https://doi.org/10.31449/inf.v49i37.10711

Informatica 49 (2025) 271-286 271

Spatially-Guided Bi-Model CNN Architecture for Multi-Noise
Localization and Soft-Mask Based Active Noise Cancellation in Indoor

Environments

Guogiang Lu'*, Yanmin Bai?, Hairong Wang?

!School of Internet of Things Engineering, Jiangsu Vocational College of Information Technology, Wuxi 214153,

Jiangsu, China

2School of Microelectronics, Jiangsu Vocational College of Information Technology, Wuxi 214153, Jiangsu, China
3School of Education, Soochow University, Suzhou 215123, Jiangsu, China
E-mail: 2024101345@)jsit.edu.cn, baiyanminnuaa@163.com, wanghairong0707@outlook.com

*Corresponding author

Keywords: multi-noise localization, active noise cancellation (anc), overlapping sound events, convolutional neural
networks (cnn), mfcc, spatially-guided cnn, attention mechanisms (se, cham)

Recieved: August 11, 2025

1 Introduction

Accurate multi-noise localization and real-time active noise cancellation (ANC) are critical for enhancing
audio quality and comfort in smart-bedroom environments. This paper presents a novel deep learning
framework, Spatially-Guided CNN Filter Modeling (SG-CFM), designed to both localize multiple
overlapping noise sources and simulate soft-mask-based ANC. The proposed architecture employs a
modular CNN pipeline with bi-modal frequency—temporal feature extraction, channel and spatial
attention modules (SE and CBAM), and residual connections for enhanced context preservation. Key
components include the Enhanced Bi-Modal Block (EBMB), Residual Temporal Squeeze Block, Dilated
Temporal Convolution Block, and Hierarchical Temporal Aggregation Block, which collectively capture
both local and long-range acoustic dependencies. The system is trained and evaluated on the TUT Sound
Events 2017 dataset, which contains diverse and realistic indoor and environmental sound events. Each
input segment is represented as MFCC-based mel-spectrograms, supporting multi-label learning in
overlapping noise conditions. The proposed model achieves an average F1-score of 0.81 across all
classes, with strong per-class performance (e.g., AUC of 0.93 for the “car” class), demonstrating its
ability to generalize to real-world noisy environments. Compared to standard CNN-based sound event
localization models, SG-CFM offers significantly improved multi-label detection accuracy with reduced
computational complexity, making it suitable for real-time deployment in embedded IoT devices.
Experimental results further demonstrate effective ANC simulation by suppressing noise energy in critical
temporal segments through a soft binary mask, highlighting its potential for next-generation smart home
audio systems targeting sleep quality, acoustic privacy, and ambient intelligence.

Povzetek: Prispevek predstavija globokoucni model SG-CFM za pametne spalnice, ki v realnem casu
lokalizira vec prekrivajocih se virov hrupa in simulira aktivno odpravljanje Suma ter pri tem dosega dobro
natancnost (povp. F1 = 0,81) ob manjsi racunski zahtevnosti, primerni za vgradne loT naprave.

techniques are either static, costly,

or limited

In the modern world, ambient noise pollution has emerged
as a persistent challenge, significantly degrading quality of
life, particularly in residential and bedroom environments.
With increasing urbanization, smart home appliances, and
mixed-use infrastructure, sources such as traffic,
construction, HVAC systems, digital alarms, and domestic
electronics contribute to a complex and dynamic
soundscape. These noise sources not only disrupt sleep
quality and mental well-being but also impair focus and
long-term health outcomes. Traditional sound insulation

adaptability, necessitating intelligent, adaptive, and
environment-aware solutions.Recent advances in deep
learning, particularly Convolutional Neural Networks
(CNNs), have demonstrated remarkable potential in audio
classification and sound event detection. However,
existing systems either focus solely on noise detection or
aim at signal enhancement using heavy-weight generative
models like GANs or recurrent architectures. They only
address both localization and active suppression of
multiple simultaneous noise sources in a unified and
computationally efficient framework. Moreover, most
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prior approaches overlook the spatial and temporal
dynamics inherent to real-world acoustic patterns,
especially in constrained indoor spaces like bedrooms.
Motivated by these limitations, this paper introduces a
novel dual-purpose system for multi-noise localization and
active noise cancellation (ANC) tailored specifically for
bedroom environments. The proposed model, Spatially-
Guided CNN Filter Modeling, leverages specialized CNN
blocks incorporating bi-modal feature fusion, residual
attention  mechanisms, and  frequency-temporal
decomposition to model the spatial characteristics of noise
more effectively. In addition to identifying multiple
overlapping noise classes, the system is capable of
generating soft spectrotemporal suppression masks that
simulate ANC behavior reducing the energy of nuisance
components in the input signal. Unlike traditional
monolithic architectures, our model adopts a lightweight,
interpretable, and multi-output design, ensuring both real-
time feasibility and robustness across diverse noise
conditions. By integrating frequency bottlenecks, CBAM
(Convolutional Block Attention Modules), and a dedicated
ANC head, the system learns to both recognize and
attenuate noise in a resource-constrained setup. The
primary contributions of this work are a unified CNN
architecture that performs multi-label noise localization
and soft-mask-based active noise cancellation, Spatially-
guided filtering mechanisms, including channel-spatial
attention and temporal-frequency blocks, to enhance
acoustic feature learning, domain-specific focus on
bedroom sound environments, addressing real-life
overlapping noise scenarios that are often neglected in
generic datasets and demonstration of real-time feasibility
through a lightweight implementation using separable
convolutions and low-latency pooling operations. This
research lays the groundwork for future smart-bedroom
applications, such as sleep-aware acoustic regulation,
privacy-preserving background noise suppression, and
intelligent audio control in ambient computing systems.

This study investigates whether lightweight spatially-
guided CNN architectures can jointly perform multi-label
noise localization and soft ANC mask generation on
single-microphone indoor acoustic scenes by looking for
some research questions like, Can spatially-guided
convolutional modules (CBAM, SE) enhance feature
disentanglement sufficiently to replace
recurrent/transformer blocks for overlapping noise
events?, Can such a lightweight model (<IM parameters)
achieve competitive accuracy (F1 > 90%) compared to
SOTA CRNN/AST baselines? And can the model maintain
real-time inference capability suitable for embedded ANC
deployment? The Quantitative goals would be to Achieve
>90% F1 score, improving baseline CRNN performance
(~85%) by at least +5%, Reduce parameter count by >80%
compared to Transformer-based AST and Maintain
inference  speed suitable for real-time ANC
(<20ms/frame).
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2 Related work

The problem of environmental noise management has been
studied from multiple perspectives, including sound event
detection, source localization, and active noise
cancellation. Each of these domains brings complementary
strengths, yet few approaches cohesively integrate spatial
awareness with adaptive suppression in realistic multi-
noise indoor scenarios.

2.1 Multi-noise detection and localization

Traditional sound event detection systems, often based on
CNN s or recurrent networks, focus on identifying single or
multiple overlapping acoustic events from time—frequency
representations. Localization of sound sources, especially
in reverberant indoor environments, introduces additional
complexity due to spatial mixing and non-stationary
characteristics of sources. Methods incorporating spatial
cues (e.g., inter-channel phase differences in microphone
arrays) have shown improved localization, but they usually
assume multiple sensors or do not jointly perform °

The incorporation of attention modules, such as channel
and spatial attention, has recently improved the
discriminative power of convolutional networks in audio
and vision tasks. Convolutional Block Attention Module
(CBAM) and squeeze-and-excitation blocks enable the
network to re weight salient frequency—temporal features
adaptively, leading to better robustness under noisy
conditions. However, most prior work leverages attention
purely for classification or detection, without explicitly
coupling it with downstream cancellation or mask
generation for suppression.

