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This study addresses the limitations of intelligent education systems in multimodal data fusion, scalability,
and robustness by proposing a graph-based cognitive modeling framework enhanced with contrastive
representation learning. Using interaction data from 186 students and 874,520 records over a semester,
heterogeneous behavior graphs are constructed and encoded with a Multi-Head Graph Attention Network
(GAT) to capture semantic and temporal dependencies. A contrastive learning module further strengthens
embedding robustness, and the optimized representations drive a dynamic strategy engine for adaptive
instructional resource allocation. Experimental results demonstrate 93.2% accuracy in learner behavior
classification and 90.1% accuracy in clickstream prediction, with a 15.4% improvement in
disengagement-signal retention compared to GCN, LSTM, Transformer, and GraphCL baselines. These
findings validate the effectiveness and transferability of combining cognitive graph modeling with
contrastive learning, advancing both theoretical foundations and practical capabilities of intelligent
education systems to reduce dropout risk and enhance engagement.

Povzetek: Studija pokaze, da lahko sistem, ki ucenje modelira kot “mrezo povezav” in se uci bolj robustnih
predstavitev, bolje napove vedenje Studentov ter pomaga prej zaznati upad motivacije in tveganje za

odpad.

1 Introduction

With the rapid development of information
technology and the acceleration of digital education
reforms, intelligent education systems have become key
platforms for enhancing instructional efficiency and

optimizing learner engagement. The integration of
multimedia resources into teaching has created
multimodal, interactive, and immersive learning
environments [1-4]. These environments, however,

generate fragmented, nonlinear, and high-frequency
behavioral data that impose higher demands on adaptive
content scheduling and intelligent responsiveness [5-6].
Conventional sequential models, such as long short-term
memory networks (LSTM) and convolutional neural
networks (CNN), have been widely adopted to capture
temporal dependencies in learning behaviors [9-10]. Yet,
they struggle to represent complex structural relationships,
overlook latent graph-like patterns in behavioral
sequences, and fail to adequately exploit multimodal
synergies. As a result, personalized strategy generation
remains unstable [11-12], particularly due to the lack of
semantic alignment between behavior features and
pedagogical content.

Recent efforts have attempted to improve adaptive
instruction through hybrid management of behavioral data
[17-23] and multimedia-based teaching integration [24—

28]. For example, Lee et al. [17] mapped learner behavior
to the ICAP framework using deep learning; Zhao et al.
[20] proposed a result-confirmation approach to interpret
e-book reading patterns; and Cui [24] developed a
multimedia teaching model for personalized language
learning. While these advances enhanced interpretability
and personalization, they still lack scalability across
interdisciplinary, media-rich environments [25-26].
Moreover, static profile- or rule-based recommendation
modules [15-16] are limited in dynamic adaptability,
often resulting in poor content matching and ineffective
feedback loops.

To overcome these limitations, graph-based methods
have gained momentum in modeling the complex
dependencies of learner behaviors. Graph neural networks
(GNNSs), particularly Graph Attention Networks (GAT),
have demonstrated strong capabilities in capturing
semantic proximities and structural relations [29-30]. In
parallel, graph contrastive learning (GCL) has emerged as
a powerful paradigm for enhancing embedding
discriminability by leveraging subgraph alignment and
perturbation strategies [31-34]. Recent surveys [32] and
studies [33-34] highlight its ability to improve robustness
in noisy, heterogeneous data environments. Similarly, the
rise of Transformer-based multimodal models has
provided promising tools for adaptive and inclusive
education, integrating vision, text, and behavioral
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modalities [35-37]. Applications range from multimodal
attention modeling in educational intelligence [36] to
domain-specific advising systems [37], underscoring the
trend toward scalable multimodal fusion in educational
Al.

Despite these advances, several challenges remain.
Current models often focus on single-modality or low-
dimensional behaviors, which limits their scalability and
generalization  across  large-scale  heterogeneous
environments [42-44]. Existing frameworks also lack
sufficient alignment between cognitive features and
pedagogical strategies, thereby weakening interpretability
and adaptability [41, 45]. Moreover, although graph
contrastive learning and multimodal Transformers are
rapidly evolving, their integration into dynamic, real-time
educational systems has yet to be systematically explored
[35, 42, 46].

To address these challenges, this paper proposes a
graph-based multimodal behavior modeling and adaptive
strategy optimization framework that integrates Graph
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Attention Networks with contrastive learning. Learner
interaction data—including clickstreams, dwell times,
access paths, and interaction frequencies—are encoded
into heterogeneous behavior graphs. Multi-head GAT
captures semantic and temporal correlations, while a
contrastive learning module refines embeddings through
positive—negative subgraph discrimination. The optimized
representations feed a dynamic strategy engine that
generates personalized instructional interventions in real
time. In doing so, this study introduces a scalable graph—
contrastive learning framework for multimodal learner
modeling in media-rich education, provides empirical
evidence on a large-scale dataset comprising 186 students
and 874,520 interactions with significant performance
gains over state-of-the-art baselines, and advances
theoretical understanding of how cognitive graph
modeling and contrastive learning jointly enhance the
precision, interpretability, and adaptability of intelligent
education systems.

