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The intelligent development of music creation promotes the application of artificial intelligence in multi-
instrument collaborative composition. In this study, we propose a multi-instrument music generation
model based on a conditional Generative Adversarial Network (¢cGAN) that explicitly learns different
instrument performance patterns and their coordination. The model is trained on a dataset of 19,000
multi-instrument music excerpts collected from Muse Score, Magenta, Spottily and a self-built corpus,
covering classical, pop, jazz, electronic and orchestral styles. Audio is converted to a unified format and
sampling rate, denoised, and represented by a fused feature set that combines short-time Fourier
transform (STFT) spectrograms with Mel-frequency cepstral coefficients (MFCCs) to capture both
harmonic structure and timbral characteristics. The generator adopts a multi-layer convolutional and
transposed-convolutional architecture conditioned on instrument labels to synthesize multi-track audio
segments, while a multi-branch discriminator jointly evaluates global musical coherence, instrument-wise
timbre consistency and style conformity. Model parameters are optimized using gradient-based training
combined with a genetic search over key hyperparameters to enhance training stability and audio
realism.Quantitative experiments show that the proposed model achieves a mean pitch prediction error of
0.42 semitones, a chord recognition accuracy of 92.3%, and a rhythm synchronization rate of 95.1%
across common instrument combinations such as piano—violin and guitar—bass. Subjective listening tests
with 20 experienced musicians report an average score of 4.3/5 for melody fluency, 4.2/5 for timbre
matching and 4.1/5 for perceived instrument coordination. The model performs particularly well in
generating melodically fluent lines, harmonically consistent chord progressions and rhythmically stable
ensemble parts, and can more accurately simulate collaborative performance effects among different
instruments. However, there remains room for improvement in handling highly complex chord
transformations and in integrating electronic synthesizer timbres with traditional instruments. Moreover,
computational cost and training stability still constrain large-scale practical deployment, indicating that
improving generation efficiency and robustness is an important direction for enhancing the application
value of AI-based multi-instrument music composition models.

Povzetek: Studija predstavi vecinstrumentni generator glasbe na osnovi pogojenega GAN, ki iz
STFT+MFCC znacilk in oznak instrumentov sintetizira usklajene vecstezne odseke iz vecvejnih
diskriminatorjem za koherenco ter z genetskim iskanjem hiperparametrov izboljsa stabilnost in realizem.

1 Introduction

From the earliest manual creation to the later application
of sound technology, the means of music creation are
constantly enriched. The development of artificial
intelligence (AI) has brought revolutionary changes to
music creation. Al analyzes and processes large amounts
of music data and is also able to simulate and generate new
creations. The application of Al in music creation, multi-
instrument collaborative creation, promote the change of
music creation mode. Multi-instrument collaborative
creation can combine the sound characteristics and
expressive force of different instruments to produce
complex and rich levels of music

works. This way of creation requires a profound
understanding of the timbre of the musical instruments and
also requires a comprehensive consideration of the
harmony and interaction between the musical instruments.
Al algorithm provides a new implementation path, and its
application in generation model, music style fusion and
automatic composition is gradually mature. The
application of Al in music creation mainly focuses on the
fields of music generation, automatic music editing and
audio synthesis. Researchers have explored various Al
technologies, such as in-deep learning, generative
adversarial network (GAN), etc., to achieve results in
specific music creation tasks. Most of the existing
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researches focus on the creation of a single musical
instrument or simple music style, and lack of collaborative
creation among multiple musical instruments and in-depth
discussion of complex sound effects. How to use Al
algorithm to realize multi-instrument collaborative
creation and generate innovative, artistic and technical
music works is still a problem.

In recent years, Al-based music generation has
developed rapidly, and a variety of neural architectures
have been proposed for symbolic and audio-domain
composition. Mel-frequency cepstral coefficientsly
recurrent neural network (RNN) models such as
Performance RNN focus on generating expressive
monophonic or piano performances with realistic timing
and dynamics, but are mainly limited to single-instrument
streams and do not explicitly model coordination among
multiple instruments [1]. Variational Autoencoder (VAE)
approaches such as MIDI-VAE extend to polyphonic and
multi-track symbolic music, enabling control over
dynamics, instrumentation and style transfer, yet the
interaction between tracks is often modeled implicitly and
the constraints on inter-instrument harmony and rhythm
remain weak [2]. GAN-based models such as MuseGAN
introduce convolutional generators and discriminators for
multi-track pop music generation on datasets like the Lakh
Pianoroll Dataset, chieving coherent four-bar phrases
across bass, drums, guitar, piano and strings, but the
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generated phrases are short, and the timbral characteristics
of different instruments are abstracted into pianoroll
representations with limited explicit timbre modeling [3].
Transformer-based models, exemplified by Music
Transformer and its variants, leverage self-attention to
capture long-range musical structure and achieve state-of-
the-art performance in single-instrument or piano-centric
symbolic generation, but they typically focus on one
dominant instrument track and provide only partial support
for tightly coupled multi-instrument arrangements and
timbre-aware accompaniment [4,5].

