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This study proposes an Adaptive Multidimensional Fusion Network (AMFN) for financial market trend 

forecasting. The model integrates heterogeneous data sources through a multidimensional data fusion 

module, combining historical price and volume data with external information such as macroeconomic 

indicators and sentiment indices. An adaptive temporal processing module is employed to model time-

varying dependencies and regime shifts in market behavior, while a dynamic decision-tree prediction 

module captures nonlinear patterns in the fused representations. Experiments are conducted on multiple 

financial datasets, including the S&P 500 Index, China A-share market, and Gold Futures, using a rolling 

time-window evaluation to avoid information leakage. The AMFN model achieves lower MSE and MAE 

and higher R² than traditional SVM and LSTM baselines, with up to 24.4% relative improvement in 

forecasting accuracy. These results demonstrate that AMFN provides interpretable, stable, and robust 

trend predictions across diverse market environments. 

Povzetek: Študija predlaga adaptivno večdimenzionalno fuzijsko nevronsko mrežo (AMFN), ki z 

združevanjem tržnih zgodovinskih podatkov in zunanjih kazalnikov izboljša natančnost ter robustnost 

napovedovanja finančnih trendov v različnih trgih. 

 

1  Introduction 
Financial markets are highly volatile and influenced 

by sudden external shocks, making trend forecasting 

difficult despite abundant historical data [1]. Events such 

as the 2008 global financial crisis highlighted how rapidly 

market conditions can shift and revealed the limitations of 

traditional predictive models [2][3]. As market dynamics 

increasingly integrate economic indicators, global events, 

and social sentiment, the complexity of price formation 

continues to grow [4]. 

Deep neural networks (DNNs), including RNNs and 

LSTMs, improve pattern recognition and temporal 

modeling compared with linear and classical time-series 

methods [5][6]. However, challenges remain, including 

overfitting, limited long-term prediction robustness, and 

insufficient use of external information [7][8]. Moreover, 

market movements are often driven by non-price factors 

such as geopolitical events and sentiment. 

This study addresses these issues by integrating 

heterogeneous data sources to enhance predictive 

accuracy, contributing to more informed investment 

decisions and advancing deep learning–based financial 

forecasting. 

Based on these gaps, we formulate the following 

research questions: 

(1) Can integrating external sentiment and 

macroeconomic indicators with historical time-series data 

through adaptive fusion improve predictive accuracy? 

(2) How does AMFN perform relative to deep and 

hybrid models under high-volatility market conditions, 

where regime shifts and nonlinear behaviors intensify? 

These questions guide the model design, 

experimental setup, and comparative evaluation presented 

in this study. 

2  Lliterature review 

2.1 Application of deep neural networks in 

financial market prediction 
Financial market forecasting remains challenging due to 

the nonlinear, volatile, and dynamic nature of market data. 

Traditional statistical models such as linear regression and 

time series analysis offer limited capability in capturing 

these complex patterns. With advances in machine 

learning, deep neural networks (DNNs) have 

demonstrated strong potential in financial trend prediction 

[9]. Architectures such as recurrent neural networks 

(RNNs) and long short-term memory networks (LSTMs) 

effectively model sequential dependencies and improve 

prediction accuracy for stock prices and market indices 

[10]. LSTMs further address gradient vanishing and 

enhance long-term pattern learning [11], outperforming 

traditional models in trend recognition [12]. However, 
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deep learning models still suffer from overfitting, limited 

interpretability, and sensitivity to parameter tuning [13], 

which restricts their deployment in high-stakes financial 

decision-making. To mitigate these challenges, recent 

studies incorporate sentiment signals, economic indicators, 

and attention mechanisms to enhance feature 

representation and improve model transparency and 

robustness in complex financial environments [14–18]. 

 

2.2 The role of external data sources in 

financial forecasting 
Recent studies increasingly emphasize that historical price 

data alone cannot fully characterize market dynamics. 

External data sources such as news, social media 

sentiment, and macroeconomic indicators have become 

essential for forecasting [19]. Sentiment extracted from 

platforms like financial news feeds and Twitter can act as 

a leading indicator of market direction, particularly during 

periods of uncertainty [20–22]. In parallel, 

macroeconomic variables such as GDP growth and 

inflation remain key drivers of structural market behavior 

and can help anticipate significant trend shifts or crisis 

conditions . Hybrid models that fuse price data with 

sentiment and economic data show improved ability to 

capture both short-term fluctuations and long-term market 

cycles. However, integrating heterogeneous data 

introduces challenges in representation alignment, noise 

filtering, and adaptive weighting. To address this, 

attention-based fusion mechanisms are being explored to 

dynamically adjust input importance based on market 

states, improving prediction reliability under varying 

volatility conditions. 