2.3 Active noise cancellation (ANC)

Classical ANC systems rely on adaptive filters (e.g., LMS,
FxLMS) and require feedback/reference sensors to invert
the noise signal. Deep learning approaches for ANC have
started to emerge, where neural networks either learn
residual noise patterns or directly estimate suppression
masks in the spectral domain. These works often treat
ANC as a separate regression/enhancement problem and
lack joint multi-label localization, which is a limitation in
real-world settings where multiple noise sources coexist
and interact.

2.4 Spatially-guided filtering

Spatial guidance in deep models can come from explicit
coordinate embeddings, learned masks, or multi-branch
fusion of modality-specific cues. Recent advances in
spatially-aware CNNss utilize positional encodings or dual-
path fusion to disentangle frequency and temporal
characteristics while preserving locality. However,
applying such spatially-guided filtering specifically to the
dual problem of simultaneous noise localization and active
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suppression in bedroom environments has not been
sufficiently explored.

2.5 Gap and positioning

Most existing systems handle detection/localization or
cancellation in isolation, rarely unifying them in a
lightweight, interpretable architecture. Moreover, many
assume idealized conditions (single source, clean
reference, multiple microphones) unlike the practical
constraints of bedroom environments. The proposed
Spatially-Guided CNN Filter Modeling framework fills
this gap by jointly learning multi-label localization and a
soft suppression mask (simulated ANC) using spatially-
aware CNN blocks (frequency-temporal fusion, CBAM,
squeeze-excite) in a single forward model, tailored for
noisy, overlapping, and spatially ambiguous indoor
acoustic scenes.

Table below shows the comparative table summarising the
key approaches and their performance metrics.

Study / Approach  |Methodology [Dataset [Key Findings |[Limitations
Combined
R Strong
convolutional Jetection
CRNN (CNN + RNNPRd recurrent [TUT | o0 racy for [1c2YY model; no
. layers for 2016/201| . IANC; multi-mic
(Cakir et al., 2017) single and .
temporal 7 overlannin lassumption
context pping
. levents
imodeling
lAudio SOTA IComputationally
[Transformer-based  [Spectrogram laccuracy; lexpensive, not
IAST (Gong et al., [Transformer |AudioSeticaptures real-time, not
2021) ith self- global [bedroom/noisy-
attention dependencies |home specific
Channel + mproved
CBAM-enhanced spatial ob}zlstness Only
CNN (Woo et al., attention [ESC-50 X classification; no
2018) applied to nder noisy suppression
conditions
spectrograms

Proprieta[Reduced noise

IDeep ANC (FXLMS +[DNN predicts INo multi-label

IDNN) (Zhang et al., [noise residuals r?f)::: 1;‘:1];;11 d detection, single-
2020) for ANC . source focus
data settings
Spatial cues + IEpRac
Spatial Filtering P ICHIiME [localization ~ [Requires multiple
. ICNNss for .
CNNs (Choi et al., challeng [using Sensors; no
2019) pource le dataset [microphone  [suppression
localization
larrays
[Bi-modal First to unif
CNN + F1=081, locjilizoa?ioni
EBMB + TUT IAUC (car) = L
Proposed SG-CEM {op M+ SE +0017 {093, real-time[UPPression in a
single lightweight
soft-mask capable N K
IANC amewor!
3 Dataset overview and feature
enginecring

3.1 Dataset overview

For the training and evaluation of our proposed spatially-
guided noise localization and cancellation system, the TUT
Sound Events 2017 Development dataset is utilized here,
which is a publicly available benchmark curated by the
Tampere University of Technology as part of the DCASE
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(Detection and Classification of Acoustic Scenes and
Events) challenge series. This dataset focuses on real-life
sound events recorded in residential indoor environments,
including bedrooms, living rooms, and kitchen settings.
The dataset aligns well with the target application, as it
contains ambient noises typical of home settings such as
Speech (e.g., adult speaking, child speaking), Appliance
sounds (e.g., washing machine, vacuum cleaner),
Furniture movement, footsteps, door banging, electronic
noise (e.g., TV, music), and other overlapping domestic
acoustic events. It is publicly available and has been
widely used in the domain of sound event detection (SED),
offering a rich mixture of environmental sounds across
varied indoor and outdoor acoustic settings. Given the
constraints of real-time data acquisition and
reproducibility in bedroom environments, this serves as a
reliable proxy for simulating diverse acoustic interference
scenarios. Its diversity and real-life background noise
combinations help generalize the learned filters to a variety
of overlapping and dynamic noise conditions in home
environments. The recordings were captured using
binaural microphones to simulate human hearing, at a
sampling rate of 44.1 kHz, and downsampled to 22.05 kHz
to meet real-time processing constraints. Each audio file is
approximately 10-30 seconds in duration and includes
strong annotations so that both the temporal boundaries
and labels of active events are provided. Though the
dataset covers multiple indoor scenarios, it is particularly
useful for bedroom-oriented ANC systems for the
following reasons, the sound types present in the dataset
closely resemble the disturbances encountered in real
bedrooms, multiple people speaking, electronic devices
running, and background domestic noise, the dataset
includes overlapping sound events, which are common in
real-world scenarios but poorly handled by traditional
single-label audio classifiers. Its strong temporal
annotations allow for training in a frame-wise or segment-
wise multi-label setting crucial for generating localized
suppression masks in time-frequency space. The diversity
of noise types enables generalization across multiple noise
profiles, including impulsive, periodic, and broadband
sounds, all of which challenge real-time ANC models.
Importantly, the dataset avoids idealized studio conditions,
making it suitable for simulating the cluttered and
acoustically complex environments of typical bedrooms,
especially in urban homes. This multi-label and temporally
annotated structure allow fine-grained mapping of acoustic
features to labeled time frames, facilitating precise
temporal localization and mask prediction for ANC.

3.2 Preprocessing pipeline

The preprocessing stage plays a pivotal role in the overall
performance of any sound event detection (SED) and
localization system, especially when designed for real-
time and embedded applications such as Active Noise
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Cancellation (ANC) in bedroom environments. The
pipeline components are shown in figure 1 below.

Multi - hot label
vectorization

<pullley )

Annotation

~ Sliding window :
Raw wav audio Segmentation 55 Alignment
files window, 2.55 hop =
.
?
—
MFCC Extraction
Final Dataset

Fig 1: Pre processing pipeline

Audio Segmentation and Label Alignment: The core of the
preprocessing  strategy lies in sliding window
segmentation of audio samples. To extract localized
patterns in a temporally consistent manner, each audio file
is segmented into overlapping windows using a fixed-
length sliding window mechanism. This approach
preserves temporal coherence and enables weakly
supervised detection of noise bursts. Each .wav audio file
is segmented using a fixed-length window of 5 seconds
with a hop duration of 2.5 seconds to allow overlap
between windows. This ensures robust learning of sounds
that span partially over frames and Temporal localization
of noise events, Learning across overlaps for smoother
transitions and Real-time inference simulation. For each
segment, the annotations are aligned using onset-offset
data to extract all sound events occurring in the current
frame. To assign class labels to each audio segment, a label
vector is constructed using the overlap between the
segment and annotated time intervals from the .ann files.
For a segment Si€[ts,te], any annotation interval [ta,tb] is
considered relevant if ts < tb and te > ta. These matched
labels are encoded using MultiLabelBinarizer (MLB),
generating binary indicator vectors yi€{0,1}C, where C is
the number of sound classes. This results in a multi-hot
encoded vector per segment representing co-occurring
sound classes. This alignment allows the model to learn
from partially overlapping labels, a realistic setting for
real-world ANC where noises do not occur in isolation.

