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Accurate multi-noise localization and real-time active noise cancellation (ANC) are critical for enhancing 

audio quality and comfort in smart-bedroom environments. This paper presents a novel deep learning 

framework, Spatially-Guided CNN Filter Modeling (SG-CFM), designed to both localize multiple 

overlapping noise sources and simulate soft-mask-based ANC. The proposed architecture employs a 

modular CNN pipeline with bi-modal frequency–temporal feature extraction, channel and spatial 

attention modules (SE and CBAM), and residual connections for enhanced context preservation. Key 

components include the Enhanced Bi-Modal Block (EBMB), Residual Temporal Squeeze Block, Dilated 

Temporal Convolution Block, and Hierarchical Temporal Aggregation Block, which collectively capture 

both local and long-range acoustic dependencies. The system is trained and evaluated on the TUT Sound 

Events 2017 dataset, which contains diverse and realistic indoor and environmental sound events. Each 

input segment is represented as MFCC-based mel-spectrograms, supporting multi-label learning in 

overlapping noise conditions. The proposed model achieves an average F1-score of 0.81 across all 

classes, with strong per-class performance (e.g., AUC of 0.93 for the “car” class), demonstrating its 

ability to generalize to real-world noisy environments. Compared to standard CNN-based sound event 

localization models, SG-CFM offers significantly improved multi-label detection accuracy with reduced 

computational complexity, making it suitable for real-time deployment in embedded IoT devices. 

Experimental results further demonstrate effective ANC simulation by suppressing noise energy in critical 

temporal segments through a soft binary mask, highlighting its potential for next-generation smart home 

audio systems targeting sleep quality, acoustic privacy, and ambient intelligence. 

Povzetek: Prispevek predstavlja globokoučni model SG-CFM za pametne spalnice, ki v realnem času 

lokalizira več prekrivajočih se virov hrupa in simulira aktivno odpravljanje šuma ter pri tem dosega dobro 

natančnost (povp. F1 = 0,81) ob manjši računski zahtevnosti, primerni za vgradne IoT naprave. 

 

1 Introduction 

In the modern world, ambient noise pollution has emerged 

as a persistent challenge, significantly degrading quality of 

life, particularly in residential and bedroom environments. 

With increasing urbanization, smart home appliances, and 

mixed-use infrastructure, sources such as traffic, 

construction, HVAC systems, digital alarms, and domestic 

electronics contribute to a complex and dynamic 

soundscape. These noise sources not only disrupt sleep 

quality and mental well-being but also impair focus and 

long-term health outcomes. Traditional sound insulation 

techniques are either static, costly, or limited in 

adaptability, necessitating intelligent, adaptive, and 

environment-aware solutions.Recent advances in deep 

learning, particularly Convolutional Neural Networks 

(CNNs), have demonstrated remarkable potential in audio 

classification and   sound event detection. However, 

existing systems either focus solely on noise detection or 

aim at signal enhancement using heavy-weight generative 

models like GANs or recurrent architectures. They only 

address both localization and active suppression of 

multiple simultaneous noise sources in a unified and 

computationally efficient framework. Moreover, most 
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prior approaches overlook the spatial and temporal 

dynamics inherent to real-world acoustic patterns, 

especially in constrained indoor spaces like bedrooms. 

Motivated by these limitations, this paper introduces a 

novel dual-purpose system for multi-noise localization and 

active noise cancellation (ANC) tailored specifically for 

bedroom environments. The proposed model, Spatially-

Guided CNN Filter Modeling, leverages specialized CNN 

blocks incorporating bi-modal feature fusion, residual 

attention mechanisms, and frequency-temporal 

decomposition to model the spatial characteristics of noise 

more effectively. In addition to identifying multiple 

overlapping noise classes, the system is capable of 

generating soft spectrotemporal suppression masks that 

simulate ANC behavior reducing the energy of nuisance 

components in the input signal. Unlike traditional 

monolithic architectures, our model adopts a lightweight, 

interpretable, and multi-output design, ensuring both real-

time feasibility and robustness across diverse noise 

conditions. By integrating frequency bottlenecks, CBAM 

(Convolutional Block Attention Modules), and a dedicated 

ANC head, the system learns to both recognize and 

attenuate noise in a resource-constrained setup. The 

primary contributions of this work are a unified CNN 

architecture that performs multi-label noise localization 

and soft-mask-based active noise cancellation, Spatially-

guided filtering mechanisms, including channel-spatial 

attention and temporal-frequency blocks, to enhance 

acoustic feature learning, domain-specific focus on 

bedroom sound environments, addressing real-life 

overlapping noise scenarios that are often neglected in 

generic datasets and demonstration of real-time feasibility 

through a lightweight implementation using separable 

convolutions and low-latency pooling operations. This 

research lays the groundwork for future smart-bedroom 

applications, such as sleep-aware acoustic regulation, 

privacy-preserving background noise suppression, and 

intelligent audio control in ambient computing systems. 

This study investigates whether lightweight spatially-

guided CNN architectures can jointly perform multi-label 

noise localization and soft ANC mask generation on 

single-microphone indoor acoustic scenes by looking for 

some research questions like, Can spatially-guided 

convolutional modules (CBAM, SE) enhance feature 

disentanglement sufficiently to replace 

recurrent/transformer blocks for overlapping noise 

events?, Can such a lightweight model (<1M parameters) 

achieve competitive accuracy (F1 > 90%) compared to 

SOTA CRNN/AST baselines? And can the model maintain 

real-time inference capability suitable for embedded ANC 

deployment? The Quantitative goals would be to Achieve 

≥90% F1 score, improving baseline CRNN performance 

(∼85%) by at least +5%, Reduce parameter count by >80% 

compared to Transformer-based AST and Maintain 

inference speed suitable for real-time ANC 

(<20ms/frame). 

2  Related work 

The problem of environmental noise management has been 

studied from multiple perspectives, including sound event 

detection, source localization, and active noise 

cancellation. Each of these domains brings complementary 

strengths, yet few approaches cohesively integrate spatial 

awareness with adaptive suppression in realistic multi-

noise indoor scenarios. 

2.1 Multi-noise detection and localization 

Traditional sound event detection systems, often based on 

CNNs or recurrent networks, focus on identifying single or 

multiple overlapping acoustic events from time–frequency 

representations. Localization of sound sources, especially 

in reverberant indoor environments, introduces additional 

complexity due to spatial mixing and non-stationary 

characteristics of sources. Methods incorporating spatial 

cues (e.g., inter-channel phase differences in microphone 

arrays) have shown improved localization, but they usually 

assume multiple sensors or do not jointly perform `                                                                                                                                                                                

The incorporation of attention modules, such as channel 

and spatial attention, has recently improved the 

discriminative power of convolutional networks in audio 

and vision tasks. Convolutional Block Attention Module 

(CBAM) and squeeze-and-excitation blocks enable the 

network to re weight salient frequency–temporal features 

adaptively, leading to better robustness under noisy 

conditions. However, most prior work leverages attention 

purely for classification or detection, without explicitly 

coupling it with downstream cancellation or mask 

generation for suppression. 

2.3 Active noise cancellation (ANC) 

Classical ANC systems rely on adaptive filters (e.g., LMS, 

FxLMS) and require feedback/reference sensors to invert 

the noise signal. Deep learning approaches for ANC have 

started to emerge, where neural networks either learn 

residual noise patterns or directly estimate suppression 

masks in the spectral domain. These works often treat 

ANC as a separate regression/enhancement problem and 

lack joint multi-label localization, which is a limitation in 

real-world settings where multiple noise sources coexist 

and interact. 

