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The intelligent development of music creation promotes the application of artificial intelligence in multi-

instrument collaborative composition. In this study, we propose a multi-instrument music generation 

model based on a conditional Generative Adversarial Network (cGAN) that explicitly learns different 

instrument performance patterns and their coordination. The model is trained on a dataset of 19,000 

multi-instrument music excerpts collected from Muse Score, Magenta, Spottily and a self-built corpus, 

covering classical, pop, jazz, electronic and orchestral styles. Audio is converted to a unified format and 

sampling rate, denoised, and represented by a fused feature set that combines short-time Fourier 

transform (STFT) spectrograms with Mel-frequency cepstral coefficients (MFCCs) to capture both 

harmonic structure and timbral characteristics. The generator adopts a multi-layer convolutional and 

transposed-convolutional architecture conditioned on instrument labels to synthesize multi-track audio 

segments, while a multi-branch discriminator jointly evaluates global musical coherence, instrument-wise 

timbre consistency and style conformity. Model parameters are optimized using gradient-based training 

combined with a genetic search over key hyperparameters to enhance training stability and audio 

realism.Quantitative experiments show that the proposed model achieves a mean pitch prediction error of 

0.42 semitones, a chord recognition accuracy of 92.3%, and a rhythm synchronization rate of 95.1% 

across common instrument combinations such as piano–violin and guitar–bass. Subjective listening tests 

with 20 experienced musicians report an average score of 4.3/5 for melody fluency, 4.2/5 for timbre 

matching and 4.1/5 for perceived instrument coordination. The model performs particularly well in 

generating melodically fluent lines, harmonically consistent chord progressions and rhythmically stable 

ensemble parts, and can more accurately simulate collaborative performance effects among different 

instruments. However, there remains room for improvement in handling highly complex chord 

transformations and in integrating electronic synthesizer timbres with traditional instruments. Moreover, 

computational cost and training stability still constrain large-scale practical deployment, indicating that 

improving generation efficiency and robustness is an important direction for enhancing the application 

value of AI-based multi-instrument music composition models. 

Povzetek: Študija predstavi večinstrumentni generator glasbe na osnovi pogojenega GAN, ki iz 

STFT+MFCC značilk in oznak instrumentov sintetizira usklajene večstezne odseke iz večvejnih 

diskriminatorjem za koherenco ter z genetskim iskanjem hiperparametrov izboljša stabilnost in realizem. 

 

1  Introduction 

From the earliest manual creation to the later application 

of sound technology, the means of music creation are 

constantly enriched. The development of artificial 

intelligence (AI) has brought revolutionary changes to 

music creation. AI analyzes and processes large amounts 

of music data and is also able to simulate and generate new 

creations. The application of AI in music creation, multi-

instrument collaborative creation, promote the change of 

music creation mode. Multi-instrument collaborative 

creation can combine the sound characteristics and 

expressive force of different instruments to produce 

complex and rich levels of music  

 

works. This way of creation requires a profound 

understanding of the timbre of the musical instruments and 

also requires a comprehensive consideration of the 

harmony and interaction between the musical instruments. 

AI algorithm provides a new implementation path, and its 

application in generation model, music style fusion and 

automatic composition is gradually mature. The 

application of AI in music creation mainly focuses on the 

fields of music generation, automatic music editing and 

audio synthesis. Researchers have explored various AI 

technologies, such as in-deep learning, generative 

adversarial network (GAN), etc., to achieve results in 

specific music creation tasks. Most of the existing 
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researches focus on the creation of a single musical 

instrument or simple music style, and lack of collaborative 

creation among multiple musical instruments and in-depth 

discussion of complex sound effects. How to use AI 

algorithm to realize multi-instrument collaborative 

creation and generate innovative, artistic and technical 

music works is still a problem. 

In recent years, AI-based music generation has 

developed rapidly, and a variety of neural architectures 

have been proposed for symbolic and audio-domain 

composition. Mel-frequency cepstral coefficientsly 

recurrent neural network (RNN) models such as 

Performance RNN focus on generating expressive 

monophonic or piano performances with realistic timing 

and dynamics, but are mainly limited to single-instrument 

streams and do not explicitly model coordination among 

multiple instruments [1]. Variational Autoencoder (VAE) 

approaches such as MIDI-VAE extend to polyphonic and 

multi-track symbolic music, enabling control over 

dynamics, instrumentation and style transfer, yet the 

interaction between tracks is often modeled implicitly and 

the constraints on inter-instrument harmony and rhythm 

remain weak [2]. GAN-based models such as MuseGAN 

introduce convolutional generators and discriminators for 

multi-track pop music generation on datasets like the Lakh 

Pianoroll Dataset, chieving coherent four-bar phrases 

across bass, drums, guitar, piano and strings, but the 

generated phrases are short, and the timbral characteristics 

of different instruments are abstracted into pianoroll 

representations with limited explicit timbre modeling [3]. 

Transformer-based models, exemplified by Music 

Transformer and its variants, leverage self-attention to 

capture long-range musical structure and achieve state-of-

the-art performance in single-instrument or piano-centric 

symbolic generation, but they typically focus on one 

dominant instrument track and provide only partial support 

for tightly coupled multi-instrument arrangements and 

timbre-aware accompaniment [4,5]. 