Table 1 summarizes representative prior work on Al-
based music generation and multi-instrument modeling in
terms of task focus, datasets, model architectures,
evaluation metrics and reported performance. As can be
seen, most existing state-of-the-art systems either (1)
emphasize expressive performance for a single instrument
or a limited number of tracks, (2) treat multi-track music
as loosely coupled channels without explicit modeling of
instrument—instrument coordination, or (3) rely on high-
level symbolic representations that do not fully capture
timbre information. Few models jointly optimize melody,
harmony, rthythm and timbre consistency across multiple
instruments under a unified framework, and systematic
quantitative evaluation of multi-instrument coordination,
timbre matching and rhythm synchronization is still
relatively rare.

Table 1: Previous work on Al-based music generation and multi-instrument modeling

Main task / . ) ) Representative results
Work / reference Dataset (examples)  Architecture Evaluation metrics o
focus and limitations
Generates human-like
. - Xpressive timing an
Expressive Log-likelihood, 3 ?1aer’rs15icsef(t)r sing Iae d
piano / MAESTRO, expressive . y g
. . LSTM-based . . instrument streams,
Performance RNN | monophonic internal MIDI timing/dynamics
RNN R but does not support
performance performance data analysis, listening L .
. explicit multi-
generation tests .
instrument
coordination.
. Handles multiple
Polyphonic, .
yp tracks and can modify
multi-track . . .
svmbolic Reconstruction loss, instrumentation and
ni/usic with Lakh MIDI and VAE with style classification dynamics, yet inter-
MIDI-VAE style transfer related multi-track shared latent accuracy, track dependencies
and MIDI corpora space timbre/style transfer and tight
- . success rhythm/harmony
instrumentatio L
n control coordination are only
indirectly modeled.
Generates coherent
four-bar phrases
Multi-track . across 5 tracks (bass,
op phrase Intra-/inter-track drums, guitar, piano
MUseGAN perl?er:ation and Lakh Pianoroll CNN-based objective metrics, irin s’)gbut lhprase '
g . Dataset (LPD) GAN note density, tonal g . P
accompanimen . . length is short and
distance, user studies . .
t timbre is abstracted to
pianorolls;
coordination is good
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at bar level but
limited control over
fine-grained timbre
interaction.

Long-term
coherent
Music symbolic MAESTRO and
Transformer music other piano datasets
generation

(mainly piano)

Transformer
with relative
self-attention

Negative log-
likelihood,
perplexity, subjective
ratings

Achieves strong long-
term structure and
thematic development
in single-instrument
sequences, but multi-
instrument support
and explicit
accompaniment
modeling are limited.

Controllable
symbolic
generation and
Transformer-based | co-

Pop/jazz MIDI
corpora, task-

Transformer or

Task-specific metrics

Allow conditional
accompaniment and
partial multi-track
generation, yet often
focus on a small set of

. . . . Transformer— (e.g., accompaniment | tracks and do not
multi-track models | composition specific multi-track . . . .
GAN hybrids quality), user studies | systematically
(e.g., melody— | datasets .
accompanimen evaluate timbre
P matching and full-
t)
ensemble
coordination.
Achieves a mean
pitch prediction error
of 0.42 semitones,
92.3% chord
recognition accuracy
and 95.1% rhythm
synchronization, with
Multl- Conditional _ o high subjective scores
instrument . . Pitch prediction error, | for melody fluency,
X 19,000 multi- GAN with . . K
collaborative . chord recognition timbre matching and
. instrument excerpts | CNN-based L
music accuracy, rhythm multi-instrument
. . from Muse Score, generator and L L.
This work generation . . synchronization rate, coordination;
. . Magenta, Spottily multi-branch : . .
with explicit . L timbre matching and | explicitly targets
L and a self-built discriminator; L .
coordination ; coordination scores cross-instrument
. classical corpus STFT+MFCC L
and timbre . from listening tests harmony, rhythm and
. feature fusion . .
modeling timbre, but still faces

challenges in very
complex chord
transitions and in
blending electronic
synthesizers with
traditional
instruments.

By focusing on music generation and multi-instrument
modeling, this work addresses the above gaps in three
ways. First, it employs a conditional GAN architecture to
model coordinated performance across multiple
instruments rather than independent tracks. Second, it
integrates STFT and MFCC features to encode both
harmonic structure and timbral characteristics, thereby
enhancing timbre-aware generation. Third, it adopts multi-
dimensional evaluation indicators—including pitch
prediction error, chord recognition accuracy, rhythm

synchronization and perceived timbre matching—to
quantitatively assess not only musical correctness but also
the collaborative quality of multi-instrument performance.

Despite the rapid development of Al-based music
generation, existing models still face limitations in jointly
modeling melody, harmony, rhythm and timbre across
multiple instruments. Therefore, a formal research
problem statement is necessary to clarify the objectives of
this study.
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Current multi-instrument music generation models
cannot sufficiently map a structured latent representation
to coherent multi-instrument audio sequences with
accurate pitch, stable rhythm, and consistent timbre. This
study aims to develop a generative model capable of
producing coordinated multi-track musical audio with high
melodic fluency, harmonic correctness and timbral
alignment.