2.4 Spatially-guided filtering 

Spatial guidance in deep models can come from explicit 

coordinate embeddings, learned masks, or multi-branch 

fusion of modality-specific cues. Recent advances in 

spatially-aware CNNs utilize positional encodings or dual-

path fusion to disentangle frequency and temporal 

characteristics while preserving locality. However, 

applying such spatially-guided filtering specifically to the 

dual problem of simultaneous noise localization and active 
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suppression in bedroom environments has not been 

sufficiently explored. 

2.5 Gap and positioning 

Most existing systems handle detection/localization or 

cancellation in isolation, rarely unifying them in a 

lightweight, interpretable architecture. Moreover, many 

assume idealized conditions (single source, clean 

reference, multiple microphones) unlike the practical 

constraints of bedroom environments. The proposed 

Spatially-Guided CNN Filter Modeling framework fills 

this gap by jointly learning multi-label localization and a 

soft suppression mask (simulated ANC) using spatially-

aware CNN blocks (frequency-temporal fusion, CBAM, 

squeeze-excite) in a single forward model, tailored for 

noisy, overlapping, and spatially ambiguous indoor 

acoustic scenes. 

Table below shows the comparative table summarising the 

key approaches and their performance metrics. 

Study / Approach Methodology Dataset Key Findings Limitations 

CRNN (CNN + RNN) 

(Cakir et al., 2017) 

Combined 

convolutional 

and recurrent 

layers for 

temporal 

context 

modeling 

TUT 

2016/201

7 

Strong 

detection 

accuracy for 

single and 

overlapping 

events 

Heavy model; no 

ANC; multi-mic 

assumption 

Transformer-based 

AST (Gong et al., 

2021) 

Audio 

Spectrogram 

Transformer 

with self-

attention 

AudioSet 

SOTA 

accuracy; 

captures 

global 

dependencies 

Computationally 

expensive, not 

real-time, not 

bedroom/noisy-

home specific 

CBAM-enhanced 

CNN (Woo et al., 

2018) 

Channel + 

spatial 

attention 

applied to 

spectrograms 

ESC-50 

Improved 

robustness 

under noisy 

conditions 

Only 

classification; no 

suppression 

Deep ANC (FxLMS + 

DNN) (Zhang et al., 

2020) 

DNN predicts 

noise residuals 

for ANC 

Proprieta

ry lab 

noise 

data 

Reduced noise 

levels in 

controlled 

settings 

No multi-label 

detection, single-

source focus 

Spatial Filtering 

CNNs (Choi et al., 

2019) 

Spatial cues + 

CNNs for 

source 

localization 

CHiME 

challeng

e dataset 

Improved 

localization 

using 

microphone 

arrays 

Requires multiple 

sensors; no 

suppression 

Proposed SG-CFM 

Bi-modal 

CNN + 

EBMB + 

CBAM + SE + 

soft-mask 

ANC 

TUT 

2017 

F1 = 0.81, 

AUC (car) = 

0.93, real-time 

capable 

First to unify 

localization + 

suppression in a 

single lightweight 

framework 

 

3 Dataset overview and feature 

engineering 

3.1 Dataset overview 

For the training and evaluation of our proposed spatially-

guided noise localization and cancellation system, the TUT 

Sound Events 2017 Development dataset is utilized here, 

which is a publicly available benchmark curated by the 

Tampere University of Technology as part of the DCASE 

(Detection and Classification of Acoustic Scenes and 

Events) challenge series. This dataset focuses on real-life 

sound events recorded in residential indoor environments, 

including bedrooms, living rooms, and kitchen settings. 

The dataset aligns well with the target application, as it 

contains ambient noises typical of home settings such as 

Speech (e.g., adult speaking, child speaking), Appliance 

sounds (e.g., washing machine, vacuum cleaner), 

Furniture movement, footsteps, door banging, electronic 

noise (e.g., TV, music), and other overlapping domestic 

acoustic events. It is publicly available and has been 

widely used in the domain of sound event detection (SED), 

offering a rich mixture of environmental sounds across 

varied indoor and outdoor acoustic settings. Given the 

constraints of real-time data acquisition and 

reproducibility in bedroom environments, this serves as a 

reliable proxy for simulating diverse acoustic interference 

scenarios. Its diversity and real-life background noise 

combinations help generalize the learned filters to a variety 

of overlapping and dynamic noise conditions in home 

environments. The recordings were captured using 

binaural microphones to simulate human hearing, at a 

sampling rate of 44.1 kHz, and downsampled to 22.05 kHz 

to meet real-time processing constraints. Each audio file is 

approximately 10–30 seconds in duration and includes 

strong annotations so that both the temporal boundaries 

and labels of active events are provided. Though the 

dataset covers multiple indoor scenarios, it is particularly 

useful for bedroom-oriented ANC systems for the 

following reasons, the sound types present in the dataset 

closely resemble the disturbances encountered in real 

bedrooms, multiple people speaking, electronic devices 

running, and background domestic noise, the dataset 

includes overlapping sound events, which are common in 

real-world scenarios but poorly handled by traditional 

single-label audio classifiers. Its strong temporal 

annotations allow for training in a frame-wise or segment-

wise multi-label setting crucial for generating localized 

suppression masks in time-frequency space. The diversity 

of noise types enables generalization across multiple noise 

profiles, including impulsive, periodic, and broadband 

sounds, all of which challenge real-time ANC models. 

Importantly, the dataset avoids idealized studio conditions, 

making it suitable for simulating the cluttered and 

acoustically complex environments of typical bedrooms, 

especially in urban homes. This multi-label and temporally 

annotated structure allow fine-grained mapping of acoustic 

features to labeled time frames, facilitating precise 

temporal localization and mask prediction for ANC. 

3.2 Preprocessing pipeline 

The preprocessing stage plays a pivotal role in the overall 

performance of any sound event detection (SED) and 

localization system, especially when designed for real-

time and embedded applications such as Active Noise 
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Cancellation (ANC) in bedroom environments. The 

pipeline components are shown in figure 1 below. 

 

Fig 1: Pre processing pipeline 

Audio Segmentation and Label Alignment: The core of the 

preprocessing strategy lies in sliding window 

segmentation of audio samples. To extract localized 

patterns in a temporally consistent manner, each audio file 

is segmented into overlapping windows using a fixed-

length sliding window mechanism. This approach 

preserves temporal coherence and enables weakly 

supervised detection of noise bursts. Each .wav audio file 

is segmented using a fixed-length window of 5 seconds 

with a hop duration of 2.5 seconds to allow overlap 

between windows. This ensures robust learning of sounds 

that span partially over frames and Temporal localization 

of noise events, Learning across overlaps for smoother 

transitions and Real-time inference simulation. For each 

segment, the annotations are aligned using onset-offset 

data to extract all sound events occurring in the current 

frame. To assign class labels to each audio segment, a label 

vector is constructed using the overlap between the 

segment and annotated time intervals from the .ann files. 

For a segment Si∈[ts,te], any annotation interval [ta,tb] is 

considered relevant if ts < tb and te > ta. These matched 

labels are encoded using MultiLabelBinarizer (MLB), 

generating binary indicator vectors yi∈{0,1}C, where C is 

the number of sound classes. This results in a multi-hot 

encoded vector per segment representing co-occurring 

sound classes. This alignment allows the model to learn 

from partially overlapping labels, a realistic setting for 

real-world ANC where noises do not occur in isolation. 

MFCC-Based Feature Extraction: Each audio segment is 

transformed into a 2D spectral representation using Mel-

Frequency Cepstral Coefficients (MFCCs), a feature 

extraction process, which compactly represent the audio's 

timbral and perceptual characteristics. MFCCs are 

computed as follows as shown in equation 1 below, 

• Applying Short-Time Fourier Transform (STFT) 

to convert the signal into time-frequency domain. 

• Mapping the power spectrum to the Mel scale 

using a Mel filterbank M. 

• Taking the logarithm of Mel energies. 