Table 1: Comparative summary of prior studies

Study & Year Method Dataset Metrics Key Limitation
Xuan (2022) [9] DRN-LSTM Classroom Accuracy (85%) Weak in structural
behaviors modeling
Li et al. (2021) _ CNN fo_r_ '_Feachlng Precision/Recall Igno_res multimodal
[10] behavior recognition videos inputs
Zhao et al. ReCoLBA E-book Interoretabilit Limited to single
(2021) [20] (result-confirmation) reading logs P y domain
Lee et al. (2023) DL + ICAP STEM Accuracy (92%) Focused on small-
[17] framework education y scale, domain-specific data
Liu et al. (2021) Hybrid learning -
23] management Mgmt. courses Engagement Lacks scalability
GraphCL (2023) Graph Benchmark Representation Not applied to
[34] Contrastive Learning graphs quality education
Wau et al. (2024) Cohesive Large graph Robustness No education-specific
[33] subgraph GCL datasets validation
Bharathi et al. Multimodal e-Learnin Engagement, Expensive. data-heav
(2025) [35] Transformer g Inclusiveness P ' y
Xia & Niu . .
- Transformer + Vaccine Non-educational
(2025, Informatica) Bi-LSTM sentiment tweets Accuracy, F1 domain
[38]
Ji & Cao (2025, Transformer Video forgery . Non-ed_ucatlonal, _but
: . . Precision shows multimodal fusion
Informatica) [39] fusion detection

potential

As summarized in Table 1, prior research has
advanced temporal modeling, interpretability, and
multimodal integration in intelligent education systems.
Nevertheless, sequential models often fail to capture the
graph-like dependencies embedded in learner behaviors,
interpretability-driven frameworks lack scalability across
diverse contexts, and Transformer-based multimodal
approaches remain computationally intensive while
seldom linked to adaptive teaching strategies.
Consequently, a critical research gap remains: few studies
integrate graph-based modeling, contrastive learning, and
adaptive strategy generation within large-scale, real-world
educational settings. Addressing this gap constitutes the
central contribution of the present work. Specifically, this
study investigates how graph-based contrastive learning

can enhance the robustness and scalability of multimodal
learner behavior modeling, with the hypothesis that Graph
Attention Networks combined with contrastive learning
embeddings will outperform sequential and unimodal
baselines in prediction accuracy, representation
robustness, and learner engagement. Success is defined by
achieving at least a 5% improvement over state-of-the-art
baselines in behavior classification, demonstrating
statistically significant gains (p < 0.05) in clickstream
prediction and disengagement-signal retention, and
validating adaptability in real-world, media-rich higher
education datasets.
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2 Design of behavior modeling and
strategy generation method

2.1 Extraction of learning behavior features
and construction of behavior graph

In the stage of extracting learning behavior features
and building behavior graph, the behavior log data
generated by the media teaching system is set as the
original input, and the behavior event sequence is set as
S = ey, e,, ..., er, Where e, represents the behavior event
of the learner at time t. Each behavior event e; is
represented as a triple e, = (a;, 1., 1,) , Where a,
represents the behavior action type, r, represents the
resource identifier corresponding to the behavior, and 7,
is the timestamp of the behavior. According to the
semantic normalization dictionary and the time density
distribution function, a, and r, are discretized and
mapped to define a unified behavior category space A and
resource space R. After mapping, the behavior events are
uniformly embedded in a fixed-dimensional vector form.

A directed graph G = (V, E) can be constructed as the
expression of the behavior graph structure. The node set V
consists of all the behavior events of the learner in a
certain time window. Assume that the sliding window size
is w, and a sliding mechanism with a step size of § is used
in the behavior sequence to construct the graph structure
for the continuous event segments, satisfying |V| < w and
ensuring that the graph structure has temporal integrity
under the constraints of space complexity. In the figure,
each edge e;; € E connects event nodes v; and v;. The
strength of the edge is defined by the edge weight function
w;;. The weight calculation adopts the joint temporal-
semantic mechanism, as shown in formula (1):

wi; = Ay - sim(a;, ;) + A, - exp(—yq|t; — 7)) (1)
sim(a;, a;) represents the semantic similarity
function between action types, which is calculated using
the cosine similarity of the embedding vector. 7; and ;
represent the timestamps of the corresponding actions, 1,
and A, are weighting coefficients, and y; is the time decay
factor, which controls the sensitivity of the edge weight to
the change of time interval.

In order to suppress the risk of noise propagation
caused by excessive edge connection density, structural
filtering rules are introduced. Define the edge threshold
0y , if w;; <86, , discard the corresponding edge
connection; at the same time, set the node degree upper
limit D,,, ., if a node degree exceeds the upper limit, retain
the D, connection with the highest edge weight, and set
other edges to invalid, further limiting the complexity of
the behavior graph and ensuring the convergence and
stability of subsequent graph neural network calculations.
The node representation initialization is achieved by
jointly embedding the behavior action type, resource
category and time information. Assume that the
embedding vectors of a; € A and r; € R are a; and r;
respectively, and the timestamp 7; is normalized to the
interval [0,1] and embedded as the time vector t;. Then the
initial representation h of the behavior node v; is defined
as shown in formula (2):

Informatica 49 (2025) 409-422 411

h! = W,a; + W,r; + W,t; + b (2)
Among them, W,, W,., and W, are trainable weight
matrices, and b is a bias term. This representation is
passed to the subsequent GAT module as an input node
feature vector, and is further used to learn the structural
relationship and semantic coupling characteristics
between behaviors. This method ensures that the temporal
evolution trajectory and semantic association pattern of
the learner's behavior are fully preserved during the
construction of the behavior graph structure, laying the
foundation for subsequent graph representation learning
and teaching strategy generation.

2.2 GAT-driven behavior representation
encoding

In the media teaching scenario, learners’ behaviors
have complex temporal structures and semantic
dependencies. Traditional graph neural networks use
average or static weight aggregation for adjacent nodes to
hardly characterize the heterogeneous relationship
characteristics between nodes. For this reason, GAT is
introduced as the encoding mechanism of the behavior
graph structure to achieve adaptive weighted learning of
node semantic representation while maintaining the
topological structure [29-30]. Figure 1 shows the overall
composition of the behavior representation encoding
module under the GAT structure and the interactive
relationship between each functional unit.

