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Public crises such as natural disasters, pandemics, and large-scale industrial accidents require intelligent 

real-time decision-support systems capable of accurately predicting crisis severity and optimizing emergency 

resource allocation. This research introduces a Dynamic Grasshopper-Optimized Spatiotemporal Graph 

Neural Network (DGO-ST-GNN) designed to model crisis propagation by integrating spatial and temporal 

dependencies in crisis evolution. The architecture consists of stacked Spatiotemporal Graph Convolution 

Blocks, combining graph convolution layers for spatial region relationships and gated recurrent temporal units 

for sequential progression of crisis patterns. To enhance convergence stability, generalization, and 

performance consistency, a Dynamic Grasshopper Optimization Algorithm (DGOA) adaptively tunes 

hyperparameters, including learning rate, batch size, convolution depth, and dropout rate at the end of each 

training epoch. The model is trained on 1,030 manually annotated geo-tagged crisis-related tweets containing 

crisis type, sentiment polarity, severity level, resource availability, timestamp, and geolocation. Text 

preprocessing includes tokenization, stop-word removal, and Word2Vec embeddings (300-dimensional), which 

are used to construct semantic similarity edges for graph generation across urban regions. Data are 

partitioned using an 80:20 train-validation-test split, and implementation is performed in Python. 

Experimental evaluation compares DGO-ST-GNN with traditional machine learning models (SVM, Logistic 

Regression, Random Forest, Naïve Bayes) and deep-learning baselines (CNN, LSTM, CNN-LSTM, BERT, 

XLNet). The proposed shows superior classification performance for crisis severity prediction,97% accuracy, 

95% precision, 96% recall, and 94.9% F1-score, outperforming the strongest baseline Although DGOA 

increases per-epoch runtime by 38.7%, the improvement significantly strengthens predictive robustness and 

scalability for real-time emergency response. 

Povzetek: Predlagani model združi prostorsko-časovne povezave in optimizacijo hiperparametrov, da iz 

podatkov (npr. objav na družbenih omrežjih) z visoko natančnostjo napove resnost kriz ter podpre hitrejše 

odločanje in razporejanje virov. 

 

1 Introduction  

Natural disasters, pandemics, industrial accidents, and 

significant system breakdowns are types of public crises 

that have come to characterize modern society [1]. As a 

result of an increase in factors such as population density 

and urbanization, and a shift in climate, the frequency 

and intensity of disasters are on the rise [2]. These crises, 

in addition to the destruction of property and disturbing 

the ecosystem in the affected areas, also have long-

lasting psychological and economic effects. Crowded 

urban areas, where infrastructure is highly 

interconnected, are especially vulnerable to small-scale 

interruptions that can spiral out of control and escalate 

into significant emergencies [3]. Such catastrophes 

require a swift and effective response. The first few hours 

after a crisis are often the most critical; despite being the 

most fragile, initial choices during that phase heavily 

influence the outcome of rescue and relief efforts [4]. 

Coordinated action and allocation of resources, real-time 

situation monitoring, and command over the 

environment call for up-to-the-minute crisis response 

capabilities. The unpredictability of crises, the rapid pace 

of change, and the limitations of current information 

technologies render it impossible to achieve such 

adaptability [5]. 

The rise of social media platforms and other digital 

channels has transformed the approach to crisis 

handling. People use the internet to update and share 

their observations and needs. During emergencies, a 

stream of location-specific, real-time information is 

generated [6]. This digital trace may allow for better and 

more community-informed governance and enable more 

responsive community-informed decision-making [7]. 

However, dealing with a multitude of unstructured data 

for operational workflow integration is challenging, 

particularly for operational frameworks that focus on 

data credibility, noise, and systematic change 

identification [8]. There is a growing need for intelligent 
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systems capable of monitoring the development of 

public crises, andthat can also provide strategic insights 

for time-critical, complex data in real time [9]. Effective 

prioritizing of response efforts should be made possible 

by such systems, which should also be able to identify 

crucial regions and capture spatial and temporal 

connections [10]. The creation of data-driven, responsive, 

and scalable crisis management systems has become 

crucial for legislators, first responders, and software 

developers alike as metropolitan areas continue to 

expand and climate-driven disasters become more 

prevalent [11]. The main difficulty is precisely simulating 

how crises spread, which is dynamic, intricate, and 

linked, particularly in urban settings. Traditional 

systems hinder effective and efficient responses to 

quickly changing public emergencies due to their 

inability to integrate unstructured input from social 

media, make decisions in real-time, and schedule 

resources adaptively under uncertainty. 

The proposed research seeks to improve real-time crisis 

response by precisely simulating the spread of public 

disasters and improving resource allocation. It presents a 

DGO-ST-GNN that employs an adaptive scheduling 

algorithm to evaluate rescue efforts according to severity, 

urgency, and resource limitations, and tracks the evolution 

of crises using geotagged social media data. 

Key contributions 

➢ The system uses geotagged tweets as a 

crowdsourced, real-time data source for crisis 

monitoring. By performing this, impacted areas 

and evolving conditions are instantly detected. 

➢ A strong preprocessing technique is used, 

involving stop-word removal and tokenization to 

enhance feature extraction. This ensures that 

important features can be recovered for accurate 

graph formation and improves the quality of the 

data. 

➢ For crisis-related text data, semantic features were 

extracted using Word2Vec to capture contextual 

meanings of words in social media posts. This 

enriched each graph node with relevant linguistic 

information to improve crisis propagation 

modeling. 

➢ The suggested DGO-ST-GNN extracts patterns of 

changing crises. It increases prediction accuracy in 

a dynamic environment and improves semantic 

representation. 

Objective of the research: To develop a robust framework 

for real-time crisis severity classification and optimized 

emergency resource scheduling using geo-tagged social 

media data. Specifically, the study aims to improve 

classification performance of crisis events using a DGO-ST-

GNNreduce scheduling latency in resource allocation by 

integrating predictive crisis modelling with adaptive 

optimization; and enhance the model’s adaptability to 

dynamic inputs and evolving crisis scenarios through 

spatiotemporal feature extraction and hyperparameter tuning. 

These objectives collectively ensure timely and accurate 

decision-making for effective emergency response. 

RQ1: How effectively can a Dynamic Grasshopper-

Optimized Spatiotemporal Graph Neural Network (DGO-ST-

GNN) model spatiotemporal crisis propagation be using geo-

tagged social media data, compared to existing machine-

learning and deep-learning approaches? 

RQ2: To what extent can the DGO-ST-GNN-based multitask 

rescue scheduling algorithm improve real-time emergency 

resource allocation efficiency—specifically reducing mean 

and maximum wait times—compared to traditional 

scheduling strategies such as FCFS, Priority Scheduling, and 

Hybrid Multitask Scheduling? 

