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Children’s play is a fundamental activity that supports emotional, cognitive, and social development. 

However, capturing and analyzing play behavior in real time is challenging due to its spontaneous, 

multimodal, and dynamic nature. Traditional observation methods are time-consuming, subjective, and 

lack real-time responsiveness. This research aims to design and implement a multimodal sensing and 

feedback platform that leverages edge computing and real-time Artificial Intelligence (AI) to monitor, 

interpret, and support children’s play behavior. The platform collects multimodal play behavior datasets 

from various sensors, including action and posture recognition, microphones for speech and voice tone 

analysis, motion sensors to track physical activity, and wearable devices. An Autoencoder-based Long 

Short-Term Memory (AE-LSTM) network is used to analyze behavior in real time. Feature extraction is 

performed using a lightweight ResNet model to extract features. Data is pre-processed using Kalman 

filtering and normalization techniques to reduce noise and improve consistency. The entire system is 

deployed on edge devices to ensure low-latency processing, local storage, and privacy preservation. The 

system also provides real-time feedback through visual and haptic cues to enhance engagement. 

Implemented in Python, experiments have demonstrated that the proposed AE-LSTM model outperforms 

baseline architectures like LSTM, GRU, and BiLSTM+Attention, and the proposed model achieves higher 

results according to the F1-score (0.959), accuracy (0.975), recall (0.964), and precision (0.968). These 

findings offer robust performance in naturalistic settings and provide valuable applications for educators, 

therapists, and researchers who intend to support and understand child development through intelligent, 

responsive play environments. 

Povzetek: Razvita je bila večmodalna robna AI-platforma za sprotno spremljanje in analizo otroške igre 

z namenom podpore otrokovemu razvoju. 

 

1  Introduction 
Playing is one of the most important childhood activities 

and the fundamental setting for young children's learning. 

Parents are crucial in supporting, guiding, and scaffolding 

children's play, and investigations showed that parent-

child play is associated with kids' social competence and 

pro-social skill development [1]. Play has been described 

as self-motivated, player-controlled, process-oriented, 

compared to product-focused, non-literal, lacking rules 

imposed from outside, and involving active player 

participation. Play is a crucial component of the childhood 

curriculum as an educational resource for young children, 

with consequences for both academic and social-

emotional growth [2]. Play enables children to develop 

cognitive abilities, language abilities, executive functions, 

and socio-emotional competency. Children's play 

behaviors represent the social-emotional growth, 

persistence, imagination, and inventiveness [3]. Primary 

behavior in society is exhibited through play and games; 

children improve their social abilities with other children. 

Children with disabilities need play behavior to maintain 

or improve social abilities [4]. Children's physical play, 

like running, jumping along with time spent outside, is a 

form of physical activity that assists in preventing obesity 

while supporting the mental and physical wellness of the 

children [5]. A range of social, cognitive, and 

physical/locomotor skills that children exercise during 

play is used to classify play behavior. The emphasis on 

play behaviors contributes to cognitive skill development 

[6]. The development and application of societal abilities 

and interests suffer significantly in children with illness, 

which can impact the social interactions and potentially 

lead to anxiety. Children's flexibility and satisfaction are 

emphasized through playtime. Specifically, 16% of young 

children's device usage is spent playing digital games. 

Twenty-three minutes per day on average are used for 

playing the games on a computer, tablet, Smartphone, or 

compact video game console [7]. The unlimited 

possibilities that the real-world circumstances compared 

with constructed circumstances are designed with 

particular objective, which are the contributing factors of 
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children [8]. The following requirements require being 

exceeded for an activity to be perceived as playful include 

enjoyment, active participation, significance or pertinence, 

social interaction, and repetition and diversity. 

Incorporating play into a process provides the greatest 

developmental benefits for young kids, and not all 

qualities are necessary for activities considered playful [9]. 

The play environment's physical attributes and materials 

provide more impact on playing behaviors. A variety of 

playing alternatives that are difficult to replicate indoors 

are provided by the distinct qualities and pressures of 

outdoor play areas [10]. 

1.1 Problem statement 
Current advancements in AI-driven child behavior 

monitoring have greatly enhanced multimodal play data in 

real time. Nevertheless, several vital limitations exist in the 

current literature, which frequently fail to capture the 

spontaneous and dynamic nature of children’s play, and 

maintaining privacy when analyzing sensitive behavioral 

information. The SOOPEN model relies heavily on 

manual observation, making it vulnerable to observe bias 

despite with high reliability scores. The utilization of class 

groups during observation might limit unplanned natural 

play behavior, which might affect the outcomes. The DNN 

model was capable of classifying CT characteristics, its 

practical value was limited. The DNN model fails to 

support the educators incorporated in actual classroom 

procedures. The small-sized dataset further limits its 

efficiency by the model's scalability, robustness, and 

classification findings. To address these problems, the AE-

LSTM approach was used to accurately capture, analyze, 

and interpret children's play behavior in real time. An AE-

LSTM model is used to manage diverse sensor inputs and 

ensure high-fidelity semantic understanding. The 

proposed solution supports real-time feedback and 

informed decision-making across educational, therapeutic, 

and developmental settings. 

1.2 Aim and contributions of this research 
The aim of this research is to design and implement a real-

time, intelligent multimodal sensing and analysis platform 

capable of accurately monitoring children’s play behavior 

in naturalistic environments by Autoencoder-based Long 

Short-Term Memory (AE-LSTM) model. The AE-LSTM 

model helps to learn compact representations and capture 

temporal dependencies in play sequences. The suggested 

model is deployed on edge devices, thus supporting 

privacy-preserving, real-time decision-making. The AE-

LSTM model helps to identify emotional states, and social 

interactions of children’s. 

❖ The platform gathers information from a variety 

of sensors, such as movement sensors to track activity 

levels, microphones to analyze speech and voice tones, 

RGB-D cameras to recognize posture and action, and 

wearable technology that tracks physiological indicators 

like skin temperature and heart rate to determine emotional 

states. 

❖ The obtained data are preprocessed by the 

Kalman filter and z-score normalization for noise 

reduction and consistency enhancement. Whereas, 

essential features are extracted through the Lightweight 

ResNet model. 

❖ Effective performances of the playing behavior 

of the children are assessed by the AE-LSTM. According 

to experimental results, play behavior classification, 

emotional state detection, and social interaction 

identification were all accomplished with high accuracy. 

2  Relevant articles 
Using a group dynamics approach, the System for 

Observing Outdoor Play Environments in Neighborhood 

(SOOPEN) tool to evaluate school-aged children's play 

behavior and calculate its inter-observer reliability was 

developed [11]. Based on two thorough observation 

devices, SOOPEN was evaluated at eleven elementary 

schools. All variables showed strong consistency between 

observers, according to Kendall's tau b (τb > 0.7, p values 

< 0.05). Children had limited access to play in specific 

areas while in class groups. 

The impact of emotional coaching and distraction 

techniques used by teachers on continuous development of 

societal and non-societal play behaviors was investigated 

[12]. 275 instructors and 487 children from 123 classrooms 

across 56 facilities were obtained. According to the 

findings, emotion coaching contributed to a sharper 

reduction in nervous behavior and a sharper increase in 

social play. The analysis did not provide direct 

comparisons across teachers from various cultural 

backgrounds. 

Considering a specific emphasis on the nature of play, 

game creation and participants acting as facilitators in the 

play, the research [13] investigated the socio-dramatic play 

occurring in an early childhood educational environment. 

Results indicated that a key component of classroom play 

culture was that children established games with standards. 

The major limitation was that it was conducted with only 

10 children from a single classroom. 

Based on a seven-month ethnographic investigation, 

the exploration [14] described the efficiency of a robot that 

was implemented with two primary education children 

within the ages 1 − 2  and  3 − 5 . To investigate the 

efficiency of the children’s play with the robot, it 

descriptively combined the structure with qualitative 

interviews ( 𝑛 =  6 ) for children's play evaluation. 