Table 1 summarizes representative prior work on AI-

based music generation and multi-instrument modeling in 

terms of task focus, datasets, model architectures, 

evaluation metrics and reported performance. As can be 

seen, most existing state-of-the-art systems either (1) 

emphasize expressive performance for a single instrument 

or a limited number of tracks, (2) treat multi-track music 

as loosely coupled channels without explicit modeling of 

instrument–instrument coordination, or (3) rely on high-

level symbolic representations that do not fully capture 

timbre information. Few models jointly optimize melody, 

harmony, rhythm and timbre consistency across multiple 

instruments under a unified framework, and systematic 

quantitative evaluation of multi-instrument coordination, 

timbre matching and rhythm synchronization is still 

relatively rare. 

Table 1: Previous work on AI-based music generation and multi-instrument modeling 

Work / reference 
Main task / 

focus 
Dataset (examples) Architecture Evaluation metrics 

Representative results 

and limitations 

Performance RNN 

Expressive 

piano / 

monophonic 

performance 

generation 

MAESTRO, 

internal MIDI 

performance data 

LSTM-based 

RNN 

Log-likelihood, 

expressive 

timing/dynamics 

analysis, listening 

tests 

Generates human-like 

expressive timing and 

dynamics for single-

instrument streams, 

but does not support 

explicit multi-

instrument 

coordination. 

MIDI-VAE 

Polyphonic, 

multi-track 

symbolic 

music with 

style transfer 

and 

instrumentatio

n control 

Lakh MIDI and 

related multi-track 

MIDI corpora 

VAE with 

shared latent 

space 

Reconstruction loss, 

style classification 

accuracy, 

timbre/style transfer 

success 

Handles multiple 

tracks and can modify 

instrumentation and 

dynamics, yet inter-

track dependencies 

and tight 

rhythm/harmony 

coordination are only 

indirectly modeled. 

MuseGAN 

Multi-track 

pop phrase 

generation and 

accompanimen

t 

Lakh Pianoroll 

Dataset (LPD) 

CNN-based 

GAN 

Intra-/inter-track 

objective metrics, 

note density, tonal 

distance, user studies 

Generates coherent 

four-bar phrases 

across 5 tracks (bass, 

drums, guitar, piano, 

strings), but phrase 

length is short and 

timbre is abstracted to 

pianorolls; 

coordination is good 
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at bar level but 

limited control over 

fine-grained timbre 

interaction. 

Music 

Transformer 

Long-term 

coherent 

symbolic 

music 

generation 

(mainly piano) 

MAESTRO and 

other piano datasets 

Transformer 

with relative 

self-attention 

Negative log-

likelihood, 

perplexity, subjective 

ratings 

Achieves strong long-

term structure and 

thematic development 

in single-instrument 

sequences, but multi-

instrument support 

and explicit 

accompaniment 

modeling are limited. 

Transformer-based 

multi-track models 

Controllable 

symbolic 

generation and 

co-

composition 

(e.g., melody–

accompanimen

t) 

Pop/jazz MIDI 

corpora, task-

specific multi-track 

datasets 

Transformer or 

Transformer–

GAN hybrids 

Task-specific metrics 

(e.g., accompaniment 

quality), user studies 

Allow conditional 

accompaniment and 

partial multi-track 

generation, yet often 

focus on a small set of 

tracks and do not 

systematically 

evaluate timbre 

matching and full-

ensemble 

coordination. 

This work 

Multi-

instrument 

collaborative 

music 

generation 

with explicit 

coordination 

and timbre 

modeling 

19,000 multi-

instrument excerpts 

from Muse Score, 

Magenta, Spottily 

and a self-built 

classical corpus 

Conditional 

GAN with 

CNN-based 

generator and 

multi-branch 

discriminator; 

STFT+MFCC 

feature fusion 

Pitch prediction error, 

chord recognition 

accuracy, rhythm 

synchronization rate, 

timbre matching and 

coordination scores 

from listening tests 

Achieves a mean 

pitch prediction error 

of 0.42 semitones, 

92.3% chord 

recognition accuracy 

and 95.1% rhythm 

synchronization, with 

high subjective scores 

for melody fluency, 

timbre matching and 

multi-instrument 

coordination; 

explicitly targets 

cross-instrument 

harmony, rhythm and 

timbre, but still faces 

challenges in very 

complex chord 

transitions and in 

blending electronic 

synthesizers with 

traditional 

instruments. 

 

By focusing on music generation and multi-instrument 

modeling, this work addresses the above gaps in three 

ways. First, it employs a conditional GAN architecture to 

model coordinated performance across multiple 

instruments rather than independent tracks. Second, it 

integrates STFT and MFCC features to encode both 

harmonic structure and timbral characteristics, thereby 

enhancing timbre-aware generation. Third, it adopts multi-

dimensional evaluation indicators—including pitch 

prediction error, chord recognition accuracy, rhythm 

synchronization and perceived timbre matching—to 

quantitatively assess not only musical correctness but also 

the collaborative quality of multi-instrument performance. 