2 Related work  

Existing models for crisis transmission and emergency 

resource allocation frequently struggle with dynamic, 

real-time data and complicated spatial-temporal 

connections. Recent advances in deep learning and graph 

neural networks provide potential solutions, but they are 

still limited in adaptability and efficiency throughout 

large-scale public emergencies. 

Using wireless sensor-based positioning to improve 

emergency public resource scheduling was the objective 

of the research [12]. With natural number coding and a 

penalty mechanism, it presents an enhanced MultiAgent 

Genetic Algorithm Multi-Target Emergency Resource 

Scheduling (MAGA-MTERS). The technique was more 

cost-effective and efficient than conventional genetic 

algorithms. Improved sensor accuracy helps with 

scheduling the results. Potential scalability and the 

complexity of real-world deployment were drawbacks. 

Deep reinforcement learning was employed in the 

experiment [13] to optimize the scheduling of urban 

emergency resources during public health emergencies. 

The Deep Q Network created a distribution system for 

effective scheduling of routes. Improved scheduling 

efficiency was demonstrated via simulation results. 

However, a major drawback was that deep learning 

models require plenty of central processing unit (CPU) 

resources, which makes them computationally 

expensive. 

Employing effective logistics scheduling to reduce 

rescue times during storm surge events was the aim of 

the evaluation [14]. It employed Deep Deterministic 

Policy Gradient (DDPG) and Mixed-Integer Linear 

Programming (MILP) techniques. The results indicated 

that while DDPG was significantly faster and had a 

somewhat lower accuracy, MILP provided the best 

results, but it took a long time. Scalability for MILP and 

decreased accuracy in DDPG for complicated scenarios 

were among the limitations. 
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Research [15] seeks to enhance real-time crisis event 

recognition from noisy short-text data on social media 

platforms. It suggests SatCoBiLSTM, a hybrid deep 

learning model that combines multi-scale CNN, 

BiLSTM, and self-attention to extract hierarchical 

features. It earned a 96% F1-score after being tested on 

three real-world datasets. While successful, its 

drawbacks include a possible reliance on labeled data 

and a significant computing burden. 

Enhanced spectrum efficiency in unmanned aerial 

vehicle (UAV)-assisted emergency communication for 

B5G/6G networks was the aim of the research [16]. Used 

a convolutional neural network (CNN) and Q-learning, 

it suggested a deep reinforcement learning (DRL)-based 

resource allocation technique that simultaneously 

optimizes user scheduling, UAV zone selection, and 

macro base station power. The efficiency gains over 

current methods were demonstrated by the results. 

Reliance on antiquated channel information in time-

delay systems and oversimplified scheduling 

assumptions were among the drawbacks. 

By employing AI to identify urgent help requests on 

Twitter, the research [17] seeks to assist first responders 

during emergencies. It selects tweets related to 

Hurricane Harvey, classifies them according to urgency 

and relevance, and evaluates machine learning models. 

CNN and conventional models perform worse than 

Bidirectional Encoder Representations from 

Transformers (BERT) and Extra Long Network 

(XLNet). Despite its effectiveness, it only used one 

disaster dataset, which limits its generalizability. 

Research [18] used UAVs as mobile edge computing 

nodes to improve emergency edge computing in 5G 

networks. It presented a decentralized task offloading 

and resource allocation mechanism called collaborative 

computation offloading and resource allocation-DRL 

(CCORA-DRL), which was based on DRL. To minimize 

energy and latency, UAV agents employed a deep 

deterministic policy gradient. Results surpassed those of 

A3C models. However, real-time network uncertainties 

and UAV mobility might impact the system's 

performance. 

By using a deep learning algorithm in the analysis 

of media framing, the experiment [19] seeks to maximize 

crisis communication. A hierarchical transformer design 

was suggested to identify changing narrative structures 

throughout crises. The accuracy of the model was 

91.2%, surpassing baselines. The findings indicated that 

frame changes impact public opinion and confidence. 

Cultural prejudice, the omission of visual framing, and 

the high computational requirements were some of the 

limitations. 

The use of a convolutional neural network- long 

short-term memory (CNN-LSTM) model to predict 

public opinion crises and minimize harmful information 

on social networks was the objective of the research [20]. 

It uses deep learning for text classification, gathers IoT-

based user data, and achieves an accuracy of 92.19%. 

The model outperforms GAN, CNN, LSTM, recurrent 

neural network (RNN), and Transformers. One 

drawback was that it requires huge, high-quality datasets 

to function at its best. 

The use of an IoT-based Adam-optimized LSTM 

model to forecast the evolution of Online Public 

Sentiment (OPS) amid public situations was the aim of 

the research [21]. It simulated OPS dynamics using AI 

and big data. The accuracy was higher than with 

standard models (MRE: 0.06) in the results. Real-time 

adaptability and wider generalization across various 

emergency events and differing network behaviors were 

its limitations. 

Improved real-time identification of catastrophic 

occurrences by merging picture and text data from social 

media was the aim of the research  [22]. It presents a 

multimodal middle fusion model that employs cross-

modal and self-attention techniques. On CrisisMMD 

tasks, it achieves up to 91.53% accuracy, outperforming 

early/late fusion and unimodal techniques by 2-5%. One 

restriction is the reliance on high-quality, synchronized 

multimodal data. 

The purpose of the experiment  [23] was to use deep 

learning to improve the detection of crisis-related 

material from social media. It proposed and tested two 

hybrid models, CNN-Gated recurrent unit (CNN-GRU) 

and CNN-SkipCNN, on Crisis natural language 

processing (NLP) datasets. By increasing detection 

accuracy by up to 21.71 percentage points, CNN-

SkipCNN outperforms current techniques. The model's 

efficacy in a variety of crises and reliance on labeled 

data are drawbacks, though. 

A recent study proposed CRISP, a crisis-resilient 

ST network integrating GCN, BiLSTM, and graph 

attention to model dynamic financial correlations during 

crisis periods [24]. The approach significantly improved 

prediction accuracy; however, the model is limited to 

financial-market applications and cannot easily 

generalize to real-time emergency response planning.  

Another research effort introduced STGCN-PDR, 

an ST network combining spatial graph convolution and 

temporal convolution to quantify uncertainty in cross-

border financial risk prediction  [25]. Although the model 

enhanced interpretability and accuracy, its 

computational complexity restricts deployment in fast-

changing environmental disaster scenarios.  

2.1 Problem statement  

Despite advances in deep learning for emergency 

resource scheduling and crisis detection, significant gaps 

remain. As an example, the research  [13] deep 

reinforcement learning models have been used to 

maximize resource scheduling, but their efficacy is 

hampered in resource-constrained environments due to 

high computing costs. The efficiency of CNN-SkipCNN 

hybrid deep learning models in increasing recognition 

accuracy of crisis content in [23] suffers from their 
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dependency on large labeled data sets, which makes them 

inflexible to different types and locations of crises. 

