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This study addresses the limitations of intelligent education systems in multimodal data fusion, scalability, 

and robustness by proposing a graph-based cognitive modeling framework enhanced with contrastive 

representation learning. Using interaction data from 186 students and 874,520 records over a semester, 

heterogeneous behavior graphs are constructed and encoded with a Multi-Head Graph Attention Network 

(GAT) to capture semantic and temporal dependencies. A contrastive learning module further strengthens 

embedding robustness, and the optimized representations drive a dynamic strategy engine for adaptive 

instructional resource allocation. Experimental results demonstrate 93.2% accuracy in learner behavior 

classification and 90.1% accuracy in clickstream prediction, with a 15.4% improvement in 

disengagement-signal retention compared to GCN, LSTM, Transformer, and GraphCL baselines. These 

findings validate the effectiveness and transferability of combining cognitive graph modeling with 

contrastive learning, advancing both theoretical foundations and practical capabilities of intelligent 

education systems to reduce dropout risk and enhance engagement. 

Povzetek: Študija pokaže, da lahko sistem, ki učenje modelira kot “mrežo povezav” in se uči bolj robustnih 

predstavitev, bolje napove vedenje študentov ter pomaga prej zaznati upad motivacije in tveganje za 

odpad. 

 

 

1  Introduction 

With the rapid development of information 

technology and the acceleration of digital education 

reforms, intelligent education systems have become key 

platforms for enhancing instructional efficiency and 

optimizing learner engagement. The integration of 

multimedia resources into teaching has created 

multimodal, interactive, and immersive learning 

environments [1–4]. These environments, however, 

generate fragmented, nonlinear, and high-frequency 

behavioral data that impose higher demands on adaptive 

content scheduling and intelligent responsiveness [5–6]. 

Conventional sequential models, such as long short-term 

memory networks (LSTM) and convolutional neural 

networks (CNN), have been widely adopted to capture 

temporal dependencies in learning behaviors [9–10]. Yet, 

they struggle to represent complex structural relationships, 

overlook latent graph-like patterns in behavioral 

sequences, and fail to adequately exploit multimodal 

synergies. As a result, personalized strategy generation 

remains unstable [11–12], particularly due to the lack of 

semantic alignment between behavior features and 

pedagogical content. 

Recent efforts have attempted to improve adaptive 

instruction through hybrid management of behavioral data 

[17–23] and multimedia-based teaching integration [24–

28]. For example, Lee et al. [17] mapped learner behavior 

to the ICAP framework using deep learning; Zhao et al. 

[20] proposed a result-confirmation approach to interpret 

e-book reading patterns; and Cui [24] developed a 

multimedia teaching model for personalized language 

learning. While these advances enhanced interpretability 

and personalization, they still lack scalability across 

interdisciplinary, media-rich environments [25–26]. 

Moreover, static profile- or rule-based recommendation 

modules [15–16] are limited in dynamic adaptability, 

often resulting in poor content matching and ineffective 

feedback loops. 

To overcome these limitations, graph-based methods 

have gained momentum in modeling the complex 

dependencies of learner behaviors. Graph neural networks 

(GNNs), particularly Graph Attention Networks (GAT), 

have demonstrated strong capabilities in capturing 

semantic proximities and structural relations [29–30]. In 

parallel, graph contrastive learning (GCL) has emerged as 

a powerful paradigm for enhancing embedding 

discriminability by leveraging subgraph alignment and 

perturbation strategies [31–34]. Recent surveys [32] and 

studies [33–34] highlight its ability to improve robustness 

in noisy, heterogeneous data environments. Similarly, the 

rise of Transformer-based multimodal models has 

provided promising tools for adaptive and inclusive 

education, integrating vision, text, and behavioral 
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modalities [35–37]. Applications range from multimodal 

attention modeling in educational intelligence [36] to 

domain-specific advising systems [37], underscoring the 

trend toward scalable multimodal fusion in educational 

AI. 

Despite these advances, several challenges remain. 

Current models often focus on single-modality or low-

dimensional behaviors, which limits their scalability and 

generalization across large-scale heterogeneous 

environments [42–44]. Existing frameworks also lack 

sufficient alignment between cognitive features and 

pedagogical strategies, thereby weakening interpretability 

and adaptability [41, 45]. Moreover, although graph 

contrastive learning and multimodal Transformers are 

rapidly evolving, their integration into dynamic, real-time 

educational systems has yet to be systematically explored 

[35, 42, 46]. 

To address these challenges, this paper proposes a 

graph-based multimodal behavior modeling and adaptive 

strategy optimization framework that integrates Graph 

Attention Networks with contrastive learning. Learner 

interaction data—including clickstreams, dwell times, 

access paths, and interaction frequencies—are encoded 

into heterogeneous behavior graphs. Multi-head GAT 

captures semantic and temporal correlations, while a 

contrastive learning module refines embeddings through 

positive–negative subgraph discrimination. The optimized 

representations feed a dynamic strategy engine that 

generates personalized instructional interventions in real 

time. In doing so, this study introduces a scalable graph–

contrastive learning framework for multimodal learner 

modeling in media-rich education, provides empirical 

evidence on a large-scale dataset comprising 186 students 

and 874,520 interactions with significant performance 

gains over state-of-the-art baselines, and advances 

theoretical understanding of how cognitive graph 

modeling and contrastive learning jointly enhance the 

precision, interpretability, and adaptability of intelligent 

education systems. 

 

 

Table 1: Comparative summary of prior studies 

 
Study & Year Method Dataset Metrics Key Limitation 

Xuan (2022) [9] DRN-LSTM 
Classroom 

behaviors 
Accuracy (85%) 

Weak in structural 

modeling 

Li et al. (2021) 

[10] 

CNN for 

behavior recognition 

Teaching 

videos 
Precision/Recall 

Ignores multimodal 

inputs 

Zhao et al. 

(2021) [20] 

ReCoLBA 

(result-confirmation) 

E-book 

reading logs 
Interpretability 

Limited to single 

domain 

Lee et al. (2023) 

[17] 

DL + ICAP 

framework 

STEM 

education 
Accuracy (92%) 

Focused on small-

scale, domain-specific data 

Liu et al. (2021) 

[23] 

Hybrid learning 

management 
Mgmt. courses Engagement Lacks scalability 

GraphCL (2023) 

[34] 

Graph 

Contrastive Learning 

Benchmark 

graphs 

Representation 

quality 

Not applied to 

education 

Wu et al. (2024) 

[33] 

Cohesive 

subgraph GCL 

Large graph 

datasets 
Robustness 

No education-specific 

validation 

Bharathi et al. 

