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The network traffic analysis problem in large companies utilizing Big Data is considered. An ensemble of 

clustering algorithms based on Bayesian probability updating employing various distance metrics and 

adaptive weighting is proposed. An exponential dependence was applied in the weight calculation to 

enhance differentiation between algorithms. This enhanced the method's sensitivity to the quality of 

individual models. The developed approach was tested on open datasets CIC-IDS2017, UNSW-NB15, and 

CTU-13. The results demonstrated a consistent improvement in clustering quality, with ARI and NMI 

values reaching 0.78 and 0.75, respectively. The result surpasses the performance of baseline methods 

(K-means, DBSCAN, classical ensembles). The proposed method demonstrated linear scalability and is 

applicable for analyzing high-volume corporate network traffic. The results obtained confirmed the 

practical value of integration into monitoring and anomaly detection systems. 

Povzetek: Opisan je ansambelski pristop h gručenju omrežnega prometa, ki združuje več algoritmov z 

različnimi metrikami razdalje ter Bayesovo prilagajanje uteži. Metoda izboljša kakovost gručenja in 

stabilnost na velikih podatkovnih zbirkah ter je primerna za analizo korporativnega prometa. 

 

1 Introduction 
Big Data finds application in various IT processes, such as 

those related to network traffic analysis for large 

companies, optimization and scaling of corporate network 

structure, extraction of information from web resources 

and other tasks to identify patterns in areas with extensive 

use of variant data that need to be structured, classified and 

analyzed in order to improve or optimize the business 

processes of companies [1], [2], [3], [4]. This study 

examines the use of a clustering algorithm ensemble, 

comprised of K-means algorithm variations distinguished 

by their distance metric between objects. In this case, 

when talking about the distance metric between objects for 

company network traffic analysis and optimization, it is 

assumed that the objects of the original data set will 

include a large set of elements, they may be data packets, 

where each packet passing through the network is 

considered as an object.  

Then the distance metric will determine the degree of 

similarity or difference between different packets based on 

their characteristics such as IP addresses, ports, protocol, 

packet size and timestamps [5], [6]. The objects can also  

 

 

be network connections consisting of multiple data 

packets between certain IP addresses. In this case, the  

distance metric will take into account characteristics such 

as connection duration, amount of data transferred, packet 

rate and protocol types.  

Alternatively, the objects may also be users or devices 

generating network traffic, in which case the distance 

metric will compare the behavior by considering the 

amount of data transferred, types of requests, time of 

activity, and/or geographic location of the subscriber. 

Traffic segments, such as specific time intervals or 

specific types of traffic (e.g., web traffic, email traffic, P2P 

traffic), can be additionally mentioned, which can also be 

considered as objects of analysis, and the distance metric 

in this case will determine whether different traffic 

segments are similar or different based on their 

characteristics.  

As shown in [7], [8], [9], [10], [11], the use of different 

distance metrics will allow cluster analysis (hereinafter 

referred to as CA) algorithms to take into account the 

peculiarities of different types of objects and provide a 

detailed and relevant analysis of network traffic, which is 

important for the tasks of optimization and scaling of the 

corporate network structure. Approach, will enable  a 
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better understanding of network behavior and more 

efficient allocation of resources required for effective 

operation of IT business processes of companies. 

2 A review of prior research 
A large number of CA methods and algorithms have been 

developed. The results of these studies were presented by 

the authors in [1] – [11], and in [12] – [20] a detailed 

review of the advantages and disadvantages of the 

considered approaches used in CA of company traffic data 

was conducted. Note that the results of grouping can vary 

significantly depending on the choice of the feature 

system, proximity measures, the choice of initial 

conditions, the order of objects, and the parameters of the 

algorithm, as shown in the analysis of these publications 

in classical algorithms for solving CA problems [19], [20]. 

Therefore, we believe that the efficiency of CA by 

applying the ensemble approach, which consists in 

building a set of clustering based on a variety of 

algorithms or one algorithm with different parameters and 

the final clustering based on them. For example, if 

network traffic data is available, then we can apply several 

KA algorithms (k-means, agglomerative clustering and 

DBSCAN), then calculate similarity metrics for each 

result and assign a weight-where ways to partition the 

traffic data set into clusters [21]. The final consensus is 

achieved through iterative algorithms that minimize the 

disagreement between the results [22]. Alternatively, 

different KA algorithms can be employed and for each 

pair of objects (e.g., IP addresses) determine how often 

they fall into the same cluster, and then the results are 

averaged and based on the resulting co-association matrix, 

KA algorithms (e.g., spectral clustering) are used to obtain 

a final consistent partition. As additional options, one can 

consider, mixture models of distributions. Data clustering 

can be leveraged by assuming that network traffic data 

follow certain distributions and using an EM algorithm to 

estimate the parameters of these distributions. 

Several conceptual approaches to constructing 

ensemble solutions in CA are described in the scientific 

literature [17], [19], [21] – [26]. The first approach was to 

achieve consensus. That is, ensuring the highest possible 

degree of consistency with the results of individual CA 

algorithms is necessary. The second approach involved 

computing co-associative matrices (adjacency matrices). 

These matrices determine how frequently a pair of objects 

appears in the same cluster under different partitioning.  

In recent years, research activity in the field of 

ensemble clustering and network traffic analysis has 

shifted toward adaptive and weighted methods [27], [28]. 

These methods, including those addressed in [27]–[30], 

consider the quality of individual ensemble members 

when constructing co-associative matrices and forming 

the final consensus. Recent works [31]–[32] have 

proposed adaptive weighting of co-associations and 

element-wise strategies for reinforcing the contribution of 

'good' partitions. Bayesian formalizations of ensembles, as 

presented in [6], [14], [28], also provide for weight 

updates as new data arrives. Concurrently, [6], [25], [30], 

[34] are developing deep-clustering and hybrid (semi-

/self-supervised + ensemble) methodologies. Despite the 

availability of a broad spectrum of cluster analysis 

methods, including ensemble approaches and advanced 

deep-clustering solutions [30], [32], [34], several 

unresolved challenges remain. Thus, most existing 

ensembles either rely on averaging the co-associative 

matrix. Additionally, the quality of individual algorithms 

is not taken into account. Alternatively, fixed weights are 

used, which do not adapt to the changing characteristics of 

traffic. Furthermore, although works on deep and hybrid 

clustering analysis [30], [32], [34] demonstrate good 

results, they are designed for specific tasks. This includes 

image processing or the analysis of encrypted traffic. 

However, interpretability and universality remain limited 

when applied to heterogeneous corporate network data. 

The reviewed literature lacks solutions that, 

simultaneously, provide adaptive updating of algorithm 

weights, amplification of their quality differences, and 

reproducibility of results on real-world network 

benchmarks. 

The objective of this study was to develop an ensemble 

method for clustering network traffic that eliminates the 

aforementioned shortcomings. The study proposes the 

integration of a Bayesian approach for adaptive updating 

of algorithm weights and the use of an exponential 

mechanism to enhance distinctions among them. The 

method was evaluated on public benchmarks (CIC-

IDS2017, UNSW-NB15, CTU-13) compared with 

baseline algorithms (K-means, DBSCAN) and traditional 

ensembles. Thus, this article seeks to address a gap in the 

literature and to justify the practical applicability of 

advanced ensemble approaches for Big Data analysis in 

corporate networks. 