However, only two distinct case groups were included in 

the limitations observed in the research. A summary of 

related works on Children’s Play Behavior is illustrated in 

Table 1.    
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Table 1 Summary of literature review on children’s play behavior and AI-based interaction systems

Ref Technology 

Used 

Objective Result Challenges / 

Limitations 

[15]  Deep Neural 

Network 

(DNN) 

To examine children's 

multimodal video-

based Computational 

Thinking (CT) 

AI models could classify 

numerous CT features, 

acting as an alternative 

team member in 

assessment 

Lacked the ability to 

create an ML model to 

assist humans; provided 

limited data 

[16] Comparative 

observation 

Compare screen time 

and playtime of 

preschool-aged 

children before and 

during COVID-19 

Significant variations in 

screen time and playtime 

between weekdays and 

weekends (playtime: 3.55 

± 2.49 vs. 4.11 ± 2.58 h) 

Findings limited to 

parents and children; 

not generalizable to 

other populations 

[17]  AI-based 

educational 

games 

To personalize 

educational game 

boundaries with player 

assessment identity 

Instantaneous updates of 

game components; 

children performed more 

effectively 

Lack of modifications 

despite positive results; 

limited pattern 

identification 

[18]  Micro-

longitudinal 

observation 

Observe media 

influence on 150 

children’s play in a 

museum 

Emotional and social 

expression of children not 

significantly influenced by 

screens integrated into 

monitors 

Fails to provide 

continuous implications 

on children’s play areas 

[19]  Machine 

Learning 

(ML) 

To identify and protect 

against child predatory 

behavior in online 

games 

Examined risks children 

faced while playing online 

video games 

Lacked coordinated 

responses to protect 

children using various 

digital platforms 

[20] 

 

Observational 

study, 

Executive 

Function (EF) 

To investigate the 

relationship between 

play behaviors and EF 

components 

EF development and play 

behavior were related 

Due to Small sample 

size (97 children) lacks 

findings 

[21]  Motor skill 

protocol / 

observational 

To investigate 

connections between 

preschoolers’ break 

behaviors and 

Foundational 

Movement Skills 

(FMS) 

The motion time 

negatively correlated with 

total/locomotor skills; 

play without tools 

positively associated with 

other play behaviors 

Focused on limited 

FMS types; 

observational and 

correlational findings 

only 

[22]  Bi-directional-

LSTM-

Attention 

Play behavior 

modeling and 

interaction system 

optimization in games 

Outperformed traditional 

models in accuracy, click 

precision, response delay, 

and user satisfaction; 

improved adaptability and 

smoothness 

Requires large-scale 

datasets; high 

computational 

requirements; 

implementation limited 

to gaming context 

3  Research methodology 
The use of multimodal sensing and edge AI technology, the 

research aims to develop a smart, real-time platform that 

monitors and supports children's play behavior. The 

research obtains the multimodal play behavior dataset.  

The obtained data are preprocessed through the Kalman 

filter to reduce noise in the obtained information, and the 

z-score normalization is used to enhance the consistency 

of the data through the normalization process. The 

Lightweight ResNet approach is employed to extract the 

significant information from the processed data. To assess 

the children’s playing behavior in real-time, the AE-LSTM 

is proposed in the research. Figure 1 depicts the process of 

methodology. 
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Figure 1: Proposed methodology processes 

3.1 Dataset 
The Multimodal Play Behavior Dataset is obtained 

[https://www.kaggle.com/datasets/ziya07/multimodal-

play-behavior-dataset/data]. This dataset uses data from 

many real-world sensing sources to imitate children's play 

behavior. It consists of 12,480 synthetic multimodal time-

series samples representing simulated children aged from 

3–10 years. The dataset includes rich motion, acoustic, 

physiological, and contextual sensor streams across five 

annotated play behavior categories. The dataset simulates 

a naturalistic play environment with varying motion 

intensity, social proximity, and expressive characteristics. 

The data was split into 70% training and 30% testing. It 

consists of thorough, time-stamped recordings of 

children's vocalizations, body movements, and 

physiological conditions through different kinds of play. 

The information is arranged in synchronized records that 

show a child's vocalizations, body language, and 

emotional cues in a natural play environment. To facilitate 

research and learning in the fields of education, 

psychological development, and intelligent play 

circumstances, each entry is assigned a specific category 

based on play behavior. There are several key features, 

which are represented in Table 2. 

Table 2: Significant features determined in the dataset 

 

Features Descriptions 

Observations of 

Multimodal 

It comprises motion, auditory, physiological, and physical data that illustrate 

different facets of play behavior. 

Behavior Labels 
Five categories of play behavior have been identified: Parallel play, cooperative 

play, playing alone, aggressive behavior, and inactive play. 

Time-Series 

Information 

Real-time observation is simulated by providing a distinct timestamp from 2024 to 

each record. 

Signals of Emotion 

and Interaction 

Body posture, verbal activity, social proximity, and emotional markers like heart rate 

are all represented by features. 

Research-Focus 
Established to support the comprehension of behavioral and interpersonal patterns in 

child development for educators, researchers, and developers. 

3.2 Data preprocessing 
The process of converting unprocessed data into a format 

that is more appropriate for modeling and evaluation is 

known as information processing. Obtained information 

requires being cleaned, transformed, and integrated to 

enhance its quality and facilitate the system’s 

comprehension and processing. It fixes anomalies like 

missing data, inconsistencies, and noise to prepare the data 

for neural network algorithms. When examining children's 

play behavior, data preprocessing is essential. Academics 

and professionals acquire more information about the 

complicated dynamics of children's play behavior that is 

utilized for directing activities, learning techniques, and 

child development support. Two preprocessing techniques, 

such as Kalman filtering and z-score  

https://www.kaggle.com/datasets/ziya07/multimodal-play-behavior-dataset/data
https://www.kaggle.com/datasets/ziya07/multimodal-play-behavior-dataset/data
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normalization, are employed to evaluate the children's 

playing behavior. 

3.2.1 Kalman Filtering to reduce noise 

A Kalman filtering is an effective data preparation 

technique that smooth the noisy sensor streams, such as 

motion trajectories, object interactions, and ambient cues 

to ensure childrens play behavior. The Kalman filtering is 

appropriate for low-power edge devices used in 

classrooms or rehabilitation facilities due to its 

computational efficiency. The data instance's value is 

calculated by the Kalman filter using the observed value 

of the present instance and the known estimated value of 

the preceding moment. The Kalman filter is a probability 

distribution issue that determines the probability of the 

future by utilizing probability distribution and prior values. 

Using the state space technique, the Kalman filter 

characterizes the system's dynamic properties. The filter 

operates through two essential steps like prediction and 

correction. The state-space model in Equation (1).  

 

𝐴𝑙+1 = 𝑋𝐴𝑙 + 𝑌𝜇𝑙 + 𝜔𝑙                                                                                                      

 (1) 

 

Where, 𝜔𝑙 is the process noise or disturbance, 𝐴 is the 

actual system state, the state transition matrix is indicated 

as  𝑋𝐴𝑙 , and the control matrix is  𝑌𝜇𝑙 , along with the 

control variable (𝜇).  

Kalman filter allows the model to estimate child 

motion or posture even when sensors momentarily drop, 

fluctuate, or report inconsistent values. An error ( 𝑓𝑙+1 ) 

calculation is indicated in Equation (2), and Equation (3) 

represents the uncertainty estimation (𝑄𝑙+1|𝑙+1).  

 

𝑓𝑙+1 = 𝐴𝑙+1 − 𝐴̂𝑙+1|𝑙+1                                                                                                            (2) 

 

𝑄𝑙+1|𝑙+1 = 𝐹(𝑓𝑙+1𝑓𝑙+1
𝑆 ) = 𝐹 ((𝐴𝑙+1 − 𝐴̂𝑙+1|𝑙+1)(𝐴𝑙+1 − 𝐴̂𝑙+1|𝑙+1)

𝑆
)                                    (3) 

 

Exploring the position by employing the mathematical 

evaluation is presented in Equation (4). 

