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This study presents an edge-deployable multimodal framework for 3D localization of fire and smoke, 

integrating YOLOv7 (You Only Look Once version 7) detection, camera–point-cloud registration, and 

PointNet++ (Deep Hierarchical Feature Learning on Point Sets in a Metric Space) refinement with cross-

modal attention. The framework is evaluated on a hybrid dataset composed of both simulated and real-

world data, covering diverse environmental conditions including nighttime, occlusion, and high-density 

smoke. YOLOv7 is used to detect fire and smoke regions in RGB images, generating high-confidence 

bounding boxes. A multi-view depth camera captures the scene point cloud, and a camera–point cloud 

spatiotemporal registration algorithm maps 2D detections to 3D coordinates. PointNet++ then performs 

multi-level feature extraction and geometric fitting on the localized point cloud. The fusion strategy 

integrates cross-modal attention and a multi-task loss function to jointly optimize visual and geometric 

features. This end-to-end process runs on an edge computing platform, balancing real-time performance 

and accuracy. Experiments include ablation studies, comparative evaluations with baselines (YOLOv7, 

PointNet++, Mask R-CNN + PointNet), and robustness tests under varying conditions. Results show that 

the 3D localization error is within 0.12 m, detection accuracy reaches 94.5%, recall is 92.3%, and average 

processing delay is 38 ms/frame. The system was tested on an NVIDIA Jetson AGX Xavier platform. 

Robustness score is computed based on performance under four perturbation conditions: low light, 

occlusion, smoke density, and sensor noise. Each condition is scored 1–5 based on detection consistency 

and localization error. Final score is the average across conditions. 

Povzetek: Študija pokaže, da je mogoče ogenj in dim zanesljivo zaznati ter prostorsko določiti tudi 

neposredno na manjših napravah, kar omogoča hitro in natančno ukrepanje v zahtevnih razmerah. 

 

1 Introduction 

With the intensification of global climate change and 

urbanisation, the frequency and destructive power of fires 

have increased significantly, bringing severe challenges to 

personnel safety, property and rescue. Traditional early 

warning methods relying on temperature sensors, smoke 

detectors, or manual inspections have limited coverage, 

slow response and susceptibility to interference, making it 

difficult to achieve large-scale and all-weather real-time 

monitoring requirements [1]. 

In the field of two-dimensional vision, one-stage 

target detection algorithms such as YOLO series have 

achieved rapid detection of flames and smoke in complex 

backgrounds by virtue of end-to-end efficiency and multi-

scale feature fusion [2-4]. The detection rate on the 

general dataset is over 90%, and it can be more than 30 

frames per second at 640 × 480 resolution. However, due 

to the lack of depth information, the three-dimensional 

position of the target cannot be accurately estimated only 

by the pixel plane, and it is not easy to meet the needs of 

refined positioning. 

Three-dimensional point cloud technology records 

scene geometry through LiDAR or depth camera, 

providing depth support for spatial perception and 

reconstruction [5, 6]. PointNet and its upgrading 

algorithm, PointNet++, can classify and locate irregular 

point sets end-to-end through hierarchical sampling and 

local feature aggregation. However, the flame and thin 

smoke in the early stage of flame are often sparse and 

noisy in the point cloud, which leads to missed detection 

or inaccurate positioning in the single point cloud network. 

The multi-modal fusion of image and point cloud 

realizes information complementarity at the data layer, 

feature layer or decision layer, and significantly improves 

the detection accuracy and 3D localization capability [7]. 

However, this strategy puts forward higher requirements 

for sensor spatiotemporal registration and data 

synchronization, and the balance between multi-modal 

network training and real-time deployment of edge 

devices still faces technical difficulties. 

Therefore, this paper proposes an end-to-end 3D 

positioning framework on the edge computing platform: 

firstly, YOLOv7 is used to quickly detect RGB images in 

two dimensions and generate high-confidence bounding 

boxes, and then the detection results are mapped to multi-

view depth point clouds through camera-point cloud 

spatiotemporal registration. Finally, PointNet++ is used to 

extract features from local point clouds and perform 

geometric fitting to realize 3D coordinate regression and 

reconstruction of fire points and smoke. The main research 

objectives of this study are as follows:  
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(1) Maintain sub-50ms inference latency on edge 

computing platforms to ensure real-time responsiveness.  

(2) Achieve sub-decimeter 3D localization of fire 

points under occlusion and smoke interference. 

(3) Develop a robust multimodal fusion strategy 

integrating cross-modal attention and multi-task loss for 

accurate fire/smoke detection. 

After constructing a comprehensive dataset covering 

multi-illumination, different occlusions, and multi-density 

smoke scenarios, this paper conducts a systematic 

experimental evaluation of the proposed method. 3D 

localization error is computed as the mean Euclidean 

distance between predicted and ground-truth coordinates 

per detection. We report mean ± standard deviation across 

5 runs. Detection accuracy refers to mAP@0.5 IoU 

(Intersection over Union) threshold. Recall and F1 scores 

are computed per class. The main contributions of this 

paper are as follows: 

(1) A multi-modal fusion framework based on an edge 

computing platform is proposed to realise efficient 

collaborative deployment of YOLOv7 and 

PointNet++, taking into account both real-time and 

spatial positioning accuracy. 

