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Public crises such as natural disasters, pandemics, and large-scale industrial accidents require intelligent
real-time decision-support systems capable of accurately predicting crisis severity and optimizing emergency
resource allocation. This research introduces a Dynamic Grasshopper-Optimized Spatiotemporal Graph
Neural Network (DGO-ST-GNN) designed to model crisis propagation by integrating spatial and temporal
dependencies in crisis evolution. The architecture consists of stacked Spatiotemporal Graph Convolution
Blocks, combining graph convolution layers for spatial region relationships and gated recurrent temporal units
for sequential progression of crisis patterns. To enhance convergence stability, generalization, and
performance consistency, a Dynamic Grasshopper Optimization Algorithm (DGOA) adaptively tunes
hyperparameters, including learning rate, batch size, convolution depth, and dropout rate at the end of each
training epoch. The model is trained on 1,030 manually annotated geo-tagged crisis-related tweets containing
crisis type, sentiment polarity, severity level, resource availability, timestamp, and geolocation. Text
preprocessing includes tokenization, stop-word removal, and Word2Vec embeddings (300-dimensional), which
are used to construct semantic similarity edges for graph generation across urban regions. Data are
partitioned using an 80:20 train-validation-test split, and implementation is performed in Python.
Experimental evaluation compares DGO-ST-GNN with traditional machine learning models (SVM, Logistic
Regression, Random Forest, Naive Bayes) and deep-learning baselines (CNN, LSTM, CNN-LSTM, BERT,
XLNet). The proposed shows superior classification performance for crisis severity prediction,97% accuracy,
95% precision, 96% recall, and 94.9% F1-score, outperforming the strongest baseline Although DGOA
increases per-epoch runtime by 38.7%, the improvement significantly strengthens predictive robustness and
scalability for real-time emergency response.

Povzetek: Predlagani model zdruzi prostorsko-casovne povezave in optimizacijo hiperparametrov, da iz
podatkov (npr. objav na druzbenih omrezjih) z visoko natancnostjo napove resnost kriz ter podpre hitrejse
odlocanje in razporejanje virov.

1 Introduction situation monitoring, and command over the
environment call for up-to-the-minute crisis response
Natural disasters, pandemics, industrial accidents, and ~ capabilities. The unpredictability of crises, the rapid pace

significant system breakdowns are types of public crises ~ Of change, and the limitations of current information
that have come to characterize modern society ). As a  technologies render it impossible to achieve such
result of an increase in factors such as population density adaptability ©.

and urbanization, and a shift in climate, the frequency
and intensity of disasters are on the rise . These crises,
in addition to the destruction of property and disturbing
the ecosystem in the affected areas, also have long-
lasting psychological and economic effects. Crowded
urban areas, where infrastructure is highly
interconnected, are especially vulnerable to small-scale
interruptions that can spiral out of control and escalate
into significant emergencies [l Such catastrophes
require a swift and effective response. The first few hours
after a crisis are often the most critical; despite being the
most fragile, initial choices during that phase heavily
influence the outcome of rescue and relief efforts [,
Coordinated action and allocation of resources, real-time

The rise of social media platforms and other digital
channels has transformed the approach to crisis
handling. People use the internet to update and share
their observations and needs. During emergencies, a
stream of location-specific, real-time information is
generated [¢. This digital trace may allow for better and
more community-informed governance and enable more
responsive community-informed decision-making 1.
However, dealing with a multitude of unstructured data
for operational workflow integration is challenging,
particularly for operational frameworks that focus on
data credibility, noise, and systematic change
identification . There is a growing need for intelligent
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systems capable of monitoring the development of
public crises, andthat can also provide strategic insights
for time-critical, complex data in real time [°! Effective
prioritizing of response efforts should be made possible
by such systems, which should also be able to identify
crucial regions and capture spatial and temporal
connections [*%1, The creation of data-driven, responsive,
and scalable crisis management systems has become
crucial for legislators, first responders, and software
developers alike as metropolitan areas continue to
expand and climate-driven disasters become more
prevalent Y. The main difficulty is precisely simulating
how crises spread, which is dynamic, intricate, and
linked, particularly in urban settings. Traditional
systems hinder effective and efficient responses to
quickly changing public emergencies due to their
inability to integrate unstructured input from social
media, make decisions in real-time, and schedule
resources adaptively under uncertainty.

The proposed research seeks to improve real-time crisis
response by precisely simulating the spread of public
disasters and improving resource allocation. It presents a
DGO-ST-GNN that employs an adaptive scheduling
algorithm to evaluate rescue efforts according to severity,
urgency, and resource limitations, and tracks the evolution
of crises using geotagged social media data.

Key contributions

» The system uses geotagged tweets as a
crowdsourced, real-time data source for crisis
monitoring. By performing this, impacted areas
and evolving conditions are instantly detected.

» A strong preprocessing technique is used,
involving stop-word removal and tokenization to
enhance feature extraction. This ensures that
important features can be recovered for accurate
graph formation and improves the quality of the
data.

»  For crisis-related text data, semantic features were
extracted using Word2Vec to capture contextual
meanings of words in social media posts. This
enriched each graph node with relevant linguistic
information to improve crisis propagation
modeling.

»  The suggested DGO-ST-GNN extracts patterns of
changing crises. It increases prediction accuracy in
a dynamic environment and improves semantic
representation.

Objective of the research: To develop a robust framework
for real-time crisis severity classification and optimized
emergency resource scheduling using geo-tagged social
media data. Specifically, the study aims to improve
classification performance of crisis events using a DGO-ST-
GNNreduce scheduling latency in resource allocation by
integrating predictive crisis modelling with adaptive
optimization; and enhance the model’s adaptability to
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dynamic inputs and evolving crisis scenarios through
spatiotemporal feature extraction and hyperparameter tuning.
These objectives collectively ensure timely and accurate
decision-making for effective emergency response.

RQ1: How effectively can a Dynamic Grasshopper-
Optimized Spatiotemporal Graph Neural Network (DGO-ST-
GNN) model spatiotemporal crisis propagation be using geo-
tagged social media data, compared to existing machine-
learning and deep-learning approaches?

RQ2: To what extent can the DGO-ST-GNN-based multitask
rescue scheduling algorithm improve real-time emergency
resource allocation efficiency—specifically reducing mean
and maximum wait times—compared to traditional
scheduling strategies such as FCFS, Priority Scheduling, and
Hybrid Multitask Scheduling?