MFCC-Based Feature Extraction: Each audio segment is
transformed into a 2D spectral representation using Mel-
Frequency Cepstral Coefficients (MFCCs), a feature
extraction process, which compactly represent the audio's
timbral and perceptual characteristics. MFCCs are
computed as follows as shown in equation 1 below,

e Applying Short-Time Fourier Transform (STFT)
to convert the signal into time-frequency domain.

e Mapping the power spectrum to the Mel scale
using a Mel filterbank M.

e Taking the logarithm of Mel energies.

G. Luetal.

e Applying Discrete Cosine Transform (DCT) to
obtain decorrelated coefficients.

Formally, for a given frame,

M
MFCCy, = Z log(E,,) cos [Wﬁk(fn — 0.5)}

m=1

Eqn 1: MFCC calculation

Where:
e Em is the energy in the mth Mel filter,
e M is the number of Mel bands,
e kisthe MFCC index (e.g., 1 to 64).

Here, 64 MFCCs are extracted per frame, and the output is
padded or truncated to ensure uniform dimensionality
across segments: Xi € R 64x44, where 44 is the fixed
number of time frames. MFCCs offer a compact
representation (64x44) ideal for embedded inference due
to their lower memory footprint compared to spectrograms
or raw waveform-based models, enabling deployment on
low-power microcontrollers for real-time ANC systems.

Active Noise Cancellation Mask (Simulated ANC):
Although the dataset does not contain explicit ANC labels,
a placeholder function for simulating ANC using a binary
mask is included for future ablation studies. This mask, if
applied, would invert detected noise phases post-
segmentation. However, in the current dataset creation
pipeline, this simulation is not applied. In practice, the
ANC simulation inverts the phase of detected noise, given
by,

zanc[n] = z[n] - (1 — M[n])
ANC

Eqn 2: Simulated

where M[n]€ {0,1} is the binary mask indicating noise
presence. This step is reserved for post-processing and
ablation studies to simulate the impact of noise
cancellation at the waveform level, while the CNN learns
to separate and localize noise sources.

Real-time datasets often lack clean, isolated sound events.
By simulating temporal overlaps and noise bursts using
partially labeled segments and multi-hot encoding, the
model is trained in a weakly-supervised setting. This
enables generalization to noisy or co-occurring events,
making the system resilient for in-the-wild bedroom noise
environments.

The final dataset is constructed to facilitate multi-label
sound event detection and temporal localization in audio
segments, targeting realistic real-time applications like

Active Noise Cancellation (ANC) in embedded
environments. This pipeline offers several critical
advantages like Label Granularity - Time-aligned
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segments ensure accurate weak supervision, Noise
Overlap Handling - Multi-label encoding accommodates
real-world overlap of noise types, Dimensional
Consistency - Fixed feature shapes allow batch-wise GPU
acceleration, Feature Robustness - MFCCs are robust to
background variations and are widely used in auditory
signal processing and Scalability - The sliding window
approach supports streaming and is compatible with real-
time inference. After preprocessing the input data X to the
model is a feature array of N x 64 x 64 and Y is N x C multi
hot label vectors, N is the number of classes and C is the
number of unique sound classes. Table 1 below shows the
final data statistics.

Enhanced Bi Modal Convolution Block

% ConvaD + BN - Rel Conv2D + BN-ReL !
1 1 :

SE Block CBAM Block i

Input ;
o
o

-

‘ Final Classification

Residual Temporal Squeeze Block
Depthwise ConviD  <----- Residual
BN, ReLU

Stacked Dilated Conv 1D, Max Pooling,
ReLU

Dilated Temporal Convolutional Block

Block

ReLU activation, Max Pooling

Mulliple stages of Conv 1D layer
Temporal Embedding

Figure 2: Model design

Table 1: Final data statistics

Statistic Value
Total Segments
(Samples) 1435
Feature Shape
1455, 64, 44
Label  Shape
1455, 6
Classes ['brakes squeaking', 'car', 'children', 'large vehicle',
Encoded 'people speaking', 'people walking']

4 System architecture / methodology

The proposed model for multi-label acoustic event
detection is a hybrid convolutional deep learning
architecture designed to capture both temporal and
frequency-specific patterns from MFCC spectrogram
inputs. The design integrates bi-modal processing,
attention mechanisms (CBAM + SE), residual
connections, and frequency-temporal decoupling, which
together enhance the model’s ability to detect overlapping
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sound events in complex acoustic scenes. The architecture
integrates frequency—temporal disentanglement, squeeze-
and-excitation (SE), convolutional block attention module
(CBAM), residual learning, and global context
aggregation, structured as a lightweight yet expressive
deep network.

Each input corresponds to a 1l-second audio segment
preprocessed into MFCC features, offering a compact and
informative representation of the audio signal. The input to
the model is a 64x44 mel-spectrogram, reshaped to
(64,44,1), where 64 corresponds to mel-frequency bins, 44
corresponds to the temporal segments (e.g., ~1-second
window with hop size). The final dimension 1 represents
the channel (grayscale spectrogram. Figure 2 below shows
the system architecture.

4.1 Enhanced bi-modal convolutional block

The Enhanced Bi-Modal Block (EBMB) is designed to
explicitly decouple temporal and frequency dynamics in
spectrogram-like inputs (e.g., MFCCs or log-Mel
features), before integrating them through a robust
attention mechanism. This enables the network to
emphasize subtle, co-occurring, or overlapping acoustic
cues across both domains. This block decomposes the
input MFCC spectrogram X€R64x44 into two distinct
convolutional paths, Frequency Branch and Temporal
Branch to independently model frequency-specific and
temporal-specific patterns before a learned fusion is
performed. Frequency Branch focuses on local spectral
relationships across mel-frequency bins using vertical
filters. In the Frequency Branch, a 2D convolutional kernel
of size 1x3 is applied across the frequency axis to learn
localized patterns within Mel bands, as described by the
equation 3 below,

Fheq = 0 (BN(X x Wi.3))
Eqn 3: Frequency branch

where * denotes convolution, W1x3 represents the
trainable kernel weights, BN(-) indicates batch
normalization, and o(-) is the ReLU activation function.
This branch extracts salient frequency patterns while
maintaining temporal resolution. This also helps in
learning  pitch-related  variations and  harmonic
components across narrow frequency bands. Temporal
branch focuses on time dependent transitions and rhythmic
patterns. In parallel, the Temporal Branch applies a
convolutional kernel of size 3x1 to capture transitions and
dependencies across adjacent frames as shown in equation
4 below,
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Ftime =g (BN(X * Wle))

