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To meet the need for high-frequency synchronous full-power data fault diagnosis in new power systems,
this study proposes an innovative method combining multi-source data acquisition technology and deep
neural networks for accurate power system fault identification and efficient fault location. Firstly, it
integrates multi-source heterogeneous data from WAMS, SCADA, and meteorological sensors to form a
holistic sensing network. The core of our method is a hybrid deep neural network architecture that
combines Convolutional Neural Networks (CNN) for spatial feature extraction and Long Short-Term
Memory (LSTM) networks for temporal sequence modeling, enhanced with an attention mechanism for
adaptive feature fusion. Secondly, deep neural networks extract features and recognize patterns in the
collected full-power data to identify fault types, locate faults, and analyze fault causes. Experimental
results demonstrate the exceptional performance of our approach, achieving a fault diagnosis accuracy
of 99.71%. This represents a significant improvement over traditional baseline models, showcasing its
superior capability in handling complex power system fault scenarios. Finally, the research shows that
this method has made significant breakthroughs in data synchronization accuracy, diagnosis accuracy,
and adaptability to complex scenarios.

Povzetek: Studija predstavija splosno metodo za natancno in zanesljivo diagnostiko okvar v

elektroenergetskih sistemih z uporabo vecvirovnih podatkov in globokega ucenja.

1 Introduction

With the continuous expansion of the power system's
scale and the widespread access to new energy, the power
grid structure is becoming increasingly complex, and
fault diagnosis faces core challenges such as high data
dimension, strict response timeliness, and insufficient
diagnostic accuracy. Fault diagnosis in the power grid is
a crucial aspect of maintaining the safe and stable
operation of the power system. Traditional fault diagnosis
methods rely on manual inspection and threshold
comparison, and the false alarm rate in complex scenarios
is as high as 30%; they cannot capture microsecond-level
transient fault characteristics. At present, commonly used
power grid fault diagnosis methods include expert system
[1], numerical calculation analysis [2], rough set,
Bayesian network [3], artificial neural network [4], and
analytical model [5]. Each of these methods has its
advantages and disadvantages. However, these methods
are often difficult to accurately deal with when the
switching information is misplaced or lost, and the
interpretability of the diagnosis results is poor. Although
it can meet the needs of fault diagnosis to a certain extent,
it often has limitations when facing the complex and
changeable power grid environment. For example, expert
systems rely on expert experience and rule bases, and it
is difficult to cope with uncovered failure situations.

Numerical analysis methods often involve high
computational complexity, making it challenging to
satisfy real-time performance requirements. Traditional
analytical models for power system fault diagnosis rely
heavily on accurate system modeling and lack
adaptability. Recently, machine - learning and neural -
network - based methods have emerged with the fast
progress of artificial intelligence [6], offering new ideas
for power grid fault diagnosis.

Modern power grids use multi-source Data
acquisition and monitoring systems (SCADA) [7], fault
information systems (FIS) [8], wide area measurement
systems (WAMS) [9] to collect real - time data (switching
info, electrical data, fault recording data), covering both
static/dynamic grid info and fault - related changes. But
effectively integrating this multi-source heterogeneous
data and extracting useful fault diagnosis info is a key
current research issue.

Deep neural networks excel at feature learning and
pattern recognition [10], achieving remarkable results in
image recognition and speech processing [11]. Their
strong nonlinear fitting and adaptive learning abilities
give them an edge in handling complex data [12]. When
applied to power grid fault diagnosis, they process large-
scale data and complex fault patterns, improving
diagnostic accuracy and real-time performance. Plus,
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they automatically learn data's hidden features, reducing
manual feature extraction work and boosting diagnostic
systems' intelligence [13].

This paper presents a multi-source data and deep
neural network-based fault diagnosis method for high-
frequency synchronous full-power data. It builds a
diagnosis framework by integrating SCADA, FIS, and
WAMS data. Using deep neural networks for feature
extraction and pattern recognition in the data can
effectively identify fault types, locations, and causes.
Compared to traditional methods, this approach better
utilizes multi-source data and optimizes the diagnosis
model through deep learning, enhancing diagnostic
accuracy and real-time performance. The paper's key
work involves integrating multi-source data to form a
comprehensive fault diagnosis framework.

