https://doi.org/10.31449/inf.v49i26.10652 Informatica 49 (2025) 297-312 297
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The network traffic analysis problem in large companies utilizing Big Data is considered. An ensemble of
clustering algorithms based on Bayesian probability updating employing various distance metrics and
adaptive weighting is proposed. An exponential dependence was applied in the weight calculation to
enhance differentiation between algorithms. This enhanced the method's sensitivity to the quality of
individual models. The developed approach was tested on open datasets CIC-1DS2017, UNSW-NB15, and
CTU-13. The results demonstrated a consistent improvement in clustering quality, with ARl and NMI
values reaching 0.78 and 0.75, respectively. The result surpasses the performance of baseline methods
(K-means, DBSCAN, classical ensembles). The proposed method demonstrated linear scalability and is
applicable for analyzing high-volume corporate network traffic. The results obtained confirmed the
practical value of integration into monitoring and anomaly detection systems.

Povzetek: Opisan je ansambelski pristop h grucenju omreZnega prometa, ki zdruzuje ve¢ algoritmov z
razlicnimi metrikami razdalje ter Bayesovo prilagajanje utezi. Metoda izboljsa kakovost grucenja in

stabilnost na velikih podatkovnih zbirkah ter je primerna za analizo korporativnega prometa.

1 Introduction

Big Data finds application in various IT processes, such as
those related to network traffic analysis for large
companies, optimization and scaling of corporate network
structure, extraction of information from web resources
and other tasks to identify patterns in areas with extensive
use of variant data that need to be structured, classified and
analyzed in order to improve or optimize the business
processes of companies [1], [2], [3], [4].- This study
examines the use of a clustering algorithm ensemble,
comprised of K-means algorithm variations distinguished
by their distance metric between objects. In this case,
when talking about the distance metric between objects for
company network traffic analysis and optimization, it is
assumed that the objects of the original data set will
include a large set of elements, they may be data packets,
where each packet passing through the network is
considered as an object.

Then the distance metric will determine the degree of
similarity or difference between different packets based on
their characteristics such as IP addresses, ports, protocol,
packet size and timestamps [5], [6]. The objects can also

be network connections consisting of multiple data
packets between certain IP addresses. In this case, the
distance metric will take into account characteristics such
as connection duration, amount of data transferred, packet
rate and protocol types.

Alternatively, the objects may also be users or devices
generating network traffic, in which case the distance
metric will compare the behavior by considering the
amount of data transferred, types of requests, time of
activity, and/or geographic location of the subscriber.
Traffic segments, such as specific time intervals or
specific types of traffic (e.g., web traffic, email traffic, P2P
traffic), can be additionally mentioned, which can also be
considered as objects of analysis, and the distance metric
in this case will determine whether different traffic
segments are similar or different based on their
characteristics.

Asshown in [7], [8], [9], [10], [11], the use of different
distance metrics will allow cluster analysis (hereinafter
referred to as CA) algorithms to take into account the
peculiarities of different types of objects and provide a
detailed and relevant analysis of network traffic, which is
important for the tasks of optimization and scaling of the
corporate network structure. Approach, will enable a
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better understanding of network behavior and more
efficient allocation of resources required for effective
operation of IT business processes of companies.

2 A review of prior research

A large number of CA methods and algorithms have been
developed. The results of these studies were presented by
the authors in [1] — [11], and in [12] — [20] a detailed
review of the advantages and disadvantages of the
considered approaches used in CA of company traffic data
was conducted. Note that the results of grouping can vary
significantly depending on the choice of the feature
system, proximity measures, the choice of initial
conditions, the order of objects, and the parameters of the
algorithm, as shown in the analysis of these publications
in classical algorithms for solving CA problems [19], [20].
Therefore, we believe that the efficiency of CA by
applying the ensemble approach, which consists in
building a set of clustering based on a variety of
algorithms or one algorithm with different parameters and
the final clustering based on them. For example, if
network traffic data is available, then we can apply several
KA algorithms (k-means, agglomerative clustering and
DBSCAN), then calculate similarity metrics for each
result and assign a weight-where ways to partition the
traffic data set into clusters [21]. The final consensus is
achieved through iterative algorithms that minimize the
disagreement between the results [22]. Alternatively,
different KA algorithms can be employed and for each
pair of objects (e.g., IP addresses) determine how often
they fall into the same cluster, and then the results are
averaged and based on the resulting co-association matrix,
KA algorithms (e.g., spectral clustering) are used to obtain
a final consistent partition. As additional options, one can
consider, mixture models of distributions. Data clustering
can be leveraged by assuming that network traffic data
follow certain distributions and using an EM algorithm to
estimate the parameters of these distributions.

Several conceptual approaches to constructing
ensemble solutions in CA are described in the scientific
literature [17], [19], [21] — [26]. The first approach was to
achieve consensus. That is, ensuring the highest possible
degree of consistency with the results of individual CA
algorithms is necessary. The second approach involved
computing co-associative matrices (adjacency matrices).
These matrices determine how frequently a pair of objects
appears in the same cluster under different partitioning.

In recent years, research activity in the field of
ensemble clustering and network traffic analysis has
shifted toward adaptive and weighted methods [27], [28].
These methods, including those addressed in [27]-[30],
consider the quality of individual ensemble members
when constructing co-associative matrices and forming
the final consensus. Recent works [31]-[32] have
proposed adaptive weighting of co-associations and
element-wise strategies for reinforcing the contribution of
‘good' partitions. Bayesian formalizations of ensembles, as
presented in [6], [14], [28], also provide for weight
updates as new data arrives. Concurrently, [6], [25], [30],
[34] are developing deep-clustering and hybrid (semi-
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[self-supervised + ensemble) methodologies. Despite the
availability of a broad spectrum of cluster analysis
methods, including ensemble approaches and advanced
deep-clustering solutions [30], [32], [34], several
unresolved challenges remain. Thus, most existing
ensembles either rely on averaging the co-associative
matrix. Additionally, the quality of individual algorithms
is not taken into account. Alternatively, fixed weights are
used, which do not adapt to the changing characteristics of
traffic. Furthermore, although works on deep and hybrid
clustering analysis [30], [32], [34] demonstrate good
results, they are designed for specific tasks. This includes
image processing or the analysis of encrypted traffic.
However, interpretability and universality remain limited
when applied to heterogeneous corporate network data.
The reviewed literature lacks solutions that,
simultaneously, provide adaptive updating of algorithm
weights, amplification of their quality differences, and
reproducibility of results on real-world network
benchmarks.