3 Methods and models 

3.1 An ensemble of weighted algorithms for 

cluster analysis of heterogeneous data 

Regarding analyzing network traffic for a large company, 

we can talk about heterogeneous data. Heterogeneous data 

refers to differences in the types and formats of data that 

are collected and analyzed in a corporate network. In 

addition to those mentioned above, this data may include: 

server logs; traffic data; sensor data (e.g., information 

from various network sensors such as IDS/IPS systems 

that detect suspicious activity on the network); user data; 

routing data; and others. These diverse types of data 

require different approaches to analysis and are often 

heterogeneous in nature, which makes them 

heterogeneous. To effectively analyze and process such 

data, it is advisable to use an ensemble of algorithms that 

can work with different metrics and take into account the 

specifics of each type of data to obtain a completer and 

more accurate picture of network traffic and its 

optimization. 

Let us introduce the following notations to formalize 

the proposed method of building a collective solution that 

takes into account the weights of different algorithms for 

clustering the company's network traffic data. 
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Let us consider a set of objects 𝑆 = {о(1), . . . , о(𝑁)} IP 

addresses, ports, protocol, packet size, server logs, traffic 

data, data from network sensors (e.g., IDS/IPS systems), 

user data, routing data, and so forth, randomly and 

independently selected from the overall population. It is 

necessary to partition these objects into a specified 

number of С clusters. A clustering quality criterion will be 

employed for the partitioning. Each object will be 

described by a set of real-valued variables. 𝑋1, . . . , 𝑋𝑛 . This 

will be illustrated with several examples. Although IP 

addresses are typically represented in text format, they can 

be converted into numerical values for analysis. For 

instance, an IPv4 address can be represented as a 32-bit 

integer, which enables its use in computations. Port 

numbers are integers within the range from 0 to 65535, 

which makes them inherently suitable as real-valued 

variables for analysis. Network layer protocols (such as 

TCP and UDP) can be encoded using numerical values. 

TCP can be represented as 1 and UDP as 2, which enables 

the use of this data in numerical algorithms. Packet size is 

a real-valued variable indicating the number of bytes in a 

packet; this information is used for network performance 

analysis and anomaly detection. Logs contain a variety of 

information, including timestamps, status codes, response 

sizes, and so on. These data can be transformed into a set 

of numerical features (for example, timestamps into 

seconds or minutes, status codes into numerical values, 

etc.). Such data may include various metrics, such as 

volume of transmitted data, number of packets, and 

transmission time, which can be represented as real-

valued variables. Information from network sensors (e.g., 

IDS/IPS systems) is generated as security event data, 

which may include timestamps, attack types, severity 

levels, and other parameters that may be numerical. User 

data may include user identifiers, session count, session 

duration, and other metrics that can be transformed into 

numerical values. Routing metrics, such as route cost, 

transit time, and similar parameters, can be represented as 

numerical values. These and other objects are converted 

into a set of real-valued variables to enable the application 

of clustering algorithms and other data analysis methods. 

Real-valued variables enable the straightforward 

application of mathematical operations and algorithms, 

making it possible to uncover hidden patterns and aiding 

in the development of more effective methods for analysis 

and processing of data based on cluster ensemble 

solutions. 

The vector of variables is denoted for an (𝑜) object by 

𝑥 = 𝑥(𝑜) = (𝑥1, . . . , 𝑥𝑛). Here 𝑥𝑗 = 𝑋𝑗(𝑜),  𝑗 = 1, . . . 𝑛. 

That is, the vector of variables for each (𝑜) object will be 

a numerical description of (𝑜), where each variable 

corresponds to a particular characteristic or feature of the 

object. For example, the IP address 192.168.1.1 can be 

represented as four numerical values. Accordingly, 192, 

168, 1, 1. A port number, e.g., 443 for HTTPS is 

represented by a single numeric value. The packet size, 

1500 bytes is represented by a single numeric value. And 

so on. Then, 𝑥𝑁 − is a (𝑥(о(1), . . . , о(𝑁)))
𝑇

data table. This 

table contains information about all the (𝑜) objects. For 

example, IP addresses, ports, protocols, packet sizes, and 

so on, where each row represents a vector of variables for 

one (𝑜).  

In the context of a complex network topology within a 

large enterprise, there may exist a hidden variable 𝑌. 

When we speak of a hidden (directly unobservable) 

variable 𝑌 ∈ (1, . . . , 𝐶𝐿), which determines the 

assignment of each object to a specific class (𝐶𝐿), we 

imply that each object in our dataset belongs to one of 

several possible classes. These classes are not explicitly 

evident in the data and must be inferred based on the 

observable characteristics of the objects. As demonstrated 

in [21], [26], a class (or cluster) is characterized by a 

conditional distribution. This is reasonable, as it makes it 

possible to describe how the values of the features of 

objects belonging to a given class are distributed. That is, 

each class or cluster has unique characteristics. These 

differences are captured by conditional distributions. 

Therefore, it is correct 𝑝(𝑥|𝑌 = 𝑐𝑙) = 𝑝𝑐𝑙(𝑥),  𝑐𝑙 =
1, . . . , 𝐶𝐿. Conditional distribution 𝑝(𝑥|𝑌 = 0) may 

indicate that ports 80 and 443 are more frequently used for 

HTTP/HTTPS, and that packet sizes follow a normal 

distribution with specific parameters. The conditional 

distribution 𝑝(𝑥|𝑌 = 1) may be characterized by the 

frequent use of unusual ports, higher variance in packet 

sizes, and specific IP addresses that are often involved in 

attacks. Understanding conditional distributions will 

facilitate the relevant assignment of new objects to 

specific classes. Furthermore, for the given examples, this 

will enable the identification of deviations from normal 

behavior. This is essential for network security tasks, as 

well as for optimizing the network by improving routing 

processes and resource utilization. 

Let us assume that each object is assigned to a class 

based on a priori probabilities. 𝑃𝑐𝑙 = 𝑃(𝑌 = 𝑐𝑙),  𝑐𝑙 =
1, . . . , 𝐶𝐿. Here ∑ 𝑃𝑐𝑙 = 1.𝐶𝐿

𝑐𝑙=1  This means that prior to data 

analysis, there are already assumptions regarding the 

probabilities of objects belonging to various classes. That 

is, 𝑃𝑖  denotes the a priori probability of an object 

belonging 𝑖 to a specific cluster (class) prior to considering 

new data. These a priori probabilities are based on prior 

knowledge or data about the distribution of objects among 

the classes. Thus, for our task, this may imply that there 

are already initial assumptions regarding the types of 

network activities (or classes) to which each object may 

belong. (𝑜). These probabilities may be based on 

historical data related to the company's network traffic, 

statistics on the occurrence of specific events, or other 

relevant information. For instance, we may assume that 

70% of the traffic is associated with normal employee 

activity, 20% with automated systems and servers, and 

10% with suspicious or anomalous activities. These 

assumptions are helpful in data analysis and clustering, as 

they specify the initial probabilities of objects belonging 

to various classes. This, in turn, enables the use of 

probabilistic methods for more accurate data analysis and 

processing. A priori probabilities serve as the starting 

point for determining to which class each object may 

belong and are used within the probabilistic data 

generation model for further analysis. In accordance with 
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𝑝𝑐𝑙(𝑥) we will define the value (𝑥) independently for each 
(𝑜). Next, for a pair of objects selected at random, for 

example, objects 𝑎, 𝑏 ∈ 𝑠, we define their correspondence 

to the indicator function 𝐼(⋅) [21], [26]. That is, the value 

𝐻 = 𝐼(𝑌(𝑎) ≠ 𝑌(𝑏)). Here 𝐼(𝑡𝑟𝑢𝑒) = 1,  𝐼(𝑓𝑎𝑙𝑠𝑒) = 0. 