(1) By integrating multi-source heterogeneous data
such as wide area measurement system (WAMS), data
acquisition and monitoring system (SCADA), and
meteorological sensors, a holographic sensing network
covering electrical parameters, environmental status, and
equipment working conditions is formed.

(2) WAMS provides microsecond-level accuracy
voltage/current phasor data, SCADA collects equipment
operating status and fault alarm information, and weather
sensors monitor environmental variables such as wind
speed, temperature, and humidity in real-time. Together,
the three form a multi-dimensional feature space.

(3) The deep neural network performs feature
extraction and pattern recognition on the collected full-
power data, enabling effective fault type identification,
location pinpointing, and cause analysis.

2. Theoretical basis and construction
of index system

2.1 Multi-source data acquisition

Data cleaning serves as a pivotal phase for maintaining
data quality during multi-source data collection. Its main
tasks include removing duplicate values, correcting
erroneous values, and handling missing values [14]. The
occurrence of duplicate values may be due to redundancy
in the data acquisition process or overlap between
different data sources. For example, in a customer
information dataset containing multiple data sources, the
customer's name, 1D number, and other information can
be used as unique identification fields to eliminate
duplicate customer records. For error values, they need to
be detected and corrected according to the business rules
and the reasonableness range of data. Taking
meteorological data as an example, the normal range of
temperature is usually between 50°C and 50°C. If a
temperature value exceeds this range, it may be an error
value, which needs to be corrected by comparing the data
of adjacent time points or other sensors in the same area.
The treatment of missing values needs to choose an
appropriate method according to the degree of missing
values and the nature of the data. If there are a few
missing values, you can directly delete records containing
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missing values. If there are many missing values that
have a great impact on the data analysis results, methods
such as mean filling, mode filling, or predictive filling
using machine learning algorithms can be used. For
example, in a sales data set, some records lack
information on sales amounts. If these records account for
a small proportion, they can be deleted directly;
However, if the proportion is relatively large, these
missing sales amount values can be filled according to the
historical average sales price of the product or the average
sales price of the same product in the same time period.

Data fusion integrates multi-source data to generate
more accurate and complete information. It operates at
three levels: low-level (direct processing of raw data),
mid-level (feature-based fusion), and high-level
(decision-level fusion). Low-level fusion occurs at the
data acquisition stage, handling original sensor data
directly. [15]. For example, in a sensor network, multiple
temperature sensors measure the temperature of the same
area, and these raw temperature data are fused into a more
accurate temperature value by taking an average or
weighted average. Intermediate fusion is carried out at the
feature level. First, the features of each data source are
extracted, and then the feature vectors are fused. For
example, in the application scenario of combining image
recognition with text description, visual feature vectors
such as shape, color, and texture are extracted from
images, keywords and semantic feature vectors are
extracted from a text description, and then these feature
vectors from different sources are spliced into a
comprehensive  feature  vector for  subsequent
classification or recognition tasks [16]. Advanced fusion
is carried out at the decision-making level, and the data
analysis results of different data sources are synthesized
to make the final decision. For example, in a medical
diagnosis system, on the one hand, symptom analysis is
performed based on the patient's medical record text data,
and preliminary diagnosis results are generated; on the
other hand, image analysis is performed based on medical
image data to also generate preliminary diagnosis results,
and then these two results are combined together,
weighing their respective credibility and importance, and
making the final diagnosis decision.

2.2 Deep neural network

2.2.1 Basic structure of deep neural network

In deep neural networks, neurons are basic units. They
receive inputs from previous neurons, apply nonlinear
transformations using activation functions, and then send
the outputs to the next layer. The calculation process is
shown in formula (1):

y = fQEizawix; +b) (1)

Where x; is the input signal, w; is the connection
weight, b is the bias term, and f is the activation
function. The activation function determines the output
form of neurons. Common activation functions include
Sigmoid, Tanh and ReLU.

Deep neural network structures are determined by
neuron connections, which can be full, local, or none [17].
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Fully Connected (FC) neurons link to all neurons in the
previous layer, often seen in hidden and output layers.
Locally Connected (LC) neurons only connect to a local
area of the upper layer, typical in CNNs for data like
images. No Connection (NC) means some neurons have
no direct link, such as in GANs' generators and
discriminators.

2.2.2 Hierarchical structure of deep neural
networks

A deep neural network is composed of an input layer,
hidden layers, an output layer, and activation functions
[18].