Improving social media analysis to enhance crisis 

response in real time demonstrates the need for models 

that are easy to scale, effective, and require minimal 

annotation to generalize. The proposed research 

addresses these gaps by presenting a scalable, 

lightweight DGO-ST-GNN model that effectively 

handles geo-tagged, real-time social media data without 

the need for large, annotated datasets. It enables precise 

crisis propagation modeling and resource allocation by 

combining adaptive scheduling with efficient deep 

learning. In dynamic emergencies, this method improves 

computing efficiency, decision-making speed, and 

generalizability. 

3  Methodological framework  

The approach involves gathering geotagged social media 

data, preparing it using stop-word removal and 

tokenization, and feature extraction using word2Vec. A 

DGO-ST-GNN model provides dynamic crisis elements 

to each node. Subsequently, emergency resources are 

distributed by an adaptive multi-task scheduling 

algorithm in real-time, depending on the severity, 

urgency, and availability of the crisis. Figure 1 illustrates 

the fundamental concept of the proposed research. 

 

Figure 1: Workflow of the proposed dynamic crisis 

monitoring and resource scheduling model 

3.1 Dataset 

The public crisis events, including fires, earthquakes, 

pandemics, floods, and industrial catastrophes, using 

1,030 rows of geotagged records, are represented in this 

data. For model development, the data were split into 

80% for training and 20% for testing to ensure reliable 

evaluation and generalization performance. Every record 

contains the following: crisis attributes (sentiment, 

severity score, type), emergency resource details (type, 

capacity, current load, availability), spatiotemporal data 

(latitude, longitude, timestamp), and semantic content 

(simulated crisis-related text). The dataset was gathered 

from the Kaggle source [26]. 

3.2 Data augmentation 

To address the limited size of the dataset and provide 

greater linguistic variation, as well as reduce overfitting 

while training the model. Several techniques were 

applied for generating semantically equivalent variations 

of Tweets, including inserting random words in the 

middle of tweets and using a back-translation method to 

generate additional tweets. The augmented dataset 

enhanced the DGO-ST-GNN model's capacity to learn 

spatio-temporal patterns within crisis communication 

and provided improved generalizability, resulting in 

increased prediction accuracy for real-time classification 

of crisis severity. 

3.3 Data preprocessing  

The purpose of gathering social media data (geotagged 

tweets) is to record disaster information in real time. To 

extract significant material, the text is cleaned using 

stop-word removal and tokenization. 

3.3.1 Tokenization  

Tokenization is the process of dividing tweets into 

discrete words, characters, or punctuation marks, 

collectively referred to as tokens, in the context of crisis-

related social media data. By separating important 

phrases and allowing the elimination of unimportant or 

uninformative information in subsequent phases of crisis 

detection and resource planning, this procedure, which is 

usually carried out at punctuation or space, prepares the 

data for analysis. 

3.3.2Stop word removal 

Common terms like "the," "is, "and" or" usually have 

little relevance when it comes to recognizing urgent or 

location-specific material in tweets about crises. By 

concentrating on keywords that convey severity, 

location, or particular demands, eliminating these stop 

words enhances the performance of classification and 

crisis detection models. Important negation words like 

"no," "not," and "can't," however, are carefully preserved 

since they are essential for comprehending the context 

and urgency of communications pertaining to 

emergencies. 

3.3.3    Word2Vec feature extraction  

Crisis-related Twitter content may be transformed into 

high-dimensional vectors that capture word semantic 

meaning using Word2Vec. Using neural network-based 

designs like continuous bag of words (CBOW) and Skip-

gram, Word2Vec finds connections between words like 

"trapped," "rescue," and "flood," assisting in determining 

the urgency and severity of a situation. Large text 

collections may be processed quickly and scalablyusing 

this method while maintaining essential semantic 

connections. The semantic grouping of crisis-relevant 

keywords is made possible by the model's ability to learn 

from local word contexts by either predicting 

surrounding words from a core word or predicting a word 
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based on its neighbors. Across geographically labeled 

tweets, frequent co-occurrence patterns aid in identifying 

linked situations or resource requirements. Its drawback 

is that it fails to capture the whole sentence context, 

which is essential for consuming short, informal crisis 

communications on social media, even though it is 

efficient and effective for large-scale data. 

3.4    Dynamic Grasshopper Optimized 
Spatiotemporal Graph Neural Network 
(DGO-ST-GNN) 

To enhance crisis propagation modeling and emergency 

resource scheduling, a new design known as the DGO-

ST-GNN was created. It uses the GOA for dynamic 

hyperparameter tweaking in conjunction with the power 

of ST-GNN. Using real-time, geotagged social media 

data, the model generates a dynamic graph with nodes 

standing in for locations and edges for spatial-temporal 

relationships. Semantic components from tweets 

regarding crises are included in the graph. While GOA 

constantly modifies model parameters such as 

convolutional depths and learning rates to improve 

prediction accuracy, the ST-GNN component documents 

the evolution of crisis severity and spread over time. This 

adaptive mechanism makes it easier for the network to 

generalize across various scenarios of crisis. An 

emergency scheduling system uses the DGO-ST-GNN 

findings to prioritize rescue missions according to their 

severity and urgency. The result is a disaster monitoring 

and response system that is accurate, scalable, and real-

time. The DGO-ST-GNN algorithm integrates DGO with 

a ST-GNN for crisis severity prediction and emergency 

resource scheduling. The crisis dataset D is represented 

as a spatial graph 𝐺(𝑈, 𝐹), with temporal slices 

𝑁𝑡 capturing dynamic inputs. Optimizer agents 𝑊𝑗 are 

iteratively updated over t = 1 to T using fitness functions 

𝑓𝑖𝑡(𝑊𝑗), Gaussian mutation, Lévy flight, and opposition-

based learning. The best agent Wbest guides ST-GNN 

training to predict Ẑ and generate prioritized emergency 

schedules Sched. 