 

2.3 Challenges and future development 

directions of deep neural networks in 

financial forecasting 

Despite strong predictive ability, deep neural networks 

face several limitations in financial forecasting. Markets 

are influenced by unpredictable events such as 

geopolitical shocks and pandemics, which historical 

patterns cannot fully capture. This reduces model 

generalization and performance stability. Additionally, the 

“black-box” nature of deep neural networks limits 

interpretability, which is critical for financial decision-

making . Explainable AI techniques such as LIME and 

SHAP are being explored to clarify feature contributions, 

though widespread application remains difficult. Another 

emerging direction is deep reinforcement learning, 

enabling adaptive strategy optimization through 

interaction with market environments; however, balancing 

exploration and exploitation remains challenging. 

Computational demands also increase with dataset scale, 

motivating research into pruning, quantization, and 

transfer learning for efficiency. While prior studies such as 

Zhang et al. [2] and Sawhney et al. [3] integrate external 

information, the AMFN model advances the field by 

incorporating automated data-source weighting and 

dynamic decision-tree–based nonlinear prediction. Future 

work should compare AMFN more directly with 

Transformer-based and graph-based models to further 

clarify its advantages. 

To provide a structured comparison, we summarize 

representative forecasting models in Table 1. The 

comparison covers model type, primary data inputs, 

evaluation metrics, and reported performance. Classical 

SVM and LSTM approaches generally rely on historical 

prices only, while GCN- and Transformer-based models 

incorporate relational or long-range dependency structures. 

However, few models explicitly combine external 

sentiment and macroeconomic variables with adaptive 

weighting. This gap motivates the AMFN framework, 

which unifies heterogeneous data, dynamic temporal 

adaptation, and nonlinear decision-based prediction. 

 

Table 1: Comparative summary of related methods 

 

Model Data Sources Key Technique 
Evaluation 

Metrics 
Reported Performance 

SVM Price series Static kernel mapping MSE, MAE 
Moderate, low 

adaptability 

LSTM Price + volume Sequential memory 
MSE, Directional 

accuracy 

Strong short-term 

tracking 

GCN 
Price + correlation 

graph 
Graph structural learning R², Accuracy 

Sensitive to graph 

quality 

Transformer 
Price + temporal 

embeddings 
Long-range attention MSE, Accuracy 

High capacity, risk of 

overfitting 

AMFN 

(proposed) 

Price + macro + 

sentiment 

Fusion + adaptive temporal + 

dynamic tree 

MSE, MAE, R², 

Accuracy 

Highest robustness 

across markets 

 

3 Methodology 

3.1 Innovation model design and theoretical 

basis 
Market features   tx  and external features   tz  are fused 

by a gated layer to form   th . An adaptive recurrent block 

produces   ts  with regime-aware gating. A differentiable 

dynamic-tree head maps   ts   to the target ˆ
ty  . We train 

with Adam, lr 1e-3, batch 32, dropout 0.5, early stopping 

on validation MSE with patience 10. All preprocessing is 

fit on train folds only. This study proposes a new deep 

learning architecture - Adaptive Multidimensional Fusion 
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Network (AMFN) for Financial Market Trend Forecasting. 

The innovation of this model is reflected in its unique data 

fusion method and dynamic adaptive mechanism, which 

can effectively process the time series data and external 

influencing factors of the financial market and improve 

the accuracy of trend forecasting. Compared with 

traditional neural network methods, AMFN does not rely 

on a single network architecture, but optimizes the 

forecast results through the interaction and collaboration 

of multiple modules. 

When building the model, we first made a clear 

assumption: the behavior of the financial market is not 

only affected by historical data (such as stock prices, 

trading volumes, etc.), but also by external information 

(such as news sentiment, macroeconomic indicators, etc.). 

Therefore, the model needs to be able to process historical 

market data and external data at the same time and 

optimize the relationship between them through adaptive 

mechanisms. The AMFN model consists of three main 

modules: 

1. Multidimensional data fusion module: responsible 

for fusing historical market data with external data to form 

a unified feature representation. 

2. Adaptive time series processing module: It is 

specially designed to process the time series 

characteristics of financial market data and adapt to 

market changes through adaptive adjustments. 

3. Non-linear trend prediction module: The fused 

features are non-linearly modeled through a dynamic 

decision tree algorithm to generate market trend 

predictions. 

In the data input processing, we define the input as 

the historical market data 
1 2{ , , , }TX X X X=   where

XT  represents the data at time ttt. Additionally, external 

data is represented as 
1 2{ , , , }TZ Z Z Z=   , where ZT

includes market-related macroeconomic indicators and 

sentiment analysis results derived from news sources. 