To address this problem, the following research
questions are proposed:

RQ1: How can a generative model effectively map
latent representations to synchronized multi-instrument
audio sequences?

RQ2: Can adversarial learning improve pitch accuracy,
chord consistency and timbre matching compared with
existing baseline models?

RQ3: What feature representations best capture multi-
instrument coordination, especially regarding harmony
progression and timbral interaction?

RQ4: Can the model maintain stable performance
across different musical styles (e.g., classical, pop, jazz)?

Based on previous findings and limitations of existing
models, this study tests the following hypotheses:

HI1: A GAN-based model with fused STFT-MFCC
features will significantly reduce pitch deviation compared
with RNN and Transformer baselines.

H2: Multi-branch discriminators that jointly evaluate
global structure and instrument-specific timbre will
increase rhythm synchronization and chord consistency.

H3: Feature-level fusion of harmonic and timbral
descriptors will improve perceived timbre matching in
multi-instrument outputs.

H4: Conditioning the generator on instrument identity
will improve cross-instrument coordination and reduce
inter-track inconsistencies.

To test these hypotheses, this research establishes the
following measurable objectives:Reduce the mean pitch
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deviation to below 0.50 semitones (equivalent to <5%
deviation).Increase rhythm synchronization accuracy to
above 95% across instrument tracks.Improve chord
recognition accuracy to >90% for both classical and pop
test sets.Increase subjective timbre-matching scores by at
least 20% compared with an RNN baseline.Demonstrate
generalization to multiple musical styles using quantitative
and perceptual evaluation.This formalized research
framework supports a clearer theoretical foundation and
provides measurable benchmarks for evaluating the
effectiveness of the proposed model.

2 Materials and methods

2.1 Data collection and sample selection

2.1.1 Data sources

The research selects data sets of wvarious musical
instruments and different music styles, the data sources are
public music databases, professional music platforms and
data sets built by laboratories. Public music databases,
such as Muse Score, Magenta and Wiki Shared Resources,
provide music works in a variety of styles and forms,
including diversified instrument performance data from
classical to modern music. Professional music platforms
such as YouTube and Spottily provide easy access to large-
scale multi-instrument music data. The research works
with experts in the field of music creation to obtain some
original music works and performance data to ensure the
uniqueness and professionalism of the data.

The data source is music score data corresponding to
audio. It is of great significance to understand the roles of
different musical instruments in music creation and their
cooperative relationship [6]. The combination of audio
data and score data builds a more refined multi-instrument
collaborative model to simulate the timbre interaction and
harmony effect between different instruments. As shown
in table 2 below.

Table 2: Sources and characteristics of music data

data data music Amount of o
Instrument type Feature description
source type style data
. It covers a wide
Music . . ..
Muse Classical,  Piano, violin, range of styles and
score 5000 .
Score data modern orchestra, etc has a wide range of
musical instruments.
Audio, . Guitars, electronic Focus on music
. All kinds .. .
Magenta music . musical instruments, 3000 generation, data
of music . . .
scores etc diversification
. Audi Popul . M ic with
Spottily udio ; opuiar, Full range instrument 10000 .odern mustc wi
data jazz, etc high-quality audio
. Audi . . .
Self-built ! .10’ classical . Professional creation,
music . Cello, piano, etc 1000 .
data set music original data set

SCOres
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2.1.2 Data preprocessing

The audio data is subjected to format conversion, which is
suitable for the audio format of model training (such as
WAV or MP3), and the sampling rate is standardized, so
that the sampling rates of all audio files are consistent.
Carry out audio denouncing to reduce the interference of
background noise. The music score data adopts a
standardized method to ensure that the symbol information
such as the time value, pitch and rhythm of the music score
are consistent, so as to better interface with the audio data

[7].
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Data preprocessing is used to extract audio features, short-
time Fourier transform (STFT) is used to extract the
frequency domain features of audio, and Mel-frequency
cepstral coefficients (MFCC) is used to analyze the timbre
features of audio. Aiming at the audio of different musical
instruments, processing such as timbre separation and
volume normalization is carried out to avoid the
unbalanced performance of some musical instruments in
the generation process [8]. All processed data will be
stored in a standardized format to ensure that each sample
in the dataset can play a role in model training. As shown
in table 3 below.