Algorithm 1: DGO-ST-GNN 

Input: Crisis dataset 𝐷, spatial graph G(U, F) 

Output: Predicted crisis severity Ẑ, Emergency scheduling 

Sched 

Initialize the population of H optimizer agents 𝑊𝑗 with 

random hyperparameters 

For t = 1 to T do 

    For each agent 𝑊𝑗, do 

        Apply Dynamic Grasshopper Optimization: 

            Update the position of Wj using the GOA governing 

equations 

            Apply Gaussian mutation 

            Apply the Lévy flight strategy 

            Apply opposition-based learning 

        Compute fitness fit(Wj) 

End For 

    Select the best-performing agent Wbest based on fitness 

score 

End For 

Train the ST-GNN model using 𝑊𝑏𝑒𝑠𝑡 

For each training epoch, do 

    For each time slice 𝑁𝑡 in dataset D, do 

        Construct a spatiotemporal graph from tweet metadata 

        Extract temporal dependencies using Gated CNN 

        Extract spatial dependencies using Graph CNN 

        Fuse outputs through ST-Conv blocks (ReLU + 

normalization) 

        Predict crisis severity Ẑ 

        Compute L2 loss and update network parameters 

End For 

End For 

Generate emergency scheduling based on severity values: 

    Sched = prioritize (Ẑ) 

Return Ẑ, Sched 

3.4.1 Spatiotemporal graph neural network 
(ST-GNN) 

The spatiotemporal spread of public crises is modeled 

using ST-GNN, which captures the temporal evolution of 

crisis intensity as well as spatial interdependence across 

areas. It facilitates precise forecasting of impacted 

regions, facilitating fast and knowledgeable emergency 

resource distribution. The stacked Spatio-temporal 

 Convolution (ST-Conv) blocks, which make up the 

network architecture, are inspired by STGNN and are 

each intended to capture dynamic spatial and temporal 

crisis patterns independently. Figure 2 shows the 

"sandwich" structure of each ST-Conv block, illustrating 

data flow from input to output. The model includes three 

GCN layers (128-dimensional embeddings), two 

temporal attention layers, an Adam optimizer (0.001), a 

batch size of 64, dropout 0.3, and 150 training epochs. 

This consists of one spatial graph convolutional layer 

surrounded by two gated temporal convolutional layers. 

The model can capture changing semantic crisis elements 

(such as urgency and severity) from social data sources, 

such as geo-tagged tweets, in both time and place, due to 

this approach. 
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Figure 2: Layer Block of Spatiotemporal GNN architecture 

Graph CNNs for Extracting Spatial Features: Urban 

areas are depicted as nodes in this environment, while the 

edges are formed by their interactions (such as shared 

boundaries and mobility linkages). With each node 𝒰 ∈
U representing a distinct location, it may create a 

spatiotemporal crisis graph G = (𝒰, ℱ). The convolution 

operation on the spatial network directly mimics the 

dispersion of crisis signals and regional interdependence. 

The spectral graph convolution of an input feature matrix 

W ∈ W ∈ ℝn×di (such as real-time social signals like the 

volume of distress tweets) is defined as follows in 

equation (1). 

zi = ∑ Θj,i

Dj

j=1
(K)wj ∈ ℝ m,    1 ≤ i ≤ Dp(1) 

The output feature for the jth output channel 

following graph convolution is shown by zi in Equation 

(1), whereas the input features are represented as wi ∈
ℝm, where Di is the number of input feature channels and 

m is the number of nodes (such as urban areas in a crisis 

network).  Modeled as Chebyshev polynomials of the 

normalized Laplacian matrix K, the term Θi,j (K) denotes 

the learnable filter parameters that capture the spatial 

structure of the graph, the interconnectedness of various 

areas. Each output feature is produced by iterating over 

all input channels. Where the output tensor Z ∈  Z ∈  Z ∈

ℝN×m×Dp represents the filtered spatiotemporal features 

over all N frames, m nodes, and Dp output channels, 

while the input tensor W ∈ W ∈ W ∈ ℝN×m×Dj  comprises 

N temporal frames of node characteristics with Dj 

channels. Each time slice's graph convolution operation 

is indicated by the notation Θ∗gw. 

Gated CNNs for Extracting Temporal Features: 

Capturing non-linear temporal connections is necessary 

to document the evolution of crises throughout time. To 

achieve real-time efficiency, Gated Temporal 

Convolutional Networks (GTCNs) are employed instead 

of recurrent models. Let a region's historical signal 

sequence be represented as W ∈  W ∈  W ∈ ℝN×Dj. For 

the gated temporal convolution, it is defined as follows 

in equation (2). 

Γ ∗S W = O ⊙ σ(R)ϵℝN−Ls+1)×Dp(2) 

The accessible 1 − D temporal convolution kernel 

that was utilized to identify time-dependent patterns in 

the crisis data is represented by the symbol Γ.  Each of 

the N historical time steps in the data input sequence 

W ∈  W ∈  W ∈ ℝN×Djhas Djinput characteristics (such 

as regional crisis indicators).  Two intermediary outputs, 

O and R, are produced by the convolution process and are 

both located in the space ℝ(N−ls +1)×Dp, where Dp is the 

number of output channel features, and Ls is the temporal 

kernel size. The gating mechanism gated linear unit 

(GLU) is enabled by the term σ(R), which applies the 

function of sigmoid activation element-wise to R. In 

conclusion, ⊙ represents element-wise (Hadamard) 

multiplication, which gates the output O with the active 

signal σ(R). This enables the model to reduce noise or 

unimportant changes while selectively preserving 

significant temporal characteristics. 

Spatio-temporal Convolutional Block: The model's 

fundamental component is the ST-Conv Block, which 

combines temporal and spatial crisis dynamics 

information. Using the input tensor uk ∈ ℝN×m×Di for 

each block k, the output uk+1 ∈ ℝ(N−2(ls −1))×n×Dj+1 is 

calculated by equation (3). 

uk+1 = Γ1
l ∗ S ReLU (Θk ∗h (Γ0

l ∗h uk))(3) 

For lower and upper temporal kernels, respectively, 

Γ0
l and Γ1

l.  Θk is the kernel for spatial graph convolution. 

It adds non-linearity using ReLU. Each block undergoes 

layer normalization to prevent overfitting. Deeper 

structures for more complicated crises are constructed by 
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stacking these elements. The learnt characteristics are 

converted to a crisis severity prediction Y ∈ ℝm×d using 

a fully-connected decoder that comes after the ST-Conv 

blocks and a temporal projection layer. Ẑ defines the 

ultimate forecast as follows in equation (4). 

Ẑ     = YX + a  (4) 

Where the bias vector is denoted by a and the 

trainable weight matrix by X.  The multi-task emergency 

resource scheduler is adaptive and uses this forecast as 

input.  The training objective is to reduce the L2 loss over 

time between the actual and expected crisis severity. As 

equation (5) defines us+1 as the ground truth severity for 

each area, and X0 are all learnable parameters.  

𝒦(Ẑ; X0) = ∑ ||Ẑ(uss − N + 1, … , us; X0) −

us+1|Ẑ|
2
(5) 

It includes the Dynamic Grasshopper Optimization 

Algorithm (DGO) in the training loop to optimize 

network topology and hyperparameters under 

unpredictable, changing crises. Key parameters (such as 

graph edge weights and temporal kernel size) are 

dynamically adjusted to optimize prediction and resource 

allocation performance. 