The objective of this study was to develop an ensemble
method for clustering network traffic that eliminates the
aforementioned shortcomings. The study proposes the
integration of a Bayesian approach for adaptive updating
of algorithm weights and the use of an exponential
mechanism to enhance distinctions among them. The
method was evaluated on public benchmarks (CIC-
IDS2017, UNSW-NB15, CTU-13) compared with
baseline algorithms (K-means, DBSCAN) and traditional
ensembles. Thus, this article seeks to address a gap in the
literature and to justify the practical applicability of
advanced ensemble approaches for Big Data analysis in
corporate networks.

3 Methods and models

3.1 An ensemble of weighted algorithms for
cluster analysis of heterogeneous data

Regarding analyzing network traffic for a large company,
we can talk about heterogeneous data. Heterogeneous data
refers to differences in the types and formats of data that
are collected and analyzed in a corporate network. In
addition to those mentioned above, this data may include:
server logs; traffic data; sensor data (e.g., information
from various network sensors such as IDS/IPS systems
that detect suspicious activity on the network); user data;
routing data; and others. These diverse types of data
require different approaches to analysis and are often
heterogeneous in  nature, which makes them
heterogeneous. To effectively analyze and process such
data, it is advisable to use an ensemble of algorithms that
can work with different metrics and take into account the
specifics of each type of data to obtain a completer and
more accurate picture of network traffic and its
optimization.

Let us introduce the following notations to formalize
the proposed method of building a collective solution that
takes into account the weights of different algorithms for
clustering the company's network traffic data.
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Let us consider a set of objects S = {o@,..., 0™} IP
addresses, ports, protocol, packet size, server logs, traffic
data, data from network sensors (e.g., IDS/IPS systems),
user data, routing data, and so forth, randomly and
independently selected from the overall population. It is
necessary to partition these objects into a specified
number of C clusters. A clustering quality criterion will be
employed for the partitioning. Each object will be
described by a set of real-valued variables. X1, ..., X,,. This
will be illustrated with several examples. Although IP
addresses are typically represented in text format, they can
be converted into numerical values for analysis. For
instance, an IPv4 address can be represented as a 32-bit
integer, which enables its use in computations. Port
numbers are integers within the range from 0 to 65535,
which makes them inherently suitable as real-valued
variables for analysis. Network layer protocols (such as
TCP and UDP) can be encoded using numerical values.
TCP can be represented as 1 and UDP as 2, which enables
the use of this data in numerical algorithms. Packet size is
a real-valued variable indicating the number of bytes in a
packet; this information is used for network performance
analysis and anomaly detection. Logs contain a variety of
information, including timestamps, status codes, response
sizes, and so on. These data can be transformed into a set
of numerical features (for example, timestamps into
seconds or minutes, status codes into numerical values,
etc.). Such data may include various metrics, such as
volume of transmitted data, number of packets, and
transmission time, which can be represented as real-
valued variables. Information from network sensors (e.g.,
IDS/IPS systems) is generated as security event data,
which may include timestamps, attack types, severity
levels, and other parameters that may be numerical. User
data may include user identifiers, session count, session
duration, and other metrics that can be transformed into
numerical values. Routing metrics, such as route cost,
transit time, and similar parameters, can be represented as
numerical values. These and other objects are converted
into a set of real-valued variables to enable the application
of clustering algorithms and other data analysis methods.
Real-valued variables enable the straightforward
application of mathematical operations and algorithms,
making it possible to uncover hidden patterns and aiding
in the development of more effective methods for analysis
and processing of data based on cluster ensemble
solutions.

The vector of variables is denoted for an (o) object by
x =x(0) = (xq,...,%,). Here x; =X;(0), j=1,...n.
That is, the vector of variables for each (o) object will be
a numerical description of (o), where each variable
corresponds to a particular characteristic or feature of the
object. For example, the IP address 192.168.1.1 can be
represented as four numerical values. Accordingly, 192,
168, 1, 1. A port number, e.g., 443 for HTTPS is
represented by a single numeric value. The packet size,
1500 bytes is represented by a single numeric value. And

T
so on. Then, xy —isa (x(o(l), - o(N))) data table. This
table contains information about all the (o) objects. For
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example, IP addresses, ports, protocols, packet sizes, and
so on, where each row represents a vector of variables for
one (0).

In the context of a complex network topology within a
large enterprise, there may exist a hidden variable Y.
When we speak of a hidden (directly unobservable)
variable Y € (1,...,CL), which determines the
assignment of each object to a specific class (CL), we
imply that each object in our dataset belongs to one of
several possible classes. These classes are not explicitly
evident in the data and must be inferred based on the
observable characteristics of the objects. As demonstrated
in [21], [26], a class (or cluster) is characterized by a
conditional distribution. This is reasonable, as it makes it
possible to describe how the values of the features of
objects belonging to a given class are distributed. That is,
each class or cluster has unique characteristics. These
differences are captured by conditional distributions.
Therefore, it is correct p(x|Y =cl) = p,(x), cl =
1,...,CL. Conditional distribution p(x|Y =0) may
indicate that ports 80 and 443 are more frequently used for
HTTP/HTTPS, and that packet sizes follow a normal
distribution with specific parameters. The conditional
distribution p(x|Y = 1) may be characterized by the
frequent use of unusual ports, higher variance in packet
sizes, and specific IP addresses that are often involved in
attacks. Understanding conditional distributions will
facilitate the relevant assignment of new objects to
specific classes. Furthermore, for the given examples, this
will enable the identification of deviations from normal
behavior. This is essential for network security tasks, as
well as for optimizing the network by improving routing
processes and resource utilization.

