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To meet the need for high-frequency synchronous full-power data fault diagnosis in new power systems, 

this study proposes an innovative method combining multi-source data acquisition technology and deep 

neural networks for accurate power system fault identification and efficient fault location. Firstly, it 

integrates multi-source heterogeneous data from WAMS, SCADA, and meteorological sensors to form a 

holistic sensing network. The core of our method is a hybrid deep neural network architecture that 

combines Convolutional Neural Networks (CNN) for spatial feature extraction and Long Short-Term 

Memory (LSTM) networks for temporal sequence modeling, enhanced with an attention mechanism for 

adaptive feature fusion. Secondly, deep neural networks extract features and recognize patterns in the 

collected full-power data to identify fault types, locate faults, and analyze fault causes. Experimental 

results demonstrate the exceptional performance of our approach, achieving a fault diagnosis accuracy 

of 99.71%. This represents a significant improvement over traditional baseline models, showcasing its 

superior capability in handling complex power system fault scenarios. Finally, the research shows that 

this method has made significant breakthroughs in data synchronization accuracy, diagnosis accuracy, 

and adaptability to complex scenarios. 

Povzetek: Študija predstavlja splošno metodo za natančno in zanesljivo diagnostiko okvar v 

elektroenergetskih sistemih z uporabo večvirovnih podatkov in globokega učenja. 

 

1 Introduction 
With the continuous expansion of the power system's 

scale and the widespread access to new energy, the power 

grid structure is becoming increasingly complex, and 

fault diagnosis faces core challenges such as high data 

dimension, strict response timeliness, and insufficient 

diagnostic accuracy. Fault diagnosis in the power grid is 

a crucial aspect of maintaining the safe and stable 

operation of the power system. Traditional fault diagnosis 

methods rely on manual inspection and threshold 

comparison, and the false alarm rate in complex scenarios 

is as high as 30%; they cannot capture microsecond-level 

transient fault characteristics. At present, commonly used 

power grid fault diagnosis methods include expert system 

[1], numerical calculation analysis [2], rough set, 

Bayesian network [3], artificial neural network [4], and 

analytical model [5]. Each of these methods has its 

advantages and disadvantages. However, these methods 

are often difficult to accurately deal with when the 

switching information is misplaced or lost, and the 

interpretability of the diagnosis results is poor. Although 

it can meet the needs of fault diagnosis to a certain extent, 

it often has limitations when facing the complex and 

changeable power grid environment. For example, expert 

systems rely on expert experience and rule bases, and it 

is difficult to cope with uncovered failure situations.  

 

Numerical analysis methods often involve high 

computational complexity, making it challenging to 

satisfy real-time performance requirements. Traditional 

analytical models for power system fault diagnosis rely 

heavily on accurate system modeling and lack 

adaptability. Recently, machine - learning and neural - 

network - based methods have emerged with the fast 

progress of artificial intelligence [6], offering new ideas 

for power grid fault diagnosis. 

Modern power grids use multi-source Data 

acquisition and monitoring systems (SCADA) [7], fault 

information systems (FIS) [8], wide area measurement 

systems (WAMS) [9] to collect real - time data (switching 

info, electrical data, fault recording data), covering both 

static/dynamic grid info and fault - related changes. But 

effectively integrating this multi-source heterogeneous 

data and extracting useful fault diagnosis info is a key 

current research issue. 

Deep neural networks excel at feature learning and 

pattern recognition [10], achieving remarkable results in 

image recognition and speech processing [11]. Their 

strong nonlinear fitting and adaptive learning abilities 

give them an edge in handling complex data [12]. When 

applied to power grid fault diagnosis, they process large-

scale data and complex fault patterns, improving 

diagnostic accuracy and real-time performance. Plus, 
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they automatically learn data's hidden features, reducing 

manual feature extraction work and boosting diagnostic 

systems' intelligence [13]. 

This paper presents a multi-source data and deep 

neural network-based fault diagnosis method for high-

frequency synchronous full-power data. It builds a 

diagnosis framework by integrating SCADA, FIS, and 

WAMS data. Using deep neural networks for feature 

extraction and pattern recognition in the data can 

effectively identify fault types, locations, and causes. 