Specifically, the input layer is the entrance to the
deep neural network to receive external data. The number
of neurons in the input layer is usually the same as the
feature dimension of the input data.

Hidden layers are the core part of deep neural
networks and usually contain multiple layers. Each
hidden layer extracts the features of the input data and
abstracts them step by step through the calculation of
neurons and the transformation of the activation function
[19]. The number of hidden layers and neurons
significantly impacts deep neural network performance.
More hidden layers boost network expressiveness but

may cause overfitting and higher computational demands.

The output layer, as the final layer, produces the
prediction result [20].

The number of neurons in the output layer varies
with the task. For instance, in classification tasks, the
output layer typically has as many neurons as there are
classes, with each neuron indicating the probability of the
input data belonging to a specific class.

The activation function is crucial for introducing
nonlinearity into deep neural networks. Common types
include the Sigmoid, Tanh, and ReLU functions.

The Sigmoid function is a Sigmoid curve function,
and its calculation process is shown in formula (2):

f@) == @

Where x represents the input, and the output range
of this function is between (0, 1), which is suitable for
binary classification problems. However, Sigmoid
functions are prone to gradient vanishing problems in
deep networks.

The Tanh function is a variant of the Sigmoid
function, and its calculation process is shown in formula

Q3):

eX—e™*

f) =575 O
Among them, x represents the input, and the output
range of this function is between (-1, 1), which has better
convergence compared with Sigmoid function, but there
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is still the problem of gradient vanishing.

The ReLU function is a commonly used activation
function, and its calculation process is shown in formula
(4):

f(x) = max(0,x) (4)

Among them, x represents the output and max
represents the maximum value function, which is simple
in calculation and fast in convergence, and can effectively
alleviate the problem of gradient disappearance. However,
it can also lead to neuron "death" problems, that is, the
output of some neurons is constantly 0.

2.2.3 Training of neural networks

Training a deep neural network involves three key
components: a loss function, an optimization algorithm,
and backpropagation [21]. Specifically, the loss function
quantifies the discrepancy between the model's
predictions and the true values. Common examples are
Mean Squared Error (MSE) and Cross-Entropy Loss
(CEL) [22]. Among them, MSE is suitable for regression
problems, and its calculation process is shown in formula

(5):
LO,9) = =T = 9)? (5)

Where y is the true value, J is the predicted value,
n number of samples.

CEL is suitable for classification problems, and its
calculation process is shown in formula (6):

L, 9) = -2,y logy; (6)

Where y is the single-hot encoding of the true value
and ¥ is the probability distribution of the predicted
value.

Optimization algorithms are used to update the
weights and biases of the network to minimize the loss
function [23]. Common optimization algorithms include
Stochastic Gradient Descent (SGD) and Adam
optimization algorithm. Specifically, SGD is a commonly
used optimization algorithm, and its calculation process
is shown in formula (7):

Wepr = we —nVL(we) (7)

Where w; is the weight at the current moment, 7 is
the learning rate, and VL(w;) is the gradient of the loss
function to the weight. Adam is an adaptive learning rate
optimization algorithm, which combines the advantages
of momentum and RMSProp, with fast convergence
speed and better performance. Its updating rules are
complicated, involving momentum terms and second-
order moment estimation.

Table 1: Comparative analysis of recent fault diagnosis methods for power systems.

Method Key Features Data Sources Fault Types Reported Key Limitations
Covered Performance
Multimodal . Pumping System Lacks microsecond-
CBMA Attention Learning Not Specified Faults ) level data handling
SA- Multi-Scale Not Specified General - Weak under variable
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MSCNN Convolution grid conditions
MC- Multi-Scale, Deep Complex, not
Reinforcement Not Specified General - optimized for high-
MSDARL )
Learning frequency data
Backpropagation 95.60% Low accuracy, poor
BPNN Neural Network SCADA General Accuracy feature extraction
- 5 —
CNN Convolutional SCADA/WAMS General 96.69% Limited tempo.ral
Neural Network Accuracy feature extraction
Hybrid CNN-

Proposed LSTM, Attention WAMS, Voltage, 99.71% Superior accuracy &
(CNN- Mechanism, Multi- SCADA, Frequency, Accurac robustness
LSTM) - Meteorological External Faults y

source Fusion

A comparative summary of recent fault diagnosis
methods is provided in Table 1, highlighting key
limitations in the state-of-the-art that this work aims to
address.

