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This study presents an edge-deployable multimodal framework for 3D localization of fire and smoke,
integrating YOLOv7 (You Only Look Once version 7) detection, camera—point-cloud registration, and
PointNet++ (Deep Hierarchical Feature Learning on Point Sets in a Metric Space) refinement with cross-
modal attention. The framework is evaluated on a hybrid dataset composed of both simulated and real-
world data, covering diverse environmental conditions including nighttime, occlusion, and high-density
smoke. YOLOV7 is used to detect fire and smoke regions in RGB images, generating high-confidence
bounding boxes. A multi-view depth camera captures the scene point cloud, and a camera—point cloud
spatiotemporal registration algorithm maps 2D detections to 3D coordinates. PointNet++ then performs
multi-level feature extraction and geometric fitting on the localized point cloud. The fusion strategy
integrates cross-modal attention and a multi-task loss function to jointly optimize visual and geometric
features. This end-to-end process runs on an edge computing platform, balancing real-time performance
and accuracy. Experiments include ablation studies, comparative evaluations with baselines (YOLOv?7,
PointNet++, Mask R-CNN + PointNet), and robustness tests under varying conditions. Results show that
the 3D localization error is within 0.12 m, detection accuracy reaches 94.5%, recall is 92.3%, and average
processing delay is 38 ms/frame. The system was tested on an NVIDIA Jetson AGX Xavier platform.
Robustness score is computed based on performance under four perturbation conditions: low light,
occlusion, smoke density, and sensor noise. Each condition is scored 1-5 based on detection consistency
and localization error. Final score is the average across conditions.

Povzetek: Studija pokaze, da je mogoce ogenj in dim zanesljivo zaznati ter prostorsko dolociti tudi

neposredno na manjsih napravah, kar omogoca hitro in natancno ukrepanje v zahtevnih razmerah.

1 Introduction

With the intensification of global climate change and
urbanisation, the frequency and destructive power of fires
have increased significantly, bringing severe challenges to
personnel safety, property and rescue. Traditional early
warning methods relying on temperature sensors, smoke
detectors, or manual inspections have limited coverage,
slow response and susceptibility to interference, making it
difficult to achieve large-scale and all-weather real-time
monitoring requirements [1].

In the field of two-dimensional vision, one-stage
target detection algorithms such as YOLO series have
achieved rapid detection of flames and smoke in complex
backgrounds by virtue of end-to-end efficiency and multi-
scale feature fusion [2-4]. The detection rate on the
general dataset is over 90%, and it can be more than 30
frames per second at 640 x 480 resolution. However, due
to the lack of depth information, the three-dimensional
position of the target cannot be accurately estimated only
by the pixel plane, and it is not easy to meet the needs of
refined positioning.

Three-dimensional point cloud technology records
scene geometry through LiDAR or depth camera,
providing depth support for spatial perception and
reconstruction [5, 6]. PointNet and its upgrading

algorithm, PointNet++, can classify and locate irregular
point sets end-to-end through hierarchical sampling and
local feature aggregation. However, the flame and thin
smoke in the early stage of flame are often sparse and
noisy in the point cloud, which leads to missed detection
or inaccurate positioning in the single point cloud network.

The multi-modal fusion of image and point cloud
realizes information complementarity at the data layer,
feature layer or decision layer, and significantly improves
the detection accuracy and 3D localization capability [7].
However, this strategy puts forward higher requirements
for sensor spatiotemporal registration and data
synchronization, and the balance between multi-modal
network training and real-time deployment of edge
devices still faces technical difficulties.

Therefore, this paper proposes an end-to-end 3D
positioning framework on the edge computing platform:
firstly, YOLOV7 is used to quickly detect RGB images in
two dimensions and generate high-confidence bounding
boxes, and then the detection results are mapped to multi-
view depth point clouds through camera-point cloud
spatiotemporal registration. Finally, PointNet++ is used to
extract features from local point clouds and perform
geometric fitting to realize 3D coordinate regression and
reconstruction of fire points and smoke. The main research
objectives of this study are as follows:



440 Informatica 49 (2025) 439-452

(1) Maintain sub-50ms inference latency on edge
computing platforms to ensure real-time responsiveness.

(2) Achieve sub-decimeter 3D localization of fire
points under occlusion and smoke interference.

(3) Develop a robust multimodal fusion strategy
integrating cross-modal attention and multi-task loss for
accurate fire/smoke detection.

After constructing a comprehensive dataset covering
multi-illumination, different occlusions, and multi-density
smoke scenarios, this paper conducts a systematic
experimental evaluation of the proposed method. 3D
localization error is computed as the mean Euclidean
distance between predicted and ground-truth coordinates
per detection. We report mean =+ standard deviation across
5 runs. Detection accuracy refers to mAP@0.5 IoU
(Intersection over Union) threshold. Recall and F1 scores
are computed per class. The main contributions of this
paper are as follows:

(1) A multi-modal fusion framework based on an edge
computing platform is proposed to realise efficient
collaborative  deployment of YOLOv7 and
PointNet++, taking into account both real-time and
spatial positioning accuracy.

