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Children’s play is a fundamental activity that supports emotional, cognitive, and social development.
However, capturing and analyzing play behavior in real time is challenging due to its spontaneous,
multimodal, and dynamic nature. Traditional observation methods are time-consuming, subjective, and
lack real-time responsiveness. This research aims to design and implement a multimodal sensing and
feedback platform that leverages edge computing and real-time Artificial Intelligence (Al) to monitor,
interpret, and support children’s play behavior. The platform collects multimodal play behavior datasets
from various sensors, including action and posture recognition, microphones for speech and voice tone
analysis, motion sensors to track physical activity, and wearable devices. An Autoencoder-based Long
Short-Term Memory (AE-LSTM) network is used to analyze behavior in real time. Feature extraction is
performed using a lightweight ResNet model to extract features. Data is pre-processed using Kalman
filtering and normalization techniques to reduce noise and improve consistency. The entire system is
deployed on edge devices to ensure low-latency processing, local storage, and privacy preservation. The
system also provides real-time feedback through visual and haptic cues to enhance engagement.
Implemented in Python, experiments have demonstrated that the proposed AE-LSTM model outperforms
baseline architectures like LSTM, GRU, and BiLSTM+Attention, and the proposed model achieves higher
results according to the F1-score (0.959), accuracy (0.975), recall (0.964), and precision (0.968). These
findings offer robust performance in naturalistic settings and provide valuable applications for educators,
therapists, and researchers who intend to support and understand child development through intelligent,
responsive play environments.

Povzetek: Razvita je bila vecmodalna robna Al-platforma za sprotno spremljanje in analizo otroske igre

z namenom podpore otrokovemu razvoju.

1 Introduction

Playing is one of the most important childhood activities
and the fundamental setting for young children's learning.
Parents are crucial in supporting, guiding, and scaffolding
children's play, and investigations showed that parent-
child play is associated with kids' social competence and
pro-social skill development [1]. Play has been described
as self-motivated, player-controlled, process-oriented,
compared to product-focused, non-literal, lacking rules
imposed from outside, and involving active player
participation. Play is a crucial component of the childhood
curriculum as an educational resource for young children,
with consequences for both academic and social-
emotional growth [2]. Play enables children to develop
cognitive abilities, language abilities, executive functions,
and socio-emotional competency. Children's play
behaviors represent the social-emotional growth,
persistence, imagination, and inventiveness [3]. Primary
behavior in society is exhibited through play and games;
children improve their social abilities with other children.

Children with disabilities need play behavior to maintain
or improve social abilities [4]. Children's physical play,
like running, jumping along with time spent outside, is a
form of physical activity that assists in preventing obesity
while supporting the mental and physical wellness of the
children [5]. A range of social, cognitive, and
physical/locomotor skills that children exercise during
play is used to classify play behavior. The emphasis on
play behaviors contributes to cognitive skill development
[6]. The development and application of societal abilities
and interests suffer significantly in children with illness,
which can impact the social interactions and potentially
lead to anxiety. Children's flexibility and satisfaction are
emphasized through playtime. Specifically, 16% of young
children's device usage is spent playing digital games.
Twenty-three minutes per day on average are used for
playing the games on a computer, tablet, Smartphone, or
compact video game console [7]. The unlimited
possibilities that the real-world circumstances compared
with constructed circumstances are designed with
particular objective, which are the contributing factors of
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children [8]. The following requirements require being
exceeded for an activity to be perceived as playful include
enjoyment, active participation, significance or pertinence,
social interaction, and repetition and diversity.
Incorporating play into a process provides the greatest
developmental benefits for young kids, and not all
qualities are necessary for activities considered playful [9].
The play environment's physical attributes and materials
provide more impact on playing behaviors. A variety of
playing alternatives that are difficult to replicate indoors
are provided by the distinct qualities and pressures of
outdoor play areas [10].

1.1 Problem statement

Current advancements in Al-driven child behavior
monitoring have greatly enhanced multimodal play data in
real time. Nevertheless, several vital limitations exist in the
current literature, which frequently fail to capture the
spontaneous and dynamic nature of children’s play, and
maintaining privacy when analyzing sensitive behavioral
information. The SOOPEN model relies heavily on
manual observation, making it vulnerable to observe bias
despite with high reliability scores. The utilization of class
groups during observation might limit unplanned natural
play behavior, which might affect the outcomes. The DNN
model was capable of classifying CT characteristics, its
practical value was limited. The DNN model fails to
support the educators incorporated in actual classroom
procedures. The small-sized dataset further limits its
efficiency by the model's scalability, robustness, and
classification findings. To address these problems, the AE-
LSTM approach was used to accurately capture, analyze,
and interpret children's play behavior in real time. An AE-
LSTM model is used to manage diverse sensor inputs and
ensure high-fidelity semantic understanding. The
proposed solution supports real-time feedback and
informed decision-making across educational, therapeutic,
and developmental settings.

1.2 Aim and contributions of this research
The aim of this research is to design and implement a real-
time, intelligent multimodal sensing and analysis platform
capable of accurately monitoring children’s play behavior
in naturalistic environments by Autoencoder-based Long
Short-Term Memory (AE-LSTM) model. The AE-LSTM
model helps to learn compact representations and capture
temporal dependencies in play sequences. The suggested
model is deployed on edge devices, thus supporting
privacy-preserving, real-time decision-making. The AE-
LSTM model helps to identify emotional states, and social
interactions of children’s.

« The platform gathers information from a variety
of sensors, such as movement sensors to track activity
levels, microphones to analyze speech and voice tones,
RGB-D cameras to recognize posture and action, and
wearable technology that tracks physiological indicators

Y. Lietal.

like skin temperature and heart rate to determine emotional
states.