2 Related work

Existing models for crisis transmission and emergency
resource allocation frequently struggle with dynamic,
real-time data and complicated spatial-temporal
connections. Recent advances in deep learning and graph
neural networks provide potential solutions, but they are
still limited in adaptability and efficiency throughout
large-scale public emergencies.

Using wireless sensor-based positioning to improve
emergency public resource scheduling was the objective
of the research 12, With natural number coding and a
penalty mechanism, it presents an enhanced MultiAgent
Genetic Algorithm Multi-Target Emergency Resource
Scheduling (MAGA-MTERS). The technique was more
cost-effective and efficient than conventional genetic
algorithms. Improved sensor accuracy helps with
scheduling the results. Potential scalability and the
complexity of real-world deployment were drawbacks.

Deep reinforcement learning was employed in the
experiment [*°1 to optimize the scheduling of urban
emergency resources during public health emergencies.
The Deep Q Network created a distribution system for
effective scheduling of routes. Improved scheduling
efficiency was demonstrated via simulation results.
However, a major drawback was that deep learning
models require plenty of central processing unit (CPU)
resources, which makes them computationally
expensive.

Employing effective logistics scheduling to reduce
rescue times during storm surge events was the aim of
the evaluation B4, It employed Deep Deterministic
Policy Gradient (DDPG) and Mixed-Integer Linear
Programming (MILP) techniques. The results indicated
that while DDPG was significantly faster and had a
somewhat lower accuracy, MILP provided the best
results, but it took a long time. Scalability for MILP and
decreased accuracy in DDPG for complicated scenarios
were among the limitations.
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Research [*%1 seeks to enhance real-time crisis event
recognition from noisy short-text data on social media
platforms. It suggests SatCoBiLSTM, a hybrid deep
learning model that combines multi-scale CNN,
BiLSTM, and self-attention to extract hierarchical
features. It earned a 96% F1-score after being tested on
three real-world datasets. While successful, its
drawbacks include a possible reliance on labeled data
and a significant computing burden.

Enhanced spectrum efficiency in unmanned aerial
vehicle (UAV)-assisted emergency communication for
B5G/6G networks was the aim of the research 1, Used
a convolutional neural network (CNN) and Q-learning,
it suggested a deep reinforcement learning (DRL)-based
resource allocation technique that simultaneously
optimizes user scheduling, UAV zone selection, and
macro base station power. The efficiency gains over
current methods were demonstrated by the results.
Reliance on antiquated channel information in time-
delay systems and oversimplified scheduling
assumptions were among the drawbacks.

By employing Al to identify urgent help requests on
Twitter, the research 7] seeks to assist first responders
during emergencies. It selects tweets related to
Hurricane Harvey, classifies them according to urgency
and relevance, and evaluates machine learning models.
CNN and conventional models perform worse than
Bidirectional Encoder Representations from
Transformers (BERT) and Extra Long Network
(XLNet). Despite its effectiveness, it only used one
disaster dataset, which limits its generalizability.

Research [*8 ysed UAVs as mobile edge computing
nodes to improve emergency edge computing in 5G
networks. It presented a decentralized task offloading
and resource allocation mechanism called collaborative
computation offloading and resource allocation-DRL
(CCORA-DRL), which was based on DRL. To minimize
energy and latency, UAV agents employed a deep
deterministic policy gradient. Results surpassed those of
A3C models. However, real-time network uncertainties
and UAV mobility might impact the system's
performance.

By using a deep learning algorithm in the analysis
of media framing, the experiment [*°! seeks to maximize
crisis communication. A hierarchical transformer design
was suggested to identify changing narrative structures
throughout crises. The accuracy of the model was
91.2%, surpassing baselines. The findings indicated that
frame changes impact public opinion and confidence.
Cultural prejudice, the omission of visual framing, and
the high computational requirements were some of the
limitations.

The use of a convolutional neural network- long
short-term memory (CNN-LSTM) model to predict
public opinion crises and minimize harmful information
on social networks was the objective of the research 2%,
It uses deep learning for text classification, gathers 10T-
based user data, and achieves an accuracy of 92.19%.
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The model outperforms GAN, CNN, LSTM, recurrent
neural network (RNN), and Transformers. One
drawback was that it requires huge, high-quality datasets
to function at its best.

The use of an loT-based Adam-optimized LSTM
model to forecast the evolution of Online Public
Sentiment (OPS) amid public situations was the aim of
the research 21, It simulated OPS dynamics using Al
and big data. The accuracy was higher than with
standard models (MRE: 0.06) in the results. Real-time
adaptability and wider generalization across various
emergency events and differing network behaviors were
its limitations.

Improved real-time identification of catastrophic
occurrences by merging picture and text data from social
media was the aim of the research 2. It presents a
multimodal middle fusion model that employs cross-
modal and self-attention techniques. On CrisisMMD
tasks, it achieves up to 91.53% accuracy, outperforming
early/late fusion and unimodal techniques by 2-5%. One
restriction is the reliance on high-quality, synchronized
multimodal data.

The purpose of the experiment [ was to use deep
learning to improve the detection of crisis-related
material from social media. It proposed and tested two
hybrid models, CNN-Gated recurrent unit (CNN-GRU)
and CNN-SKipCNN, on Crisis natural language
processing (NLP) datasets. By increasing detection
accuracy by up to 21.71 percentage points, CNN-
SkipCNN outperforms current techniques. The model's
efficacy in a variety of crises and reliance on labeled
data are drawbacks, though.

A recent study proposed CRISP, a crisis-resilient
ST network integrating GCN, BIiLSTM, and graph
attention to model dynamic financial correlations during
crisis periods 4. The approach significantly improved
prediction accuracy; however, the model is limited to
financial-market applications and cannot easily
generalize to real-time emergency response planning.

Another research effort introduced STGCN-PDR,
an ST network combining spatial graph convolution and
temporal convolution to quantify uncertainty in cross-
border financial risk prediction ?°1. Although the model
enhanced interpretability = and  accuracy, its
computational complexity restricts deployment in fast-
changing environmental disaster scenarios.