(2) A cascade process from two-dimensional detection
to three-dimensional space registration to joint
optimisation of depth features is designed. Through
a multi-task loss function and a cross-modal
attention mechanism, the deep fusion and joint
optimisation of information among modes are
realised.

(3) A special data set covering multiple scenarios, such
as indoor and outdoor, night and high-density smoke,
is constructed, and quantitative performance
comparison experiments are completed on this data
set, which provides sufficient experimental and
method support for the practical application of
intelligent fire protection systems.

2 Related work

2.1 Traditional fire detection approaches

Early fire monitoring mainly relies on temperature, smoke
or flame sensors to trigger early warnings by detecting
sudden changes in ambient temperature or smoke particle
concentrations. These methods respond quickly but
struggle to detect weak early-stage signals and are prone
to false alarms under environmental interference. With the
development of computer vision technology, image-based
flame and smoke detection has gradually emerged. Real-
time monitoring of fire scenes by cameras and image
processing algorithms is used to identify flame contours,
smoke textures and other features, which supplements the
limitations of traditional sensors. Typical methods include
algorithms based on HSV colour space segmentation,
motion detection and texture analysis, which have realised
video fire warning to a certain extent.
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2.2 Application of deep learning in two-
dimensional fire point and smoke detection

The breakthrough of the convolutional neural network
(CNN) in the field of object detection brings efficient and
robust solutions for flame and smoke recognition [8]. The
two-stage detection methods represented by Faster R-
CNN [9] and Mask R-CNN [10] can provide good
detection accuracy, but the computational overhead is high,
which is not conducive to real-time monitoring.

In the task of implementing flame detection in
convolutional neural networks, the Cross-Entropy Loss
function is usually used for classification. For example,
for each sample x;, the loss function is shown in Eq. (1):

detl i
detlog(il.e °9G

e, (1)

i

Among them, the probability of network prediction is
represented p;, and the true label is represented yét.

YOLO series algorithms (YOLOv3 ~ YOLOV7) are
characterised by single-stage detection, and achieve rapid
detection of multi-scale and multi-class targets by
integrating feature pyramids and attention mechanisms in
the network, which has attracted wide attention [11, 12].
Previous studies have applied YOLOvVS to early flame
detection, achieving a detection rate of more than 90%.
There is also work to introduce a channel attention module
into the model to enhance sensitivity to low light and
subtle smoke textures. However, pure two-dimensional
detection is limited to the pixel plane, and lacks direct
perception of fire source distance, spatial distribution and
real three-dimensional shape.

2.3 Fire detection technology based on single
mode

Traditional fire monitoring mostly relies on temperature
and smoke sensors to alarm through sudden temperature
rise or changes in combustible particle concentration. It
has fast response and low cost, but it can only provide
local abnormal information, cannot visualise spatial
distribution, and is susceptible to interference such as
airflow and dust, resulting in false alarms and false
negatives. Although manual inspection is flexible, it has
high cost, long cycle, and high risk of omission, making it
difficult to meet the needs of large-scale and all-weather
continuous monitoring.

Flame and smoke detection based on visible light
images has become a research hotspot. Early algorithms
combine color segmentation and motion detection to
distinguish targets through brightness, saturation and
dynamic features, which have good real-time performance,
but it is prone to false detection and missed detection
under complex backgrounds and lighting changes [13].
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Deep learning further improves monitoring accuracy
and speed. Although two-stage detectors (Faster R-CNN,
Mask R-CNN) have high accuracy, they have high
execution overhead and are difficult to respond to in
seconds. Single-stage detectors (SSD, RetinaNet, YOLO
series) rely on end-to-end design and multi-scale feature
pyramids [14, 15] to greatly accelerate inference.
YOLOvV7 introduces gradient anchor frames and cross-
layer interaction modules, which can complete high-
precision detection within 20 ms and perform well on
small targets and low-light scenes.

Three-dimensional point cloud technology acquires
depth information through LiDAR or ToF cameras. The

Informatica 49 (2025) 439-452 441

traditional method is based on geometric feature
segmentation [16], which has poor sensitivity to dynamic
and weakly characterised flames and thin smoke. PointNet
[17-19] and PointNet++ + + [20, 21] achieve end-to-end
3D localization through hierarchical sampling and local
feature aggregation, but they still face the challenges of
missed detection and insufficient accuracy in sparse and
noisy point clouds.

To highlight the novelty of our approach, Table 1
compares representative fire detection and multimodal
fusion methods.