Compared to traditional methods, this approach better 

utilizes multi-source data and optimizes the diagnosis 

model through deep learning, enhancing diagnostic 

accuracy and real-time performance. The paper's key 

work involves integrating multi-source data to form a 

comprehensive fault diagnosis framework. 

(1) By integrating multi-source heterogeneous data 

such as wide area measurement system (WAMS), data 

acquisition and monitoring system (SCADA), and 

meteorological sensors, a holographic sensing network 

covering electrical parameters, environmental status, and 

equipment working conditions is formed. 

(2) WAMS provides microsecond-level accuracy 

voltage/current phasor data, SCADA collects equipment 

operating status and fault alarm information, and weather 

sensors monitor environmental variables such as wind 

speed, temperature, and humidity in real-time. Together, 

the three form a multi-dimensional feature space. 

(3) The deep neural network performs feature 

extraction and pattern recognition on the collected full-

power data, enabling effective fault type identification, 

location pinpointing, and cause analysis. 

2. Theoretical basis and construction 

of index system 

2.1 Multi-source data acquisition 

Data cleaning serves as a pivotal phase for maintaining 

data quality during multi-source data collection. Its main 

tasks include removing duplicate values, correcting 

erroneous values, and handling missing values [14]. The 

occurrence of duplicate values may be due to redundancy 

in the data acquisition process or overlap between 

different data sources. For example, in a customer 

information dataset containing multiple data sources, the 

customer's name, ID number, and other information can 

be used as unique identification fields to eliminate 

duplicate customer records. For error values, they need to 

be detected and corrected according to the business rules 

and the reasonableness range of data. Taking 

meteorological data as an example, the normal range of 

temperature is usually between 50°C and 50°C. If a 

temperature value exceeds this range, it may be an error 

value, which needs to be corrected by comparing the data 

of adjacent time points or other sensors in the same area. 

The treatment of missing values needs to choose an 

appropriate method according to the degree of missing 

values and the nature of the data. If there are a few 

missing values, you can directly delete records containing 

missing values. If there are many missing values that 

have a great impact on the data analysis results, methods 

such as mean filling, mode filling, or predictive filling 

using machine learning algorithms can be used. For 

example, in a sales data set, some records lack 

information on sales amounts. If these records account for 

a small proportion, they can be deleted directly; 

However, if the proportion is relatively large, these 

missing sales amount values can be filled according to the 

historical average sales price of the product or the average 

sales price of the same product in the same time period. 

Data fusion integrates multi-source data to generate 

more accurate and complete information. It operates at 

three levels: low-level (direct processing of raw data), 

mid-level (feature-based fusion), and high-level 

(decision-level fusion). Low-level fusion occurs at the 

data acquisition stage, handling original sensor data 

directly. [15]. For example, in a sensor network, multiple 

temperature sensors measure the temperature of the same 

area, and these raw temperature data are fused into a more 

accurate temperature value by taking an average or 

weighted average. Intermediate fusion is carried out at the 

feature level. First, the features of each data source are 

extracted, and then the feature vectors are fused. For 

example, in the application scenario of combining image 

recognition with text description, visual feature vectors 

such as shape, color, and texture are extracted from 

images, keywords and semantic feature vectors are 

extracted from a text description, and then these feature 

vectors from different sources are spliced into a 

comprehensive feature vector for subsequent 

classification or recognition tasks [16]. Advanced fusion 

is carried out at the decision-making level, and the data 

analysis results of different data sources are synthesized 

to make the final decision. For example, in a medical 

diagnosis system, on the one hand, symptom analysis is 

performed based on the patient's medical record text data, 

and preliminary diagnosis results are generated; on the 

other hand, image analysis is performed based on medical 

image data to also generate preliminary diagnosis results, 

and then these two results are combined together, 

weighing their respective credibility and importance, and 

making the final diagnosis decision. 

2.2 Deep neural network 

2.2.1 Basic structure of deep neural network 

In deep neural networks, neurons are basic units. They 

receive inputs from previous neurons, apply nonlinear 

transformations using activation functions, and then send 

the outputs to the next layer. The calculation process is 

shown in formula (1): 

𝑦 = 𝑓(∑ 𝑤𝑖
𝑛
𝑖=1 𝑥𝑖 + 𝑏) (1) 

Where 𝑥𝑖 is the input signal, 𝑤𝑖  is the connection 

weight, 𝑏  is the bias term, and 𝑓  is the activation 

function. The activation function determines the output 

form of neurons. Common activation functions include 

Sigmoid, Tanh and ReLU. 