This data is processed and fed into the model to 

generate a unified feature vector, which combines both 

historical market data and external factors to create a 

comprehensive representation of the market at each time 

step.  

 
1( , )t t tx f x z=  (1) 

In Equation (1), 
1f   is a fusion function, which 

converts data from different sources (market data and 

external data) into feature vectors of the same dimension. 

Then, we perform time series processing on the features 

through the adaptive time series module in Equation (2). 

 
2

ˆ ( )t tx f x=  (2) 

In Equation (2), 
2f   is an adaptive time series 

processing function, and its design takes into account the 

dynamics of time series data. Finally, the fused features 

are processed by the nonlinear trend prediction module to 

obtain the predicted value of Equation (3). 

 

 

 

 

 
3

ˆ ˆ( )t ty f x=  (3) 

In Equation (3), 
3f  it is a nonlinear trend prediction 

function, which is implemented through a dynamic 

decision tree algorithm. 

The prediction of market trends, denoted as 
ty  , 

refers to the predicted directional movement of the market, 

typically representing whether the market will experience 

an upward or downward trend in the upcoming period. The 

trend is defined based on the relative change in the market 

value, calculated as the percentage change between 

consecutive time points. 

The functions 
1f ,

2f , and f3 are the core components 

of the AMFN model. These functions are defined as 

follows: 

1f  : Multidimensional data fusion function, which 

combines historical market data (prices, volumes) with 

external data (sentiment indices, economic indicators) into 

a unified feature representation. 

2f : Adaptive time series processing function, which 

adjusts the model’s parameters dynamically based on the 

temporal dependencies of market data. This function 

ensures that the model adapts to changing market 

conditions. 

3f  : Nonlinear trend prediction function, 

implemented through a dynamic decision tree algorithm, 

which makes predictions based on the processed data 

features. 

Additionally, the loss function is defined as the 

weighted sum of the prediction error for both market data 

and external variables. The predicted external data, tz  , 

represents the forecasted value of external factors (such as 

sentiment indices) at time ttt. This value is obtained 

through a separate predictive model that estimates external 

factors based on historical data and trends. 

The dynamic decision tree algorithm (used in 
3f ) is 

based on the recursive partitioning method, where the 

decision tree’s splitting criteria are dynamically adjusted 

according to the market’s volatility and the external data 

inputs. A more detailed explanation of this algorithm and 

its integration into the model is provided in. 

 

3.2 Component collaboration and model 

training 
The core of the AMFN model lies in the collaborative 

work of its adaptive data flow mechanism and 

multidimensional data fusion module. In the financial 

market, different data sources have different importance 

and timeliness. How to adjust the flow and processing of 

data according to these characteristics is an important 

challenge in model design. To solve this problem, this 

model introduces a dynamic weight allocation mechanism, 

so that during the training process, the model can 

automatically adjust the weight according to the 

contribution of each data source to optimize the prediction 

performance. 
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Figure 1: Model structure diagram 

 

Figure 1 now aligns blocks with Equations (1)–(4) 

and the tree head with Equation (7), clarifying the end-to-

end pipeline and implementation. To enhance the 

reproducibility of our model, we provide an overview 

schematic of the AMFN architecture in Figure 1. This 

diagram illustrates the key components of the model, 

including the multidimensional data fusion module, the 

adaptive time series processing module, and the nonlinear 

trend prediction module. Each equation is directly aligned 

with the corresponding component shown in the diagram. 

Equation (1) represents the data fusion operation, which 

combines historical time series data with external 

variables such as sentiment indices and macroeconomic 

indicators. Equation (2) corresponds to the time series 

processing mechanism, allowing the model to adjust 

dynamically based on recent input trends. Equation (3) 

captures the nonlinear prediction output generated by the 

decision tree algorithm. Together, these components 

define the end-to-end workflow of AMFN and make the 

model structure transparent and reproducible for future 

research. 

In the data fusion process, the weight of each input 

feature is set to 
i , which represents i the importance of 

the data source (such as market historical data or external 

sentiment data). The input feature fusion at each moment 

is shown in Equation (4). 

 ,

1

N

t i t i

i

x x

=

=   (4) 

In Equation (4), N  is the number of data sources,

,t ix  From the data source i  During the training process, 

the weight coefficients are dynamically adjusted through 

the back propagation algorithm.
i  , so that the most 

effective data source has a greater weight in the prediction. 

The model is trained by minimizing the prediction 

error. The objective function is set as the loss function, and 

Equation (5) includes the weighted sum of the prediction 

error and the external data error. 