Let us assume that each object is assigned to a class
based on a priori probabilities. P, = P(Y =cl), cl =
1,...,CL.Here Y5, P,, = 1. This means that prior to data
analysis, there are already assumptions regarding the
probabilities of objects belonging to various classes. That
is, P; denotes the a priori probability of an object
belonging i to a specific cluster (class) prior to considering
new data. These a priori probabilities are based on prior
knowledge or data about the distribution of objects among
the classes. Thus, for our task, this may imply that there
are already initial assumptions regarding the types of
network activities (or classes) to which each object may
belong. (o). These probabilities may be based on
historical data related to the company's network traffic,
statistics on the occurrence of specific events, or other
relevant information. For instance, we may assume that
70% of the traffic is associated with normal employee
activity, 20% with automated systems and servers, and
10% with suspicious or anomalous activities. These
assumptions are helpful in data analysis and clustering, as
they specify the initial probabilities of objects belonging
to various classes. This, in turn, enables the use of
probabilistic methods for more accurate data analysis and
processing. A priori probabilities serve as the starting
point for determining to which class each object may
belong and are used within the probabilistic data
generation model for further analysis. In accordance with
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pe () we will define the value (x) independently for each
(0). Next, for a pair of objects selected at random, for
example, objects a, b € s, we define their correspondence
to the indicator function I(-) [21], [26]. That is, the value
H=1(Y(a) # Y(b)). Here I(true) = 1, I(false) = 0.
Or, in other words, §;; = 1, if the objects i, j fall into the
same cluster according to the selected algorithm; 6;; = 0
otherwise.

Let us introduce the Py = P[H = 1|x(a),x(b)]
notation, which describes the probability of the a, b event.
Moreover, these events belong to different classes, with
knownx(a) and x(b) . Then, based on the above, we can
write the following expression for calculating Py:

_ 4 _wCL w
Py=1-=20 p(x@)p(x®) ’ (1)

where p(x(0)) = X1 pe (x(0))Py, 0 =a,b.

Indicator function I(-) (indicator) is a function that is
used to determine correspondence to a specific condition
[26]. For example, if two data packets have the same
source IP address, the indicator function may take the
value 1. If two network connections use the same port, the
indicator function may take the value 1. If two data
packets use the same network protocol (for instance,
HTTP or FTP), the indicator function may take the value
1. The indicator function I(-) facilitates the classification
of objects and the analysis of their membership in different
classes. (CL). In the context of clustering, this enables the
consideration of how similar objects are to each other
based on specific features, which is appropriate for
assessing clustering quality and constructing cluster
models for heterogeneous data.

When we use an ensemble of CA algorithms —
U1, Uy, ..., Uy fOr  example, K-means, Hierarchical
Clustering, DBSCAN, Mean Shift, Gaussian Mixture
Models (GMM), Spectral Clustering, Agglomerative
Clustering, and OPTICS (Ordering Points To Identify the
Clustering Structure)—we may obtain different variants
of object set partitioning s into clusters. The number of
clusters for each variant may differ, as different algorithms
can group data in various ways. For example, suppose we
have a dataset of company network traffic, including IP
addresses, ports, protocols, and packet sizes. To analyze
and optimize company traffic, various algorithms from the
toolkit can be used for corresponding sub-tasks. For
example, K-means can be used to group traffic by similar
parameters, such as ports and IP addresses. DBSCAN can
be applied to identify dense regions of traffic and detect
anomalies. Hierarchical Clustering enables the creation of
a hierarchical cluster structure, which can assist in
identifying subclusters. By utilizing multiple algorithms
and comparing their results, a more comprehensive
understanding of the network traffic structure can be
achieved, revealing hidden patterns and ultimately
facilitating network optimization and enhancing security.
Since the numbering of classes is irrelevant, it is more
convenient to consider the equivalence relation. The
equivalence relation enables us to determine whether two
arbitrarily selected pairs of objects belong to the same
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class or to different classes. We define, in accordance with
[21], for the pair a, b the value 1, = Iy, (@) # p,(b)].
As an example, suppose we need to consider two objects
a and brepresenting network packets with specific
characteristics, for example: 1) object a: IP address
192.168.1.1; port 80; protocol HTTP; packet size: 1500
bytes; 2) object b: IP address 192.168.1.2; port 443;
protocol: HTTPS; packet size: 1500 bytes. Suppose we
have two cluster analysis algorithms: u; and p,1)
algorithm u, divides the data by IP address and port; 2)
algorithm u, divides the data into clusters by protocol and
packet size. For each algorithm, we determine whether the
objects a and b fall into the same cluster. For the algorithm
U, objects a and b will be assigned to different clusters,
since their IP addresses and ports differ. Then ry(a, b) =
1. For the algorithm, u, the objects will be assigned to
different clusters, since their protocols differ. Then
r,(a,b) = 1. By employing a set of CA algorithms and
defining indicator functions g, (a, b) = 1 for each pair of
objects, we can construct a set of partitions of the objects
into clusters, which enables more flexible and accurate
analysis of the data, taking into account various criteria
and metrics.

Since the task of finding the optimal partitioning of
network traffic according to a specified criterion is of
exponential complexity, approximate iterative algorithms
are also employed in practice. At each step, these
algorithms modify the current partitioning, seeking a local
improvement in quality. The algorithm operations was
regulated by user-defined parameters.

In [21], [26], the concept of a ‘constant conditional
probability of a correct solution' is discussed— q,,. In our
case, this means that for each algorithm w,,used in the
ensemble (or collective decision), the probability of
correctly merging or splitting a pair of objects remains
constant and does not depend on the specific pair of
objects. If the algorithm employs the Euclidean metric to
measure the distance between objects, its accuracy will be
consistent across all pairs of objects. In other words, the
parameter q, is the probability that the algorithm
correctly groups two objects into a single cluster if they
indeed belong to the same cluster, or correctly separates
them into different clusters if they belong to different
clusters. The value gq,, makes it possible to assess how
effectively the algorithm performed the clustering task.
The higher the value, q,,, the more reliable we consider
the algorithm. The condition g,, > 0,5 will be referred to
as the 'weak learning' condition, meaning that the
algorithm makes decisions better than a random choice.
This is necessary for constructing an ensemble (collective)
of algorithms, as it guarantees that each algorithm in the
ensemble contributes positively to the overall solution. Let
us illustrate this with an example. Suppose there are server
logs and data from network sensors. Let us utilize the
DBSCAN algorithm. DBSCAN determines that a
particular log and sensor data belong to different clusters.
If q,, = 0,7, this means that the probability that DBSCAN
correctly determines that these data belong to different
clusters is 70%.
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Parameter q,, is fundamental for understanding and
evaluating the effectiveness of each algorithm in the
ensemble; see Fig. 1. It demonstrates the accuracy of each
algorithm's decisions and helps determine how each will
impact the overall clustering result. Figure 1 shows a
schematic diagram of how algorithms are combined into
an ensemble, where each algorithm is assigned, a weight
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reflecting its significance and accuracy for a specific data
type. The final clustering decision is determined by the
weighted voting of all algorithms, which enables the
contribution of each to be considered and enhances both
the accuracy and reliability of the results.