Deep neural network structures are determined by 

neuron connections, which can be full, local, or none [17]. 
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Fully Connected (FC) neurons link to all neurons in the 

previous layer, often seen in hidden and output layers. 

Locally Connected (LC) neurons only connect to a local 

area of the upper layer, typical in CNNs for data like 

images. No Connection (NC) means some neurons have 

no direct link, such as in GANs' generators and 

discriminators. 

2.2.2 Hierarchical structure of deep neural 

networks 

A deep neural network is composed of an input layer, 

hidden layers, an output layer, and activation functions 

[18]. 

Specifically, the input layer is the entrance to the 

deep neural network to receive external data. The number 

of neurons in the input layer is usually the same as the 

feature dimension of the input data. 

Hidden layers are the core part of deep neural 

networks and usually contain multiple layers. Each 

hidden layer extracts the features of the input data and 

abstracts them step by step through the calculation of 

neurons and the transformation of the activation function 

[19]. The number of hidden layers and neurons 

significantly impacts deep neural network performance. 

More hidden layers boost network expressiveness but 

may cause overfitting and higher computational demands. 

The output layer, as the final layer, produces the 

prediction result [20]. 

The number of neurons in the output layer varies 

with the task. For instance, in classification tasks, the 

output layer typically has as many neurons as there are 

classes, with each neuron indicating the probability of the 

input data belonging to a specific class. 

The activation function is crucial for introducing 

nonlinearity into deep neural networks. Common types 

include the Sigmoid, Tanh, and ReLU functions. 

The Sigmoid function is a Sigmoid curve function, 

and its calculation process is shown in formula (2): 

𝑓(𝑥) =
1

1+𝑒−𝑥
 (2) 

Where 𝑥 represents the input, and the output range 

of this function is between (0, 1), which is suitable for 

binary classification problems. However, Sigmoid 

functions are prone to gradient vanishing problems in 

deep networks. 

The Tanh function is a variant of the Sigmoid 

function, and its calculation process is shown in formula 

(3): 

𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 (3) 

Among them, 𝑥 represents the input, and the output 

range of this function is between (-1, 1), which has better 

convergence compared with Sigmoid function, but there 

is still the problem of gradient vanishing. 

The ReLU function is a commonly used activation 

function, and its calculation process is shown in formula 

(4): 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (4) 

Among them, 𝑥  represents the output and 𝑚𝑎𝑥 

represents the maximum value function, which is simple 

in calculation and fast in convergence, and can effectively 

alleviate the problem of gradient disappearance. However, 

it can also lead to neuron "death" problems, that is, the 

output of some neurons is constantly 0. 

2.2.3 Training of neural networks 

Training a deep neural network involves three key 

components: a loss function, an optimization algorithm, 

and backpropagation [21]. Specifically, the loss function 

quantifies the discrepancy between the model's 

predictions and the true values. Common examples are 

Mean Squared Error (MSE) and Cross-Entropy Loss 

(CEL) [22]. Among them, MSE is suitable for regression 

problems, and its calculation process is shown in formula 

(5): 

𝐿(𝑦, 𝑦̂) =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1  (5) 

Where 𝑦 is the true value, 𝑦̂ is the predicted value, 

𝑛 number of samples. 

CEL is suitable for classification problems, and its 

calculation process is shown in formula (6): 

𝐿(𝑦, 𝑦̂) = −∑ 𝑦𝑖
𝑛
𝑖=1 𝑙𝑜𝑔 𝑦̂𝑖 (6) 

Where 𝑦 is the single-hot encoding of the true value 

and 𝑦̂  is the probability distribution of the predicted 

value. 