% The obtained data are preprocessed by the
Kalman filter and z-score normalization for noise
reduction and consistency enhancement. Whereas,
essential features are extracted through the Lightweight
ResNet model.

% Effective performances of the playing behavior
of the children are assessed by the AE-LSTM. According
to experimental results, play behavior classification,
emotional state detection, and social interaction
identification were all accomplished with high accuracy.

2 Relevant articles

Using a group dynamics approach, the System for
Observing Outdoor Play Environments in Neighborhood
(SOOPEN) tool to evaluate school-aged children's play
behavior and calculate its inter-observer reliability was
developed [11]. Based on two thorough observation
devices, SOOPEN was evaluated at eleven elementary
schools. All variables showed strong consistency between
observers, according to Kendall's tau b (tb > 0.7, p values
< 0.05). Children had limited access to play in specific
areas while in class groups.

The impact of emotional coaching and distraction
techniques used by teachers on continuous development of
societal and non-societal play behaviors was investigated
[12].275 instructors and 487 children from 123 classrooms
across 56 facilities were obtained. According to the
findings, emotion coaching contributed to a sharper
reduction in nervous behavior and a sharper increase in
social play. The analysis did not provide direct
comparisons across teachers from various cultural
backgrounds.

Considering a specific emphasis on the nature of play,
game creation and participants acting as facilitators in the
play, the research [13] investigated the socio-dramatic play
occurring in an early childhood educational environment.
Results indicated that a key component of classroom play
culture was that children established games with standards.
The major limitation was that it was conducted with only
10 children from a single classroom.

Based on a seven-month ethnographic investigation,
the exploration [14] described the efficiency of a robot that
was implemented with two primary education children
within the ages 1 —2 and 3 —5. To investigate the
efficiency of the children’s play with the robot, it
descriptively combined the structure with qualitative
interviews (n = 6 ) for children's play evaluation.
However, only two distinct case groups were included in
the limitations observed in the research. A summary of
related works on Children’s Play Behavior is illustrated in
Table 1.
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Table 1 Summary of literature review on children’s play behavior and Al-based interaction systems

Ref Technology Objective Result Challenges /
Used Limitations
[15] Deep Neural To examine children's Al models could classify Lacked the ability to
Network multimodal video- numerous CT features, create an ML model to
(DNN) based Computational acting as an alternative assist humans; provided
Thinking (CT) team member in limited data
assessment
[16] Comparative Compare screen time Significant variations in Findings limited to
observation and playtime of screen time and playtime parents and children;
preschool-aged between weekdays and not generalizable to
children before and weekends (playtime: 3.55 other populations
during COVID-19 +2.49 vs. 4.11 £2.58 h)
[17] Al-based To personalize Instantaneous updates of Lack of modifications
educational educational game game components; despite positive results;
games boundaries with player | children performed more limited pattern
assessment identity effectively identification
[18] Micro- Observe media Emotional and social Fails to provide
longitudinal influence on 150 expression of children not | continuous implications
observation children’s play in a significantly influenced by | on children’s play areas
museum screens integrated into
monitors
[19] Machine To identify and protect | Examined risks children Lacked coordinated
Learning against child predatory | faced while playing online responses to protect
(ML) behavior in online video games children using various
games digital platforms
[20] | Observational To investigate the EF development and play Due to Small sample
study, relationship between behavior were related size (97 children) lacks
Executive play behaviors and EF findings
Function (EF) components
[21] Motor skill To investigate The motion time Focused on limited
protocol / connections between negatively correlated with FMS types;
observational preschoolers’ break total/locomotor skills; observational and
behaviors and play without tools correlational findings
Foundational positively associated with only
Movement Skills other play behaviors
(FMS)
[22] | Bi-directional- Play behavior Outperformed traditional Requires large-scale
LSTM- modeling and models in accuracy, click datasets; high
Attention interaction system precision, response delay, computational
optimization in games and user satisfaction; requirements;
improved adaptability and | implementation limited
smoothness to gaming context

3 Research methodology

The use of multimodal sensing and edge Al technology, the
research aims to develop a smart, real-time platform that
monitors and supports children's play behavior. The
research obtains the multimodal play behavior dataset.
The obtained data are preprocessed through the Kalman
filter to reduce noise in the obtained information, and the

z-score normalization is used to enhance the consistency
of the data through the normalization process. The
Lightweight ResNet approach is employed to extract the
significant information from the processed data. To assess
the children’s playing behavior in real-time, the AE-LSTM
is proposed in the research. Figure 1 depicts the process of
methodology.
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Figure 1: Proposed

3.1 Dataset

The Multimodal Play Behavior Dataset is obtained
[https://www.kaggle.com/datasets/ziya07/multimodal-
play-behavior-dataset/data]. This dataset uses data from
many real-world sensing sources to imitate children's play
behavior. It consists of 12,480 synthetic multimodal time-
series samples representing simulated children aged from
3—-10 years. The dataset includes rich motion, acoustic,
physiological, and contextual sensor streams across five
annotated play behavior categories. The dataset simulates
a naturalistic play environment with varying motion
intensity, social proximity, and expressive characteristics.

Y. Lietal.
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methodology processes

The data was split into 70% training and 30% testing. It
consists of thorough, time-stamped recordings of
children's  vocalizations, body movements, and
physiological conditions through different kinds of play.
The information is arranged in synchronized records that
show a child's vocalizations, body language, and
emotional cues in a natural play environment. To facilitate
research and learning in the fields of education,
psychological development, and intelligent play
circumstances, each entry is assigned a specific category
based on play behavior. There are several key features,
which are represented in Table 2.

Table 2: Significant features determined in the dataset

Features Descriptions

Observations of It comprises motion, auditory, physiological, and physical data that illustrate
Multimodal different facets of play behavior.