[Final Exmbedding Represensasion Onsput fo——[Structure Prservation and Skip Connesiion|

Figure 1: Graph attention encoding framework for
learning behavior graph representation

GAT is built on the learning behavior graph structure
to achieve deep encoding of behavior representation. The
node feature matrix is set to X € RV*4, where N is the
number of nodes and d is the original feature dimension.
The original features are mapped using linear
transformation to obtain the node representation h; =
Wx;, where W € R4 %4 s the trainable weight matrix and
d' is the mapped dimension. The attention weights
between nodes are calculated based on the local adjacency
structure. The attention relevance score 1;; of node j to
node i is obtained by formula (3):

y; = LeakyReLU(a'[h; Il b;]) (3)

a € R*? is a learnable parameter vector, and ||

represents a feature concatenation operation. To ensure
information normalization, the softmax function shown in
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formula (4) is introduced to normalize the scoring results
in the node neighborhood:
_ EXp(ll)ij)
%ij = /Zke]\f(i) exp (Yix) “)
a;; € [0,1] is the influence strength of node v; on
node v; during the feature update process, and V(i) is the
set of adjacent nodes of node v;, satisfying Z}.EN(D a;; =

1. The final node embedding vector is the attention
weighted aggregation result as shown in formula (5):

f is a nonlinear activation function, and h; € R% is
the node representation after a layer of GAT update. In
order to enhance the model's ability to model multiple
semantic channels, a multi-head attention mechanism is
used to connect M independent attention subspaces in
parallel, and the generated embedding representation
hMult s as shown in formula (6):

Rt =, (Z i hf’")) ©)
JEN(i

Here, o and h{™ are the attention weight and

node feature of the mth attention head, respectively. In the
process of stacking multi-layer graph convolution, the
semantic representation of the initial node is retained
through the skip connection mechanism to alleviate the
problem of feature over-smoothing. The formal
expression is as follows:

R = h® +h® (1)
Among them, h{” is the initial embedding of the

node, hgl) is the output of the Ith layer, and Eg” is the final
output of the fused residual. This structure not only
ensures the local neighborhood expression ability, but also
enhances the model's ability to retain and discriminate key
nodes in the behavior path. After all nodes in the behavior
graph are encoded by multi-layer GAT, a set of embedding
representations H = {hy, h3, ..., h;,} with consistent
dimensions is obtained, which serves as the input
representation matrix of the subsequent contrastive
learning optimization and strategy generation module.

2.3 Contrastive learning enhanced behavior
embedding optimization mechanism

After the behavior graph representation is embedded
by GAT, in order to improve the model's ability to
aggregate similar structures in the learning behavior
pattern and distinguish heterogeneous structures, a
contrastive learning mechanism is introduced to construct
an embedding optimization path. In the encoding stage,
the training samples are expanded by constructing positive
and negative behavior subgraph pairs, and the contrast loss
function between graph embeddings is used to further
constrain the spatial structure of the behavior
representation. A set of positive sample graphs G* and
negative sample graphs G~ are generated through data
perturbation, and the corresponding embedding vectors
are h} and h;, respectively. The positive sample graph is
obtained by retaining the main nodes of the behavior path
structure and perturbing the edge weights, while the
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negative sample graph is generated by behavior path
clipping and semantic perturbation.

When constructing the loss function, the Euclidean
distance between behavior embeddings is used as the
similarity metric, and the optimization goal is to minimize
the embedding distance between positive samples and
maximize the average distance between negative samples.
The contrast loss function is defined as formula (8):

_ VN +2_1vk
Lcontrast = 4i=1 [” hL‘ _hi "2_E k=1 I hi -

h 13] ®)

There are K negative samples in total. By
maximizing the difference between the average distance
of negative samples and the distance of positive samples,
the model's ability to distinguish between aggregations of
similar structures and heterogeneous structures is
improved.

In order to ensure that the structural comparability
between subgraphs can be maintained after the
perturbation, the perturbation strategy is constrained to
maintain structure. Let the perturbed subgraph be G’ =
(V',E"), and its adjacency matrix A with the original
graph G is required to satisfy the maximum structural
retention, that is, the control shown in formula (9) is
performed during the perturbation process:

lA—Al<€(9)

II-l - represents the Frobenius norm and e is the upper
limit of the perturbation amplitude. The final embedding
vector z,, is composed of the weighted combination of the
original behavior embedding and the contrast optimized
representation, and is defined by formula (10):

z, = a-h, + (1 — a) - hS°ntrast (10)

Among them, a € [0,1] is the weight parameter, and
héentrast represents the optimization vector under the
guidance of contrast loss. This embedding serves as the
input basis for the subsequent generation of personalized
teaching strategies, ensuring its dual robustness in
semantic consistency and structural discriminability.

2.4 Personalized teaching strategy generation
and resource scheduling

In the personalized teaching strategy generation and
resource scheduling phase, the system first receives the
learning behavior embedding vector optimized by GAT
and contrastive learning as the input feature to build the
teaching strategy matching model. Let the behavior
embedding be denoted as h, € R%, where d represents
the embedding dimension, and the historical behavior

sequence embedding is denoted as h”,h®, ..., h{ ™Y,
The dynamic feature state of the behavior sequence is
extracted through the gated recurrent unit (GRU), and the

state output is defined as formula (11):
s = GRUME ™, s87M) (1)
Among them, sff) is the state vector at the moment of
current strategy generation, h,(f_l) is the embedding input
of the previous step behavior, and s is the state at the

u
previous moment. After obtaining the current behavior

state, the strategy matching function is designed to realize
the personalized recommendation of teaching resources.
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The embedding vector of teaching content is represented
as ¢; € R4, and the matching score calculation function is
defined by the bidirectional attention fusion method
commonly used in the dual-tower structure as formula
(12):

ayj = o(Wis)T(W,e))) (12)

Among them, W;, W, € R%*4 are trainable mapping
matrices, and o(:) represents the Sigmoid activation
function, which is used to map the matching score to the
interval [0,1]. All candidate teaching resources are sorted
in descending order according to the score a,, ;, and the
top k resources are selected to form the recommendation
set.