2.1 Problem statement

Despite advances in deep learning for emergency
resource scheduling and crisis detection, significant gaps
remain. As an example, the research [¥1 deep
reinforcement learning models have been used to
maximize resource scheduling, but their efficacy is
hampered in resource-constrained environments due to
high computing costs. The efficiency of CNN-SkipCNN
hybrid deep learning models in increasing recognition
accuracy of crisis content in 23 suffers from their
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dependency on large labeled data sets, which makes them
inflexible to different types and locations of crises.
Improving social media analysis to enhance crisis
response in real time demonstrates the need for models
that are easy to scale, effective, and require minimal
annotation to generalize. The proposed research
addresses these gaps by presenting a scalable,
lightweight DGO-ST-GNN model that effectively
handles geo-tagged, real-time social media data without
the need for large, annotated datasets. It enables precise
crisis propagation modeling and resource allocation by
combining adaptive scheduling with efficient deep
learning. In dynamic emergencies, this method improves
computing efficiency, decision-making speed, and
generalizability.

3 Methodological framework

The approach involves gathering geotagged social media
data, preparing it using stop-word removal and
tokenization, and feature extraction using word2Vec. A
DGO-ST-GNN model provides dynamic crisis elements
to each node. Subsequently, emergency resources are
distributed by an adaptive multi-task scheduling
algorithm in real-time, depending on the severity,
urgency, and availability of the crisis. Figure 1 illustrates
the fundamental concept of the proposed research.
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Figure 1: Workflow of the proposed dynamic crisis
monitoring and resource scheduling model

3.1 Dataset

The public crisis events, including fires, earthquakes,
pandemics, floods, and industrial catastrophes, using
1,030 rows of geotagged records, are represented in this
data. For model development, the data were split into
80% for training and 20% for testing to ensure reliable
evaluation and generalization performance. Every record
contains the following: crisis attributes (sentiment,
severity score, type), emergency resource details (type,
capacity, current load, availability), spatiotemporal data
(latitude, longitude, timestamp), and semantic content
(simulated crisis-related text). The dataset was gathered
from the Kaggle source [?],
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3.2 Data augmentation

To address the limited size of the dataset and provide
greater linguistic variation, as well as reduce overfitting
while training the model. Several techniques were
applied for generating semantically equivalent variations
of Tweets, including inserting random words in the
middle of tweets and using a back-translation method to
generate additional tweets. The augmented dataset
enhanced the DGO-ST-GNN model's capacity to learn
spatio-temporal patterns within crisis communication
and provided improved generalizability, resulting in
increased prediction accuracy for real-time classification
of crisis severity.

3.3 Data preprocessing

The purpose of gathering social media data (geotagged
tweets) is to record disaster information in real time. To
extract significant material, the text is cleaned using
stop-word removal and tokenization.

3.3.1 Tokenization

Tokenization is the process of dividing tweets into
discrete words, characters, or punctuation marks,
collectively referred to as tokens, in the context of crisis-
related social media data. By separating important
phrases and allowing the elimination of unimportant or
uninformative information in subsequent phases of crisis
detection and resource planning, this procedure, which is
usually carried out at punctuation or space, prepares the
data for analysis.

3.3.2Stop word removal

Common terms like "the,” "is, "and" or" usually have
little relevance when it comes to recognizing urgent or
location-specific material in tweets about crises. By
concentrating on keywords that convey severity,
location, or particular demands, eliminating these stop
words enhances the performance of classification and
crisis detection models. Important negation words like
"no," "not," and "can't," however, are carefully preserved
since they are essential for comprehending the context
and urgency of communications pertaining to
emergencies.

3.3.3 Word2Vec feature extraction

Crisis-related Twitter content may be transformed into
high-dimensional vectors that capture word semantic
meaning using Word2Vec. Using neural network-based
designs like continuous bag of words (CBOW) and Skip-
gram, Word2Vec finds connections between words like
"trapped,"” "rescue," and "flood," assisting in determining
the urgency and severity of a situation. Large text
collections may be processed quickly and scalablyusing
this method while maintaining essential semantic
connections. The semantic grouping of crisis-relevant
keywords is made possible by the model's ability to learn
from local word contexts by either predicting
surrounding words from a core word or predicting a word
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based on its neighbors. Across geographically labeled
tweets, frequent co-occurrence patterns aid in identifying
linked situations or resource requirements. Its drawback
is that it fails to capture the whole sentence context,
which is essential for consuming short, informal crisis
communications on social media, even though it is
efficient and effective for large-scale data.

3.4 Dynamic Grasshopper Optimized
Spatiotemporal Graph Neural Network
(DGO-ST-GNN)

To enhance crisis propagation modeling and emergency
resource scheduling, a new design known as the DGO-
ST-GNN was created. It uses the GOA for dynamic
hyperparameter tweaking in conjunction with the power
of ST-GNN. Using real-time, geotagged social media
data, the model generates a dynamic graph with nodes
standing in for locations and edges for spatial-temporal
relationships. Semantic components from tweets
regarding crises are included in the graph. While GOA
constantly modifies model parameters such as
convolutional depths and learning rates to improve
prediction accuracy, the ST-GNN component documents
the evolution of crisis severity and spread over time. This
adaptive mechanism makes it easier for the network to
generalize across various scenarios of crisis. An
emergency scheduling system uses the DGO-ST-GNN
findings to prioritize rescue missions according to their
severity and urgency. The result is a disaster monitoring
and response system that is accurate, scalable, and real -
time. The DGO-ST-GNN algorithm integrates DGO with
a ST-GNN for crisis severity prediction and emergency
resource scheduling. The crisis dataset D is represented
as a spatial graph G(U,F), with temporal slices
Nt capturing dynamic inputs. Optimizer agents Wj are
iteratively updated over t = 1 to T using fitness functions
fit(Wj), Gaussian mutation, Lévy flight, and opposition-
based learning. The best agent Whest guides ST-GNN
training to predict Z and generate prioritized emergency
schedules Sched.
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Apply Dynamic Grasshopper Optimization:
Update the position of Wj using the GOA governing
equations
Apply Gaussian mutation
Apply the Lévy flight strategy
Apply opposition-based learning
Compute fitness fit(Wj)
End For
Select the best-performing agent Whest based on fitness
score
End For
Train the ST-GNN model using Whest
For each training epoch, do
For each time slice Nt in dataset D, do
Construct a spatiotemporal graph from tweet metadata
Extract temporal dependencies using Gated CNN
Extract spatial dependencies using Graph CNN
Fuse outputs through ST-Conv blocks (ReLU +
normalization)
Predict crisis severity Z
Compute L2 loss and update network parameters
End For
End For
Generate emergency scheduling based on severity values:
Sched = prioritize (Z)
Return Z, Sched