Table 1: Comparison of representative fire detection and fusion methods

Accuracy
Method Detection Backbone (mAP (Mean In_ference Depl_oyr_nent
Type Average Time Feasibility
Precision))
YOLOV5 2D CSPDarknet ~90% ~20 msfirame | 19 (Edge-
compatible)
Mask R-CNN | 2D ResNet-101 ~92% ~80 ms/frame Low ~ (GPU
required)
MLP
PointNet++ 3D (Multilayer ~85% ~45 ms/frame | Medium
Perceptron)-
based
F-PointNet Multimodal VGGJ’ ~88% ~60 ms/frame | Medium
PointNet
Proposed . YOLOv7+ 0 High  (Edge-
Method Multimodal PointNet++ 92.7% 38 ms/frame tested)

2.4 Multimodal information fusion strategy

Multi-modal fusion aims to comprehensively utilize
the texture and colour features of images and the depth and
geometric information of point clouds to make up for the
limitation of single modality [22]. Fusion methods can be
divided into three typical strategies: data layer, feature
layer and decision layer [23, 24].

Data layer fusion maps RGB image pixels and point
cloud coordinates to a unified coordinate system through
accurate sensor calibration and spatio-temporal
synchronisation, and then sends the original or
preprocessed data to the network together. This method
has the finest fusion granularity, but requires extremely
high calibration and timing alignment.

Feature layer fusion performs stitching or cross-
modal attention interaction between the intermediate
feature maps of each modal within the neural network. A
typical representative is F-PointNet. After generating two-
dimensional candidate boxes in the image, it extracts the
point cloud region correspondingly. It performs deep
feature learning, which realises the complementary
enhancement of two-dimensional and three-dimensional
detection results.

Decision-making level fusion generates the final
framework through weighted fusion, voting or cascade

after the respective network’s complete independent
predictions. The advantages are simple implementation
and loose coupling of models, but it is not easy to exert
deeper synergistic gains.

The formula representation method of the multi-
modal fusion algorithm varies from specific method to
specific method, but usually involves combining or fusing
features of different modalities. For example, in feature-
level fusion, a multi-modal representation can be achieved
by connecting feature vectors of different modalities with
the following formula (2):

Umm (€) = @ - vy () A (1 = @) - vy, () (2)

Where v, (c) and v, (c) represent the
representation of concepts ¢ in modality m; and m,,
respectively, and is an adjustable parameter for controlling
the weights of the two modal features.

In attention mechanisms, multimodal fusion can be
achieved by calculating attention weights, as is shown in
Eq. (3):

Fusion = softmax(Ws " Encoder®)) * Encoder(¥) (3)

Where X and Y represent problem features and
image features, respectively, W, are query matrices, and
Encoder are encoder functions.
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In the field of autonomous driving and robot
navigation, multi-modal fusion has been widely verified,
such as MV3D [25], AVOD [26], and other models have
significantly improved the detection accuracy of
pedestrians and vehicle. There are few attempts in the field
of fire monitoring, and most of them stay in the initial
stage of projecting two-dimensional detection results onto
depth maps or point clouds. There is a lack of end-to-end
joint optimisation design, and it is difficult to meet the
dual needs of high accuracy and real-time performance at
the same time [27-30].

2.5 Design of three-dimensional precise
positioning model of fire points and smoke in
complex scenes based on the integration of
YOLOV7 and PointNet++

The system collects data from dual-modal sensors (RGB
camera and depth camera/LiDAR), and after completing
real-time alignment through the camera-point cloud
calibration module, it is sent to the two-dimensional
detection branch (YOLOv7) and the three-dimensional

(a) Multi-Modal Detection Architecture
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point cloud branch (PointNet++), respectively. The two-
dimensional branch outputs the candidate box and
category probability, and the three-dimensional branch
extracts the local point cloud features and returns the
three-dimensional coordinates of the fire point.

The cross-modal attention module computes
attention weights as shown in Eq.(4):

— T
A = soft (Qk /m>(4)

As shown in Equation 4. Where Q . k and v are
query, key, and value matrices from YOLOv7 and
PointNet++ feature maps. The fused output is A-V
Residual connections and layer normalization are applied
post-fusion.

Sensor Setup and Calibration: The system uses an
RGB camera (Sony IMX219, 8MP, 30fps (frame per
second)) and a depth sensor (Intel RealSense D435).
Intrinsic parameters are calibrated using a checkerboard
pattern, and extrinsic calibration is performed via hand—
eye alignment. Sample calibration matrices and projection
equations are provided in Supplementary Material.