The resource scheduling module performs feedback
path selection based on the above matching results
combined with the teaching strategy graph model. The
strategy graph structure is defined as G, = (V;, E,), where
I is the strategy node set and E; is the strategy transition
edge set. Assuming the strategy node state is v; and the
transition relationship edge weight is w;;, the current
scheduling path of the system is calculated by the Bellman
equation shown in formula (13) to calculate the path
optimality function Q(s, a):

Q(s,0) = (s, @) + 7, 5y P(s'ls, @)mgxQ(s’, @)
(13)

Among them, r(s, a) is the immediate feedback of
taking action a under the current state s, P(s'|s, a) is the
state transition probability, and y is the discount factor.
The scheduling path is determined according to the
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principle of maximizing the @ value, and the dynamic
push process of teaching resources is finally controlled.

The system control layer maps the teaching content
presentation strategy into task execution instructions
based on the matching results and scheduling paths, and
records the feedback data to update the strategy network.
The whole process combines offline strategy pre-training
with online fine-tuning to improve the system's response
accuracy to changes in learning behavior, and achieves
efficient adaptation and intelligent intervention control of
teaching content while ensuring that system resource
consumption is controllable.

3 Experimental
deployment

3.1 Experimental platform and media
teaching system construction environment

In constructing the experimental platform for the
intelligent education system, it is essential to integrate
multiple dimensions, including teaching function
modules, algorithm deployment strategies, media resource
processing, and front-end/back—end interaction design.
Such integration ensures not only stable system operation
but also flexible scalability in media-rich instructional
scenarios. The system environment configuration directly
influences both the inference performance of the deployed
models and the responsiveness of user interactions, as well
as the completeness of resource loading. To enhance
reproducibility and transparency, this study reports the
actual deployment structure of the proposed system, with
the experimental platform configuration summarized in
Table 2.

setup and system

Table 2: Overview of the experimental platform configuration of the media teaching system

Deployment Hard\_/vare/Software Specifications Description
Module Environment
Server Host Windows 10 + Intel Xeon Backend service
WSL 2.4GHzx16 deployment
Frontend Ve + Element Ul Resolution User behavior
Interface 1920%1080 collection and display
Teaching FFmpeg + Video encoding Media resource
Content Module OpenCV H.264 loading and conversion
Model Service Docker + PyTorch CUDA 11.8 + GAT model inference
Container cuDNN 8 and strategy control

Table 2 summarizes the deployment of the core
modules of the intelligent education system at both
software and hardware levels, including the server host
environment, content processing framework, front-end
configuration, and model service tools. Each component
is optimized for media teaching tasks to ensure efficient
multi-thread scheduling, video rendering, and behavioral
data transmission. The system runs on a Windows 10
server with WSL support for deep learning models; the
front-end is developed in Vue for interactive display;
FFmpeg and OpenCV handle media transcoding and
distribution; and Docker containers encapsulate GAT

inference and strategy generation services. This
deployment strategy enhances system stability, scalability,
and resource scheduling efficiency, thereby supporting
reproducible and practical evaluation of the proposed
framework.

3.2 Dataset source and preprocessing process

The learning behavior data comes from the real use
environment of a multimedia teaching system deployed in
a middle school. The system covers nine teaching classes
in three grades of junior high school. The teaching cycle
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is a full semester, a total of eighteen weeks. The system is
used as a teaching assistance platform for teachers and a
self-learning support tool for students in daily teaching.
The deployed terminals include teacher control terminal,
student interaction terminal and resource service terminal.
The data collection module is designed based on log
tracking and behavior trigger recording mechanism. The
system writes behavior events into the server log database
in real time through the back-end interface. At the same
time, the compensation synchronization of high-frequency
behaviors is guaranteed through local cache to ensure data
integrity and stability.

A total of 186 students' learning behavior data were
collected, with a total of 874,520 records, covering various
interactive behaviors of students in the media teaching
process, forming a behavioral sequence set with users as
the main index. The collected field types include behavior
type code, event trigger timestamp, interaction position
coordinate vector, teaching resource unique identifier,
system response status code, task completion flag and user
identity index. Each piece of data is uniformly constructed
into a five-tuple form (a;, t;, l;,7;, 5;), where a; represents
the behavior event category, t; represents the trigger time,
l; represents the interface space position vector where the
behavior occurs, r; represents the associated resource
identifier, and s; represents the behavior state code. The
size of the system behavior type set is |A|=23, which
constitutes a discrete event space. The behavior of each
student is sorted by time-based index sequence to form the
original sequence set S =s;,S,,...,Sy , and each
sequence s; = [(af,t]), (a3, t3),..., (al,, t1,)] satisfies
the monotonic time-increasing constraint ¢, < ¢, ,.