3.4.2    Dynamic Grasshopper Optimization 
Algorithm (DGO)  

By automatically modifying the ST-GNN model's 

hyperparameters, DGO improves the model's flexibility 

and prediction precision. It ensures that the model will 

perform at its best in a variety of real-time crises. For 

real-time public crisis management, the deep learning 

architecture is optimized in this research using the 

DGOA. Optimal channels for data flow and attention 

within the spatiotemporal graph are chosen by the 

DGOA, which also improves the accuracy of crisis 

propagation modeling and adaptive emergency resource 

allocation. DGOA introduces three mechanisms to 

address the limitations of the standard GOA, including 

restricted global exploration and early convergence. 

Figure 3 illustrates the dynamic GOA flowchart. 

 

Figure 3: Dynamic GO algorithm flowchart 

These mechanisms include Gaussian mutation to 

maintain variance in dynamic decision spaces, Levy 

flight to escape local optima in crisis severity prediction, 

and Opposition-Based Learning (OBL) to enhance 

spatial diversity. These changes provide the best possible 

balance between exploitation (concentrating on high-

priority or severe zones) and exploration (looking for 

new crisis patterns or places). Each optimization agent's 

most recent location is calculated as follows in equation 

(6). 

Wj
c = d (∑

vac−kac

2

M
i=1
i≠j

  . t(|Wi
c −  Wi

c|)
Wi−Wj

cji
) ⊕

H(α) + êc(6) 

Where d is the convergence control coefficient that 

modifies the search scope over time, and Wj
c is the 

location of the jthsolution agent for the crisis model in 

dimension c. The Crisis similarity function that measures 

the degree of influence between solution agents is 

denoted by t(⋅). The Gaussian mutation that introduces 

controlled randomness for exploration is called H(α). 

Fitness-guided update based on model prediction error is 

denoted by êc. The Bounds specifying the search range 

for model weights or hyperparameters are vac and kac. 

To ensure responsiveness to events occurring in real 

time, this technique dynamically adjusts the crisis 

model's configuration when new data is received (for 

example, from geo-tagged tweets).  

To improve flexibility in changing emergencies, a 

Levy Flight mechanism produces new potential solutions 

as follows in equation (7). 

Wj
levy

= Wj + rand(c) ⊗ levy(β)(7) 

If the new configuration improves predicted 

performance, the modification is approved in equation 

(8).  

Wj
s+1 =

{
Wj

levy
  , if fitness(Wj

levy
) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(Wj)

Wj, otherwise
(8) 

Where c is the problem's dimension, and β is the 

Levy distribution parameter regulating the step size 

variability, Wi
levy

 is the new candidate position created 

by adding a random vector rand (c) scaled by a Levy-

distributed step levy (β). In the Levy Flight update 

equations, Wj is the current position (or solution) of the 

ith agent in the search space. By contrasting the fitness 

values of the new candidate Wi
levy

 with the existing 

position wj, the updated location Wj
t+1 is determined. 

Wi
levy

 is only adopted if it enhances the objective 

function, guaranteeing adaptive exploration to avoid 

local optima. 

OBL is used to reduce overfitting to high-density 

zones and optimize spatial awareness. By reflecting 

current forecasts, this approach creates a parallel solution 



260   Informatica 49 (2025) 253–268                                                                                                                                        T. Wang 
 

set that represents other crisis responses in the equation 

(9). 

Wj
po

= LB + UB − S + q(S − Wj)(9) 

Where the best-performing configuration at the 

moment is S, and Wj
op

 is the opposite configuration 

vector of agent j. The random vector in (0, 1) with 

controlled noise added is denoted as q.  Lower and upper 

boundaries on the solution space (such as resource 

limitations, learning rates, and kernel sizes) are denoted 

by LB and UB. The optimizer can investigate previously 

unexplored geographical and temporal regions of the 

crisis graph that could need urgent attention with this 

method, which enhances responsiveness and 

generalizability. 

The Hyperparameter Configuration Table 1 provides 

an overview of the principal training and optimization 

parameters that are utilized to develop the Proposed 

Dynamic Grasshopper Optimised Spatial-Temporal 

GNN (DGO-ST-GNN) model. These hyperparameters 

dictate how the model is learned (i.e., how the weights 

are trained), at what level of depth, length of temporal 

sequence, and training regularization for batch 

optimization. 

Table 1: Hyperparameter configuration settings used in DGO-ST-GNN training. 

Hyperparameter Description Range / Options Example 

Value 

Learning Rate (lr) Step size for optimizer 0.001 – 0.01 0.005 

Number of GCN Layers Depth of graph convolution layers 2 – 4 3 

Number of LSTM Units Number of hidden units in the temporal layer 32 – 128 64 

Temporal Window Number of past time steps used for prediction 5 – 20 10 

Dropout Rate Dropout probability to prevent overfitting 0.1 – 0.5 0.3 

GCN Activation Function Activation function in graph convolution ReLU, 

LeakyReLU 

ReLU 

LSTM Activation Function Activation function for LSTM tanh, ReLU tanh 

Optimizer Optimization algorithm for training Adam, RMSProp Adam 

Batch Size Number of samples per batch 16 – 64 32 

GOA Population Size Number of candidates hyperparameter 

solutions 

5 – 20 10 

GOA Iterations Number of iterations for Grasshopper 

Optimization 

10 – 30 15 

Weight Decay L2 regularization to prevent overfitting 0 – 0.01 0.001 

Number of Epochs per 

Candidate 

Training epochs for each GOA candidate 20 – 100 50 

Final Training Epochs Epochs to train the final model after GOA 

selection 

50 – 200 100 

3.5 Multi-task rescue scheduling algorithm  

Rescue teams continually poll the updated priority 

queue, which is sorted by severity, urgency, and arrival 

time, then select the mission with the greatest priority 

after the DGO-ST-GNN calculates crisis severity scores 

for each region. Next, within a certain radius, each team 

searches for neighboring assignments whose aggregate 

rescue capacity won't be reached. More tasks are 

organized into the same deployment to save travel 

overhead if they are within range and resources allow. 

Teams are dynamically re-tasked to regions of greatest 

need when hotspots alter due to the rebalancing of the 

priority queue and the refresh of regional severity scores 

upon mission completion. Adaptive multi-task rescue 

scheduling's core principles are priority, proximity, and 

resource availability, as shown in equation (10). 

arg
Sj ∈ ℳ

max
(Sl, Q) (

O(Sj)

C(Sl,Sj)
∙ 𝕀[Ql ≥ D(Sj)])(10) 

The current selected high-priority task is denoted by 

Sl. ℳ(Sl, Q) is the collection of tasks that are selected by 

Sl from Q. Based on severity, urgency, and arrival time, 

task Sj's priority score is O(Sj). Tasks Sl and Sj are 

separated by a distance, C(Sl,  Sj). The cost of resources 

(such as labor, equipment, and time) to do task Sj is 

denoted by D(Sj). Q L is the rescue processor's or team's 

remaining resources that are allocated to Sl. 𝕀[⋅] defines 

the indicator function, which returns 0 otherwise and 1 if 

the condition inside is true (i.e., the task is feasible). 