Despite the rapid development of AI-based music 

generation, existing models still face limitations in jointly 

modeling melody, harmony, rhythm and timbre across 

multiple instruments. Therefore, a formal research 

problem statement is necessary to clarify the objectives of 

this study. 
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Current multi-instrument music generation models 

cannot sufficiently map a structured latent representation 

to coherent multi-instrument audio sequences with 

accurate pitch, stable rhythm, and consistent timbre. This 

study aims to develop a generative model capable of 

producing coordinated multi-track musical audio with high 

melodic fluency, harmonic correctness and timbral 

alignment. 

To address this problem, the following research 

questions are proposed: 

RQ1: How can a generative model effectively map 

latent representations to synchronized multi-instrument 

audio sequences? 

RQ2: Can adversarial learning improve pitch accuracy, 

chord consistency and timbre matching compared with 

existing baseline models? 

RQ3: What feature representations best capture multi-

instrument coordination, especially regarding harmony 

progression and timbral interaction? 

RQ4: Can the model maintain stable performance 

across different musical styles (e.g., classical, pop, jazz)? 

Based on previous findings and limitations of existing 

models, this study tests the following hypotheses: 

H1: A GAN-based model with fused STFT–MFCC 

features will significantly reduce pitch deviation compared 

with RNN and Transformer baselines. 

H2: Multi-branch discriminators that jointly evaluate 

global structure and instrument-specific timbre will 

increase rhythm synchronization and chord consistency. 

H3: Feature-level fusion of harmonic and timbral 

descriptors will improve perceived timbre matching in 

multi-instrument outputs. 

H4: Conditioning the generator on instrument identity 

will improve cross-instrument coordination and reduce 

inter-track inconsistencies. 

To test these hypotheses, this research establishes the 

following measurable objectives:Reduce the mean pitch 

deviation to below 0.50 semitones (equivalent to <5% 

deviation).Increase rhythm synchronization accuracy to 

above 95% across instrument tracks.Improve chord 

recognition accuracy to >90% for both classical and pop 

test sets.Increase subjective timbre-matching scores by at 

least 20% compared with an RNN baseline.Demonstrate 

generalization to multiple musical styles using quantitative 

and perceptual evaluation.This formalized research 

framework supports a clearer theoretical foundation and 

provides measurable benchmarks for evaluating the 

effectiveness of the proposed model. 

2  Materials and methods 

2.1  Data collection and sample selection 

2.1.1  Data sources 

The research selects data sets of various musical 

instruments and different music styles, the data sources are 

public music databases, professional music platforms and 

data sets built by laboratories. Public music databases, 

such as Muse Score, Magenta and Wiki Shared Resources, 

provide music works in a variety of styles and forms, 

including diversified instrument performance data from 

classical to modern music. Professional music platforms 

such as YouTube and Spottily provide easy access to large-

scale multi-instrument music data. The research works 

with experts in the field of music creation to obtain some 

original music works and performance data to ensure the 

uniqueness and professionalism of the data. 

The data source is music score data corresponding to 

audio. It is of great significance to understand the roles of 

different musical instruments in music creation and their 

cooperative relationship [6]. The combination of audio 

data and score data builds a more refined multi-instrument 

collaborative model to simulate the timbre interaction and 

harmony effect between different instruments. As shown 

in table 2 below. 

Table 2: Sources and characteristics of music data 

data 

source 

data 

type 

music 

style 
Instrument type 

Amount of 

data 
Feature description 

Muse 

Score 

Music 

score 

data 

Classical, 

modern 

Piano, violin, 

orchestra, etc 
5000 

It covers a wide 

range of styles and 

has a wide range of 

musical instruments. 

Magenta 

Audio, 

music 

scores 

All kinds 

of music 

Guitars, electronic 

musical instruments, 

etc 

3000 

Focus on music 

generation, data 

diversification 

Spottily 
Audio 

data 

Popular, 

jazz, etc 
Full range instrument 10000 

Modern music with 

high-quality audio 

Self-built 

data set 

Audio, 

music 

scores 

classical 

music 
Cello, piano, etc 1000 

Professional creation, 

original data set 
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2.1.2  Data preprocessing 

The audio data is subjected to format conversion, which is 

suitable for the audio format of model training (such as 

WAV or MP3), and the sampling rate is standardized, so 

that the sampling rates of all audio files are consistent. 

Carry out audio denouncing to reduce the interference of 

background noise. The music score data adopts a 

standardized method to ensure that the symbol information 

such as the time value, pitch and rhythm of the music score 

are consistent, so as to better interface with the audio data 

[7]. 

Data preprocessing is used to extract audio features, short-

time Fourier transform (STFT) is used to extract the 

frequency domain features of audio, and Mel-frequency 

cepstral coefficients (MFCC) is used to analyze the timbre 

features of audio. Aiming at the audio of different musical 

instruments, processing such as timbre separation and 

volume normalization is carried out to avoid the 

unbalanced performance of some musical instruments in 

the generation process [8]. All processed data will be 

stored in a standardized format to ensure that each sample 

in the dataset can play a role in model training. As shown 

in table 3 below. 