The behavior feature preprocessing process includes
behavior type encoding conversion, behavior frequency
normalization, time standardization and position
coordinate transformation. The behavior type is converted
into a d-dimensional vector representation by the mapping
function f,: A > R%, and the initial behavior vector is
constructed by one-hot vector embedding. The behavior
frequency is normalized by the mean variance
normalization method shown in formula (14):

x ="1" /5 (14)

Among them, x; is the original frequency statistics, p
is the mean of all behavior samples of this type, o is the
standard deviation, and x; is the normalization result.
Time standardization adopts the maximum and minimum
normalization strategy to transform the timestamp ¢; into
t; € [0,1]. The behavior location vector [; is encoded
according to the spatial area divided by the interface
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module and then embedded and transformed to form a
fixed-dimensional  position  representation  vector.
Resource identifier r; is unified as a hash index, and
behavior status s; is processed in a discrete classification
manner, indicating whether the behavior is completed,
whether it is responded to by the system, and whether it
triggers an exception.

The data cleaning process strictly follows the three
standards of behavior legitimacy, sequence integrity, and
structural discriminability. All records with missing
behavior status, timestamp conflicts, invalid resource
identifiers, or non-teaching behaviors are removed. The
behavior sequences whose interval between consecutive
behaviors exceeds the upper limit of the maximum
response cycle of the system is regarded as an incoherent
behavior flow and processed in segments. After filtering,
only the sequences whose behavior length is not less than
the set threshold L,,;, = 12 are retained to ensure the
expression density and topological connectivity of the
input graph structure. The sliding window strategy is
introduced in the construction of the behavior graph. The
window size is set to w = 8. Only behavior pairs are
constructed within the window range to reduce the density
of the graph structure. The edge weight is set to a threshold
of § = 0.35, and only the edges of w,,, > § are retained
in the final graph structure to control the size of the edge
set and enhance the significance of semantic relationships.
Finally, the training sample set and the test sample set are
constructed. The sample division is non-overlapping
based on the learner identity, with a ratio of 8:2. All
samples are saved in the form of graph structure input, and
their adjacency matrix A € R™™ and node feature matrix
X € R™ are stored respectively, where n is the number
of nodes in the graph, for the graph neural network module
to perform behavior representation learning and strategy
generation tasks.

3.3 Experimental parameter configuration
and model training details

In order to verify the stability and effectiveness of the
learning behavior modeling method under multiple
training conditions, this paper systematically sets and
adjusts the core hyperparameters of the model, covering
key modules such as graph attention structure, contrastive
learning mechanism and training convergence strategy,
forming a set of representative parameter combination
configuration schemes, as shown in Table 3.

Table 3: Model training parameter setting table

Configuratio Configuratio

Configuratio Configuratio Configuratio

Parameter nil n?2 n3 n4 nb
:ﬁ;”i“g 0.001 0.0005 0.0001 0.0005 0.0003

Batch Size 64 128 64 256 128
Number 4 8 4 8 6

of Attention
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Heads
Number
of GAT 2 3
Layers
Contrastiv
e Loss 0.5 0.3
Temperature
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0.7 0.5 0.4

Table 3 summarizes the key training settings of the
proposed model, including batch size, learning rate, graph
depth, and embedding temperature, each adjusted within
controlled ranges to analyze their influence on behavior
graph representation quality and strategy generation
effectiveness.  Combined  experiments  evaluate
convergence speed, loss stability, and embedding
discriminability ~ under  different  configurations,

establishing a reliable basis for subsequent performance
comparison. A unified test set is then used to
quantitatively assess behavior recognition, strategy
recommendation accuracy, and scheduling efficiency,
enabling a comprehensive evaluation of model operation
under varying parameter combinations. The resulting
performance trends and their implications for parameter
selection in practical deployment are reported in Table 4.

Table 4: Parameter configuration performance comparison table

Learning Behavior

Configuration Recognition Accuracy

Teaching Content
Matching Score (/1.0)

System Response
Time (seconds)

(%)
Configuration 1 89.6 0.874 2.31
Configuration 2 91.2 0.912 2.48
Configuration 3 87.9 0.851 2.05
Configuration 4 90.7 0.894 2.62
Configuration 5 90.1 0.902 2.28
Table 4 compares the performance of different 4 Result analysis
parameter configurations across recognition accuracy,
content matching, and system response efficiency. 4.1 Comparative analysis of learning

Configuration 2 achieves the best overall balance,
showing stable graph embedding performance that
enhances semantic separation of behaviors and yields the
highest matching score in strategy generation. Although
Configuration 3 improves scheduling efficiency, its
behavior representation quality is weaker, confirming that
accuracy and adaptability are more consistently supported
under Configuration 2.

The effectiveness of Configuration 2 derives from a
dual reinforcement mechanism of structural perception
and semantic discrimination. Specifically, setting the
number of attention heads to 8 strengthens the capture of
complex semantic associations, while a three-layer GAT
deepens the extraction of higher-order features to retain
long-term behavior patterns. The contrastive loss
temperature (0.3) compresses embedding distances
between positive and negative samples, improving
discriminability, and a batch size of 128 balances stability
with diversity in graph pair construction. With a learning
rate of 0.0005, gradient descent remains stable during
updates, avoiding oscillations in training. Together, these
settings optimize recognition accuracy, response
efficiency, and system adaptability, providing empirical
guidance for future system deployment.

behavior modeling accuracy

To comprehensively evaluate the applicability and
performance of the proposed method across diverse
behavior modeling tasks, a comparative experimental
group was constructed, including five representative
models: RNN, LSTM, GCN, GAT, and the proposed
GAT+Contrastive Learning (CL). RNN provides basic
sequence modeling for short-term dependencies, while
LSTM enhances long-range memory through gating
mechanisms. GCN  aggregates global neighbor
information for coarse-grained structural modeling,
whereas GAT incorporates attention weighting to capture
fine-grained local semantics. Building on this, our
GAT+CL approach introduces positive and negative
behavior subgraph pairs to refine embedding boundaries,
thereby improving behavioral discriminability.