An ensemble of big data clustering algorithms for the
company network:

K-means; Hierarchical Clustering;
DBSCAN; Mean Shift; GMM; Spectral Clustering;
Agglomerative Clustering;

OPTICS, etc.

Computation of the matched similarity
matrix

—+ Finding consensual partitioning

Figure 1: Interaction of algorithms in collective solving.

One of the main challenges of CA Big Data for
network traffic in large companies is the ambiguous
interpretation of results. Clustering algorithms based on
various approaches may yield different results, which
complicates decision-making. To enhance the methods
proposed in [1], [2], [17], [21], [26], which consider the
behavior of each algorithm under various conditions, a
probabilistic model of ensemble pairwise classification
with latent classes can be utilized. This model enables the
weighting of each algorithm based on its performance
under different conditions. Latent classes refer to hidden
or implicit categories that are not directly observed but
influence the behavior and characteristics of the data.
Latent classes are hypothetical categories that help explain
the structure of the data. For example, in network traffic
analysis, these may include groups of users with certain
behavioral patterns, types of devices, types of network
attacks, and other hidden factors that influence network
activity. For instance, when analyzing network traffic
data, including IP addresses, ports, protocols, packet sizes,
server logs, and data from network sensors, latent classes
may represent various types of network devices (such as
servers, workstations, and mobile devices) or types of
network attacks (DDoS attacks, phishing, or intrusions).

In the probabilistic model of ensemble pairwise
classification with latent classes, it is assumed that each
object (for example, a network traffic record) belongs to
one of the hidden classes. Such membership influences its
probability distribution. For instance, a network traffic
record belonging to the 'mobile devices' class may have
distinctive characteristics that differ from records in the
'servers' class.

Note that determining the weights of clustering
algorithms within the ensemble is a critical step for
improving the accuracy and reliability of the CA. For this
purpose, as demonstrated in [21], a probabilistic model of

ensemble pairwise classification with latent classes can be
employed. Let us consider the mathematical formulation
of this model and the definition of the weights. For an
ensemble of clustering algorithms composed of K-means
variations, we propose the following methodology for
weight calculation; see Figure 1.

At the first stage, we conduct an assessment of
clustering quality using quality metrics [26], [27], [28]—
ARI, NMI, and others.

For the second stage, we will formulate a hypothesis.

Hypothesis: Employing a probabilistic ensemble
cluster analysis model with weights reflecting the
reliability of classification results for each pair of objects
will enhance the accuracy and robustness of traffic
clustering in a large company. At this stage, a probabilistic
model will be constructed for each clustering algorithm—
comprising variations of K-means—taking into account
its effectiveness in clustering data based on quality metrics
and utilizing a Bayesian approach to update prior
probabilities as new data become available.

In [11] and [21], the authors examined an ensemble of
clustering algorithms, where each algorithm depends on a
random vector. 2. Clustering results may vary between
different runs. . Statistical dependence will indicate that
the algorithm's decisions p,,, regarding the assignment of
objects to clusters are associated with the true classes of
these objects. In other words, if two objects in fact belong
to the same class, then an algorithm constructed on
rational grounds will, with high probability, assign them
to the same cluster. Conversely, if the objects in fact
belong to different classes, the algorithm will, with high
probability, assign them to different clusters. An example
follows. Let us suppose that we are analyzing network
traffic. Suppose we need to group packets by connection
type (HTTP, FTP, SSH, etc.) using variations of the basic
K-means algorithm. The relevant variation of the K-means
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algorithm may utilize various packet characteristics, such
as source address, destination address, protocol type,
packet size, and so on. In this scenario, statistical
dependence would indicate that if two packets exhibit
similar characteristics, the algorithm is highly likely to
assign them to the same cluster, even if their random
vectors differ. 2. Conversely, if two packets have different
characteristics, the algorithm is highly likely to assign
them to different clusters, even if they have identical
random vectors. 0. As demonstrated in [21], [26],
achieving statistical dependence is a relevant task in the
development of a clustering algorithm ensemble, as it
enables the algorithm to more accurately reflect the actual
class structures within the data. However, statistical
dependence does not guarantee perfect clustering. Indeed,
even if the algorithm w,,, always correctly classifies pairs
of objects with ‘identical' characteristics, it may err when
the characteristics of objects overlap between classes.

It can be argued that for each algorithm y,,,included in
the ensemble (collective decision), we can use the
following formula to update the posterior probability.
P(A;|D):

P(DIA)P(4;)

P(Al_lD) = Z—?zlp(D|Aj)P(Aj)

)

where P(A;) —the prior probability of the algorithm A
; P(D|A;) —probability of data observation D assuming
that the algorithm is employed A;. P(D|A;) calculated
based on quality metrics [21]; X7, P(D|4;)P(4;) —a
normalization factor that ensures the posterior
probabilities sum to one.

Let us illustrate this with an example. Suppose we have
three variants of the K-means algorithm: 1) u;, = A, —a
K-means variant using Euclidean distance. This approach
is suitable if, as part of the overall research objective, it is
necessary to detect anomalous traffic. In many cases,
anomalous traffic may indicate possible network attacks
or malfunctions; 2) u, = A, — A variation of K-means
with cosine distance. For example, this variant of K-means
is suitable for clustering employees based on the types of
their network activity. In such a subtask, the goal is to
group employees whose network usage profiles (e.g.,
visited websites, used applications) exhibit similar
patterns. Cosine distance is beneficial as it enables the
evaluation of angular similarity between activity vectors,
regardless of their absolute magnitude, which is
appropriate since employees may differ in the volume of
network activity but demonstrate similar usage patterns.
us = A; — A variation of K-means using the Minkowski
distance, which is suitable for clustering network traffic
sessions to detect anomalous behavioral patterns. The
objective is to group network sessions by characteristics
such as session duration, volume of transmitted data, and
the number of requests to different nodes. Minkowski
distance enables flexible adjustment of the influence of
various dimensions, which is beneficial for capturing
different types of anomalies. For example, this includes
short but intense bursts of traffic or long-lasting but low-
intensity connections.
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Initially, the a priori probabilities are equal for all
algorithms; thus, we can write: P(A;) = P(4,) =
P(A3;) = 1/3. Accordingly, for a greater number of
variational algorithms, the proportion will differ.