(2) A cascade process from two-dimensional detection 

to three-dimensional space registration to joint 

optimisation of depth features is designed. Through 

a multi-task loss function and a cross-modal 

attention mechanism, the deep fusion and joint 

optimisation of information among modes are 

realised. 

(3) A special data set covering multiple scenarios, such 

as indoor and outdoor, night and high-density smoke, 

is constructed, and quantitative performance 

comparison experiments are completed on this data 

set, which provides sufficient experimental and 

method support for the practical application of 

intelligent fire protection systems. 

2 Related work 

2.1 Traditional fire detection approaches 

Early fire monitoring mainly relies on temperature, smoke 

or flame sensors to trigger early warnings by detecting 

sudden changes in ambient temperature or smoke particle 

concentrations. These methods respond quickly but 

struggle to detect weak early-stage signals and are prone 

to false alarms under environmental interference. With the 

development of computer vision technology, image-based 

flame and smoke detection has gradually emerged. Real-

time monitoring of fire scenes by cameras and image 

processing algorithms is used to identify flame contours, 

smoke textures and other features, which supplements the 

limitations of traditional sensors. Typical methods include 

algorithms based on HSV colour space segmentation, 

motion detection and texture analysis, which have realised 

video fire warning to a certain extent. 

 

2.2 Application of deep learning in two-

dimensional fire point and smoke detection 

The breakthrough of the convolutional neural network 

(CNN) in the field of object detection brings efficient and 

robust solutions for flame and smoke recognition [8]. The 

two-stage detection methods represented by Faster R-

CNN [9] and Mask R-CNN [10] can provide good 

detection accuracy, but the computational overhead is high, 

which is not conducive to real-time monitoring. 

In the task of implementing flame detection in 

convolutional neural networks, the Cross-Entropy Loss 

function is usually used for classification. For example, 

for each sample 𝑥𝑖, the loss function is shown in Eq. (1): 

𝐿
𝑖

𝑑𝑒𝑡
𝑖

𝑑𝑒𝑡 𝑙𝑜𝑔(𝑖𝑖

𝑑𝑒𝑡 𝑙𝑜𝑔(𝑖

(1) 

Among them, the probability of network prediction is 

represented 𝑝𝑖 , and the true label is represented 𝑦𝑖
𝑑𝑒𝑡 . 

YOLO series algorithms (YOLOv3 ~ YOLOv7) are 

characterised by single-stage detection, and achieve rapid 

detection of multi-scale and multi-class targets by 

integrating feature pyramids and attention mechanisms in 

the network, which has attracted wide attention [11, 12]. 

Previous studies have applied YOLOv5 to early flame 

detection, achieving a detection rate of more than 90%. 

There is also work to introduce a channel attention module 

into the model to enhance sensitivity to low light and 

subtle smoke textures. However, pure two-dimensional 

detection is limited to the pixel plane, and lacks direct 

perception of fire source distance, spatial distribution and 

real three-dimensional shape. 

2.3 Fire detection technology based on single 

mode 

Traditional fire monitoring mostly relies on temperature 

and smoke sensors to alarm through sudden temperature 

rise or changes in combustible particle concentration. It 

has fast response and low cost, but it can only provide 

local abnormal information, cannot visualise spatial 

distribution, and is susceptible to interference such as 

airflow and dust, resulting in false alarms and false 

negatives. Although manual inspection is flexible, it has 

high cost, long cycle, and high risk of omission, making it 

difficult to meet the needs of large-scale and all-weather 

continuous monitoring. 

Flame and smoke detection based on visible light 

images has become a research hotspot. Early algorithms 

combine color segmentation and motion detection to 

distinguish targets through brightness, saturation and 

dynamic features, which have good real-time performance, 

but it is prone to false detection and missed detection 

under complex backgrounds and lighting changes [13].  
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Deep learning further improves monitoring accuracy 

and speed. Although two-stage detectors (Faster R-CNN, 

Mask R-CNN) have high accuracy, they have high 

execution overhead and are difficult to respond to in 

seconds. Single-stage detectors (SSD, RetinaNet, YOLO 

series) rely on end-to-end design and multi-scale feature 

pyramids [14, 15] to greatly accelerate inference. 

YOLOv7 introduces gradient anchor frames and cross-

layer interaction modules, which can complete high-

precision detection within 20 ms and perform well on 

small targets and low-light scenes. 

Three-dimensional point cloud technology acquires 

depth information through LiDAR or ToF cameras. The 

traditional method is based on geometric feature 

segmentation [16], which has poor sensitivity to dynamic 

and weakly characterised flames and thin smoke. PointNet 

[17-19] and PointNet++ + + [20, 21] achieve end-to-end 

3D localization through hierarchical sampling and local 

feature aggregation, but they still face the challenges of 

missed detection and insufficient accuracy in sparse and 

noisy point clouds. 

To highlight the novelty of our approach, Table 1 

compares representative fire detection and multimodal 

fusion methods.  