(2025) [35] 

Multimodal 

Transformer 
e-Learning 

Engagement, 

Inclusiveness 
Expensive, data-heavy 

Xia & Niu 

(2025, Informatica) 

[38] 

Transformer + 

Bi-LSTM 

Vaccine 

sentiment tweets 
Accuracy, F1 

Non-educational 

domain 

Ji & Cao (2025, 

Informatica) [39] 

Transformer 

fusion 

Video forgery 

detection 
Precision 

Non-educational, but 

shows multimodal fusion 

potential 

 

As summarized in Table 1, prior research has 

advanced temporal modeling, interpretability, and 

multimodal integration in intelligent education systems. 

Nevertheless, sequential models often fail to capture the 

graph-like dependencies embedded in learner behaviors, 

interpretability-driven frameworks lack scalability across 

diverse contexts, and Transformer-based multimodal 

approaches remain computationally intensive while 

seldom linked to adaptive teaching strategies. 

Consequently, a critical research gap remains: few studies 

integrate graph-based modeling, contrastive learning, and 

adaptive strategy generation within large-scale, real-world 

educational settings. Addressing this gap constitutes the 

central contribution of the present work. Specifically, this 

study investigates how graph-based contrastive learning 

can enhance the robustness and scalability of multimodal 

learner behavior modeling, with the hypothesis that Graph 

Attention Networks combined with contrastive learning 

embeddings will outperform sequential and unimodal 

baselines in prediction accuracy, representation 

robustness, and learner engagement. Success is defined by 

achieving at least a 5% improvement over state-of-the-art 

baselines in behavior classification, demonstrating 

statistically significant gains (p < 0.05) in clickstream 

prediction and disengagement-signal retention, and 

validating adaptability in real-world, media-rich higher 

education datasets. 

 

 

 

 



GAT-CL: A Graph Attention and Contrastive Learning…                                              Informatica 49 (2025) 409–422   411 

 
 

2 Design of behavior modeling and 

strategy generation method 

2.1 Extraction of learning behavior features 
and construction of behavior graph 

In the stage of extracting learning behavior features 

and building behavior graph, the behavior log data 

generated by the media teaching system is set as the 

original input, and the behavior event sequence is set as 

𝒮 = 𝑒1, 𝑒2, … , 𝑒𝑇, where 𝑒𝑡 represents the behavior event 

of the learner at time t. Each behavior event 𝑒𝑡  is 

represented as a triple 𝑒𝑡 = (𝑎𝑡 , 𝑟𝑡 , 𝜏𝑡) , where 𝑎𝑡 
represents the behavior action type, 𝑟𝑡  represents the 

resource identifier corresponding to the behavior, and 𝜏𝑡 
is the timestamp of the behavior. According to the 

semantic normalization dictionary and the time density 

distribution function, 𝑎𝑡  and 𝑟𝑡  are discretized and 

mapped to define a unified behavior category space 𝒜 and 

resource space ℛ. After mapping, the behavior events are 

uniformly embedded in a fixed-dimensional vector form. 

A directed graph G = (V, E) can be constructed as the 

expression of the behavior graph structure. The node set V 

consists of all the behavior events of the learner in a 

certain time window. Assume that the sliding window size 

is 𝜔, and a sliding mechanism with a step size of 𝛿 is used 

in the behavior sequence to construct the graph structure 

for the continuous event segments, satisfying |𝑉| ≤ 𝜔 and 

ensuring that the graph structure has temporal integrity 

under the constraints of space complexity. In the figure, 

each edge 𝑒𝑖𝑗 ∈ 𝐸  connects event nodes 𝑣𝑖  and 𝑣𝑗 . The 

strength of the edge is defined by the edge weight function 

𝑤𝑖𝑗 . The weight calculation adopts the joint temporal-

semantic mechanism, as shown in formula (1): 

𝑤𝑖𝑗 = 𝜆1 ⋅ sim(𝑎𝑖 , 𝑎𝑗) + 𝜆2 ⋅ exp(−𝛾1|𝜏𝑖 − 𝜏𝑗|) (1) 

sim(𝑎𝑖 , 𝑎𝑗)  represents the semantic similarity 

function between action types, which is calculated using 

the cosine similarity of the embedding vector. 𝜏𝑖  and 𝜏𝑗 

represent the timestamps of the corresponding actions, 𝜆1 

and 𝜆2 are weighting coefficients, and 𝛾1 is the time decay 

factor, which controls the sensitivity of the edge weight to 

the change of time interval. 

In order to suppress the risk of noise propagation 

caused by excessive edge connection density, structural 

filtering rules are introduced. Define the edge threshold 

𝜃𝑤 , if 𝑤𝑖𝑗 < 𝜃𝑤 , discard the corresponding edge 

connection; at the same time, set the node degree upper 

limit 𝐷𝑚𝑎𝑥, if a node degree exceeds the upper limit, retain 

the 𝐷𝑚𝑎𝑥  connection with the highest edge weight, and set 

other edges to invalid, further limiting the complexity of 

the behavior graph and ensuring the convergence and 

stability of subsequent graph neural network calculations. 

The node representation initialization is achieved by 

jointly embedding the behavior action type, resource 

category and time information. Assume that the 

embedding vectors of 𝑎𝑖 ∈ 𝒜  and 𝑟𝑖 ∈ ℛ  are 𝐚𝑖  and 𝐫𝑖 
respectively, and the timestamp 𝜏𝑖  is normalized to the 

interval [0,1] and embedded as the time vector 𝐭𝑖. Then the 

initial representation 𝐡𝑖
0 of the behavior node 𝑣𝑖 is defined 

as shown in formula (2): 

𝐡𝑖
0 = 𝐖𝑎𝐚𝑖 +𝐖𝑟𝐫𝑖 +𝐖𝑡𝐭𝑖 + 𝐛 (2) 

Among them, 𝐖𝑎, 𝐖𝑟, and 𝐖𝑡 are trainable weight 

matrices, and 𝐛  is a bias term. This representation is 

passed to the subsequent GAT module as an input node 

feature vector, and is further used to learn the structural 

relationship and semantic coupling characteristics 

between behaviors. This method ensures that the temporal 

evolution trajectory and semantic association pattern of 

the learner's behavior are fully preserved during the 

construction of the behavior graph structure, laying the 

foundation for subsequent graph representation learning 

and teaching strategy generation. 

 

2.2 GAT-driven behavior representation 
encoding 

In the media teaching scenario, learners’ behaviors 

have complex temporal structures and semantic 

dependencies. Traditional graph neural networks use 

average or static weight aggregation for adjacent nodes to 

hardly characterize the heterogeneous relationship 

characteristics between nodes. For this reason, GAT is 

introduced as the encoding mechanism of the behavior 

graph structure to achieve adaptive weighted learning of 

node semantic representation while maintaining the 

topological structure [29-30]. Figure 1 shows the overall 

composition of the behavior representation encoding 

module under the GAT structure and the interactive 

relationship between each functional unit. 