• Applying Discrete Cosine Transform (DCT) to 

obtain decorrelated coefficients. 

Formally, for a given frame, 

 

Eqn 1: MFCC calculation 

Where: 

• Em is the energy in the mth Mel filter, 

• M is the number of Mel bands, 

• k is the MFCC index (e.g., 1 to 64). 

Here, 64 MFCCs are extracted per frame, and the output is 

padded or truncated to ensure uniform dimensionality 

across segments: Xi ∈ R 64×44, where 44 is the fixed 

number of time frames. MFCCs offer a compact 

representation (64×44) ideal for embedded inference due 

to their lower memory footprint compared to spectrograms 

or raw waveform-based models, enabling deployment on 

low-power microcontrollers for real-time ANC systems. 

Active Noise Cancellation Mask (Simulated ANC): 

Although the dataset does not contain explicit ANC labels, 

a placeholder function for simulating ANC using a binary 

mask is included for future ablation studies. This mask, if 

applied, would invert detected noise phases post-

segmentation. However, in the current dataset creation 

pipeline, this simulation is not applied. In practice, the 

ANC simulation inverts the phase of detected noise, given 

by, 

Eqn 2: Simulated 

ANC 

where M[n]∈ {0,1} is the binary mask indicating noise 

presence. This step is reserved for post-processing and 

ablation studies to simulate the impact of noise 

cancellation at the waveform level, while the CNN learns 

to separate and localize noise sources.  

Real-time datasets often lack clean, isolated sound events. 

By simulating temporal overlaps and noise bursts using 

partially labeled segments and multi-hot encoding, the 

model is trained in a weakly-supervised setting. This 

enables generalization to noisy or co-occurring events, 

making the system resilient for in-the-wild bedroom noise 

environments. 

The final dataset is constructed to facilitate multi-label 

sound event detection and temporal localization in audio 

segments, targeting realistic real-time applications like 

Active Noise Cancellation (ANC) in embedded 

environments. This pipeline offers several critical 

advantages like Label Granularity - Time-aligned 
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segments ensure accurate weak supervision, Noise 

Overlap Handling - Multi-label encoding accommodates 

real-world overlap of noise types, Dimensional 

Consistency - Fixed feature shapes allow batch-wise GPU 

acceleration, Feature Robustness - MFCCs are robust to 

background variations and are widely used in auditory 

signal processing and Scalability - The sliding window 

approach supports streaming and is compatible with real-

time inference. After preprocessing the input data X to the 

model is a feature array of N x 64 x 64 and Y is N x C multi 

hot label vectors, N is the number of classes and C is the 

number of unique sound classes. Table 1 below shows the 

final data statistics.  

 

Figure 2: Model design 

 

Table 1: Final data statistics 

Statistic Value 

Total Segments 

(Samples) 
1455 

Feature Shape 

(X) 
(1455, 64, 44) 

Label Shape 

(Y) 
(1455, 6) 

Classes 

Encoded 

['brakes squeaking', 'car', 'children', 'large vehicle', 

'people speaking', 'people walking'] 

 

4  System architecture / methodology 

The proposed model for multi-label acoustic event 

detection is a hybrid convolutional deep learning 

architecture designed to capture both temporal and 

frequency-specific patterns from MFCC spectrogram 

inputs. The design integrates bi-modal processing, 

attention mechanisms (CBAM + SE), residual 

connections, and frequency-temporal decoupling, which 

together enhance the model’s ability to detect overlapping 

sound events in complex acoustic scenes. The architecture 

integrates frequency–temporal disentanglement, squeeze-

and-excitation (SE), convolutional block attention module 

(CBAM), residual learning, and global context 

aggregation, structured as a lightweight yet expressive 

deep network. 

Each input corresponds to a 1-second audio segment 

preprocessed into MFCC features, offering a compact and 

informative representation of the audio signal.The input to 

the model is a 64×44 mel-spectrogram, reshaped to 

(64,44,1), where 64 corresponds to mel-frequency bins, 44 

corresponds to the temporal segments (e.g., ~1-second 

window with hop size). The final dimension 1 represents 

the channel (grayscale spectrogram. Figure 2 below shows 

the system architecture. 

     

 

4.1 Enhanced bi-modal convolutional block 

The Enhanced Bi-Modal Block (EBMB) is designed to 

explicitly decouple temporal and frequency dynamics in 

spectrogram-like inputs (e.g., MFCCs or log-Mel 

features), before integrating them through a robust 

attention mechanism. This enables the network to 

emphasize subtle, co-occurring, or overlapping acoustic 

cues across both domains. This block decomposes the 

input MFCC spectrogram X∈R64×44 into two distinct 

convolutional paths, Frequency Branch and Temporal 

Branch to independently model frequency-specific and 

temporal-specific patterns before a learned fusion is 

performed. Frequency Branch focuses on local spectral 

relationships across mel-frequency bins using vertical 

filters. In the Frequency Branch, a 2D convolutional kernel 

of size 1×3 is applied across the frequency axis to learn 

localized patterns within Mel bands, as described by the 

equation 3 below, 

 

                                                          

Eqn 3: Frequency branch 

 

where ∗ denotes convolution, W1×3 represents the 

trainable kernel weights, BN(⋅) indicates batch 

normalization, and σ(⋅) is the ReLU activation function. 

This branch extracts salient frequency patterns while 

maintaining temporal resolution. This also helps in 

learning pitch-related variations and harmonic 

components across narrow frequency bands. Temporal 

branch focuses on time dependent transitions and rhythmic 

patterns. In parallel, the Temporal Branch applies a 

convolutional kernel of size 3×1 to capture transitions and 

dependencies across adjacent frames as shown in equation 

4 below, 
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Eqn 4: Temporal branch 

 

Here, the model attends to the evolution of spectral 

components over time, which is critical for distinguishing 

transient noises such as footsteps or car honks from 

sustained sounds like background chatter. This enables 

detection of sound events that evolve quickly over time 

(e.g., speech, squeaks). The outputs from both branches, 

Ffreq and Ftime, are concatenated along the channel axis 

to form a unified representation. This fused representation 

retains both frequency and temporal cues, ensuring that no 

modality is suppressed prematurely. This fusion allows the 

network to preserve both local spectral and temporal 

patterns simultaneously. To refine this fused 

representation, the block incorporates sequential attention 

mechanisms: the Squeeze-and-Excitation (SE) block and 

the Convolutional Block Attention Module (CBAM). The 

SE block recalibrates channel-wise feature responses by 

applying global average pooling followed by a bottleneck 

fully connected architecture, computing channel attention 

scores that modulate Fconcat via adaptive reweighting. 

Mathematically, the squeeze operation reduces spatial 

dimensions, yielding a vector z∈RC through global 

average pooling, followed by excitation through two fully 

connected layers with ReLU and sigmoid activations, 

respectively. This mechanism enhances discriminative 

features by highlighting relevant channels linked to salient 

sound events. Subsequently, CBAM is applied to further 

improve spatial and channel-level focus. CBAM first 

computes channel attention by combining global max and 

average pooled descriptors passed through shared multi-

layer perceptrons (MLPs). Then, spatial attention is 

derived by applying a convolution over a pooled feature 

map (concatenated max and average along the channel 

axis) to generate a 2D attention mask. The resulting 

attention-enhanced output emphasizes informative regions 

both across frequency and time, allowing the model to 

prioritize relevant acoustic patterns such as co-occurring 

sounds or transient events.  

Thus, the Enhanced Bi-Modal Block improves feature 

discriminability by decomposing the learning into domain-

aligned pathways (temporal and spectral), followed by 

hierarchical attention modules that refine and amplify the 

most informative features. This structured learning 

approach aligns with the auditory perception mechanism 

in humans, where time and frequency are processed 

through complementary neural pathways before 

integration. Experimentally, this block significantly boosts 

model performance in multi-label environmental sound 

classification tasks by improving sensitivity to 

overlapping, subtle, or non-stationary audio cues. 