Or, in other words, 𝛿𝑖𝑗 = 1, if the objects 𝑖, 𝑗 fall into the 

same cluster according to the selected algorithm; 𝛿𝑖𝑗 = 0 

otherwise.  

Let us introduce the 𝑃𝐻 = 𝑃[𝐻 = 1|𝑥(𝑎),𝑥(𝑏)] 
notation, which describes the probability of the 𝑎, 𝑏 event. 

Moreover, these events belong to different classes, with 

known𝑥(𝑎) and 𝑥(𝑏) . Then, based on the above, we can 

write the following expression for calculating 𝑃𝐻: 

 

𝑃𝐻 = 1 − ∑
𝑝𝑐𝑙(𝑥(𝑎))𝑝𝑐𝑙(𝑥(𝑏))𝑃𝑐𝑙

2

𝑝(𝑥(𝑎))𝑝(𝑥(𝑏))

𝐶𝐿
𝑐𝑙=1 ,  (1) 

 

where 𝑝(𝑥(𝑜)) = ∑ 𝑝𝑐𝑙
𝐶𝐿
𝑐𝑙=1 (𝑥(𝑜))𝑃𝑐𝑙 ,  𝑜 = 𝑎, 𝑏. 

Indicator function 𝐼(⋅) (indicator) is a function that is 

used to determine correspondence to a specific condition 

[26]. For example, if two data packets have the same 

source IP address, the indicator function may take the 

value 1. If two network connections use the same port, the 

indicator function may take the value 1. If two data 

packets use the same network protocol (for instance, 

HTTP or FTP), the indicator function may take the value 

1. The indicator function 𝐼(⋅) facilitates the classification 

of objects and the analysis of their membership in different 

classes. (𝐶𝐿). In the context of clustering, this enables the 

consideration of how similar objects are to each other 

based on specific features, which is appropriate for 

assessing clustering quality and constructing cluster 

models for heterogeneous data. 

When we use an ensemble of CA algorithms — 

𝜇1, 𝜇2, . . . , 𝜇𝑀 for example, K-means, Hierarchical 

Clustering, DBSCAN, Mean Shift, Gaussian Mixture 

Models (GMM), Spectral Clustering, Agglomerative 

Clustering, and OPTICS (Ordering Points To Identify the 

Clustering Structure)—we may obtain different variants 

of object set partitioning 𝑠 into clusters. The number of 

clusters for each variant may differ, as different algorithms 

can group data in various ways. For example, suppose we 

have a dataset of company network traffic, including IP 

addresses, ports, protocols, and packet sizes. To analyze 

and optimize company traffic, various algorithms from the 

toolkit can be used for corresponding sub-tasks. For 

example, K-means can be used to group traffic by similar 

parameters, such as ports and IP addresses. DBSCAN can 

be applied to identify dense regions of traffic and detect 

anomalies. Hierarchical Clustering enables the creation of 

a hierarchical cluster structure, which can assist in 

identifying subclusters. By utilizing multiple algorithms 

and comparing their results, a more comprehensive 

understanding of the network traffic structure can be 

achieved, revealing hidden patterns and ultimately 

facilitating network optimization and enhancing security. 

Since the numbering of classes is irrelevant, it is more 

convenient to consider the equivalence relation. The 

equivalence relation enables us to determine whether two 

arbitrarily selected pairs of objects belong to the same 

class or to different classes. We define, in accordance with 

[21], for the pair 𝑎, 𝑏 the value 𝑟𝑚 = 𝐼[𝜇𝑚(𝑎) ≠ 𝜇𝑚(𝑏)]. 
As an example, suppose we need to consider two objects 

𝑎 and 𝑏representing network packets with specific 

characteristics, for example: 1) object 𝑎: IP address 

192.168.1.1; port 80; protocol HTTP; packet size: 1500 

bytes; 2) object 𝑏: IP address 192.168.1.2; port 443; 

protocol: HTTPS; packet size: 1500 bytes. Suppose we 

have two cluster analysis algorithms: 𝜇1 and 𝜇21) 

algorithm 𝜇1 divides the data by IP address and port; 2) 

algorithm 𝜇2 divides the data into clusters by protocol and 

packet size. For each algorithm, we determine whether the 

objects 𝑎 and 𝑏 fall into the same cluster. For the algorithm 

𝜇1 objects 𝑎 and 𝑏 will be assigned to different clusters, 

since their IP addresses and ports differ. Then 𝑟1(𝑎, 𝑏) =
1. For the algorithm, 𝜇2 the objects will be assigned to 

different clusters, since their protocols differ. Then 

𝑟2(𝑎, 𝑏) = 1. By employing a set of CA algorithms and 

defining indicator functions 𝑞𝑚(𝑎, 𝑏) = 1 for each pair of 

objects, we can construct a set of partitions of the objects 

into clusters, which enables more flexible and accurate 

analysis of the data, taking into account various criteria 

and metrics. 

Since the task of finding the optimal partitioning of 

network traffic according to a specified criterion is of 

exponential complexity, approximate iterative algorithms 

are also employed in practice. At each step, these 

algorithms modify the current partitioning, seeking a local 

improvement in quality. The algorithm operations was 

regulated by user-defined parameters.  

In [21], [26], the concept of a 'constant conditional 

probability of a correct solution' is discussed— 𝑞𝑚. In our 

case, this means that for each algorithm 𝜇𝑚used in the 

ensemble (or collective decision), the probability of 

correctly merging or splitting a pair of objects remains 

constant and does not depend on the specific pair of 

objects. If the algorithm employs the Euclidean metric to 

measure the distance between objects, its accuracy will be 

consistent across all pairs of objects. In other words, the 

parameter 𝑞𝑚 is the probability that the algorithm 

correctly groups two objects into a single cluster if they 

indeed belong to the same cluster, or correctly separates 

them into different clusters if they belong to different 

clusters. The value 𝑞𝑚 makes it possible to assess how 

effectively the algorithm performed the clustering task. 

The higher the value, 𝑞𝑚, the more reliable we consider 

the algorithm. The condition 𝑞𝑚 > 0,5 will be referred to 

as the 'weak learning' condition, meaning that the 

algorithm makes decisions better than a random choice. 