 

𝐴̂𝑙+1|𝑙 = 𝐴𝑙+1 − 𝑋𝐴̂𝑙|𝑙 + 𝑌𝜇𝑙                                                                                                   

(4) 

 

The expected system state vector at time step 𝑙  is 

represented by  𝑋𝐴̂𝑙|𝑙 . The noise process uncertainty is 

denoted in Equation (5). 

 

𝑃𝑙+1 = 𝐹(𝜔𝑙 + 𝜔𝑙+1
𝑆 )   (5) 

 

The covariance matrix of the noise process is 

represented by  𝑃𝑙+1 , whereas the noise process is 

represented by 𝜔𝑙+1
𝑆 . Updated covariance is determined in 

Equation (6), and the uncertainty measure is calculate. 

 

𝑄𝑙+1|𝑙+1 = (𝐾 − 𝐿𝑙+1𝐺)𝑄𝑙+1|𝑙                                                                                                 

  (6) 

 

Where, covariance matrix is 𝑄𝑙+1|𝑙. It helps to refine 

the prediction by using real sensor measurements. 

Estimation of Kalman gain and the updated positions are 

indicated by Equations (7-8). 

 

𝐿𝑙+1 = 𝑄
𝑙+1|𝑙𝐺𝑠 (𝐺𝑄𝑙+1|𝑙𝐺

𝑠 + 𝑄𝑙+1)
−1

                                                   (7) 

 

𝐿̂𝑙+1|𝑙+1 = 𝐿̂𝑙+1|𝑙 + 𝐿𝑙+1(𝑊𝑙+1 − 𝐺𝐴̂𝑙+1|𝑙)                                             (8) 

 

Where, 𝑊𝑙+1  is a measurement 𝐴̂𝑙+1|𝑙  is an 

anticipated system’s state vector at time step  𝑙 , and 

𝐿̂𝑙+1|𝑙+1 is an assessed state vector of the system with 

time step 𝑙 + 1. 

 
3.2.2 Z-score normalization to enhance consistency 

The data preprocessing method, Z-score normalization, 

frequently referred to as standardization, converts data so 

that its mean is zero and its standard deviation is one. In 

this procedure, the  

data is transformed into a unit variance and positioned at 

zero. Equation (9) denotes the z-score calculation. 

 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =
𝐴−𝜇

𝜎
                                                                                                                   

(9) 

 

Where, 𝐴  represents the initial value, mean and 

standard deviation are represented by 𝜇 and 𝜎. 

3.3 Feature extraction 
The process of turning incomplete information into a 

collection of new, important features that are more 

appropriate for predictive algorithms is known as feature 

extraction. It intends to enhance model performance, 

facilitate data representation, and lower dimensionality. 

Alternatively, selecting particular portions of the original 

features involves combining or altering existing 

characteristics to create new ones. The procedure of 

identifying and measuring specific features of a child's 

play that are subsequently utilized for evaluation, 

categorization, or other uses is known as feature extraction 

in terms of children's play behavior. Characteristics of the 

play activity, including play category, interactions with 

others, involvement level, and physical motions, are 
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represented by these features, which are easily obtained 

from a variety of data sources, including audio, video 

records, and sensor data. The Lightweight ResNet model 

is utilized in the research to extract the significant features 

from the children’s playing behavior. 

3.3.1 Lightweight ResNet model 

Based on one of the existing training techniques, the 

ResNet50 model is employed in the playing behavior of 

children assessment. The collection of a pre-trained model 

is used to establish a model that fails to comprehend 

anything about images. By allowing training with fewer 

data sets, ResNet50 reduces the computing expenses. The 

ResNet50 model’s input layer is configured to receive 

224,224,1 values from the data set. After the input layer, 

the convolution layer’s values are then updated. Figure 2 

shows the entire architecture of ResNet50, collectively 

with the additional levels. 

 

Figure 2: Entire Architecture of ResNet50 

The new model is built from the ResNet50 model’s 

input, convolution, activation, pool, fully-connected, 

softmax, and classification layers. Two new fully 

connected layers are generated; batch normalization is 

implemented for input values as well as stability and speed 

are improved. The output layer’s fully connected structure 

uses Softmax activation for data classification. Dropout 

prevents the model from remembering training data. 

Input Layer: This layer serves as the model’s primary 

layer, and this layer’s highest selection of input image sizes 

increased the amount of storage needed while extending 

the training and testing durations. As a result, all 

architectures of the input layer are determined to be 224 ∗
224 ∗ 1. 

Activation Function: The activation layer is another 

designation for ReLU. Negative values in the input data 

are assigned to zero in the outcome. The network operates 

more quickly when its negative dimension value is zero. 

This investigation made use of the ReLU activation 

function. In Equation (10), the ReLU activation function is 

provided. 

𝐸(𝑎) = {
0, 𝑎 < 0
𝑎, 𝑎 ≥ 0

}                                                                                                                 

(10) 

 

By enabling its lower computational demands than 

other functions, the ReLU layer is more supported. 

Layer of Convolution: The foundation of CNN 

networks is the convolution layer and also known as the 

transformation layer. Convolution is the procedure of 

applying filters to all layers. This layer's specified filters 

have 𝑁 × 𝑁 sizes. Equation (11) provides the convolution 

that consist of linear filters. 

 

(𝑔𝑙)𝑗𝑖 = (𝑍𝑙 ∗ 𝑎)𝑗𝑖 + 𝑦𝑗𝑖                                                                                                         

(11) 

 

Where 𝑎 represents the input data, (𝑗, 𝑖) represents the 

pixel point index, 𝑙 represents index of the feature map, 𝑍 

and 𝑦  represents weighing parameters, and (𝑔𝑙)𝑗𝑖  

represents the feature map's output value. 

Normalization: The network's efficiency is increased 

by the normalization procedure. The data on additional 

layers may have different dimensions. According to 

Equations (12) and (13), the normalization process is as 

follows:  

 

𝑎𝑙 =
𝑎𝑙−𝐹(𝑎𝑙)

√𝑉𝑎𝑟(𝑎𝑙)+𝜀

                                                                                                                      

(12) 

 

𝑏(𝑙) = 𝛾𝑙𝑎𝑙 + 𝛽𝑙                                                                                                                    

(13) 



 

AE-LSTM-Based Multimodal Sensing System for Real-Time…                                                Informatica 50 (2026) 203–222   209                                                                                                                                            

 

 

Where 𝑏(𝑙)  denotes the input's dimension and 𝐹(𝑎𝑙) 

denotes the dimension's average. The definition of the 

standard deviation is  √𝑉𝑎𝑟(𝑎𝑙) + 𝜀 . There are two 

learnable variables, 𝛾 and 𝛽. 

Dropout Layer: A lot of data is used in deep learning 

to train networks. Therefore, the network has been trained 

when the memorization event is possible. It is necessary to 

remove certain nodes that stop the network from 

memorizing. Implement dropout to enhance network 

performance. 

Fully-connected Layer: This layer is dependent on 

every field of the preceding layer. The Fully Connected 

Layer transforms the information from the previous layer 

into a one-dimensional matrix structure. There are possible 

variations in the variety of entirely interconnected layers 

that the architecture utilizes. 

Pooling Layer: The input data size reduction and the 

computational complexity reduction are the primary 

objectives presented in this layer. The 𝑁 × 𝑁  size filters 

are selected in the pooling layer. The size of the completed 

image is determined by pooling, as demonstrated in 

Equations (14-16). 

 

𝑇 = 𝑧2 ∗ 𝑔2 ∗ 𝑐2                                                                                                                   

(14) 

 

𝑧2 =
(𝑧1−𝑒)

𝑋+1
                                                                                                                             

(15) 

 

𝑔2 =
𝑔1−𝑒

𝑋+1
                                                                                                                              

(16) 

 

Where 𝑧1 represents the input width, 𝑔2 is the height, 

𝑐1 indicates the image depth, 𝑒 denotes the dimension of 

the filter, 𝑋 determines the step counts, and the size of the 

data is indicated as 𝑇 . In the suggested architecture, the 

pooling layer is maximum pooling. 