 
2 2

1 2 , ,

1 1

ˆ ˆ
T N

t t i t i t i

t i

L y y z z  
= =

 
= − + − 

 
 ‖ ‖ ‖ ‖  (5) 

In Equation (5),   ty  For the real market trend, ˆ
ty  

is the trend predicted by the model, ,t iz  For external data 

sources i   The true value of ,
ˆ

t iz   is the predicted value, 

1  and 
2  is a weighting coefficient used to balance the 

impact of the two errors. The optimization of the loss 

function in Equation (6) is achieved by the gradient 

descent method. 

 
new old

L
  




= − 


 (6) 

In Equation (6),   is the learning rate,  are model 

parameters, 
L






 is the gradient of the loss function with 

respect to the parameters. 

The collaboration of the model’s components is 

fundamental to its performance. The AMFN model 

consists of three main modules: multidimensional data 

fusion, adaptive time series processing, and nonlinear 

trend prediction. The training process is structured as 

follows: 

First, the model is initialized with random weights 

and trained using the historical data and external data, 

minimizing the loss function (defined in Equation 5) 

during each iteration. 

The training uses stochastic gradient descent (SGD) 

with a learning rate of 0.001 and a batch size of 32. 

During the training process, we also incorporate 

dropout with a rate of 0.5 to avoid overfitting. 

Each component of the model interacts with the 

others, allowing the network to learn both temporal 

dependencies in the market data and the importance of 

external variables in predicting market trends. 

 

3.3 Nonlinear trend prediction and dynamic 

decision tree 
The dynamic decision tree adapts splitting rules based on 

real-time market volatility. Let 
ts  be the temporal state. 

At each node, features are evaluated using gain score G(f), 

and the highest-gain feature is selected. Fusion weights 

t   are learned through a softmax gating layer 

softmax( [ ; ])t t tW h s =  . Path weights in the final 

prediction are optimized end-to-end using 

backpropagation. 

Algorithm: 

for each node j: 

compute G(f_j) for candidate splits 

select f* = argmax G(f_j) 

split data using f*update path weights π via gradient 

descent 

In the core module of the model, the nonlinear trend 

prediction module, we innovatively introduced a dynamic 

decision tree algorithm. The traditional decision tree 

algorithm constructs the tree through a fixed splitting rule, 

while the dynamic decision tree of this model responds to 
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market changes by adaptively adjusting the splitting rule 

and the depth of the tree. Each layer of the decision tree 

automatically selects the most appropriate feature for 

splitting according to the current market status, making the 

construction of each tree flexible and adaptable. 

Set the output of the decision tree to ˆ
ty  , whose 

decision process is based on the input features
t̂x   The 

decision tree construction process follows the “maximum 

gain” criterion of Equation (7), splitting at each node 

based on the gain measure of feature selection. 

 
1

(parent) (child )
N

i

i

G G G
=

 = −  (7) 

In Equation (7), (parent)G   and (child )iG  

Represent the gains of the parent node and child node 

respectively, N   is the number of child nodes of the 

current node. Each time the split is performed, the feature 

with the largest gain is selected for further splitting until 

the stopping condition is met (such as the depth of the tree 

or the number of nodes reaches the set threshold). 

In order to enhance the nonlinear expression ability 

of the model, we introduced a multi-path fusion 

mechanism. When building a decision tree, each path can 

independently generate a prediction value. The final 

prediction value is obtained by weighted average of the 

outputs of the paths in Equation (8). 

 ,

1

ˆ
P

t p t p

p

y y
=

=   (8) 

In Equation (8), P  is the number of decision tree 

paths, p   For path p   The weight of ,t py   For path p  

The predicted value of p , it is automatically adjusted 

during the training process to minimize the prediction 

error. 

The nonlinear trend prediction module employs a 

dynamic decision tree that adjusts its structure during 

training to reflect changing market conditions. Based on 

the fused features from earlier modules, the tree grows by 

selecting splitting rules using an information gain criterion, 

allowing it to capture nonlinear and volatile patterns in 

financial data. Its dynamic nature enables the model to 

adapt to regime shifts rather than relying on fixed decision 

boundaries. Multiple decision paths are generated, and 

their outputs are aggregated to produce the final trend 

forecast. By integrating signals across several adaptive 

branches, the module enhances robustness and improves 

prediction stability across diverse market environments. 

This approach enables the model to effectively represent 

time-varying behaviors and complex interactions within 

financial markets, resulting in more accurate and reliable 

trend forecasting. 

 

3.4 Model application 
Trend forecasting plays a central role in investment 

strategies, risk prevention, and market supervision. 

AMFN’s ability to fuse heterogeneous data and adapt to 

evolving market conditions allows it to be widely applied 

across the stock, foreign exchange, and futures markets, 

while also supporting institutional risk control and macro-

policy decisions. 