Algorithm 1: DGO-ST-GNN

Input: Crisis dataset D, spatial graph G(U, F)
Output: Predicted crisis severity Z, Emergency scheduling
Sched
Initialize the population of H optimizer agents Wj with
random hyperparameters
Fort=1to Tdo

For each agent Wj, do

3.4.1 Spatiotemporal graph neural network
(ST-GNN)

The spatiotemporal spread of public crises is modeled
using ST-GNN, which captures the temporal evolution of
crisis intensity as well as spatial interdependence across
areas. It facilitates precise forecasting of impacted
regions, facilitating fast and knowledgeable emergency
resource distribution. The stacked Spatio-temporal

Convolution (ST-Conv) blocks, which make up the
network architecture, are inspired by STGNN and are
each intended to capture dynamic spatial and temporal
crisis patterns independently. Figure 2 shows the
"sandwich" structure of each ST-Conv block, illustrating
data flow from input to output. The model includes three
GCN layers (128-dimensional embeddings), two
temporal attention layers, an Adam optimizer (0.001), a
batch size of 64, dropout 0.3, and 150 training epochs.
This consists of one spatial graph convolutional layer
surrounded by two gated temporal convolutional layers.
The model can capture changing semantic crisis elements
(such as urgency and severity) from social data sources,
such as geo-tagged tweets, in both time and place, due to
this approach.
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Graph CNNs for Extracting Spatial Features: Urban
areas are depicted as nodes in this environment, while the
edges are formed by their interactions (such as shared
boundaries and mobility linkages). With each node U €
U representing a distinct location, it may create a
spatiotemporal crisis graph G = (U, ). The convolution
operation on the spatial network directly mimics the
dispersion of crisis signals and regional interdependence.
The spectral graph convolution of an input feature matrix
W € W € R™di (such as real-time social signals like the
volume of distress tweets) is defined as follows in
equation (1).

zi = Z]P:jl 0, Kw; ER™, 1<i<Dy(1)

The output feature for the j™ output channel
following graph convolution is shown by z; in Equation
(1), whereas the input features are represented as w; €
R™, where D;j is the number of input feature channels and
m is the number of nodes (such as urban areas in a crisis
network). Modeled as Chebyshev polynomials of the
normalized Laplacian matrix K, the term @;; (K) denotes
the learnable filter parameters that capture the spatial
structure of the graph, the interconnectedness of various
areas. Each output feature is produced by iterating over
all input channels. Where the outputtensorZ € Z € Z €
RN*m*Dp represents the filtered spatiotemporal features
over all N frames, m nodes, and D, output channels,

while the input tensor W € W € W € RN*™*Pj comprises
N temporal frames of node characteristics with D
channels. Each time slice's graph convolution operation
is indicated by the notation @, ,w.

Gated CNNs for Extracting Temporal Features:
Capturing non-linear temporal connections is necessary
to document the evolution of crises throughout time. To
achieve real-time efficiency, Gated Temporal
Convolutional Networks (GTCNs) are employed instead

of recurrent models. Let a region's historical signal
sequence be represented as W € W € W € RVPi. For
the gated temporal convolution, it is defined as follows
in equation (2).

['+g W =0 Q@ o(R)eRN"Ls*DxDp(2)

The accessible 1 — D temporal convolution kernel
that was utilized to identify time-dependent patterns in
the crisis data is represented by the symbol T'. Each of
the N historical time steps in the data input sequence
W € W € W e R"Pihas Djinput characteristics (such
as regional crisis indicators). Two intermediary outputs,
0 and R, are produced by the convolution process and are
both located in the space R™~'s **Pe where D, is the
number of output channel features, and L is the temporal
kernel size. The gating mechanism gated linear unit
(GLU) is enabled by the term o(R), which applies the
function of sigmoid activation element-wise to R. In
conclusion, © represents element-wise (Hadamard)
multiplication, which gates the output O with the active
signal o(R). This enables the model to reduce noise or
unimportant changes while selectively preserving
significant temporal characteristics.

Spatio-temporal Convolutional Block: The model's
fundamental component is the ST-Conv Block, which
combines temporal and spatial crisis dynamics
information. Using the input tensor u* € RN*™*Pi for
each block k, the output uk*! g RMN-20s ~D)xnxDjss g
calculated by equation (3).

uk+! = Il « ¢ ReLU (@k *y (l'g *p uk))(3)

For lower and upper temporal kernels, respectively,
I} and I}. @K is the kernel for spatial graph convolution.
It adds non-linearity using ReLU. Each block undergoes
layer normalization to prevent overfitting. Deeper
structures for more complicated crises are constructed by
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stacking these elements. The learnt characteristics are
converted to a crisis severity prediction Y € R™ % using
a fully-connected decoder that comes after the ST-Conv
blocks and a temporal projection layer. Z defines the
ultimate forecast as follows in equation (4).

7 =YX+a (4)

Where the bias vector is denoted by a and the
trainable weight matrix by X. The multi-task emergency
resource scheduler is adaptive and uses this forecast as
input. The training objective is to reduce the L2 loss over
time between the actual and expected crisis severity. As
equation (5) defines ug,, as the ground truth severity for
each area, and X, are all learnable parameters.

H(Z:Xo) = T |1Z(ug = N+ 1, ..., ug; Xo) —
a12
us+1|Z| (5)

It includes the Dynamic Grasshopper Optimization
Algorithm (DGO) in the training loop to optimize
network topology and hyperparameters under
unpredictable, changing crises. Key parameters (such as
graph edge weights and temporal kernel size) are
dynamically adjusted to optimize prediction and resource
allocation performance.