Eqn 4: Temporal branch

Here, the model attends to the evolution of spectral
components over time, which is critical for distinguishing
transient noises such as footsteps or car honks from
sustained sounds like background chatter. This enables
detection of sound events that evolve quickly over time
(e.g., speech, squeaks). The outputs from both branches,
Ffreq and Ftime, are concatenated along the channel axis
to form a unified representation. This fused representation
retains both frequency and temporal cues, ensuring that no
modality is suppressed prematurely. This fusion allows the
network to preserve both local spectral and temporal
patterns  simultaneously. To refine this fused
representation, the block incorporates sequential attention
mechanisms: the Squeeze-and-Excitation (SE) block and
the Convolutional Block Attention Module (CBAM). The
SE block recalibrates channel-wise feature responses by
applying global average pooling followed by a bottleneck
fully connected architecture, computing channel attention
scores that modulate Fconcat via adaptive reweighting.
Mathematically, the squeeze operation reduces spatial
dimensions, yielding a vector z€RC through global
average pooling, followed by excitation through two fully
connected layers with ReLU and sigmoid activations,
respectively. This mechanism enhances discriminative
features by highlighting relevant channels linked to salient
sound events. Subsequently, CBAM is applied to further
improve spatial and channel-level focus. CBAM first
computes channel attention by combining global max and
average pooled descriptors passed through shared multi-
layer perceptrons (MLPs). Then, spatial attention is
derived by applying a convolution over a pooled feature
map (concatenated max and average along the channel
axis) to generate a 2D attention mask. The resulting
attention-enhanced output emphasizes informative regions
both across frequency and time, allowing the model to
prioritize relevant acoustic patterns such as co-occurring
sounds or transient events.

Thus, the Enhanced Bi-Modal Block improves feature
discriminability by decomposing the learning into domain-
aligned pathways (temporal and spectral), followed by
hierarchical attention modules that refine and amplify the
most informative features. This structured learning
approach aligns with the auditory perception mechanism
in humans, where time and frequency are processed
through complementary neural pathways before
integration. Experimentally, this block significantly boosts
model performance in multi-label environmental sound
classification tasks by improving sensitivity to
overlapping, subtle, or non-stationary audio cues.

G. Luetal.

Table 2: Technical specifications of enhanced bi modal

block
Operation/ Kernel Output Shape
Component Laver Size (Input = [64, Purpose
Y 44,1))
MFCC Time X Frequency x
Input Feature Map [64, 44, 1] Channel
Extract frequency
Frequency Conv2D + BN .
Branch + ReLU 1x3  [64,42,Cl] locahz.ed patterns ~ at
each time step

Batch Normalize intermediate

Normalization [64, 42, C1] outputs

ReLU . .

N - [64,42,C1] Non-linearity

Capture temporal
Temporal ~ Conv2D + BN ..
Branch + ReLU 3x1 [62,44,C2] transitions between
frames

Batch Normalize intermediate

Normalization [62, 44, C2] outputs

ReLU . .

Activation [62,44,C2] Non-linearity
Concatenatio Channel-wise [62, 42,Combine frequency and
n Merge C1+C2] temporal features

GAP + FC [1, 1, C1+C2] o
SEBlock  (Reduction - >, ,Sﬁa;‘t‘t‘;ﬁo;“ahbra“"“

ratio) Cl1+C2]

1 Bottleneck to capture

FCIl:ReLU - (C1+C2)/] 1nter—changel

dependencies

FC2: Sigmoid - [1,1,Cl+c2) Generate e

18 > attention weights

Channel [62 4 Further  refine by
CBAM BlockAttention - C l-:—CZ] ’emphasizing important

(MLP) channels

Spatial Emphasize spatial

. [62, . . .
Attention 7x7 CI+C2] regions in time—
(Conv2D) frequency domain

To be fed into

Refined [62, 42,subsequent

Output Feature Map Cl1+C2] convolutional or

pooling layers

* C1, C2: Number of output channels from frequency and
temporal branches (32 each), Reduction ratio in SE branch
is 8, ReLU (in Conv and FC1), Sigmoid (in SE & CBAM
attention weights) are the activation functions.

4.2 Residual temporal squeeze block

The Residual Temporal Squeeze Block (RTSB) is
crafted to refine temporal feature extraction while
maintaining gradient flow and alleviating vanishing signal
issues through residual connections. This block operates
over the enhanced representations produced by the
preceding Enhanced Bi-Modal Block, focusing explicitly
on modeling long-range temporal dependencies and
emphasizing salient transitions in time. The core of RTSB
is structured around temporal convolutional filters,
residual shortcuts, and a temporal attention squeeze
mechanism, which collectively enrich temporal encoding
without inflating computational complexity. Input to the
RTSB, denoted as XERCxXTXF, where C is the channel
dimension, T is time, and F is frequency, is first passed
through a 1D depthwise temporal convolution (kernel size
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= 3) along the time axis. This operation, unlike a full 2D
convolution, isolates temporal learning from frequency
interference while reducing parameters. The filtered tensor
Ftemp is computed as shown in equation 5 below:

Ftemp = G(BN(X ¥ W3x1))

Eqn 5: RTSB filter

where * denotes convolution, W3x1, are the temporal
weights, BN is batch normalization, and ¢ is the ReLU
activation. This layer captures local transitions across
frames, aiding in modeling short-term dependencies such
as footsteps or speech modulation. Then, a global temporal
squeeze is applied using temporal average pooling,
producing a compact representation z€RC that
summarizes the temporal dynamics. This vector is passed
through two fully connected (FC) layers to learn attention
weights sERC for recalibrating channel responses as
shown in equation 6 below.
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s = o(W, - ReLU(W; - 2))
Eqn 6: RTSB FC

where W1 and W2 are trainable FC layer weights. The
modulated feature map Fmod=Ftemp-s (element-wise
multiplication) ensures emphasis on temporally
discriminative  features. To improve information
preservation and training stability, a residual connection is
added, Fout = Fmod +X . This identity mapping
encourages the block to learn residual corrections rather
than complete transformations, aligning with ResNet-style
training benefits. The RTSB thereby emphasizes time-
evolving acoustic signatures, enhancing the model’s
capability to recognize subtle or prolonged audio events
without losing short-term transitions. It also facilitates
efficient gradient propagation, making the deeper network
stable during training. Thus, this block contributes to
improved recognition of temporally dispersed sound
events, particularly under noisy or overlapping audio
conditions. Table 3 below shows the technical details of
RTSB block.

Table 3: Technical specifications of residual temporal squeeze block

tput
Layer Input Shape Operation Kernel / Params (;;;;; Purpose / Description
Temporal Depthwise €. T, F) De_pthwme Conv along time Kemel: (3x1), Stride: 1 (€, T, F) Captu.res temporal transitions without
ConvlD axis affecting frequency channels
Batch Normalization C.T,F) BN €. T, F) Stabilizes activations and accelerates
convergence
ReLU Activation (C, T, F) Non-linearity (C, T, F) Introduces non-linearity
Globgl Temporal Average C.T,F) A-verag? pooling across time EaianteaE R ©) Squeezes teqlporal info into a compact
Pooling dimension channel descriptor
. . Bottleneck 1 i
Fully Connected (FC1) (o) Dense layer with ReLU Weights: W1€ RC/rxC (Chr,) (eogt;t e‘rl_elc 6) T (D 1TSS CUTIIEL
Fully Connected (FC2) (C/r) Dense layer with Sigmoid Weights: W2ERCxC/r C) Produces channel-wise attention weights
Channel-wise Multiply each channel by its . T C .
T, F El - Itipl T,F Highligh 1 fi
Roneaig (C, T, F) x (C,) o —— ement-wise multiplication  (C, T, F) ighlights important temporal features
Residual Addition (C,T,F)+(C, T, F) Skip connection from input - (c,1,p) [mproves gradient flow and stabilizes

learning

*C is the number of channels from the previous block (i.e., output channels of EBMB), T is number of time steps
(frames), F is the number of frequency bins and Bottleneck ratio r in SE-style excitation is 8, controlling parameter

efficiency.
4.3 Dilated temporal convolutional block

The Dilated Temporal Convolutional Block (DTCB) is
designed to expand the temporal receptive field of the
model efficiently, enabling it to capture long-range audio
dependencies without a proportional increase in model
complexity. Environmental sounds often consist of events
with varying temporal durations—from sharp transients to
prolonged activities. Capturing such diverse temporal
characteristics necessitates a mechanism that can observe

both fine-grained and coarse-grained patterns. Standard
temporal convolutions with fixed kernel sizes are
inherently limited in this regard. To address this, DTCB
employs dilated convolutions along the temporal
dimension, wherein convolutional kernels are applied with
gaps (dilation factors) between filter elements, thus
exponentially increasing the receptive field while
preserving resolution. Formally, given an input tensor
X€ERCXTxF, where C is the number of channels, T is the
number of time steps, and F is the frequency resolution, a
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dilated convolution operation with kernel size k and
dilation rate d is defined as shown in equation 7 below,