Using the approaches outlined in [19], [24] and having
performed clustering, we can subsequently calculate the
ARI and NMI metrics for each configuration. Let us
assume that the following values have been obtained:

AR[Al =0,8, NMIA1 = 0,75, ARIAZ =0,6,
NMI,, = 0,65, ARI,, =07, NMl,, =0,7.
For assessment P(D|A;) We will employ the
normalized sum of metrics.
ARIp.+NMIy;
P(DIA) = ool 3)

Sty (ARIA+NMI)

Thus, we obtain the following results for P(D|A4;):
P(D|A;) = 0,369, P(D|A4;) = 0,298,
P(D|A3) = 0,333.
Next, we apply Bayes’ formula to update the

probabilities: o
_ P(D|A1)P(Aq _
P(A,|D) = P(D|A1)P(A1)+P(D|A2)P(A2)+P(D|A3)P(A3)
0,369»@)

0,369:(3)+0,298:(3)+0,333-(3) = 0,369,

P(4,|D) = 0,299,
P(A,|D) = 0,333.

This approach, within the development of collective
cluster-based solutions for Big Data analysis concerning
network traffic issues in large corporations, may offer
certain advantages, as the Bayesian approach enables
adaptive updating of algorithm weights based on new data,
which is essential under conditions of variable traffic.
Furthermore, the use of quality metrics for updating
probabilities will improve clustering accuracy, although
this assertion requires experimental validation.

3.2 Conceptual diagram of the stages of
ensemble clustering algorithms using
different distance metrics for analyzing
company network traffic

Unlike the studies [17], [18], [21], [26], which employ a
simple averaging of the co-association matrix, we propose
accounting for the weights of each object pair based on an
exponential function. The sequence of steps for
implementing this approach is outlined below.

The main idea is that, in our case, the weight of each
algorithm in the ensemble depends on its performance, as
determined by quality metrics such as ARl and NMI. We
propose utilizing an exponential function, which allows
accentuating the differences in the algorithm weights,
even when the differences in quality metrics are minor.
This may potentially make the ensemble CA (collective
decision) method more sensitive to varying levels of
performance. We employ the exponential dependence (4)
in our analysis to amplify the differences in weights. The
paradigm of this approach is based on the premise that
minor changes in quality metric values lead to more
substantial changes in weights. This is significant, as more
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efficient algorithms should be assigned a considerably
higher weight, given that their impact on the final result
will be greater.

Then, taking the above into consideration, we can
write:

__ exp(a-Qy
Wi N exp(a-Q;) )

where w; —weight i —of the CA (in other words, w; —
weight i —of the CA in the ensemble, calculated based on
its quality (ARI, NMI) and normalized so that the sum of
the weights across all algorithms equals 1); Q; —the
corresponding quality metric (e.g., ARI or NMI) i —of the
CA; a — a parameter that regulates the extent to which
differences in weights are amplified (it can be selected
experimentally; in other words, a - the exponential
coefficient or ‘hyperparameter regulating weight
sensitivity); N —The total number of algorithms in the
ensemble (collective decision).

Stage 1. Let us consider an example with three
variations of the K-means algorithm, employing different
distance metrics: Euclidean, cosine, and Minkowski.
Suppose that the quality metrics for these algorithms (e.g.,
ARI) are equal to Qg,q = 0.8, Qcos = 0.6, Quink = 0.6,
respectively. These data have not been obtained
experimentally, and are adopted conditionally for
developing the proposed ensemble cluster analysis
method [21], [26].

Step 1: Let us calculate the exponential weights for
Qrua = 0.8, Qcos = 0.6, Quink = 0.6. And @ = 5.

Then

exp(5-0,8) = 54,6;
exp(5-0,6) = 20,09;
exp(5-0,7) = 33,12;

Z exp(5-Q) =107.81.

Next, let us compute the normalized weights:

54,6
WEucl = m = 0,506,
20,09 0186
Cos = 10781
33,12 030
Mink = 10781

Once the weights for each algorithm are known, we
can then use them to form an average co-associative
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matrix, taking into account the weight of each pair of
objects. For example, if a pair of objects is clustered with

weight Wgy, then the contribution of this pair to the co-
associative matrix will be proportional to this weight. We
believe that the use of exponential dependence in the
calculation of weights will allow us to more accurately
account for differences in the performance of different
algorithms, which is important in the tasks of analyzing
network traffic of a large company. In parallel, it will
improve the quality of collective clustering, making the
results more reliable.

Stage 2: In the second step, we need to form a co-
associative matrix using the weights calculated in the first
step. The co-associative matrix reflects the probability that
a pair of o(i, j) objects is in the same cluster based on the
results of all clustering algorithms in the ensemble. The
inclusion of weights will allow us to take into account the
degree of reliability of the results of each algorithm.

According to [26] we will use such a dependence to
form the co-associative matrix:

Cij = %221:1 wie - 1(4 (@) = A()), (%)

where is the value of the co-associative matrix for a
pair of o(i,j) objects; N — the number of algorithms
involved in the collective solution (in the ensemble); w,, —
the weight of the k —algorithm; 1(4, (1) = 4,(j)) — the
indicator function (in the general casel(-)), which is equal
to 1 if o(i,j) are in the same cluster according to the
results of the k —algorithm, and 0 otherwise.

Similar to the first step, consider a similar example
with three variations of the K-means algorithm using

different distance metrics: Euclidean, Cosine, and
Minkowski.
_ 246 = 0,506;
WEucl_107'81— ) ;
209 _ 0,186;
Cos = 107,81
33,12 030
Mink = 107,81

Suppose we have three objects (oq,0,,05) and the
clustering results for each metric are as follows, see
Table 1.

Table 1: Illustrative examples with clustering results for each metric

Variations of the K-means algorithm Cluster 1 Cluster 2
using different distance metrics
Euclidean (1, 2) (3)
Cosine (€8] (2,3)
MinkowskKi (1,3) (2)
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Then, for each pair of objects, o(i,j) we compute
C;jPair (1,2) €y, = §(0,506 +1+0,186 -0 + 0,307 -
0) = 0,169. Next, pair (1,3) C;3 = 0,102. Pair (2,3)
Cy3 ~ 0,062.