Behavior Labels Five categories of play behavior have been identified: Parallel play, cooperative

play, playing alone, aggressive behavior, and inactive play.

Time-Series

Information each record.

Real-time observation is simulated by providing a distinct timestamp from 2024 to

Signals of Emotion
and Interaction

Body posture, verbal activity, social proximity, and emotional markers like heart rate
are all represented by features.

Research-Focus

Established to support the comprehension of behavioral and interpersonal patterns in
child development for educators, researchers, and developers.

3.2 Data preprocessing

The process of converting unprocessed data into a format
that is more appropriate for modeling and evaluation is
known as information processing. Obtained information
requires being cleaned, transformed, and integrated to
enhance its quality and facilitate the system’s
comprehension and processing. It fixes anomalies like
missing data, inconsistencies, and noise to prepare the data

for neural network algorithms. When examining children's
play behavior, data preprocessing is essential. Academics
and professionals acquire more information about the
complicated dynamics of children's play behavior that is
utilized for directing activities, learning techniques, and
child development support. Two preprocessing techniques,
such as Kalman filtering and z-score
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normalization, are employed to evaluate the children's
playing behavior.

3.2.1 Kalman Filtering to reduce noise

A Kalman filtering is an effective data preparation
technique that smooth the noisy sensor streams, such as
motion trajectories, object interactions, and ambient cues
to ensure childrens play behavior. The Kalman filtering is
appropriate for low-power edge devices used in
classrooms or rehabilitation facilities due to its
computational efficiency. The data instance's value is
calculated by the Kalman filter using the observed value
of the present instance and the known estimated value of
the preceding moment. The Kalman filter is a probability
distribution issue that determines the probability of the

future by utilizing probability distribution and prior values.

Using the state space technique, the Kalman filter

fier = Apgr — Az+1|1+1

Ql+1|l+1 = F(ﬁ+1fli1) =F ((Al+1 - Al+1|l+1)(Al+1 - Al+1|l+1)s)

Exploring the position by employing the mathematical
evaluation is presented in Equation (4).

Al+1|l =Ap — ﬂzu + Yy,
4

The expected system state vector at time step [ is
represented by )?741“. The noise process uncertainty is
denoted in Equation (5).

Py =F(w, + wls+1) Q)

-1
Liy,s = Ql+1|lGS(GQz+1|zGS +Qui1)

Livajer = Ligap + Ll+1(Wl+1 - GA1+1|1)

Where, W;,; is a measurement AHW is an
anticipated system’s state vector at time step [, and

3.2.2 Z-score normalization to enhance consistency
The data preprocessing method, Z-score normalization,
frequently referred to as standardization, converts data so
that its mean is zero and its standard deviation is one. In
this procedure, the

data is transformed into a unit variance and positioned at
zero. Equation (9) denotes the z-score calculation.

Z — score = TH

)

Where, A represents the initial value, mean and
standard deviation are represented by y and o.
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characterizes the system's dynamic properties. The filter
operates through two essential steps like prediction and
correction. The state-space model in Equation (1).

Ay = XA+ Y + o
(1)

Where, w; is the process noise or disturbance, 4 is the
actual system state, the state transition matrix is indicated
as XA;, and the control matrix is Yy;, along with the
control variable (ut).

Kalman filter allows the model to estimate child
motion or posture even when sensors momentarily drop,
fluctuate, or report inconsistent values. An error (f,q1)
calculation is indicated in Equation (2), and Equation (3)
represents the uncertainty estimation (Qp11+1)-

2
©)

The covariance matrix of the noise process is
represented by P,,; , whereas the noise process is
represented by w7, ;. Updated covariance is determined in
Equation (6), and the uncertainty measure is calculate.

Qz+1|1+1 = (K- Lz+1G)Q1+1|z
(6)

Where, covariance matrix is Qpq);. It helps to refine
the prediction by using real sensor measurements.
Estimation of Kalman gain and the updated positions are
indicated by Equations (7-8).

(7

(®)

zz+1|z+1 is an assessed state vector of the system with

time step [ + 1.
3.3 Feature extraction
The process of turning incomplete information into a
collection of new, important features that are more
appropriate for predictive algorithms is known as feature
extraction. It intends to enhance model performance,
facilitate data representation, and lower dimensionality.
Alternatively, selecting particular portions of the original
features involves combining or altering existing
characteristics to create new ones. The procedure of
identifying and measuring specific features of a child's
play that are subsequently utilized for evaluation,
categorization, or other uses is known as feature extraction
in terms of children's play behavior. Characteristics of the
play activity, including play category, interactions with
others, involvement level, and physical motions, are
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represented by these features, which are easily obtained
from a variety of data sources, including audio, video
records, and sensor data. The Lightweight ResNet model
is utilized in the research to extract the significant features
from the children’s playing behavior.

3.3.1 Lightweight ResNet model
Based on one of the existing training techniques, the
ResNet50 model is employed in the playing behavior of

Lightweight
ResNet

Y. Lietal.

children assessment. The collection of a pre-trained model
isused to establish a model that fails to comprehend
anything about images. By allowing training with fewer
data sets, ResNet50 reduces the computing expenses. The
ResNet50 model’s input layer is configured to receive
2242241 values from the data set. After the input layer,
the convolution layer’s values are then updated. Figure 2
shows the entire architecture of ResNet50, collectively
with the additional levels.

L
siahe)aseq

Batch
Normalization

Fully
Connected

New Layers

Max Pooling

Fully
Conngcted

o = Children Play
—_— Classification

Behavior

Figure 2: Entire Architecture of ResNet50

The new model is built from the ResNet50 model’s
input, convolution, activation, pool, fully-connected,
softmax, and classification layers. Two new fully
connected layers are generated; batch normalization is
implemented for input values as well as stability and speed
are improved. The output layer’s fully connected structure
uses Softmax activation for data classification. Dropout
prevents the model from remembering training data.