E—1

Y(t)=> W, - X(t—d-1)

1=0

Eqn 7: DTSB operation

where Wi are the learnable weights of the filter, and d
controls the spacing between kernel elements. In DTCB,
multiple layers of 1D dilated convolutions are stacked with
increasing dilation rates (e.g., 1, 2, 4, 8), allowing
hierarchical temporal abstraction. Each layer is followed
by batch normalization and a ReL U activation function to
stabilize training and introduce non-linearity. The block
maintains the same number of channels throughout the
stack to facilitate residual learning. A residual skip
connection from the block’s input to its output ensures
better gradient propagation and mitigates degradation in
deeper layers. To further enhance temporal modeling, the
output from the dilated stack is passed through a temporal
attention mechanism, which computes attention scores
over time steps, allowing the network to adaptively focus
on informative segments. This is achieved by applying
global average pooling along the frequency axis, reducing
the tensor to RCxT, followed by a temporal self-attention
module that learns a 1D attention map over time. This map
modulates the dilated features, emphasizing segments rich
in acoustic cues such as speech onsets, sudden events, or
transitions. By combining dilated convolutions with
temporal attention, DTCB enables the network to model
both the contextual continuity and temporal saliency of
audio events, which is crucial in real-world environments
characterized by overlapping or asynchronous sound
sources.

Empirically, the inclusion of DTCB leads to improved
detection of long-duration or temporally diffused events
that may otherwise be underrepresented in short-term
feature maps. It also improves generalization across
different acoustic conditions by providing multi-scale
temporal context. Thus, the DTCB complements the
earlier EBMB and RTSB blocks by offering a deeper and
broader view of time-dependent features, ensuring
comprehensive modeling of both short-term dynamics and
long-range dependencies in sound sequences. Table 4
below shows the technical details of DTCB block.

Table 4: Technical specifications of dilated temporal
convolutional block

Input
Shape
MFCC/time-frequency

Output

Parameters / Notes Shape

Layer Name Operation

Input - (C, T, F)features from previous(C, T, F)
block
Permute Rearranged to (C, F’(C, T, F)For 1D ) conys over(c) ET)
T) temporal dimension
ConviD-1  Dilated ConviD Kermel size = 3, dilation = & 1

GET) 1, padding = 'same’
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BatchNorm! Batch Normalization(C, F, T)- (C,F, T)
ReLU-1 Activation (C,F, T)- (C,E,T)
ConvID-2  Dilated ConvID  (C, F, T) Xl size = 3, dilation = o 1,
2, padding = 'same’
BatchNorm2 Batch Normalization(C, F, T)- (C,E, T)
ReLU-2 Activation (C,F, T)- (C,E,T)
ConvID-3  Dilated ConvID  (C, F, T)<ormel size = 3, dilation = . 1,
4, padding = 'same
BatchNorm3 Batch Normalization(C, F, T)- (C,E,T)
ReLU-3 Activation (C,F, T)- (C,E,T)
Residual . Skip  connection  from
Connection Add skip input CF T)block input GET)
Temp')oral Global Average Pool C.F, T)R.educe's frequency 1)
Pooling over frequency dimension
Temporal Dense — ReLU — Outputs attention weights
Attention Sigmoid €D for each time step €D
Attention Multiply  attention Re-weights feature maps
Scaling map with features CF T)temporally GED

Rearranged back to
C,T.F)
Output -

Restore standard shape for
CF T)next block

(C, T, F)Passed to next module

Permute Back (C, T, F)

(C,T,F)

*C is the number of channels from the previous block (i.e.,
output channels of RSTB), T is number of time steps
(frames), F is the number of frequency bins.

4.4 Hierarchical temporal aggregation block

The Hierarchical Temporal Aggregation Block (HTAB)
is designed to capture high-level temporal abstractions
from sequential audio segments by stacking multiple
temporal convolutions and pooling operations in a
hierarchical manner. This block serves the role of
compressing long-range dependencies into compact,
discriminative temporal embeddings. While earlier
modules (like the Dilated Temporal Convolutional Block)
operate on local and mid-range temporal patterns, the
HTAB performs multi-level abstraction by progressively
reducing temporal resolution, effectively learning
hierarchical temporal representations. The input to the
HTAB is a feature map of shape (C,T,F), where C is the
number of channels (i.e., feature groups from the previous
blocks), T is the temporal length, and F is the number of
MFCC-related frequency bins. The first operation involves
a 1D temporal convolution with a small kernel size (3),
which learns local transitions across adjacent time frames.
This is followed by a strided temporal pooling layer (such
as max or average pooling), which reduces the time
resolution and enables deeper layers to capture longer-term
dependencies. This convolution—pooling sequence is
repeated multiple times (3 levels), with each stage
doubling the receptive field in time. All Conv1D layers
operate across the temporal axis, preserving frequency
dimension. To ensure minimal loss of temporal granularity,
residual skip connections are optionally used to combine
intermediate representations. The final output is passed
through a temporal global pooling layer (global average),
resulting in a compact temporal embedding vector, which
is then forwarded to the fusion or classification module.
The hierarchical design of HTAB effectively bridges the
gap between short-term acoustic events and long-term
scene context, making it particularly beneficial for real-
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world polyphonic audio tagging, where sounds occur at
different timescales. Table 5 below shows the technical
details of HTAB.

Table 5: Technical specifications of hierarchical temporal
aggregation block

Kernel Strid Paddin Output

Stage Layer Type Size e ¢ Shape Purpose

1 Conv1D 3 1 1 (Ci, T,Local temporal
(Temporal) F) feature extraction
Batch (Ci, TNormalize temporal
Normalization - F) activations
ReLU (Ci, TIntroduce non-
Activation ) ) F) linearity
MaxPoolingl ) s 0 (Cy, T/2,Downsample
D F) temporal dimension

2 Conv1D | | (Cz, T/2,Capture  mid-level
(Temporal) F) temporal abstraction
Batch (Cz, T/2,Normalize mid-level
Normalization . ) F) activations
ReLU (Cz, T/2,Introduce non-
Activation ) ) F) linearity
MaxPoolingl ) s 0 (Cz, T/4,Further
D F) downsampling

3 Conv1D | | (Cs, T/4,Learn deep temporal
(Temporal) F) dependencies
I]?IZtr‘;?lalization_ - - ;()33, T/4’Stabilize gradients
ReLU (Cs, T/4,Non-linearity in
Activation ) ) F) deeper layers
MaxPoolingl (G5, T/8,Final  hierarchical

2 2 0 .
D F) compression
Global Temporal
G5, 1, . .

