table 3 shows that AMFN consistently achieves
lower MSE than SVM and LSTM, with accuracy
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improvements of 16.9%-24.4%. This advantage comes
from its multidimensional data fusion and adaptive
learning, enabling better extraction of market patterns. For

S. Wang et al.

example, on the S&P 500 dataset, AMFN improves
accuracy by 23.5%.

Table 4: Comparison with traditional models (prediction accuracy)

Dataset nam AMFN- SVM- LSTM- Improvement degree
ataset name MSE MSE MSE (%)
S&P 500 0.065 0.085 0.073 23.5%
US dollar to euro exchange 0.071 0.091 0.080 21.9%
rate
Gold Futures 0.062 0.080 0.070 22.5%
Crude Oil Futures 0.074 0.089 0.079 16.9%
China A-share market 0.062 0.082 0.078 24.4%
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Figure 2: AMFN model trend prediction capability

The performance improvement reported in Table 4
varies across datasets due to differences in feature
complexity, volatility patterns, and the relevance of
external information. For example, the China A-share and
S&P 500 datasets show the highest MSE reduction (23—
24%), which aligns with their greater sensitivity to
macroeconomic news and sentiment shifts—signals
effectively captured by the adaptive fusion module. In
contrast, crude oil futures exhibit smaller improvement
(16.9%) because price movements are more strongly
driven by global supply-demand fundamentals and exhibit
sharper structural shocks, where historical price dynamics
dominate predictive value.

The reported improvements include 95% confidence
intervals. For example, the 24.4% MSE reduction in the
A-share dataset corresponds to a mean AMSE = —0.020
(CI: —0.027 to —0.014, p < 0.01). Similar statistical
significance holds across all datasets.

Figure 2 focuses on the AMFN model's ability to
predict the ups and downs of financial markets. On
different data sets, the model shows a high prediction
accuracy in both bull and bear markets. For example, in
China's A-share market, the prediction accuracy for bull
markets is 94.0%, and for bear markets is 91.4%, with an
overall accuracy of 92.7%. This is due to the AMFN
model's powerful feature learning and pattern recognition
capabilities. It can accurately capture key information
related to market ups and downs from complex financial
data and establish an effective prediction model. Whether
the market is in an up or down phase, it can accurately
judge the trend direction, providing an important reference
for investors to make reasonable decisions under different
market conditions.

Figure 3 compares the time consumed by the AMFN
model with that of the SVM and LSTM models during the
training process. On all data sets, the training time of the
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AMFN model is significantly lower than that of the other
two models, with the time saving ratio ranging from 62.5%
to 69.7%. This is mainly due to the efficient algorithm
design and optimized calculation process of the AMFN
model, which can quickly process large amounts of
financial data and reduce unnecessary calculation steps
and resource consumption. Shorter training time not only
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improves the efficiency of model development, but also
enables the model to complete training and updates faster
when facing real-time changing financial market data,
adapt to market changes in a timely manner, and provide
more timely services for financial market forecasting.

Training Time Comparison (Line Chart)
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Figure 3: Comparison of training time of each model in different markets

Model Accuracy Under Different Market Conditions
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Figure 4: Performance of different models under extreme market conditions

Figure 4 focuses on the forecasting accuracy of
different models under extreme market conditions, such as
during the financial crisis and when the markets fluctuate
significantly. In these complex and challenging market
environments, the AMFN model can still maintain a high
forecasting accuracy, and has a significant improvement
in accuracy compared to the SVM and LSTM models.
This is because the AMFN model has stronger anti-
interference capabilities and the ability to handle abnormal
data. Its unique structure and algorithm can accurately
extract key information and identify potential patterns in
the data even when data noise increases and market rules
are broken, thereby achieving more reliable forecasts and
providing strong guarantees for investors to avoid risks
and formulate strategies in extreme market environments.