 

 
 

Figure 1: Graph attention encoding framework for 

learning behavior graph representation 

 

GAT is built on the learning behavior graph structure 

to achieve deep encoding of behavior representation. The 

node feature matrix is set to 𝑋 ∈ ℝ𝑁×𝑑 , where 𝑁 is the 

number of nodes and 𝑑 is the original feature dimension. 

The original features are mapped using linear 

transformation to obtain the node representation ℎ𝑖 =

𝑊𝑥𝑖 , where 𝑊 ∈ ℝ𝑑′×𝑑 is the trainable weight matrix and 

𝑑′  is the mapped dimension. The attention weights 

between nodes are calculated based on the local adjacency 

structure. The attention relevance score 𝜓𝑖𝑗  of node 𝑗 to 

node 𝑖 is obtained by formula (3): 

𝜓𝑖𝑗 = LeakyReLU(𝑎
→
⊤[ℎ𝑖 ∥ ℎ𝑗]) (3) 

𝑎
→
∈ ℝ2𝑑′  is a learnable parameter vector, and ∥ 

represents a feature concatenation operation. To ensure 

information normalization, the softmax function shown in 
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formula (4) is introduced to normalize the scoring results 

in the node neighborhood: 

𝛼𝑖𝑗 =
exp(𝜓𝑖𝑗)

∑ exp𝑘∈𝒩(𝑖) (𝜓𝑖𝑘)
⁄  (4) 

𝛼𝑖𝑗 ∈ [0,1]  is the influence strength of node 𝑣𝑗  on 

node 𝑣𝑖 during the feature update process, and 𝒩(𝑖) is the 

set of adjacent nodes of node 𝑣𝑖, satisfying ∑ 𝛼𝑖𝑗 =𝑗∈𝒩(𝑖)

1 . The final node embedding vector is the attention 

weighted aggregation result as shown in formula (5): 

ℎ𝑖
′ = 𝑓 (∑ 𝛼𝑖𝑗ℎ𝑗𝑗∈𝒩(𝑖)

) (5) 

𝑓 is a nonlinear activation function, and ℎ𝑖
′ ∈ ℝ𝑑′ is 

the node representation after a layer of GAT update. In 

order to enhance the model's ability to model multiple 

semantic channels, a multi-head attention mechanism is 

used to connect M independent attention subspaces in 

parallel, and the generated embedding representation 

ℎ𝑖
multi is as shown in formula (6): 

ℎ𝑖
multi =∥𝑚=1

𝑀 𝑓 (∑ 𝛼𝑖𝑗
(𝑚)

ℎ𝑗
(𝑚)

𝑗∈𝒩(𝑖)
) (6) 

Here, 𝛼𝑖𝑗
(𝑚)

 and ℎ𝑗
(𝑚)

 are the attention weight and 

node feature of the mth attention head, respectively. In the 

process of stacking multi-layer graph convolution, the 

semantic representation of the initial node is retained 

through the skip connection mechanism to alleviate the 

problem of feature over-smoothing. The formal 

expression is as follows: 

ℎ̃𝑖
(𝑙)

= ℎ𝑖
(𝑙)
+ ℎ𝑖

(0)
 (7) 

Among them, ℎ𝑖
(0)

 is the initial embedding of the 

node, ℎ𝑖
(𝑙)

 is the output of the lth layer, and ℎ̃𝑖
(𝑙)

 is the final 

output of the fused residual. This structure not only 

ensures the local neighborhood expression ability, but also 

enhances the model's ability to retain and discriminate key 

nodes in the behavior path. After all nodes in the behavior 

graph are encoded by multi-layer GAT, a set of embedding 

representations 𝐇 = {ℎ1
′ , ℎ2

′ , … , ℎ𝑛
′ }  with consistent 

dimensions is obtained, which serves as the input 

representation matrix of the subsequent contrastive 

learning optimization and strategy generation module. 

 

2.3 Contrastive learning enhanced behavior 
embedding optimization mechanism 

After the behavior graph representation is embedded 

by GAT, in order to improve the model's ability to 

aggregate similar structures in the learning behavior 

pattern and distinguish heterogeneous structures, a 

contrastive learning mechanism is introduced to construct 

an embedding optimization path. In the encoding stage, 

the training samples are expanded by constructing positive 

and negative behavior subgraph pairs, and the contrast loss 

function between graph embeddings is used to further 

constrain the spatial structure of the behavior 

representation. A set of positive sample graphs 𝐺+  and 

negative sample graphs 𝐺−  are generated through data 

perturbation, and the corresponding embedding vectors 

are 𝐡𝑣
+ and 𝐡𝑣

− respectively. The positive sample graph is 

obtained by retaining the main nodes of the behavior path 

structure and perturbing the edge weights, while the 

negative sample graph is generated by behavior path 

clipping and semantic perturbation. 

When constructing the loss function, the Euclidean 

distance between behavior embeddings is used as the 

similarity metric, and the optimization goal is to minimize 

the embedding distance between positive samples and 

maximize the average distance between negative samples. 

The contrast loss function is defined as formula (8): 

ℒcontrast = ∑  𝑁
𝑖=1 [∥ 𝐡𝑖 − 𝐡𝑖

+ ∥2
2−

1

𝐾
∑  𝐾
𝑘=1 ∥ 𝐡𝑖 −

𝐡𝑘
− ∥2

2] (8) 

There are K negative samples in total. By 

maximizing the difference between the average distance 

of negative samples and the distance of positive samples, 

the model's ability to distinguish between aggregations of 

similar structures and heterogeneous structures is 

improved. 

In order to ensure that the structural comparability 

between subgraphs can be maintained after the 

perturbation, the perturbation strategy is constrained to 

maintain structure. Let the perturbed subgraph be 𝐺′ =
(𝑉′, 𝐸′) , and its adjacency matrix 𝐴  with the original 

graph 𝐺  is required to satisfy the maximum structural 

retention, that is, the control shown in formula (9) is 

performed during the perturbation process: 

∥ 𝐴 − 𝐴′ ∥𝐹≤ 𝜖 (9) 

∥⋅∥𝐹 represents the Frobenius norm and 𝜖 is the upper 

limit of the perturbation amplitude. The final embedding 

vector 𝑧𝑣 is composed of the weighted combination of the 

original behavior embedding and the contrast optimized 

representation, and is defined by formula (10): 

𝑧𝑣 = 𝛼 ⋅ ℎ𝑣 + (1 − 𝛼) ⋅ ℎ𝑣
contrast (10) 

Among them, 𝛼 ∈ [0,1] is the weight parameter, and 

ℎ𝑣
contrast  represents the optimization vector under the 

guidance of contrast loss. This embedding serves as the 

input basis for the subsequent generation of personalized 

teaching strategies, ensuring its dual robustness in 

semantic consistency and structural discriminability. 