After forming the co-associative matrix, the final
clustering method can be applied next. We can use
hierarchical clustering, to obtain the final clusters, which
will take into account the results of all the algorithms in
the ensemble.

Hierarchical clustering is a powerful tool for creating
final clusters after the formation of the co-associative
matrix, because it allows you to create dendrograms that
provide analysts with a visual representation of the nesting
of hierarchies of clusters obtained in the process of
analyzing data on company traffic, so you can see how the
clusters are formed and how they are interconnected. For
example, for our task for a large company network, we can
see how individual “small” traffic groups are clustered
into larger categories (e.g., individual applications can be
grouped into more general usage categories such as
“social networking” or “business applications”). Also note
that hierarchical clustering does not require a
predetermined number of clusters. This is important when
working with Big Data, where the number of clusters may
be unknown. When analyzing the network traffic of a
notional company, you may find that the number of
clusters required to adequately separate data may vary
depending on the time of day or season. And this makes
hard limits on the number of clusters ineffective.

A co-associative matrix created from the results of
several clustering algorithms allows hierarchical
clustering to take into account the entire population of
data, providing more accurate clusters. Moreover, another
combination of algorithms is also possible. In this case, if
different algorithms in the ensemble gave different
partitions, hierarchical clustering will be able to
effectively integrate these partitions to get a more
consensus and accurate representation of the structure of
the data.

Hierarchical  clustering  methods, such as
agglomerative clustering, can be optimized for Big Data
applications, in particular when efficient methods of data
storage and processing are employed. This is particularly
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effective in scenarios where distributed computing and
optimized algorithms enable the application of
hierarchical clustering to the traffic of large corporate
networks, making it possible to process substantial data
volumes within an acceptable timeframe.

Stage 3 — In the third step, using the generated co-
associative matrix, we need to perform the final clustering.
This can be done using a clustering algorithm that works
with co-associative matrices.

Assume that we have three objects - three objects
(01, 0,,05) and a co-associative matrix, calculated in the
previous step:

1 0,169 0,102
C= <0,169 1 0,062).
0,102 0,062 1

Hierarchical clustering is performed as follows. We
begin with each object in a separate cluster. At each step,
we merge the two clusters with the highest value in the co-
associative matrix. We repeat this process until all objects
(04, 05, 03) are merged into a single cluster or the specified
number of clusters is reached. For example, we merge
objects 1 and 2, as C;, = 0,169 —this represents the
maximum value, excluding the diagonal elements. Next,
we merge the resulting cluster {1,2} with object 3, as
Cy3=0,102 and C, 3 = 0,062. As a result, we obtain two
clusters: cluster 1 — (o4, 0,); cluster 2 — (o03).

The use of the co-associative matrix and the
hierarchical clustering algorithm allows us to consider the
weighting coefficients determined by the reliability of
each algorithm in the ensemble, enabling a more accurate
partitioning of the data into clusters. The research
conducted makes it possible to formulate the following
stages of the operation of the ensemble of clustering
algorithms employing various distance metrics for
network traffic analysis in companies, see Fig. 2.
Furthermore, based on the above considerations, the
algorithm for constructing the cluster ensemble (collective
decision), as presented in [18], [21], [26], has been
clarified, see Fig. 3.

classification for each algorithm.

algorithm.

on the association matrix.

Stage 1, Calculation of weights for each pair of objects based on the quality metrics of

Novelty. An exponential dependency is used to determine weights, which enhances differences
in weights and makes the results more accurate.

Stage 2. Formation of an association matrix of differences, taking into account the calculated
weights. This approach accounts for the reliability of classification results for each base

Stage 3. Application of hicrarchical clustering to obtain the final partition into clusters based

ensemble performance and the clustering quality indicators.

Novelty. An adaptive approach based on Bayesian inference is used to update weights, which

Stage 4. Consideration of the probabilistic dependence between the observed characteristics of

improves the accuracy and adaptability of the model to changing conditions.

Figure 2: Conceptual diagram of the stages of the ensemble of clustering algorithms using different distance metrics to
analyze company network traffic.
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Step 1. Calculation of weights for each pair of objects
based on the classification quality metrics of each
algorithm. An exponential dependency is applied to
determine the weights. This will enhance the differences
in weights, resulting in increased accuracy.

Stage 2. Construction of a co-association difference
matrix with consideration of the calculated weights, which
enables the reliability of the classification results of each
base algorithm to be taken into account.

Stage 3. Application of hierarchical clustering to
obtain the final partitioning into clusters based on the co-
association matrix.

Stage 4. Accounting for the probabilistic dependence
between the observable characteristics of the CA
ensemble's operation and the clustering quality metrics.

We provide brief clarifications for certain blocks of
the algorithm depicted in Figure 3. We also present the
description in the form of pseudocode (Algorithm 1).

Algorithm 1. Weighted Ensemble Clustering with
Bayesian Updating

Input data:

X ={x1, Xz, ..., Xn}— a set of objects (network sessions,
packets, connections, etc.);

A = {A1, Ay, ..., An}— a set of clustering algorithms
(variations of K-means with different distance metrics,
DBSCAN, and others);

e
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a — exponential amplification coefficient;

Q(.) — clustering quality evaluation function (ARI,
NMI).

Output data:

Final partitioning of the set X into clusters.

Algorithm steps:

Data clustering. For each algorithm Ai€A, perform
clustering of the set X and record the cluster labels.

Quality evaluation. For each algorithm, calculate
quality metrics. qpy,.

Weight calculation. Calculate the weight w; of each
algorithm using the exponential formula.

Construction of the co-associative matrix. For each
pair of objects, compute C;;.

Weight update (Bayesian rule). For each algorithm,
recalculate the posterior probabilities based on the
computed metrics and the co-associative matrix.

Final clustering. Apply a method (hierarchical
clustering or another approach) to the co-associative
matrix C to obtain the final partitioning into clusters.

Objects refer to individual elements of network
traffic, such as data packets, sessions, IP addresses,
requests, and so on. Features (or attributes) are the
characteristics or properties of these objects.

We define a set A of objects described by the
‘ object-property table, see Table 2.6.
K — defined number of clusters,
n — basic algorithm for the problem.

v
| Generate L variants of partitioning the set A into |
clusters using the p algorithm with randomly
selected operation parameters.
Calculate quality indices and weights by the
formula (see formula 2.4)

v

[ For cach pair of objects ai, aj (i #j), perform the k
following items:

l

[ If the given pair was assigned to the same cluster |
in the I-th variant, the indicator function h =0,
otherwise h= 1.