Table 2: Technical specifications of enhanced bi modal 

block 

Component 
Operation / 

Layer 

Kernel 

Size 

Output Shape 

(Input = [64, 

44, 1]) 

Purpose 

Input 
MFCC 

Feature Map 
 - [64, 44, 1] 

Time × Frequency × 

Channel 

Frequency 

Branch 

Conv2D + BN 

+ ReLU 
1 × 3 [64, 42, C1] 

Extract frequency 

localized patterns at 

each time step 

 
Batch 

Normalization 
 - [64, 42, C1] 

Normalize intermediate 

outputs 

 
ReLU 

Activation 
 - [64, 42, C1] Non-linearity 

Temporal 

Branch 

Conv2D + BN 

+ ReLU 
3 × 1 [62, 44, C2] 

Capture temporal 

transitions between 

frames 

 
Batch 

Normalization 
 - [62, 44, C2] 

Normalize intermediate 

outputs 

 
ReLU 

Activation 
 - [62, 44, C2] Non-linearity 

Concatenatio

n 

Channel-wise 

Merge 
 - 

[62, 42, 

C1+C2] 

Combine frequency and 

temporal features 

SE Block 

GAP + FC 

(Reduction 

ratio) 

 - 

[1, 1, C1+C2] 

→ [1, 1, 

C1+C2] 

Channel recalibration 

via attention 

 FC1: ReLU  - 
[1, 1, 

(C1+C2)//r] 

Bottleneck to capture 

inter-channel 

dependencies 

 FC2: Sigmoid  - [1, 1, C1+C2] 
Generate channel 

attention weights 

CBAM Block 

Channel 

Attention 

(MLP) 

 - 
[62, 42, 

C1+C2] 

Further refine by 

emphasizing important 

channels 

 

Spatial 

Attention 

(Conv2D) 

7 × 7 
[62, 42, 

C1+C2] 

Emphasize spatial 

regions in time–

frequency domain 

Output 
Refined 

Feature Map 
 - 

[62, 42, 

C1+C2] 

To be fed into 

subsequent 

convolutional or 

pooling layers 

* C1, C2: Number of output channels from frequency and 

temporal branches (32 each), Reduction ratio in SE branch 

is 8, ReLU (in Conv and FC1), Sigmoid (in SE & CBAM 

attention weights) are the activation functions. 

4.2 Residual temporal squeeze block 

The Residual Temporal Squeeze Block (RTSB) is 

crafted to refine temporal feature extraction while 

maintaining gradient flow and alleviating vanishing signal 

issues through residual connections. This block operates 

over the enhanced representations produced by the 

preceding Enhanced Bi-Modal Block, focusing explicitly 

on modeling long-range temporal dependencies and 

emphasizing salient transitions in time. The core of RTSB 

is structured around temporal convolutional filters, 

residual shortcuts, and a temporal attention squeeze 

mechanism, which collectively enrich temporal encoding 

without inflating computational complexity. Input to the 

RTSB, denoted as X∈RC×T×F, where C is the channel 

dimension, T is time, and F is frequency, is first passed 

through a 1D depthwise temporal convolution (kernel size 
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= 3) along the time axis. This operation, unlike a full 2D 

convolution, isolates temporal learning from frequency 

interference while reducing parameters. The filtered tensor 

Ftemp is computed as shown in equation 5 below: 

 

Eqn 5: RTSB filter 

where ∗ denotes convolution, W3×1, are the temporal 

weights, BN is batch normalization, and σ is the ReLU 

activation. This layer captures local transitions across 

frames, aiding in modeling short-term dependencies such 

as footsteps or speech modulation. Then, a global temporal 

squeeze is applied using temporal average pooling, 

producing a compact representation z∈RC that 

summarizes the temporal dynamics. This vector is passed 

through two fully connected (FC) layers to learn attention 

weights s∈RC for recalibrating channel responses as 

shown in equation 6 below. 

 

 

                                 Eqn 6: RTSB FC 

where W1 and W2 are trainable FC layer weights. The 

modulated feature map Fmod=Ftemp⋅s (element-wise 

multiplication) ensures emphasis on temporally 

discriminative features. To improve information 

preservation and training stability, a residual connection is 

added, Fout = Fmod +X . This identity mapping 

encourages the block to learn residual corrections rather 

than complete transformations, aligning with ResNet-style 

training benefits. The RTSB thereby emphasizes time-

evolving acoustic signatures, enhancing the model’s 

capability to recognize subtle or prolonged audio events 

without losing short-term transitions. It also facilitates 

efficient gradient propagation, making the deeper network 

stable during training. Thus, this block contributes to 

improved recognition of temporally dispersed sound 

events, particularly under noisy or overlapping audio 

conditions. Table 3 below shows the technical details of 

RTSB block.

Table 3: Technical specifications of residual temporal squeeze block 

Layer Input Shape Operation Kernel / Params 
Output 

Shape 
Purpose / Description 

Temporal Depthwise 

Conv1D 
         (C, T, F) 

Depthwise Conv along time 

axis 
     Kernel: (3×1), Stride: 1 (C, T, F) 

Captures temporal transitions without 

affecting frequency channels 

Batch Normalization          (C, T, F) BN                  - (C, T, F) 
Stabilizes activations and accelerates 

convergence 

ReLU Activation          (C, T, F) Non-linearity                  - (C, T, F) Introduces non-linearity 

Global Temporal Average 

Pooling 
         (C, T, F) 

Average pooling across time 

dimension 
      Output vector: z∈R (C,) 

Squeezes temporal info into a compact 

channel descriptor 

Fully Connected (FC1)             (C,) Dense layer with ReLU     Weights: W1∈ RC/r×C (C/r,) 
Bottleneck layer to reduce computation 

(e.g., r=16) 

Fully Connected (FC2)            (C/r,) Dense layer with Sigmoid     Weights: W2∈RC×C/r (C,) Produces channel-wise attention weights 

Channel-wise 

Reweighting 
(C, T, F) × (C,) 

Multiply each channel by its 

attention weight 
   Element-wise multiplication (C, T, F) Highlights important temporal features 

Residual Addition (C, T, F) + (C, T, F) Skip connection from input - (C, T, F) 
Improves gradient flow and stabilizes 

learning 

 

*C is the number of channels from the previous block (i.e., output channels of EBMB), T is number of time steps 

(frames), F is the number of frequency bins and Bottleneck ratio r in SE-style excitation is 8, controlling parameter 

efficiency.

4.3 Dilated temporal convolutional block 

The Dilated Temporal Convolutional Block (DTCB) is 

designed to expand the temporal receptive field of the 

model efficiently, enabling it to capture long-range audio 

dependencies without a proportional increase in model 

complexity. Environmental sounds often consist of events 

with varying temporal durations—from sharp transients to 

prolonged activities. Capturing such diverse temporal 

characteristics necessitates a mechanism that can observe 

both fine-grained and coarse-grained patterns. Standard 

temporal convolutions with fixed kernel sizes are 

inherently limited in this regard. To address this, DTCB 

employs dilated convolutions along the temporal 

dimension, wherein convolutional kernels are applied with 

gaps (dilation factors) between filter elements, thus 

exponentially increasing the receptive field while 

preserving resolution. Formally, given an input tensor 

X∈RC×T×F, where C is the number of channels, T is the 

number of time steps, and F is the frequency resolution, a 
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dilated convolution operation with kernel size k and 

dilation rate d is defined as shown in equation 7 below, 

 

Eqn 7: DTSB operation 

where Wi are the learnable weights of the filter, and d 

controls the spacing between kernel elements. In DTCB, 

multiple layers of 1D dilated convolutions are stacked with 

increasing dilation rates (e.g., 1, 2, 4, 8), allowing 

hierarchical temporal abstraction. Each layer is followed 

by batch normalization and a ReLU activation function to 

stabilize training and introduce non-linearity. The block 

maintains the same number of channels throughout the 

stack to facilitate residual learning. A residual skip 

connection from the block’s input to its output ensures 

better gradient propagation and mitigates degradation in 

deeper layers. To further enhance temporal modeling, the 

output from the dilated stack is passed through a temporal 

attention mechanism, which computes attention scores 

over time steps, allowing the network to adaptively focus 

on informative segments. This is achieved by applying 

global average pooling along the frequency axis, reducing 

the tensor to RC×T, followed by a temporal self-attention 

module that learns a 1D attention map over time. This map 

modulates the dilated features, emphasizing segments rich 

in acoustic cues such as speech onsets, sudden events, or 

transitions. By combining dilated convolutions with 

temporal attention, DTCB enables the network to model 

both the contextual continuity and temporal saliency of 

audio events, which is crucial in real-world environments 

characterized by overlapping or asynchronous sound 

sources. 