Table 3: Data preprocessing steps and their effect analysis 

Pretreatment step way Pretreatment effect remarks 

Audio format 

conversion 
WAV, MP3 standardization 

Unify audio formats to improve 

compatibility 

Unified format 

for all audio 

Standardization of 

sampling rate 

Converted to 16kHz sampling 

rate 

The sampling rate is ensured to be 

consistent and the deviation is 

reduced 

Improve data 

quality 

Audio denoising 

processing 
Filter denoising 

Remove background noise and 

improve sound quality 

Ensure audio 

clarity 

feature extraction STFT、MFCC 
Extracting frequency domain 

features and timbre features 

It is helpful for 

model training 

Timbre Separation and 

Volume Normalization 

Select the audio of a single 

instrument and adjust the 

volume 

So that the tone color of the audio is 

purer and the volume is balanced 

Improve audio 

coordination 

effect 

 

2.1.3  Sample selection criteria 

Sample selection criteria ensure that the data are 

representative, diverse and relevant to the research 

objectives. In the research of selecting samples, special 

attention is paid to the variety of musical instruments, 

covering traditional musical instruments and modern 

electronic musical instruments to ensure the adaptability 

of the model to various musical instruments. The selected 

music works have different music styles, including 

classical, pop, electronic, jazz, etc. to ensure the 

universality of the data. The study only selects audio data 

with high sound quality and without serious distortion or 

noise interference. All selected samples should be 

accompanied with corresponding music score information, 

and the relationship between audio and music score should 

be analyzed during the research. The selection of samples 

will be strictly selected based on the integrity, 

misrepresentations and diversity of the data, and the 

selected samples can effectively support the realization of 

research objectives [9]. As shown in table 4. 

All datasets were divided into 70% training, 15% 

validation and 15% testing without overlap. Preprocessing 

included audio normalization, denoising and score parsing. 

For audio–score synchronization, we applied a dynamic 

time-warping (DTW) alignment technique to match onset 

times and phrase boundaries, ensuring that annotations and 

audio frames were precisely aligned before model training. 

Table 4: Sample selection criteria and distribution 

choice criterion describe 
sample 

size 
data distribution 

Variety of musical 

instruments 

Including piano, violin, guitar and other 

instruments 
10000 

Classical and modern 

diversification 

The music style is 

extensive 

Covering popular, jazz, classical and other 

styles 
8000 All styles are balanced 

Sound quality 

requirements 
No distortion, clear sound quality 12,000 High quality audio data 

Score integrity 
Each audio corresponds to music score 

information 
10000 

Provide music score and audio 

contrast 
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2.2  Model Building 

2.2.1 Model Selection 

The research considers various artificial intelligence 

models, such as depth neural network (DNN), 

convolution neural network (CNN) and generation 

countermeasure network (GAN). DNN is a common 

neural network structure. It is not as effective as other 

network models when dealing with time series data when 

dealing with data with complex nonlinear 

relationship[10]. CNN has obvious advantages in image 

processing. It can effectively extract local features, 

especially when extracting audio image features. 

However, it has limited ability to process audio time 

series data. 

Generating Confrontation Network (GAN) is an in-

deep learning model based on game theory, which 

improves the quality of generated samples through 

confrontation training between generator and 

discriminator. GAN can better capture the overall 

structure and details of the audio, and is suitable for 

generating innovative music works. When generating 

multi-instrument collaborative works, GAN can simulate 

the collaborative performance between different 

instruments through its generator, and the discriminator 

evaluates whether the generated audio meets the 

requirements of music creation. Based on GAN's 

generating ability, this research chooses this model as the 

core architecture, and combines the interaction between 

the generator and the discriminator to generate multi-

instrument collaborative music works. As shown in table 

5 below. 

Table 5: Selection basis and comparison of advantages and disadvantages of AI model 

types of models advantage disadvantage 
Applicable 

scenario 

DNN 

Can process complex data 

and is suitable for learning 

nonlinear relationship 

The processing of time series 

data is not precise enough and 

the calculation is large. 

For learning 

audio features 

CNN 

Good at extracting local 

features, suitable for image 

data 

The ability to process long time 

series data is limited and it is 

difficult to capture global 

information. 

Feature 

extraction for 

audio image 

GAN 

Strong generating ability, 

suitable for creative tasks 

and high quality of 

generated samples 

The training process is unstable 

and prone to collapse. 

Used to 

generate music 

works 

 

2.2.2  Model architecture design 

This study builds a multi-level architecture based on 

generative warfare network to generate high-quality 

music works. The generator part is responsible for 

generating audio segments from the input noise vectors, 

and the discriminator evaluates the authenticity of the 

generated audio. To ensure the high quality of the 

generated music works, the generator uses multi layer 

convolution neural network (CNN) and convoluted 

operation to generate audio which meets the requirements 

of multi-instrument collaborative performance from 

noise vectors. The discriminator classifies the generated 

audio segments through the full connection layer to judge 

whether the generated audio segments meet the standards 

for audio creation[11]. In order to ensure the coordination 

effect between the musical instruments, the model uses 

an audio fusion module to splice the audio segments of 

different musical instruments to generate a complete 

musical composition. In the mathematical formula of the 

model, the generator maps a random noise vector of z, 

into an audio sequence of G(z), using a convoluted 

operation, as in formula (1): 

( ) ConvTranspose( , )GG z z =
                   

（1） 

G(z) is an audio sequence generated by the generator; 

z is a random noise vector; G   is a parameter of the 

generator; 
ConvTranspose

  represents a convoluted 

operation for gradually recovering the details of the audio. 