(b) Multi-Modal Fusion Strategy

Early Fusion

Joint Fusion

e [ 4

2D features

RGB image

sampling

Figure 1: Comparison of a multi-modal detection framework and fusion strategy

In Figure 1, figure (a) shows a dual-branch
architecture based on YOLOV7 and PointNet++: the RGB
image is extracted by YOLOV7 to extract two-dimensional
visual features and generate candidate boxes, and the
three-dimensional point cloud is hierarchically sampled
and geometrically encoded by PointNet++, and then
aligned and weighted through the cross-modal attention
module, and finally output the three-dimensional
coordinates of fire points and smoke at the positioning
head; Figure (b) compares the characteristics of three
strategies: early fusion, mid-stage fusion and late-stage
fusion-early fusion directly stitches data in the input stage,
which is easily interfered by noise, mid-stage fusion
compromises purity and complementarity at the middle
feature level and often gets the best results, while late
fusion combines the results by weighting or voting after
independent reasoning, which is robust but difficult to
mine deep interactive information.

Pointcloud  voxel | Cross-Modal | Late
downsampling |  Attention | fusion
+Notmal = Frermierentpesemzarazes g ]+
ilteri class
Filtering Fusion MLP lassification I
Voxel
downsampling _i
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2.6 Two-dimensional detection module

(YOLOV7)

Based on the open source YOLOv7 architecture,
customized improvements are made for flame and smoke
targets: reset the size of the anchor frame to adapt to small
targets; Introducing Bag-of-Freebie’s data enhancement
strategies (chroma jitter, random clipping, Mosaic
stitching); Add a cross-layer aggregation module behind
the backbone network to improve feature reuse. While
maintaining the reasoning speed of 20 ms/frame, this
module can realize high-precision detection of flame area
under low light and complex background conditions.

In YOLOvV7, commonly used losses include
classification loss, bounding box position loss, and
confidence loss. In bounding box position loss, the Mean
Squared Error (MSE) or variants thereof, such as the
coordinate loss function, is usually used, with the formula

%) .
L;OL?;O

=1

boxloss coord
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Where A.yq 1S the weight of coordinate loss, B is
the number of bounding boxes predicted by each grid cell,
and Bi0 " is the indicator variable indicating whether the i
bounding box contains a target.

The binary cross-entropy loss function is often used
as the classification loss function in YOLOvV7, and is
shown in formula (6):

i=1
N
= —— X [y log(y) + (1 = y) log (1 —
yi)] (6)

Where L is the BCE loss value, N is the total number

of samples, and y; is the category label of the sample.

clsloss

2.7 3D point cloud module (PointNet + +)

Three-dimensional branch adopts PointNet++ with
three set abstraction layers. Each layer samples 512, 128,
and 32 points respectively, with radii of 0.2 m, 0.4 m, and
0.8 m. K-NN (K-Nearest Neighbor) grouping uses k=32,
and MLP widths are [64, 128], [128, 256], and [256, 512].
Firstly, key points are selected by FPS (Farthest Point
Sampling), and then joint features of relative coordinates
and normal vectors are extracted in a multi-scale
neighbourhood. Local descriptors are obtained by a MLP
and maximum pooling. Finally, the three-dimensional
offset of each cluster centre is predicted in the regression
head. The module can robustly locate smoke clouds and
flame cores in low-density, sparse point cloud scenes.

PointNet++ constructs local features by introducing
three steps: Sampling, Grouping, and PointNet feature
extraction, and implements multi-scale feature learning by
recursively applying these steps. PointNet++ uses the FPS
algorithm to select a representative point as the centre
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point of downsampling. The goal of this process is to
ensure that each selected point is as far away from the
other selected points as possible, so that the entire point
cloud is covered. The FPS algorithm selects the point
farthest from the nearest point in the current point set by
iteration until the required number of sampling points is
reached. This process can be expressed in Eq. (7):
FPS(?’ n) = {pl: D2y «es pn} (7)

Where P is the input point set and n is the number
of sampling points.

After the sampling is completed, PointNet++ groups
the neighbourhood points around each centre point
through the K-NN algorithm. For each centre point p,, its
neighbourhood points are composed of K points closest to
it. The grouping process can be expressed in Eq. (8):

Ne =1{pj € P | gistance®) Pc) <73 (8)

Where A is the query radius, which is used to
determine the extent of neighbourhood points.

The PointNet layer in PointNet++ uses a multi-layer
perceptron (MLP) for feature extraction of points in each
local region. Specifically, the point features of each local
region are input into an MLP with shared weights to
generate local feature vectors. Then, these local feature
vectors are aggregated into a global feature vector by the
Max Pooling operation. This process can be expressed in
Eq. (9):

fo = A@f.) 1 €N (9)

Among them, A(-) represents the aggregation
function (i.e. maximum pooling), @ (-)represents the local
feature extractor (i.e., MLP), and f, ; is the feature of the
Jj point near the central point p,.