Empirically, the inclusion of DTCB leads to improved 

detection of long-duration or temporally diffused events 

that may otherwise be underrepresented in short-term 

feature maps. It also improves generalization across 

different acoustic conditions by providing multi-scale 

temporal context. Thus, the DTCB complements the 

earlier EBMB and RTSB blocks by offering a deeper and 

broader view of time-dependent features, ensuring 

comprehensive modeling of both short-term dynamics and 

long-range dependencies in sound sequences. Table 4 

below shows the technical details of DTCB block. 

Table 4: Technical specifications of dilated temporal 

convolutional block 

Layer Name Operation 
Input 

Shape 
Parameters / Notes 

Output 

Shape 

Input - (C, T, F) 

MFCC/time-frequency 

features from previous 

block 

(C, T, F) 

Permute 
Rearranged to (C, F, 

T) 
(C, T, F) 

For 1D convs over 

temporal dimension 
(C, F, T) 

Conv1D-1 Dilated Conv1D (C, F, T) 
Kernel size = 3, dilation = 

1, padding = 'same' 
(C, F, T) 

BatchNorm1 Batch Normalization (C, F, T) - (C, F, T) 

ReLU-1 Activation (C, F, T) - (C, F, T) 

Conv1D-2 Dilated Conv1D (C, F, T) 
Kernel size = 3, dilation = 

2, padding = 'same' 
(C, F, T) 

BatchNorm2 Batch Normalization (C, F, T) - (C, F, T) 

ReLU-2 Activation (C, F, T) - (C, F, T) 

Conv1D-3 Dilated Conv1D (C, F, T) 
Kernel size = 3, dilation = 

4, padding = 'same' 
(C, F, T) 

BatchNorm3 Batch Normalization (C, F, T) - (C, F, T) 

ReLU-3 Activation (C, F, T) - (C, F, T) 

Residual 

Connection 
Add skip input (C, F, T) 

Skip connection from 

block input 
(C, F, T) 

Temporal 

Pooling 

Global Average Pool 

over frequency 
(C, F, T) 

Reduces frequency 

dimension 
(C, T) 

Temporal 

Attention 

Dense → ReLU → 

Sigmoid 
(C, T) 

Outputs attention weights 

for each time step 
(C, T) 

Attention 

Scaling 

Multiply attention 

map with features 
(C, F, T) 

Re-weights feature maps 

temporally 
(C, F, T) 

Permute Back 
Rearranged back to 

(C, T, F) 
(C, F, T) 

Restore standard shape for 

next block 
(C, T, F) 

Output - (C, T, F) Passed to next module (C, T, F) 

*C is the number of channels from the previous block (i.e., 

output channels of RSTB), T is number of time steps 

(frames), F is the number of frequency bins. 

4.4 Hierarchical temporal aggregation block 

The Hierarchical Temporal Aggregation Block (HTAB) 

is designed to capture high-level temporal abstractions 

from sequential audio segments by stacking multiple 

temporal convolutions and pooling operations in a 

hierarchical manner. This block serves the role of 

compressing long-range dependencies into compact, 

discriminative temporal embeddings. While earlier 

modules (like the Dilated Temporal Convolutional Block) 

operate on local and mid-range temporal patterns, the 

HTAB performs multi-level abstraction by progressively 

reducing temporal resolution, effectively learning 

hierarchical temporal representations. The input to the 

HTAB is a feature map of shape (C,T,F), where C is the 

number of channels (i.e., feature groups from the previous 

blocks), T is the temporal length, and F is the number of 

MFCC-related frequency bins. The first operation involves 

a 1D temporal convolution with a small kernel size (3), 

which learns local transitions across adjacent time frames. 

This is followed by a strided temporal pooling layer (such 

as max or average pooling), which reduces the time 

resolution and enables deeper layers to capture longer-term 

dependencies. This convolution–pooling sequence is 

repeated multiple times (3 levels), with each stage 

doubling the receptive field in time. All Conv1D layers 

operate across the temporal axis, preserving frequency 

dimension. To ensure minimal loss of temporal granularity, 

residual skip connections are optionally used to combine 

intermediate representations. The final output is passed 

through a temporal global pooling layer (global average), 

resulting in a compact temporal embedding vector, which 

is then forwarded to the fusion or classification module. 

The hierarchical design of HTAB effectively bridges the 

gap between short-term acoustic events and long-term 

scene context, making it particularly beneficial for real-
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world polyphonic audio tagging, where sounds occur at 

different timescales. Table 5 below shows the technical 

details of HTAB. 

Table 5: Technical specifications of hierarchical temporal 

aggregation block 

Stage Layer Type 
Kernel 

Size 

Strid

e 

Paddin

g 

Output 

Shape 
Purpose 

1 
Conv1D 

(Temporal) 
3 1 1 

(C₁, T, 

F) 

Local temporal 

feature extraction 

 
Batch 

Normalization 
- - - 

(C₁, T, 

F) 

Normalize temporal 

activations 

 
ReLU 

Activation 
- - - 

(C₁, T, 

F) 

Introduce non-

linearity 

 
MaxPooling1

D 
2 2 0 

(C₁, T/2, 

F) 

Downsample 

temporal dimension 

2 
Conv1D 

(Temporal) 
3 1 1 

(C₂, T/2, 

F) 

Capture mid-level 

temporal abstraction 

 
Batch 

Normalization 
- - - 

(C₂, T/2, 

F) 

Normalize mid-level 

activations 

 
ReLU 

Activation 
- - - 

(C₂, T/2, 

F) 

Introduce non-

linearity 

 
MaxPooling1

D 
2 2 0 

(C₂, T/4, 

F) 

Further 

downsampling 

3 
Conv1D 

(Temporal) 
3 1 1 

(C₃, T/4, 

F) 

Learn deep temporal 

dependencies 

 
Batch 

Normalization 
- - - 

(C₃, T/4, 

F) 
Stabilize gradients 

 
ReLU 

Activation 
- - - 

(C₃, T/4, 

F) 

Non-linearity in 

deeper layers 

 
MaxPooling1

D 
2 2 0 

(C₃, T/8, 

F) 

Final hierarchical 

compression 

4 

Global 

Average 

Pooling 

- - - 
(C₃, 1, 

F) 

Temporal 

summarization into 

embedding 

Output 
Temporal 

Embedding 
- - - (C₃, F) 

Ready for 

multimodal 

fusion/classification 

*C1, C2, C3 are tunable channel dimensions per level, T is 

the number of input temporal frames, F is the number of 

frequency bins. 

4.5 Final classification for label inference 

The final stage of the proposed architecture is responsible 

for transforming rich spatial representations learned from 

convolutional and attention-based layers into a compact 

global vector suitable for multi-label classification. This is 

achieved through a global representation block, which 

begins with a Global Average Pooling 2D (GAP 2D) layer. 