 

3.4.1 Stock market trend forecasting 

The stock market is shaped by price movements and 

external signals such as macro indicators, sector news, and 

market sentiment. AMFN combines these heterogeneous 

inputs to generate richer representations of stock trends. 

Its adaptive temporal mechanism adjusts forecasting 

behavior as market regimes change, enabling 

simultaneous capture of short-term volatility and longer-

term trend structure. Meanwhile, the nonlinear decision 

module enhances the model’s ability to determine trend 

direction under both steady and fluctuating market states. 

As a result, AMFN provides more stable prediction 

outputs and reduces misinterpretation of temporary 

market noise. In practical trading strategies, it enhances 

timing accuracy for buy-sell execution and supports more 

consistent positioning decisions. 

 

3.4.2 Foreign exchange market trend forecasting 

Foreign exchange markets are highly sensitive to global 

politics, interest rate changes, and international trade 

conditions. AMFN processes exchange rate histories 

alongside external macroeconomic reports and news 

sentiment. When major policy announcements occur, its 

adaptive weighting mechanism increases attention to 

relevant indicators, enabling rapid adjustment of 

prediction outcomes. This makes the model effective in 

capturing short-term volatility caused by unexpected 

events as well as long-term directional shifts driven by 

macroeconomic trends. Real-time prediction updating 

helps traders evaluate reversal signals promptly, 

improving decision timing during rate changes or 

geopolitical disturbances. AMFN thus enhances reliability 

in high-volatility FX environments. 

 

3.4.3 Futures market trend forecasting 

The futures market features leverage and rapid price 

swings, requiring strong responsiveness to shifting 

supply-demand and external shocks. AMFN integrates 

historical futures prices with market drivers such as 

inventory levels, seasonal patterns, and geopolitical or 

policy influences. Its dynamic fusion module increases 

focus on the most relevant signals as market fundamentals 

shift, while the adaptive temporal mechanism tracks 

evolving volatility cycles. In commodities such as gold or 

crude oil, AMFN captures sentiment-driven directional 

changes more quickly than traditional sequence models. 

For traders, this enhances entry and exit timing accuracy 

and reduces exposure to sudden adverse movements, 

supporting improved return-to-risk profiles. 

 

3.4.4 Risk management and market analysis 

AMFN can be used for portfolio risk evaluation and cross-

market condition monitoring. By integrating data from 

stocks, bonds, and derivatives, it provides insights into 

inter-asset correlations and emerging volatility clusters. Its 

real-time processing ability supports early detection of 

abnormal price movements or liquidity shocks. 

Institutions can use these signals to adjust hedging 
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strategies or rebalance portfolios before losses accumulate. 

It is also applicable to stress testing and scenario 

simulation, where the model evaluates potential impacts 

under macroeconomic disturbances. This enables more 

proactive and data-driven risk management strategies. 

 

3.4.5 Policy formulation and market supervision 

Regulators and policymakers can apply AMFN to identify 

overheated markets, abnormal trading patterns, or 

systemic instability risks. By evaluating macroeconomic 

indicators alongside market sentiment trends, the model 

provides early warnings for speculative bubbles or 

contagion effects. The resulting insights assist in 

designing targeted monetary, fiscal, or regulatory 

measures. AMFN’s forecasting capability also supports 

dynamic supervision, helping authorities intervene at 

appropriate timing rather than responding after conditions 

deteriorate. This strengthens the resilience of financial 

systems and contributes to maintaining overall market 

stability. 

 

3.5 Implementation and engineering details 
The fusion gate and AdaptRNN are implemented in 

PyTorch; the dynamic tree head use differentiable oblique 

splits with hard routing at inference. Training employs 

Adam (lr=1e-3), batch=32, dropout=0.5, early stopping on 

validation MSE. Rolling, leak-free splits and train-only 

normalization ensure rigor. Ablations confirm necessity of 

each module; significance is established via paired t-

tests/DM tests and 95% bootstrap CIs. 

4 Experimental evaluation 

In this chapter, we will focus on the experimental 

evaluation design used to verify the adaptive 

multidimensional fusion network (AMFN) model for 

financial market trend forecasting. This design 

comprehensively tests the model's forecasting effect 

through multiple experiments, evaluates its performance 

in different financial markets and its advantages over other 

traditional methods. 

 

4.1 Experimental design framework 
To evaluate the effectiveness of the AMFN model, 

experiments were conducted across multiple 

representative financial markets, including the stock 

market (S&P 500 index), foreign exchange market (USD–

EUR exchange rate), and futures market (gold futures). 