2.8 Multimodal fusion strategy

Shared Head

(N T —_ . PR

Shared Head

Figure 2: YOLOV7 and PointNet + + three-dimensional fire point and smoke precise positioning model framework
based on multi-modal fusion strategy

Figure 2 shows a multi-modal fusion framework
designed to achieve three-dimensional, accurate
positioning of fire points and smoke in complex scenes.
First, the system simultaneously acquires two-
dimensional images from surveillance cameras and three-
dimensional point cloud signals from lidar; The two-
dimensional branch uses YOLOv7 backbone network to

extract visual features, and generates two-dimensional
candidate boxes of fire points and smoke in the detection
head; The three-dimensional branch carries out multi-
level sampling and feature learning through PointNet++ to
obtain the geometric information of point cloud space.
Subsequently, the fusion module introduces a cross-modal
attention mechanism to align and weight the integration of
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visual and geometric features, taking into account the
advantages of image details and spatial structure. Finally,
the positioning head uses the fused multi-modal
representation to return the three-dimensional coordinates
of the fire point and smoke source to achieve high-
precision positioning of the fire source and smoke in
complex forests, industrial areas and other environments,
providing support for emergency response and drone
inspections. Provide reliable data support.

2.9 Loss function design

The total loss function is the weighted sum of the
losses of each subtask, as is shown in Eq. (10):

Ltotal =a- LYOL0V7 + B ' LPointNet++ + v L3D_reg

With ¢ = 1.0, = 0.5,y = 2.0. Training uses Adam
optimizer, learning rate 0.001 with cosine decay, batch
size 16, and 100 epochs. Data augmentation includes
random rotation, scaling, and Gaussian noise for point
clouds. Where Lygoy7 represents the two-dimensional
detection loss of the YOLOV7 branch, Lpgininets+
represents the point cloud segmentation loss of the
PointNet++ branch, and Lsp_., represents the 3D

localization regression loss.
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Adopt Focal Loss to solve the category imbalance
problem of the fire point/smoke point cloud, as is shown
in Eq. (11):

jz\:41
Lyt = — = L a1 = p))" log(pp) V)

Where M represents the number of point clouds, p;
represents the probability that the point belongs to the fire
point j and smoke, «, represents the category weight, and
y represents the difficult sample aggregation parameter
(the default value is 2). The calculation process is shown
in Eq. (12).

L3D_re = Lcenter + Ldim + Langle (12)

Lcenter 18 the centre point loss, Ly, is the size loss,
and Ly, is the heading angle loss.

YOLOv7 and PointNet++ are trained jointly in an
end-to-end fashion. Feature fusion occurs mid-network,
and gradients are propagated across both branches.

3 Experimental results and analysis

3.1 Experimental data set and data partition

Table 2: Summary table of basic information of the fire detection data set used in the experiment

Dataset Name Data Source Data Type Sample Number | Applicable scenarios
Self-built Fire Spot and Smoke
FireRGB simulated  fire | RGB Image 3,000 pot an
. Image Detection
image
. Public point | Point cloud data 3D Smoke Structure
SmokeDensePoint cloud platform (. pcd) 1,200 Modeling
Hybrid . Image and Point Cloud
FireNet3D acquisition RGB ~+ Point 1,500 Registration and
Cloud A .
system Fusion Analysis
Open-source . . .
MultiFireScene firefighting Vlldedo * point 2,500 :cvlu_ltl—angl_e_ __scene
database clou usion positioning

Table 2 summarizes the datasets used, including
FireRGB (simulated flame images), SmokeDensePoint
(public point cloud data), FireNet3D (hybrid RGB + point
cloud), and MultiFireScene (multi-angle video + point
cloud). Ground truth for 3D localization was obtained via
manual annotation and sensor fusion. Smoke volumes
were labeled using density thresholds and visual
inspection. Scene-level splits ensure no overlap between
training and test environments.

Annotation was performed using a custom labeling
tool that synchronizes RGB and depth frames. Fire source
coordinates were labeled in 3D using triangulated laser
markers.Smoke regions were annotated using density

thresholds and visual inspection. Each sample was
reviewed by at least two annotators; inter-annotator
agreement reached 92.4%. We adopt a scene-level split to
avoid data leakage:70% of scenes for training15% for
validation15% for testing No overlapping environments or
camera angles are shared across splits. This ensures
generalization to unseen fire/smoke scenarios.