Table 3: Data preprocessing steps and their effect analysis

Pretreatment step way

Pretreatment effect remarks

Audio format

. WAV, MP3 standardization
conversion

Standardization of
sampling rate

Converted to 16kHz sampling
rate

Audio denoising

. Filter denoising
processing

feature extraction STFT. MFCC

Select the audio of a single
instrument and adjust the
volume

Timbre Separation and
Volume Normalization

Unified format
for all audio

Unify audio formats to improve
compatibility

The sampling rate is ensured to be
consistent and the deviation is
reduced

Remove background noise and
improve sound quality

Extracting frequency domain
features and timbre features

Improve data
quality

Ensure audio
clarity

It is helpful for
model training
Improve audio
coordination
effect

So that the tone color of the audio is
purer and the volume is balanced

2.1.3 Sample selection criteria

Sample selection criteria ensure that the data are
representative, diverse and relevant to the research
objectives. In the research of selecting samples, special
attention is paid to the variety of musical instruments,
covering traditional musical instruments and modern
electronic musical instruments to ensure the adaptability
of the model to various musical instruments. The selected
music works have different music styles, including
classical, pop, electronic, jazz, etc. to ensure the
universality of the data. The study only selects audio data
with high sound quality and without serious distortion or
noise interference. All selected samples should be
accompanied with corresponding music score information,

and the relationship between audio and music score should
be analyzed during the research. The selection of samples
will be strictly selected based on the integrity,
misrepresentations and diversity of the data, and the
selected samples can effectively support the realization of
research objectives [9]. As shown in table 4.

All datasets were divided into 70% training, 15%
validation and 15% testing without overlap. Preprocessing
included audio normalization, denoising and score parsing.
For audio—score synchronization, we applied a dynamic
time-warping (DTW) alignment technique to match onset
times and phrase boundaries, ensuring that annotations and
audio frames were precisely aligned before model training.

Table 4: Sample selection criteria and distribution

choice criterion describe z?zrzlple data distribution

Variety of musical Including piano, violin, guitar and other 10000 Classical and modern
instruments instruments diversification

The music style is Covering popular, jazz, classical and other 3000 Al styles are balanced
extensive styles

Sour}d quality No distortion, clear sound quality 12,000 High quality audio data
requirements

Score integrity Each audio corresponds to music score 10000 Provide music score and audio

information

contrast
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2.2 Model Building

2.2.1 Model Selection

The research considers various artificial intelligence
models, such as depth neural network (DNN),
convolution neural network (CNN) and generation
countermeasure network (GAN). DNN is a common
neural network structure. It is not as effective as other
network models when dealing with time series data when
dealing with data with complex nonlinear
relationship[10]. CNN has obvious advantages in image
processing. It can effectively extract local features,
especially when extracting audio image features.
However, it has limited ability to process audio time
series data.

Generating Confrontation Network (GAN) is an in-
deep learning model based on game theory, which
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improves the quality of generated samples through
confrontation  training between generator and
discriminator. GAN can better capture the overall
structure and details of the audio, and is suitable for
generating innovative music works. When generating
multi-instrument collaborative works, GAN can simulate
the collaborative performance between different
instruments through its generator, and the discriminator
evaluates whether the generated audio meets the
requirements of music creation. Based on GAN's
generating ability, this research chooses this model as the
core architecture, and combines the interaction between
the generator and the discriminator to generate multi-
instrument collaborative music works. As shown in table
5 below.

Table 5: Selection basis and comparison of advantages and disadvantages of Al model

types of models advantage

Applicable

disadvantage .
scenario

Can process complex data
and is suitable for learning
nonlinear relationship

DNN

Good at extracting local
features, suitable for image
data

CNN

Strong generating ability,
suitable for creative tasks
and high quality of
generated samples

GAN

The processing of time series
data is not precise enough and
the calculation is large.

The ability to process long time
series data is limited and it is
difficult to capture global

For learning
audio features

Feature
extraction for
audio image

information.
- . Used to
The training process is unstable .
generate music
and prone to collapse.
works

2.2.2 Model architecture design

This study builds a multi-level architecture based on
generative warfare network to generate high-quality
music works. The generator part is responsible for
generating audio segments from the input noise vectors,
and the discriminator evaluates the authenticity of the
generated audio. To ensure the high quality of the
generated music works, the generator uses multi layer
convolution neural network (CNN) and convoluted
operation to generate audio which meets the requirements
of multi-instrument collaborative performance from

G(z) =ConvTranspose(z, 6;)

Q)]

G(z) is an audio sequence generated by the generator;

z is a random noise vector; C is a parameter of the

ConvTranspose

generator; represents a convoluted

operation for gradually recovering the details of the audio.

The proposed GAN model adopts a multi-layer CNN-
based generator and a multi-branch discriminator
specifically designed for multi-instrument audio synthesis.

noise vectors. The discriminator classifies the generated
audio segments through the full connection layer to judge
whether the generated audio segments meet the standards
for audio creation[11]. In order to ensure the coordination
effect between the musical instruments, the model uses
an audio fusion module to splice the audio segments of
different musical instruments to generate a complete
musical composition. In the mathematical formula of the
model, the generator maps a random noise vector of z,
into an audio sequence of G(z), using a convoluted
operation, as in formula (1):

The generator consists of 5 convolutional-transpose layers,
each followed by Batch Normalization and ReLU
activation, except the final layer which uses Tanh to output
a normalized audio spectrogram. A dropout rate of 0.2 is
applied after the third and fourth layers to prevent
overfitting. The discriminator contains 6 convolutional
layers, each followed by LeakyReLU (a = 0.2) and Layer
Normalization, with a final sigmoid / linear output
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depending on the loss variant. For stability, the
discriminator includes spectral normalization in all layers.