 

Table 1: Comparison of representative fire detection and fusion methods 

 

Method 
Detection 

Type 
Backbone 

Accuracy 

(mAP (Mean 

Average 

Precision)) 

Inference 

Time 

Deployment 

Feasibility 

YOLOv5 2D CSPDarknet ~90% ~20 ms/frame 
High (Edge-

compatible) 

Mask R-CNN 2D ResNet-101 ~92% ~80 ms/frame 
Low (GPU 

required) 

PointNet++ 3D 

MLP 

(Multilayer 

Perceptron)-

based 

~85% ~45 ms/frame Medium 

F-PointNet Multimodal 
VGG+ 

PointNet 
~88% ~60 ms/frame Medium 

Proposed 

Method 
Multimodal 

YOLOv7+ 

PointNet++ 
92.7% 38 ms/frame 

High (Edge-

tested) 

 

2.4 Multimodal information fusion strategy 

Multi-modal fusion aims to comprehensively utilize 

the texture and colour features of images and the depth and 

geometric information of point clouds to make up for the 

limitation of single modality [22]. Fusion methods can be 

divided into three typical strategies: data layer, feature 

layer and decision layer [23, 24]. 

Data layer fusion maps RGB image pixels and point 

cloud coordinates to a unified coordinate system through 

accurate sensor calibration and spatio-temporal 

synchronisation, and then sends the original or 

preprocessed data to the network together. This method 

has the finest fusion granularity, but requires extremely 

high calibration and timing alignment. 

Feature layer fusion performs stitching or cross-

modal attention interaction between the intermediate 

feature maps of each modal within the neural network. A 

typical representative is F-PointNet. After generating two-

dimensional candidate boxes in the image, it extracts the 

point cloud region correspondingly. It performs deep 

feature learning, which realises the complementary 

enhancement of two-dimensional and three-dimensional 

detection results. 

Decision-making level fusion generates the final 

framework through weighted fusion, voting or cascade 

after the respective network’s complete independent 

predictions. The advantages are simple implementation 

and loose coupling of models, but it is not easy to exert 

deeper synergistic gains. 

The formula representation method of the multi-

modal fusion algorithm varies from specific method to 

specific method, but usually involves combining or fusing 

features of different modalities. For example, in feature-

level fusion, a multi-modal representation can be achieved 

by connecting feature vectors of different modalities with 

the following formula (2): 

𝑣𝑚𝑚(𝑐) = 𝛼 ⋅ 𝑣𝑚1
(𝑐) ∧ (1 − 𝛼) ⋅ 𝑣𝑚2

(𝑐)          (2) 

Where 𝑣𝑚1
(𝑐)  and 𝑣𝑚2

(𝑐)  represent the 

representation of concepts 𝑐  in modality 𝑚1  and 𝑚2 , 

respectively, and is an adjustable parameter for controlling 

the weights of the two modal features. 

In attention mechanisms, multimodal fusion can be 

achieved by calculating attention weights, as is shown in 

Eq. (3): 

Fusion = softmax(𝑊𝑞 ⋅ Encoder(𝑋)) ⋅ Encoder(𝑌) (3) 

 

Where 𝑋  and 𝑌  represent problem features and 

image features, respectively, 𝑊𝑞  are query matrices, and 

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 are encoder functions. 
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In the field of autonomous driving and robot 

navigation, multi-modal fusion has been widely verified, 

such as MV3D [25], AVOD [26], and other models have 

significantly improved the detection accuracy of 

pedestrians and vehicle. There are few attempts in the field 

of fire monitoring, and most of them stay in the initial 

stage of projecting two-dimensional detection results onto 

depth maps or point clouds. There is a lack of end-to-end 

joint optimisation design, and it is difficult to meet the 

dual needs of high accuracy and real-time performance at 

the same time [27-30]. 

2.5 Design of three-dimensional precise 

positioning model of fire points and smoke in 

complex scenes based on the integration of 

YOLOv7 and PointNet++ 

The system collects data from dual-modal sensors (RGB 

camera and depth camera/LiDAR), and after completing 

real-time alignment through the camera-point cloud 

calibration module, it is sent to the two-dimensional 

detection branch (YOLOv7) and the three-dimensional 

point cloud branch (PointNet++), respectively. The two-

dimensional branch outputs the candidate box and 

category probability, and the three-dimensional branch 

extracts the local point cloud features and returns the 

three-dimensional coordinates of the fire point. 

The cross-modal attention module computes 

attention weights as shown in Eq.(4): 

𝐴 = 𝑠𝑜𝑓𝑡 (𝑄𝑘 𝑇
√𝑑𝑘
⁄ )(4) 

As shown in Equation 4. Where 𝑄、𝑘  and 𝑣  are 

query, key, and value matrices from YOLOv7 and 

PointNet++ feature maps. The fused output is 𝐴 ⋅ 𝑉 

Residual connections and layer normalization are applied 

post-fusion. 

Sensor Setup and Calibration: The system uses an 

RGB camera (Sony IMX219, 8MP, 30fps (frame per 

second)) and a depth sensor (Intel RealSense D435). 

Intrinsic parameters are calibrated using a checkerboard 

pattern, and extrinsic calibration is performed via hand–

eye alignment. Sample calibration matrices and projection 

equations are provided in Supplementary Material. 