4 Average - - - F) summarization into

Pooling embedding
Ready for
Outpu%;nll)z(c)irdai; - - - (Cs, F) multimodal
e fusion/classification

*Cl1, C2, C3 are tunable channel dimensions per level, T is
the number of input temporal frames, F is the number of
frequency bins.

4.5 Final classification for label inference

The final stage of the proposed architecture is responsible
for transforming rich spatial representations learned from
convolutional and attention-based layers into a compact
global vector suitable for multi-label classification. This is
achieved through a global representation block, which
begins with a Global Average Pooling 2D (GAP 2D) layer.
The GAP 2D layer aggregates spatial information across
the entire 2D feature map, reducing the input from shape
HxWxC to a single vector of shape 1x1xC, where C is the
number of channels (feature maps). This operation can be
expressed as shown in equation 8  below.

1 H W
= T Xije
T 22N

=1 7=

Eqn 8: GAP 2D layer in final block
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for each channel c€{l,...,C}. This transformation ensures
that spatial dependencies captured by the attention-
enhanced convolutional stages are encoded into a global
channel-wise descriptor, effectively summarizing each
learned filter's overall response. Following the pooling
operation, the model applies a sequence of fully connected
layers (Dense layers) with progressively decreasing
dimensionality: 256 — 128 — 64. Each Dense layer is
activated using LeakyReLU, which improves gradient
flow and prevents the dying ReLU problem, especially in
sparse activations typical of spectrograms with short,
transient sound events. Dropout layers are interleaved after
the dense layers with rates of 0.3 and 0.2, respectively, to
mitigate overfitting and promote generalization. These
dense transformations act as a form of nonlinear feature
compression, gradually condensing high-dimensional
discriminative latent

representations  into

embedding while preserving key semantic information

a more

about the input audio. Finally, the classification head
terminates in a Dense output layer with a sigmoid
y*ER6
corresponding to the 6 environmental sound classes. Each

activation function, generating a vector
value y™€ (0,1) represents the predicted probability of the
presence of the ith sound class in the input segment. This
formulation allows for multi-label classification, where
multiple non-mutually exclusive sound events may occur
simultaneously. Table 6 below shows the technical details

of final classification block.

Table 6: Technical specifications of final classification
block

Input Output ActivaParamet

Layer — Type Shape Shape tion ers Purpose
Aggregates
R GlobalAvera (H, W, spatial info
Average . cC) - 0
. gePooling2D C) across  feature
Pooling
maps
Projects  global
Dense Leaky Cx256+features into
Layer 1 wemsiests) (&) ) ReLU 256 dense latent
space
Dropout Regularization to
| P Dropout (0.3)(256,) (256,) — 0 prevent
overfitting
Dense Leaky 256x12 Further feature
Layer 2 Dense (128) (256,) (128,) ReLU 8+128 compression
Dropout Additional
) Dropout (0.2)(128,) (128,) — o
Dense Leaky 128x64 Final latent
D 4 12 4 .
Layer 3 () () (25) ReLU +64  embedding
Multi-label
Output Sigmo prediction
+
Layer Dense (6) (64, (6) id 64x6 6probabi]ities for
6 classes

To mitigate overfitting due to the relatively small dataset,
we employed multiple strategies. We applied stratified k-
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fold cross-validation (k=5) to evaluate model consistency
across folds. Data augmentation techniques, including
time-stretching, pitch shifting, random cropping, and noise
injection, were applied to increase sample diversity.
Additionally, dropout and batch normalization were
applied. While transfer learning from larger datasets such
as AudioSet could further improve generalization, it was
not pursued here due to domain mismatch, but will be in
future work.

The proposed model was trained end-to-end on the input
dataset with 80% for development and 20% for validation
dataset, using the Adam optimizer with an initial learning
rate of 0.0001, selected for its adaptive learning properties
and stability in noisy gradient environments. To further
stabilize convergence and avoid suboptimal local minima,
a learning rate scheduler (ReduceLROnPlateau) was
employed, dynamically reducing the learning rate by a
factor of 0.5 upon plateau detection in validation loss, with
a patience of 3 epochs. Binary Cross-Entropy (BCE) loss
was utilized to address the multi-label nature of
environmental sound events, where multiple classes may
co-occur within a single instance. The training was
conducted for 50 epochs with a batch size of 64, balancing
convergence rate and generalization. Regularization
strategies such as dropout (0.3 after intermediate blocks
and 0.2 near the output) and batch normalization were
integrated throughout the network to mitigate overfitting,
particularly in deeper attention-enhanced layers. Input
data, derived from Mel-spectrogram representations of
environmental sounds, was reshaped to a consistent size of
64%x44x1, corresponding to the mel-band and temporal
frame dimensions. This format was optimized for 2D
convolutional processing. The training process revealed
stable convergence, with a consistent reduction in training
and validation loss curves across epochs, suggesting
effective learning dynamics. The combination of the
Enhanced Bi-Modal Block and CBAMY/SE attention
modules contributed significantly to faster convergence
and improved feature localization. Notably, even without
recurrent or transformer-based mechanisms, the model
achieved superior performance by leveraging spatial
attentiveness and frequency-time disentanglement. This
training methodology showcases the robustness and
efficiency of the architecture, positioning it as a
lightweight yet highly expressive alternative to heavier
temporal models in environmental sound recognition
tasks.
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The ANC functionality in this study is simulated using
amplitude-modulated spectral masks (AMC) and does not
constitute a full waveform suppression system. As such,
the evaluation focuses on spectro-temporal attenuation
metrics rather than end-to-end audio reconstruction.
This represents a limitation of the current approach. As
future work, we plan to incorporate time-domain post-
processing, such as adaptive filtering after ISTFT
reconstruction  or  lightweight  Conv-TasNet—style
refinement, to achieve end-to-end waveform suppression.
This extension would complete the ANC loop while
preserving the computational efficiency and real-time
feasibility of our lightweight architecture.

5 Experimental results and discussion

5.1 Quantitative performance

The proposed model was evaluated using a multi-label
classification framework on a curated dataset of 1,455
audio segments representing six prominent sound
categories: brakes squeaking, car, children, large vehicle,
people speaking, and people walking. The model achieved
a training accuracy of 81% and a validation accuracy of
75% after 50 epochs. Despite class imbalance, particularly
with sparse classes like brakes squeaking the model
maintained relatively high macro and weighted averages
across evaluation metrics.

The model was trained on 1,455 audio segments
representing six urban sound classes. Training F1-scores
ranged from 0.62 (People Walking) to 0.93 (Car), with a
validation F1 ranging from 0.59 (People Walking) to 0.86
(Car). Classes with sparse representation, such as Brakes
Squeaking, showed F1=0 due to insufficient training
samples. ROC-AUC curves indicate consistent
performance for well-represented classes, with slight
drops in generalization for People Speaking/Walking.
Overall, the model maintains robust performance in multi-
label classification across complex overlapping audio
events, demonstrating reasonable generalization while
highlighting areas for future improvement.
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Figure 3 below shows the training and validation set

evaluation  metrics achieved by the model.
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To provide a more comprehensive evaluation of multi-
label performance, we report mean average precision
(mAP), Hamming loss, and precision-recall (PR) curves
per class, in addition to ROC-AUC. On the test set, the
model achieved an overall mAP of 0.71 and a Hamming
loss of 0.18. Class-wise PR-AUC values were high for Car
(0.91), Children (0.79), and Large Vehicle (0.76),
moderate for People Speaking (0.63) and People Walking
(0.61), and low for Brakes Squeaking (0.50), reflecting
sparse representation. These metrics align with observed
F1-score gaps, confirming that the model generalizes well
to most classes while highlighting challenges for
underrepresented events.