Input Layer: This layer serves as the model’s primary
layer, and this layer’s highest selection of input image sizes
increased the amount of storage needed while extending
the training and testing durations. As a result, all
architectures of the input layer are determined to be 224 *
224 % 1.

Activation Function: The activation layer is another
designation for ReLU. Negative values in the input data
are assigned to zero in the outcome. The network operates
more quickly when its negative dimension value is zero.
This investigation made use of the ReLU activation
function. In Equation (10), the ReLU activation function is
provided.

0,a<0
E(a) = {a,a > 0}

(10)

By enabling its lower computational demands than
other functions, the ReLU layer is more supported.

Layer of Convolution: The foundation of CNN
networks is the convolution layer and also known as the
transformation layer. Convolution is the procedure of
applying filters to all layers. This layer's specified filters
have N X N sizes. Equation (11) provides the convolution
that consist of linear filters.

ji = Z xa); +yji
(11)

Where a represents the input data, (j, i) represents the
pixel point index, [ represents index of the feature map, Z
and y represents weighing parameters, and (g,);;
represents the feature map's output value.

Normalization: The network's efficiency is increased
by the normalization procedure. The data on additional
layers may have different dimensions. According to
Equations (12) and (13), the normalization process is as
follows:

l_F l
il C9)

var(al)+e

(12)

b(l) — y’a’ + Bl
(13)
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Where b® denotes the input's dimension and F(a')
denotes the dimension's average. The definition of the

standard deviation is /Var(al) + €. There are two
learnable variables, y and 3.

Dropout Layer: A lot of data is used in deep learning
to train networks. Therefore, the network has been trained
when the memorization event is possible. It is necessary to
remove certain nodes that stop the network from
memorizing. Implement dropout to enhance network
performance.

Fully-connected Layer: This layer is dependent on
every field of the preceding layer. The Fully Connected
Layer transforms the information from the previous layer
into a one-dimensional matrix structure. There are possible
variations in the variety of entirely interconnected layers
that the architecture utilizes.

Pooling Layer: The input data size reduction and the
computational complexity reduction are the primary
objectives presented in this layer. The N X N size filters
are selected in the pooling layer. The size of the completed
image is determined by pooling, as demonstrated in
Equations (14-16).

T =2z2x%g2xc2
(14)
(z1-e)

X+1

15

z2 =

gl-e
X+1

92 =
(16)

Where z1 represents the input width, g2 is the height,
c1 indicates the image depth, e denotes the dimension of
the filter, X determines the step counts, and the size of the
data is indicated as T. In the suggested architecture, the
pooling layer is maximum pooling.

Softmax Layer: In the classification process, it
generates the probabilistic value using the previous layer’s
output. According to Equation (17), it calculates the values
for every class. These possibilities estimate the classes
using values ranging from 0 to 1.

A%
QWb =ila;z,y) = —T—
z:?I=1E’CPA !
(17)

Where the main class Z and y is a vector of weights.
These processes make use of cross-entropy. Equation (18)
provides the cross-entropy function that is most frequently
used.

CrossEntropy = —Y,Q' (a)LogQ(A)
(18)
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Whereas @ represents the actual production,
Q' represents the expected output. Finally, images are
categorized in the classification layer.

3.4 Assessing the children’s play behavior
through the autoencoder-based long short-

term memory (AE-LSTM)

The integration of AE and LSTM model is used for
analyzing and understanding children’s play behavior. The
AE-LSTM models help to adjust the children's specific
variations by identifying distinctive patterns and
behavioral abnormalities, which is crucial for customized
monitoring and evaluation of children’s. The AE-LSTM
system on edge devices further enhances its practical
utility of computational workload, performed close to the
data source for reducing latency, and enabling real-time
feedback. It makes the ability of the research to identify
patterns in time-series data, such as the play behavior of
children, effective and in real-time. In the AE-LSTM
model, both encoder and decoder weights were jointly
optimized during sequence learning. Two losses were
trained together: (1) the autoencoder’s reconstruction loss
for learning compact temporal representations, and (2) the
Softmax  cross-entropy loss  for  play-behavior
classification. Edge computing ensures to be local, for
eliminating dependence on cloud connectivity and
reducing response time for real-time feedback.
Lightweight ResNet effectively extracts multimodal
features while maintaining computational efficiency. The
AE-LSTM model enhances sequential behavior analysis
by combining dimensionality reduction with robust
temporal modeling.

3.4.1 Long short-term memory (LSTM)

The Recurrent Neural Networks (RNNs) of the LSTM type
are made to recognize and remember long-term
dependencies in sequential input. It manages information
flow through storage cells and gating mechanisms that
make it useful for behavior evaluation tasks that involve
the modeling of time-series data like voice, movement, or
physiological signals from the children during playtime.
Time series data is interpreted using a particular kind of
computer-based RNN architecture called LSTM. RNNs
have difficulty with gradient difficulties and long-term
dependencies, which affects the capacity to accurately
analyze complicated and sequential data on children's play
activity. By utilizing gated memory cells, LSTM addressed
the RNN's gradient difficulties and made it possible to
accurately represent long-term dependencies. The
infrastructure is more capable of detecting irregularities in
assessing the children's behavior during play when the
LSTM architecture is combined with an AE that assigns
significance to important sequences.