 

 
 

Figure 1: Comparison of a multi-modal detection framework and fusion strategy 

 

In Figure 1, figure (a) shows a dual-branch 

architecture based on YOLOv7 and PointNet++: the RGB 

image is extracted by YOLOv7 to extract two-dimensional 

visual features and generate candidate boxes, and the 

three-dimensional point cloud is hierarchically sampled 

and geometrically encoded by PointNet++, and then 

aligned and weighted through the cross-modal attention 

module, and finally output the three-dimensional 

coordinates of fire points and smoke at the positioning 

head; Figure (b) compares the characteristics of three 

strategies: early fusion, mid-stage fusion and late-stage 

fusion-early fusion directly stitches data in the input stage, 

which is easily interfered by noise, mid-stage fusion 

compromises purity and complementarity at the middle 

feature level and often gets the best results, while late 

fusion combines the results by weighting or voting after 

independent reasoning, which is robust but difficult to 

mine deep interactive information. 

 

 

2.6 Two-dimensional detection module 

(YOLOv7) 

Based on the open source YOLOv7 architecture, 

customized improvements are made for flame and smoke 

targets: reset the size of the anchor frame to adapt to small 

targets; Introducing Bag-of-Freebie’s data enhancement 

strategies (chroma jitter, random clipping, Mosaic 

stitching); Add a cross-layer aggregation module behind 

the backbone network to improve feature reuse. While 

maintaining the reasoning speed of 20 ms/frame, this 

module can realize high-precision detection of flame area 

under low light and complex background conditions. 

In YOLOv7, commonly used losses include 

classification loss, bounding box position loss, and 

confidence loss. In bounding box position loss, the Mean 

Squared Error (MSE) or variants thereof, such as the 

coordinate loss function, is usually used, with the formula 

(5): 

𝐿
boxloss

= 𝜆
coord

∑

𝑖=0
𝐵

∑

𝑖=0
𝐵

𝐵𝑖
obj[(𝑥𝑖 − 𝑥𝑖)

2 + (𝑦𝑖 − 𝑦̂𝑖)
2] +

𝜆
coord

∑

𝑖=0
𝐵

∑

𝑖=0
𝐵

𝐵𝑖
obj (5) 
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Where 𝜆coord  is the weight of coordinate loss, 𝐵  is 

the number of bounding boxes predicted by each grid cell, 

and 𝐵𝑖
obj

 is the indicator variable indicating whether the 𝑖 
bounding box contains a target. 

The binary cross-entropy loss function is often used 

as the classification loss function in YOLOv7, and is 

shown in formula (6): 

𝐿
cls𝑙oss

= −
1

𝑁
∑

𝑖=1
𝑁

[𝑦𝑖 𝑙𝑜𝑔( 𝑦𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 −

𝑦𝑖)] (6) 

Where 𝐿 is the BCE loss value, 𝑁 is the total number 

of samples, and 𝑦𝑖  is the category label of the sample. 

2.7 3D point cloud module (PointNet + +) 

Three-dimensional branch adopts PointNet++ with 

three set abstraction layers. Each layer samples 512, 128, 

and 32 points respectively, with radii of 0.2 m, 0.4 m, and 

0.8 m. K-NN (K-Nearest Neighbor) grouping uses k=32, 

and MLP widths are [64, 128], [128, 256], and [256, 512]. 

Firstly, key points are selected by FPS (Farthest Point 

Sampling), and then joint features of relative coordinates 

and normal vectors are extracted in a multi-scale 

neighbourhood. Local descriptors are obtained by a MLP 

and maximum pooling. Finally, the three-dimensional 

offset of each cluster centre is predicted in the regression 

head. The module can robustly locate smoke clouds and 

flame cores in low-density, sparse point cloud scenes. 

PointNet++ constructs local features by introducing 

three steps: Sampling, Grouping, and PointNet feature 

extraction, and implements multi-scale feature learning by 

recursively applying these steps. PointNet++ uses the FPS 

algorithm to select a representative point as the centre 

point of downsampling. The goal of this process is to 

ensure that each selected point is as far away from the 

other selected points as possible, so that the entire point 

cloud is covered. The FPS algorithm selects the point 

farthest from the nearest point in the current point set by 

iteration until the required number of sampling points is 

reached. This process can be expressed in Eq. (7): 

FPS(𝒫, 𝑛) = {𝑝1, 𝑝2, … , 𝑝𝑛} (7) 

Where 𝒫 is the input point set and 𝑛 is the number 

of sampling points. 

After the sampling is completed, PointNet++ groups 

the neighbourhood points around each centre point 

through the K-NN algorithm. For each centre point 𝑝𝑐, its 

neighbourhood points are composed of 𝐾 points closest to 

it. The grouping process can be expressed in Eq. (8): 

𝒩𝑐 = {𝑝𝑗 ∈ 𝒫 ∣ distance(𝑝𝑗 , 𝑝𝑐) ≤ 𝑟} (8) 

Where A is the query radius, which is used to 

determine the extent of neighbourhood points. 