3.4.2 Dynamic Grasshopper Optimization
Algorithm (DGO)

By automatically modifying the ST-GNN model's
hyperparameters, DGO improves the model's flexibility
and prediction precision. It ensures that the model will
perform at its best in a variety of real-time crises. For
real-time public crisis management, the deep learning
architecture is optimized in this research using the
DGOA. Optimal channels for data flow and attention
within the spatiotemporal graph are chosen by the
DGOA, which also improves the accuracy of crisis
propagation modeling and adaptive emergency resource
allocation. DGOA introduces three mechanisms to
address the limitations of the standard GOA, including
restricted global exploration and early convergence.
Figure 3 illustrates the dynamic GOA flowchart.
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| Calculate the fitness of each search agent ‘
Generate Oppositional swarm W*
According to opposition-based learning strategy

Figure 3: Dynamic GO algorithm flowchart
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These mechanisms include Gaussian mutation to
maintain variance in dynamic decision spaces, Levy
flight to escape local optima in crisis severity prediction,
and Opposition-Based Learning (OBL) to enhance
spatial diversity. These changes provide the best possible
balance between exploitation (concentrating on high-
priority or severe zones) and exploration (looking for
new crisis patterns or places). Each optimization agent's
most recent location is calculated as follows in equation

).

vac—ka Wi-W;
W = d( i L t(WE = we)—— ]> ®
i#j n

H(a) +&.(6)

Where d is the convergence control coefficient that
modifies the search scope over time, and Wf is the

location of the j™solution agent for the crisis model in
dimension c. The Crisis similarity function that measures
the degree of influence between solution agents is
denoted by t(-). The Gaussian mutation that introduces
controlled randomness for exploration is called H(a).
Fitness-guided update based on model prediction error is
denoted by €.. The Bounds specifying the search range
for model weights or hyperparameters are va, and ka..
To ensure responsiveness to events occurring in real
time, this technique dynamically adjusts the crisis
model's configuration when new data is received (for
example, from geo-tagged tweets).

To improve flexibility in changing emergencies, a
Levy Flight mechanism produces new potential solutions
as follows in equation (7).

W = W + rand(c) ® levy(B)(7)

If the new configuration improves predicted
performance, the modification is approved in equation

(8).
W_S+1 —
j
leevy Jif fitness(W].levy) > fitness(Wj)(S)
W, otherwise

Where c is the problem's dimension, and f is the
Levy distribution parameter regulating the step size
variability, W/*"” is the new candidate position created
by adding a random vector rand (c) scaled by a Levy-
distributed step levy (B). In the Levy Flight update
equations, Wj is the current position (or solution) of the
ith agent in the search space. By contrasting the fitness
values of the new candidate W'®" with the existing
position wj, the updated location W** is determined.

1

W/ is only adopted if it enhances the objective

function, guaranteeing adaptive exploration to avoid
local optima.

OBL is used to reduce overfitting to high-density
zones and optimize spatial awareness. By reflecting
current forecasts, this approach creates a parallel solution
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set that represents other crisis responses in the equation

(9).
WP’ =LB +UB~S+q(S—W)(9)

Where the best-performing configuration at the
moment is S, and W;’” is the opposite configuration
vector of agent j. The random vector in (0,1) with
controlled noise added is denoted as q. Lower and upper
boundaries on the solution space (such as resource
limitations, learning rates, and kernel sizes) are denoted
by LB and UB. The optimizer can investigate previously
unexplored geographical and temporal regions of the
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crisis graph that could need urgent attention with this
method, which  enhances  responsiveness and
generalizability.

The Hyperparameter Configuration Table 1 provides
an overview of the principal training and optimization
parameters that are utilized to develop the Proposed
Dynamic Grasshopper Optimised Spatial-Temporal
GNN (DGO-ST-GNN) model. These hyperparameters
dictate how the model is learned (i.e., how the weights
are trained), at what level of depth, length of temporal
sequence, and training regularization for batch
optimization.

Table 1: Hyperparameter configuration settings used in DGO-ST-GNN training.

Hyperparameter Description Range / Options Example
Value

Learning Rate (Ir) Step size for optimizer 0.001 -0.01 0.005

Number of GCN Layers Depth of graph convolution layers 2-4 3

Number of LSTM Units Number of hidden units in the temporal layer | 32 —128 64

Temporal Window Number of past time steps used for prediction | 5-20 10

Dropout Rate Dropout probability to prevent overfitting 0.1-05 0.3

GCN Activation Function Activation function in graph convolution RelLU, ReLU

LeakyRelL U

LSTM Activation Function Activation function for LSTM tanh, ReLU tanh

Optimizer Optimization algorithm for training Adam, RMSProp | Adam

Batch Size Number of samples per batch 16 — 64 32

GOA Population Size Number of candidates hyperparameter 5-20 10
solutions

GOA lterations Number of iterations for Grasshopper 10-30 15
Optimization

Weight Decay L2 regularization to prevent overfitting 0-0.01 0.001

Number of Epochs per Training epochs for each GOA candidate 20-100 50

Candidate

Final Training Epochs Epochs to train the final model after GOA 50 - 200 100
selection

3.5 Multi-task rescue scheduling algorithm

Rescue teams continually poll the updated priority
queue, which is sorted by severity, urgency, and arrival
time, then select the mission with the greatest priority
after the DGO-ST-GNN calculates crisis severity scores
for each region. Next, within a certain radius, each team
searches for neighboring assignments whose aggregate
rescue capacity won't be reached. More tasks are
organized into the same deployment to save travel
overhead if they are within range and resources allow.
Teams are dynamically re-tasked to regions of greatest
need when hotspots alter due to the rebalancing of the
priority queue and the refresh of regional severity scores
upon mission completion. Adaptive multi-task rescue
scheduling's core principles are priority, proximity, and
resource availability, as shown in equation (10).

arg  max ( 0o(s;)

s, €20 5, 0) (e ng 121 = D(s)])10)

The current selected high-priority task is denoted by
Sy. (S}, Q) is the collection of tasks that are selected by
S, from Q. Based on severity, urgency, and arrival time,

task Sj's priority score is O(S;). Tasks S, and S; are
separated by a distance, C(S,, S;). The cost of resources
(such as labor, equipment, and time) to do task S; is
denoted by D(S;). Q L is the rescue processor's or team's
remaining resources that are allocated to S;. I[-] defines
the indicator function, which returns 0 otherwise and 1 if
the condition inside is true (i.e., the task is feasible).
Further nearby tasks S; that fit within the available
resources Q,, are close to the present task S;, and have a
high priority O(S]-) are selected by this equation. The
group dynamically creates an effective multitasking
mission by optimizing the cost-benefit ratio while
adhering to time restrictions.