As compared to conventional transfer networks,
LSTM's feedback interactions between hidden
components linked to certain time steps allow for the
development of long-term sequence dependency and the
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forecasting of interaction labels determined by the
sequence of previous activities. To address the issue of
diminishing and exploding gradients that occur during the the three gates control the flow of information from and to
training of conventional RNNs, LSTMs were developed. the factor. The LSTM’s single unit is represented in Figure
Updates are made to the data stored in the memory cell of 3.

the LSTM unit through the input, forget, and output gates.
During random intervals, the factor maintains values, and

GS—l

Figure 3: Design of LSTM Unit

Gs-
Q= Sl]

As
GS = G(WG ‘a+ YG)
]S = O'(W] a+ Yl)

RS = G(WR a+ YR)

DS = GS O DS—l + ]S O tanH(WD ra+ YD)

GS = RS @ tanH(Ds)

Where W ,WG,WRG]RD>< 2D gre positioned in
training, the weighted measures and Y}, Yg, YRe]RD
biases of the LSTM are learned, comprising three gates’
transformations. Variable o is the sigmoid function and
element-wise multiplication is represented by ©. The
LSTM cell unit's inputs are contained in the vectors Ag.
The vector of the hidden layer is Zg. After linearizing
the sentence into a vector with a size equal to the
number of class labels, insert the final hidden vector n
to indicate the phrase as a Softmax layer. Class labels
that are neutral, negative, and positive are utilized.

3.4.2 Autoencoder (AE)

To improve proactive children's play behavior in real-
time environments, the AE is used to obtain compact
and resilient representations of time-series play
behaviors. An AE is ideal for this task. It encodes the
input sequences into a compact latent space while
removing inconsequential information, and then
recovers the original input data while reducing

Following Equations (19-24) is an approach to
computing each cell in an LSTM.

(19)
(20)
@)
(22)
(23)

24

reconstruction loss via the decoding structure. The AE's
efficient representation allows it to catch hidden
patterns, which can be useful in spotting performance
abnormalities. The technique is divided into three
stages: encoding the input into a compressed latent
space, decoding it to rebuild the input, and decreasing
reconstruction loss.

Encoding: To encode high-dimensional input for
assessing the children's play behavior in real-world
environments, the encoder maps the input vector x €
R™ into a compressed latent representation h. It is
achieved using Equation (25).

h = fi(wix + b;) (25)

The encoder weights and biases are denoted by wi
and b;, respectively, while the activation function is
represented by f;. This stage removes inconsequential
differences while preserving fundamental structural
elements.
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Decoding: The decoder remaps the compressed
representation into a reconstructed input X to recognize
children's play behavior. This transformation is
represented as follows in Equation (26).

£ = fo(w;h + b)) (26)

Where w; and b; are the weights of decoders and
bias, and the activation function (f;) is applied to
reconstruct the input structure.

Reconstruction Loss: In quantifying reconstruction
deviations for assessing children's play behavior in real-
world conditions, the model computes loss (L) between

1 N

X; = ~Xn=1l% — x|, wheren =
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inputs x and its reconstruction ¥ as indicated by
Equation (27).

L(x = £) = = 5h 1% — x| @7

Where, x is the actual input data disregarding the
observed system behavior X is the reconstructed output
from the autoencoder, and n is the quantity of training
illustrations. The loss function supports quantifying
differences between actual and predicted behavior,
enabling the detection of children's play behaviors
relatively earlier than otherwise observable. This is
refined by a position-aware formulation, Equation (28).

N+1

o N+l
ifi< .

N+1 (28)

n—i+1 lfl>T

Variable x; represents reconstruction error for the i
model, and X; is the predicted rate, n is the total
sequence length, and N is adjusted per contextual
importance over time. This weighted-based mechanism
is validated by providing attention to children's play
behavior in real-world circumstances. Overall

reconstruction loss across time series is presented by
Equation (29).
loss = %Z?’zl x; (29)
Where, x; is the reconstruction loss and N is the

full sequence length. Algorithm 1 shows the AE-LSTM
algorithm.

Algorithm 1: AE-LSTM

Input:
D = {Training,Validation, Test} datasets
Model Parameters:
Encoder: wi, bi
Decoder: wj, bj
LSTM gates:
W_G,W_J,W_R,W_D
Y GY_JYRYD
Hyperparameters:
Ilr,epochs, batch_size, clip_norm, patience
Initialize:
optimizer « Adam({all parameters},Ir)
best_val_loss « oo
no_improve « 0
Function Encode(x):
Fort = 1..N:
h_t « fl(wi * x[t] + bi)
return{h_1 ... h_N}
Function LSTM_Forward(H):
Z0 < 0;D0«<0
ForS = 1..N:
a « concat(Z_(S —1),H[S])
G_S « sigmoid(W_G * a + Y_G)
J_.S « sigmoid(W_J x a + Y_])
RS « sigmoid(W_R x a + Y_R)

DS « (SO D(S—1) + (S O tanh(W_D * a + Y_D))