Softmax Layer: In the classification process, it 

generates the probabilistic value using the previous layer’s 

output. According to Equation (17), it calculates the values 

for every class. These possibilities estimate the classes 

using values ranging from 0 to 1. 

𝑄(𝑏 = 𝑖|𝑎; 𝑍, 𝑦) =
𝐸𝑥𝑝𝐴

𝑆𝑍𝑖

∑ 𝐸𝑥𝑝𝐴
𝑆𝑍𝑖𝑁

𝑖=1

                                                                                             

(17) 

 

Where the main class 𝑍 and 𝑦 is a vector of weights. 

These processes make use of cross-entropy. Equation (18) 

provides the cross-entropy function that is most frequently 

used. 

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑄′
𝑎 (𝑎)𝐿𝑜𝑔𝑄(𝐴)                                                                              

(18) 

 

Whereas 𝑄  represents the actual production, 

𝑄′  represents the expected output. Finally, images are 

categorized in the classification layer. 

3.4 Assessing the children’s play behavior 

through the autoencoder-based long short-

term memory (AE-LSTM) 
The integration of AE and LSTM model is used for 

analyzing and understanding children’s play behavior. The 

AE-LSTM models help to adjust the children's specific 

variations by identifying distinctive patterns and 

behavioral abnormalities, which is crucial for customized 

monitoring and evaluation of children’s. The AE-LSTM 

system on edge devices further enhances its practical 

utility of computational workload, performed close to the 

data source for reducing latency, and enabling real-time 

feedback. It makes the ability of the research to identify 

patterns in time-series data, such as the play behavior of 

children, effective and in real-time. In the AE-LSTM 

model, both encoder and decoder weights were jointly 

optimized during sequence learning. Two losses were 

trained together: (1) the autoencoder’s reconstruction loss 

for learning compact temporal representations, and (2) the 

Softmax cross-entropy loss for play-behavior 

classification. Edge computing ensures to be local, for 

eliminating dependence on cloud connectivity and 

reducing response time for real-time feedback. 

Lightweight ResNet effectively extracts multimodal 

features while maintaining computational efficiency. The 

AE-LSTM model enhances sequential behavior analysis 

by combining dimensionality reduction with robust 

temporal modeling.  

3.4.1 Long short-term memory (LSTM) 

The Recurrent Neural Networks (RNNs) of the LSTM type 

are made to recognize and remember long-term 

dependencies in sequential input. It manages information 

flow through storage cells and gating mechanisms that 

make it useful for behavior evaluation tasks that involve 

the modeling of time-series data like voice, movement, or 

physiological signals from the children during playtime. 

Time series data is interpreted using a particular kind of 

computer-based RNN architecture called LSTM. RNNs 

have difficulty with gradient difficulties and long-term 

dependencies, which affects the capacity to accurately 

analyze complicated and sequential data on children's play 

activity. By utilizing gated memory cells, LSTM addressed 

the RNN's gradient difficulties and made it possible to 

accurately represent long-term dependencies. The 

infrastructure is more capable of detecting irregularities in 

assessing the children's behavior during play when the 

LSTM architecture is combined with an AE that assigns 

significance to important sequences. 

As compared to conventional transfer networks, 

LSTM's feedback interactions between hidden 

components linked to certain time steps allow for the 

development of long-term sequence dependency and the 
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forecasting of interaction labels determined by the 

sequence of previous activities. To address the issue of 

diminishing and exploding gradients that occur during the 

training of conventional RNNs, LSTMs were developed. 

Updates are made to the data stored in the memory cell of 

the LSTM unit through the input, forget, and output gates. 

During random intervals, the factor maintains values, and 

the three gates control the flow of information from and to 

the factor. The LSTM’s single unit is represented in Figure 

3. 

 

Figure 3: Design of LSTM Unit Following Equations (19-24) is an approach to 

computing each cell in an LSTM. 

a = [
GS−1

AS
]                                                                                                                              (19) 

 

GS = σ(WG ∙ a + YG)                                                                                                              (20) 

 

JS = σ(WJ ∙ a + Yi)                                                                                                                 (21) 

 

RS = σ(WR ∙ a + YR)                                                                                                               (22) 

 

DS = GS ⊙ DS−1 + JS ⊙ tanH(WD ∙ a + YD)                                                                         (23) 

 

GS = RS ⊙ tanH(DS)                                                                                                              (24) 

 

Where WJ , WG, WRϵℝD× 2D are positioned in 

training, the weighted measures and YJ,  YE,  YRϵℝD 

biases of the LSTM are learned, comprising three gates’ 

transformations. Variable 𝜎 is the sigmoid function and 

element-wise multiplication is represented by ⊙. The 

LSTM cell unit's inputs are contained in the vectors AS. 

The vector of the hidden layer is ZS. After linearizing 

the sentence into a vector with a size equal to the 

number of class labels, insert the final hidden vector 𝑛 

to indicate the phrase as a Softmax layer. Class labels 

that are neutral, negative, and positive are utilized. 

3.4.2 Autoencoder (AE) 

To improve proactive children's play behavior in real-

time environments, the AE is used to obtain compact 

and resilient representations of time-series play 

behaviors. An AE is ideal for this task. It encodes the 

input sequences into a compact latent space while 

removing inconsequential information, and then 

recovers the original input data while reducing 

reconstruction loss via the decoding structure. The AE's 

efficient representation allows it to catch hidden 

patterns, which can be useful in spotting performance 

abnormalities. The technique is divided into three 

stages: encoding the input into a compressed latent 

space, decoding it to rebuild the input, and decreasing 

reconstruction loss.  

Encoding: To encode high-dimensional input for 

assessing the children's play behavior in real-world 

environments, the encoder maps the input vector 𝑥 ∈ 

𝑅𝑚  into a compressed latent representation  ℎ . It is 

achieved using Equation (25). 

 

ℎ = 𝑓1(𝑤𝑖𝑥 + 𝑏𝑖)    (25) 

 

The encoder weights and biases are denoted by 𝑤𝑖 
and  𝑏𝑖  , respectively, while the activation function is 

represented by 𝑓1. This stage removes inconsequential 

differences while preserving fundamental structural 

elements. 
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Decoding: The decoder remaps the compressed 

representation into a reconstructed input 𝑥̂ to recognize 

children's play behavior. This transformation is 

represented as follows in Equation (26). 

 

𝑥̂ = 𝑓2(𝑤𝑗ℎ + 𝑏𝑗)                 (26) 

 

Where 𝑤𝑗   and 𝑏𝑗  are the weights of decoders and 

bias, and the activation function ( 𝑓2 ) is applied to 

reconstruct the input structure. 

Reconstruction Loss: In quantifying reconstruction 

deviations for assessing children's play behavior in real-

world conditions, the model computes loss (𝐿) between 

inputs 𝑥  and its reconstruction 𝑥̂  as indicated by 

Equation (27). 

 

𝐿(𝑥 − 𝑥̂) =
1

𝑛
∑ |𝑥̂𝑡 − 𝑥𝑡|𝑛

𝑛=1             (27) 

 

Where, 𝑥 is the actual input data disregarding the 

observed system behavior 𝑥̂ is the reconstructed output 

from the autoencoder, and 𝑛 is the quantity of training 

illustrations. The loss function supports quantifying 

differences between actual and predicted behavior, 

enabling the detection of children's play behaviors 

relatively earlier than otherwise observable. This is 

refined by a position-aware formulation, Equation (28). 