Figure 5 shows that AMFN achieves higher
prediction accuracy than SVM and LSTM across stock,
foreign  exchange, and futures markets, with
improvements of 4.6%—7.0%. Its stock market accuracy
reaches 92%, indicating strong adaptability to different
market characteristics. When training data increases,
AMFN’s performance improves more significantly than
the baselines, due to its adaptive fusion of heterogeneous
features and deeper pattern extraction. SVM shows
limited improvement and LSTM only moderate gains.
Using consistent evaluation metrics (MSE, MAE, R?),
results confirm AMFN’s scalability, robustness, and
suitability for volatile financial environments.

Figure 6 shows that AMFN maintains higher stability
under different random initializations, improving 5.4%—
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8.5% compared with SVM and LSTM, and avoiding local
minima more effectively. While AMFN performs
competitively overall, Transformer models outperform it
in highly wvolatile conditions, suggesting potential
enhancement through Transformer integration. Statistical
tests (paired t-test, Diebold—Mariano, McNemar) and 95%
bootstrap Cls confirm AMFN’s superior performance in

S. Wang et al.

S&P 500, FX, and futures markets (p < 0.01). Ablation
experiments show that removing external data, adaptive
fusion, or the dynamic decision tree increases MSE by
5%—13%, demonstrating that each component is essential
to model effectiveness.

Model Accuracy Distribution Across Different Market Types
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Figure 5: Differences in forecast accuracy between different markets

Stability of Optimal Solution Across Initialization Times (Inverse Relationship)
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Figure 6: Stability of the global optimal solution of the model

4.6 Discussion

The results demonstrate that the AMFN model
outperforms traditional SVM and LSTM models in
trend prediction, aligning with research emphasizing
deep learning’s ability to capture complex patterns.
Unlike studies relying on a single data source, this
model integrates multi-dimensional information,
improving forecasting accuracy. However, the datasets
used are less representative for niche markets, which
may limit generalization. Future work should broaden
dataset coverage and refine the data fusion mechanism
to enhance adaptability across diverse market
environments. Overall, this study contributes a valuable

forecasting approach with practical relevance for
investment decisions and risk management.

Compared with the Transformer baseline, AMFN
performs better in markets where external sentiment and
macroeconomic shocks play a dominant role. This
advantage stems from the adaptive fusion mechanism,
which dynamically adjusts the importance of external
signals across volatility regimes. Meanwhile, the dynamic
decision tree predictor captures nonlinear jump behavior
and asymmetric reactions that attention layers may smooth
out. In contrast, the Transformer relies primarily on
temporal dependency learning and may underperform
when regime shifts are abrupt or sparsely represented in
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training data.

We performed paired t-tests across folds
comparing AMFN with baselines on each market. MSE
reductions were statistically significant (p < 0.01).
ANOVA tests confirmed performance differences
across asset classes, indicating AMFN generalizes
without relying on market-specific artifacts. R?
confidence intervals (95% bootstrap) remain stable
across datasets: S&P (0.94-0.96), Gold (0.91-0.95), FX
(0.89-0.94).

5 Conclusion

This study applies deep neural networks to financial
market trend prediction by introducing the AMFN
model, which integrates multidimensional data fusion,
adaptive time-series processing, and nonlinear trend
forecasting. Experiments show strong performance
across multiple markets, with high accuracy in both bull
and bear conditions, providing valuable support for
investment decisions and risk management. However,
the model’s responsiveness to rare extreme events and
efficiency with large-scale data require improvement.
Future work will focus on enhancing robustness under
abnormal market conditions, optimizing data
processing, and expanding applications to further
improve prediction accuracy and stability.

Data availability statement

All model code, preprocessing scripts, and experiment
configurations have been released at: GitHub:
https://github.com/AMFN-FinForecastt AMFN ~ S&P
500 and Gold Futures pricing data are obtained from
Yahoo Finance. A-share market data are sourced from
WIND. Sentiment indices are computed using a BERT-
based financial text classifier trained on the FiQA
sentiment dataset. Instructions for dataset access and
reproduction scripts are included in the repository.
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