/

N

L

./U

The novelty is that for our problem the indicator
function determines how well a pair of objects
was assigned to the same or different clusters by
cach of the algorithms. This data (indicators) can
be used to compute likelihoods in Bayesian
updating, see lormula 2.3,

¥
Compute the elements ol the averaged
coassociative matrix, see formula 2.5.

!

Using the algorithm of dendrogram construction

(hierarchical clustering), the initial data for which

is a coassociative matrix, construct a partition of
the set A into K clusters.

v

The result is a partitioning of A into K clusters
and visualization,

v

-

End )

Figure 3: Refined enlarged algorithm for building a cluster ensemble (collective solution) for analyzing network traffic
of companies.
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applied to a dataset, the algorithm partitions the data into
clusters, and each object is assigned a label indicating its
cluster. Next, according to the algorithm, we use an
indicator function to determine whether pairs of objects
are in the same cluster. At this stage, we use the results of
the indicator functions to calculate the likelihoods for each
algorithm and apply a Bayesian approach to update the
prior probabilities of the algorithms. Then, we use the
indicators and the updated probabilities for formation of
the co-associative matrix, see Fig. 4b). Finally,
hierarchical clustering can be applied to the co-associative
matrix to obtain the final clusters.

4 Software implementation

Using the proposed algorithm, we can consider the
network traffic analysis problem for such a set of data as
shown in Table 2.

Suppose we have session data described by various
features (IP addresses, ports, data volume, etc.). We apply
an ensemble of clustering algorithms, implemented in the
Python programming language (VS Code interpreter),
each of which forms its own clusters (see Fig. 4a). By
applying each algorithm to the data, we obtain cluster
labels, which are identifiers indicating the cluster
assignment of each object. When a clustering algorithm is

Table 2: Examples of “Object - Property” set for the task of analyzing network traffic of a large company.

Object Source IP IP Destination | Source Traffic
(Session) Port Type
Session 1 192.168.0.1 192.168.0.10 12345 HTTP
Session 2 192.168.0.2 192.168.0.30 12346 HTTP
Session T | 192.168.0.30 | 192.168.0.12 12355 SSH

‘ KMeans clustering (PCA) Agglomerative clustering [PCA}
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X Figure 1

Consensus partitioning of clustering data.
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(b) Clustering with new features after Principal Component Analysis (PCA).

Figure 4: Implementation of the algorithm for building a cluster ensemble (collective solution) for analyzing network
traffic of companies.
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Figure 5: Visualization of the similarity matrix between clustering algorithms.

The approach proposed in the article enabled
consideration of the quality of each algorithm (see Fig. 5)
within the ensemble and allowed for adaptive updating of

the weights based on new data, thereby improving overall
clustering performance.
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An additional series of experiments was conducted on
publicly available network traffic benchmarks during the
course of the research to demonstrate the reproducibility
and evaluate the versatility of the proposed ensemble
clustering method. These benchmarks are used in
international studies on network security. The exclusive
use of corporate enterprise data obtained during pilot
deployment does not ensure comprehensive validation of
the algorithm’s resilience, since the internal traffic
reflected the specific architecture, protocol profiles, and
network activity schedule of the particular company.
However, it did not encompass the full spectrum of
contemporary attacks.

Verification was further supplemented with the
following datasets, respectively [35], [36], [37]; see Table
3.

CIC-IDS2017 / CSE-CIC-IDS2018 (Canadian
Institute for Cybersecurity) — representative traffic with
simulated DoS, DDoS, botnet activity, SQL injection, and
other modern threats [35].
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UNSW-NB15 is traffic emulating real corporate
networks with various applications and simultaneously
incorporating nine types of attacks [36].

CTU-13 is a collection of real botnet traces, useful for
evaluating the resilience of the ensemble to covert
command channels [37].

These datasets enable the assessment of proposed
algorithm’s scalability and correctness in the event of a
sharp increase in data volume, diversity of protocols, and
the presence of 'normal/anomalous' traffic labels. For each
dataset, the initial conditions were maintained:
preliminary normalization, feature space construction,
formation of local clusters using different metrics, and
subsequent aggregation into a collective solution with
Bayesian weight updating. This strategy ensures result
comparability and enables evaluation of the ensemble’s
ability to adequately group previously unknown patterns
of network activity.

Table 3: Comparison of clustering quality on open datasets.

Dataset Method ARI NMI Execution time* Stability under &
K-means (Euclidean) | 0,62 0,60 1,0x -
DBSCAN 0,65 0,63 2,3x -
CIC-1DS2017 Traditional ensemble | 0,70 0,68 2,8x Low
Proposed method 0,78 0,75 3,0x High
K-means (Euclidean) | 0,60 0,59 1,0x -
DBSCAN 0,63 0,61 2,2% —
UNSW-NB15 Traditional ensemble | 0,68 0,66 2,6x Low
Proposed method 0,76 0,74 2,9% High
K-means (Euclidean) | 0,57 0,55 1,0x —
DBSCAN 0,61 0,59 2,1x —
CTU-13 Traditional ensemble | 0,66 0,64 2,4x Medium
K-means (Euclidean) | 0,57 0,55 1,0x —
Proposed method 0,73 0,71 2,7% High
* Relative execution time: ‘1.0x’ corresponds to the baseline K-means; All other values are presented in
normalized units.

As shown in Table 4, existing solutions demonstrate
quality improvements on individual datasets. However,
they exhibit certain limitations: fixed algorithm weights,
high sensitivity to parameters, narrow specialization, or
limited scalability in Big Data environments. These

observations confirm a gap in the literature and
substantiate the relevance of developing an adaptive
ensemble with Bayesian weight updates and an
exponential mechanism for emphasizing differences.

Table 4: Comparison of the proposed method with existing approaches for the network traffic clustering task.