 

𝑥𝑖 =
1

𝑛
∑ |𝑥̂𝑖 − 𝑥𝑖|,   𝑤ℎ𝑒𝑟𝑒 𝑛 = {

𝑁            𝑖𝑓 𝑖 ≤
𝑁+1

2

𝑛 − 𝑖 + 1   𝑖𝑓 𝑖 >
𝑁+1

2
          

𝑛
𝑛=1               (28) 

 

Variable 𝑥𝑖 represents reconstruction error for the 𝑖 
model, and 𝑥̂𝑖  is the predicted rate, 𝑛  is the total 

sequence length, and 𝑁  is adjusted per contextual 

importance over time. This weighted-based mechanism 

is validated by providing attention to children's play 

behavior in real-world circumstances. Overall 

reconstruction loss across time series is presented by 

Equation (29). 

𝑙𝑜𝑠𝑠 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1     (29) 

Where,  𝑥𝑖   is the reconstruction loss and 𝑁  is the 

full sequence length. Algorithm 1 shows the AE-LSTM 

algorithm. 

Algorithm 1: AE-LSTM 
𝐼𝑛𝑝𝑢𝑡: 
    𝐷 =  {𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑇𝑒𝑠𝑡} 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 
    𝑀𝑜𝑑𝑒𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 
        𝐸𝑛𝑐𝑜𝑑𝑒𝑟: 𝑤𝑖, 𝑏𝑖 
        𝐷𝑒𝑐𝑜𝑑𝑒𝑟: 𝑤𝑗, 𝑏𝑗 
        𝐿𝑆𝑇𝑀 𝑔𝑎𝑡𝑒𝑠: 
            𝑊_𝐺, 𝑊_𝐽, 𝑊_𝑅, 𝑊_𝐷 
            𝑌_𝐺, 𝑌_𝐽, 𝑌_𝑅, 𝑌_𝐷 
    𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 
        𝑙𝑟, 𝑒𝑝𝑜𝑐ℎ𝑠, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑐𝑙𝑖𝑝_𝑛𝑜𝑟𝑚, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒: 
    𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 ←  𝐴𝑑𝑎𝑚({𝑎𝑙𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠}, 𝑙𝑟) 
    𝑏𝑒𝑠𝑡_𝑣𝑎𝑙_𝑙𝑜𝑠𝑠 ←  ∞ 
    𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ←  0 
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐸𝑛𝑐𝑜𝑑𝑒(𝑥): 
    𝐹𝑜𝑟 𝑡 =  1 … 𝑁: 
        ℎ_𝑡 ←  𝑓1(𝑤𝑖 ∗  𝑥[𝑡]  +  𝑏𝑖) 
    𝑟𝑒𝑡𝑢𝑟𝑛 {ℎ_1 …  ℎ_𝑁} 
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐿𝑆𝑇𝑀_𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝐻): 
    𝑍_0 ←  0 ;  𝐷_0 ←  0 
    𝐹𝑜𝑟 𝑆 =  1 … 𝑁: 
        𝑎 ←  𝑐𝑜𝑛𝑐𝑎𝑡(𝑍_(𝑆 − 1), 𝐻[𝑆]) 
        𝐺_𝑆 ←  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊_𝐺 ∗  𝑎 +  𝑌_𝐺) 
        𝐽_𝑆 ←  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊_𝐽 ∗  𝑎 +  𝑌_𝐽) 
        𝑅_𝑆 ←  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊_𝑅 ∗  𝑎 +  𝑌_𝑅) 
        𝐷_𝑆 ←  (𝐺_𝑆 ⊙  𝐷_(𝑆 − 1))  + (𝐽_𝑆 ⊙  𝑡𝑎𝑛ℎ(𝑊_𝐷 ∗  𝑎 +  𝑌_𝐷)) 
        𝑍_𝑆 ←  𝑅_𝑆 ⊙  𝑡𝑎𝑛ℎ(𝐷_𝑆) 
    𝑟𝑒𝑡𝑢𝑟𝑛 𝑍_𝑆, {𝑍_1 …  𝑍_𝑁}, {𝐷_1 …  𝐷_𝑁} 
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝑒𝑐𝑜𝑑𝑒(𝐻): 
    𝐹𝑜𝑟 𝑡 =  1 … 𝑁: 
        𝑥_ℎ𝑎𝑡_𝑡 ←  𝑓2(𝑤𝑗 ∗  𝐻[𝑡]  +  𝑏𝑗) 
    𝑟𝑒𝑡𝑢𝑟𝑛 {𝑥_ℎ𝑎𝑡_1 …  𝑥_ℎ𝑎𝑡_𝑁} 
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝐴𝑤𝑎𝑟𝑒_𝐿𝑜𝑠𝑠(𝑥, 𝑥_ℎ𝑎𝑡): 
    𝑁 ←  𝑙𝑒𝑛𝑔𝑡ℎ(𝑥) 
    𝑙𝑜𝑠𝑠_𝑠𝑢𝑚 ←  0 
    𝐹𝑜𝑟 𝑖 =  1 … 𝑁: 
        𝑖𝑓 𝑖 ≤  (𝑁 + 1)/2: 
            𝑛_𝑖 ←  𝑁 
        𝑒𝑙𝑠𝑒: 
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            𝑛_𝑖 ←  𝑁 −  𝑖 +  1 
        𝑒_𝑖 ←  𝑚𝑒𝑎𝑛(|𝑥_ℎ𝑎𝑡[𝑖]  −  𝑥[𝑖]|) 
        𝑥_𝑖 ←  (1 / 𝑛_𝑖)  ∗  𝑒_𝑖 
        𝑙𝑜𝑠𝑠_𝑠𝑢𝑚 ←  𝑙𝑜𝑠𝑠_𝑠𝑢𝑚 +  𝑥_𝑖 
    𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑜𝑠𝑠_𝑠𝑢𝑚 / 𝑁 
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑜𝑜𝑝: 
𝐹𝑜𝑟 𝑒𝑝𝑜𝑐ℎ =  1 … 𝑒𝑝𝑜𝑐ℎ𝑠: 
    𝑆ℎ𝑢𝑓𝑓𝑙𝑒 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 
    𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑏𝑎𝑡𝑐ℎ 𝐵: 
        𝑋_𝑏𝑎𝑡𝑐ℎ ←  𝑖𝑛𝑝𝑢𝑡𝑠 𝑖𝑛 𝐵 
        𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑥 𝑖𝑛 𝑋_𝑏𝑎𝑡𝑐ℎ: 
            𝐻 ←  𝐸𝑛𝑐𝑜𝑑𝑒(𝑥) 
            𝑍_𝑓𝑖𝑛𝑎𝑙, 𝑍_𝑠𝑒𝑞, 𝐷_𝑠𝑒𝑞 ←  𝐿𝑆𝑇𝑀_𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝐻) 
            𝑥_ℎ𝑎𝑡 ←  𝐷𝑒𝑐𝑜𝑑𝑒(𝐻) 
            𝐿_𝑠𝑒𝑞 ←  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝐴𝑤𝑎𝑟𝑒_𝐿𝑜𝑠𝑠(𝑥, 𝑥_ℎ𝑎𝑡) 
            𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 𝐿_𝑠𝑒𝑞 
        𝑏𝑎𝑡𝑐ℎ_𝑙𝑜𝑠𝑠 ←  𝑚𝑒𝑎𝑛(𝐿_𝑠𝑒𝑞) 
        𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟. 𝑧𝑒𝑟𝑜_𝑔𝑟𝑎𝑑() 
        𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝(𝑏𝑎𝑡𝑐ℎ_𝑙𝑜𝑠𝑠) 
        𝐶𝑙𝑖𝑝_𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑎𝑙𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑐𝑙𝑖𝑝_𝑛𝑜𝑟𝑚) 
        𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟. 𝑠𝑡𝑒𝑝() 
    𝑣𝑎𝑙_𝑙𝑜𝑠𝑠 ←  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐷. 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛) 
    𝐼𝑓 𝑣𝑎𝑙_𝑙𝑜𝑠𝑠 <  𝑏𝑒𝑠𝑡_𝑣𝑎𝑙_𝑙𝑜𝑠𝑠: 
        𝑏𝑒𝑠𝑡_𝑣𝑎𝑙_𝑙𝑜𝑠𝑠 ←  𝑣𝑎𝑙_𝑙𝑜𝑠𝑠 
        𝑆𝑎𝑣𝑒_𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡(𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 
        𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ←  0 
    𝐸𝑙𝑠𝑒: 
        𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ←  𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒 +  1 
        𝐼𝑓 𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒 =  𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒: 
            𝐵𝑟𝑒𝑎𝑘 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 (𝑇𝑒𝑠𝑡 𝑃ℎ𝑎𝑠𝑒): 
𝐿𝑜𝑎𝑑_𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡(𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙) 
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑥 𝑖𝑛 𝑇𝑒𝑠𝑡 𝑠𝑒𝑡: 
    𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐸𝑛𝑐𝑜𝑑𝑒 →  𝐿𝑆𝑇𝑀_𝐹𝑜𝑟𝑤𝑎𝑟𝑑 →  𝐷𝑒𝑐𝑜𝑑𝑒 
    𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝐴𝑤𝑎𝑟𝑒_𝐿𝑜𝑠𝑠 
𝑅𝑒𝑡𝑢𝑟𝑛 𝑓𝑖𝑛𝑎𝑙 𝑡𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 𝑎𝑛𝑑 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 
𝐹𝑖𝑛𝑎𝑙 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛: 
    𝐿𝑜𝑎𝑑 𝑏𝑒𝑠𝑡 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 
    𝑡𝑒𝑠𝑡_𝑙𝑜𝑠𝑠, 𝑡𝑒𝑠𝑡_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 =  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐷_𝑡𝑒𝑠𝑡, 𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 
    𝑅𝐸𝑇𝑈𝑅𝑁 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙, 𝑡𝑒𝑠𝑡_𝑙𝑜𝑠𝑠, 𝑡𝑒𝑠𝑡_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 
𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐷_𝑠𝑝𝑙𝑖𝑡, 𝑝𝑎𝑟𝑎𝑚𝑠): 
    𝑆𝑒𝑡 𝑚𝑜𝑑𝑒𝑙 𝑡𝑜 𝑒𝑣𝑎𝑙 𝑚𝑜𝑑𝑒 (𝑑𝑖𝑠𝑎𝑏𝑙𝑒 𝑑𝑟𝑜𝑝𝑜𝑢𝑡, 𝑒𝑡𝑐. ) 
    𝑙𝑜𝑠𝑠𝑒𝑠 =  [] 
    𝑝𝑟𝑒𝑑_𝑙𝑎𝑏𝑒𝑙𝑠 =  [], 𝑡𝑟𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠 =  [] 
    𝐹𝑂𝑅 𝑒𝑎𝑐ℎ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑥 (𝑎𝑛𝑑 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑦 𝑦) 𝑖𝑛 𝐷_𝑠𝑝𝑙𝑖𝑡: 
        𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑥_ℎ𝑎𝑡_𝑠𝑒𝑞 𝑎𝑛𝑑 𝑓𝑖𝑛𝑎𝑙 ℎ𝑖𝑑𝑑𝑒𝑛 𝑍_𝑓𝑖𝑛𝑎𝑙 (𝑛𝑜 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡) 
        𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑝𝑒𝑟 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑎𝑤𝑎𝑟𝑒 𝑙𝑜𝑠𝑠 𝑥_𝑖 𝑎𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 
        𝑠𝑒𝑞_𝑙𝑜𝑠𝑠 =  𝑚𝑒𝑎𝑛_𝑜𝑣𝑒𝑟_𝑖(𝑥_𝑖) 
        𝑎𝑝𝑝𝑒𝑛𝑑 𝑠𝑒𝑞_𝑙𝑜𝑠𝑠 𝑡𝑜 𝑙𝑜𝑠𝑠𝑒𝑠 
        𝐼𝐹 𝑙𝑎𝑏𝑒𝑙𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡: 
            𝑙𝑜𝑔𝑖𝑡𝑠 =  𝐿𝑖𝑛𝑒𝑎𝑟(𝑍_𝑓𝑖𝑛𝑎𝑙) 
            𝑦_𝑝𝑟𝑒𝑑_𝑙𝑎𝑏𝑒𝑙 =  𝑎𝑟𝑔𝑚𝑎𝑥(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑜𝑔𝑖𝑡𝑠)) 
            𝑎𝑝𝑝𝑒𝑛𝑑 𝑦_𝑝𝑟𝑒𝑑_𝑙𝑎𝑏𝑒𝑙 𝑡𝑜 𝑝𝑟𝑒𝑑_𝑙𝑎𝑏𝑒𝑙𝑠 
            𝑎𝑝𝑝𝑒𝑛𝑑 𝑦 𝑡𝑜 𝑡𝑟𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠 
   𝑎𝑣𝑔_𝑙𝑜𝑠𝑠 =  𝑚𝑒𝑎𝑛(𝑙𝑜𝑠𝑠𝑒𝑠) 
    𝐼𝐹 𝑙𝑎𝑏𝑒𝑙𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡: 
        𝑚𝑒𝑡𝑟𝑖𝑐𝑠 =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑚𝑒𝑡𝑟𝑖𝑐𝑠(𝑡𝑟𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠, 𝑝𝑟𝑒𝑑_𝑙𝑎𝑏𝑒𝑙𝑠) 
    𝐸𝐿𝑆𝐸: 
        𝑚𝑒𝑡𝑟𝑖𝑐𝑠 =  {} 
    𝑅𝐸𝑇𝑈𝑅𝑁 𝑎𝑣𝑔_𝑙𝑜𝑠𝑠, 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 