The PointNet layer in PointNet++ uses a multi-layer 

perceptron (MLP) for feature extraction of points in each 

local region. Specifically, the point features of each local 

region are input into an MLP with shared weights to 

generate local feature vectors. Then, these local feature 

vectors are aggregated into a global feature vector by the 

Max Pooling operation. This process can be expressed in 

Eq. (9): 

𝑓𝑐 = 𝒜(𝛷(𝑓𝑐,𝑗) ∣ 𝑗 ∈ 𝒩𝑐) (9) 

Among them, 𝒜(⋅) represents the aggregation 

function (i.e. maximum pooling), 𝛷(⋅)represents the local 

feature extractor (i.e., MLP), and 𝑓𝑐,𝑗 is the feature of the 

𝑗 point near the central point 𝑝𝑐. 

2.8 Multimodal fusion strategy 

 

 
Figure 2: YOLOv7 and PointNet + + three-dimensional fire point and smoke precise positioning model framework 

based on multi-modal fusion strategy 

 

Figure 2 shows a multi-modal fusion framework 

designed to achieve three-dimensional, accurate 

positioning of fire points and smoke in complex scenes. 

First, the system simultaneously acquires two-

dimensional images from surveillance cameras and three-

dimensional point cloud signals from lidar; The two-

dimensional branch uses YOLOv7 backbone network to 

extract visual features, and generates two-dimensional 

candidate boxes of fire points and smoke in the detection 

head; The three-dimensional branch carries out multi-

level sampling and feature learning through PointNet++ to 

obtain the geometric information of point cloud space. 

Subsequently, the fusion module introduces a cross-modal 

attention mechanism to align and weight the integration of 
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visual and geometric features, taking into account the 

advantages of image details and spatial structure. Finally, 

the positioning head uses the fused multi-modal 

representation to return the three-dimensional coordinates 

of the fire point and smoke source to achieve high-

precision positioning of the fire source and smoke in 

complex forests, industrial areas and other environments, 

providing support for emergency response and drone 

inspections. Provide reliable data support. 

2.9 Loss function design 

The total loss function is the weighted sum of the 

losses of each subtask, as is shown in Eq. (10): 

𝐿
total

= 𝛼 ⋅ 𝐿
YOLOv7

+ 𝛽 ⋅ 𝐿
PointNet++

+ 𝛾 ⋅ 𝐿3𝐷−reg 

(10) 

With 𝛼 = 1.0,𝛽 = 0.5,𝑦 = 2.0. Training uses Adam 

optimizer, learning rate 0.001 with cosine decay, batch 

size 16, and 100 epochs. Data augmentation includes 

random rotation, scaling, and Gaussian noise for point 

clouds. Where 𝐿YOLOv7  represents the two-dimensional 

detection loss of the YOLOv7 branch, 𝐿PointNet++ 

represents the point cloud segmentation loss of the 

PointNet++ branch, and 𝐿3𝐷−reg  represents the 3D 

localization regression loss. 

Adopt Focal Loss to solve the category imbalance 

problem of the fire point/smoke point cloud, as is shown 

in Eq. (11): 

𝐿
PointNet++

= −
1

𝑀
∑

𝑗=1
𝑀

𝛼𝑡(1 − 𝑝𝑗)
𝛾 𝑙𝑜𝑔( 𝑝𝑗)

 (11) 

Where 𝑀 represents the number of point clouds, 𝑝𝑗 

represents the probability that the point belongs to the fire 

point 𝑗 and smoke, 𝛼𝑡 represents the category weight, and 

𝛾  represents the difficult sample aggregation parameter 

(the default value is 2). The calculation process is shown 

in Eq. (12). 

𝐿3𝐷−reg = 𝐿
center

+ 𝐿
dim

+ 𝐿
angle

 (12) 

𝐿center is the centre point loss, 𝐿𝑑𝑖𝑚 is the size loss, 

and 𝐿angle is the heading angle loss. 

YOLOv7 and PointNet++ are trained jointly in an 

end-to-end fashion. Feature fusion occurs mid-network, 

and gradients are propagated across both branches. 

3 Experimental results and analysis 

3.1 Experimental data set and data partition 

 
Table 2: Summary table of basic information of the fire detection data set used in the experiment 

 

Dataset Name Data Source Data Type Sample Number Applicable scenarios 

FireRGB 

Self-built 

simulated fire 

image 

RGB Image 3,000 
Fire Spot and Smoke 

Image Detection 

SmokeDensePoint 
Public point 

cloud platform 

Point cloud data 

(. pcd) 
1,200 

3D Smoke Structure 

Modeling 

FireNet3D 

Hybrid 

acquisition 

system 

RGB + Point 

Cloud 
1,500 

Image and Point Cloud 

Registration and 

Fusion Analysis 

MultiFireScene 

Open-source 

firefighting 

database 

Video + point 

cloud 
2,500 

Multi-angle scene 

fusion positioning 

 

Table 2 summarizes the datasets used, including 

FireRGB (simulated flame images), SmokeDensePoint 

(public point cloud data), FireNet3D (hybrid RGB + point 

cloud), and MultiFireScene (multi-angle video + point 

cloud). Ground truth for 3D localization was obtained via 

manual annotation and sensor fusion. Smoke volumes 

were labeled using density thresholds and visual 

inspection. Scene-level splits ensure no overlap between 

training and test environments. 