This is necessary for constructing an ensemble (collective) 

of algorithms, as it guarantees that each algorithm in the 

ensemble contributes positively to the overall solution. Let 

us illustrate this with an example. Suppose there are server 

logs and data from network sensors. Let us utilize the 

DBSCAN algorithm. DBSCAN determines that a 

particular log and sensor data belong to different clusters. 

If 𝑞𝑚 = 0,7, this means that the probability that DBSCAN 

correctly determines that these data belong to different 

clusters is 70%. 
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Parameter 𝑞𝑚 is fundamental for understanding and 

evaluating the effectiveness of each algorithm in the 

ensemble; see Fig. 1. It demonstrates the accuracy of each 

algorithm's decisions and helps determine how each will 

impact the overall clustering result. Figure 1 shows a 

schematic diagram of how algorithms are combined into 

an ensemble, where each algorithm is assigned, a weight 

reflecting its significance and accuracy for a specific data 

type. The final clustering decision is determined by the 

weighted voting of all algorithms, which enables the 

contribution of each to be considered and enhances both 

the accuracy and reliability of the results. 

 

 
Figure 1: Interaction of algorithms in collective solving. 

 

One of the main challenges of CA Big Data for 

network traffic in large companies is the ambiguous 

interpretation of results. Clustering algorithms based on 

various approaches may yield different results, which 

complicates decision-making. To enhance the methods 

proposed in [1], [2], [17], [21], [26], which consider the 

behavior of each algorithm under various conditions, a 

probabilistic model of ensemble pairwise classification 

with latent classes can be utilized. This model enables the 

weighting of each algorithm based on its performance 

under different conditions. Latent classes refer to hidden 

or implicit categories that are not directly observed but 

influence the behavior and characteristics of the data. 

Latent classes are hypothetical categories that help explain 

the structure of the data. For example, in network traffic 

analysis, these may include groups of users with certain 

behavioral patterns, types of devices, types of network 

attacks, and other hidden factors that influence network 

activity. For instance, when analyzing network traffic 

data, including IP addresses, ports, protocols, packet sizes, 

server logs, and data from network sensors, latent classes 

may represent various types of network devices (such as 

servers, workstations, and mobile devices) or types of 

network attacks (DDoS attacks, phishing, or intrusions).  

In the probabilistic model of ensemble pairwise 

classification with latent classes, it is assumed that each 

object (for example, a network traffic record) belongs to 

one of the hidden classes. Such membership influences its 

probability distribution. For instance, a network traffic 

record belonging to the 'mobile devices' class may have 

distinctive characteristics that differ from records in the 

'servers' class.  

Note that determining the weights of clustering 

algorithms within the ensemble is a critical step for 

improving the accuracy and reliability of the CA. For this 

purpose, as demonstrated in [21], a probabilistic model of 

ensemble pairwise classification with latent classes can be 

employed. Let us consider the mathematical formulation 

of this model and the definition of the weights. For an 

ensemble of clustering algorithms composed of K-means 

variations, we propose the following methodology for 

weight calculation; see Figure 1. 

At the first stage, we conduct an assessment of 

clustering quality using quality metrics [26], [27], [28]—

ARI, NMI, and others. 

For the second stage, we will formulate a hypothesis. 

Hypothesis: Employing a probabilistic ensemble 

cluster analysis model with weights reflecting the 

reliability of classification results for each pair of objects 

will enhance the accuracy and robustness of traffic 

clustering in a large company. At this stage, a probabilistic 

model will be constructed for each clustering algorithm—

comprising variations of K-means—taking into account 

its effectiveness in clustering data based on quality metrics 

and utilizing a Bayesian approach to update prior 

probabilities as new data become available. 

In [11] and [21], the authors examined an ensemble of 

clustering algorithms, where each algorithm depends on a 

random vector. 𝛺. Clustering results may vary between 

different runs. 𝛺. Statistical dependence will indicate that 

the algorithm's decisions 𝜇𝑚 regarding the assignment of 

objects to clusters are associated with the true classes of 

these objects. In other words, if two objects in fact belong 

to the same class, then an algorithm constructed on 

rational grounds will, with high probability, assign them 

to the same cluster. Conversely, if the objects in fact 

belong to different classes, the algorithm will, with high 

probability, assign them to different clusters. An example 

follows. Let us suppose that we are analyzing network 

traffic. Suppose we need to group packets by connection 

type (HTTP, FTP, SSH, etc.) using variations of the basic 

K-means algorithm. The relevant variation of the K-means 
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algorithm may utilize various packet characteristics, such 

as source address, destination address, protocol type, 

packet size, and so on. In this scenario, statistical 

dependence would indicate that if two packets exhibit 

similar characteristics, the algorithm is highly likely to 

assign them to the same cluster, even if their random 

vectors differ. 𝛺. Conversely, if two packets have different 

characteristics, the algorithm is highly likely to assign 

them to different clusters, even if they have identical 

random vectors. 𝛺. As demonstrated in [21], [26], 

achieving statistical dependence is a relevant task in the 

development of a clustering algorithm ensemble, as it 

enables the algorithm to more accurately reflect the actual 

class structures within the data. However, statistical 

dependence does not guarantee perfect clustering. Indeed, 

even if the algorithm 𝜇𝑚 always correctly classifies pairs 

of objects with 'identical' characteristics, it may err when 

the characteristics of objects overlap between classes.  

It can be argued that for each algorithm 𝜇𝑚included in 

the ensemble (collective decision), we can use the 

following formula to update the posterior probability. 

𝑃(𝐴𝑖|𝐷): 
 

𝑃(𝐴𝑖|𝐷) =
𝑃(𝐷|𝐴𝑖)𝑃(𝐴𝑖)

∑ 𝑃(𝐷|𝐴𝑗)𝑃(𝐴𝑗)𝑛
𝑗=1

  (2) 

 

where 𝑃(𝐴𝑖) −the prior probability of the algorithm iA

; 𝑃(𝐷|𝐴𝑖) −probability of data observation 𝐷 assuming 

that the algorithm is employed 𝐴𝑖. 𝑃(𝐷|𝐴𝑖) calculated 

based on quality metrics [21]; ∑ 𝑃(𝐷|𝐴𝑗)𝑃(𝐴𝑗) −𝑛
𝑗=1 a 

normalization factor that ensures the posterior 

probabilities sum to one. 

Let us illustrate this with an example. Suppose we have 

three variants of the K-means algorithm: 1) 𝜇1 = 𝐴1 −a 

K-means variant using Euclidean distance. This approach 

is suitable if, as part of the overall research objective, it is 

necessary to detect anomalous traffic. In many cases, 

anomalous traffic may indicate possible network attacks 

or malfunctions; 2) 𝜇2 = 𝐴2 − A variation of K-means 

with cosine distance. For example, this variant of K-means 

is suitable for clustering employees based on the types of 

their network activity. In such a subtask, the goal is to 

group employees whose network usage profiles (e.g., 

visited websites, used applications) exhibit similar 

patterns. Cosine distance is beneficial as it enables the 

evaluation of angular similarity between activity vectors, 

regardless of their absolute magnitude, which is 

appropriate since employees may differ in the volume of 

network activity but demonstrate similar usage patterns. 