 

Learning compact, sequential representations of 

temporal data while capturing long-range dependencies is 

accomplished with AE-LSTM. This research allows for 

real-time monitoring of children's play behavior by 

encoding multimodal sensor inputs and decoding patterns 

to accurately identify social interactions, activity 

categories, and emotional states in dynamic and noisy 

conditions. Several hyperparameters utilized in the 

research are explored in Table 3. 
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Table 3: Hyperparameters and Values for AE-LSTM model configuration 

 

Training 

Epochs 

Learning 

Rate 

Batch 

Size 

Latent 

Dimension (AE) 

LSTM 

Hidden Units 

Dropout 

Rate 

Sequence 

Length 

10 Epochs 0.001 32 32 64 0.1 30 

20 Epochs 0.001 32 48 96 0.15 40 

30 Epochs 0.001 64 64 128 0.20 50 

40 Epochs 0.0008 64 64 128 0.25 60 

50 Epochs 0.0005 64 64 128 0.30 60 

 

4  Experimental results 
The research intended to provide a real-time assessment of 

children's play behavior. The following phases provide a 

detailed explanation of the research results. The proposed 

platform is designed to run on lightweight edge devices, 

which minimizes hardware cost and eliminates the need 

for high-performance servers. Sensors such as RGB-D 

cameras, wearable units, and microphones are selected 

based on low-power, commercially available modules to 

ensure affordability for classrooms and homes.  

4.1 Evaluation criteria 
This evaluation criteria section provides the evaluation 

outcomes of the proposed AE-LSTM method in various 

feature parameters like hesart rate distribution through 

play behavior, skin temperature during activity levels, 

comparison of heart rate and activity levels, evaluation of 

activity level and proximity to peers, pitch mean and 

standard deviation distributions, and physiological signals 

distribution. The discussion below discusses the 

evaluation features of the proposed AE-LSTM approach. 

Figure 4 represents the engagement and feedback 

relevance of children play behavior. It indicates the median 

and variable heart rates, providing information about how 

the body responds to various forms of play. The AE-LSTM 

model uses temporal patterns in multimodal data including 

heart rate, posture, speech tone, and motion to classify and 

interpret play behavior dynamically. It helps to 

physiological variation across spontaneous play states. By 

using the information to track mental and physical states, 

the AI platform provides real-time feedback while playing 

and correlates internal signals with behavior. 