Optimization algorithms are used to update the 

weights and biases of the network to minimize the loss 

function [23]. Common optimization algorithms include 

Stochastic Gradient Descent (SGD) and Adam 

optimization algorithm. Specifically, SGD is a commonly 

used optimization algorithm, and its calculation process 

is shown in formula (7): 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝐿(𝑤𝑡) (7) 

Where 𝑤𝑡  is the weight at the current moment, 𝜂 is 

the learning rate, and 𝛻𝐿(𝑤𝑡) is the gradient of the loss 

function to the weight. Adam is an adaptive learning rate 

optimization algorithm, which combines the advantages 

of momentum and RMSProp, with fast convergence 

speed and better performance. Its updating rules are 

complicated, involving momentum terms and second-

order moment estimation. 

 

Table 1: Comparative analysis of recent fault diagnosis methods for power systems. 

Method Key Features Data Sources 
Fault Types 

Covered 

Reported 

Performance 
Key Limitations 

CBMA 
Multimodal 

Attention Learning 
Not Specified 

Pumping System 

Faults 
- 

Lacks microsecond-

level data handling 

SA- Multi-Scale Not Specified General - Weak under variable 
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MSCNN Convolution grid conditions 

MC-

MSDARL 

Multi-Scale, Deep 

Reinforcement 

Learning 

Not Specified General - 

Complex, not 

optimized for high-

frequency data 

BPNN 
Backpropagation 

Neural Network 
SCADA General 

95.60% 

Accuracy 

Low accuracy, poor 

feature extraction 

CNN 
Convolutional 

Neural Network 
SCADA/WAMS General 

96.69% 

Accuracy 

Limited temporal 

feature extraction 

Proposed 

(CNN-

LSTM) 

Hybrid CNN-

LSTM, Attention 

Mechanism, Multi-

source Fusion 

WAMS, 

SCADA, 

Meteorological 

Voltage, 

Frequency, 

External Faults 

99.71% 

Accuracy 

Superior accuracy & 

robustness 

 

A comparative summary of recent fault diagnosis 

methods is provided in Table 1, highlighting key 

limitations in the state-of-the-art that this work aims to 

address. 

3 Fault diagnosis of high-frequency 

synchronous full-power data 

based on multi-source data 

acquisition and deep neural 

network 

3.1 Overall architecture of model 

construction 

In this paper, a high-frequency synchronous full-power 

data fault diagnosis method based on multi-source data 

acquisition and deep neural network is proposed. By 

integrating multi-source data such as SCADA, FIS, and 

WAMS, this method constructs a high-frequency 

synchronous full-power data fault diagnosis framework. 

Using a deep neural network to perform feature 

extraction and pattern recognition on the collected full-

power data can effectively identify fault types, locate 

fault locations, and analyze fault causes. The proposed 

CNN-LSTM model accepts input data with dimensions 

of 100-time steps × 15 features. The CNN module 

comprises three convolutional layers with 64, 128, and 

256 filters respectively, all using a kernel size of 3 and 

ReLU activation. The LSTM module consists of two 

layers with 128 and 64 hidden units. The architecture 

incorporates a Fusion Attention Network (FAN-BD) 

mechanism to enhance feature selection, followed by a 

softmax output layer for classification. This detailed 

specification ensures full reproducibility of our model 

architecture. Its network structure is shown in Figure 1: 

 

 
Figure 1: Fault diagnosis model of high frequency synchronous full-power data based on multi-source data acquisition 

and deep neural network 
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The algorithmic workflow of the proposed CNN-

LSTM based fault diagnosis approach is summarized as 

follows: 1. Data Acquisition & Preprocessing: Acquire 

multi-source heterogeneous data (WAMS phasors, 

SCADA status, environmental sensor readings). Clean 

and normalize the data. Synchronize all data streams to a 

common microsecond-level timestamp using the 

GPS/PTP-based synchronization system. 2.Feature 

Extraction & Fusion: The processed multi-source data is 

fed into the hybrid model. The CNN component extracts 

spatial features from the input data (e.g., patterns in 

voltage/current snapshots). The LSTM component 

processes sequential data to capture temporal 

dependencies and dynamics. 3.Attention-based Fusion & 

Classification: Features from the CNN and LSTM 

pathways are dynamically weighted and fused using the 

integrated attention mechanism. The fused feature 

representation is passed through fully connected layers 

for the final fault type classification or regression. 

4.Output & Decision: The model outputs the fault 

diagnosis result, including the predicted fault type, its 

estimated location, and a confidence metric. 