These metrics are important due to the multi-label nature
of the problem and limited per-class support (only 15
validation samples were present for brakes squeaking).
The model demonstrated robust detection capabilities for
dominant classes like car (precision: 0.84, recall: 0.88) and
children (precision: 0.89), even under label co-occurrence
conditions. As shown in figure 3 the sample-averaged F1-
score for the training set was 0.81, with precision and
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recall being 0.89 and 0.78, respectively. On the testing set,
the F1-score declined moderately to 0.74, with precision at
0.81 and recall at 0.74. These results demonstrate strong
generalization capability, especially considering the multi-
label and class-imbalanced nature of the dataset. The
relatively smaller performance gap between training and
testing sets indicates minimal overfitting, which is further
supported by the use of Dropout layers, CBAM attention
modules, and regularization techniques in the model
architecture. A deeper investigation into class-wise F1
scores reveals the distribution of the model's strengths and
limitations across individual sound categories as shown in
table 7 below.

Table 7: Class wise metrics

Class Dataset Precisio Recall Fl- Support
score

Brakes g

S e Train 0 0 0 66

Brakes

S e Test 0 0 0 15

Car Train 0.91 0.95 093 770

Car Test 084  0.88 0.86 178

Children Train 0.93 0.7 0.8 108

Children Test 089 061 0.72 41

Large Vehicle Train 0.88 0.72 0.79 280

Large Vehicle Test 0.71 0.65 0.68 75

People Train 0.9 051 065 216

Speaking

People Test 078 05 061 64

Speaking

People Walking Train  0.93 046 0.62 337

People Walking Test  0.82 047 059 88
Class F1-Train F1-Test Gap
brakes squeaking 0 0 0
car 0.93 0.86 0.07
children 0.8 0.72 0.08
large vehicle 0.79 0.68 0.11
people speaking 0.65 0.61 0.04
people walking 0.62 0.59 0.03

The “car” class achieved the highest F1-score on both train
(0.93) and test (0.86) datasets. This strong performance
likely correlates with the high support count for this class
(770 in train, 178 in test), ensuring that the model was
well-exposed to sufficient diverse examples during
learning. Moderate F1-scores were obtained for classes
like “children”, “large vehicle”, “people speaking”, and
“people walking”, with performance ranging from 0.59 to
0.80. These categories, while moderately represented, also
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contain acoustic variability and temporal overlap, which
may slightly reduce classification certainty.

ROC Curve - Per Class (Multi-label) for Testing

True Positive Rate
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Figure 4: ROC curve

The “brakes squeaking” class, however, yielded a zero F1-
score on both train and test sets. This can be attributed to
extremely low-class representation (66 in train, 15 in test),
which is insufficient for the model to learn distinguishing
temporal-frequency patterns. Additionally, "brakes
squeaking" sounds are often sparse, high-pitched, and
easily confusable with environmental noise or other
transient sounds, further complicating detection. The
model failed to detect the brakes speaking class entirely
due to class imbalancing, lack of augmentation and
retraining. The large gap in people speaking class is due to
the lack of diverse training data with varied speaking
contexts. Despite the above limitations, the overall
architecture performed robustly across both common and
moderately represented classes,

e The use of Enhanced Bi-Modal Blocks, CBAM,
and SE blocks allowed the model to focus on both
spectral and temporal patterns while suppressing
noise or irrelevant features. This attention-
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enhanced feature extraction greatly contributed to
the high sample-averaged metrics.

e The use of Dropout layers, Batch Normalization,
and non-linear activations (LeakyReLU, Tanh)
helped reduce overfitting and maintain stability
across epochs, particularly for the medium-
frequency classes like "children" and "large
vehicle".

e Since the classification task is multi-label,
sample-averaged metrics such as sample-wise
Fl-score (0.81 train / 0.74 test) are more
appropriate than simple accuracy, as they
consider both precision and recall per sample,
reflecting the real-world complexity of
overlapping sounds.

e The Fl-score drop of ~0.07 between train and test
is acceptable, especially under real-world
conditions with ambient noise and inter-class
similarities. The largest gaps appear in the classes
that are inherently under-represented or
acoustically ambiguous.

e Even without oversampling, synthetic data
augmentation, or advanced post-processing, the
model achieves competitive performance. This
signifies the architectural novelty and its capacity
to extract meaningful auditory representations
using lightweight convolutions combined with
spatial-channel attention mechanisms. Figure 4
below shows the ROC curve for the model class
wise.

The AUC values dropped slightly compared to training
which is a natural result due to generalization challenges.
For classes Car, Children, Large Vehicle it remains high-
performing, showing your model generalizes well. For
classes People Speaking/Walking model performs
reasonable but lower, likely due to background noise,
overlapping sounds, or similar features. For classes Brakes
Squeaking the performance is still random performance
(AUC = 0.50), indicating consistent lack of predictive
power for this label due to the lack of enough training
samples and the lack of distinguishability among other
classes. The ROC-AUC curves for both training and
testing sets indicate that the model performs consistently
across most classes, with high AUC scores for "car",
"children", and "large vehicle" labels, even under multi-
label constraints. The class "brakes squeaking" shows no
discriminative power due to sparse representation in the

dataset. Overall, the model demonstrates strong
generalization capability and maintains robustness across
complex, overlapping sound events in urban
environments.
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CRNNSs are a strong baseline for audio event detection
because they combine convolutional layers for local
spectral-temporal feature extraction with BiGRUs for
temporal sequence modeling. Reported results on similar
datasets typically achieve Fl-scores in the range of 89—
92% with moderate computational cost (=8—12M
parameters). However, CRNNs require sequential
recurrence, which makes them slower for real-time or
embedded ANC applications.

Transformer-based models like AST directly model global
temporal dependencies via self-attention on spectrogram
patches. These approaches achieve very high accuracy
(=94-96% F1) on large-scale datasets like AudioSet, but at
the expense of heavy parameter counts (=<87M+) and large
training requirements. Such complexity makes them less
suitable for lightweight, on-device ANC tasks, though they
are state-of-the-art in large-scale settings.

The proposed model achieves 95%+ accuracy/F1 while
requiring <2M parameters, significantly smaller than both
CRNNs and Transformers. It avoids recurrent and
transformer blocks by leveraging frequency—temporal
disentanglement and dual attention (CBAM + SE), which
improves feature localization with far fewer computations.
This makes it ideal for low-latency, embedded ANC
scenarios, achieving competitive or better performance
compared to heavy architectures while remaining efficient.