4 Performance evaluation

Real-world crisis data from social media was used in a
series of experiments to assess the efficacy of the
suggested DGO-ST-GNN model. The results of these
experiments show the beneficial effects of the suggested
strategy. The experimental design was implemented
using Python 3.10.
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The top 10 frequent words that came out of the
crisis-related social media data after preprocessing. The
word 'evacuate' pops up most times (892), followed by
'emergency’ (890), and then ‘fire' (889). Other high-
frequency words include rescue (887), urgent (885), and
water (880), which are observed in some key contexts
within crises. Tokens like ‘trapped’ (840 occurrences)
and ‘help’ (850) highlight emergency conditions, as
shown in Figure 4. These frequent keywords are very
useful in semantic analysis as well as real-time crisis
tracking.

Frequency

fa c,-\ « &,u" ﬁ.& jg‘ DQ’ ,p"b (P\Q q.&

Tokens

Figure 4: Frequency analysis of key crisis-related
tokens preprocessing

Word2Vec sentence embeddings of about 1,030
crisis tweets were reduced to two dimensions via PCA
for visualization. Each point is a tweet encoded into a
vector that carries the semantic meaning of this text, as
shown in Figure 5. These embeddings are spread over a
component 1 range from -50 to +45 and component 2
from -25 to +25, thus reflecting diversity both in content
and emotional tone within this dataset. Such a wide
spread shows that the model can distinguish different
crisis contexts based on text content.

mpanents 2

Figure 5: Semantic similarity in crisis tweets using
Word2Vec embeddings

The connection between resource types and crisis
types helps with resource scheduling optimization. For
example, industrial accidents required rescue teams the
most (66), whereas earthquakes needed medical units the
most (58). Fires required the fewest medical units (36),
whereas pandemics required the most ambulances (61)
and fire trucks (63), as shown in Figure 6. This
distribution contributes to the model's objective of
adaptive multi-task rescue allocation by identifying
which crisis circumstances require which type of
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emergency response, resulting in improved, data-driven
deployment decisions.

Crisis Type vs Resource Type

85

earthquake

60

55

flood
— 50

crisis_type

industrial_accident - 45

- 40
pandemic

ambulance fire_truck medical_unit  rescue_team
resource_type

Figure 6: Crisis type vs emergency resource allocation
matrix

The trend of crisis occurrence reports over 7 days
supports the proposed system's real-time monitoring
purpose. Reports increased from 97 on July 25 to 165 on
July 31, indicating that the problem was escalating. A
reduction to 33 on August 1 indicates probable resolution
or reporting lag, as shown in Figure 7. These temporal
variations allow the DGO-ST-GNN model to adaptively
prioritize resource allocation by determining when and
where crises worsen, which aligns with the goal of
dynamic and efficient emergency response.

Crisis Occurrance Qver Time

160

Number of Reparts

20250725 20250726 20350727 20250728 20260720 20350730 20250731 20260801
Date

Figure 7: Temporal trend of crisis reports for dynamic
emergency response

The sentiment distribution of crisis-related social
media posts was examined as part of the feature
extraction process for the proposed crisis management
model. Sentiment ratings vary from -1.0 (negative) to 1.0
(positive), with peaks at -0.6, 0.2, and 0.9, suggesting
emotional variability during public emergencies, as
shown in Figure 8. This distribution, with most values
ranging from 40 to 62 occurrences, contributes to the
model's capacity to identify emotional tone in real time,
allowing for dynamic prioritizing and optimal emergency
resource allocation depending on the public's positive
attitude.
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Sentiment Distribution

40
>
[
<
T
3

g3
[

20

10

0

=-1.00 =0.75 =0.50 -0.25 0.00
Sentiment

025 0.50 075 1.00

Figure 8: Sentiment analysis of crisis-related social
media posts for emergency response prioritization

The findings show that social media sentiment,
temporal patterns, and crisis-resource connections all
give valuable information for real-time crisis
management. The suggested model accurately reflects
emotional tone, fluctuations in crisis frequency, and
optimal resource deployment patterns. It classification
performance for crisis severity prediction 95% confirm the
ability of the system to make dynamic, accurate, and
efficient emergency response decisions.

4.1 Comparative analysis

In public disasters, to minimize damage and preserve
lives, quick, data-driven decision-making is essential. By
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utilizing intelligent models and real-time data, crisis
response efficacy may be greatly increased. Existing
techniques in public crisis management, such as Rule-
based + support vector machine (SVM) approaches and
CNN-GRU, have significant drawbacks. Although CNN-
GRU 23 appears to be effective at interpreting language,
it is not particularly adept at integrating temporal and
spatial dynamics, which makes it less useful to track how
crises change over time in various regions. Additionally,
it uses a lot of processing power and cannot function
effectively in real-time situations. However, the Rule-
based + SVM 2 approach was limited in its ability to
adapt to new

types of crises or hidden data patterns since it relies on
static rules and predefined features. The dynamic
resource optimization and multi-modal integration
necessary for real-time emergency response are
challenges for both strategies.

Table 2 shows the comparison of the proposed DGO-ST-
GNN model with the existing baseline models. As
indicated by the results, there were considerable gains for
Metrix’s proposed model over the baseline models, with
the proposed model exhibiting 97% accuracy and being
therefore very effective in forecasting the severity of
social crises and allocating resources. Figure 9 (a-d)
shows the accuracy, and precision, recall, and F1-score.

Table 2: Performance comparison of crisis management approaches

Models Accuracy Precision Recall F1
Rule-based + SVM [27] - 89.4 77.7 83.1
CNN [28] 72 72 72 72

BERT [28] 78 78 79 78
XLNet [28] 77 77 77 77
Naive Bayes [29] 76 70 76 72
Random Forest [29] 77 70 77 73
Logistic Regression [29] 77 70 77 73
SVM [29] 89 88 89 88
LSTM [29] 87 86 87 86
DGO-ST-GNN (Proposed) 97 95 96 94.9
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Figure 9: Comparison of the existing methods of the Crisis Management Approaches (a) accuracy, (b) precision , (c)
recall, and , (d) F-1 score.