ZS « RS © tanh(D_.S)
returnZ_S,{Z_1 .. Z_N},{D_1 ... D_N}
Function Decode(H):
Fort = 1..N:
x_hat_t « f2(wj = H[t] + bj)
return {x_hat_1 ... x_hat_N}
Function Position_Aware_Loss(x,x_hat):
N « length(x)
loss_sum « 0
Fori = 1..N:
ifi < (N+1)/2:
ni«< N
else:
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nieN-I+1
e_i « mean(|x_hat[i] — x[i]])
xi e (1/ni) *el
loss_sum « loss_sum + x_i
return loss_sum / N
Training Loop:
For epoch = 1 ...epochs:
Shuffle Training data
For each batch B:
X_batch « inputsinB
For each sequence x in X_batch:
H « Encode(x)
Z_final,Z_seq,D_seq < LSTM_Forward(H)
x_hat < Decode(H)
L_seq « Position_Aware_Loss(x,x_hat)
Accumulate L_seq
batch_loss « mean(L_seq)
optimizer.zero_grad()
Backprop(batch_loss)
Clip_Gradients(all_parameters, clip_norm)
optimizer. step()
val_loss « Evaluate(D.Validation)
If val_loss < best_val_loss:
best_val_loss < val_loss
Save_Checkpoint(model_parameters)
no_improve « 0
Else:
no_improve « no_improve + 1
If no_improve = patience:
Break
Evaluation (Test Phase):
Load_Checkpoint(best_model)
For each sequence x in Test set:
Compute Encode — LSTM_Forward — Decode
Compute Position_Aware_Loss
Return final test_loss and metrics
Final Evaluation:
Load best checkpoint
test_loss, test_metrics = Evaluate(D_test,model_parameters)
RETURN best_model, test_loss, test_metrics
Procedure Evaluate(D_split, params):
Set model to eval mode (disable dropout, etc.)
losses =[]
pred_labels = [],true_labels = []
FOR each sequence x (and optionally y) in D_split:
compute x_hat_seq and final hidden Z_final (no gradient)

Y. Lietal.

compute per — sequence position — aware loss x_i as in training

seq_loss = mean_over_i(x_i)
append seq_loss to losses
IF labels present:
logits = Linear(Z_final)
y_pred_label = argmax(softmax(logits))
append y_pred_label to pred_labels
append y to true_labels
avg_loss = mean(losses)
IF labels present:
metrics = compute_metrics(true_labels, pred_labels)
ELSE:
metrics = {}
RETURN avg_loss, metrics

Learning compact, sequential representations of
temporal data while capturing long-range dependencies is
accomplished with AE-LSTM. This research allows for
real-time monitoring of children's play behavior by
encoding multimodal sensor inputs and decoding patterns

to accurately identify social interactions, activity
categories, and emotional states in dynamic and noisy
conditions. Several hyperparameters utilized in the
research are explored in Table 3.
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Table 3: Hyperparameters and Values for AE-LSTM model configuration

Training Learning Batch Latent LSTM Dropout Sequence
Epochs Rate Size Dimension (AE) | Hidden Units Rate Length

10 Epochs 0.001 32 32 64 0.1 30

20 Epochs 0.001 32 48 96 0.15 40

30 Epochs 0.001 64 64 128 0.20 50

40 Epochs 0.0008 64 64 128 0.25 60

50 Epochs 0.0005 64 64 128 0.30 60

4 Experimental results

The research intended to provide a real-time assessment of
children's play behavior. The following phases provide a
detailed explanation of the research results. The proposed
platform is designed to run on lightweight edge devices,
which minimizes hardware cost and eliminates the need
for high-performance servers. Sensors such as RGB-D
cameras, wearable units, and microphones are selected
based on low-power, commercially available modules to
ensure affordability for classrooms and homes.

4.1 Evaluation criteria

This evaluation criteria section provides the evaluation
outcomes of the proposed AE-LSTM method in various
feature parameters like hesart rate distribution through
play behavior, skin temperature during activity levels,

130

120

heart_rate

comparison of heart rate and activity levels, evaluation of
activity level and proximity to peers, pitch mean and
standard deviation distributions, and physiological signals
distribution. The discussion below discusses the
evaluation features of the proposed AE-LSTM approach.

Figure 4 represents the engagement and feedback
relevance of children play behavior. It indicates the median
and variable heart rates, providing information about how
the body responds to various forms of play. The AE-LSTM
model uses temporal patterns in multimodal data including
heart rate, posture, speech tone, and motion to classify and
interpret play behavior dynamically. It helps to
physiological variation across spontaneous play states. By
using the information to track mental and physical states,
the Al platform provides real-time feedback while playing
and correlates internal signals with behavior.

2 3 4

play_behavior

Figure 4: Engagement and feedback relevance of children play behavior

Depending on the type of play, heart rates might vary
from 85 to 145 beats per minute. Running and other high-
intensity activities exhibit median heart rates of about 130
bpm, whereas peaceful play activities have median heart
rates of about 90 bpm. The inference of tension or
excitement in real time is influenced by the values. The Al
model's physiological-behavioral mapping is improved by
significant interquartile ranges, which show behavioral
variability.

Skin Temperature during Activity Levels: Figure 5
shows how children's skin temperatures change with
different degrees of activity. Increased physical effort or
emotional stimulation is frequently indicated by elevated
temperatures. The AE-LSTM model model leverages
temporal patterns in multimodal data including skin
temperature to classify and interpret play behavior in real
time. To determine emotional states, wearable sensors
capture these physiological signals and incorporate them
into the platform. This allows for real-time behavior
classification and adaptive feedback.
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Skin Temperature (°C)

Y. Lietal.

Activity Level

Figure 5: Evaluation of skin temperature through activity levels

Skin temperatures range from 32.0 to 36.5°C. The
median temperature is near 36.0°C for high activity levels
and closer to 33.5°C for passive behavior. Emotional
changes or exertion are reflected in fluctuations. The
adaptive feedback loop for children's comfort and stress
detection is supported by these physiological readings,
along with motion information for contextual behavior
recognition.
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Figure 6 depicts the bubble plot of physiological-
behavioral mapping, which is categorized by color
according to various play behaviors. The AE-LSTM
model used to enhance the subtle temporal patterns that
differentiate between levels of spontaneous play. It
shows how multimodal physiological and behavioral

information is wused to enhance the cognitive
performance.
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Figure 6: Bubble plot of physiological-behavioral mapping

There is a positive correlation between heart rate (85—
145 bpm) and activity level (range: 0—10). Claiming and
other play behaviors show top-right clustering (activity >
8, heart rate > 130 bpm), whereas quiet activities are
located close to the origin. Physiological-kinematic
synchronization is improved by the connection in the
classification of multimodal behavior.