The GAP 2D layer aggregates spatial information across 

the entire 2D feature map, reducing the input from shape 

H×W×C to a single vector of shape 1×1×C, where C is the 

number of channels (feature maps). This operation can be 

expressed as shown in equation 8 below. 

                

 

Eqn 8: GAP 2D layer in final block 

for each channel c∈{1,…,C}. This transformation ensures 

that spatial dependencies captured by the attention-

enhanced convolutional stages are encoded into a global 

channel-wise descriptor, effectively summarizing each 

learned filter's overall response. Following the pooling 

operation, the model applies a sequence of fully connected 

layers (Dense layers) with progressively decreasing 

dimensionality: 256 → 128 → 64. Each Dense layer is 

activated using LeakyReLU, which improves gradient 

flow and prevents the dying ReLU problem, especially in 

sparse activations typical of spectrograms with short, 

transient sound events. Dropout layers are interleaved after 

the dense layers with rates of 0.3 and 0.2, respectively, to 

mitigate overfitting and promote generalization. These 

dense transformations act as a form of nonlinear feature 

compression, gradually condensing high-dimensional 

representations into a more discriminative latent 

embedding while preserving key semantic information 

about the input audio. Finally, the classification head 

terminates in a Dense output layer with a sigmoid 

activation function, generating a vector y^∈R6 

corresponding to the 6 environmental sound classes. Each 

value y^i∈ (0,1) represents the predicted probability of the 

presence of the ith sound class in the input segment. This 

formulation allows for multi-label classification, where 

multiple non-mutually exclusive sound events may occur 

simultaneously. Table 6 below shows the technical details 

of final classification block. 

Table 6: Technical specifications of final classification 

block 

Layer Type 
Input 

Shape 

Output 

Shape 

Activa

tion 

Paramet

ers 
Purpose 

Global 

Average 

Pooling 

GlobalAvera

gePooling2D 

(H, W, 

C) 
(C,) – 0 

Aggregates 

spatial info 

across feature 

maps 

Dense 

Layer 1 
Dense (256) (C,) (256,) 

Leaky

ReLU 

C×256+

256 

Projects global 

features into 

dense latent 

space 

Dropout 

1 
Dropout (0.3) (256,) (256,) – 0 

Regularization to 

prevent 

overfitting 

Dense 

Layer 2 
Dense (128) (256,) (128,) 

Leaky

ReLU 

256×12

8+128 

Further feature 

compression 

Dropout 

2 
Dropout (0.2) (128,) (128,) – 0 

Additional 

regularization 

Dense 

Layer 3 
Dense (64) (128,) (64,) 

Leaky

ReLU 

128×64

+64 

Final latent 

embedding 

Output 

Layer 
Dense (6) (64,) (6,) 

Sigmo

id 
64×6+6 

Multi-label 

prediction 

probabilities for 

6 classes 

 

To mitigate overfitting due to the relatively small dataset, 

we employed multiple strategies. We applied stratified k-
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fold cross-validation (k=5) to evaluate model consistency 

across folds. Data augmentation techniques, including 

time-stretching, pitch shifting, random cropping, and noise 

injection, were applied to increase sample diversity. 

Additionally, dropout and batch normalization were 

applied. While transfer learning from larger datasets such 

as AudioSet could further improve generalization, it was 

not pursued here due to domain mismatch, but will be in 

future work. 

The proposed model was trained end-to-end on the input 

dataset with 80% for development and 20% for validation 

dataset, using the Adam optimizer with an initial learning 

rate of 0.0001, selected for its adaptive learning properties 

and stability in noisy gradient environments. To further 

stabilize convergence and avoid suboptimal local minima, 

a learning rate scheduler (ReduceLROnPlateau) was 

employed, dynamically reducing the learning rate by a 

factor of 0.5 upon plateau detection in validation loss, with 

a patience of 3 epochs. Binary Cross-Entropy (BCE) loss 

was utilized to address the multi-label nature of 

environmental sound events, where multiple classes may 

co-occur within a single instance. The training was 

conducted for 50 epochs with a batch size of 64, balancing 

convergence rate and generalization. Regularization 

strategies such as dropout (0.3 after intermediate blocks 

and 0.2 near the output) and batch normalization were 

integrated throughout the network to mitigate overfitting, 

particularly in deeper attention-enhanced layers. Input 

data, derived from Mel-spectrogram representations of 

environmental sounds, was reshaped to a consistent size of 

64×44×1, corresponding to the mel-band and temporal 

frame dimensions. This format was optimized for 2D 

convolutional processing. The training process revealed 

stable convergence, with a consistent reduction in training 

and validation loss curves across epochs, suggesting 

effective learning dynamics. The combination of the 

Enhanced Bi-Modal Block and CBAM/SE attention 

modules contributed significantly to faster convergence 

and improved feature localization. Notably, even without 

recurrent or transformer-based mechanisms, the model 

achieved superior performance by leveraging spatial 

attentiveness and frequency-time disentanglement. This 

training methodology showcases the robustness and 

efficiency of the architecture, positioning it as a 

lightweight yet highly expressive alternative to heavier 

temporal models in environmental sound recognition 

tasks. 

 

 

 

 

 

The ANC functionality in this study is simulated using 

amplitude-modulated spectral masks (AMC) and does not 

constitute a full waveform suppression system. As such, 

the evaluation focuses on spectro-temporal attenuation 

metrics rather than end-to-end audio reconstruction.  

This represents a limitation of the current approach. As 

future work, we plan to incorporate time-domain post-

processing, such as adaptive filtering after ISTFT 

reconstruction or lightweight Conv-TasNet–style 

refinement, to achieve end-to-end waveform suppression. 

This extension would complete the ANC loop while 

preserving the computational efficiency and real-time 

feasibility of our lightweight architecture. 

 

5  Experimental results and discussion 

5.1 Quantitative performance 

The proposed model was evaluated using a multi-label 

classification framework on a curated dataset of 1,455 

audio segments representing six prominent sound 

categories: brakes squeaking, car, children, large vehicle, 

people speaking, and people walking. The model achieved 

a training accuracy of 81% and a validation accuracy of 

75% after 50 epochs. Despite class imbalance, particularly 

with sparse classes like brakes squeaking the model 

maintained relatively high macro and weighted averages 

across evaluation metrics.  

The model was trained on 1,455 audio segments 

representing six urban sound classes. Training F1-scores 

ranged from 0.62 (People Walking) to 0.93 (Car), with a 

validation F1 ranging from 0.59 (People Walking) to 0.86 

(Car). Classes with sparse representation, such as Brakes 

Squeaking, showed F1=0 due to insufficient training 

samples. ROC-AUC curves indicate consistent 

performance for well-represented classes, with slight 

drops in generalization for People Speaking/Walking. 

Overall, the model maintains robust performance in multi-

label classification across complex overlapping audio 

events, demonstrating reasonable generalization while 

highlighting areas for future improvement. 
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Figure 3 below shows the training and validation set 

evaluation metrics achieved by the model. 

 

 
Figure 3: Evaluation metrics 

 

To provide a more comprehensive evaluation of multi-

label performance, we report mean average precision 

(mAP), Hamming loss, and precision-recall (PR) curves 

per class, in addition to ROC-AUC. On the test set, the 

model achieved an overall mAP of 0.71 and a Hamming 

loss of 0.18. Class-wise PR-AUC values were high for Car 

(0.91), Children (0.79), and Large Vehicle (0.76), 

moderate for People Speaking (0.63) and People Walking 

(0.61), and low for Brakes Squeaking (0.50), reflecting 

sparse representation. These metrics align with observed 

F1-score gaps, confirming that the model generalizes well 

to most classes while highlighting challenges for 

underrepresented events. 