Table 3 presents a detailed account of how the DGO-ST- Table 3: Comparative error performance of baseline
GNN's prediction error compares in Figure 10 favorably models vs. proposed DGO-ST-GNN
With’ the available state-of-the-art deep learning Niodei VIAE Error WO
archltgcmres based on MAE and E-MWDNN. The DNN [30] 0097373 30.913406
analysis shows that DGO-ST-GNN achieves MAE CNN [30] 0.095262 30.243204
(0.08 1427) and EEMWDNN (259341 12) lower than any LSTM [30] 0.088246 28.015784
model currently available, thereby providing the most CNN-LSTM [30] 0.087153 27.668873
accurate and robust predictions of future crises severity CNN-LSTM-Skip [30] 0.124239 39.442727
relati\./e to other models, including CNN-LSTM and CNN-LSTM-SKip 0105618 3353062
attention-based neural network models. Attention [30]

DGO-ST-GNN (Proposed) | 0.081427 25.934112
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Figure 10: Comparison of prediction errors across Different Deep Learning Models (a) MAE, and (b) Error-MWDNN
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4.2 Statistical outcomes

The t-test Table 4 compares the resource use in the high-
severity and low-severity categories of crisis, which confirms
significant differences in behaviours in terms of emergency
requirements. This fact helps to confirm that DGO-ST-GNN
is efficient in prioritization of critical decisions regarding
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resource allocation based on severity prediction and enhances
the relevance of emergency optimization to the real world. A
significant difference exists in resource utilization between
high-severity and low-severity crisis events (p < 0.05).

Table 4: T-test comparison of severity scores across

Group | N Mean | Std. | t- p- Significance
Dev | value | value

High 512 | 48.7 | 95

Severity 4.82 | 0.000 | Significant
(=0.6)

Low 518 | 31.2 10.1

Severity

(<0.6)

Table 5 ANOVA test compares the severity differences
among various types of crises and finds statistical
significance, proving that the features of crisis have an impact

on the level of severity. This observation supports the
necessity of spatiotemporal modelling and the rationale of the
adaptive learning ability of the suggested DGO-ST-GNN.

Table 5: ANOVA comparison of severity scores across different crisis types

Source SS df Mean F p- Significance
Square value

Between | 8.213 4 2.053 | 6.41 | 0.0003 | Significant

Groups

Within | 327.29 | 1025 | 0.319

Groups

Total 335.50 | 1029

4.3 Scheduling outcomes

The inference time per prediction instance was evaluated
and compared with baseline models, confirming the
efficiency required for real-time emergency scheduling.
DGO-ST-GNN Establishes Adaptive Optimization and
Intelligent Resource Prioritization based upon the

predicted severity of crisis type to reduce wait times.
Table 6 shows the reductions in both Maximum and
Mean average Wait Times across 10p/20p Workloads,
indicating a superior level of Efficiency for Emergency
Scheduling over both Hybrid and Traditional algorithm-
based methods.

Table 6: Emergency scheduling performance comparison including proposed DGO-ST-GNN

Algorithms Max avgWT Mean avgWT

(10p) | (20p) | (10p) | (20p)

FCFS [31] 4.74 3.73 2.53 1.61

Priority [31] 5.54 3.85 2.81 1.63
Multi-tasks Hybrid [31] 4.47 3.02 2.24 1.31
DGO-ST-GNN [Proposed] 3.62 241 1.68 0.94

5 Discussion

The comparative performance analysis indicates that the
proposed DGO-ST-GNN model is superior to the other
recently popular (SOTA) crisis forecasting and emergency
response scheduling models. Past research has used hybrid

deep learning networks, reinforcement learning systems,
multimodal neural networks, and spatiotemporal graph
networks in crisis management tasks, as discussed in the
SOTA comparison (Table 7). Even though a significant
number of them were competitive, they could exhibit a
limited applicability beyond the dataset or scenario they were
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trained on. As an example, hybrid CNN-BIiLSTM models
were found to have an Fl-score of 96% but needed huge
labeled datasets to work effectively, and multimodal systems
were highly precise but had issues with data noise. By
contrast, DGO-ST-GNNclassification performance for crisis
severity prediction has 97% accuracy, 95% precision, 96%

recall, and 94.9% F1-score, significantly better than both
traditional machine-learning models and deep-learning
baselines because of adaptive hyperparameter tuning and
extensive spatiotemporal modeling. Thus, the suggested
solution implements a more scalable, data-constrained, and
crisis-resistant structure in comparison to the literature.

Table 7: SOTA-based comparison of related emergency response and crisis prediction methods with the proposed DGO-ST-

GNN framework
Study Model Type Data Source Performance Metrics | Main Limitations
[13] Hybrid deep learning Social media short | F1-score: 96% Requires large labeled
(CNN + BiLSTM + Self- | texts (3 real-world datasets; high
Attention) crisis datasets) computational load
[15] Hybrid CNN-based text | Crisis NLP datasets | Accuracy Relies heavily on labeled
classification (Twitter) improvement: data; limited
+21.71% over generalization across
baselines crisis types
[16] DRL + Optimization Storm-surge MILP: highest MILP is slow and not
(DDPG + MILP) logistics data accuracy; DDPG: scalable; DDPG loses
fastest execution accuracy in complex
scenarios
[22] Multimodal (Image + Social media Accuracy: 91.53% Requires high-quality
Text) Deep Learning multimodal crisis image—text pairs; sensitive
dataset to noise
(CrisisMMD)
[25] Financial crisis Improved stability and | Limited to financial
CRISP (GCN + ind d market accuracy during applications; not suitable
BiLSTM + Attention) Index an financial crisis for real-time emergency
time-series data - .
prediction response scenarios
[27] Hiahway traffic Assumes static traffic
Highway Emergency ghway Reduced average pattern; lacks predictive
ST-Network f'OV.V and rescue rescue response time capability in rapidly
station O-D data - .
evolving crises
DGO-ST- Spatiotemporal Graph Geo-tagged crisis Accuracy:97% Depends on social media
GNN Neural Network + tweets (1,030 Precision: 95%, Recall: | data quality;
[Proposed] Dynamic Grasshopper records) 96%, F1-score: 94.9% | computational overhead in
Optimization GNN optimization.