The model was trained using the Adam optimizer 

with a learning rate of 0.001 and a batch size of 64. 

Training was conducted for 100 epochs with an 80:20 

training-validation split ratio. All experiments were 

implemented using TensorFlow 2.8 on a workstation 

equipped with an NVIDIA RTX 3090 GPU and an Intel 

Xeon Gold 6226R CPU. These hyperparameters were 

selected through empirical validation to achieve optimal 

performance. 

3.2.1 Multi-source data fusion architecture 

Multi-source data fusion refers to the integration, analysis, 

and processing of information from heterogeneous data 

sources (such as sensors, text, images, databases, etc.) to 

eliminate redundancy and contradiction, enhance data 

consistency and accuracy, and provide support for 

decision-making [24]. Its main goal is to extract higher-

level knowledge by leveraging data complementarity. It 

has three core principles: data fusion, feature fusion, and 

decision fusion. 

The theoretical basis of multi-source data fusion 

mainly solves the problems of data uncertainty, conflict, 

and semantic heterogeneity. It includes the Bayesian 

network, D-S evidence theory, fuzzy set theory, and 

machine learning methods. Multi-source data fusion 

architecture has become a key technology to enhance the 

value of data through multi-level integration and 

intelligent algorithms. In the future, with the 

breakthrough of edge computing and privacy protection 

technology, its application in smart cities, industrial 

Internet, and other fields will be further deepened. 

However, continuous innovation in heterogeneous data 

standardization, algorithm efficiency, and security is still 

needed to meet the increasingly complex multi-source 

data challenges. 

 

3.2.2 High frequency synchronous acquisition 

technology 

Based on FPGA and AD7960 chip, a distributed 

synchronization system is built, which supports 16 

channels of 5GSPS sampling rate, and the 

synchronization accuracy reaches ± 4.8ps. Microsecond-

level time synchronization is realized through GPS 

timing and PTP protocol, and environmental interference 

is eliminated by combining temperature compensation 

algorithms, and the effective resolution is increased to 

more than 18 bits. This design solves the problem of 

phase distortion in the capture of transient signals (such 

as short-circuit current and partial discharge) in 

traditional systems. 

3.2.3 deep neural network model optimization 

In this paper, a hybrid CNN-LSTM model is proposed. It 

integrates the spatial feature extraction of convolutional 

layers with the time series modeling strengths of Long 

Short-Term Memory (LSTM) [25]. The transfer learning 

strategy is adopted to migrate the pre-training parameters 

of ImageNet to the fault diagnosis network to solve the 

overfitting problem under small sample data. While 

ImageNet weights are trained on image data, we leverage 

the pre-trained convolutional layers as generic feature 

extractors that can learn general patterns transferable to 

1D temporal signals when processed as 2D spectrogram-

like representations. We employ a fine-tuning strategy 

where all layers are fine-tuned with a reduced learning 

rate (0.0001) for 50 epochs, allowing the model to adapt 

the general feature detectors to power system fault 

patterns while maintaining training stability through the 

pre-trained parameters. At the same time, after 

introducing the attention mechanism of the Fusion 

Attention Network for Bearing Diagnosis (FAN-BD) [26], 

the accuracy of fault diagnosis is improved, and the 

strong fault tolerance of multiple types of faults is 

enhanced. 

First, CNN is a deep learning model widely used in 

image and spatiotemporal data processing, which 

performs well in power system fault diagnosis [27]. CNN 

extracts local features through the convolutional layer, 

the pooling layer reduces data dimensions, and the fully 

connected layer performs classification or regression 

prediction. Specifically, CNNs based on the VGG11 [28] 

architecture were used for fault type and region 

classification. In addition, the AlexNet model is also used 

for substation-level power grid fault diagnosis, and the 

recognition rate is improved by adjusting the input matrix 

distribution. 

Secondly, Recurrent Neural Network (RNN) [29] is 

suitable for processing time series data, such as sensor 

signals, such as current and voltage, and can capture long-

term dependencies in the time dimension. For example, 

LSTM is used to predict the occurrence of faults within 

one hour and excels in fault diagnosis. 
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FAN-BD is a bearing fault diagnosis method using 

multi-modal data fusion and attention mechanism to 

efficiently identify complex fault modes in rotating 

machinery. Its core idea is to achieve accurate 

classification of bearing faults by fusing multi-modal 

data, such as current and vibration signals, combined with 

CNN and Self-Attention. 