Activity Level and Proximity Peers: The connection
between children's levels of activity and the way they are

connected to their classmates is demonstrated in Figure 7.
The AE-LSTM model learns temporal and spatial patterns
to infer behavioral states in real time. By showing how the
social and physical aspects of play co-vary, expose
behavioral clusters that could represent cooperative,
solitary, or transitional play styles. It allows the Al to
identify social involvement levels in real time.
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Figure 7: Results of activity levels and proximity peers

The range for proximity is 0.5-3.0 meters, while the
range for activity level is 0-10. Activity > 7 and high
densities at <1.5 m proximity indicate active, social play.
Solitary or passive intervals are highlighted by sparse areas
over long distances and low activity levels. Based on the
outcomes, the platform categorizes different kinds of
interactions, such as self-sustaining and collaborative.

Physiological Signals Distribution across play
behavior types was illustrated in Figure 8.The AE-LSTM

120

heart_rate
)
o

80

i)

34 36 38 50
skin_temp

network leverages inputs to model temporal dependencies
and reconstruct latent behavioral patterns. By capturing
both individual and joint distributions of physiological
metrics, the system enhances its ability to infer emotional
and physical engagement levels. Significant differences in
physiological indicators associated with various play
behaviors are revealed by the diagonal plots, which show
the kernel density calculation of all characteristics by
behavior type.

play_behavior
®

e 000
AWN=2O

100
heart_rate

150

Figure 8: Physiological signals distribution across play behavior types

Five play behavior classes' relationships between skin
temperature (34-38°C) and heart rate (60—150 bpm) are
presented. There is a unique physiological characteristic
for every behavior determined in the results. Behavior 0 is
linked to higher heart rates, although behavior 2 leads to
lower temperatures.

Pitch Mean and Standard Deviation Distributions:
Pitch mean and pitch standard deviation distributions from
children's speech data are displayed in Figure 9. By

capturing both central tendency and variability in pitch, the
system can detect shifts in emotional tone and engagement.
This visualization shows how speech-based metrics enrich
the system’s ability to interpret and support child
development through intelligent, responsive play
environments. These audio features support real-time Al
analysis by assisting in the inference of behavioral and
emotional cues during play.
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Figure 9: Determination of mean and standard deviation distributions

The voice pitch varies during play, as indicated by the
pitch mean, which varies from roughly 75 Hz to 310 Hz.
The pitch standard deviation (pitch_std) shows constant
patterns of wvocal variability, remaining densely
emphasized between 5 Hz and 15 Hz.

Table 4 presents the performance of different models'
confidence intervals. The confidence intervals further
confirm the statistical reliability of these results,
highlighting AE-LSTM’s superior consistency and
effectiveness. AE-LSTM outperforms all other models,
achieving the highest scores in all metrics, indicating
robust and reliable predictions.

Table 4: Evaluation metrics of AE-LSTM and baseline models confidence intervals

Model Accuracy (95% CI) Precision (95% Recall (95% F1-score (95%
Cl) Cl) Cl)
AE-LSTM 0.968 —0.982 0.960 - 0.976 0.956 —0.972 0.950 - 0.968
LSTM 0.833 — 0.865 0.819 - 0.851 0.805 — 0.839 0.811 —0.845
GRU 0.816 —0.848 0.800 — 0.834 0.788 — 0.822 0.794 - 0.828
BiLSTM+Attention 0.857 — 0.887 0.844 - 0.874 0.835 — 0.867 0.840 — 0.870

Table 5 presents the results of significance testing for
the AE-LSTM model across using a significance level.
These results confirm that the observed performance of the

AE-LSTM model demonstrates robust and reliable
predictive capability across all evaluated metrics.

Table 5: Statistical significance analysis of AE-LSTM performance metrics

Metric AE-LSTM Value (p) z-Statistic p-Value Significance
(a=10.05)
Accuracy 0.975 42.31 p <0.0001 Significant
Precision 0.968 41.28 p <0.0001 Significant
Recall 0.964 40.74 p < 0.0001 Significant
F1-Score 0.959 40.07 p <0.0001 Significant

4.2 Comparison phases

The research compares the proposed AE-LSTM method
with various existing techniques, such as Gated Recurrent
Unit (GRU) [22], Bidirectional LSTM (BiLSTM) [22],
and BiLSTM+Attention [22], to assess the playing

behavior. Table 6 determines the comparison evaluation of
proposed and existing methods with F1-score, precision,
recall and accuracy. The performance matrix's formula and
definitions are provided in Table 7.
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Table 6: Formulas and definitions of performance matrices

Metrics Definitions Equations
The proportion of accurate true positive and true TP+TN
Accuracy . —_—
negative forecasts overall. TP+TN+FP+FN
.. It is a proportion of real positive forecasting over TP
Precision . .
all the positive predictions. TP+FP
The percentage of real positive cases that a
o e . .. TP
Recall prediction model accurately classifies as positive =
is known as recall.
It is the harmonic mean of precision and recall. It PrecisionxRecall
F1 Score . 2X——
measures the balance between both metrics. Precision+Recall
Table 7: Comparison of outcomes of AE-LSTM and exiting methods
Models Accuracy | Precision | Recall | F1 — score
LSTM [22] 0.849 0.835 0.822 0.828
GRU [22] 0.832 0.817 0.805 0.811
BiLSTM+Attention [22] 0.872 0.859 0.851 0.855
AE-LSTM [Proposed] 0.975 0.968 0.964 0.959
1.0
0.8
oy
S oeq
=
Q
& 04-
0.2
0.0 T T T T T
LSTM [22] GRU[22]  BILSTM+Attention AE-LSTM
[22] [Proposed]
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Figure 10: Outcomes of the accuracy metric in play behavior