Two loss functions were considered: Wasserstein loss
with gradient penalty (WGAN-GP) and binary cross-
entropy (BCE). Experimental results showed that WGAN-
GP produced more stable convergence and better timbre
consistency; therefore, WGAN-GP was selected for final
training.

Training was conducted with a batch size of 32, 200
epochs, and the Adam optimizer (f1 = 0.5, 2 = 0.999).

The initial learning rate was set to 1e-4, decaying by
0.5 every 40 epochs following a step-based schedule. The
generator was trained once for every five discriminator
updates to stabilize training dynamics. All experiments
were run on a NVIDIA RTX 3090 GPU, with a total
training time of approximately 26 hours.

2.2.3 Feature extraction

Short-time Fourier transform (STFT) and Mel-frequency
cepstral coefficients (MFCC) are commonly used in audio
feature extraction. The STFT divides the audio signal into
several small segments and performs Fourier transform on
each segment to obtain the frequency spectrum
information of the audio signal at different time points.
MFCC extracts timbre features from audio signals, which
are commonly used in speech recognition and audio
classification [12]. STFT provides time-frequency domain
information, which is suitable for analyzing the timbre and
harmony of musical instruments. MFCC focuses on the
extraction of timbre features to better identify the timbre
features of musical instruments. Identification and
synthesis of timbre in multi-instrument collaborative
creation [13]. The effective extraction of audio features
provides more accurate input data for the multi-instrument
collaborative creation model. As shown in table 5
below.The STFT and MFCC features are fused to jointly
capture harmonic structure (frequency domain) and timbre
information (cepstral domain). Specifically, the audio
signal x(t) is first transformed into.The STFT spectrum
expression is as shown in (2) :

S(f,7) ISTFT(X) | ,

The expression of the MFCC coefficient matrix is as
shown in (3):

M (K, 7) = MFCC(X(1)) 5,

To integrate these two representations, the features are
connected by channels, and the expression is as shown in

(4):
F()=[s(f.)IM(K,2)] 4

where U denotes concatenation along the feature
dimension. Then the fusion tensor F (1) is projected onto
an learned linear embedding layer, with the expression as
shown in (5)
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Z=WF+b o
This embedded representation serves as the generator
input, allowing the model to construct a latent space
informed by both harmonic and timbral cues. In contrast,
The discriminator receives both raw STFT and fused
representations through parallel branches, improving its
ability to judge timbre accuracy and multi-instrument
coordination.This fused feature pipeline ensures that the
generator learns instrument timbre characteristics while
maintaining harmonic consistency across tracks.

2.2.4 Implementation and optimization

The research combines gradient descent method with
genetic algorithm to optimize the model. Gradient descent
method is a widely used optimization algorithm, which
continuously updates the model parameters to minimize
the loss function. The parameters of the generator and the
discriminator are adjusted according to each feedback until
a high-quality audio sample is generated. The genetic
algorithm selects the optimal solution from multiple
generator versions and simulates the natural selection
process to optimize the generation effect. Genetic
algorithm can find the global optimal solution in a large
search space, and is especially suitable for complicated
generation tasks [14]. The mathematical expression of the
optimization process is as follows (6):

1 N
L) == Iy, - ylF
N =

L(9)

(6)

is a loss function; 0 is a model parameter; yi

Yi

number of samples.

is real audio data; is generated audio data; N is the

The gradient descent method
optimizes the model by minimizing the loss function. The
updating process of the genetic algorithm includes
selection, crossover and mutation operations. Through
these operations, the output of the generator is
continuously improved, and finally a more realistic and

creative music work is generated [15].

2.3

2.3.1 Application in music creation

The application of Al algorithm in music creation involves
melody generation, harmony arrangement, rhythm
adjustment and instrument coordination. The in-deep
learning model can train the generator based on the
existing music data, and has the melody creation ability of
different music styles. The generated melody meets the
requirements of music theory and can also reflect diversity
in emotional expression. Harmony arrangement is the core
link of music creation. Al learns chords, automatically

Application scheme
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matches the appropriate harmony structure, and improves
the hierarchy of music works.

Al model analyzes the rhythm patterns of different
styles of music, and the generated music is more in line
with the rhythm characteristics of specific music styles.
Multi-instrument collaborative performance relies on the
model's learning of different instrument timbre
characteristics, which enables each instrument to form a
good coordination in rhythm, pitch and harmony
relationship, and improves the integrity of music works.
Al's learning ability makes the music creation process
more efficient and enables creators to quickly conceive and
optimize the overall structure of music works.

2.3.2 Impact of Al algorithm on creation

Al algorithm affects the sources of music inspiration, the
diversity of creation styles and the innovation of music
works in the process of music creation. When creators use
Al to assist in creation, they can quickly obtain a large
number of suggestions on melody, harmony and rhythm.
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The data-driven approach expands the creative thinking
and improves the efficiency of music creation. AI model
combines the characteristics of multiple music genres to
generate works with integrated styles, breaking through
the limitations of traditional creation and making music
works more innovative.