The evaluation considers four behavior types—clicks
(interest dynamics), video viewing (deep engagement),
resource downloading (content value judgment), and
bounce behavior (short-term exit, most challenging to
model). Performance is assessed through five indicators:
recognition accuracy, structure retention ratio, path
consistency, semantic separation, and transfer prediction
accuracy. This multidimensional comparison highlights
differences in recognition effectiveness, structural
preservation, sequence stability, embedding clarity, and
predictive adaptability. The results are illustrated in Figure
2.
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Figure 2: Comparison of five behavior modeling
indicators of different models under multiple behavior
types
Figure 2 (a): Comparison of behavior recognition
accuracy
Figure 2 (b): Comparison of graph structure retention
ratio
Figure 2 (c): Comparison of path consistency
Figure 2 (d): Comparison of semantic separation
Figure 2 (e): Comparison of behavior transfer
prediction accuracy

As shown in Figure 2, the proposed GAT with
contrastive learning achieves optimal performance across
all four behavior types. In recognition accuracy, video-
viewing behavior improves to 92.8%, benefiting from the
weighted adjacency modeling of GAT and the enhanced
category boundaries provided by contrastive learning. For
structure retention, RNN and LSTM perform poorly on
bounce behavior, whereas GAT+CL maintains 69.1%,
reflecting better adaptability to sparse graph structures.
Path consistency also improves from 0.75 with GAT alone
to 0.80 with GAT+CL, indicating more stable global
representations.  Semantic  separation  strengthens
progressively, rising from 0.34 with RNN to 0.55 with
GAT+CL, supported by the discriminative effect of
negative sample pairs. Behavior transfer prediction further
demonstrates consistent gains, with click-type behavior
reaching 89.8%, driven by enhanced trajectory modeling
and temporal edge stability. Overall, these results confirm
that integrating graph structure with contrastive learning
substantially improves behavioral modeling across
multiple evaluation dimensions.

4.2 Separability of embedded feature space

The experiment constructed a comparative
experiment with three processing stages, corresponding to
the original embedding, GAT embedding and GAT
combined with contrastive learning embedding, to further
verify the impact of the structural optimization method on
the separability of the behavior embedding space. In the
experiment, the principal component analysis method is
uniformly used to reduce the ten-dimensional embedding
vector to a two-dimensional space to eliminate the visual
bias caused by the dimensional difference and maintain
the comparability of different stages in the same
embedding space. The behavioral data is divided into three
categories of labels. By comparing the changes in the two-
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dimensional distribution after the three embeddings, the
synergy of structural modeling and contrastive learning in
enhancing the discriminative ability of behavioral
representation is revealed. The visualization results are
shown in Figure 3.

() (b) (©)

Figure 3: Comparison of two-dimensional
visualization of behavior embedding space evolution
Figure 3 (a): Original embedding distribution
Figure 3 (b): GAT embedding distribution
Figure 3 (c): GAT+ contrast learning embedding
distribution

As shown in Figure 3, the original embeddings
display heavy overlap among the three behavior categories
in two-dimensional space, with no clear boundaries and
extensive mixing along the first two principal
components. After introducing the graph attention
mechanism, category boundaries become more distinct,
and the overlap between behavior 1 and behavior 3 along
principal component 1 is notably reduced, reflecting the
enhanced structural perception of behavioral differences.
With the further integration of contrastive learning, the
three behavior categories are clustered into compact, well-
separated sub-regions, demonstrating improved intra-
class consistency and inter-class separability. These
results confirm that combining structural modeling with
contrastive  learning  substantially  strengthens the
discriminative power of behavior embeddings.

This improvement arises from the progressive
enhancement of the embedding representation
mechanism. While the original embeddings rely only on
basic feature generation and lack semantic structural
modeling, graph attention introduces multi-head
correlation weights that reinforce valid connections
among similar behaviors and suppress noisy links, thereby
preserving local structural information. Contrastive
learning further generates positive and negative subgraphs
through structural perturbations, guiding the model to
optimize intra-class similarity and inter-class distinction.
This dual mechanism reduces redundancy, sharpens
decision boundaries, and produces a high-density, low-
overlap distribution in the embedding space—ultimately
improving clustering quality and representation
discriminability.

4.3 Effect of strategy recommendation path
matching

In order to further evaluate the path fitting ability of
the system in the strategy generation link, this experiment
constructed a node similarity matching matrix between the
target teaching task path and the recommended path
generated by the system. The target path consists of six
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standard teaching behaviors, which are entering the
teaching task page, playing video explanation resources,
browsing extended reading materials, participating in
quizzes or small exercises, viewing system feedback
reports, and returning to the task homepage and marking
completion. This reflects the entire process of the
idealized media teaching process from resource reception,
content digestion to task closure. Correspondingly, the
recommended path is dynamically generated by the
system based on the behavior graph embedding, which
contains five strategic behavior nodes, namely, entering
the task homepage, clicking and playing video resources,
reading recommended document materials, completing
personalized recommendation tests, viewing
recommendation feedback and jumping to the homepage.
The above node sequence is mapped to a structural
semantic path, and the behavior matching matrix is
constructed by calculating the semantic similarity between
the nodes in the recommended path and the target path.
The results are shown in Figure 4.
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Figure 4: Node similarity heat map of recommended
path and target task path

In Figure 4, the matching score between the fifth
node of the recommended path and the target path reaches
0.93, representing the highest intensity region and
indicating that the system achieves strong accuracy in
strategy generation during the feedback presentation
stage. This stage typically involves concentrated learner
responses after task completion, where behaviors are
relatively stable, allowing the system to form more
consistent embeddings in graph representation learning.
The third node shows a high matching score of 0.92,
attributed to the stability of resource structures and the
clear behavior patterns in the extended reading link, which
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enhances the discriminative capacity of the GAT in
capturing semantic representations. The fourth node
records a score of 0.89, slightly lower due to the presence
of multiple triggering modes in the test behaviors, which
introduces local deviations in embedding. For the first
node, although the score reaches 0.91, the high-heat zone
is narrowly concentrated, suggesting that the initial
behavior stage is structurally clear but semantically
lightweight, making recognition rely more on structural
rather than semantic similarity.Overall, the heat map
demonstrates that the system achieves its highest strategy
path fitting performance in the mid-to-late stages of the
learning task, where behavioral patterns are richer and
more stable.