3 Fault diagnosis of high-frequency

synchronous  full-power data
based on multi-source data
acquisition and deep neural
network

3.1 Overall architecture of model

construction

In this paper, a high-frequency synchronous full-power
data fault diagnosis method based on multi-source data
acquisition and deep neural network is proposed. By
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integrating multi-source data such as SCADA, FIS, and
WAMS, this method constructs a high-frequency
synchronous full-power data fault diagnosis framework.
Using a deep neural network to perform feature
extraction and pattern recognition on the collected full-
power data can effectively identify fault types, locate
fault locations, and analyze fault causes. The proposed
CNN-LSTM model accepts input data with dimensions
of 100-time steps x 15 features. The CNN module
comprises three convolutional layers with 64, 128, and
256 filters respectively, all using a kernel size of 3 and
ReLU activation. The LSTM module consists of two
layers with 128 and 64 hidden units. The architecture
incorporates a Fusion Attention Network (FAN-BD)
mechanism to enhance feature selection, followed by a
softmax output layer for classification. This detailed
specification ensures full reproducibility of our model
architecture. Its network structure is shown in Figure 1:

Multi-Head Multi-Head
Attention Attention

CBMA
Norm
| MLP

Classification results

Tlasnvd

Figure 1: Fault diagnosis model of high frequency synchronous full-power data based on multi-source data acquisition
and deep neural network
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The algorithmic workflow of the proposed CNN-
LSTM based fault diagnosis approach is summarized as
follows: 1. Data Acquisition & Preprocessing: Acquire
multi-source heterogeneous data (WAMS phasors,
SCADA status, environmental sensor readings). Clean
and normalize the data. Synchronize all data streams to a
common microsecond-level timestamp using the
GPS/PTP-based synchronization system. 2.Feature
Extraction & Fusion: The processed multi-source data is
fed into the hybrid model. The CNN component extracts
spatial features from the input data (e.g., patterns in
voltage/current snapshots). The LSTM component
processes sequential data to capture temporal
dependencies and dynamics. 3.Attention-based Fusion &
Classification: Features from the CNN and LSTM
pathways are dynamically weighted and fused using the
integrated attention mechanism. The fused feature
representation is passed through fully connected layers
for the final fault type classification or regression.
4.0utput & Decision: The model outputs the fault
diagnosis result, including the predicted fault type, its
estimated location, and a confidence metric.

The model was trained using the Adam optimizer
with a learning rate of 0.001 and a batch size of 64.
Training was conducted for 100 epochs with an 80:20
training-validation split ratio. All experiments were
implemented using TensorFlow 2.8 on a workstation
equipped with an NVIDIA RTX 3090 GPU and an Intel
Xeon Gold 6226R CPU. These hyperparameters were
selected through empirical validation to achieve optimal
performance.

3.2.1 Multi-source data fusion architecture

Multi-source data fusion refers to the integration, analysis,
and processing of information from heterogeneous data
sources (such as sensors, text, images, databases, etc.) to
eliminate redundancy and contradiction, enhance data
consistency and accuracy, and provide support for
decision-making [24]. Its main goal is to extract higher-
level knowledge by leveraging data complementarity. It
has three core principles: data fusion, feature fusion, and
decision fusion.

The theoretical basis of multi-source data fusion
mainly solves the problems of data uncertainty, conflict,
and semantic heterogeneity. It includes the Bayesian
network, D-S evidence theory, fuzzy set theory, and
machine learning methods. Multi-source data fusion
architecture has become a key technology to enhance the
value of data through multi-level integration and
intelligent algorithms. In the future, with the
breakthrough of edge computing and privacy protection
technology, its application in smart cities, industrial
Internet, and other fields will be further deepened.
However, continuous innovation in heterogeneous data
standardization, algorithm efficiency, and security is still
needed to meet the increasingly complex multi-source
data challenges.

Informatica 49 (2025) 5-12 5

3.2.2 High frequency synchronous acquisition
technology

Based on FPGA and AD7960 chip, a distributed
synchronization system is built, which supports 16
channels of 5GSPS sampling rate, and the
synchronization accuracy reaches = 4.8ps. Microsecond-
level time synchronization is realized through GPS
timing and PTP protocol, and environmental interference
is eliminated by combining temperature compensation
algorithms, and the effective resolution is increased to
more than 18 bits. This design solves the problem of
phase distortion in the capture of transient signals (such
as short-circuit current and partial discharge) in
traditional systems.