The proposed GAN model adopts a multi-layer CNN-

based generator and a multi-branch discriminator 

specifically designed for multi-instrument audio synthesis. 

The generator consists of 5 convolutional-transpose layers, 

each followed by Batch Normalization and ReLU 

activation, except the final layer which uses Tanh to output 

a normalized audio spectrogram. A dropout rate of 0.2 is 

applied after the third and fourth layers to prevent 

overfitting. The discriminator contains 6 convolutional 

layers, each followed by LeakyReLU (α = 0.2) and Layer 

Normalization, with a final sigmoid / linear output 
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depending on the loss variant. For stability, the 

discriminator includes spectral normalization in all layers. 

Two loss functions were considered: Wasserstein loss 

with gradient penalty (WGAN-GP) and binary cross-

entropy (BCE). Experimental results showed that WGAN-

GP produced more stable convergence and better timbre 

consistency; therefore, WGAN-GP was selected for final 

training. 

Training was conducted with a batch size of 32, 200 

epochs, and the Adam optimizer (β1 = 0.5, β2 = 0.999).  

The initial learning rate was set to 1e-4, decaying by 

0.5 every 40 epochs following a step-based schedule. The 

generator was trained once for every five discriminator 

updates to stabilize training dynamics. All experiments 

were run on a NVIDIA RTX 3090 GPU, with a total 

training time of approximately 26 hours. 

2.2.3  Feature extraction 

Short-time Fourier transform (STFT) and Mel-frequency 

cepstral coefficients (MFCC) are commonly used in audio 

feature extraction. The STFT divides the audio signal into 

several small segments and performs Fourier transform on 

each segment to obtain the frequency spectrum 

information of the audio signal at different time points. 

MFCC extracts timbre features from audio signals, which 

are commonly used in speech recognition and audio 

classification [12]. STFT provides time-frequency domain 

information, which is suitable for analyzing the timbre and 

harmony of musical instruments. MFCC focuses on the 

extraction of timbre features to better identify the timbre 

features of musical instruments. Identification and 

synthesis of timbre in multi-instrument collaborative 

creation [13]. The effective extraction of audio features 

provides more accurate input data for the multi-instrument 

collaborative creation model. As shown in table 5 

below.The STFT and MFCC features are fused to jointly 

capture harmonic structure (frequency domain) and timbre 

information (cepstral domain). Specifically, the audio 

signal x(t) is first transformed into.The STFT spectrum 

expression is as shown in (2) : 

( , ) | STFT( ( )) |S f x t =
(2) 

The expression of the MFCC coefficient matrix is as 

shown in (3): 

( , ) MFCC( ( ))M k x t =
(3) 

To integrate these two representations, the features are 

connected by channels, and the expression is as shown in 

(4): 

( ) [ ( , ) ( , )]F S f M k  =
(4) 

where  denotes concatenation along the feature 

dimension. Then the fusion tensor F (τ) is projected onto 

an learned linear embedding layer, with the expression as 

shown in (5) 

f fZ W F b= +
(5) 

This embedded representation serves as the generator 

input, allowing the model to construct a latent space 

informed by both harmonic and timbral cues. In contrast, 

The discriminator receives both raw STFT and fused 

representations through parallel branches, improving its 

ability to judge timbre accuracy and multi-instrument 

coordination.This fused feature pipeline ensures that the 

generator learns instrument timbre characteristics while 

maintaining harmonic consistency across tracks. 

2.2.4  Implementation and optimization 

The research combines gradient descent method with 

genetic algorithm to optimize the model. Gradient descent 

method is a widely used optimization algorithm, which 

continuously updates the model parameters to minimize 

the loss function. The parameters of the generator and the 

discriminator are adjusted according to each feedback until 

a high-quality audio sample is generated. The genetic 

algorithm selects the optimal solution from multiple 

generator versions and simulates the natural selection 

process to optimize the generation effect. Genetic 

algorithm can find the global optimal solution in a large 

search space, and is especially suitable for complicated 

generation tasks [14]. The mathematical expression of the 

optimization process is as follows (6): 

2

1

1
( )

N

i i

i

L y y
N


=

= −‖ ‖
                 （6） 

( )L 
 is a loss function;   is a model parameter; yi 

is real audio data; iy
  is generated audio data; N is the 

number of samples. The gradient descent method 

optimizes the model by minimizing the loss function. The 

updating process of the genetic algorithm includes 

selection, crossover and mutation operations. Through 

these operations, the output of the generator is 

continuously improved, and finally a more realistic and 

creative music work is generated [15]. 

2.3  Application scheme 

2.3.1  Application in music creation 

The application of AI algorithm in music creation involves 

melody generation, harmony arrangement, rhythm 

adjustment and instrument coordination. The in-deep 

learning model can train the generator based on the 

existing music data, and has the melody creation ability of 

different music styles. The generated melody meets the 

requirements of music theory and can also reflect diversity 

in emotional expression. Harmony arrangement is the core 

link of music creation. AI learns chords, automatically 
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matches the appropriate harmony structure, and improves 

the hierarchy of music works. 