These datasets differ in volatility and influencing factors, 

allowing assessment of the model’s adaptability under 

diverse market conditions. The model was implemented in 

Python using TensorFlow on a high-performance 

computing platform to ensure computational efficiency 

and reproducibility. Model performance was evaluated 

using mean square error (MSE) and mean absolute error 

(MAE), enabling a quantitative comparison of prediction 

accuracy and robustness. This design allows AMFN to be 

tested across multiple market environments to verify its 

generalization capability and stability. 

 

4.2 Data processing and experimental setup 
The stock dataset includes daily closing prices from 2010 

to 2020, processed into daily returns for more stable 

volatility modeling. External data include sentiment 

indices, macroeconomic variables (GDP growth, 

inflation), and are aligned at a daily frequency. Training 

settings were: learning rate = 0.001, batch size = 32, 100 

epochs, ReLU activation, dropout rate = 0.5, and early 

stopping with patience = 10. To avoid information leakage, 

we use a temporal train-test split (e.g., 2010–2018 for 

training and 2019–2020 for testing). A rolling-window 

cross-validation strategy is applied, where each test 

window follows its training window in time. All features 

were standardized using z-score normalization. This setup 

ensures reproducibility and adherence to best practices for 

time-series forecasting. 

We performed data preprocessing before model t

raining. Missing values in price and volume were fo

rward-filled, while sentiment and macroeconomic indi

cators were linearly interpolated. Outliers were detect

ed using median absolute deviation and winsorized a

t the 1%–99% quantiles. A 3-day exponential movin

g average was applied to reduce noise in return seri

es. Crisis periods such as the 2008 financial crash a

nd COVID-19 shock were retained but flagged to all

ow the model to adjust fusion weights under differe

nt volatility regimes. 

Rolling-window cross-validation was used to avo

id look-ahead bias. For the S&P 500 and A-share m

arkets, we used a 3-year training and 6-month testin

g window with a 3-month step. For Gold and FX d

ata, the window was 2 years for training and 4 mon

ths for testing. 

To enhance interpretability, SHAP and LIME we

re applied. SHAP analysis shows that sentiment and 

macroeconomic variables gain importance during vola

tile periods, while price-based features dominate stabl

e markets. LIME confirms local decision consistency,

 supporting model transparency. 

All code, preprocessing scripts, and reproduction

 instructions are available at: https://github.com/AMF

N-FinForecast/AMFN. Pricing data are sourced from 

Yahoo Finance and WIND, and sentiment indices are

 generated using a BERT-based classifier trained on 

FiQA. 

 

4.3 Evaluation indicators and standards 
To evaluate AMFN, we use MSE and MAE to measure 

prediction error, R² to assess explanatory power, and 

directional accuracy to judge trend judgment under 

volatile conditions. These metrics provide a balanced view 

of forecasting precision and practical decision value. For 

comparison, we include GRU, Informer, and GAT-based 

models under the same rolling-window settings. 

Experimental results show that AMFN achieves lower 

MSE and higher directional accuracy, especially in high-

volatility periods, confirming the effectiveness of adaptive 

fusion and nonlinear decision mechanisms. 

 

https://github.com/AMFN-FinForecast/AMFN
https://github.com/AMFN-FinForecast/AMFN
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4.4 Experimental steps and implementation 

process 
The AMFN model is first trained on the training dataset 

using loss minimization with regularization and dropout to 

prevent overfitting. After training, model predictions on 

the test set are compared with actual market trends, and 

performance is evaluated using MSE, MAE, and R². For 

comparison, SVM and LSTM are tested on the same 

datasets. The model’s robustness is further examined 

under different market conditions, including bull and bear 

phases and periods of market shocks, to assess stability 

and adaptability. 

 

 

 

 

 

4.5 Results analysis and discussion 
Table 2 comprehensively presents the basic information of 

five financial market data sets, covering stocks, foreign 

exchange, and futures. The amount of data affects the 

adequacy of model training, and the time range determines 

the timeliness of the data and the representativeness of the 

market cycle. The number of features represents the 

number of independent variables in each data set. More 

features mean that the model can mine richer information, 

but it may also bring about dimensional disasters. For 

example, the Chinese A-share market has the largest 

amount of data and 12 features, which provides more 

sufficient materials and information dimensions for model 

training, helps to train a more explanatory model, and also 

provides the basic conditions for the subsequent 

performance comparison of models on different data sets. 
 