𝜇3 = 𝐴3 − A variation of K-means using the Minkowski 

distance, which is suitable for clustering network traffic 

sessions to detect anomalous behavioral patterns. The 

objective is to group network sessions by characteristics 

such as session duration, volume of transmitted data, and 

the number of requests to different nodes. Minkowski 

distance enables flexible adjustment of the influence of 

various dimensions, which is beneficial for capturing 

different types of anomalies. For example, this includes 

short but intense bursts of traffic or long-lasting but low-

intensity connections.  

Initially, the a priori probabilities are equal for all 

algorithms; thus, we can write: 𝑃(𝐴1) = 𝑃(𝐴2) =
𝑃(𝐴3) = 1/3. Accordingly, for a greater number of 

variational algorithms, the proportion will differ. 

Using the approaches outlined in [19], [24] and having 

performed clustering, we can subsequently calculate the 

ARI and NMI metrics for each configuration. Let us 

assume that the following values have been obtained: 

𝐴𝑅𝐼𝐴1
= 0,8,  𝑁𝑀𝐼𝐴1

= 0,75,  𝐴𝑅𝐼𝐴2
= 0,6, 

𝑁𝑀𝐼𝐴2
= 0,65,  𝐴𝑅𝐼𝐴3

= 0,7,  𝑁𝑀𝐼𝐴3
= 0,7. 

For assessment 𝑃(𝐷|𝐴𝑖) We will employ the 

normalized sum of metrics. 

 

𝑃(𝐷|𝐴𝑖) =
𝐴𝑅𝐼𝐴𝑖

+𝑁𝑀𝐼𝐴𝑖

∑ (𝐴𝑅𝐼𝐴𝑖
+𝑁𝑀𝐼𝐴𝑖)4

𝑘=1

.  (3) 

 

Thus, we obtain the following results for 𝑃(𝐷|𝐴𝑖):  
𝑃(𝐷|𝐴1) = 0,369,  𝑃(𝐷|𝐴2) = 0,298, 

𝑃(𝐷|𝐴3) = 0,333. 
Next, we apply Bayes’ formula to update the 

probabilities: 

𝑃(𝐴1|𝐷) =
𝑃(𝐷|𝐴1)𝑃(𝐴1)

𝑃(𝐷|𝐴1)𝑃(𝐴1)+𝑃(𝐷|𝐴2)𝑃(𝐴2)+𝑃(𝐷|𝐴3)𝑃(𝐴3)
=

0,369⋅(
1

3
)

0,369⋅(
1

3
)+0,298⋅(

1

3
)+0,333⋅(

1

3
)

= 0,369,  

𝑃(𝐴2|𝐷) = 0,299, 
𝑃(𝐴2|𝐷) = 0,333. 

This approach, within the development of collective 

cluster-based solutions for Big Data analysis concerning 

network traffic issues in large corporations, may offer 

certain advantages, as the Bayesian approach enables 

adaptive updating of algorithm weights based on new data, 

which is essential under conditions of variable traffic. 

Furthermore, the use of quality metrics for updating 

probabilities will improve clustering accuracy, although 

this assertion requires experimental validation.  

3.2 Conceptual diagram of the stages of 

ensemble clustering algorithms using 

different distance metrics for analyzing 

company network traffic 

Unlike the studies [17], [18], [21], [26], which employ a 

simple averaging of the co-association matrix, we propose 

accounting for the weights of each object pair based on an 

exponential function. The sequence of steps for 

implementing this approach is outlined below.  

The main idea is that, in our case, the weight of each 

algorithm in the ensemble depends on its performance, as 

determined by quality metrics such as ARI and NMI. We 

propose utilizing an exponential function, which allows 

accentuating the differences in the algorithm weights, 

even when the differences in quality metrics are minor. 

This may potentially make the ensemble CA (collective 

decision) method more sensitive to varying levels of 

performance. We employ the exponential dependence (4) 

in our analysis to amplify the differences in weights. The 

paradigm of this approach is based on the premise that 

minor changes in quality metric values lead to more 

substantial changes in weights. This is significant, as more 
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efficient algorithms should be assigned a considerably 

higher weight, given that their impact on the final result 

will be greater. 

Then, taking the above into consideration, we can 

write: 

 

𝑤𝑖 =
𝑒𝑥𝑝(𝛼⋅𝑄𝑖)

∑ 𝑒𝑥𝑝(𝛼⋅𝑄𝑗)𝑁
𝑗=1

,  (4) 

where 𝑤𝑖 −weight 𝑖 −of the CA (in other words, 𝑤𝑖 − 

weight 𝑖 −of the CA in the ensemble, calculated based on 

its quality (ARI, NMI) and normalized so that the sum of 

the weights across all algorithms equals 1); 𝑄𝑖 −the 

corresponding quality metric (e.g., ARI or NMI) 𝑖 −of the 

CA; 𝛼 − a parameter that regulates the extent to which 

differences in weights are amplified (it can be selected 

experimentally; in other words, 𝛼 - the exponential 

coefficient or ‘hyperparameter regulating weight 

sensitivity); 𝑁 −The total number of algorithms in the 

ensemble (collective decision).  

Stage 1. Let us consider an example with three 

variations of the K-means algorithm, employing different 

distance metrics: Euclidean, cosine, and Minkowski. 

Suppose that the quality metrics for these algorithms (e.g., 

ARI) are equal to 𝑄Eucl = 0.8, 𝑄Cos = 0.6, 𝑄Mink = 0.6, 

respectively. These data have not been obtained 

experimentally, and are adopted conditionally for 

developing the proposed ensemble cluster analysis 

method [21], [26]. 

Step 1: Let us calculate the exponential weights for  

𝑄Eucl = 0.8, 𝑄Cos = 0.6, 𝑄Mink = 0.6. And 𝛼 = 5. 

Then 

 

𝑒𝑥𝑝(5 ⋅ 0,8) ≈ 54,6;  
𝑒𝑥𝑝(5 ⋅ 0,6) ≈ 20,09;  
𝑒𝑥𝑝(5 ⋅ 0,7) ≈ 33,12; 

∑ 𝑒𝑥𝑝(5 ⋅ 𝑄) = 107.81. 

 

Next, let us compute the normalized weights: 

 

𝑤Eucl =
54,6

107,81
= 0,506; 

𝑤Cos =
20,09

107,81
= 0,186; 

𝑤Mink =
33,12

107,81
= 0,307. 

 

Once the weights for each algorithm are known, we 

can then use them to form an average co-associative 

matrix, taking into account the weight of each pair of 

objects. For example, if a pair of objects is clustered with 

weight  𝑤Eucl, then the contribution of this pair to the co-

associative matrix will be proportional to this weight. We 

believe that the use of exponential dependence in the 

calculation of weights will allow us to more accurately 

account for differences in the performance of different 

algorithms, which is important in the tasks of analyzing 

network traffic of a large company. In parallel, it will 

improve the quality of collective clustering, making the 

results more reliable. 