AI model analyzes the rhythm patterns of different 

styles of music, and the generated music is more in line 

with the rhythm characteristics of specific music styles. 

Multi-instrument collaborative performance relies on the 

model's learning of different instrument timbre 

characteristics, which enables each instrument to form a 

good coordination in rhythm, pitch and harmony 

relationship, and improves the integrity of music works. 

AI's learning ability makes the music creation process 

more efficient and enables creators to quickly conceive and 

optimize the overall structure of music works. 

2.3.2  Impact of AI algorithm on creation 

AI algorithm affects the sources of music inspiration, the 

diversity of creation styles and the innovation of music 

works in the process of music creation. When creators use 

AI to assist in creation, they can quickly obtain a large 

number of suggestions on melody, harmony and rhythm. 

The data-driven approach expands the creative thinking 

and improves the efficiency of music creation. AI model 

combines the characteristics of multiple music genres to 

generate works with integrated styles, breaking through 

the limitations of traditional creation and making music 

works more innovative. 

The learning mechanism of AI algorithm makes the 

structure of music works more diversified, and the model 

can learn and generate new timbre combinations, making 

the coordination between musical instruments more 

natural. AI-assisted creation has changed the music 

production process. The traditional creation mode relies on 

personal experience and music theory knowledge. With the 

data analysis and intelligent optimization provided by AI, 

music creation has entered a more intelligent development 

stage. AI's innovative ability enriches musical works in 

harmony arrangement, melody structure and emotional 

expression, and widens the boundary of creation. As 

shown in Figure 1 below. 

 

Figure 1: Analysis of the influence of AI algorithm on creative inspiration and music innovation 

 

2.4 Refinement of application scheme 

2.4.1 Combination of AI and human creation 

AI analyzes a large amount of music data, learns different 

styles of melody, harmony and rhythm patterns, and 

provides creators with a variety of creative solutions. 

Human creators make adjustments based on the melody 

generated by AI, and the music works meet the needs of 

individual style and emotional expression. AI can optimize 

the allocation of musical instruments and make harmony 

more harmonious in the process of composing music. 

Human creators need to combine their own music ideas to 

screen and modify them in order to ensure the artistic value 

of the works. The combination of AI and human creation 

depends on the interactive mode. The music generation 

model based on deep learning can provide a variety of 

melodies and orchestration schemes after inputting the 

creation intention, and the creator can select the 

appropriate version for fine tuning. AI assists musicians to 

supplement harmony in real-time performance, making 

instrument coordination more natural. The cooperation 

between AI and human beings improves the efficiency of 

music creation and provides possibilities for the 

exploration of new music styles[16]. 

A small case study involving four composers 

interacting with the system showed that AI-generated 

suggestions accelerated harmony arrangement tasks by 

32%, and users reported improved creativity through 

alternative accompaniment options. Qualitative feedback 

highlighted “enhanced idea exploration” and “useful 

harmonic variation suggestions. 

2.4.2  Performance evaluation 

The quality evaluation of music works involves melody 

fluency, harmony complexity, rhythm adaptability and 
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emotional expressiveness. The works generated by AI 

need to be compared with those created manually to 

determine the generation ability and optimization space of 

AI model. Calculating the smoothness of the melody lines 

and the rationality of the jumping changes of the notes; In 

harmony complexity analysis, the diversity and 

consistency of chord progression are calculated; Analyze 

the stability of rhythm change and the fit with the whole 

melody. The evaluation of musical works is measured 

using quantitative indicators. The melody fluency 

calculates the range of change in note spacing of smoothM
 

as measured by the following formula (7): 

1

1

1
| |

N

smooth i i

i

M P P
N

−

=

= −
                （7） 

Pi represents the pitch of note i and N represents the 

total number of notes. The harmony complexity evaluation 

index can calculate the chord change rate of complexH
as 

measured by the following formula (8): 

1
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M
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j

H d C C
M

−

=

= 
                  （8） 

Cj represents the j the chord, 1( , )j jd C C −  

represents the interval distance between two chords and M 

is the total number of chords [17]. 

2.4.3  Practical application prospect 

The application scope of AI-assisted music creation covers 

various scenes, including commercial music production, 

education and training, personalized music 

recommendation and real-time performance assistance. In 

commercial music production, AI can help composers to 

quickly generate melodies and compose music plans and 

improve production efficiency. The film, video, game and 

advertising industries can use AI to create background 

music that meets the needs of the scene, shortening the 

music production cycle. AI can provide learners with 

personalized practice tracks and help students understand 

different composition techniques through music style 

analysis. AI automatically generates works that meet 

individual tastes based on the users' music preferences. 

Real-time performance assistance technology enables AI 

to dynamically adjust harmony or accompaniment in live 

performance, making instrument coordination more 

natural. 

3  Outcome and discussion 

3.1  Results 

3.1.1  Model performance 

The performance evaluation of the model involves many 

aspects, including the consistency of the generated music, 

tone color restoration, style adaptability and stability. The 

loss function of the generated confrontation network 

(GAN) decreases gradually with the number of training 

rounds, and the output of the generator tends to be stable. 

In the training process, the loss curves of the discriminator 

and the generator show obvious convergence trend, and 

the model is continuously optimized to avoid the pattern 

collapse phenomenon. 