3.2.3 deep neural network model optimization

In this paper, a hybrid CNN-LSTM model is proposed. It
integrates the spatial feature extraction of convolutional
layers with the time series modeling strengths of Long
Short-Term Memory (LSTM) [25]. The transfer learning
strategy is adopted to migrate the pre-training parameters
of ImageNet to the fault diagnosis network to solve the
overfitting problem under small sample data. While
ImageNet weights are trained on image data, we leverage
the pre-trained convolutional layers as generic feature
extractors that can learn general patterns transferable to
1D temporal signals when processed as 2D spectrogram-
like representations. We employ a fine-tuning strategy
where all layers are fine-tuned with a reduced learning
rate (0.0001) for 50 epochs, allowing the model to adapt
the general feature detectors to power system fault
patterns while maintaining training stability through the
pre-trained parameters. At the same time, after
introducing the attention mechanism of the Fusion
Attention Network for Bearing Diagnosis (FAN-BD) [26],
the accuracy of fault diagnosis is improved, and the
strong fault tolerance of multiple types of faults is
enhanced.

First, CNN is a deep learning model widely used in
image and spatiotemporal data processing, which
performs well in power system fault diagnosis [27]. CNN
extracts local features through the convolutional layer,
the pooling layer reduces data dimensions, and the fully
connected layer performs classification or regression
prediction. Specifically, CNNs based on the VGG11 [28]
architecture were used for fault type and region
classification. In addition, the AlexNet model is also used
for substation-level power grid fault diagnosis, and the
recognition rate is improved by adjusting the input matrix
distribution.

Secondly, Recurrent Neural Network (RNN) [29] is
suitable for processing time series data, such as sensor
signals, such as current and voltage, and can capture long-
term dependencies in the time dimension. For example,
LSTM is used to predict the occurrence of faults within
one hour and excels in fault diagnosis.
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FAN-BD is a bearing fault diagnosis method using
multi-modal data fusion and attention mechanism to
efficiently identify complex fault modes in rotating
machinery. Its core idea is to achieve accurate
classification of bearing faults by fusing multi-modal
data, such as current and vibration signals, combined with
CNN and Self-Attention.

4 Model experiment and analysis of
results

Our SCADA system collects real-time meteorological
data like temperature, humidity, wind speed, etc., via
sensors, sending it to a central control system. Data
collection frequency varies by sensor and application,
e.g., every minute, second, or 10 minutes. Data transfer
uses wireless/wired networks with protocols like Modbus
and IEC 61850. Meteorological data are stored in the
SCADA database for monitoring, fault alarms, and
analysis. Cloud computing and big data tech help manage
and analyze the data. SCADA systems and
meteorological sensors feature diverse data parameters,
high-frequency collection, multi-protocol support, and
strong data processing, aiding industrial production and
environmental monitoring. The dataset comprises 15,000
samples collected over 6 months from 3 regional power
grids, containing synchronized measurements from
WAMS (voltage/current phasors), SCADA (equipment
status), and meteorological sensors (temperature,
humidity, wind speed). Each sample represents a 10-
second window of synchronized multi-source data. The
data preprocessing pipeline included: 1) outlier removal
using the interquartile range (IQR) method; 2) missing
value imputation via linear interpolation; 3) min-max
normalization to scale all features to [0,1] range; and 4)
data augmentation through random time-warping and
additive noise to improve model robustness. The dataset
was split into 70% training, 15% validation, and 15% test
sets, maintaining temporal consistency in the splits.

This study assesses the high - frequency
synchronous full - power data fault diagnosis system
using accuracy, recall, and F1 score for classification
performance, and evaluates model robustness via signal -
to - noise ratio - based anti - interference tests.

Accuracy indicates the ratio of correctly classified
samples to the total number of samples. It measures the
classification accuracy of the model as a whole. The

calculation process is shown in formula (8):
TP+TN

TP+TN+FP+FN ®)
TN refers to true negatives, meaning samples that are

actually negative and correctly predicted as negative by
the model. FN refers to false negatives, meaning samples
that are actually positive but are mispredicted as negative
by the model.