 

2.4 Personalized teaching strategy generation 
and resource scheduling 

In the personalized teaching strategy generation and 

resource scheduling phase, the system first receives the 

learning behavior embedding vector optimized by GAT 

and contrastive learning as the input feature to build the 

teaching strategy matching model. Let the behavior 

embedding be denoted as 𝐡𝑢 ∈ ℝ𝑑 , where 𝑑  represents 

the embedding dimension, and the historical behavior 

sequence embedding is denoted as 𝐡𝑢
(1)
, 𝐡𝑢

(2)
, . . . , 𝐡𝑢

(𝑡−1)
. 

The dynamic feature state of the behavior sequence is 

extracted through the gated recurrent unit (GRU), and the 

state output is defined as formula (11): 

𝐬𝑢
(𝑡)

= GRU(𝐡𝑢
(𝑡−1)

, 𝐬𝑢
(𝑡−1)

) (11) 

Among them, 𝐬𝑢
(𝑡)

 is the state vector at the moment of 

current strategy generation, 𝐡𝑢
(𝑡−1)

 is the embedding input 

of the previous step behavior, and 𝐬𝑢
(𝑡−1)

 is the state at the 

previous moment. After obtaining the current behavior 

state, the strategy matching function is designed to realize 

the personalized recommendation of teaching resources. 
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The embedding vector of teaching content is represented 

as 𝐜𝑗 ∈ ℝ𝑑, and the matching score calculation function is 

defined by the bidirectional attention fusion method 

commonly used in the dual-tower structure as formula 

(12): 

 

𝛼𝑢,𝑗 = 𝜎((𝐖1𝐬𝑢
(𝑡)
)⊤(𝐖2𝐜𝑗)) (12) 

 

Among them, 𝐖1,𝐖2 ∈ ℝ𝑑×𝑑 are trainable mapping 

matrices, and 𝜎(⋅)  represents the Sigmoid activation 

function, which is used to map the matching score to the 

interval [0,1]. All candidate teaching resources are sorted 

in descending order according to the score 𝛼𝑢,𝑗, and the 

top k resources are selected to form the recommendation 

set. 

The resource scheduling module performs feedback 

path selection based on the above matching results 

combined with the teaching strategy graph model. The 

strategy graph structure is defined as 𝐺𝑠 = (𝑉𝑠, 𝐸𝑠), where 

𝑉𝑠 is the strategy node set and 𝐸𝑠 is the strategy transition 

edge set. Assuming the strategy node state is 𝐯𝑖 and the 

transition relationship edge weight is 𝑤𝑖𝑗 , the current 

scheduling path of the system is calculated by the Bellman 

equation shown in formula (13) to calculate the path 

optimality function 𝑄(𝑠, 𝑎): 
 

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾2 ∑  𝑠′ 𝑃(𝑠
′|𝑠, 𝑎)𝑚𝑎𝑥

𝑎′
 𝑄(𝑠′, 𝑎′) 

(13) 

 

Among them, 𝑟(𝑠, 𝑎) is the immediate feedback of 

taking action 𝑎 under the current state 𝑠, 𝑃(𝑠′|𝑠, 𝑎) is the 

state transition probability, and 𝛾2 is the discount factor. 

The scheduling path is determined according to the 

principle of maximizing the 𝑄  value, and the dynamic 

push process of teaching resources is finally controlled. 

The system control layer maps the teaching content 

presentation strategy into task execution instructions 

based on the matching results and scheduling paths, and 

records the feedback data to update the strategy network. 

The whole process combines offline strategy pre-training 

with online fine-tuning to improve the system's response 

accuracy to changes in learning behavior, and achieves 

efficient adaptation and intelligent intervention control of 

teaching content while ensuring that system resource 

consumption is controllable. 

 

3 Experimental setup and system 

deployment 

3.1 Experimental platform and media 
teaching system construction environment 

In constructing the experimental platform for the 

intelligent education system, it is essential to integrate 

multiple dimensions, including teaching function 

modules, algorithm deployment strategies, media resource 

processing, and front–end/back–end interaction design. 

Such integration ensures not only stable system operation 

but also flexible scalability in media-rich instructional 

scenarios. The system environment configuration directly 

influences both the inference performance of the deployed 

models and the responsiveness of user interactions, as well 

as the completeness of resource loading. To enhance 

reproducibility and transparency, this study reports the 

actual deployment structure of the proposed system, with 

the experimental platform configuration summarized in 

Table 2. 

 

Table 2: Overview of the experimental platform configuration of the media teaching system 

 

Deployment 

Module 

Hardware/Software 

Environment 
Specifications Description 

Server Host 
Windows 10 + 

WSL 

Intel Xeon 

2.4GHz×16 

Backend service 

deployment 

Frontend 

Interface 
Vue + Element UI 

Resolution 

1920×1080 

User behavior 

collection and display 

Teaching 

Content Module 

FFmpeg + 

OpenCV 

Video encoding 

H.264 

Media resource 

loading and conversion 

Model Service 

Container 
Docker + PyTorch 

CUDA 11.8 + 

cuDNN 8 

GAT model inference 

and strategy control 

Table 2 summarizes the deployment of the core 

modules of the intelligent education system at both 

software and hardware levels, including the server host 

environment, content processing framework, front-end 

configuration, and model service tools. Each component 

is optimized for media teaching tasks to ensure efficient 

multi-thread scheduling, video rendering, and behavioral 

data transmission. The system runs on a Windows 10 

server with WSL support for deep learning models; the 

front-end is developed in Vue for interactive display; 

FFmpeg and OpenCV handle media transcoding and 

distribution; and Docker containers encapsulate GAT 

inference and strategy generation services. This 

deployment strategy enhances system stability, scalability, 

and resource scheduling efficiency, thereby supporting 

reproducible and practical evaluation of the proposed 

framework. 

 

3.2 Dataset source and preprocessing process 

The learning behavior data comes from the real use 

environment of a multimedia teaching system deployed in 

a middle school. The system covers nine teaching classes 

in three grades of junior high school. The teaching cycle 
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is a full semester, a total of eighteen weeks. The system is 

used as a teaching assistance platform for teachers and a 

self-learning support tool for students in daily teaching. 

The deployed terminals include teacher control terminal, 

student interaction terminal and resource service terminal. 