Sensor Specifications and Calibration Matrices the
RGB camera used is Sony IMX219 (8MP, 301ps), and the
depth sensor is Intel RealSense D435.Extrinsic calibration
was performed using hand—-eye alignment. Sample
calibration matrices and projection equations are provided
for reproducibility.
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Table 3: Statistical table of experimental data set division and label type

Dataset Name Trammg_ set Valldatlop Set Test set Label Type
proportion Proportion proportion
FireRGB 70% 15% 15% Fire spot, smoke, background
SmokeDensePoint 60% 20% 20% Smoke area boundary
labeling
FireNet3D 75% 10% 15% 3D target frame pairing

In Table 3, each data set is divided into a reasonable
proportion according to the task requirements, in which
the training set accounts for the main body to ensure the
learning ability of the model, and the verification set and
test set are used to adjust and participate in the evaluation
performance, respectively. Each data set is equipped with
explicit target labels, such as "fire point", "smoke",
"background", etc., thus supporting the model's
classification learning in multi-category target detection.
By comparing the partition ratios of different data sets,

Detected Fire and Smoke Image

this table reflects the research's emphasis on training
stability and scientific evaluation in the data preparation
stage, and is an important basis for the reliability of
algorithm results.

3.2 Experimental analysis

3.2.1 Comparative experiments

Fire and Smoke Localization

3D Representation

Figure 3: Schematic diagram of integrating YOLOvV7 and PointNet++ to achieve three-dimensional accurate
positioning of fire points and smoke in complex indoor scenes

Figure 3 shows the 3D localization effect of fire
points and smoke in complex scenes by fusing YOLOvV7
and PointNet++. Firstly, YOLOv7 accurately detects fire
points and smoke areas in RGB images in two dimensions,
and labels the target areas in the form of bounding boxes.
Subsequently, the corresponding point cloud data is
generated by the multi-view depth camera, and the
detection results are mapped to the three-dimensional
space to realise the spatial position reconstruction of the
target area. In the three-dimensional point cloud structure
in the figure, the fire spots are highlighted in red, and the
smoke areas are presented in translucent grey to enhance
visual recognition.

From the perspective of spatial distribution, the
fusion model can maintain high positioning accuracy in

complex environments such as occlusion and low light.
Three-dimensional point cloud features are sampled and
aggregated in PointNet++, so as to extract the geometric
structure and distribution pattern related to fire points and
smoke. Experimental results show that this method has
higher spatial perception ability than the single-mode
detection strategy, especially in smoke diffusion situation
modelling, showing good continuity and robustness.

This figure effectively verifies the potential of multi-
modal information fusion in improving fire monitoring
performance, provides data support and visual basis for
further research, and also provides technical reference for
the actual deployment of intelligent fire protection
systems.
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Figure 4 comprehensively shows the advantages of
the proposed fusion model at the quantitative and
qualitative levels. In sub-figure (a), the PR curve of the
fusion model is always above the two baselines. Its mAP
is 92.7%, which is significantly higher than that of
YOLOvV7 (88.3%) and PointNet++ (84.9%); sub-figure (b)
depicts the positioning error distribution in CDF
(Cumulative Distribution Function) form, and 85% of the
sample errors of the fusion model are lower than 0.12 m,
while the single-modal error quantiles are above 0.18 m;
sub-figure (c¢) marks the fire spots and smoke areas
through red and gray boxes, which intuitively reflects that
the model can still accurately detect weak targets under
low light and occlusion conditions; Subfigure (d) renders
the point cloud area corresponding to the detection frame
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(b) Localization error vs. smoke density
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Figure 4: Performance comparison and visualization results of experimental part.

under the same viewing angle, with high-density red dots
indicating the fire source location, and light gray floating
point clouds identifying the smoke diffusion situation,
supplemented by coordinate axes and scale rulers,
highlighting the 3D localization accuracy. Overall, this
figure verifies the accuracy, robustness and visualisation
effect of the fusion framework from multiple dimensions

and scenarios, providing strong support for the
engineering application of intelligent fire protection
systems.

All metrics are averaged over 5 random seeds. We
perform paired t-tests between the proposed method and
baselines. Localization error: 0.12 + 0.03 m (p < 0.01 vs.
YOLOV7), Detection mAP: 92.7 = 1.2%.

Depth map

Depih(m

1 m hg cm

Figure 5: Comprehensive visualization of experimental results

Figure 5 shows the performance of the fusion model
under various interferences: (a) As the smoke

concentration increases from 0.1 g/m 3 to 1.0 g/m 3, the
positioning error increases from 0.05 m to 0.18 m; (b) The
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detection accuracy under strong light and medium light
exceeds 90%, the recall rate is >88%, and the accuracy at
night is reduced to 82%; (c¢) The median delay of heavy
occlusion is increased from 30 ms to 48 ms, and the
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fluctuation range is expanded; (d) The double interference
heat map of light and smoke shows that the score is the
highest in moderate conditions, and there is still room for
improvement in extreme environments.
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Figure 6: Multimodal detection performance and spatial distribution diagram

From the overall perspective of Figure 6, the system
has the best performance in medium-distance scenarios
and can take into account both detection rate and
confidence; However, the ability to detect targets at the
edge of the field of view and a long distance is insufficient.
Consider enhancing long-distance sample training or

Localization error vs.
smoke density

o 0.3 0.5 1.0

Smoke density (g/m?)