Further nearby tasks Sj that fit within the available 

resources Ql, are close to the present task Sl, and have a 

high priority O(Sj) are selected by this equation. The 

group dynamically creates an effective multitasking 

mission by optimizing the cost-benefit ratio while 

adhering to time restrictions. 

4     Performance evaluation  

Real-world crisis data from social media was used in a 

series of experiments to assess the efficacy of the 

suggested DGO-ST-GNN model. The results of these 

experiments show the beneficial effects of the suggested 

strategy. The experimental design was implemented 

using Python 3.10. 
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The top 10 frequent words that came out of the 

crisis-related social media data after preprocessing. The 

word 'evacuate' pops up most times (892), followed by 

'emergency' (890), and then 'fire' (889). Other high-

frequency words include rescue (887), urgent (885), and 

water (880), which are observed in some key contexts 

within crises. Tokens like ‘trapped’ (840 occurrences) 

and ‘help’ (850) highlight emergency conditions, as 

shown in Figure 4. These frequent keywords are very 

useful in semantic analysis as well as real-time crisis 

tracking. 

 

Figure 4: Frequency analysis of key crisis-related 

tokens preprocessing 

Word2Vec sentence embeddings of about 1,030 

crisis tweets were reduced to two dimensions via PCA 

for visualization. Each point is a tweet encoded into a 

vector that carries the semantic meaning of this text, as 

shown in Figure 5. These embeddings are spread over a 

component 1 range from -50 to +45 and component 2 

from -25 to +25, thus reflecting diversity both in content 

and emotional tone within this dataset. Such a wide 

spread shows that the model can distinguish different 

crisis contexts based on text content. 

 

Figure 5: Semantic similarity in crisis tweets using 

Word2Vec embeddings 

The connection between resource types and crisis 

types helps with resource scheduling optimization. For 

example, industrial accidents required rescue teams the 

most (66), whereas earthquakes needed medical units the 

most (58). Fires required the fewest medical units (36), 

whereas pandemics required the most ambulances (61) 

and fire trucks (63), as shown in Figure 6. This 

distribution contributes to the model's objective of 

adaptive multi-task rescue allocation by identifying 

which crisis circumstances require which type of 

emergency response, resulting in improved, data-driven 

deployment decisions. 

 

Figure 6: Crisis type vs emergency resource allocation 

matrix 

The trend of crisis occurrence reports over 7 days 

supports the proposed system's real-time monitoring 

purpose. Reports increased from 97 on July 25 to 165 on 

July 31, indicating that the problem was escalating. A 

reduction to 33 on August 1 indicates probable resolution 

or reporting lag, as shown in Figure 7. These temporal 

variations allow the DGO-ST-GNN model to adaptively 

prioritize resource allocation by determining when and 

where crises worsen, which aligns with the goal of 

dynamic and efficient emergency response. 

 

Figure 7: Temporal trend of crisis reports for dynamic 
emergency response 

The sentiment distribution of crisis-related social 

media posts was examined as part of the feature 

extraction process for the proposed crisis management 

model. Sentiment ratings vary from -1.0 (negative) to 1.0 

(positive), with peaks at -0.6, 0.2, and 0.9, suggesting 

emotional variability during public emergencies, as 

shown in Figure 8. This distribution, with most values 

ranging from 40 to 62 occurrences, contributes to the 

model's capacity to identify emotional tone in real time, 

allowing for dynamic prioritizing and optimal emergency 

resource allocation depending on the public's positive 

attitude. 
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Figure 8: Sentiment analysis of crisis-related social 

media posts for emergency response prioritization 

The findings show that social media sentiment, 

temporal patterns, and crisis-resource connections all 

give valuable information for real-time crisis 

management. The suggested model accurately reflects 

emotional tone, fluctuations in crisis frequency, and 

optimal resource deployment patterns. It classification 

performance for crisis severity prediction 95% confirm the 

ability of the system to make dynamic, accurate, and 

efficient emergency response decisions. 

4.1    Comparative analysis  

In public disasters, to minimize damage and preserve 

lives, quick, data-driven decision-making is essential. By 

utilizing intelligent models and real-time data, crisis 

response efficacy may be greatly increased. Existing 

techniques in public crisis management, such as Rule-

based + support vector machine (SVM) approaches and 

CNN-GRU, have significant drawbacks. Although CNN-

GRU [23] appears to be effective at interpreting language, 

it is not particularly adept at integrating temporal and 

spatial dynamics, which makes it less useful to track how 

crises change over time in various regions. Additionally, 

it uses a lot of processing power and cannot function 

effectively in real-time situations. However, the Rule-

based + SVM [24] approach was limited in its ability to 

adapt to new  

types of crises or hidden data patterns since it relies on 

static rules and predefined features. The dynamic 

resource optimization and multi-modal integration 

necessary for real-time emergency response are 

challenges for both strategies. 

Table 2 shows the comparison of the proposed DGO-ST-

GNN model with the existing baseline models. As 

indicated by the results, there were considerable gains for 

Metrix’s proposed model over the baseline models, with 

the proposed model exhibiting 97% accuracy and being 

therefore very effective in forecasting the severity of 

social crises and allocating resources. Figure 9 (a-d) 

shows the accuracy, and precision, recall, and F1-score.

  

Table 2: Performance comparison of crisis management approaches 
Models Accuracy Precision Recall F1 

Rule-based + SVM [27] - 89.4 77.7 83.1 

CNN [28] 72 72 72 72 

BERT [28] 78 78 79 78 

XLNet [28] 77 77 77 77 

Naïve Bayes [29] 76 70 76 72 

Random Forest [29] 77 70 77 73 

Logistic Regression [29] 77 70 77 73 

SVM [29] 89 88 89 88 

LSTM [29] 87 86 87 86 

DGO-ST-GNN (Proposed) 97 95 96 94.9 
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Figure 9: Comparison of the existing methods of the Crisis Management Approaches (a) accuracy, (b) precision , (c) 

recall, and , (d) F-1 score. 

Table 3 presents a detailed account of how the DGO-ST-

GNN's prediction error compares in Figure 10 favorably 

with the available state-of-the-art deep learning 

architectures based on MAE and E-MWDNN. The 

analysis shows that DGO-ST-GNN achieves MAE 

(0.081427) and E-MWDNN (25.934112) lower than any 

model currently available, thereby providing the most 

accurate and robust predictions of future crises severity 

relative to other models, including CNN-LSTM and 

attention-based neural network models. 