Stage 2: In the second step, we need to form a co-

associative matrix using the weights calculated in the first 

step. The co-associative matrix reflects the probability that 

a pair of 𝑜(𝑖, 𝑗) objects is in the same cluster based on the 

results of all clustering algorithms in the ensemble. The 

inclusion of weights will allow us to take into account the 

degree of reliability of the results of each algorithm. 

According to [26] we will use such a dependence to 

form the co-associative matrix: 

 

𝐶𝑖,𝑗 =
1

𝑁
∑ 𝑤𝑘 ⋅ 1(𝐴𝑘(𝑖) = 𝐴𝑘(𝑗)),𝑁

𝑘=1  (5) 

 

where is the value of the co-associative matrix for a 

pair of 𝑜(𝑖, 𝑗) objects; 𝑁 − the number of algorithms 

involved in the collective solution (in the ensemble); 𝑤𝑘 − 

the weight of the 𝑘 −algorithm; 1(𝐴𝑘(𝑖) = 𝐴𝑘(𝑗)) − the 

indicator function (in the general case𝐼(⋅)), which is equal 

to 1 if 𝑜(𝑖, 𝑗) are in the same cluster according to the 

results of the 𝑘 −algorithm, and 0 otherwise. 

Similar to the first step, consider a similar example 

with three variations of the K-means algorithm using 

different distance metrics: Euclidean, Cosine, and 

Minkowski. 

 

𝑤Eucl =
54,6

107,81
= 0,506; 

𝑤Cos =
20,09

107,81
= 0,186; 

𝑤Mink =
33,12

107,81
= 0,307. 

 

Suppose we have three objects (𝑜1, 𝑜2, 𝑜3) and the 

clustering results for each metric are as follows, see 

Table 1. 

 

 

Table 1: Illustrative examples with clustering results for each metric 

 

Variations of the K-means algorithm 

using different distance metrics 

Cluster 1 Cluster 2 

Euclidean (1, 2) (3) 

Cosine (1) (2, 3) 

Minkowski (1, 3) (2) 
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Then, for each pair of objects, 𝑜(𝑖, 𝑗) we compute 

𝐶𝑖,𝑗Pair (1,2) 𝐶1,2 =
1

3
(0,506 ⋅ 1 + 0,186 ⋅ 0 + 0,307 ⋅

0) ≈ 0,169. Next, pair (1,3) 𝐶1,3 ≈ 0,102. Pair (2,3) 

𝐶2,3 ≈ 0,062. 
After forming the co-associative matrix, the final 

clustering method can be applied next. We can use 

hierarchical clustering, to obtain the final clusters, which 

will take into account the results of all the algorithms in 

the ensemble. 

Hierarchical clustering is a powerful tool for creating 

final clusters after the formation of the co-associative 

matrix, because it allows you to create dendrograms that 

provide analysts with a visual representation of the nesting 

of hierarchies of clusters obtained in the process of 

analyzing data on company traffic, so you can see how the 

clusters are formed and how they are interconnected. For 

example, for our task for a large company network, we can 

see how individual “small” traffic groups are clustered 

into larger categories (e.g., individual applications can be 

grouped into more general usage categories such as 

“social networking” or “business applications”). Also note 

that hierarchical clustering does not require a 

predetermined number of clusters. This is important when 

working with Big Data, where the number of clusters may 

be unknown. When analyzing the network traffic of a 

notional company, you may find that the number of 

clusters required to adequately separate data may vary 

depending on the time of day or season. And this makes 

hard limits on the number of clusters ineffective.  

A co-associative matrix created from the results of 

several clustering algorithms allows hierarchical 

clustering to take into account the entire population of 

data, providing more accurate clusters. Moreover, another 

combination of algorithms is also possible. In this case, if 

different algorithms in the ensemble gave different 

partitions, hierarchical clustering will be able to 

effectively integrate these partitions to get a more 

consensus and accurate representation of the structure of 

the data.  

Hierarchical clustering methods, such as 

agglomerative clustering, can be optimized for Big Data 

applications, in particular when efficient methods of data 

storage and processing are employed. This is particularly 

effective in scenarios where distributed computing and 

optimized algorithms enable the application of 

hierarchical clustering to the traffic of large corporate 

networks, making it possible to process substantial data 

volumes within an acceptable timeframe.  

Stage 3 – In the third step, using the generated co-

associative matrix, we need to perform the final clustering. 

This can be done using a clustering algorithm that works 

with co-associative matrices. 

Assume that we have three objects - three objects 
(𝑜1, 𝑜2, 𝑜3) and a co-associative matrix, calculated in the 

previous step: 

 

𝐶 = (
1 0,169 0,102

0,169 1 0,062
0,102 0,062 1

). 

 

Hierarchical clustering is performed as follows. We 

begin with each object in a separate cluster. At each step, 

we merge the two clusters with the highest value in the co-

associative matrix. We repeat this process until all objects 
(𝑜1, 𝑜2, 𝑜3) are merged into a single cluster or the specified 

number of clusters is reached. For example, we merge 

objects 1 and 2, as 𝐶1,2 = 0,169 −this represents the 

maximum value, excluding the diagonal elements. Next, 

we merge the resulting cluster {1,2} with object 3, as 

𝐶1,3 = 0,102 and 𝐶2,3 = 0,062. As a result, we obtain two 

clusters: cluster 1 – (𝑜1, 𝑜2); cluster 2 – (𝑜3). 
The use of the co-associative matrix and the 

hierarchical clustering algorithm allows us to consider the 

weighting coefficients determined by the reliability of 

each algorithm in the ensemble, enabling a more accurate 

partitioning of the data into clusters. The research 

conducted makes it possible to formulate the following 

stages of the operation of the ensemble of clustering 

algorithms employing various distance metrics for 

network traffic analysis in companies, see Fig. 2. 

Furthermore, based on the above considerations, the 

algorithm for constructing the cluster ensemble (collective 

decision), as presented in [18], [21], [26], has been 

clarified, see Fig. 3.  

 

 
 

Figure 2: Conceptual diagram of the stages of the ensemble of clustering algorithms using different distance metrics to 

analyze company network traffic. 
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Step 1. Calculation of weights for each pair of objects 

based on the classification quality metrics of each 

algorithm. An exponential dependency is applied to 

determine the weights. This will enhance the differences 

in weights, resulting in increased accuracy. 

Stage 2. Construction of a co-association difference 

matrix with consideration of the calculated weights, which 

enables the reliability of the classification results of each 

base algorithm to be taken into account. 

Stage 3. Application of hierarchical clustering to 

obtain the final partitioning into clusters based on the co-

association matrix. 

Stage 4. Accounting for the probabilistic dependence 

between the observable characteristics of the CA 

ensemble's operation and the clustering quality metrics. 

We provide brief clarifications for certain blocks of 

the algorithm depicted in Figure 3. We also present the 

description in the form of pseudocode (Algorithm 1). 