The learning mechanism of Al algorithm makes the
structure of music works more diversified, and the model
can learn and generate new timbre combinations, making
the coordination between musical instruments more
natural. Al-assisted creation has changed the music
production process. The traditional creation mode relies on
personal experience and music theory knowledge. With the
data analysis and intelligent optimization provided by Al,
music creation has entered a more intelligent development
stage. Al's innovative ability enriches musical works in
harmony arrangement, melody structure and emotional
expression, and widens the boundary of creation. As
shown in Figure 1 below.

Analysis of the Influence of Al Algorithm on Creative Inspiration
and Music Innovation

Traditional Creation (Scoring)

Al led creation (scoring)

Al assisted creation (scoring)

10
9,1 9,3 88 9 9,2 9.4
8
8,2 8.5 7'9 8,3 8 8,1
6 i 7,1 6.8
6,5 6.2 ) 6,7
4
2
0
e 2,3 9 2z_9 =22 gnx ¢ 3
2823 2898 355%5 38 553  z=:2
£ § P8 & "33%g <28 &5 € 3

Figure 1: Analysis of the influence of Al algorithm on creative inspiration and music innovation

2.4 Refinement of application scheme

2.4.1 Combination of AI and human creation

Al analyzes a large amount of music data, learns different
styles of melody, harmony and rhythm patterns, and
provides creators with a variety of creative solutions.
Human creators make adjustments based on the melody
generated by Al, and the music works meet the needs of
individual style and emotional expression. Al can optimize
the allocation of musical instruments and make harmony
more harmonious in the process of composing music.
Human creators need to combine their own music ideas to
screen and modify them in order to ensure the artistic value
of the works. The combination of Al and human creation
depends on the interactive mode. The music generation
model based on deep learning can provide a variety of
melodies and orchestration schemes after inputting the
creation intention, and the creator can select the

appropriate version for fine tuning. Al assists musicians to
supplement harmony in real-time performance, making
instrument coordination more natural. The cooperation
between Al and human beings improves the efficiency of
music creation and provides possibilities for the
exploration of new music styles[16].

A small case study involving four composers
interacting with the system showed that Al-generated
suggestions accelerated harmony arrangement tasks by
32%, and users reported improved creativity through
alternative accompaniment options. Qualitative feedback
highlighted “enhanced idea exploration” and ‘“useful
harmonic variation suggestions.

2.4.2 Performance evaluation
The quality evaluation of music works involves melody

fluency, harmony complexity, rhythm adaptability and
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emotional expressiveness. The works generated by Al
need to be compared with those created manually to
determine the generation ability and optimization space of
Al model. Calculating the smoothness of the melody lines
and the rationality of the jumping changes of the notes; In
harmony complexity analysis, the diversity and
consistency of chord progression are calculated; Analyze
the stability of rhythm change and the fit with the whole

Pi represents the pitch of note i and N represents the

total number of notes. The harmony complexity evaluation

complex

index can calculate the chord change rate of as
measured by the following formula (8):
1 M
Hcomplex = Mzd (CJ ! Cj—l)
= ®
Cj represents the j the chord, d (Cj ’ Cj’l)

represents the interval distance between two chords and M

is the total number of chords [17].

2.4.3 Practical application prospect

The application scope of Al-assisted music creation covers
various scenes, including commercial music production,
education  and  training,  personalized  music
recommendation and real-time performance assistance. In
commercial music production, Al can help composers to
quickly generate melodies and compose music plans and
improve production efficiency. The film, video, game and
advertising industries can use Al to create background
music that meets the needs of the scene, shortening the
music production cycle. Al can provide learners with
personalized practice tracks and help students understand
different composition techniques through music style
analysis. Al automatically generates works that meet
individual tastes based on the users' music preferences.
Real-time performance assistance technology enables Al
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melody. The evaluation of musical works is measured

using quantitative indicators. The melody fluency
calculates the range of change in note spacing of ~ smooth
as measured by the following formula (7):
1 N
smooth = W Z i—1 |
=1 D

to dynamically adjust harmony or accompaniment in live
performance, making instrument coordination more
natural.

3 Outcome and discussion

3.1 Results
3.1.1 Model performance

The performance evaluation of the model involves many
aspects, including the consistency of the generated music,
tone color restoration, style adaptability and stability. The
loss function of the generated confrontation network
(GAN) decreases gradually with the number of training
rounds, and the output of the generator tends to be stable.
In the training process, the loss curves of the discriminator
and the generator show obvious convergence trend, and
the model is continuously optimized to avoid the pattern
collapse phenomenon.

In order to evaluate the overall performance of the
model, different instrument combinations were used to test
and analyze the performance of the model when different
music styles were generated. As shown in Figure 2 below,
the performance of the model in classical, pop, jazz and
other musical styles is somewhat different. The melody
generation of popular music is relatively stable, the chord
complexity of jazz is relatively high, and the performance
of classical music in instrument coordination is balanced.
Based on the test data of different styles, the average pitch
deviation, thythm accuracy and harmony matching degree
of the generated music are calculated, and the performance
of the model is quantified [18].