0,0

Localization ensity (m)

introducing a stronger feature extraction layer to improve
the detection density and confidence of edge regions. At
the same time, aiming at the short-term decrease of
accuracy rate, a dynamic threshold or a post-processing
strategy can be added to reduce the impact of false
detection on system stability.
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Figure 7: Comparison of accuracy, recall rate and F1 value of four fire detection algorithms, and comparison of
average inference time and model parameter scale of each algorithm on edge devices

Figure 7 integrates and shows the performance
indicators of four key fire detection algorithms. The chart
on the left Figure compares the detection accuracy, recall
rate and F1 value of YOLOV7, PointNet++, Mask R-CNN
and their multi-modal fusion solutions on commonly used
fire data sets. The results show that the fusion method not
only surpasses the single model in terms of accuracy and
recall rate, but also improves the F1 value significantly,
which verifies the gain of multi-source information
complementarity on fire recognition effect. The chart on
the right Figure presents the average inference time and
model parameter scale of each algorithm under the same
hardware platform (edge computing device). While
ensuring high detection performance, the fusion model
controls the average inference time within 50 ms, and the
number of parameters is reduced by about 20% compared

with Mask R-CNN, which reflects better real-time
performance and resource utilisation efficiency. Overall,
these two figures comprehensively reveal the trade-off
characteristics  between accuracy and real-time
performance of the model, and provide an intuitive
reference for algorithm selection of fire monitoring
systems in different application scenarios.

3.2.2 Ablation experiments

In order to fully verify the experimental performance
of the proposed method in this paper, we conducted
ablation experiments. In the ablation experiment, we
divided them into four groups for verification, namely:
YOLOv7+PointNet++, YOLOv7 alone, PointNet++ alone
and Mask R-CNN+PointNet.
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Table 4: Statistical table of performance results of multi-model in 3D localization of fire point and smoke

e . Processing
Model Name Pgrsrlélro(rigg aclgszztl(zf’l/) Rec(%}l)rate time Robustness Score (1-5)
y o ° (ms/frame)
YOLOvV7 +
PointNet + + 0.12 94.5 92.3 38 4.8
YOLOV7 0.25 90.1 85.6 25 3.9
alone
PorntNet + 0.18 88.7 81.2 0 4.1
used alone
Mask R-CNN
+ PointNet 0.16 91.2 86.5 51 4.3

Table 4 summarises the 3D localization experimental
results of various models in complex fire scenarios, and
compares and analyses core indicators such as positioning
error, detection accuracy, recall rate, processing efficiency
and robustness score. Among all candidate methods, the
YOLOvV7 and PointNet++ fusion model performed best in
all aspects. Its positioning error is only 0.12 meters, which
is significantly better than traditional methods in terms of
spatial reconstruction accuracy; The detection accuracy
and recall rate reached 94.5% and 92.3% respectively,
showing high accuracy and low risk of missed detection
in the identification task of multiple types of targets (fire
spots, smoke).

In addition, the processing efficiency of the fusion
model reaches 38 milliseconds per frame, taking into
account both recognition speed and computational
overhead, and is suitable for actual scene deployment. In

YOLOvV7 +

PointNet++ e

ire 0,92 : ~
Lue U, Fire 0,91

YOLOvV7 +
PointNet++

terms of robustness score, it still maintains good
recognition stability under conditions such as occlusion,
strong light interference, and smoke concentration
changes, with a score as high as 4.8, reflecting the
advantages of multi-modal fusion strategies in
adaptability to complex environments. In contrast, the
single-modal model has obvious shortcomings in some
indicators. For example, YOLOV7 is insufficient in spatial
positioning, and PointNet++ has limited accuracy in
preliminary target recognition.

Overall, this table verifies that the method proposed
in this study has the comprehensive advantages of high
precision, high efficiency and strong robustness in fire
monitoring tasks, and provides important technical
support for the development of three-dimensional fire
identification and intelligent fire protection systems.

PointNet++ Mask R-CNN
+ PointNet+

Fire 0,90

Smoke 0

10
0 2040 0

Figure 8: Comparison chart of ablation experimental scenarios

Figure 8 visually compares the contribution of each
module to the results through four ablation configurations
in the same scenario. YOLOv7+PointNet++ performs
well in both two-dimensional and three-dimensional
fusion. It can not only accurately identify flame areas
under low light and occlusion conditions, but also
reconstruct compact and continuous smoke clouds and
stereotactic frames; Simple YOLOvV7 or PointNet++ are
insufficient in detection accuracy or spatial expression due
to the lack of modal information of each other; Although