The recall rate is the proportion of actual positive
samples that are correctly predicted as positive by the
model. It reflects the model's ability to identify positive

classes. The calculation process is shown in formula (9):
TP
TP+FN ©)
Among them, 7P represents the real example, that is,

Accuracy =

Recall =
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the number of samples that are actually positive and
correctly predicted by the model as positive; F'N denotes
false negative examples, that is, the number of samples
that are actually positive classes but are mispredicted to
be negative by the model.

F1 score is an important index for classification
model evaluation, especially suitable for scenarios with
unbalanced categories. It integrates the performance of
accuracy rate and recall rate, and reflects the overall
effectiveness of the model through the harmonic average
of the two. The calculation process is shown in formula
(10):

PrecisionxRecall

F1 = 2 x 2aslonxRecall 1)

Precision+Recall

Among them, the Precision denotes the accuracy,
and the Recall denotes the recall rate.

Signal-to-Noise Ratio (SNR) is an index to measure
the relative intensity of effective information and
background noise in a signal. It is widely used in
communication, audio, image processing, and other
fields. The calculation process is shown in formula (11):

SNR(dB) = 10 X logy, (Z224) (11)

Pnoise

Where Pgignq Tepresents the signal power and
P,oise represents the noise power.

In our experimental setup, the term "sample
optimization" refers specifically to our comprehensive
data balancing and augmentation protocol designed to
address class imbalance in the original dataset. This
protocol included three key components: (1) Synthetic
Minority Over-sampling Technique (SMOTE) to
generate synthetic samples for underrepresented fault
classes; (2) strategic undersampling of overrepresented
normal operation samples; and (3) targeted data
augmentation through time-domain warping (£10% time
distortion) and additive Gaussian noise (SNR=25dB)
specifically applied to minority fault classes. All baseline
comparisons presented in Table 2 were conducted on the
original imbalanced dataset (before applying these
optimization techniques) to ensure a fair and consistent
benchmark against conventional approaches.

Table 2 shows the average test accuracy of different
algorithm models. The data show that the average test
accuracy of CNN-LSTM before sample optimization has
a significant advantage.

Table 2: Training and testing results of different neural
network models

Models Sample Type Azs(r:?ﬁ:ct;ﬁ
PNN Before optimization 98.6384%
RBFNNN Before optimization 98.0000%
Alexnet Before optimization 97.6082%
BPNN Before optimization 95.6000%
CNN Before optimization 96.6945%
CNN-LSTM Before optimization 99.7110%
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To ensure statistical robustness, the performance
metrics were validated using 5-fold cross-validation. The
proposed CNN-LSTM model achieved a mean accuracy
of 99.71% + 0.15% (standard deviation), demonstrating
high consistency. For comprehensive evaluation,
additional metrics including precision (99.2%),
specificity (99.8%), and ROC-AUC (0.999) were
computed. These results, alongside the high recall and F1
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scores, confirm the model's exceptional and reliable
performance in fault diagnosis, with minimal variance
across different data subsets.

Figure 2 shows the classification results of CBMA
[30], CNN-LSTM on the test set. Among them, each
subgraph corresponds to an algorithm, so that the
performance of CNN-LSTM and CBAM algorithms in
this paper can be directly compared.
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Figure 2: Comparison of Classification results of CBMA, CNN-LSTM.

Figure 3 shows the confusion matrix, which is
created from the results of the CBAM, Vit [31] algorithm
used in the test set. The accuracy rates of the four
algorithms derived from the confusion matrix are as

follows: 0.929 for CBAM and 0.907 for CNN-LSTM.
This shows that the algorithm in this paper can effectively
take into account fault detection and classification, and
ensure high accuracy and reliability.
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Figure 3: Confusion Matrix Diagram of CBMA, CNN-LSTM.
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FMCNN and CNN models are respectively diagnosed
under the condition of high-frequency synchronous full-
power data fault diagnosis. The comparison results are

shown in Figure 4, which proves that CNN-LSTM model
is effective in the task of high-frequency synchronous
full-power data fault diagnosis under variable working
conditions.
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Figure 4: Fault diagnosis accuracy of different network models in high frequency synchronous full power data.

environments. Through analysis, CNN-LSTM has
significant advantages in fault diagnosis accuracy under
different external conditions.