 

 

Table 3: Comparative error performance of baseline 

models vs. proposed DGO-ST-GNN 

Model MAE Error-MWDNN 

DNN [30] 0.097373 30.913406 

CNN [30] 0.095262 30.243204 

LSTM [30] 0.088246 28.015784 

CNN-LSTM [30] 0.087153 27.668873 

CNN-LSTM-Skip [30] 0.124239 39.442727 

 

CNN-LSTM-Skip 
Attention [30] 

0.105618 33.53082 

DGO-ST-GNN (Proposed) 0.081427 25.934112 

 

 

Figure 10: Comparison of prediction errors across Different Deep Learning Models (a) MAE, and (b) Error-MWDNN 
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4.2 Statistical outcomes  

The t-test Table 4 compares the resource use in the high-

severity and low-severity categories of crisis, which confirms 

significant differences in behaviours in terms of emergency 

requirements. This fact helps to confirm that DGO-ST-GNN 

is efficient in prioritization of critical decisions regarding 

resource allocation based on severity prediction and enhances 

the relevance of emergency optimization to the real world. A 

significant difference exists in resource utilization between 

high-severity and low-severity crisis events (p < 0.05). 

 

 

Table 4: T-test comparison of severity scores across  

Group N Mean  Std. 

Dev 

t-

value 

p-

value 

Significance 

High 

Severity 

(≥0.6) 

512 48.7 9.5  

4.82 

 

0.000 

 

Significant 

Low 

Severity 

(<0.6) 

518 31.2 10.1 

Table 5 ANOVA test compares the severity differences 

among various types of crises and finds statistical 

significance, proving that the features of crisis have an impact 

on the level of severity. This observation supports the 

necessity of spatiotemporal modelling and the rationale of the 

adaptive learning ability of the suggested DGO-ST-GNN. 

 

Table 5: ANOVA comparison of severity scores across different crisis types 

Source SS df Mean 

Square 

F p-

value 

Significance 

Between 

Groups 

8.213 4 2.053 6.41 0.0003 Significant 

Within 

Groups 

327.29 1025 0.319 

Total 335.50 1029     

4.3 Scheduling outcomes  

The inference time per prediction instance was evaluated 

and compared with baseline models, confirming the 

efficiency required for real-time emergency scheduling. 

DGO-ST-GNN Establishes Adaptive Optimization and 

Intelligent Resource Prioritization based upon the 

predicted severity of crisis type to reduce wait times. 

Table 6 shows the reductions in both Maximum and 

Mean average Wait Times across 10p/20p Workloads, 

indicating a superior level of Efficiency for Emergency 

Scheduling over both Hybrid and Traditional algorithm-

based methods.

Table 6: Emergency scheduling performance comparison including proposed DGO-ST-GNN 

Algorithms Max avgWT Mean avgWT 

(10p) (20p) (10p) (20p) 

FCFS [31] 4.74 3.73 2.53 1.61 

Priority [31] 5.54 3.85 2.81 1.63 

Multi-tasks Hybrid [31] 4.47 3.02 2.24 1.31 

DGO-ST-GNN [Proposed] 3.62 2.41 1.68 0.94 

5  Discussion 

The comparative performance analysis indicates that the 

proposed DGO-ST-GNN model is superior to the other 

recently popular (SOTA) crisis forecasting and emergency 

response scheduling models. Past research has used hybrid 

deep learning networks, reinforcement learning systems, 

multimodal neural networks, and spatiotemporal graph 

networks in crisis management tasks, as discussed in the 

SOTA comparison (Table 7). Even though a significant 

number of them were competitive, they could exhibit a 

limited applicability beyond the dataset or scenario they were 
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trained on. As an example, hybrid CNN-BiLSTM models 

were found to have an F1-score of 96% but needed huge 

labeled datasets to work effectively, and multimodal systems 

were highly precise but had issues with data noise. By 

contrast, DGO-ST-GNNclassification performance for crisis 

severity prediction has 97% accuracy, 95% precision, 96% 

recall, and 94.9% F1-score, significantly better than both 

traditional machine-learning models and deep-learning 

baselines because of adaptive hyperparameter tuning and 

extensive spatiotemporal modeling. Thus, the suggested 

solution implements a more scalable, data-constrained, and 

crisis-resistant structure in comparison to the literature. 

 

Table 7: SOTA-based comparison of related emergency response and crisis prediction methods with the proposed DGO-ST-

GNN framework 

Study Model Type Data Source Performance Metrics Main Limitations 

[13] Hybrid deep learning 

(CNN + BiLSTM + Self-

Attention) 

Social media short 

texts (3 real-world 

crisis datasets) 

F1-score: 96% Requires large labeled 

datasets; high 

computational load 

[15] Hybrid CNN-based text 

classification 

Crisis NLP datasets 

(Twitter) 

Accuracy 

improvement: 

+21.71% over 

baselines 

Relies heavily on labeled 

data; limited 

generalization across 

crisis types 

[16] DRL + Optimization 

(DDPG + MILP) 

Storm-surge 

logistics data 

MILP: highest 

accuracy; DDPG: 

fastest execution 

MILP is slow and not 

scalable; DDPG loses 

accuracy in complex 

scenarios 

[22] Multimodal (Image + 

Text) Deep Learning 

Social media 

multimodal crisis 

dataset 

(CrisisMMD) 

Accuracy: 91.53% Requires high-quality 

image–text pairs; sensitive 

to noise 

[25] 

CRISP (GCN + 

BiLSTM + Attention) 

Financial crisis 

index and market 

time-series data 

Improved stability and 

accuracy during 

financial crisis 

prediction 

Limited to financial 

applications; not suitable 

for real-time emergency 

response scenarios  

[27] 

Highway Emergency 

ST-Network 

Highway traffic 

flow and rescue 

station O-D data 

Reduced average 

rescue response time 

Assumes static traffic 

pattern; lacks predictive 

capability in rapidly 

evolving crises  

DGO-ST-

GNN 

[Proposed] 

Spatiotemporal Graph 

Neural Network + 

Dynamic Grasshopper 

Optimization 

Geo-tagged crisis 

tweets (1,030 

records) 

Accuracy:97% 

Precision: 95%, Recall: 

96%, F1-score: 94.9% 

Depends on social media 

data quality; 

computational overhead in 

GNN optimization. 

5.1 Reasons for the existence of better 

performance of DGO-ST-GNN. 

The two key innovations that make the proposed model 

offer exceptional performance include the DGO that 

optimally modulates hyperparameters in real time over 

training epochs, reduces hyperparameter sensitivity to local 

minima, and eliminates the need for manual tuning. 