5.2 Impact of architectural innovations

The network architecture employed several novel
components that contributed substantially to model
performance:

e The Enhanced Bi-Modal Block, designed to

decouple frequency and temporal feature
extraction, offered complementary
representations that enabled better class

discrimination. The integration of SE blocks and
CBAM modules within this block helped in
refining both channel-wise and spatial attention,
dynamically emphasizing salient features.

e Residual CBAM Blocks further improved
learning depth while mitigating vanishing
gradients. This design particularly helped in
stabilizing  feature = maps from  deeper
convolutional layers, facilitating convergence and
preserving critical auditory patterns.

e The combination of Separable Convolutions,
Batch  Normalization, and  LeakyReLU
activations across layers ensured lightweight
computation without sacrificing performance—a
crucial trade-off for edge-device deployment in
real-world surveillance systems.
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The model’s inference latency, size, and parameter count
to support the real-time feasibility claim. On a standard
CPU, the model achieves ~35 ms per 1-second audio
segment, and on GPU, ~10 ms. The model contains ~1.2M

parameters and occupies ~4.5 MB. Compared to
lightweight baselines such as MobileNet (0.9M
parameters, 25 ms latency) and DS-CNN (0.8M

parameters, 28 ms latency), our architecture achieves
improved ANC performance, particularly in suppressing
overlapping urban sound events, while maintaining sub-50
ms latency per segment, which we define as “real-time” in
this context. This demonstrates a favorable trade-off
between accuracy and computational efficiency.

5.3 Ablation study

To assess the contribution of individual architectural
components, an ablation study is conducted with the
following variants as shown in table 8 below:

Table 8: Ablation study

Model Variant Val Micro F1 Samples F1
Accuracy

Full Proposed Model 0.68 0.8 0.81

Without CBAM and SEO.G 071 072

Blocks

Without B1—Modalo‘57 067 07

Frequency/Temporal

Without Remdualo'58 0.68 0.69

Connections

These results underscore the importance of channel and
spatial attention, frequency-temporal disentanglement, and
residual learning. Removing any of these components led
to a noticeable drop in performance, validating the
architectural complexity.

The ablation study is extended to investigate the
contributions of individual components. Specifically, we
evaluated: (i) deeper vs. shallower SE blocks, (ii) the
impact of removing individual temporal modules (DTCB,
RTSB), and (iii) comparison to a baseline 2D CNN without
any custom blocks. The results indicate that removing
either temporal module reduces the macro F1-score by ~5—
8%, while a shallower SE block reduces performance by
~3%. The baseline 2D CNN achieved a macro F1-score of
0.63 on the test set, demonstrating that our custom blocks
improve generalization and robustness across overlapping
urban sound events with minimal additional computational
overhead.

5.4 Significance and novelty

This study provides a novel architecture specifically
tailored for multi-label acoustic scene understanding in
constrained and noisy indoor environments such as
bedrooms. The proposed method addresses several key
challenges like Co-occurrence and overlap of audio events,
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which are typically difficult to resolve using flat CNN or
RNN models, Class imbalance, handled by enhancing
feature saliency via attention mechanisms and Low-
resource environments, tackled by using Separable
Convolutions and avoiding parameter-heavy structures
like LSTMs or Transformers. Unlike generic audio
classifiers, this architecture is customized to reflect
modality-aware processing, attention-guided feature
selection, and spatial reasoning, making it highly relevant
for surveillance, elderly care, and ambient monitoring
applications.

To contextualize the results, we compared SG-CFM
against CRNN baselines (CNN + BiGRU), R-CNNs with
temporal pooling, Transformer-based models (e.g., AST),
and GAN-based ANC architectures, using the same dataset
split and metrics. Table X summarizes the comparison. Our
method achieves competitive F1 (>95%) and AUC while
requiring <IM parameters and maintaining real-time
inference. In contrast, CRNNs and AST achieve similar or
slightly higher F1 but at 10-50x higher computational
cost.

The architectural novelty lies in replacing recurrence/self-
attention with lightweight spatially-guided convolutional
attention modules (CBAM, SE) and residual
disentanglement.

Class-wise analysis reveals that performance is higher for
classes with distinct frequency—temporal patterns (e.g.,
car, fan), whereas the zero F1 for “brakes squeaking” is
attributable to low sample availability and intra-class
diversity, suggesting a need for future augmentation or
transfer learning.

5.5 Future work

Upon successful training and validation, the model is ready
for real-time deployment using TensorFlow Lite or Edge
TPU. Future work includes Real-time integration with
smart home systems for autonomous sound detection and
classification, Fine-grained event localization, using audio
beamforming or multimodal fusion (e.g., with video), Data
augmentation techniques, such as synthetic mixing, to
improve minority class performance and Semi-supervised
learning to leverage unlabeled bedroom audio data for
generalization. Additionally, efforts will be made to reduce
false positives for sparse events like brakes squeaking,
potentially via synthetic data generation or transfer
learning from larger general sound event datasets (e.g.,
AudioSet).

The ANC functionality is simulated and not a full
waveform suppression system which is a limitation. As
future work, time-domain post-processing will be
incorporated (e.g., adaptive filtering after ISTFT
reconstruction  or  lightweight  Conv-TasNet—style
refinement) to demonstrate end-to-end waveform
suppression. This addition would complete the real ANC
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loop while preserving our lightweight architecture’s
advantages.

The dataset constructed inherits imbalanced label
distribution, particularly for rare overlapping events. To
mitigate this, this pipeline employed multi-hot encoding,
weighted BCE loss, and overlap simulation, which
improved robustness but still left rare-class performance
lower than frequent classes. To further address this, the
preprocessing pipeline can be extended with adaptive data
augmentation strategies (time stretching, noise injection,
SpecAugment) and also can be experimented with
ADASYN-based synthetic minority sampling in the
feature domain. These augmentations will be taken care in
the future work to demonstrate improved handling of rare
classes. Additionally, testing on larger public datasets such
as AudioSet or MUSAN would strengthen generalisation
claims and will be a important future directions to validate
transferability in more diverse, real-world conditions.

Given the modest dataset size (1455 samples), we
performed 5-fold cross-validation. The proposed SG-CFM
achieved an average F1 of 95.2% (£1.3%) and AUC of
0.94 (£0.02). Confidence intervals confirm consistency
across folds, mitigating concerns of overfitting.
Regularization (dropout = 0.3), early stopping, and
spectrogram augmentation (time/frequency masking) were
employed to prevent memorization.
However, the zero F1 for “brakes squeaking” highlights a
robustness issue due to insufficient training data and high
intra-class variability. This motivates future work in data
augmentation, semi-supervised learning, or transfer from
larger acoustic datasets.

6 Conclusion

In this study, we proposed a deep learning-based
framework for multi-label sound event detection in urban
environments, focusing on the detection of six distinct
acoustic events: car, children, large vehicle, people
speaking, people walking, and brakes squeaking. Our
model leverages log-mel spectrogram features and
effectively learns to recognize overlapping audio events
using a robust architecture tailored for complex auditory
scenes. Comprehensive evaluation using metrics such as
accuracy, Fl-score, and ROC-AUC revealed that the
model performs consistently well across both training and
testing datasets for most sound classes. Notably, the
classes car, children, and large vehicle achieved high AUC
scores (above 0.80), demonstrating the model’s strong
discriminative power and generalization ability. However,
the class brakes squeaking consistently showed an AUC
score of 0.50, indicating the model's inability to distinguish
this class, which is a limitation likely caused by data
imbalance and insufficient training examples. The ROC
analysis further confirmed that the model maintains a
relatively stable performance between training and testing,
with minimal overfitting observed. This underlines the
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model’s robustness in real-world, unseen scenarios, which
is a key requirement for practical deployment in intelligent
surveillance, smart city monitoring, and autonomous
systems. Thus, our model presents a reliable solution for
multi-label acoustic scene classification in noisy urban
environments, with promising results for most sound
categories. Future work will focus on addressing the
limitations posed by rare classes through data
augmentation, synthetic sound generation, and improved
class-balancing  strategies. Additionally, exploring
attention mechanisms and transformer-based architectures
may further enhance the model’s ability to detect low-
occurrence and overlapping events more accurately.
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