Table 3 shows the experimental data of fault
diagnosis accuracy of high-frequency synchronous full-
power data of different networks in different external

Table 3 Fault diagnosis accuracy of high-frequency synchronous full-power data of different networks in different
external environments

External situation | AC-CPRN | CNN | CapsCNN | CNN-LSTM
High voltage 92.2% 89.9% 89.9% 95.2%
Low voltage 93.1% 90.2% 92.1% 94.0%

High electrical 94.5% | 86.3% | 88.6% 96.5%
frequency

Low electrical 90.1% | 92.3% | 87.2 92.3%
frequency

Figure 5 shows the fault diagnosis waveform of high
frequency synchronous full power data. Under the
condition of external fault, there is obvious imbalance

—— Ball
Outer

200
RY Q”lp[e P0I"It
s

phenomenon, which reflects the influence of external
fault on the performance of high-frequency synchronous
full-power data.

500 Normal

Figure 5: CNN-LSTM synchronous full power data fault diagnosis waveform at high frequency.

Figure 6 presents the t-SNE visualization
(perplexity=30, learning rate=200) of learned feature
representations, showing clear separation between
different fault types. Quantitative analysis revealed an
average inter-class distance of 1.24 + 0.15 compared to

intra-class distance of 0.38 + 0.09, resulting in a
significantly higher inter-to-intra class distance ratio for
our CNN-LSTM model (1.85) versus the standard CNN
(1.30), representing a 42% improvement in feature
discriminability (p < 0.01, Mann-Whitney U test).
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Figure 6: shows the fault classification results of CNN and CNN-LSTM models for high-frequency synchronous full-
power data.

Figure 7 shows the comparison results of the extent, and at the same time enhance the network's ability
combination of SConvNeXt network and ECMS to diagnose the same fault with different damage degrees,
attention mechanism with CNN-LSTM. CNN-LSTM can reaching a good prediction level.
improve the network recognition accuracy to a certain
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Figure 7: Comparison of fault diagnosis accuracy between SConvNeXt-ECMS and CNN-LSTM high-frequency
synchronous full power data.

Figure 8 shows the comparison results of synchronous full-power data failure types. By analyzing
SConvNeXt network combined with ECMS attention the data, CNN-LSTM can better identify the fault type.
mechanism and CNN-LSTM for high-frequency
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Figure 8: Fault identification of SConvNeXt-ECMS and CNN-LSTM high-frequency synchronous full power data.

The proposed CNN-LSTM model with attention
mechanism achieved superior performance (99.71%
accuracy), outperforming benchmarks like RBFNN
(98.00%) and CNN (96.69%). This improvement stems
from its hybrid architecture: CNN captures spatial
features, LSTM models temporal dynamics, and the
attention mechanism prioritizes critical multi-source data
patterns. The model demonstrated particular robustness
in high electrical frequency scenarios (96.5% accuracy,
Table 3), highlighting its strong generalization capability
across variable grid conditions. The integration of
transfer learning and attention mechanisms effectively
addresses the challenges of microsecond-level data
synchronization and complex fault diagnosis,
overcoming key limitations of existing approaches.

5 Conclusion

In this paper, a high-frequency synchronous full-power
data fault diagnosis method based on multi-source data
acquisition and a deep neural network is proposed. In this
method, a fault diagnosis framework of high-frequency
synchronous full-power data is constructed by integrating
multi-source data such as SCADA, FIS, and WAMS.
Using a deep neural network to perform feature
extraction and pattern recognition on the collected full-
power data can effectively identify fault types, locate
fault locations, and analyze fault causes. This method
surpasses traditional ones by leveraging multi-source
data advantages and self-optimizing the diagnosis model
via deep learning, enhancing diagnostic accuracy and
real-time performance. It integrates WAMS, SCADA,
and meteorological sensors to form a holistic sensing
network. WAMS offers microsecond-level phasor data,
SCADA tracks equipment status and faults, and weather
sensors monitor real-time environmental variables.
Together, they create a multi-dimensional feature space.
Then, a deep neural network processes the full-power
data to identify fault types, locate faults, and analyze
causes. This study provides a systematic solution for
high-frequency synchronous full-power data diagnosis
through deep fusion of multi-source data and innovative
design of deep neural networks. In the future, we will

explore a federated learning framework to ensure data
security and integrate digital twin technology to achieve
predictive maintenance. This achievement has important
practical value in improving the safety, resilience, and
intelligence level of new power systems.
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