Annotation was performed using a custom labeling 

tool that synchronizes RGB and depth frames. Fire source 

coordinates were labeled in 3D using triangulated laser 

markers.Smoke regions were annotated using density 

thresholds and visual inspection. Each sample was 

reviewed by at least two annotators; inter-annotator 

agreement reached 92.4%. We adopt a scene-level split to 

avoid data leakage:70% of scenes for training15% for 

validation15% for testing No overlapping environments or 

camera angles are shared across splits. This ensures 

generalization to unseen fire/smoke scenarios. 

Sensor Specifications and Calibration Matrices the 

RGB camera used is Sony IMX219 (8MP, 30fps), and the 

depth sensor is Intel RealSense D435.Extrinsic calibration 

was performed using hand–eye alignment. Sample 

calibration matrices and projection equations are provided 

for reproducibility. 
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Table 3: Statistical table of experimental data set division and label type 

 

Dataset Name 
Training set 

proportion 

Validation Set 

Proportion 

Test set 

proportion 
Label Type 

FireRGB 70% 15% 15% Fire spot, smoke, background 

SmokeDensePoint 60% 20% 20% 
Smoke area boundary 

labeling 

FireNet3D 75% 10% 15% 3D target frame pairing 

 

In Table 3, each data set is divided into a reasonable 

proportion according to the task requirements, in which 

the training set accounts for the main body to ensure the 

learning ability of the model, and the verification set and 

test set are used to adjust and participate in the evaluation 

performance, respectively. Each data set is equipped with 

explicit target labels, such as "fire point", "smoke", 

"background", etc., thus supporting the model's 

classification learning in multi-category target detection. 

By comparing the partition ratios of different data sets, 

this table reflects the research's emphasis on training 

stability and scientific evaluation in the data preparation 

stage, and is an important basis for the reliability of 

algorithm results. 

3.2 Experimental analysis 

3.2.1 Comparative experiments 

 

 
 

Figure 3: Schematic diagram of integrating YOLOv7 and PointNet++ to achieve three-dimensional accurate 

positioning of fire points and smoke in complex indoor scenes 

 

Figure 3 shows the 3D localization effect of fire 

points and smoke in complex scenes by fusing YOLOv7 

and PointNet++. Firstly, YOLOv7 accurately detects fire 

points and smoke areas in RGB images in two dimensions, 

and labels the target areas in the form of bounding boxes. 

Subsequently, the corresponding point cloud data is 

generated by the multi-view depth camera, and the 

detection results are mapped to the three-dimensional 

space to realise the spatial position reconstruction of the 

target area. In the three-dimensional point cloud structure 

in the figure, the fire spots are highlighted in red, and the 

smoke areas are presented in translucent grey to enhance 

visual recognition. 

From the perspective of spatial distribution, the 

fusion model can maintain high positioning accuracy in 

complex environments such as occlusion and low light. 

Three-dimensional point cloud features are sampled and 

aggregated in PointNet++, so as to extract the geometric 

structure and distribution pattern related to fire points and 

smoke. Experimental results show that this method has 

higher spatial perception ability than the single-mode 

detection strategy, especially in smoke diffusion situation 

modelling, showing good continuity and robustness.  

This figure effectively verifies the potential of multi-

modal information fusion in improving fire monitoring 

performance, provides data support and visual basis for 

further research, and also provides technical reference for 

the actual deployment of intelligent fire protection 

systems. 
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Figure 4: Performance comparison and visualization results of experimental part. 

 

Figure 4 comprehensively shows the advantages of 

the proposed fusion model at the quantitative and 

qualitative levels. In sub-figure (a), the PR curve of the 

fusion model is always above the two baselines. Its mAP 

is 92.7%, which is significantly higher than that of 

YOLOv7 (88.3%) and PointNet++ (84.9%); sub-figure (b) 

depicts the positioning error distribution in CDF 

(Cumulative Distribution Function) form, and 85% of the 

sample errors of the fusion model are lower than 0.12 m, 

while the single-modal error quantiles are above 0.18 m; 

sub-figure (c) marks the fire spots and smoke areas 

through red and gray boxes, which intuitively reflects that 

the model can still accurately detect weak targets under 

low light and occlusion conditions; Subfigure (d) renders 

the point cloud area corresponding to the detection frame 

under the same viewing angle, with high-density red dots 

indicating the fire source location, and light gray floating 

point clouds identifying the smoke diffusion situation, 

supplemented by coordinate axes and scale rulers, 

highlighting the 3D localization accuracy. Overall, this 

figure verifies the accuracy, robustness and visualisation 

effect of the fusion framework from multiple dimensions 

and scenarios, providing strong support for the 

engineering application of intelligent fire protection 

systems. 

All metrics are averaged over 5 random seeds. We 

perform paired t-tests between the proposed method and 

baselines. Localization error: 0.12 ± 0.03 m (p < 0.01 vs. 

YOLOv7), Detection mAP: 92.7 ± 1.2%. 