The data collection module is designed based on log 

tracking and behavior trigger recording mechanism. The 

system writes behavior events into the server log database 

in real time through the back-end interface. At the same 

time, the compensation synchronization of high-frequency 

behaviors is guaranteed through local cache to ensure data 

integrity and stability. 

A total of 186 students' learning behavior data were 

collected, with a total of 874,520 records, covering various 

interactive behaviors of students in the media teaching 

process, forming a behavioral sequence set with users as 

the main index. The collected field types include behavior 

type code, event trigger timestamp, interaction position 

coordinate vector, teaching resource unique identifier, 

system response status code, task completion flag and user 

identity index. Each piece of data is uniformly constructed 

into a five-tuple form (𝑎𝑖 , 𝑡𝑖, 𝑙𝑖 , 𝑟𝑖 , 𝑠𝑖), where 𝑎𝑖 represents 

the behavior event category, 𝑡𝑖 represents the trigger time, 

𝑙𝑖 represents the interface space position vector where the 

behavior occurs, 𝑟𝑖  represents the associated resource 

identifier, and 𝑠𝑖 represents the behavior state code. The 

size of the system behavior type set is |A|=23, which 

constitutes a discrete event space. The behavior of each 

student is sorted by time-based index sequence to form the 

original sequence set 𝑆 = 𝑠1, 𝑠2, . . . , 𝑠𝑁 , and each 

sequence 𝑠𝑗 = [(𝑎1
𝑗
, 𝑡1

𝑗
), (𝑎2

𝑗
, 𝑡2

𝑗
), . . . , (𝑎𝑚

𝑗
, 𝑡𝑚

𝑗
)]  satisfies 

the monotonic time-increasing constraint 𝑡𝑘
𝑗
< 𝑡𝑘+1

𝑗
. 

The behavior feature preprocessing process includes 

behavior type encoding conversion, behavior frequency 

normalization, time standardization and position 

coordinate transformation. The behavior type is converted 

into a 𝑑-dimensional vector representation by the mapping 

function 𝑓𝐴: 𝐴 → ℝ𝑑 , and the initial behavior vector is 

constructed by one-hot vector embedding. The behavior 

frequency is normalized by the mean variance 

normalization method shown in formula (14): 

𝑥𝑖
′ =

𝑥𝑖 − 𝜇
𝜎⁄  (14) 

Among them, 𝑥𝑖 is the original frequency statistics, 𝜇 

is the mean of all behavior samples of this type, 𝜎 is the 

standard deviation, and 𝑥𝑖
′  is the normalization result. 

Time standardization adopts the maximum and minimum 

normalization strategy to transform the timestamp 𝑡𝑖 into 

𝑡𝑖
′ ∈ [0,1] . The behavior location vector 𝑙𝑖  is encoded 

according to the spatial area divided by the interface 

module and then embedded and transformed to form a 

fixed-dimensional position representation vector. 

Resource identifier 𝑟𝑖  is unified as a hash index, and 

behavior status 𝑠𝑖 is processed in a discrete classification 

manner, indicating whether the behavior is completed, 

whether it is responded to by the system, and whether it 

triggers an exception. 

The data cleaning process strictly follows the three 

standards of behavior legitimacy, sequence integrity, and 

structural discriminability. All records with missing 

behavior status, timestamp conflicts, invalid resource 

identifiers, or non-teaching behaviors are removed. The 

behavior sequences whose interval between consecutive 

behaviors exceeds the upper limit of the maximum 

response cycle of the system is regarded as an incoherent 

behavior flow and processed in segments. After filtering, 

only the sequences whose behavior length is not less than 

the set threshold 𝐿𝑚𝑖𝑛 = 12  are retained to ensure the 

expression density and topological connectivity of the 

input graph structure. The sliding window strategy is 

introduced in the construction of the behavior graph. The 

window size is set to 𝑤 = 8 . Only behavior pairs are 

constructed within the window range to reduce the density 

of the graph structure. The edge weight is set to a threshold 

of 𝛿 = 0.35, and only the edges of 𝑤𝑢𝑣 > 𝛿 are retained 

in the final graph structure to control the size of the edge 

set and enhance the significance of semantic relationships. 

Finally, the training sample set and the test sample set are 

constructed. The sample division is non-overlapping 

based on the learner identity, with a ratio of 8:2. All 

samples are saved in the form of graph structure input, and 

their adjacency matrix 𝐴 ∈ ℝ𝑛×𝑛 and node feature matrix 

𝑋 ∈ ℝ𝑛×𝑑 are stored respectively, where 𝑛 is the number 

of nodes in the graph, for the graph neural network module 

to perform behavior representation learning and strategy 

generation tasks. 

 

3.3 Experimental parameter configuration 
and model training details 

In order to verify the stability and effectiveness of the 

learning behavior modeling method under multiple 

training conditions, this paper systematically sets and 

adjusts the core hyperparameters of the model, covering 

key modules such as graph attention structure, contrastive 

learning mechanism and training convergence strategy, 

forming a set of representative parameter combination 

configuration schemes, as shown in Table 3. 

 

Table 3: Model training parameter setting table 

 

Parameter 
Configuratio

n 1 

Configuratio

n 2 

Configuratio

n 3 

Configuratio

n 4 

Configuratio

n 5 

Learning 

Rate 
0.001 0.0005 0.0001 0.0005 0.0003 

Batch Size 64 128 64 256 128 

Number 

of Attention 
4 8 4 8 6 
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Heads 

Number 

of GAT 

Layers 

2 3 2 3 4 

Contrastiv

e Loss 

Temperature 

0.5 0.3 0.7 0.5 0.4 

Table 3 summarizes the key training settings of the 

proposed model, including batch size, learning rate, graph 

depth, and embedding temperature, each adjusted within 

controlled ranges to analyze their influence on behavior 

graph representation quality and strategy generation 

effectiveness. Combined experiments evaluate 

convergence speed, loss stability, and embedding 

discriminability under different configurations, 

establishing a reliable basis for subsequent performance 

comparison. A unified test set is then used to 

quantitatively assess behavior recognition, strategy 

recommendation accuracy, and scheduling efficiency, 

enabling a comprehensive evaluation of model operation 

under varying parameter combinations. The resulting 

performance trends and their implications for parameter 

selection in practical deployment are reported in Table 4. 

 

Table 4: Parameter configuration performance comparison table 

 

Configuration 

Learning Behavior 

Recognition Accuracy 

(%) 

Teaching Content 

Matching Score (/1.0) 

System Response 

Time (seconds) 

Configuration 1 89.6 0.874 2.31 

Configuration 2 91.2 0.912 2.48 

Configuration 3 87.9 0.851 2.05 

Configuration 4 90.7 0.894 2.62 

Configuration 5 90.1 0.902 2.28 

Table 4 compares the performance of different 

parameter configurations across recognition accuracy, 

content matching, and system response efficiency. 