4 Model experiment and analysis of 

results 
Our SCADA system collects real-time meteorological 

data like temperature, humidity, wind speed, etc., via 

sensors, sending it to a central control system. Data 

collection frequency varies by sensor and application, 

e.g., every minute, second, or 10 minutes. Data transfer 

uses wireless/wired networks with protocols like Modbus 

and IEC 61850. Meteorological data are stored in the 

SCADA database for monitoring, fault alarms, and 

analysis. Cloud computing and big data tech help manage 

and analyze the data. SCADA systems and 

meteorological sensors feature diverse data parameters, 

high-frequency collection, multi-protocol support, and 

strong data processing, aiding industrial production and 

environmental monitoring. The dataset comprises 15,000 

samples collected over 6 months from 3 regional power 

grids, containing synchronized measurements from 

WAMS (voltage/current phasors), SCADA (equipment 

status), and meteorological sensors (temperature, 

humidity, wind speed). Each sample represents a 10-

second window of synchronized multi-source data. The 

data preprocessing pipeline included: 1) outlier removal 

using the interquartile range (IQR) method; 2) missing 

value imputation via linear interpolation; 3) min-max 

normalization to scale all features to [0,1] range; and 4) 

data augmentation through random time-warping and 

additive noise to improve model robustness. The dataset 

was split into 70% training, 15% validation, and 15% test 

sets, maintaining temporal consistency in the splits. 

This study assesses the high - frequency 

synchronous full - power data fault diagnosis system 

using accuracy, recall, and F1 score for classification 

performance, and evaluates model robustness via signal - 

to - noise ratio - based anti - interference tests. 

Accuracy indicates the ratio of correctly classified 

samples to the total number of samples. It measures the 

classification accuracy of the model as a whole. The 

calculation process is shown in formula (8): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8) 

TN refers to true negatives, meaning samples that are 

actually negative and correctly predicted as negative by 

the model. FN refers to false negatives, meaning samples 

that are actually positive but are mispredicted as negative 

by the model. 

The recall rate is the proportion of actual positive 

samples that are correctly predicted as positive by the 

model. It reflects the model's ability to identify positive 

classes. The calculation process is shown in formula (9): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

Among them, TP represents the real example, that is, 

the number of samples that are actually positive and 

correctly predicted by the model as positive; FN denotes 

false negative examples, that is, the number of samples 

that are actually positive classes but are mispredicted to 

be negative by the model. 

F1 score is an important index for classification 

model evaluation, especially suitable for scenarios with 

unbalanced categories. It integrates the performance of 

accuracy rate and recall rate, and reflects the overall 

effectiveness of the model through the harmonic average 

of the two. The calculation process is shown in formula 

(10): 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

 
Among them, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 denotes the accuracy, 

and the 𝑅𝑒𝑐𝑎𝑙𝑙 denotes the recall rate. 

Signal-to-Noise Ratio (SNR) is an index to measure 

the relative intensity of effective information and 

background noise in a signal. It is widely used in 

communication, audio, image processing, and other 

fields. The calculation process is shown in formula (11): 

 

𝑆𝑁𝑅(𝑑𝐵) = 10 × 𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) (11) 

 
Where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙   represents the signal power and 

𝑃𝑛𝑜𝑖𝑠𝑒  represents the noise power. 

In our experimental setup, the term "sample 

optimization" refers specifically to our comprehensive 

data balancing and augmentation protocol designed to 

address class imbalance in the original dataset. This 

protocol included three key components: (1) Synthetic 

Minority Over-sampling Technique (SMOTE) to 

generate synthetic samples for underrepresented fault 

classes; (2) strategic undersampling of overrepresented 

normal operation samples; and (3) targeted data 

augmentation through time-domain warping (±10% time 

distortion) and additive Gaussian noise (SNR=25dB) 

specifically applied to minority fault classes. All baseline 

comparisons presented in Table 2 were conducted on the 

original imbalanced dataset (before applying these 

optimization techniques) to ensure a fair and consistent 

benchmark against conventional approaches. 