4.4 Media resource response delay and
scheduling efficiency

In order to deeply explore the resource response
characteristics and scheduling efficiency performance of
the intelligent education system in different media
teaching task scenarios, this experiment designed five
representative  teaching interaction scenarios. By
simulating five typical operating states: single-user access,
small-scale return visits, large-scale interaction, multi-
modal switching, and platform-level high load, the
system's response behavior under different behavior
complexities and request densities was comprehensively
analyzed. Scenario 1 corresponds to the teaching content
request after a single user enters the platform for the first
time. The system is in the initial loading state, with
concentrated resource demand and delay sensitivity.
Scenario 2 simulates the return visit process of students in
small classes. The platform can rely on historical cache to
achieve moderate resource reuse. Scenario 3 involves real-
time interaction in large classes. The number of users
surges, resource requests are frequent, and the system's
concurrent processing capabilities face significant
challenges. Scenario 4 is set as multi-modal task
switching. Users need to frequently switch between video,
graphics, and interactive modules to test the flexibility of
the system's dynamic scheduling. Scenario 5 builds a
platform-level stress test scenario to create extreme loads
through concentrated high-frequency access to test the
system's response elasticity and scheduling stability under
resource limits. Figure 5 shows the characteristics of
media resource response delay and system resource
utilization under three types of request conditions in five
scenarios.
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Figure 5: Combined analysis of media resource response and scheduling efficiency
Figure 5 (a): Analysis of media resource response delay
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Figure 5 (b): Analysis of CPU utilization
Figure 5 (c): Analysis of memory utilization
Figure 5 (d): Analysis of GPU occupancy

As shown in Figure 5, the first-load delay of media
resources increases from 850 ms in Scenario 1 to 1580 ms
in Scenario 5 as scenario complexity and access intensity
rise. This is primarily due to resource location, permission
verification, and data distribution processes, which are
more vulnerable to competition and delay under high
concurrency. In contrast, delays under repeated requests
are markedly lower—for example, 280 ms in Scenario 2
and 880 ms in Scenario 5—benefiting from cache
scheduling and connection reuse, where higher cache hit
rates yield faster responses. With preload hits, resource
preparation is completed in advance, resulting in the
lowest response times across all scenarios, demonstrating
the effectiveness of preload optimization under high-
frequency access.

From a resource perspective, CPU and GPU
utilization peak in Scenario 5 at 83% and 92% respectively
during the first load, reflecting the heavy computational
and image processing demand in high-load conditions.
Memory usage, however, remains relatively stable,
indicating that pre-allocation and reuse mechanisms are
effective. Overall, the results show that the preloading
mechanism consistently improves response efficiency,
while system scalability in multimodal, high-concurrency
scenarios depends heavily on CPU and GPU resources.

(a)

4.5 System stability analysis under different
behavior complexity scenarios

To further verify the response stability of the
constructed model in the face of various learning behavior
complexity scenarios, the experiment examines its
operating performance during task execution through
system-level monitoring experiments. The experimental
design divides the behavior graph into levels according to
the complexity of the structure. Ten levels of behavior
complexity are set, from low to high, representing the
gradual enhancement of the learning behavior graph in
structural dimensions such as the number of nodes, edge
density, path branching, and interaction frequency. By
loading the corresponding level of behavior graph input in
the simulation platform, the average response time,
resource occupancy level and teaching task completion
rate of the system at each level are recorded. A stability
evaluation index system can be constructed to observe the
real-time  scheduling capability and robustness
performance of the system when dealing with high-
frequency and high-coupling behavior paths. The relevant
data results are shown in Figure 6.
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Figure 6: Analysis of the stability performance of the media teaching system at different levels of behavior
complexity
Figure 6 (a): Changes in system response time
Figure 6 (b): Changes in resource usage
Figure 6 (c): Changes in task completion rate

As shown in Figure 6, system response time rises
from 18.2 s at behavior complexity level 1to 33.0 s at level
10, primarily due to the increased density of nodes and
edges, which raises the computational cost of graph
embeddings, and the higher concurrency of behavior
paths, which intensifies scheduling pressure. Resource
utilization grows from 49.3% at level 1 to 83.7% at level
10, reflecting those complex inputs trigger more
concurrent requests in the multi-head attention mechanism
and strategy generation module, thereby increasing thread
utilization. Meanwhile, the task completion rate decreases
from 98.6% to 80.2%, as higher complexity introduces
greater ambiguity and interference in behavior paths,
reducing the accuracy and timeliness of strategy
recommendations.

Overall, these trends indicate that the system
maintains strong adaptability across varying levels of
behavioral complexity, but under extremely high input
loads, computational bottlenecks and strategy deviations
remain the primary constraints on stability.