Configuration 2 achieves the best overall balance, 

showing stable graph embedding performance that 

enhances semantic separation of behaviors and yields the 

highest matching score in strategy generation. Although 

Configuration 3 improves scheduling efficiency, its 

behavior representation quality is weaker, confirming that 

accuracy and adaptability are more consistently supported 

under Configuration 2. 

The effectiveness of Configuration 2 derives from a 

dual reinforcement mechanism of structural perception 

and semantic discrimination. Specifically, setting the 

number of attention heads to 8 strengthens the capture of 

complex semantic associations, while a three-layer GAT 

deepens the extraction of higher-order features to retain 

long-term behavior patterns. The contrastive loss 

temperature (0.3) compresses embedding distances 

between positive and negative samples, improving 

discriminability, and a batch size of 128 balances stability 

with diversity in graph pair construction. With a learning 

rate of 0.0005, gradient descent remains stable during 

updates, avoiding oscillations in training. Together, these 

settings optimize recognition accuracy, response 

efficiency, and system adaptability, providing empirical 

guidance for future system deployment. 

 

 

 

 

 

4  Result analysis 

4.1 Comparative analysis of learning 
behavior modeling accuracy 

To comprehensively evaluate the applicability and 

performance of the proposed method across diverse 

behavior modeling tasks, a comparative experimental 

group was constructed, including five representative 

models: RNN, LSTM, GCN, GAT, and the proposed 

GAT+Contrastive Learning (CL). RNN provides basic 

sequence modeling for short-term dependencies, while 

LSTM enhances long-range memory through gating 

mechanisms. GCN aggregates global neighbor 

information for coarse-grained structural modeling, 

whereas GAT incorporates attention weighting to capture 

fine-grained local semantics. Building on this, our 

GAT+CL approach introduces positive and negative 

behavior subgraph pairs to refine embedding boundaries, 

thereby improving behavioral discriminability. 

The evaluation considers four behavior types—clicks 

(interest dynamics), video viewing (deep engagement), 

resource downloading (content value judgment), and 

bounce behavior (short-term exit, most challenging to 

model). Performance is assessed through five indicators: 

recognition accuracy, structure retention ratio, path 

consistency, semantic separation, and transfer prediction 

accuracy. This multidimensional comparison highlights 

differences in recognition effectiveness, structural 

preservation, sequence stability, embedding clarity, and 

predictive adaptability. The results are illustrated in Figure 

2. 
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Figure 2: Comparison of five behavior modeling 

indicators of different models under multiple behavior 

types 

Figure 2 (a): Comparison of behavior recognition 

accuracy 

Figure 2 (b): Comparison of graph structure retention 

ratio 

Figure 2 (c): Comparison of path consistency 

Figure 2 (d): Comparison of semantic separation 

Figure 2 (e): Comparison of behavior transfer 

prediction accuracy 

 

As shown in Figure 2, the proposed GAT with 

contrastive learning achieves optimal performance across 

all four behavior types. In recognition accuracy, video-

viewing behavior improves to 92.8%, benefiting from the 

weighted adjacency modeling of GAT and the enhanced 

category boundaries provided by contrastive learning. For 

structure retention, RNN and LSTM perform poorly on 

bounce behavior, whereas GAT+CL maintains 69.1%, 

reflecting better adaptability to sparse graph structures. 

Path consistency also improves from 0.75 with GAT alone 

to 0.80 with GAT+CL, indicating more stable global 

representations. Semantic separation strengthens 

progressively, rising from 0.34 with RNN to 0.55 with 

GAT+CL, supported by the discriminative effect of 

negative sample pairs. Behavior transfer prediction further 

demonstrates consistent gains, with click-type behavior 

reaching 89.8%, driven by enhanced trajectory modeling 

and temporal edge stability. Overall, these results confirm 

that integrating graph structure with contrastive learning 

substantially improves behavioral modeling across 

multiple evaluation dimensions. 

 

4.2 Separability of embedded feature space 

The experiment constructed a comparative 

experiment with three processing stages, corresponding to 

the original embedding, GAT embedding and GAT 

combined with contrastive learning embedding, to further 

verify the impact of the structural optimization method on 

the separability of the behavior embedding space. In the 

experiment, the principal component analysis method is 

uniformly used to reduce the ten-dimensional embedding 

vector to a two-dimensional space to eliminate the visual 

bias caused by the dimensional difference and maintain 

the comparability of different stages in the same 

embedding space. The behavioral data is divided into three 

categories of labels. By comparing the changes in the two-

dimensional distribution after the three embeddings, the 

synergy of structural modeling and contrastive learning in 

enhancing the discriminative ability of behavioral 

representation is revealed. The visualization results are 

shown in Figure 3. 

 
Figure 3: Comparison of two-dimensional 

visualization of behavior embedding space evolution 

Figure 3 (a): Original embedding distribution 

Figure 3 (b): GAT embedding distribution 

Figure 3 (c): GAT+ contrast learning embedding 

distribution 

 

 

As shown in Figure 3, the original embeddings 

display heavy overlap among the three behavior categories 

in two-dimensional space, with no clear boundaries and 

extensive mixing along the first two principal 

components. After introducing the graph attention 

mechanism, category boundaries become more distinct, 

and the overlap between behavior 1 and behavior 3 along 

principal component 1 is notably reduced, reflecting the 

enhanced structural perception of behavioral differences. 

With the further integration of contrastive learning, the 

three behavior categories are clustered into compact, well-

separated sub-regions, demonstrating improved intra-

class consistency and inter-class separability. These 

results confirm that combining structural modeling with 

contrastive learning substantially strengthens the 

discriminative power of behavior embeddings. 

This improvement arises from the progressive 

enhancement of the embedding representation 

mechanism. While the original embeddings rely only on 

basic feature generation and lack semantic structural 

modeling, graph attention introduces multi-head 

correlation weights that reinforce valid connections 

among similar behaviors and suppress noisy links, thereby 

preserving local structural information. Contrastive 

learning further generates positive and negative subgraphs 

through structural perturbations, guiding the model to 

optimize intra-class similarity and inter-class distinction. 

This dual mechanism reduces redundancy, sharpens 

decision boundaries, and produces a high-density, low-

overlap distribution in the embedding space—ultimately 

improving clustering quality and representation 

discriminability. 