In order to evaluate the overall performance of the 

model, different instrument combinations were used to test 

and analyze the performance of the model when different 

music styles were generated. As shown in Figure 2 below, 

the performance of the model in classical, pop, jazz and 

other musical styles is somewhat different. The melody 

generation of popular music is relatively stable, the chord 

complexity of jazz is relatively high, and the performance 

of classical music in instrument coordination is balanced. 

Based on the test data of different styles, the average pitch 

deviation, rhythm accuracy and harmony matching degree 

of the generated music are calculated, and the performance 

of the model is quantified [18]. 

 
Figure 2: Model training results and evaluation criteria 
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3.1.2  Music quality analysis 

The evaluation of music quality involves the fluency of 

melody, the rationality of harmony structure, the hierarchy 

of music works and the overall auditory experience. 

Analyzing the quality of AI-generated music, selecting the 

smoothness of melody, the natural degree of chord 

transformation, the balance of note distribution, etc. As 

shown in Figure 3 below, the melody generated by AI has 

high overall coherence, but there is some instability in the 

complex chord transition. Pop music has a high score of 

melody fluency, jazz music has a certain diversity in 

harmony arrangement, and classical music has an excellent 

performance of hierarchy. According to the hearing test, 

the scoring data of different styles of music are analyzed, 

and the quality performance of the model under different 

music styles is obtained [19]. 

 
Figure 3: AI generate music quality analysis 
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some imbalance in the fast-changing paragraphs. 

 

Figure 4: Concerted performance effects of different instrument combinations 
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3.1.4  Accuracy and efficiency of model 

the accuracy and efficiency of the model affect the 

feasibility of practical application, involving the accuracy 

of music generation, calculation cost and generation speed. 

the accuracy of the model is evaluated and measured using 

pitch prediction error, rhythm matching degree and chord 

recognition accuracy. the model with smaller pitch 

prediction error is more stable in the melody generation 

process, and the rhythm matching degree and chord 

recognition accuracy rate are directly related to the 

audibility of the generated music. as shown in figure 5 

below, the pitch prediction error of the model gradually 

decreases after the number of training rounds increases, 

and the generated rhythm matching degree increases. in 

terms of efficiency, the time required to calculate and 

generate a 30-second piece of music is reduced with 

training optimization. in different hardware environments, 

the running time and calculation consumption of the model 

are different to some extent, and the generation efficiency 

of the model is improved in the gpu environment. 

 

Figure 5: Model accuracy and calculation efficiency 

 

3.1.5  Baseline comparison with SOTA 

models 

To contextualize the performance of the proposed GAN 

model, its results were compared against two widely used 

state-of-the-art systems: MusicVAE and MuseGAN. Using 

the same evaluation dataset, the proposed model achieves 

a mean pitch deviation of 0.42 semitones, compared with 

0.63 for MusicVAE and 0.58 for MuseGAN. Rhythm 

synchronization shows a similar trend: the GAN reaches 

95.1%, whereas MusicVAE and MuseGAN achieve 88.4% 

and 90.7%, respectively. Harmony-matching accuracy 

improves to 92.3%, surpassing MusicVAE (85.9%) and 

MuseGAN (89.1%). These results suggest that adversarial 

learning, combined with feature fusion, enhances both the 

structural and perceptual consistency of multi-instrument 

generation. 

Evaluation protocol 

A listening evaluation was conducted with 20 

participants, including 8 professional musicians and 12 

experienced amateur performers. Each participant rated 

melody fluency, harmonic consistency and timbre 

matching on a 5-point Likert scale. Inter-rater reliability 

was computed using Cohen’s κ = 0.81, indicating strong 

agreement. 

Pitch deviation is measured in semitones, chord-matching 

accuracy is computed based on Roman numeral chord 

labels, and rhythm accuracy is measured in milliseconds 

(ms) using onset alignment within ±20 ms. Statistical 

significance was assessed using a paired t-test, revealing 

that our GAN significantly outperforms the baselines on 

pitch deviation (p < 0.01) and rhythm synchronization (p < 

0.05). 95% confidence intervals were included for all 

averaged metrics. 

3.2  Discussion 

Training stability was ensured through the use of 

Wasserstein loss with gradient penalty, spectral 

normalization in the discriminator and a 5:1 discriminator–

generator update ratio. Diversity metrics, including pitch-

class entropy and rhythmic pattern variance, indicate no 

significant mode collapse across epochs. Early-epoch 

diversity scores were compared with final-epoch scores, 

showing less than 3% deviation. 

To evaluate the effectiveness of the proposed GAN-

based multi-instrument generation model, its performance 

was compared with two widely used baseline methods: an 

LSTM-based recurrent neural network (RNN) model and 

a Transformer-based symbolic music generator. 
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Quantitative results indicate that the proposed GAN 

achieves superior performance across several musical 

dimensions. Specifically, the GAN reduces the mean pitch 

prediction error from 0.71 semitones (RNN) and 0.55 

semitones (Transformer) to 0.42 semitones, and increases 

chord recognition accuracy from 84.6% and 89.2% to 

92.3%, respectively. Rhythm synchronization also 

improves to 95.1%, outperforming both baselines by more 

than 5%. These results suggest that the adversarial learning 

mechanism enables the GAN to capture both global 

structural patterns and fine-grained stylistic nuances more 

effectively than likelihood-based RNN and Transformer 

models. 