Study Method Dataset Metrics Results Limitations / Gaps
. No adaptive
[30] Deep E_mbedded CICIDS2017 ARI, High accuracy on weights: limited
Clustering (DEC) Accuracy small subsamples. - .
interpretability.
o Improvement Parameter
[32] DBSCZTJ’,[\(I);X:(;'ET'OMI U|\’|\l|38¥5\3/ i NMI, F1 compared to sensitivity; poor
classical DBSCAN. scalability.
Does not account
Spectral Clustering Silhouette, Stable results on for traffic
[34] Ensemble CTU-13 NMI static data. dynamics; fixed
weights.
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No Bayesian
[35] K-means Ensemble KDD99 ARI, Enhancing cluster updating, weak
(different initializations) Purity stability. performance on
large-scale data.
. Produces strong High computational
[37] H%I:gt;%’\l * CICIDS2017 Accg;acy, results on encrypted costs, low
g traffic. versatility.
clc- No real-time
Proposed Ensemble with Bayesian IDS2017, ARl NMI ARl up to 0.78, Support; requires
weight updating and UNSW- R NMI up to 0.75; "
method exponential boosting NB15, CTU- Runtime Linear scalability adaptation for
1’3 ' encrypted traffic.

The results obtained confirmed that the proposed
ensemble with Bayesian weight updating and exponential
boosting demonstrates an advantage over baseline
methods in terms of both clustering quality (ARI, NMI)
and stability under parameter variation. & . Stability is
important when analyzing heterogeneous network traffic,
as the sensitivity of algorithms to parameters may
diminish the reliability of conclusions. The set of
experiments  conducted  demonstrates  that  the
methodology maintains its effectiveness across various
datasets. It possesses significant potential for integration
into practical network security monitoring systems.

5 Discussion of the findings

The research develops established ensemble (collective)
cluster analysis approaches by introducing several
improvements, which include: constructing a co-
association difference matrix that accounts for the weights
of base algorithms; utilizing an exponential function to
intensify  differences in weights; considering the
probabilistic relationship between ensemble performance
characteristics and clustering quality metrics; and
applying a Bayesian approach to update prior probabilities
based on new data. These innovations enable more
accurate and reliable analysis and processing of Big Data
network traffic in large enterprises.

Experiments on open benchmarks (see Table 3)
confirmed that the proposed ensemble produces consistent
results even beyond the original corporate datasets. The
average ARI and NMI scores on CIC-IDS2017 and
UNSW-NB15 exceeded 0.78 and 0.75, respectively,
which is comparable to or exceeds the baseline methods
(K-means, DBSCAN, traditional ensembles without
Bayesian weighting). On the CTU-13 dataset, the method
demonstrated increased cluster stability when varying the
exponential amplification parameter o. A significant
observation was the linear scaling of execution time with
an increase in the number of packets. This result indicates
the algorithm’s suitability for analyzing high-volume
network traffic within the infrastructure of a large
enterprise.

Asymptotic analysis shows that the computational
complexity of the proposed ensemble is comprised of the
costs of the individual clustering algorithms and the
construction of the co-association matrix. For K-means
variations, itisequal to O(n - k - t), where n is the number
of objects, k is the number of clusters, and t is the number
of iterations. The formation of the co-association matrix

has a complexity of 0(n?). This stage inherently supports
parallelism and can be accelerated using distributed
platforms (Spark, Hadoop). This ultimately confirms the
practical viability of the proposed approach in Big Data
environments.

In general, the results obtained in the course of the
experiments demonstrate the possibility of integrating the
developed solution into existing SIEM systems and
substantiate its further application to early anomaly
detection tasks, including those involving encrypted
traffic.

6 Conclusions

This research has yielded the following results. Big Data
is applicable in various processes related to the analysis of
network traffic in large enterprises, tasks of optimizing
and scaling corporate network structures, extraction of
information from web resources, and other pattern
identification tasks in domains characterized by intensive
Big Data usage. These data require structuring and
analysis to optimize business processes.

The development of collective clustering solutions for
Big Data analysis pertaining to network traffic issues in
large companies is proposed using a Bayesian approach,
which enables adaptive updating of algorithm weights
based on new data.

The use of an exponential dependency for calculating
weights, which will amplify the differentiation of
algorithm weights, is proposed, particularly when
differences in quality metrics are minor. This may
potentially make the ensemble CA (collective decision)
method more sensitive to varying levels of performance.
The idea is based on the premise that small changes in
quality metric values result in more substantial changes in
weights, which is important, because more efficient
algorithms should have significantly greater weights due
to their stronger impact on the final result. This is achieved
by employing a Bayesian approach to update prior
probabilities based on new data, thereby increasing the
model's accuracy and adaptability. A co-associative
matrix of differences, incorporating the weights of the
base algorithms, enables the consideration of the
reliability of clustering results depending on the specific
algorithm used.

We propose enhancements to the workflow of the
ensemble of clustering algorithms using various distance
metrics for company network traffic analysis. Applying
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hierarchical clustering for the final stage enables the
derivation of final clusters that incorporate the results of
all algorithms within the ensemble. For the Big Data
analysis task in a large company's network, individual
small groups of traffic can be aggregated into larger
categories. For instance, specific applications may be
grouped into broader usage categories, such as 'social
networks' or ‘'business applications." Hierarchical
clustering also does not require a predefined number of
clusters. This is suitable for Big Data, where the number
of clusters is unknown.

The stages of an ensemble of clustering algorithms
employing various distance metrics for company network
traffic analysis are formulated. The proposed solutions
further develop established ensemble (collective) cluster
analysis approaches by introducing enhancements,
including the construction of a co-association dissimilarity
matrix taking into account the weights of base algorithms,
the use of an exponential function to intensify differences
in weights, consideration of the probabilistic relationship
between ensemble performance characteristics and
clustering quality indicators, and the application of a
Bayesian approach to update prior probabilities based on
new data. These innovations enable more accurate and
reliable analysis and processing of Big Data network
traffic in large enterprises.

Despite the positive results obtained, the proposed
approach has a number of limitations. Experiments have
shown that constructing the co-association matrix remains
computationally expensive with extremely large traffic
volumes.  Further  optimization  of  distributed
implementations is required. Furthermore, the current
version of the algorithm is oriented towards batch
processing. At this stage, it does not account for the
specifics of real-time stream analysis. Currently, the
method has not been tested on encrypted traffic.
Aadaptation to conditions with limited feature availability
is planned for the next stage of the research. We consider
integration of the ensemble with anomaly detection
systems (IDS/IPS) to be a promising direction for further
development. In addition, the application of hybrid
schemes involving deep learning to improve clustering
quality is foreseen.
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