 

 
Figure 5: Comprehensive visualization of experimental results 

 

Figure 5 shows the performance of the fusion model 

under various interferences: (a) As the smoke 

concentration increases from 0.1 g/m ³ to 1.0 g/m ³, the 

positioning error increases from 0.05 m to 0.18 m; (b) The 
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detection accuracy under strong light and medium light 

exceeds 90%, the recall rate is >88%, and the accuracy at 

night is reduced to 82%; (c) The median delay of heavy 

occlusion is increased from 30 ms to 48 ms, and the 

fluctuation range is expanded; (d) The double interference 

heat map of light and smoke shows that the score is the 

highest in moderate conditions, and there is still room for 

improvement in extreme environments. 

 

 
Figure 6: Multimodal detection performance and spatial distribution diagram 

 

From the overall perspective of Figure 6, the system 

has the best performance in medium-distance scenarios 

and can take into account both detection rate and 

confidence; However, the ability to detect targets at the 

edge of the field of view and a long distance is insufficient. 

Consider enhancing long-distance sample training or 

introducing a stronger feature extraction layer to improve 

the detection density and confidence of edge regions. At 

the same time, aiming at the short-term decrease of 

accuracy rate, a dynamic threshold or a post-processing 

strategy can be added to reduce the impact of false 

detection on system stability. 

 

 
Figure 7: Comparison of accuracy, recall rate and F1 value of four fire detection algorithms, and comparison of 

average inference time and model parameter scale of each algorithm on edge devices 

 

Figure 7 integrates and shows the performance 

indicators of four key fire detection algorithms. The chart 

on the left Figure compares the detection accuracy, recall 

rate and F1 value of YOLOv7, PointNet++, Mask R-CNN 

and their multi-modal fusion solutions on commonly used 

fire data sets. The results show that the fusion method not 

only surpasses the single model in terms of accuracy and 

recall rate, but also improves the F1 value significantly, 

which verifies the gain of multi-source information 

complementarity on fire recognition effect. The chart on 

the right Figure presents the average inference time and 

model parameter scale of each algorithm under the same 

hardware platform (edge computing device). While 

ensuring high detection performance, the fusion model 

controls the average inference time within 50 ms, and the 

number of parameters is reduced by about 20% compared 

with Mask R-CNN, which reflects better real-time 

performance and resource utilisation efficiency. Overall, 

these two figures comprehensively reveal the trade-off 

characteristics between accuracy and real-time 

performance of the model, and provide an intuitive 

reference for algorithm selection of fire monitoring 

systems in different application scenarios. 

3.2.2 Ablation experiments 

In order to fully verify the experimental performance 

of the proposed method in this paper, we conducted 

ablation experiments. In the ablation experiment, we 

divided them into four groups for verification, namely: 

YOLOv7+PointNet++, YOLOv7 alone, PointNet++ alone 

and Mask R-CNN+PointNet. 
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Table 4: Statistical table of performance results of multi-model in 3D localization of fire point and smoke 

 

Model Name 
Positioning 

error (m) 

Detection 

accuracy (%) 

Recall rate 

(%) 

Processing 

time 

(ms/frame) 

Robustness Score (1-5) 

YOLOv7 + 

PointNet + + 
0.12 94.5 92.3 38 4.8 

YOLOv7 

alone 
0.25 90.1 85.6 25 3.9 

PointNet + + 

used alone 
0.18 88.7 81.2 42 4.1 

Mask R-CNN 

+ PointNet 
0.16 91.2 86.5 51 4.3 

 

Table 4 summarises the 3D localization experimental 

results of various models in complex fire scenarios, and 

compares and analyses core indicators such as positioning 

error, detection accuracy, recall rate, processing efficiency 

and robustness score. Among all candidate methods, the 

YOLOv7 and PointNet++ fusion model performed best in 

all aspects. Its positioning error is only 0.12 meters, which 

is significantly better than traditional methods in terms of 

spatial reconstruction accuracy; The detection accuracy 

and recall rate reached 94.5% and 92.3% respectively, 

showing high accuracy and low risk of missed detection 

in the identification task of multiple types of targets (fire 

spots, smoke). 

In addition, the processing efficiency of the fusion 

model reaches 38 milliseconds per frame, taking into 

account both recognition speed and computational 

overhead, and is suitable for actual scene deployment. In 

terms of robustness score, it still maintains good 

recognition stability under conditions such as occlusion, 

strong light interference, and smoke concentration 

changes, with a score as high as 4.8, reflecting the 

advantages of multi-modal fusion strategies in 

adaptability to complex environments. In contrast, the 

single-modal model has obvious shortcomings in some 

indicators. For example, YOLOv7 is insufficient in spatial 

positioning, and PointNet++ has limited accuracy in 

preliminary target recognition. 

Overall, this table verifies that the method proposed 

in this study has the comprehensive advantages of high 

precision, high efficiency and strong robustness in fire 

monitoring tasks, and provides important technical 

support for the development of three-dimensional fire 

identification and intelligent fire protection systems. 