Algorithm 1. Weighted Ensemble Clustering with 

Bayesian Updating 

Input data: 

X = {x1, x2, ..., xn}– a set of objects (network sessions, 

packets, connections, etc.); 

A = {A1, A2, ..., Am}– a set of clustering algorithms 

(variations of K-means with different distance metrics, 

DBSCAN, and others); 

α – exponential amplification coefficient; 

Q(.) – clustering quality evaluation function (ARI, 

NMI). 

Output data: 

Final partitioning of the set X into clusters. 

Algorithm steps: 

Data clustering. For each algorithm Ai∈A, perform 

clustering of the set X and record the cluster labels. 

Quality evaluation. For each algorithm, calculate 

quality metrics. qm. 

Weight calculation. Calculate the weight wi of each 

algorithm using the exponential formula. 

Construction of the co-associative matrix. For each 

pair of objects, compute Ci,j. 

Weight update (Bayesian rule). For each algorithm, 

recalculate the posterior probabilities based on the 

computed metrics and the co-associative matrix. 

Final clustering. Apply a method (hierarchical 

clustering or another approach) to the co-associative 

matrix C to obtain the final partitioning into clusters. 

Objects refer to individual elements of network 

traffic, such as data packets, sessions, IP addresses, 

requests, and so on. Features (or attributes) are the 

characteristics or properties of these objects. 

 

 
 

Figure 3: Refined enlarged algorithm for building a cluster ensemble (collective solution) for analyzing network traffic 

of companies. 
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4 Software implementation 
Using the proposed algorithm, we can consider the 

network traffic analysis problem for such a set of data as 

shown in Table 2. 

Suppose we have session data described by various 

features (IP addresses, ports, data volume, etc.). We apply 

an ensemble of clustering algorithms, implemented in the 

Python programming language (VS Code interpreter), 

each of which forms its own clusters (see Fig. 4a). By 

applying each algorithm to the data, we obtain cluster 

labels, which are identifiers indicating the cluster 

assignment of each object. When a clustering algorithm is 

applied to a dataset, the algorithm partitions the data into 

clusters, and each object is assigned a label indicating its 

cluster. Next, according to the algorithm, we use an 

indicator function to determine whether pairs of objects 

are in the same cluster. At this stage, we use the results of 

the indicator functions to calculate the likelihoods for each 

algorithm and apply a Bayesian approach to update the 

prior probabilities of the algorithms. Then, we use the 

indicators and the updated probabilities for formation of 

the co-associative matrix, see Fig. 4b). Finally, 

hierarchical clustering can be applied to the co-associative 

matrix to obtain the final clusters.  

 

Table 2: Examples of “Object - Property” set for the task of analyzing network traffic of a large company. 

 

Object 

(Session) 

Source IP IP Destination Source 

Port 

… … … … … Traffic 

Type 

Session 1 192.168.0.1 192.168.0.10 12345 … … … … … HTTP 

Session 2 192.168.0.2 192.168.0.30 12346 … … … … … HTTP 

… … … … … … … … … … 

Session Т 192.168.0.30 192.168.0.12 12355 … … … … … SSH 

 
(a) Using different clustering algorithms to analyze company traffic. 
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(b) Clustering with new features after Principal Component Analysis (PCA). 

 

Figure 4: Implementation of the algorithm for building a cluster ensemble (collective solution) for analyzing network 

traffic of companies. 

 

 
 

Figure 5: Visualization of the similarity matrix between clustering algorithms. 

 

The approach proposed in the article enabled 

consideration of the quality of each algorithm (see Fig. 5) 

within the ensemble and allowed for adaptive updating of 

the weights based on new data, thereby improving overall 

clustering performance. 
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An additional series of experiments was conducted on 

publicly available network traffic benchmarks during the 

course of the research to demonstrate the reproducibility 

and evaluate the versatility of the proposed ensemble 

clustering method. These benchmarks are used in 

international studies on network security. The exclusive 

use of corporate enterprise data obtained during pilot 

deployment does not ensure comprehensive validation of 

the algorithm’s resilience, since the internal traffic 

reflected the specific architecture, protocol profiles, and 

network activity schedule of the particular company. 

However, it did not encompass the full spectrum of 

contemporary attacks. 

Verification was further supplemented with the 

following datasets, respectively [35], [36], [37]; see Table 

3. 

CIC-IDS2017 / CSE-CIC-IDS2018 (Canadian 

Institute for Cybersecurity) – representative traffic with 

simulated DoS, DDoS, botnet activity, SQL injection, and 

other modern threats [35]. 

UNSW-NB15 is traffic emulating real corporate 

networks with various applications and simultaneously 

incorporating nine types of attacks [36]. 

CTU-13 is a collection of real botnet traces, useful for 

evaluating the resilience of the ensemble to covert 

command channels [37]. 

These datasets enable the assessment of proposed 

algorithm’s scalability and correctness in the event of a 

sharp increase in data volume, diversity of protocols, and 

the presence of 'normal/anomalous' traffic labels. For each 

dataset, the initial conditions were maintained: 

preliminary normalization, feature space construction, 

formation of local clusters using different metrics, and 

subsequent aggregation into a collective solution with 

Bayesian weight updating. This strategy ensures result 

comparability and enables evaluation of the ensemble’s 

ability to adequately group previously unknown patterns 

of network activity. 

 

Table 3: Comparison of clustering quality on open datasets. 

Dataset Method ARI NMI Execution time* Stability under 𝜶 

CIC-IDS2017 

K-means (Euclidean) 0,62 0,60 1,0× – 

DBSCAN 0,65 0,63 2,3× – 

Traditional ensemble 0,70 0,68 2,8× Low 

Proposed method 0,78 0,75 3,0× High 

UNSW-NB15 

K-means (Euclidean) 0,60 0,59 1,0× – 

DBSCAN 0,63 0,61 2,2× – 

Traditional ensemble 0,68 0,66 2,6× Low 

Proposed method 0,76 0,74 2,9× High 

CTU-13 

K-means (Euclidean) 0,57 0,55 1,0× – 

DBSCAN 0,61 0,59 2,1× – 

Traditional ensemble 0,66 0,64 2,4× Medium 

K-means (Euclidean) 0,57 0,55 1,0× – 

Proposed method 0,73 0,71 2,7× High 

* Relative execution time: ‘1.0×’ corresponds to the baseline K-means; All other values are presented in 

normalized units. 

 

As shown in Table 4, existing solutions demonstrate 

quality improvements on individual datasets. However, 

they exhibit certain limitations: fixed algorithm weights, 

high sensitivity to parameters, narrow specialization, or 

limited scalability in Big Data environments. These 

observations confirm a gap in the literature and 

substantiate the relevance of developing an adaptive 

ensemble with Bayesian weight updates and an 

exponential mechanism for emphasizing differences. 

 

 

Table 4: Comparison of the proposed method with existing approaches for the network traffic clustering task. 

 

Study Method Dataset Metrics Results Limitations / Gaps 

[30] 
Deep Embedded 

Clustering (DEC) 
CICIDS2017 

ARI, 

Accuracy 

High accuracy on 

small subsamples. 

No adaptive 

weights; limited 

interpretability. 