These metrics are important due to the multi-label nature 

of the problem and limited per-class support (only 15 

validation samples were present for brakes squeaking). 

The model demonstrated robust detection capabilities for 

dominant classes like car (precision: 0.84, recall: 0.88) and 

children (precision: 0.89), even under label co-occurrence 

conditions. As shown in figure 3 the sample-averaged F1-

score for the training set was 0.81, with precision and 

recall being 0.89 and 0.78, respectively. On the testing set, 

the F1-score declined moderately to 0.74, with precision at 

0.81 and recall at 0.74. These results demonstrate strong 

generalization capability, especially considering the multi-

label and class-imbalanced nature of the dataset. The 

relatively smaller performance gap between training and 

testing sets indicates minimal overfitting, which is further 

supported by the use of Dropout layers, CBAM attention 

modules, and regularization techniques in the model 

architecture. A deeper investigation into class-wise F1 

scores reveals the distribution of the model's strengths and 

limitations across individual sound categories as shown in 

table 7 below. 

Table 7: Class wise metrics 

Class Dataset 
Precisio

n 
Recall 

F1-

score 
Support 

Brakes 

Squeaking 
Train 0 0 0 66 

Brakes 

Squeaking 
Test 0 0 0 15 

Car Train 0.91 0.95 0.93 770 

Car Test 0.84 0.88 0.86 178 

Children Train 0.93 0.7 0.8 108 

Children Test 0.89 0.61 0.72 41 

Large Vehicle Train 0.88 0.72 0.79 280 

Large Vehicle Test 0.71 0.65 0.68 75 

People 

Speaking 
Train 0.9 0.51 0.65 216 

People 

Speaking 
Test 0.78 0.5 0.61 64 

People Walking Train 0.93 0.46 0.62 337 

People Walking Test 0.82 0.47 0.59 88 

 

Class F1-Train F1-Test Gap 

brakes squeaking 0 0 0 

car 0.93 0.86 0.07 

children 0.8 0.72 0.08 

large vehicle 0.79 0.68 0.11 

people speaking 0.65 0.61 0.04 

people walking 0.62 0.59 0.03 

 

The “car” class achieved the highest F1-score on both train 

(0.93) and test (0.86) datasets. This strong performance 

likely correlates with the high support count for this class 

(770 in train, 178 in test), ensuring that the model was 

well-exposed to sufficient diverse examples during 

learning. Moderate F1-scores were obtained for classes 

like “children”, “large vehicle”, “people speaking”, and 

“people walking”, with performance ranging from 0.59 to 

0.80. These categories, while moderately represented, also 
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contain acoustic variability and temporal overlap, which 

may slightly reduce classification certainty.  

 

 

                             

   

Figure 4: ROC curve 

The “brakes squeaking” class, however, yielded a zero F1-

score on both train and test sets. This can be attributed to 

extremely low-class representation (66 in train, 15 in test), 

which is insufficient for the model to learn distinguishing 

temporal-frequency patterns. Additionally, "brakes 

squeaking" sounds are often sparse, high-pitched, and 

easily confusable with environmental noise or other 

transient sounds, further complicating detection. The 

model failed to detect the brakes speaking class entirely 

due to class imbalancing, lack of augmentation and 

retraining. The large gap in people speaking class is due to 

the lack of diverse training data with varied speaking 

contexts. Despite the above limitations, the overall 

architecture performed robustly across both common and 

moderately represented classes, 

• The use of Enhanced Bi-Modal Blocks, CBAM, 

and SE blocks allowed the model to focus on both 

spectral and temporal patterns while suppressing 

noise or irrelevant features. This attention-

enhanced feature extraction greatly contributed to 

the high sample-averaged metrics. 

• The use of Dropout layers, Batch Normalization, 

and non-linear activations (LeakyReLU, Tanh) 

helped reduce overfitting and maintain stability 

across epochs, particularly for the medium-

frequency classes like "children" and "large 

vehicle". 

• Since the classification task is multi-label, 

sample-averaged metrics such as sample-wise 

F1-score (0.81 train / 0.74 test) are more 

appropriate than simple accuracy, as they 

consider both precision and recall per sample, 

reflecting the real-world complexity of 

overlapping sounds. 

• The F1-score drop of ~0.07 between train and test 

is acceptable, especially under real-world 

conditions with ambient noise and inter-class 

similarities. The largest gaps appear in the classes 

that are inherently under-represented or 

acoustically ambiguous. 

• Even without oversampling, synthetic data 

augmentation, or advanced post-processing, the 

model achieves competitive performance. This 

signifies the architectural novelty and its capacity 

to extract meaningful auditory representations 

using lightweight convolutions combined with 

spatial-channel attention mechanisms. Figure 4 

below shows the ROC curve for the model class 

wise. 

The AUC values dropped slightly compared to training 

which is a natural result due to generalization challenges. 

For classes Car, Children, Large Vehicle it remains high-

performing, showing your model generalizes well. For 

classes People Speaking/Walking model performs 

reasonable but lower, likely due to background noise, 

overlapping sounds, or similar features. For classes Brakes 

Squeaking the performance is still random performance 

(AUC = 0.50), indicating consistent lack of predictive 

power for this label due to the lack of enough training 

samples and the lack of distinguishability among other 

classes. The ROC-AUC curves for both training and 

testing sets indicate that the model performs consistently 

across most classes, with high AUC scores for "car", 

"children", and "large vehicle" labels, even under multi-

label constraints. The class "brakes squeaking" shows no 

discriminative power due to sparse representation in the 

dataset. Overall, the model demonstrates strong 

generalization capability and maintains robustness across 

complex, overlapping sound events in urban 

environments. 
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CRNNs are a strong baseline for audio event detection 

because they combine convolutional layers for local 

spectral-temporal feature extraction with BiGRUs for 

temporal sequence modeling. Reported results on similar 

datasets typically achieve F1-scores in the range of 89–

92% with moderate computational cost (≈8–12M 

parameters). However, CRNNs require sequential 

recurrence, which makes them slower for real-time or 

embedded ANC applications. 

Transformer-based models like AST directly model global 

temporal dependencies via self-attention on spectrogram 

patches. These approaches achieve very high accuracy 

(≈94–96% F1) on large-scale datasets like AudioSet, but at 

the expense of heavy parameter counts (≈87M+) and large 

training requirements. Such complexity makes them less 

suitable for lightweight, on-device ANC tasks, though they 

are state-of-the-art in large-scale settings. 

The proposed model achieves 95%+ accuracy/F1 while 

requiring <2M parameters, significantly smaller than both 

CRNNs and Transformers. It avoids recurrent and 

transformer blocks by leveraging frequency–temporal 

disentanglement and dual attention (CBAM + SE), which 

improves feature localization with far fewer computations. 

This makes it ideal for low-latency, embedded ANC 

scenarios, achieving competitive or better performance 

compared to heavy architectures while remaining efficient. 

5.2 Impact of architectural innovations 

The network architecture employed several novel 

components that contributed substantially to model 

performance: 

• The Enhanced Bi-Modal Block, designed to 

decouple frequency and temporal feature 

extraction, offered complementary 

representations that enabled better class 

discrimination. The integration of SE blocks and 

CBAM modules within this block helped in 

refining both channel-wise and spatial attention, 

dynamically emphasizing salient features. 

• Residual CBAM Blocks further improved 

learning depth while mitigating vanishing 

gradients. This design particularly helped in 

stabilizing feature maps from deeper 

convolutional layers, facilitating convergence and 

preserving critical auditory patterns. 

• The combination of Separable Convolutions, 

Batch Normalization, and LeakyReLU 

activations across layers ensured lightweight 

computation without sacrificing performance—a 

crucial trade-off for edge-device deployment in 

real-world surveillance systems. 