 

 
Figure 8: Comparison chart of ablation experimental scenarios 

 

Figure 8 visually compares the contribution of each 

module to the results through four ablation configurations 

in the same scenario. YOLOv7+PointNet++ performs 

well in both two-dimensional and three-dimensional 

fusion. It can not only accurately identify flame areas 

under low light and occlusion conditions, but also 

reconstruct compact and continuous smoke clouds and 

stereotactic frames; Simple YOLOv7 or PointNet++ are 

insufficient in detection accuracy or spatial expression due 

to the lack of modal information of each other; Although 

Mask R-CNN+PointNet improves 2D segmentation 

details, it fails to make full use of feature layer fusion, 

resulting in large 3D errors. The visual graph of the 

ablation experiment verifies the key role of cross-modal 

attention and joint optimisation strategy in improving the 

robustness and positioning accuracy of the system. Failure 

cases include false positives in reflective surfaces and 

missed detections in dense smoke-only scenes. These 

highlight limitations in depth sensing and fusion under 

extreme conditions. 
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Figure 9: Visualization diagram of multi-model performance comparison of ablation experiment 

 

Figure 9 systematically evaluates the ablation effect 

of the model from four perspectives. Bar chart (a) shows 

that the fusion model (YOLOv7+PointNet++) is ahead of 

the other three configurations in accuracy (0.93), recall 

rate (0.91) and F1 score (0.92), proving that cross-modal 

complementarity improves the detection quality. Radar 

chart (b) further highlights the overall advantages of the 

fusion model in terms of throughput (26 fps) and three 

classification indicators. At the same time, the single-

modal method, especially PointNet++, performs relatively 

poorly when balancing multiple indicators. Violin 

diagram (c) reveals the characteristics of model delay 

distribution: the fusion model has concentrated delay, 

small fluctuation, and the median and interquartile range 

are better than other configurations, indicating that both 

real-time and stability are taken into account in edge 

deployment. Heat diagram (d) reveals a high correlation 

between classification indicators (the correlation 

coefficient between Precision and F1 is close to 0.99). At 

the same time, there is a slight negative correlation 

between throughput and accuracy indicators, reflecting 

that the pursuit of higher frame rate may cause a certain 

compromise on accuracy. 

Taken together, multi-modal fusion not only 

improves the accuracy of detection and positioning but 

also effectively controls delay fluctuations while 

maintaining high throughput rates. This ablation analysis 

provides an intuitive basis for model architecture design, 

acceleration strategy and deployment optimisation, and 

guides subsequent targeted improvements to performance 

bottlenecks. 

We add a fifth variant: YOLOv7 + PointNet++ 

without cross-modal attention. This isolates the 

contribution of the fusion module. Results show a 4.2% 

drop in mAP and 0.05 m increase in localization error. The 

proposed system achieves a mean localization error of 

0.12 m, detection accuracy of 94.5%, recall of 92.3%, and 

average inference time of 38 ms/frame on NVIDIA Jetson 

AGX Xavier. 

4 Discussion 
Compared to prior works such as F-PointNet and 

PointPainting, our method achieves higher detection 

accuracy (92.7% vs. 88.3%) and lower localization error 

(0.12 m vs. 0.18 m), as shown in Table 3 and Figures 4–7. 

This improvement is attributed to the mid-level fusion 

strategy and the use of cross-modal attention, which 

enables more effective integration of visual and geometric 

features. Error sources include dense smoke occlusion, 

which reduces depth sensor reliability, and nighttime 

scenes with low contrast. In such cases, YOLOv7 

bounding boxes may misalign with depth data, leading to 

inaccurate 3D projections. Beyond numerical gains, the 

proposed fusion module improves robustness by 

adaptively weighting features across modalities. Unlike 

simple concatenation, cross-modal attention selectively 

enhances informative regions, especially under occlusion. 

The system runs on NVIDIA Jetson AGX Xavier 

with 38 ms/frame latency, validating edge deployment 

feasibility. However, limitations include reliance on 

accurate sensor calibration, sensitivity to depth noise, and 

reduced performance in outdoor environments with 

variable lighting. Future work will explore self-supervised 

calibration and adaptive fusion strategies. 

5 Conclusion 
In this paper, an end-to-end multi-modal fusion 

framework based on YOLOv7 and PointNet++ is 

proposed, which realises high-precision 3D localization of 

fire spots and smoke in complex scenes. Through multi-

scale two-dimensional detection and cross-modal spatio-

temporal registration, this method maps high-confidence 

bounding boxes in RGB images to point cloud space, and 

uses PointNet++ to extract and regress local geometric 

features, fully integrating texture and depth information, 

taking into account detection speed and spatial expression 

ability. 



450   Informatica 49 (2025) 439–452 D. Wang 
 

The system evaluation on the edge computing 

platform shows that the method can control the 

positioning error within 0.12 m, the detection accuracy 

and recall rate reach 94.5% and 92.3% respectively, the 

average inference delay is only 38 ms/frame, and the 

robustness score is 4.8 out of 5. Compared with pure 

YOLOv7 or PointNet++ solutions, multi-modal fusion 

significantly improves detection stability and 3D 

reconstruction accuracy under low light, occlusion and 

high-density smoke conditions. These results demonstrate 

the feasibility of deploying the system in real-world fire 

monitoring scenarios, such as industrial facilities and 

enclosed public spaces. 

Future work will explore lightweight fusion 

architectures for outdoor deployment, self-supervised 

calibration techniques, and integration with thermal 

imaging for enhanced detection under extreme conditions. 
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