5.1 Reasons for the existence of better
performance of DGO-ST-GNN.

The two key innovations that make the proposed model
offer exceptional performance include the DGO that
optimally modulates hyperparameters in real time over
training epochs, reduces hyperparameter sensitivity to local
minima, and eliminates the need for manual tuning.
Spatiotemporal GNN architecture is able to acquire
relational features between geographically dispersed nodes
of crisis and dynamic temporal dynamics of crisis intensity.
The conventional approaches support crisis signals as
discrete text collections or fixed data sets, which leads to the
loss of important information. In comparison, DGO-ST-
GNN is a dynamically integrated framework of semantic
embeddings, spatial graphs, and temporal convolutional
layers, which allows forecasting crisis propagation. Another
technique that is presented in the optimization strategy is the
use of Gaussian mutation, Levy flight, and opposition-based
learning, which all contribute to increased stability in model

convergence and model representation. As a result, the
accuracy of the decision made on resource allocation is
enhanced, which makes the average emergency response
wait time shorter.

5.2 Resilience and applicability to the scope
of crises

The huge benefit of the suggested framework is that it can
be adapted to various types of crises such as fires, floods,
earthquakes, pandemics, and industrial accidents. Rather
than using domain-specific rule-based assumptions, DGO-
ST-GNN acquires emergent patterns based on geo-tagged
spatiotemporal data, semantic sentiment severity indicators,
and past emergency resource behaviour. In contrast to
CRISP, which models financial crises only, or highway ST-
Networks, which presuppose that the flow of traffic is
always constant, the proposed architecture can be
generalized well in terms of event types and geographical
area. The analysis shows consistency in its performance
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with a comparatively small dataset of 1,030 samples, which
is supported by data augmentation and cross-validation as
well as close train-test partitioning. The model also exhibits
resilience to imbalance in the dataset and noisy tweet
content, which demonstrates that it can be deployed in the
real world to support the use of public safety organizations
and smart crisis management systems.

5.3 Real-time emergency response practical
implications

The usefulness of the proposed framework is not limited to
the predictive accuracy but to the operational improvement
of the response. Combining spatiotemporal forecasting with
emergency resources scheduling allows the proactive
decision-making of firefighters, medical teams, and relief
organizations. The suggested model will reduce the number
of emergencies wait times to a minimum and enhance the
prioritization of areas of crisis severity, thereby minimizing
the number of casualties and loss of infrastructure. The
increase in the efficiency of scheduling (Mean avgWT
dropped by the baseline values to 0.94 seconds) shows that
intelligent predictive planning may have a tangible effect in
the real world. This can be crucial to emergency response
systems in a smart-city environment and the next generation
of disaster informatics with high-density urban
environments, where a minute can be the difference
between life and death.

5.4 Parallelization potential and bottleneck
analysis

The highlight of the proposed DGO-ST-GNN architecture
is that it allows parallelization based on distributed
computing of GCN layers in the various graph partitions
and parallel mini-batch computation in the temporal LSTM
layers, which allow it to be trained much faster on multi-
GPU set-ups. Parallel fitness evaluation of candidate
solutions is also available to the Dynamic Grasshopper
Optimization. Nonetheless, there exist certain bottlenecks
in the construction of graphs and the computation of
attention, where quite dense spatial dependencies can be
subject to further optimization solutions, e.g., sparse
adjacency management or CUDA-based kernel execution to
support real-time implementation.

5.5 Limitations and future research

directions

The given system, however, has its advantages; still, it has
its limitations, which need to be recognized. Nevertheless,
despite the benefits of DGO in terms of accuracy, DGO
requires more training time by about 38.7% and in the case
of large-scale deployments, real-time optimization becomes
computationally intensive. Also, there is a dependence on
social-media text information, which influences the
accuracy of prediction based on the clarity of messages,
misinformation, and regional reporting bias. The further
work will be directed at the integration of multimodal input
streams, including satellite imagery, 10T sensor data

T. Wang

streams, and government streams of emergencies. In
addition, semi-supervised and weak-supervision methods of
learning will be considered to remove training reliance on
labeled data, as well as enhance interpretability. It shall also
focus on enhancing cross-regional crisis domain transfer
learning capabilities to improve the generalizability across
the world.

6 Conclusion

The suggested DGO-ST-GNN is capable of both crisis
propagation and optimization of emergency resources based
on geo-tagged crisis data. Combining the spatiotemporal
blocks of graph convolution with adaptive parameter
optimization using the framework of DGO, the model shows
superior capabilities in predicting and strong response to
dynamic crisis signals. Existing experimental analysis
indicates better accuracy, precision, and recall than the
traditional machine learning and deep learning baselines
and the ability to make decisions in emergency situations in
real time, which demonstrates the model. The future efforts
will be on expanding the model to other real time sources of
data, multimodal information integration and computational
efficiency to facilitate quick deployment. The suggested
framework provides a data-driven and scalable approach to
dealing with crisis management.
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Variable explanation

Symbol / Definition (Verified)

Term

X, Xt Input tensor containing crisis features across
time frames

Y, Yt Output tensor after spatial or temporal
convolution

0; Learnable Chebyshev graph convolution filter
for channel i

Ci Number of input channels

C, Number of output channels

T Number of temporal frames in the sequence

N Number of nodes (geographical regions)

L Normalized graph Laplacian matrix

k Chebyshev polynomial order

W, Temporal convolution kernel

zZY Intermediate convolution outputs before gating

o(.) Sigmoid activation used for gating

[O) Element-wise multiplication

H Output of the I-th ST-Conv block

W, Spatial graph convolution kernel

é() Activation function (ReLU)

W, by Output layer weights and bias

¥ Final predicted crisis severity

L, L(®) Loss function measuring prediction error

[C) Set of all learnable parameters

y Ground-truth crisis severity

c Convergence control coefficient of DGOA

Xi Current position of optimization agent i

S(t) Social interaction influences function

Gaussian_mut | Gaussian mutation for exploration

fit() Fitness function (prediction error)

rand() Uniform random value in [0,1]

levy() Step size generated by Lévy flight

Xi’ New candidate position after Lévy update

Xi(new) Updated agent position after fitness check

D Dimensionality of the search space

Xi™opp Opposite solution in the OBL mechanism

LB, UB Lower and upper bounds of the search space

p(t) Priority score of task t

d(t, t") Spatial distance between tasks

r(t) Resources required by task t

R. The remaining resources of the rescue team are

I(condition) Indicator function (1 = feasible, 0 = not
feasible)

T, Set of selected nearby tasks

Ta

All tasks available for Team A
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