[32] 
DBSCAN + Variational 

Autoencoder 

UNSW-

NB15 
NMI, F1 

Improvement 

compared to 

classical DBSCAN. 

Parameter 

sensitivity; poor 

scalability. 

[34] 
Spectral Clustering 

Ensemble 
CTU-13 

Silhouette, 

NMI 

Stable results on 

static data. 

Does not account 

for traffic 

dynamics; fixed 

weights. 



An ensemble of Clustering Algorithms Using Different Distance…                                           Informatica 49 (2025) 297–312    309 

 

[35] 
K-means Ensemble 

(different initializations) 
KDD99 

ARI, 

Purity 

Enhancing cluster 

stability. 

No Bayesian 

updating, weak 

performance on 

large-scale data. 

[37] 
Hybrid CNN + 

Clustering 
CICIDS2017 

Accuracy, 

F1 

Produces strong 

results on encrypted 

traffic. 

High computational 

costs, low 

versatility. 

Proposed 

method 

Ensemble with Bayesian 

weight updating and 

exponential boosting 

CIC-

IDS2017, 

UNSW-

NB15, CTU-

13 

ARI, NMI, 

Runtime 

ARI up to 0.78, 

NMI up to 0.75; 

Linear scalability. 

No real-time 

support; requires 

adaptation for 

encrypted traffic. 

 

The results obtained confirmed that the proposed 

ensemble with Bayesian weight updating and exponential 

boosting demonstrates an advantage over baseline 

methods in terms of both clustering quality (ARI, NMI) 

and stability under parameter variation.  . Stability is 

important when analyzing heterogeneous network traffic, 

as the sensitivity of algorithms to parameters may 

diminish the reliability of conclusions. The set of 

experiments conducted demonstrates that the 

methodology maintains its effectiveness across various 

datasets. It possesses significant potential for integration 

into practical network security monitoring systems. 

5 Discussion of the findings 
The research develops established ensemble (collective) 

cluster analysis approaches by introducing several 

improvements, which include: constructing a co-

association difference matrix that accounts for the weights 

of base algorithms; utilizing an exponential function to 

intensify differences in weights; considering the 

probabilistic relationship between ensemble performance 

characteristics and clustering quality metrics; and 

applying a Bayesian approach to update prior probabilities 

based on new data. These innovations enable more 

accurate and reliable analysis and processing of Big Data 

network traffic in large enterprises.  

Experiments on open benchmarks (see Table 3) 

confirmed that the proposed ensemble produces consistent 

results even beyond the original corporate datasets. The 

average ARI and NMI scores on CIC-IDS2017 and 

UNSW-NB15 exceeded 0.78 and 0.75, respectively, 

which is comparable to or exceeds the baseline methods 

(K-means, DBSCAN, traditional ensembles without 

Bayesian weighting). On the CTU-13 dataset, the method 

demonstrated increased cluster stability when varying the 

exponential amplification parameter α. A significant 

observation was the linear scaling of execution time with 

an increase in the number of packets. This result indicates 

the algorithm’s suitability for analyzing high-volume 

network traffic within the infrastructure of a large 

enterprise.  

Asymptotic analysis shows that the computational 

complexity of the proposed ensemble is comprised of the 

costs of the individual clustering algorithms and the 

construction of the co-association matrix. For K-means 

variations, it is equal to 𝑂(𝑛 ⋅ 𝑘 ⋅ 𝑡), where n is the number 

of objects, k is the number of clusters, and t is the number 

of iterations. The formation of the co-association matrix 

has a complexity of 𝑂(𝑛2). This stage inherently supports 

parallelism and can be accelerated using distributed 

platforms (Spark, Hadoop). This ultimately confirms the 

practical viability of the proposed approach in Big Data 

environments. 

In general, the results obtained in the course of the 

experiments demonstrate the possibility of integrating the 

developed solution into existing SIEM systems and 

substantiate its further application to early anomaly 

detection tasks, including those involving encrypted 

traffic. 

6 Conclusions 
This research has yielded the following results. Big Data 

is applicable in various processes related to the analysis of 

network traffic in large enterprises, tasks of optimizing 

and scaling corporate network structures, extraction of 

information from web resources, and other pattern 

identification tasks in domains characterized by intensive 

Big Data usage. These data require structuring and 

analysis to optimize business processes.  

The development of collective clustering solutions for 

Big Data analysis pertaining to network traffic issues in 

large companies is proposed using a Bayesian approach, 

which enables adaptive updating of algorithm weights 

based on new data.  

The use of an exponential dependency for calculating 

weights, which will amplify the differentiation of 

algorithm weights, is proposed, particularly when 

differences in quality metrics are minor. This may 

potentially make the ensemble CA (collective decision) 

method more sensitive to varying levels of performance. 

The idea is based on the premise that small changes in 

quality metric values result in more substantial changes in 

weights, which is important, because more efficient 

algorithms should have significantly greater weights due 

to their stronger impact on the final result. This is achieved 

by employing a Bayesian approach to update prior 

probabilities based on new data, thereby increasing the 

model's accuracy and adaptability. A co-associative 

matrix of differences, incorporating the weights of the 

base algorithms, enables the consideration of the 

reliability of clustering results depending on the specific 

algorithm used. 

We propose enhancements to the workflow of the 

ensemble of clustering algorithms using various distance 

metrics for company network traffic analysis. Applying 
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hierarchical clustering for the final stage enables the 

derivation of final clusters that incorporate the results of 

all algorithms within the ensemble. For the Big Data 

analysis task in a large company's network, individual 

small groups of traffic can be aggregated into larger 

categories. For instance, specific applications may be 

grouped into broader usage categories, such as 'social 

networks' or 'business applications.' Hierarchical 

clustering also does not require a predefined number of 

clusters. This is suitable for Big Data, where the number 

of clusters is unknown.  

The stages of an ensemble of clustering algorithms 

employing various distance metrics for company network 

traffic analysis are formulated. The proposed solutions 

further develop established ensemble (collective) cluster 

analysis approaches by introducing enhancements, 

including the construction of a co-association dissimilarity 

matrix taking into account the weights of base algorithms, 

the use of an exponential function to intensify differences 

in weights, consideration of the probabilistic relationship 

between ensemble performance characteristics and 

clustering quality indicators, and the application of a 

Bayesian approach to update prior probabilities based on 

new data. These innovations enable more accurate and 

reliable analysis and processing of Big Data network 

traffic in large enterprises. 

Despite the positive results obtained, the proposed 

approach has a number of limitations. Experiments have 

shown that constructing the co-association matrix remains 

computationally expensive with extremely large traffic 

volumes. Further optimization of distributed 

implementations is required. Furthermore, the current 

version of the algorithm is oriented towards batch 

processing. At this stage, it does not account for the 

specifics of real-time stream analysis. Currently, the 

method has not been tested on encrypted traffic. 

Aadaptation to conditions with limited feature availability 

is planned for the next stage of the research. We consider 

integration of the ensemble with anomaly detection 

systems (IDS/IPS) to be a promising direction for further 

development. In addition, the application of hybrid 

schemes involving deep learning to improve clustering 

quality is foreseen. 
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