4.6 Teaching content adaptability and task
completion quality

This paper designs six representative media-based
teaching tasks and conducts a comparative analysis of
content recommendation and behavioral response effects
for each. Task 1, basic knowledge explanation,
emphasizes linear knowledge delivery with a clear
structure but a single learning path. Task 2, multimedia
case analysis, focuses on multimodal information
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integration and reasoning, characterized by frequent
content shifts. Task 3, interactive answering, requires
learners to provide high-frequency, real-time feedback,
resulting in high behavioral density and rapid interaction
rhythms. Task 4, video demonstration learning, relies on
visual information absorption, where behavior paths are
primarily passive but demand sustained attention. Task 5,
group collaboration, involves multi-user interaction with a
complex and dynamic behavioral chain. Task 6,
comprehensive skill assessment, integrates multiple
knowledge points and operational steps, combining a
relatively loose task structure with clear goal orientation.

Based on these task structures, two evaluation
indicators—content adaptation and task completion
quality—are employed to assess the system’s overall
collaborative performance across modules such as
behavior modeling, strategy generation, and resource
scheduling. The corresponding results are presented in
Figure 7.
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Figure 7: Comparison of content adaptation and task
completion quality under different types of teaching tasks
Figure 7 (a): Teaching content adaptation
Figure 7 (b): Task completion quality analysis

As shown in Figure 7, the comprehensive skill
assessment task achieved the best overall results, with a
content adaptation rate of 93% and a task completion
quality score of 0.89. This indicates that the system can
more effectively capture learner behavior patterns in
integrated tasks and provide accurate strategy matching.
Multimedia case analysis (91%, 0.86) and video
demonstration (88%, 0.80) also exhibit strong
adaptability, though their completion quality differs due to
varying demands on graphic recognition and short-term
reasoning. Basic knowledge explanation (86%, 0.81) and
group collaboration (84%, 0.75) present stable
adaptability but lower completion quality, reflecting the
constraints of linear knowledge delivery and the
uncertainty of collaborative behaviors. By contrast,
interactive question-answering tasks show the lowest
performance (79%, 0.72), revealing the system’s current
limitations in modeling high-frequency, instant feedback
behaviors. These results highlight that task characteristics
significantly influence content recommendation accuracy
and behavioral strategy adaptation, suggesting that further
refinement of path modeling is needed for highly
interactive and weakly structured tasks.
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5 Discussion

The experimental results demonstrate that the
proposed GAT+Contrastive  Learning framework
consistently outperforms sequential models (RNN,
LSTM) and baseline GNNs (GCN, GAT) across multiple
tasks. Its advantages stem from the combination of graph
attention for fine-grained structural modeling, contrastive
learning for embedding optimization, and representation
fusion that reduces redundancy while enhancing intra-
class consistency and inter-class separability. These
mechanisms collectively improve recognition accuracy,
structural retention, and semantic separation, thereby
enabling more precise and adaptive teaching strategy
generation. Nevertheless, performance in interactive
question-answering and group collaboration tasks remains
weaker, reflecting the difficulty of modeling high-
frequency real-time interactions and  multi-user
dependencies, where dynamic feedback and irregular
trajectories increase system complexity.

Despite the strong empirical results, this study has
several limitations. First, the dataset includes only 186
students from a single institution, constraining
generalizability to other educational settings. Second, the
evaluation is restricted to media-rich higher education
scenarios, leaving applicability in K-12 or vocational
contexts unexplored. Third, the framework requires
substantial computational resources, as multi-head GAT
and contrastive learning introduce overhead that may
hinder deployment in large-scale or resource-limited
environments. Addressing these limitations in future work
will require expanding datasets, applying domain
adaptation techniques, and adopting model compression
or graph pruning strategies to enhance scalability.

Beyond quantitative results, a preliminary qualitative
survey with teachers and students revealed improved
interpretability of behavioral feedback and stronger
engagement through personalized recommendations,
supporting the framework’s practical value. To ensure
reproducibility, this study explicitly defines its evaluation
metrics: structure retention ratio (preservation of
temporal-semantic links), path consistency (alignment
between predicted and actual trajectories), semantic
separation (inter- vs. intra-class embedding distance), and
task completion quality (a composite score combining
accuracy, timeliness, and performance outcomes).
Together, these findings highlight the theoretical
significance of graph-based contrastive modeling in
advancing behavior analysis and its practical promise for
adaptive intelligent education systems.

6 Conclusions

This study proposes a scalable framework for
adaptive system design by modeling learner—-media
interactions as heterogeneous behavior graphs and
combining Graph Attention Networks (GAT) with
contrastive learning to optimize subgraph representations.
Experimental results on a real-world multimedia course
dataset demonstrate clear advantages: video engagement
recognition reached 92.8%, disengagement signal
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retention 69.1%, and clickstream prediction 89.8%,
outperforming sequential and baseline graph models.
These quantitative  improvements confirm  the
framework’s effectiveness in enhancing semantic
discrimination, structural preservation, and adaptive
strategy generation.

At the same time, the system shows limitations in
high-frequency interactive tasks (e.g., real-time Q&A) and
multi-user collaboration scenarios, where modeling
dynamic, irregular behaviors introduce computational
overhead and reduces efficiency. These shortcomings
highlight the need for further optimization of graph
scalability and behavioral path modeling.

Future research will extend this work through large-
scale, cross-institutional ~ experiments to  verify
generalizability, teacher-in-the-loop evaluations to assess
the pedagogical value of generated strategies, and online
deployment trials to examine scalability and real-time
responsiveness. Additional directions include integrating
richer multimodal signals such as eye-tracking and
speech, and exploring graph compression and pruning to
balance accuracy with computational efficiency.
Together, these efforts aim to strengthen both the
theoretical foundations of multimodal learner modeling
and the practical feasibility of deploying intelligent
education systems in diverse instructional contexts.
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