 

Figure 4: Engagement and feedback relevance of children play behavior 

 

Depending on the type of play, heart rates might vary 

from 85 to 145 beats per minute. Running and other high-

intensity activities exhibit median heart rates of about 130 

bpm, whereas peaceful play activities have median heart 

rates of about 90 bpm. The inference of tension or 

excitement in real time is influenced by the values. The AI 

model's physiological-behavioral mapping is improved by 

significant interquartile ranges, which show behavioral 

variability. 

 

Skin Temperature during Activity Levels: Figure 5 

shows how children's skin temperatures change with 

different degrees of activity. Increased physical effort or 

emotional stimulation is frequently indicated by elevated 

temperatures. The AE-LSTM model model leverages 

temporal patterns in multimodal data including skin 

temperature to classify and interpret play behavior in real 

time. To determine emotional states, wearable sensors 

capture these physiological signals and incorporate them 

into the platform. This allows for real-time behavior 

classification and adaptive feedback. 
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Figure 5: Evaluation of skin temperature through activity levels 

Skin temperatures range from 32.0 to 36.5°C. The 

median temperature is near 36.0°C for high activity levels 

and closer to 33.5°C for passive behavior. Emotional 

changes or exertion are reflected in fluctuations. The 

adaptive feedback loop for children's comfort and stress 

detection is supported by these physiological readings, 

along with motion information for contextual behavior 

recognition. 

Figure 6 depicts the bubble plot of physiological-

behavioral mapping, which is categorized by color 

according to various play behaviors. The AE-LSTM 

model used to enhance the subtle temporal patterns that 

differentiate between levels of spontaneous play. It 

shows how multimodal physiological and behavioral 

information is used to enhance the cognitive 

performance. 

 

Figure 6: Bubble plot of physiological-behavioral mapping 

 

There is a positive correlation between heart rate (85–

145 bpm) and activity level (range: 0–10). Claiming and 

other play behaviors show top-right clustering (activity > 

8, heart rate > 130 bpm), whereas quiet activities are 

located close to the origin. Physiological-kinematic 

synchronization is improved by the connection in the 

classification of multimodal behavior. 

Activity Level and Proximity Peers: The connection 

between children's levels of activity and the way they are 

connected to their classmates is demonstrated in Figure 7. 

The AE-LSTM model learns temporal and spatial patterns 

to infer behavioral states in real time. By showing how the 

social and physical aspects of play co-vary, expose 

behavioral clusters that could represent cooperative, 

solitary, or transitional play styles. It allows the AI to 

identify social involvement levels in real time. 
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Figure 7: Results of activity levels and proximity peers 

The range for proximity is 0.5–3.0 meters, while the 

range for activity level is 0–10. Activity > 7 and high 

densities at <1.5 m proximity indicate active, social play. 

Solitary or passive intervals are highlighted by sparse areas 

over long distances and low activity levels. Based on the 

outcomes, the platform categorizes different kinds of 

interactions, such as self-sustaining and collaborative. 

Physiological Signals Distribution across play 

behavior types was illustrated in Figure 8.The AE-LSTM 

network leverages inputs to model temporal dependencies 

and reconstruct latent behavioral patterns. By capturing 

both individual and joint distributions of physiological 

metrics, the system enhances its ability to infer emotional 

and physical engagement levels. Significant differences in 

physiological indicators associated with various play 

behaviors are revealed by the diagonal plots, which show 

the kernel density calculation of all characteristics by 

behavior type. 

 

Figure 8: Physiological signals distribution across play behavior types 

Five play behavior classes' relationships between skin 

temperature (34–38°C) and heart rate (60–150 bpm) are 

presented. There is a unique physiological characteristic 

for every behavior determined in the results. Behavior 0 is 

linked to higher heart rates, although behavior 2 leads to 

lower temperatures. 

Pitch Mean and Standard Deviation Distributions: 

Pitch mean and pitch standard deviation distributions from 

children's speech data are displayed in Figure 9. By 

capturing both central tendency and variability in pitch, the 

system can detect shifts in emotional tone and engagement. 

This visualization shows how speech-based metrics enrich 

the system’s ability to interpret and support child 

development through intelligent, responsive play 

environments. These audio features support real-time AI 

analysis by assisting in the inference of behavioral and 

emotional cues during play. 
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Figure 9: Determination of mean and standard deviation distributions 

The voice pitch varies during play, as indicated by the 

pitch mean, which varies from roughly 75 Hz to 310 Hz. 

The pitch standard deviation (pitch_std) shows constant 

patterns of vocal variability, remaining densely 

emphasized between 5 Hz and 15 Hz. 

Table 4 presents the performance of different models' 

confidence intervals. The confidence intervals further 

confirm the statistical reliability of these results, 

highlighting AE-LSTM’s superior consistency and 

effectiveness. AE-LSTM outperforms all other models, 

achieving the highest scores in all metrics, indicating 

robust and reliable predictions.  

 

Table 4: Evaluation metrics of AE-LSTM and baseline models confidence intervals 

 

Model Accuracy (95% CI) Precision (95% 

CI) 

Recall (95% 

CI) 

F1-score (95% 

CI) 

AE-LSTM  0.968 – 0.982 0.960 – 0.976 0.956 – 0.972 0.950 – 0.968 

LSTM  0.833 – 0.865 0.819 – 0.851 0.805 – 0.839 0.811 – 0.845 

GRU  0.816 – 0.848 0.800 – 0.834 0.788 – 0.822 0.794 – 0.828 

BiLSTM+Attention  0.857 – 0.887 0.844 – 0.874 0.835 – 0.867 0.840 – 0.870 

 

Table 5 presents the results of significance testing for 

the AE-LSTM model across using a significance level. 

These results confirm that the observed performance of the 

AE-LSTM model demonstrates robust and reliable 

predictive capability across all evaluated metrics.  

 

Table 5: Statistical significance analysis of AE-LSTM performance metrics 

 

Metric AE-LSTM Value (p̂) z-Statistic p-Value Significance 

(α = 0.05) 

Accuracy 0.975 42.31 p < 0.0001 Significant 

Precision 0.968 41.28 p < 0.0001 Significant 

Recall 0.964 40.74 p < 0.0001 Significant 

F1-Score 0.959 40.07 p < 0.0001 Significant 

 

4.2 Comparison phases 
The research compares the proposed AE-LSTM method 

with various existing techniques, such as Gated Recurrent 

Unit (GRU) [22], Bidirectional LSTM (BiLSTM) [22], 

and BiLSTM+Attention [22], to assess the playing 

behavior. Table 6 determines the comparison evaluation of 

proposed and existing methods with F1-score, precision, 

recall and accuracy. The performance matrix's formula and 

definitions are provided in Table 7. 
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Table 6: Formulas and definitions of performance matrices 

 

Metrics Definitions Equations 

Accuracy 
The proportion of accurate true positive and true 

negative forecasts overall. 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

Precision 
It is a proportion of real positive forecasting over 

all the positive predictions. 

𝑇𝑃

𝑇𝑃+𝐹𝑃
  

Recall 

The percentage of real positive cases that a 

prediction model accurately classifies as positive 

is known as recall. 

𝑇𝑃

𝑇𝑃+𝐹𝑁
  

F1 Score 
It is the harmonic mean of precision and recall. It 

measures the balance between both metrics. 
2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

 

Table 7: Comparison of outcomes of AE-LSTM and exiting methods 

 

Models 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

LSTM [22] 0.849 0.835 0.822 0.828 

GRU [22] 0.832 0.817 0.805 0.811 

BiLSTM+Attention [22] 0.872 0.859 0.851 0.855 

AE-LSTM [Proposed] 0.975 0.968 0.964 0.959 

 

 

Figure 10: Outcomes of the accuracy metric in play behavior 

Figure 10 depicts the outcomes determined by the 

accuracy. The proposed AE-LSTM approach provides an 

accuracy of 0.975, whereas GRU shows 0.832 accuracy, 

BiLSTM+Attention has 0.872, and LSTM provides 0.849 

accuracy. Based on the results, the proposed AE-LSTM 

method has a high accuracy to compact latent 

representations from multimodal play behavior data and to 

effectively capture physiological signal distributions. 
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Figure 11: Result of play behavior with precision 

Figure 11 shows precision findings. Existing methods 

provide precision outcomes (LSTM has 0.835, 

BiLSTM+Attention has 0.859, and GRU has 0.817). The 

precision of the AE-LSTM method is 0.968, and it 

indicates that the AE-LSTM technique has more efficiency, 

and reliability in children’s play behavior than other 

existing models. 