Mask R-CNN+PointNet improves 2D segmentation
details, it fails to make full use of feature layer fusion,
resulting in large 3D errors. The visual graph of the
ablation experiment verifies the key role of cross-modal
attention and joint optimisation strategy in improving the
robustness and positioning accuracy of the system. Failure
cases include false positives in reflective surfaces and
missed detections in dense smoke-only scenes. These
highlight limitations in depth sensing and fusion under
extreme conditions.
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Multi-Metric Radar Chart
Recall
YOLOv7+PNet++

YOLOvV7
PNet++
MaskR-CNN+PNet
Fl I'recision
Throughput

Correlation Matrix

fl_score

throughput

W
mﬂog;\?“

Figure 9: Visualization diagram of multi-model performance comparison of ablation experiment

Figure 9 systematically evaluates the ablation effect
of the model from four perspectives. Bar chart (a) shows
that the fusion model (YOLOv7+PointNet++) is ahead of
the other three configurations in accuracy (0.93), recall
rate (0.91) and F1 score (0.92), proving that cross-modal
complementarity improves the detection quality. Radar
chart (b) further highlights the overall advantages of the
fusion model in terms of throughput (26 fps) and three
classification indicators. At the same time, the single-
modal method, especially PointNet++, performs relatively
poorly when balancing multiple indicators. Violin
diagram (c) reveals the characteristics of model delay
distribution: the fusion model has concentrated delay,
small fluctuation, and the median and interquartile range
are better than other configurations, indicating that both
real-time and stability are taken into account in edge
deployment. Heat diagram (d) reveals a high correlation
between classification indicators (the correlation
coefficient between Precision and F1 is close to 0.99). At
the same time, there is a slight negative correlation
between throughput and accuracy indicators, reflecting
that the pursuit of higher frame rate may cause a certain
compromise on accuracy.

Taken together, multi-modal fusion not only
improves the accuracy of detection and positioning but
also effectively controls delay fluctuations while
maintaining high throughput rates. This ablation analysis
provides an intuitive basis for model architecture design,
acceleration strategy and deployment optimisation, and
guides subsequent targeted improvements to performance
bottlenecks.

We add a fifth variant: YOLOv7 + PointNet++
without cross-modal attention. This isolates the
contribution of the fusion module. Results show a 4.2%
drop in mAP and 0.05 m increase in localization error. The
proposed system achieves a mean localization error of
0.12 m, detection accuracy of 94.5%, recall of 92.3%, and
average inference time of 38 ms/frame on NVIDIA Jetson
AGX Xavier.

4 Discussion

Compared to prior works such as F-PointNet and
PointPainting, our method achieves higher detection
accuracy (92.7% vs. 88.3%) and lower localization error
(0.12 m vs. 0.18 m), as shown in Table 3 and Figures 4—7.
This improvement is attributed to the mid-level fusion
strategy and the use of cross-modal attention, which
enables more effective integration of visual and geometric
features. Error sources include dense smoke occlusion,
which reduces depth sensor reliability, and nighttime
scenes with low contrast. In such cases, YOLOvV7
bounding boxes may misalign with depth data, leading to
inaccurate 3D projections. Beyond numerical gains, the
proposed fusion module improves robustness by
adaptively weighting features across modalities. Unlike
simple concatenation, cross-modal attention selectively
enhances informative regions, especially under occlusion.

The system runs on NVIDIA Jetson AGX Xavier
with 38 ms/frame latency, validating edge deployment
feasibility. However, limitations include reliance on
accurate sensor calibration, sensitivity to depth noise, and
reduced performance in outdoor environments with
variable lighting. Future work will explore self-supervised
calibration and adaptive fusion strategies.

5 Conclusion

In this paper, an end-to-end multi-modal fusion
framework based on YOLOv7 and PointNet++ is
proposed, which realises high-precision 3D localization of
fire spots and smoke in complex scenes. Through multi-
scale two-dimensional detection and cross-modal spatio-
temporal registration, this method maps high-confidence
bounding boxes in RGB images to point cloud space, and
uses PointNet++ to extract and regress local geometric
features, fully integrating texture and depth information,
taking into account detection speed and spatial expression
ability.
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The system evaluation on the edge computing
platform shows that the method can control the
positioning error within 0.12 m, the detection accuracy
and recall rate reach 94.5% and 92.3% respectively, the
average inference delay is only 38 ms/frame, and the
robustness score is 4.8 out of 5. Compared with pure
YOLOV7 or PointNet++ solutions, multi-modal fusion
significantly improves detection stability and 3D
reconstruction accuracy under low light, occlusion and
high-density smoke conditions. These results demonstrate
the feasibility of deploying the system in real-world fire
monitoring scenarios, such as industrial facilities and
enclosed public spaces.

Future work will explore lightweight fusion
architectures for outdoor deployment, self-supervised
calibration techniques, and integration with thermal
imaging for enhanced detection under extreme conditions.
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