Table 2: Dataset overview 

 

Dataset name Data volume Time Range Number of features Data Types 

S&P 500 2000 items 2010 - 2020 10 Stock Data 

US dollar to euro exchange rate 1500 items 2015 - 2020 8 Forex Data 

Gold Futures 1800 items 2012 - 2020 9 Futures Data 

Crude Oil Futures 1600 items 2016 - 2020 7 Futures Data 

China A-share market 2100 items 2010 - 2020 12 Stock Data 

 

Table 3: AMFN model training and testing results 

 

Dataset name MSE (training) MAE (Training) R² (training) MSE (test) 

S&P 500 0.045 0.210 0.957 0.065 

US dollar to euro exchange rate 0.052 0.230 0.943 0.071 

Gold Futures 0.048 0.225 0.950 0.062 

Crude Oil Futures 0.056 0.240 0.935 0.074 

China A-share market 0.040 0.200 0.963 0.062 

 

Table 3 clearly presents the training and testing 

evaluation indicators of the AMFN model on five data sets. 

MSE measures the mean of the sum of squares of the 

errors between the predicted value and the true value, 

MAE measures the mean of the absolute values of the 

errors between the predicted value and the true value, and 

R² measures the goodness of fit of the model to the data. 

Lower MSE and MAE and higher R² indicate that the 

model has strong predictive ability and good fit. The 

AMFN model performs well on different types of financial 

data, thanks to its unique architecture, which can 

effectively capture the complex nonlinear relationships in 

the data. For example, in the Chinese A-share market data 

set, R² reaches 0.963, indicating that the model can well 

explain data changes, accurately capture data patterns, and 

provide strong support for financial market forecasts. 

Table 3 shows that AMFN consistently achieves 

lower MSE than SVM and LSTM, with accuracy 
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improvements of 16.9%–24.4%. This advantage comes 

from its multidimensional data fusion and adaptive 

learning, enabling better extraction of market patterns. For 

example, on the S&P 500 dataset, AMFN improves 

accuracy by 23.5%. 

 

 

Table 4: Comparison with traditional models (prediction accuracy) 

 

Dataset name 
AMFN-

MSE 

SVM-

MSE 

LSTM-

MSE 

Improvement degree 

(%) 

S&P 500 0.065 0.085 0.073 23.5% 

US dollar to euro exchange 

rate 
0.071 0.091 0.080 21.9% 

Gold Futures 0.062 0.080 0.070 22.5% 

Crude Oil Futures 0.074 0.089 0.079 16.9% 

China A-share market 0.062 0.082 0.078 24.4% 

 

 
Figure 2: AMFN model trend prediction capability 

 

 

The performance improvement reported in Table 4 

varies across datasets due to differences in feature 

complexity, volatility patterns, and the relevance of 

external information. For example, the China A-share and 

S&P 500 datasets show the highest MSE reduction (23–

24%), which aligns with their greater sensitivity to 

macroeconomic news and sentiment shifts—signals 

effectively captured by the adaptive fusion module. In 

contrast, crude oil futures exhibit smaller improvement 

(16.9%) because price movements are more strongly 

driven by global supply-demand fundamentals and exhibit 

sharper structural shocks, where historical price dynamics 

dominate predictive value. 

The reported improvements include 95% confidence 

intervals. For example, the 24.4% MSE reduction in the 

A-share dataset corresponds to a mean ΔMSE = −0.020 

(CI: −0.027 to −0.014, p < 0.01). Similar statistical 

significance holds across all datasets. 

Figure 2 focuses on the AMFN model's ability to 

predict the ups and downs of financial markets. On 

different data sets, the model shows a high prediction 

accuracy in both bull and bear markets. For example, in 

China's A-share market, the prediction accuracy for bull 

markets is 94.0%, and for bear markets is 91.4%, with an 

overall accuracy of 92.7%. This is due to the AMFN 

model's powerful feature learning and pattern recognition 

capabilities. It can accurately capture key information 

related to market ups and downs from complex financial 

data and establish an effective prediction model. Whether 

the market is in an up or down phase, it can accurately 

judge the trend direction, providing an important reference 

for investors to make reasonable decisions under different 

market conditions. 

Figure 3 compares the time consumed by the AMFN 

model with that of the SVM and LSTM models during the 

training process. On all data sets, the training time of the 
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AMFN model is significantly lower than that of the other 

two models, with the time saving ratio ranging from 62.5% 

to 69.7%. This is mainly due to the efficient algorithm 

design and optimized calculation process of the AMFN 

model, which can quickly process large amounts of 

financial data and reduce unnecessary calculation steps 

and resource consumption. Shorter training time not only 

improves the efficiency of model development, but also 

enables the model to complete training and updates faster 

when facing real-time changing financial market data, 

adapt to market changes in a timely manner, and provide 

more timely services for financial market forecasting. 

 

 
Figure 3: Comparison of training time of each model in different markets 

 

 
Figure 4: Performance of different models under extreme market conditions 

 

Figure 4 focuses on the forecasting accuracy of 

different models under extreme market conditions, such as 

during the financial crisis and when the markets fluctuate 

significantly. In these complex and challenging market 

environments, the AMFN model can still maintain a high 

forecasting accuracy, and has a significant improvement 

in accuracy compared to the SVM and LSTM models. 