In terms of melody coherence, the GAN model 

demonstrates better phrase continuity and smoother note-

to-note transitions. Unlike RNNs that tend to generate 

locally coherent but globally drifting sequences, the 

GAN’s discriminator enforces structural constraints that 

promote long-range consistency. While Transformers 

capture long-term dependencies effectively, their symbolic 

token-based formulation sometimes leads to overly 

repetitive motifs. In contrast, the GAN leverages fused 

STFT–MFCC features, which preserve harmonic texture 

and timbral contour, resulting in melodically richer and 

more expressive outputs. 

With regard to harmonic coordination and timbre 

accuracy, the GAN’s multi-branch discriminator plays a 

critical role. By jointly evaluating global harmony, 

instrument-specific timbre consistency and cross-

instrument alignment, the model learns to generate chords 

with more stable tonal progression and timbres that better 

reflect real instrumental characteristics. Baseline models, 

which often decouple instrument tracks or treat timbre 

implicitly through MIDI-like representations, cannot 

enforce such fine-grained inter-instrument alignment. 

However, the GAN still exhibits weaknesses in segments 

with rapid harmonic modulation or complex jazz chord 

extensions, where the pitch deviation increases and timbre 

consistency decreases. These limitations suggest that 

adversarial training, while powerful, struggles in highly 

non-linear musical transitions where traditional attention-

based models may maintain stability more effectively. 

Finally, although the GAN exhibits strong multi-

instrument coordination, it incurs higher computational 

cost and longer convergence time compared with 

Transformer models. The adversarial training loop requires 

maintaining the balance between generator and 

discriminator to avoid mode collapse, which demands 

more computational resources. Nonetheless, the GAN’s 

improvement in expressive realism and timbre-aware 

generation demonstrates that adversarial learning provides 

a meaningful advantage for multi-instrument music 

synthesis, especially when realistic ensemble performance 

and timbre fusion are primary objectives. 

An ablation study was conducted to evaluate the 

contribution of the two core components of the proposed 

model:(1) feature fusion (STFT + MFCC);(2) GAN 

optimization strategy (gradient descent + genetic 

algorithm). 

Removing feature fusion and training the model with 

STFT alone increases the pitch deviation from 0.42 to 0.57 

semitones, and reduces timbre-matching scores by 17%, 

indicating that MFCC contributes essential timbre 

information. Excluding the genetic optimization 

component leads to slower convergence and a decrease in 

rhythm synchronization from 95.1% to 90.2%, 

demonstrating the importance of the hybrid optimization 

scheme in stabilizing adversarial training. The full model 

outperforms all ablated variants across melody coherence, 

harmony consistency and timbre accuracy. 

To provide clear evaluation criteria, the quantitative 

metrics used in this study are formally defined.Pitch 

Prediction Error (PPE),Mean pitch deviation is computed 

as (9): 

( ) ( )
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1
| |

N
gen ref
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PPE p p
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= −
(9) 

where

( )gen

ip
 and 

( )ref

ip
 are the generated and 

reference pitch values in semitones.Rhythm 

Synchronization Accuracy (RSA),Rhythm accuracy is 

calculated by (10): 

Number of onsets aligned within 20 ms

Total number of onsets
RSA


=

(10) 

The start time is extracted using a start detector based 

on spectral flux. Harmony matching accuracy (HMA), 

harmony consistency assessment uses chord recognition, 

such as (11): 

Correctly predicted chord labels

Total chord labels
HMA =

(11) 

Chord labels are derived using a chroma-based chord 

classifier validated on the same dataset.All models were 

evaluated on a held-out 3,000-sample multi-instrument test 

set.Metrics were averaged across 10 random seeds to 

ensure robustness.Subjective evaluation involved 20 

professional musicians, each scoring melody, harmony and 

timbre on a 5-point scale.These formal definitions ensure 

that model performance is measurable, reproducible and 

comparable across prior work. 

4  Conclusion 

The application of AI in music creation continues to 

expand, and multi-instrument collaborative creation has a 

broad prospect. This research builds a multi-instrument 

collaborative creation model based on GAN, and conducts 

systematic research through data collection, feature 

extraction, model training and optimization. The model 

has high expressive force in melody generation, harmony 
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arrangement, rhythm control and other aspects, and can 

better simulate the coordinated performance effect of 

various musical instruments. The data quality and feature 

extraction methods affect the model's generating ability. 

The data coverage of different music styles has a direct 

impact on the model's generalization ability. There is still 

room for optimization in paragraphs with complex chord 

changes and fast rhythm changes. The feature extraction 

determines the timbre matching degree between musical 

instruments and affects the coordination of the resulting 

works. In the process of model training, the calculation 

cost and training stability need to be optimized to improve 

the feasibility of practical application. Future research will 

explore data expansion, feature optimization and training 

strategy improvement. The diversity of data sets is 

improved, the adaptability of the model to different music 

styles is enhanced, and the quality of generated music is 

improved. Combining self-supervised learning with 

reinforcement learning, the model's ability to control 

melody and harmony structure is improved. 
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