Spatiotemporal GNN architecture is able to acquire 

relational features between geographically dispersed nodes 

of crisis and dynamic temporal dynamics of crisis intensity. 

The conventional approaches support crisis signals as 

discrete text collections or fixed data sets, which leads to the 

loss of important information. In comparison, DGO-ST-

GNN is a dynamically integrated framework of semantic 

embeddings, spatial graphs, and temporal convolutional 

layers, which allows forecasting crisis propagation. Another 

technique that is presented in the optimization strategy is the 

use of Gaussian mutation, Levy flight, and opposition-based 

learning, which all contribute to increased stability in model 

convergence and model representation. As a result, the 

accuracy of the decision made on resource allocation is 

enhanced, which makes the average emergency response 

wait time shorter. 

5.2 Resilience and applicability to the scope 

of crises 

The huge benefit of the suggested framework is that it can 

be adapted to various types of crises such as fires, floods, 

earthquakes, pandemics, and industrial accidents. Rather 

than using domain-specific rule-based assumptions, DGO-

ST-GNN acquires emergent patterns based on geo-tagged 

spatiotemporal data, semantic sentiment severity indicators, 

and past emergency resource behaviour. In contrast to 

CRISP, which models financial crises only, or highway ST-

Networks, which presuppose that the flow of traffic is 

always constant, the proposed architecture can be 

generalized well in terms of event types and geographical 

area. The analysis shows consistency in its performance 
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with a comparatively small dataset of 1,030 samples, which 

is supported by data augmentation and cross-validation as 

well as close train-test partitioning. The model also exhibits 

resilience to imbalance in the dataset and noisy tweet 

content, which demonstrates that it can be deployed in the 

real world to support the use of public safety organizations 

and smart crisis management systems. 

5.3 Real-time emergency response practical 

implications 

The usefulness of the proposed framework is not limited to 

the predictive accuracy but to the operational improvement 

of the response. Combining spatiotemporal forecasting with 

emergency resources scheduling allows the proactive 

decision-making of firefighters, medical teams, and relief 

organizations. The suggested model will reduce the number 

of emergencies wait times to a minimum and enhance the 

prioritization of areas of crisis severity, thereby minimizing 

the number of casualties and loss of infrastructure. The 

increase in the efficiency of scheduling (Mean avgWT 

dropped by the baseline values to 0.94 seconds) shows that 

intelligent predictive planning may have a tangible effect in 

the real world. This can be crucial to emergency response 

systems in a smart-city environment and the next generation 

of disaster informatics with high-density urban 

environments, where a minute can be the difference 

between life and death. 

5.4 Parallelization potential and bottleneck 

analysis 

The highlight of the proposed DGO-ST-GNN architecture 

is that it allows parallelization based on distributed 

computing of GCN layers in the various graph partitions 

and parallel mini-batch computation in the temporal LSTM 

layers, which allow it to be trained much faster on multi-

GPU set-ups. Parallel fitness evaluation of candidate 

solutions is also available to the Dynamic Grasshopper 

Optimization. Nonetheless, there exist certain bottlenecks 

in the construction of graphs and the computation of 

attention, where quite dense spatial dependencies can be 

subject to further optimization solutions, e.g., sparse 

adjacency management or CUDA-based kernel execution to 

support real-time implementation. 

5.5 Limitations and future research 

directions 

The given system, however, has its advantages; still, it has 

its limitations, which need to be recognized. Nevertheless, 

despite the benefits of DGO in terms of accuracy, DGO 

requires more training time by about 38.7% and in the case 

of large-scale deployments, real-time optimization becomes 

computationally intensive. Also, there is a dependence on 

social-media text information, which influences the 

accuracy of prediction based on the clarity of messages, 

misinformation, and regional reporting bias. The further 

work will be directed at the integration of multimodal input 

streams, including satellite imagery, IoT sensor data 

streams, and government streams of emergencies. In 

addition, semi-supervised and weak-supervision methods of 

learning will be considered to remove training reliance on 

labeled data, as well as enhance interpretability. It shall also 

focus on enhancing cross-regional crisis domain transfer 

learning capabilities to improve the generalizability across 

the world.  

6  Conclusion  

The suggested DGO-ST-GNN is capable of both crisis 

propagation and optimization of emergency resources based 

on geo-tagged crisis data. Combining the spatiotemporal 

blocks of graph convolution with adaptive parameter 

optimization using the framework ofDGO, the model shows 

superior capabilities in predicting and strong response to 

dynamic crisis signals. Existing experimental analysis 

indicates better accuracy, precision, and recall than the 

traditional machine learning and deep learning baselines 

and the ability to make decisions in emergency situations in 

real time, which demonstrates the model. The future efforts 

will be on expanding the model to other real time sources of 

data, multimodal information integration and computational 

efficiency to facilitate quick deployment. The suggested 

framework provides a data-driven and scalable approach to 

dealing with crisis management. 
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Variable explanation  

Symbol / 

Term 

Definition (Verified) 

X, Xᵗ Input tensor containing crisis features across 

time frames 

Y, Yᵗ Output tensor after spatial or temporal 

convolution 

θᵢ Learnable Chebyshev graph convolution filter 

for channel i 

Cᵢ Number of input channels 

Cₒ Number of output channels 

T Number of temporal frames in the sequence 

N Number of nodes (geographical regions) 

L̃ Normalized graph Laplacian matrix 

k Chebyshev polynomial order 

Wₜ Temporal convolution kernel 

Z, Ŷ Intermediate convolution outputs before gating 

σ(.) Sigmoid activation used for gating 

⊙ Element-wise multiplication 

Hˡ Output of the l-th ST-Conv block 

Wₛ Spatial graph convolution kernel 

𝜙(.) Activation function (ReLU) 

Wₚ, bₚ Output layer weights and bias 

ŷ Final predicted crisis severity 

L, L(Θ) Loss function measuring prediction error 

Θ Set of all learnable parameters 

y Ground‐truth crisis severity 

c Convergence control coefficient of DGOA 

Xᵢ Current position of optimization agent i 

S(t) Social interaction influences function 

Gaussian_mut Gaussian mutation for exploration 

fit(.) Fitness function (prediction error) 

rand() Uniform random value in [0,1] 

levy() Step size generated by Lévy flight 

Xᵢ′ New candidate position after Lévy update 

Xᵢ(new) Updated agent position after fitness check 

D Dimensionality of the search space 

Xᵢ^opp Opposite solution in the OBL mechanism 

LB, UB Lower and upper bounds of the search space 

p(t) Priority score of task t 

d(t, t′) Spatial distance between tasks 

r(t) Resources required by task t 

Rₐ The remaining resources of the rescue team are 

I(condition) Indicator function (1 = feasible, 0 = not 

feasible) 

Tₛ Set of selected nearby tasks 

Tₐ All tasks available for Team A 
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