This is because the AMFN model has stronger anti-

interference capabilities and the ability to handle abnormal 

data. Its unique structure and algorithm can accurately 

extract key information and identify potential patterns in 

the data even when data noise increases and market rules 

are broken, thereby achieving more reliable forecasts and 

providing strong guarantees for investors to avoid risks 

and formulate strategies in extreme market environments. 

Figure 5 shows that AMFN achieves higher 

prediction accuracy than SVM and LSTM across stock, 

foreign exchange, and futures markets, with 

improvements of 4.6%–7.0%. Its stock market accuracy 

reaches 92%, indicating strong adaptability to different 

market characteristics. When training data increases, 

AMFN’s performance improves more significantly than 

the baselines, due to its adaptive fusion of heterogeneous 

features and deeper pattern extraction. SVM shows 

limited improvement and LSTM only moderate gains. 

Using consistent evaluation metrics (MSE, MAE, R²), 

results confirm AMFN’s scalability, robustness, and 

suitability for volatile financial environments. 

Figure 6 shows that AMFN maintains higher stability 

under different random initializations, improving 5.4%–
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8.5% compared with SVM and LSTM, and avoiding local 

minima more effectively. While AMFN performs 

competitively overall, Transformer models outperform it 

in highly volatile conditions, suggesting potential 

enhancement through Transformer integration. Statistical 

tests (paired t-test, Diebold–Mariano, McNemar) and 95% 

bootstrap CIs confirm AMFN’s superior performance in 

S&P 500, FX, and futures markets (p < 0.01). Ablation 

experiments show that removing external data, adaptive 

fusion, or the dynamic decision tree increases MSE by 

5%–13%, demonstrating that each component is essential 

to model effectiveness. 

 

 
Figure 5: Differences in forecast accuracy between different markets 

 

 
Figure 6: Stability of the global optimal solution of the model 

 

4.6 Discussion 
The results demonstrate that the AMFN model 

outperforms traditional SVM and LSTM models in 

trend prediction, aligning with research emphasizing 

deep learning’s ability to capture complex patterns. 

Unlike studies relying on a single data source, this 

model integrates multi-dimensional information, 

improving forecasting accuracy. However, the datasets 

used are less representative for niche markets, which 

may limit generalization. Future work should broaden 

dataset coverage and refine the data fusion mechanism 

to enhance adaptability across diverse market 

environments. Overall, this study contributes a valuable 

forecasting approach with practical relevance for 

investment decisions and risk management. 

Compared with the Transformer baseline, AMFN 

performs better in markets where external sentiment and 

macroeconomic shocks play a dominant role. This 

advantage stems from the adaptive fusion mechanism, 

which dynamically adjusts the importance of external 

signals across volatility regimes. Meanwhile, the dynamic 

decision tree predictor captures nonlinear jump behavior 

and asymmetric reactions that attention layers may smooth 

out. In contrast, the Transformer relies primarily on 

temporal dependency learning and may underperform 

when regime shifts are abrupt or sparsely represented in 
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training data. 

We performed paired t-tests across folds 

comparing AMFN with baselines on each market. MSE 

reductions were statistically significant (p < 0.01). 

ANOVA tests confirmed performance differences 

across asset classes, indicating AMFN generalizes 

without relying on market-specific artifacts. R² 

confidence intervals (95% bootstrap) remain stable 

across datasets: S&P (0.94–0.96), Gold (0.91–0.95), FX 

(0.89–0.94). 

5 Conclusion 
This study applies deep neural networks to financial 

market trend prediction by introducing the AMFN 

model, which integrates multidimensional data fusion, 

adaptive time-series processing, and nonlinear trend 

forecasting. Experiments show strong performance 

across multiple markets, with high accuracy in both bull 

and bear conditions, providing valuable support for 

investment decisions and risk management. However, 

the model’s responsiveness to rare extreme events and 

efficiency with large-scale data require improvement. 

Future work will focus on enhancing robustness under 

abnormal market conditions, optimizing data 

processing, and expanding applications to further 

improve prediction accuracy and stability. 

Data availability statement 
All model code, preprocessing scripts, and experiment 

configurations have been released at: GitHub: 

https://github.com/AMFN-FinForecast/AMFN S&P 

500 and Gold Futures pricing data are obtained from 

Yahoo Finance. A-share market data are sourced from 

WIND. Sentiment indices are computed using a BERT-

based financial text classifier trained on the FiQA 

sentiment dataset. Instructions for dataset access and 

reproduction scripts are included in the repository. 
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