Figure 10 depicts the outcomes determined by the
accuracy. The proposed AE-LSTM approach provides an
accuracy of 0.975, whereas GRU shows 0.832 accuracy,
BiLSTM+Attention has 0.872, and LSTM provides 0.849

accuracy. Based on the results, the proposed AE-LSTM
method has a high accuracy to compact latent
representations from multimodal play behavior data and to
effectively capture physiological signal distributions.
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Figure 11: Result of play behavior with precision

Figure 11 shows precision findings. Existing methods
provide precision outcomes (LSTM has 0.835,
BiLSTM+Attention has 0.859, and GRU has 0.817). The
precision of the AE-LSTM method is 0.968, and it

Recall

0.4

0.2+

0.0

indicates that the AE-LSTM technique has more efficiency,
and reliability in children’s play behavior than other
existing models.

T
LSTMI22]

T
GRuU[22]

- -
BiLSTM+Attention AE-LSTM
122 [Proposed]

Models

Figure 12: Visual depiction of recall results

Figure 12 demonstrates the results of recall. The
proposed AE-LSTM approach indicates essential results in
terms of recall (0.964), indicating its strong capability in
accurately identifying children's play behavior pattern.

1.0

F1-Score

Outcomes of the research demonstrate that the proposed
AE-LSTM approach is more significant with a recall result
the existing techniques like GRU (0.805), LSTM (0.822),
and BiLSTM+Attention (0.851).

LsTmpz) Gruz2)

BILSTM+Attention AE-LSTM
122] [Proposed]

Models

Figure 13: Evaluation outcomes of F1-score

Estimation of the F1-score is displayed in Figure 13.
The AE-LSTM method has a 0.959 Fl-score,
BiLSTM+Attention has 0.855, GRU has 0.811, and LSTM
has a 0.828 Fl-score. The proposed AE-LSTM method

explores superior results compared to the traditional
approaches, as determined by the research findings. By
effectively modeling temporal patterns and physiological
signal distributions, the AE-LSTM captures subtle
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behavioral
classification.

Assessing the behavior of playing children was the
focus of the research. The evaluation of the research
compared the proposed method with existing techniques,
and certain limitations were observed in the existing
methods in assessing the play behaviors. The LSTM [22]
model might have trouble in recognizing long-range
temporal connections. The computing capacity of edge
devices could limit the accuracy of real-time inference and
model complexity. The computational depth of GRU [22]
was insufficient to capture complex temporal connections.
Although it has superiority in contextual training, BILSTM
[22] was less appropriate for real-time applications due to
its increased computing complexity and latency. The
BiLSTM+Attention [22] raises attention on vital features,
whereas it was expensive for edge distribution and issues
from over-fitting with small training data. These models
have a general difficulty with dynamic and natural
environments in children's play. Our system balances
latency, memory usage, and real-time processing by
deploying lightweight ResNet feature extraction and the
AE-LSTM architecture directly on edge hardware. Unlike
GRU, LSTM, or BiLSTM-Attention models, the AE-
LSTM compresses multimodal inputs into compact latent
representations, reducing memory load while maintaining
strong temporal modeling. Because computation occurs
locally, inference latency is significantly lower than cloud-
based models, enabling immediate feedback. Existing
observation methods for children's play are largely manual,
subjective, and unsuitable for real-time interpretation. To
address these shortcomings, the proposed AE-LSTM
model enhances the real-time understanding of children’s
natural play. The AE model helps to compress and denoise
multimodal features, whereas LSTM captures temporal
patterns and emotional cues. Overall, the conceptualized
model AE-LSTM will facilitate a real-time analysis of
complex sensory play behavior, which provides robust
temporal modeling.

variations,  enabling more accurate

5 Conclusions

1.The purpose of the research was to create and implement
a multimodal sensor and feedback platform by utilizing
edge computing and real-time Al to monitor, evaluate, and
assist children's play behavior. The multimodal play
behavior dataset with various sensors was obtained for the
performance. Kalman filtering and normalizing techniques
were used to pre-process data to increase consistency and
minimize noise. Real-time behavior analysis was
performed with an AE-LSTM network, while feature
extraction was accomplished with a Lightweight ResNet
model. To provide low-latency processing, local data
storage, and privacy protection, the entire system has been
deployed on edge devices. To increase engagement, the
device provided real-time input via physical and visual
signals. According to the experimental results, play
behavior classification, emotional state detection, and peer
interaction identification were all achieved with highly
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accurate results. Comparison of the proposed method
demonstrates significant results in terms of accuracy
(0.975), precision (0.968), recall (0.964), and F1-score
(0.959). A real-time interpretation of children’s play
behavior, the proposed model supports educators in
understanding engagement levels, social interaction
patterns, and emotional cues during learning activities.
Therapists gain continuous behavioral monitoring that
supports early detection of developmental needs.
Researchers benefit from reliable, unobtrusive multimodal
analytics that capture natural play behavior accurately.

5.1 Limitations and future scopes

Children's behavior variability, sensor position limitations,
and the requirement for frequent validation in dynamic
playing environments limit the system's efficacy. The
scalability of the system across different cultural or
contextual settings remains challenge, which could affect
its generalizability. The long-term deployment feasibility,
include issues like battery life, device comfort, and overall
cost, which are essential for practical implementation.
Additionally, it collects sensitive data from children,
ethical and privacy considerations lead to potential risks.
Adaptability in a variety of play environments, emotional
recognition skills, and the incorporation of adaptive
learning models will represent the main areas of future
research. To assess the platform's scalability and
developmental impact in larger educational or clinical
contexts, further long-term investigations are needed.
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