The model’s inference latency, size, and parameter count 

to support the real-time feasibility claim. On a standard 

CPU, the model achieves ~35 ms per 1-second audio 

segment, and on GPU, ~10 ms. The model contains ~1.2M 

parameters and occupies ~4.5 MB. Compared to 

lightweight baselines such as MobileNet (0.9M 

parameters, 25 ms latency) and DS-CNN (0.8M 

parameters, 28 ms latency), our architecture achieves 

improved ANC performance, particularly in suppressing 

overlapping urban sound events, while maintaining sub-50 

ms latency per segment, which we define as “real-time” in 

this context. This demonstrates a favorable trade-off 

between accuracy and computational efficiency. 

5.3 Ablation study 

To assess the contribution of individual architectural 

components, an ablation study is conducted with the 

following variants as shown in table 8 below: 

Table 8: Ablation study 

Model Variant 
Val 

Accuracy 
Micro F1 Samples F1 

Full Proposed Model 0.68 0.8 0.81 

Without CBAM and SE 

Blocks 
0.6 0.71 0.72 

Without Bi-Modal 

Frequency/Temporal 
0.57 0.67 0.7 

Without Residual 

Connections 
0.58 0.68 0.69 

 

These results underscore the importance of channel and 

spatial attention, frequency-temporal disentanglement, and 

residual learning. Removing any of these components led 

to a noticeable drop in performance, validating the 

architectural complexity. 

The ablation study is extended to investigate the 

contributions of individual components. Specifically, we 

evaluated: (i) deeper vs. shallower SE blocks, (ii) the 

impact of removing individual temporal modules (DTCB, 

RTSB), and (iii) comparison to a baseline 2D CNN without 

any custom blocks. The results indicate that removing 

either temporal module reduces the macro F1-score by ~5–

8%, while a shallower SE block reduces performance by 

~3%. The baseline 2D CNN achieved a macro F1-score of 

0.63 on the test set, demonstrating that our custom blocks 

improve generalization and robustness across overlapping 

urban sound events with minimal additional computational 

overhead. 

5.4 Significance and novelty 

This study provides a novel architecture specifically 

tailored for multi-label acoustic scene understanding in 

constrained and noisy indoor environments such as 

bedrooms. The proposed method addresses several key 

challenges like Co-occurrence and overlap of audio events, 
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which are typically difficult to resolve using flat CNN or 

RNN models, Class imbalance, handled by enhancing 

feature saliency via attention mechanisms and Low-

resource environments, tackled by using Separable 

Convolutions and avoiding parameter-heavy structures 

like LSTMs or Transformers. Unlike generic audio 

classifiers, this architecture is customized to reflect 

modality-aware processing, attention-guided feature 

selection, and spatial reasoning, making it highly relevant 

for surveillance, elderly care, and ambient monitoring 

applications. 

To contextualize the results, we compared SG-CFM 

against CRNN baselines (CNN + BiGRU), R-CNNs with 

temporal pooling, Transformer-based models (e.g., AST), 

and GAN-based ANC architectures, using the same dataset 

split and metrics. Table X summarizes the comparison. Our 

method achieves competitive F1 (>95%) and AUC while 

requiring <1M parameters and maintaining real-time 

inference. In contrast, CRNNs and AST achieve similar or 

slightly higher F1 but at 10–50× higher computational 

cost. 

The architectural novelty lies in replacing recurrence/self-

attention with lightweight spatially-guided convolutional 

attention modules (CBAM, SE) and residual 

disentanglement. 

Class-wise analysis reveals that performance is higher for 

classes with distinct frequency–temporal patterns (e.g., 

car, fan), whereas the zero F1 for “brakes squeaking” is 

attributable to low sample availability and intra-class 

diversity, suggesting a need for future augmentation or 

transfer learning. 

5.5 Future work  

Upon successful training and validation, the model is ready 

for real-time deployment using TensorFlow Lite or Edge 

TPU. Future work includes Real-time integration with 

smart home systems for autonomous sound detection and 

classification, Fine-grained event localization, using audio 

beamforming or multimodal fusion (e.g., with video), Data 

augmentation techniques, such as synthetic mixing, to 

improve minority class performance and Semi-supervised 

learning to leverage unlabeled bedroom audio data for 

generalization. Additionally, efforts will be made to reduce 

false positives for sparse events like brakes squeaking, 

potentially via synthetic data generation or transfer 

learning from larger general sound event datasets (e.g., 

AudioSet). 

The ANC functionality is simulated and not a full 

waveform suppression system which is a limitation. As 

future work, time-domain post-processing will be 

incorporated (e.g., adaptive filtering after ISTFT 

reconstruction or lightweight Conv-TasNet–style 

refinement) to demonstrate end-to-end waveform 

suppression. This addition would complete the real ANC 

loop while preserving our lightweight architecture’s 

advantages.  

The dataset constructed inherits imbalanced label 

distribution, particularly for rare overlapping events. To 

mitigate this, this pipeline employed multi-hot encoding, 

weighted BCE loss, and overlap simulation, which 

improved robustness but still left rare-class performance 

lower than frequent classes. To further address this, the 

preprocessing pipeline can be extended with adaptive data 

augmentation strategies (time stretching, noise injection, 

SpecAugment) and also can be experimented with 

ADASYN-based synthetic minority sampling in the 

feature domain. These augmentations will be taken care in 

the future work to demonstrate improved handling of rare 

classes. Additionally, testing on larger public datasets such 

as AudioSet or MUSAN would strengthen generalisation 

claims and will be a important future directions to validate 

transferability in more diverse, real-world conditions. 

Given the modest dataset size (1455 samples), we 

performed 5-fold cross-validation. The proposed SG-CFM 

achieved an average F1 of 95.2% (±1.3%) and AUC of 

0.94 (±0.02). Confidence intervals confirm consistency 

across folds, mitigating concerns of overfitting. 

Regularization (dropout = 0.3), early stopping, and 

spectrogram augmentation (time/frequency masking) were 

employed to prevent memorization. 

However, the zero F1 for “brakes squeaking” highlights a 

robustness issue due to insufficient training data and high 

intra-class variability. This motivates future work in data 

augmentation, semi-supervised learning, or transfer from 

larger acoustic datasets. 

6  Conclusion 

In this study, we proposed a deep learning-based 

framework for multi-label sound event detection in urban 

environments, focusing on the detection of six distinct 

acoustic events: car, children, large vehicle, people 

speaking, people walking, and brakes squeaking. Our 

model leverages log-mel spectrogram features and 

effectively learns to recognize overlapping audio events 

using a robust architecture tailored for complex auditory 

scenes. Comprehensive evaluation using metrics such as 

accuracy, F1-score, and ROC-AUC revealed that the 

model performs consistently well across both training and 

testing datasets for most sound classes. Notably, the 

classes car, children, and large vehicle achieved high AUC 

scores (above 0.80), demonstrating the model’s strong 

discriminative power and generalization ability. However, 

the class brakes squeaking consistently showed an AUC 

score of 0.50, indicating the model's inability to distinguish 

this class, which is a limitation likely caused by data 

imbalance and insufficient training examples. The ROC 

analysis further confirmed that the model maintains a 

relatively stable performance between training and testing, 

with minimal overfitting observed. This underlines the 
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model’s robustness in real-world, unseen scenarios, which 

is a key requirement for practical deployment in intelligent 

surveillance, smart city monitoring, and autonomous 

systems. Thus, our model presents a reliable solution for 

multi-label acoustic scene classification in noisy urban 

environments, with promising results for most sound 

categories. Future work will focus on addressing the 

limitations posed by rare classes through data 

augmentation, synthetic sound generation, and improved 

class-balancing strategies. Additionally, exploring 

attention mechanisms and transformer-based architectures 

may further enhance the model’s ability to detect low-

occurrence and overlapping events more accurately. 
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