 

4.3 Effect of strategy recommendation path 
matching 

In order to further evaluate the path fitting ability of 

the system in the strategy generation link, this experiment 

constructed a node similarity matching matrix between the 

target teaching task path and the recommended path 

generated by the system. The target path consists of six 
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standard teaching behaviors, which are entering the 

teaching task page, playing video explanation resources, 

browsing extended reading materials, participating in 

quizzes or small exercises, viewing system feedback 

reports, and returning to the task homepage and marking 

completion. This reflects the entire process of the 

idealized media teaching process from resource reception, 

content digestion to task closure. Correspondingly, the 

recommended path is dynamically generated by the 

system based on the behavior graph embedding, which 

contains five strategic behavior nodes, namely, entering 

the task homepage, clicking and playing video resources, 

reading recommended document materials, completing 

personalized recommendation tests, viewing 

recommendation feedback and jumping to the homepage. 

The above node sequence is mapped to a structural 

semantic path, and the behavior matching matrix is 

constructed by calculating the semantic similarity between 

the nodes in the recommended path and the target path. 

The results are shown in Figure 4. 

 
Figure 4: Node similarity heat map of recommended 

path and target task path 

 

In Figure 4, the matching score between the fifth 

node of the recommended path and the target path reaches 

0.93, representing the highest intensity region and 

indicating that the system achieves strong accuracy in 

strategy generation during the feedback presentation 

stage. This stage typically involves concentrated learner 

responses after task completion, where behaviors are 

relatively stable, allowing the system to form more 

consistent embeddings in graph representation learning. 

The third node shows a high matching score of 0.92, 

attributed to the stability of resource structures and the 

clear behavior patterns in the extended reading link, which 

enhances the discriminative capacity of the GAT in 

capturing semantic representations. The fourth node 

records a score of 0.89, slightly lower due to the presence 

of multiple triggering modes in the test behaviors, which 

introduces local deviations in embedding. For the first 

node, although the score reaches 0.91, the high-heat zone 

is narrowly concentrated, suggesting that the initial 

behavior stage is structurally clear but semantically 

lightweight, making recognition rely more on structural 

rather than semantic similarity.Overall, the heat map 

demonstrates that the system achieves its highest strategy 

path fitting performance in the mid-to-late stages of the 

learning task, where behavioral patterns are richer and 

more stable. 

 

4.4 Media resource response delay and 
scheduling efficiency 

In order to deeply explore the resource response 

characteristics and scheduling efficiency performance of 

the intelligent education system in different media 

teaching task scenarios, this experiment designed five 

representative teaching interaction scenarios. By 

simulating five typical operating states: single-user access, 

small-scale return visits, large-scale interaction, multi-

modal switching, and platform-level high load, the 

system's response behavior under different behavior 

complexities and request densities was comprehensively 

analyzed. Scenario 1 corresponds to the teaching content 

request after a single user enters the platform for the first 

time. The system is in the initial loading state, with 

concentrated resource demand and delay sensitivity. 

Scenario 2 simulates the return visit process of students in 

small classes. The platform can rely on historical cache to 

achieve moderate resource reuse. Scenario 3 involves real-

time interaction in large classes. The number of users 

surges, resource requests are frequent, and the system's 

concurrent processing capabilities face significant 

challenges. Scenario 4 is set as multi-modal task 

switching. Users need to frequently switch between video, 

graphics, and interactive modules to test the flexibility of 

the system's dynamic scheduling. Scenario 5 builds a 

platform-level stress test scenario to create extreme loads 

through concentrated high-frequency access to test the 

system's response elasticity and scheduling stability under 

resource limits. Figure 5 shows the characteristics of 

media resource response delay and system resource 

utilization under three types of request conditions in five 

scenarios. 

 
Figure 5: Combined analysis of media resource response and scheduling efficiency 

Figure 5 (a): Analysis of media resource response delay 
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Figure 5 (b): Analysis of CPU utilization 

Figure 5 (c): Analysis of memory utilization 

Figure 5 (d): Analysis of GPU occupancy 

 

As shown in Figure 5, the first-load delay of media 

resources increases from 850 ms in Scenario 1 to 1580 ms 

in Scenario 5 as scenario complexity and access intensity 

rise. This is primarily due to resource location, permission 

verification, and data distribution processes, which are 

more vulnerable to competition and delay under high 

concurrency. In contrast, delays under repeated requests 

are markedly lower—for example, 280 ms in Scenario 2 

and 880 ms in Scenario 5—benefiting from cache 

scheduling and connection reuse, where higher cache hit 

rates yield faster responses. With preload hits, resource 

preparation is completed in advance, resulting in the 

lowest response times across all scenarios, demonstrating 

the effectiveness of preload optimization under high-

frequency access. 

From a resource perspective, CPU and GPU 

utilization peak in Scenario 5 at 83% and 92% respectively 

during the first load, reflecting the heavy computational 

and image processing demand in high-load conditions. 

Memory usage, however, remains relatively stable, 

indicating that pre-allocation and reuse mechanisms are 

effective. Overall, the results show that the preloading 

mechanism consistently improves response efficiency, 

while system scalability in multimodal, high-concurrency 

scenarios depends heavily on CPU and GPU resources. 

4.5 System stability analysis under different 
behavior complexity scenarios 

To further verify the response stability of the 

constructed model in the face of various learning behavior 

complexity scenarios, the experiment examines its 

operating performance during task execution through 

system-level monitoring experiments. The experimental 

design divides the behavior graph into levels according to 

the complexity of the structure. Ten levels of behavior 

complexity are set, from low to high, representing the 

gradual enhancement of the learning behavior graph in 

structural dimensions such as the number of nodes, edge 

density, path branching, and interaction frequency. By 

loading the corresponding level of behavior graph input in 

the simulation platform, the average response time, 

resource occupancy level and teaching task completion 

rate of the system at each level are recorded. A stability 

evaluation index system can be constructed to observe the 

real-time scheduling capability and robustness 

performance of the system when dealing with high-

frequency and high-coupling behavior paths. The relevant 

data results are shown in Figure 6. 

 
Figure 6: Analysis of the stability performance of the media teaching system at different levels of behavior 

complexity 

Figure 6 (a): Changes in system response time 

Figure 6 (b): Changes in resource usage 

Figure 6 (c): Changes in task completion rate 

 

As shown in Figure 6, system response time rises 

from 18.2 s at behavior complexity level 1 to 33.0 s at level 

10, primarily due to the increased density of nodes and 

edges, which raises the computational cost of graph 

embeddings, and the higher concurrency of behavior 

paths, which intensifies scheduling pressure. Resource 

utilization grows from 49.3% at level 1 to 83.7% at level 

10, reflecting those complex inputs trigger more 

concurrent requests in the multi-head attention mechanism 

and strategy generation module, thereby increasing thread 

utilization. Meanwhile, the task completion rate decreases 

from 98.6% to 80.2%, as higher complexity introduces 

greater ambiguity and interference in behavior paths, 

reducing the accuracy and timeliness of strategy 

recommendations. 