 

Figure 12: Visual depiction of recall results 

Figure 12 demonstrates the results of recall. The 

proposed AE-LSTM approach indicates essential results in 

terms of recall (0.964), indicating its strong capability in 

accurately identifying children's play behavior pattern. 

Outcomes of the research demonstrate that the proposed 

AE-LSTM approach is more significant with a recall result  

the existing techniques like GRU (0.805), LSTM (0.822), 

and BiLSTM+Attention (0.851). 

 

Figure 13: Evaluation outcomes of F1-score 

Estimation of the F1-score is displayed in Figure 13. 

The AE-LSTM method has a 0.959 F1-score, 

BiLSTM+Attention has 0.855, GRU has 0.811, and LSTM 

has a 0.828 F1-score. The proposed AE-LSTM method 

explores superior results compared to the traditional 

approaches, as determined by the research findings. By 

effectively modeling temporal patterns and physiological 

signal distributions, the AE-LSTM captures subtle 
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behavioral variations, enabling more accurate 

classification.   

Assessing the behavior of playing children was the 

focus of the research. The evaluation of the research 

compared the proposed method with existing techniques, 

and certain limitations were observed in the existing 

methods in assessing the play behaviors. The LSTM [22] 

model might have trouble in recognizing long-range 

temporal connections. The computing capacity of edge 

devices could limit the accuracy of real-time inference and 

model complexity. The computational depth of GRU [22] 

was insufficient to capture complex temporal connections. 

Although it has superiority in contextual training, BiLSTM 

[22] was less appropriate for real-time applications due to 

its increased computing complexity and latency. The 

BiLSTM+Attention [22] raises attention on vital features, 

whereas it was expensive for edge distribution and issues 

from over-fitting with small training data. These models 

have a general difficulty with dynamic and natural 

environments in children's play. Our system balances 

latency, memory usage, and real-time processing by 

deploying lightweight ResNet feature extraction and the 

AE-LSTM architecture directly on edge hardware. Unlike 

GRU, LSTM, or BiLSTM-Attention models, the AE-

LSTM compresses multimodal inputs into compact latent 

representations, reducing memory load while maintaining 

strong temporal modeling. Because computation occurs 

locally, inference latency is significantly lower than cloud-

based models, enabling immediate feedback. Existing 

observation methods for children's play are largely manual, 

subjective, and unsuitable for real-time interpretation. To 

address these shortcomings, the proposed AE-LSTM 

model enhances the real-time understanding of children’s 

natural play. The AE model helps to compress and denoise 

multimodal features, whereas LSTM captures temporal 

patterns and emotional cues. Overall, the conceptualized 

model AE-LSTM will facilitate a real-time analysis of 

complex sensory play behavior, which provides robust 

temporal modeling.  

5  Conclusions 
1.The purpose of the research was to create and implement 

a multimodal sensor and feedback platform by utilizing 

edge computing and real-time AI to monitor, evaluate, and 

assist children's play behavior. The multimodal play 

behavior dataset with various sensors was obtained for the 

performance. Kalman filtering and normalizing techniques 

were used to pre-process data to increase consistency and 

minimize noise. Real-time behavior analysis was 

performed with an AE-LSTM network, while feature 

extraction was accomplished with a Lightweight ResNet 

model. To provide low-latency processing, local data 

storage, and privacy protection, the entire system has been 

deployed on edge devices. To increase engagement, the 

device provided real-time input via physical and visual 

signals. According to the experimental results, play 

behavior classification, emotional state detection, and peer 

interaction identification were all achieved with highly 

accurate results. Comparison of the proposed method 

demonstrates significant results in terms of accuracy 

(0.975), precision (0.968), recall (0.964), and F1-score 

(0.959). A real-time interpretation of children’s play 

behavior, the proposed model supports educators in 

understanding engagement levels, social interaction 

patterns, and emotional cues during learning activities. 

Therapists gain continuous behavioral monitoring that 

supports early detection of developmental needs. 

Researchers benefit from reliable, unobtrusive multimodal 

analytics that capture natural play behavior accurately. 

5.1 Limitations and future scopes 
Children's behavior variability, sensor position limitations, 

and the requirement for frequent validation in dynamic 

playing environments limit the system's efficacy. The 

scalability of the system across different cultural or 

contextual settings remains challenge, which could affect 

its generalizability. The long-term deployment feasibility, 

include issues like battery life, device comfort, and overall 

cost, which are essential for practical implementation. 

Additionally, it collects sensitive data from children, 

ethical and privacy considerations lead to potential risks. 

Adaptability in a variety of play environments, emotional 

recognition skills, and the incorporation of adaptive 

learning models will represent the main areas of future 

research. To assess the platform's scalability and 

developmental impact in larger educational or clinical 

contexts, further long-term investigations are needed. 
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Appendix 

Symbol Explanation / Meaning 

𝐴𝑙 , 𝐴𝑙+1 Actual system state at time step 𝑙 of 

𝑙 + 1. 

𝑋 State transition matrix governing 

state dynamics. 

𝑌 Control matrix. 

𝜇𝑙 Control input at time step 𝑙 . 
𝜔𝑙 Process noise or disturbance at time 

step 𝑙. 
𝑓𝑙+1 Error between actual and estimated 

state at time 𝑙 + 1. 

(𝑄𝑙+1|𝑙+1) Uncertainty estimation 

𝐹(⋅) Expectation operator or covariance 

function. 

𝑃𝑙+1 Covariance matrix of process noise. 

𝐾 Identity or transition matrix 

(context: covariance update). 

𝐺 Measurement matrix mapping states 

to observation space. 

𝐿𝑙+1 Kalman gain at time step 𝑙 + 1. 

𝑊𝑙+1 Actual measurement value observed 

at time step 𝑙 + 1. 

𝐴 Raw data value before 

preprocessing (Z-score). 

𝜇 Mean value of data. 

𝜎 Standard deviation of data. 

𝐸(𝑎) ReLU activation function output. 

𝑎 Input to activation function or 

normalization. 

𝑍𝑙 Convolution filter kernel weights. 

𝑦𝑗𝑖  Bias term of the convolution filter. 

(𝑔𝑙)𝑗𝑖 Output feature map value at pixel  

𝑗, 𝑖 Pixel indices in image/feature map. 

𝑙 Feature map index or layer index. 

𝑎𝑙 Normalized activation values in 

layer 𝑙. 

𝐹(𝑎𝑙) Mean of activations in layer lll. 

𝑉𝑎𝑟(𝑎𝑙) Variance of activations in layer 𝑙. 

𝜀 Small constant for numerical 

stability during normalization. 

𝛾𝑙 , 𝛽𝑙 Learnable scale and shift parameters 

in normalization. 

𝑧1, 𝑔1, 𝑐1 Input width, input height, and input 

depth respectively. 

𝑧2, 𝑔2, 𝑐2 Output width, output height, and 

output depth respectively. 

𝑒 Size of the pooling filter (e.g., 2×2). 

𝑋 Stride value for pooling or 

convolution. 

𝑇𝑇𝑇 Output size after pooling. 

𝑍𝑖 Weights corresponding to class iii. 

𝑦 Weight vector associated with 

softmax. 

𝑒𝑥𝑝(⋅) Exponential function used in 

softmax. 

𝑁 Number of output classes. 

𝑄′(𝑎) Ground-truth distribution (one-hot 

encoded label). 

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 Loss function for classification. 
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