Model Training Results and Evaluation Criteria
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Figure 2: Model training results and evaluation criteria
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3.1.2 Music quality analysis

The evaluation of music quality involves the fluency of
melody, the rationality of harmony structure, the hierarchy
of music works and the overall auditory experience.
Analyzing the quality of Al-generated music, selecting the
smoothness of melody, the natural degree of chord
transformation, the balance of note distribution, etc. As
shown in Figure 3 below, the melody generated by Al has
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high overall coherence, but there is some instability in the
complex chord transition. Pop music has a high score of
melody fluency, jazz music has a certain diversity in
harmony arrangement, and classical music has an excellent
performance of hierarchy. According to the hearing test,
the scoring data of different styles of music are analyzed,
and the quality performance of the model under different
music styles is obtained [19].

Al generate music quality analysis
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Figure 3: Al generate music quality analysis

3.1.3 Instrument synergy

The coordination effect of musical instruments affects the
integrity of musical works, involving the tone matching
degree, rhythm synchronization and overall sense of
hierarchy among different musical instruments. Select the
combination of piano, violin, guitar, bass and other
different instruments to evaluate the effect of their

coordinated performance. As shown in Figure 4 below, the
model ensures coordination among multiple instruments,
but there is still slight rhythm deviation when the fast
rhythm changes. The piano and the violin have better
coordination effect, higher timbre matching degree and
smooth melody lines. The combination of guitar and bass
performs well in the low frequency part, but there may be
some imbalance in the fast-changing paragraphs.

Concerted Performance Effects of Different Instrument
Combinations
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Concerted performance effects of different instrument combinations
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3.1.4 Accuracy and efficiency of model

the accuracy and efficiency of the model affect the
feasibility of practical application, involving the accuracy
of music generation, calculation cost and generation speed.
the accuracy of the model is evaluated and measured using
pitch prediction error, rhythm matching degree and chord
recognition accuracy. the model with smaller pitch
prediction error is more stable in the melody generation
process, and the rhythm matching degree and chord
recognition accuracy rate are directly related to the

Informatica 50 (2026) 457-470 467

audibility of the generated music. as shown in figure 5
below, the pitch prediction error of the model gradually
decreases after the number of training rounds increases,
and the generated rhythm matching degree increases. in
terms of efficiency, the time required to calculate and
generate a 30-second piece of music is reduced with
training optimization. in different hardware environments,
the running time and calculation consumption of the model
are different to some extent, and the generation efficiency
of the model is improved in the gpu environment.

Model Accuracy and Calculation Efficiency
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Figure 5: Model accuracy and calculation efficiency

3.1.5 Baseline comparison with SOTA

models

To contextualize the performance of the proposed GAN
model, its results were compared against two widely used
state-of-the-art systems: MusicVAE and MuseGAN. Using
the same evaluation dataset, the proposed model achieves
a mean pitch deviation of 0.42 semitones, compared with
0.63 for MusicVAE and 0.58 for MuseGAN. Rhythm
synchronization shows a similar trend: the GAN reaches
95.1%, whereas MusicVAE and MuseGAN achieve 88.4%
and 90.7%, respectively. Harmony-matching accuracy
improves to 92.3%, surpassing MusicVAE (85.9%) and
MuseGAN (89.1%). These results suggest that adversarial
learning, combined with feature fusion, enhances both the
structural and perceptual consistency of multi-instrument
generation.

Evaluation protocol

A listening evaluation was conducted with 20
participants, including 8 professional musicians and 12
experienced amateur performers. Each participant rated
melody fluency, harmonic consistency and timbre
matching on a 5-point Likert scale. Inter-rater reliability
was computed using Cohen’s k = 0.81, indicating strong
agreement.

Pitch deviation is measured in semitones, chord-matching
accuracy is computed based on Roman numeral chord
labels, and rhythm accuracy is measured in milliseconds
(ms) using onset alignment within +20 ms. Statistical
significance was assessed using a paired t-test, revealing
that our GAN significantly outperforms the baselines on
pitch deviation (p < 0.01) and rhythm synchronization (p <
0.05). 95% confidence intervals were included for all
averaged metrics.

3.2 Discussion

Training stability was ensured through the use of
Wasserstein  loss  with gradient penalty, spectral
normalization in the discriminator and a 5:1 discriminator—
generator update ratio. Diversity metrics, including pitch-
class entropy and rhythmic pattern variance, indicate no
significant mode collapse across epochs. Early-epoch
diversity scores were compared with final-epoch scores,
showing less than 3% deviation.

To evaluate the effectiveness of the proposed GAN-
based multi-instrument generation model, its performance
was compared with two widely used baseline methods: an
LSTM-based recurrent neural network (RNN) model and
a  Transformer-based symbolic music generator.
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Quantitative results indicate that the proposed GAN
achieves superior performance across several musical
dimensions. Specifically, the GAN reduces the mean pitch
prediction error from 0.71 semitones (RNN) and 0.55
semitones (Transformer) to 0.42 semitones, and increases
chord recognition accuracy from 84.6% and 89.2% to
92.3%, respectively. Rhythm synchronization also
improves to 95.1%, outperforming both baselines by more
than 5%. These results suggest that the adversarial learning
mechanism enables the GAN to capture both global
structural patterns and fine-grained stylistic nuances more
effectively than likelihood-based RNN and Transformer
models.