Overall, these trends indicate that the system 

maintains strong adaptability across varying levels of 

behavioral complexity, but under extremely high input 

loads, computational bottlenecks and strategy deviations 

remain the primary constraints on stability. 

 

4.6 Teaching content adaptability and task 
completion quality 

This paper designs six representative media-based 

teaching tasks and conducts a comparative analysis of 

content recommendation and behavioral response effects 

for each. Task 1, basic knowledge explanation, 

emphasizes linear knowledge delivery with a clear 

structure but a single learning path. Task 2, multimedia 

case analysis, focuses on multimodal information 
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integration and reasoning, characterized by frequent 

content shifts. Task 3, interactive answering, requires 

learners to provide high-frequency, real-time feedback, 

resulting in high behavioral density and rapid interaction 

rhythms. Task 4, video demonstration learning, relies on 

visual information absorption, where behavior paths are 

primarily passive but demand sustained attention. Task 5, 

group collaboration, involves multi-user interaction with a 

complex and dynamic behavioral chain. Task 6, 

comprehensive skill assessment, integrates multiple 

knowledge points and operational steps, combining a 

relatively loose task structure with clear goal orientation. 

Based on these task structures, two evaluation 

indicators—content adaptation and task completion 

quality—are employed to assess the system’s overall 

collaborative performance across modules such as 

behavior modeling, strategy generation, and resource 

scheduling. The corresponding results are presented in 

Figure 7. 

 
Figure 7: Comparison of content adaptation and task 

completion quality under different types of teaching tasks 

Figure 7 (a): Teaching content adaptation 

Figure 7 (b): Task completion quality analysis 

 

As shown in Figure 7, the comprehensive skill 

assessment task achieved the best overall results, with a 

content adaptation rate of 93% and a task completion 

quality score of 0.89. This indicates that the system can 

more effectively capture learner behavior patterns in 

integrated tasks and provide accurate strategy matching. 

Multimedia case analysis (91%, 0.86) and video 

demonstration (88%, 0.80) also exhibit strong 

adaptability, though their completion quality differs due to 

varying demands on graphic recognition and short-term 

reasoning. Basic knowledge explanation (86%, 0.81) and 

group collaboration (84%, 0.75) present stable 

adaptability but lower completion quality, reflecting the 

constraints of linear knowledge delivery and the 

uncertainty of collaborative behaviors. By contrast, 

interactive question-answering tasks show the lowest 

performance (79%, 0.72), revealing the system’s current 

limitations in modeling high-frequency, instant feedback 

behaviors. These results highlight that task characteristics 

significantly influence content recommendation accuracy 

and behavioral strategy adaptation, suggesting that further 

refinement of path modeling is needed for highly 

interactive and weakly structured tasks. 

 

 

 

5  Discussion 
The experimental results demonstrate that the 

proposed GAT+Contrastive Learning framework 

consistently outperforms sequential models (RNN, 

LSTM) and baseline GNNs (GCN, GAT) across multiple 

tasks. Its advantages stem from the combination of graph 

attention for fine-grained structural modeling, contrastive 

learning for embedding optimization, and representation 

fusion that reduces redundancy while enhancing intra-

class consistency and inter-class separability. These 

mechanisms collectively improve recognition accuracy, 

structural retention, and semantic separation, thereby 

enabling more precise and adaptive teaching strategy 

generation. Nevertheless, performance in interactive 

question-answering and group collaboration tasks remains 

weaker, reflecting the difficulty of modeling high-

frequency real-time interactions and multi-user 

dependencies, where dynamic feedback and irregular 

trajectories increase system complexity. 

Despite the strong empirical results, this study has 

several limitations. First, the dataset includes only 186 

students from a single institution, constraining 

generalizability to other educational settings. Second, the 

evaluation is restricted to media-rich higher education 

scenarios, leaving applicability in K–12 or vocational 

contexts unexplored. Third, the framework requires 

substantial computational resources, as multi-head GAT 

and contrastive learning introduce overhead that may 

hinder deployment in large-scale or resource-limited 

environments. Addressing these limitations in future work 

will require expanding datasets, applying domain 

adaptation techniques, and adopting model compression 

or graph pruning strategies to enhance scalability. 

Beyond quantitative results, a preliminary qualitative 

survey with teachers and students revealed improved 

interpretability of behavioral feedback and stronger 

engagement through personalized recommendations, 

supporting the framework’s practical value. To ensure 

reproducibility, this study explicitly defines its evaluation 

metrics: structure retention ratio (preservation of 

temporal–semantic links), path consistency (alignment 

between predicted and actual trajectories), semantic 

separation (inter- vs. intra-class embedding distance), and 

task completion quality (a composite score combining 

accuracy, timeliness, and performance outcomes). 

Together, these findings highlight the theoretical 

significance of graph-based contrastive modeling in 

advancing behavior analysis and its practical promise for 

adaptive intelligent education systems. 

 

6  Conclusions 

This study proposes a scalable framework for 

adaptive system design by modeling learner–media 

interactions as heterogeneous behavior graphs and 

combining Graph Attention Networks (GAT) with 

contrastive learning to optimize subgraph representations. 

Experimental results on a real-world multimedia course 

dataset demonstrate clear advantages: video engagement 

recognition reached 92.8%, disengagement signal 
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retention 69.1%, and clickstream prediction 89.8%, 

outperforming sequential and baseline graph models. 

These quantitative improvements confirm the 

framework’s effectiveness in enhancing semantic 

discrimination, structural preservation, and adaptive 

strategy generation. 

At the same time, the system shows limitations in 

high-frequency interactive tasks (e.g., real-time Q&A) and 

multi-user collaboration scenarios, where modeling 

dynamic, irregular behaviors introduce computational 

overhead and reduces efficiency. These shortcomings 

highlight the need for further optimization of graph 

scalability and behavioral path modeling. 

Future research will extend this work through large-

scale, cross-institutional experiments to verify 

generalizability, teacher-in-the-loop evaluations to assess 

the pedagogical value of generated strategies, and online 

deployment trials to examine scalability and real-time 

responsiveness. Additional directions include integrating 

richer multimodal signals such as eye-tracking and 

speech, and exploring graph compression and pruning to 

balance accuracy with computational efficiency. 

Together, these efforts aim to strengthen both the 

theoretical foundations of multimodal learner modeling 

and the practical feasibility of deploying intelligent 

education systems in diverse instructional contexts. 
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