In terms of melody coherence, the GAN model
demonstrates better phrase continuity and smoother note-
to-note transitions. Unlike RNNs that tend to generate
locally coherent but globally drifting sequences, the
GAN’s discriminator enforces structural constraints that
promote long-range consistency. While Transformers
capture long-term dependencies effectively, their symbolic
token-based formulation sometimes leads to overly
repetitive motifs. In contrast, the GAN leverages fused
STFT-MFCC features, which preserve harmonic texture
and timbral contour, resulting in melodically richer and
more expressive outputs.

With regard to harmonic coordination and timbre
accuracy, the GAN’s multi-branch discriminator plays a
critical role. By jointly evaluating global harmony,
instrument-specific timbre consistency and cross-
instrument alignment, the model learns to generate chords
with more stable tonal progression and timbres that better
reflect real instrumental characteristics. Baseline models,
which often decouple instrument tracks or treat timbre
implicitly through MIDI-like representations, cannot
enforce such fine-grained inter-instrument alignment.
However, the GAN still exhibits weaknesses in segments
with rapid harmonic modulation or complex jazz chord
extensions, where the pitch deviation increases and timbre
consistency decreases. These limitations suggest that
adversarial training, while powerful, struggles in highly
non-linear musical transitions where traditional attention-
based models may maintain stability more effectively.

Finally, although the GAN exhibits strong multi-
instrument coordination, it incurs higher computational
cost and longer convergence time compared with
Transformer models. The adversarial training loop requires
maintaining the balance between generator and
discriminator to avoid mode collapse, which demands
more computational resources. Nonetheless, the GAN’s
improvement in expressive realism and timbre-aware
generation demonstrates that adversarial learning provides
a meaningful advantage for multi-instrument music
synthesis, especially when realistic ensemble performance
and timbre fusion are primary objectives.

An ablation study was conducted to evaluate the
contribution of the two core components of the proposed
model:(1) feature fusion (STFT + MFCC);(2) GAN
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optimization descent
algorithm).

Removing feature fusion and training the model with
STFT alone increases the pitch deviation from 0.42 to 0.57
semitones, and reduces timbre-matching scores by 17%,
indicating that MFCC contributes essential timbre
information. Excluding the genetic optimization
component leads to slower convergence and a decrease in
rhythm synchronization from 95.1% to 90.2%,
demonstrating the importance of the hybrid optimization
scheme in stabilizing adversarial training. The full model
outperforms all ablated variants across melody coherence,
harmony consistency and timbre accuracy.

To provide clear evaluation criteria, the quantitative
metrics used in this study are formally defined.Pitch
Prediction Error (PPE),Mean pitch deviation is computed
as (9):

l A en rei
PPE == [pi*™ — pi™|
i=1

strategy (gradient + genetic

(€)]
(gen) p(ref)
where i and are the generated and
reference  pitch  values in  semitones.Rhythm

Synchronization Accuracy (RSA),Rhythm accuracy is
calculated by (10):

Number of onsets aligned within + 20 ms
RSA =

Total number of onsets

(10)

The start time is extracted using a start detector based
on spectral flux. Harmony matching accuracy (HMA),
harmony consistency assessment uses chord recognition,
such as (11):

_ Correctly predicted chord labels
Total chord labels

HMA
(1D

Chord labels are derived using a chroma-based chord
classifier validated on the same dataset.All models were
evaluated on a held-out 3,000-sample multi-instrument test
set.Metrics were averaged across 10 random seeds to
ensure robustness.Subjective evaluation involved 20
professional musicians, each scoring melody, harmony and
timbre on a 5-point scale.These formal definitions ensure
that model performance is measurable, reproducible and
comparable across prior work.

4 Conclusion

The application of Al in music creation continues to
expand, and multi-instrument collaborative creation has a
broad prospect. This research builds a multi-instrument
collaborative creation model based on GAN, and conducts
systematic research through data collection, feature
extraction, model training and optimization. The model
has high expressive force in melody generation, harmony
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arrangement, rhythm control and other aspects, and can
better simulate the coordinated performance effect of
various musical instruments. The data quality and feature
extraction methods affect the model's generating ability.
The data coverage of different music styles has a direct
impact on the model's generalization ability. There is still
room for optimization in paragraphs with complex chord
changes and fast thythm changes. The feature extraction
determines the timbre matching degree between musical
instruments and affects the coordination of the resulting
works. In the process of model training, the calculation
cost and training stability need to be optimized to improve
the feasibility of practical application. Future research will
explore data expansion, feature optimization and training
strategy improvement. The diversity of data sets is
improved, the adaptability of the model to different music
styles is enhanced, and the quality of generated music is
improved. Combining self-supervised learning with
reinforcement learning, the model's ability to control
melody and harmony structure is improved.
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