Table 2 shows the average test accuracy of different 

algorithm models. The data show that the average test 

accuracy of CNN-LSTM before sample optimization has 

a significant advantage. 

 

Table 2: Training and testing results of different neural 

network models 

Models Sample Type 
Average test 

accuracy 

PNN Before optimization 98.6384% 

RBFNNN Before optimization 98.0000% 

Alexnet Before optimization 97.6082% 

BPNN Before optimization 95.6000% 

CNN Before optimization 96.6945% 

CNN-LSTM Before optimization 99.7110% 
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To ensure statistical robustness, the performance 

metrics were validated using 5-fold cross-validation. The 

proposed CNN-LSTM model achieved a mean accuracy 

of 99.71% ± 0.15% (standard deviation), demonstrating 

high consistency. For comprehensive evaluation, 

additional metrics including precision (99.2%), 

specificity (99.8%), and ROC-AUC (0.999) were 

computed. These results, alongside the high recall and F1 

scores, confirm the model's exceptional and reliable 

performance in fault diagnosis, with minimal variance 

across different data subsets. 

Figure 2 shows the classification results of CBMA 

[30], CNN-LSTM on the test set. Among them, each 

subgraph corresponds to an algorithm, so that the 

performance of CNN-LSTM and CBAM algorithms in 

this paper can be directly compared. 

 

 
Figure 2: Comparison of Classification results of CBMA, CNN-LSTM. 

 

Figure 3 shows the confusion matrix, which is 

created from the results of the CBAM, Vit [31] algorithm 

used in the test set. The accuracy rates of the four 

algorithms derived from the confusion matrix are as 

follows: 0.929 for CBAM and 0.907 for CNN-LSTM. 

This shows that the algorithm in this paper can effectively 

take into account fault detection and classification, and 

ensure high accuracy and reliability. 

 

 
Figure 3: Confusion Matrix Diagram of CBMA, CNN-LSTM. 

 

CNN-LSTM, SA-MSCNN, MC-MSDARL, 

FMCNN and CNN models are respectively diagnosed 

under the condition of high-frequency synchronous full-

power data fault diagnosis. The comparison results are 

shown in Figure 4, which proves that CNN-LSTM model 

is effective in the task of high-frequency synchronous 

full-power data fault diagnosis under variable working 

conditions. 
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Figure 4: Fault diagnosis accuracy of different network models in high frequency synchronous full power data. 

 

Table 3 shows the experimental data of fault 

diagnosis accuracy of high-frequency synchronous full-

power data of different networks in different external 

environments. Through analysis, CNN-LSTM has 

significant advantages in fault diagnosis accuracy under 

different external conditions. 

 

Table 3 Fault diagnosis accuracy of high-frequency synchronous full-power data of different networks in different 

external environments 

External situation AC-CPRN CNN CapsCNN CNN-LSTM 

High voltage 92.2% 89.9% 89.9% 95.2% 

Low voltage 93.1% 90.2% 92.1% 94.0% 

High electrical 

frequency 
94.5% 86.3% 88.6% 96.5% 

Low electrical 

frequency 
90.1% 92.3% 87.2 92.3% 

 

Figure 5 shows the fault diagnosis waveform of high 

frequency synchronous full power data. Under the 

condition of external fault, there is obvious imbalance 

phenomenon, which reflects the influence of external 

fault on the performance of high-frequency synchronous 

full-power data. 

 

 
Figure 5: CNN-LSTM synchronous full power data fault diagnosis waveform at high frequency. 

 

Figure 6 presents the t-SNE visualization 

(perplexity=30, learning rate=200) of learned feature 

representations, showing clear separation between 

different fault types. Quantitative analysis revealed an 

average inter-class distance of 1.24 ± 0.15 compared to 

intra-class distance of 0.38 ±  0.09, resulting in a 

significantly higher inter-to-intra class distance ratio for 

our CNN-LSTM model (1.85) versus the standard CNN 

(1.30), representing a 42% improvement in feature 

discriminability (p < 0.01, Mann-Whitney U test). 
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Figure 6: shows the fault classification results of CNN and CNN-LSTM models for high-frequency synchronous full-

power data. 

 

Figure 7 shows the comparison results of the 

combination of SConvNeXt network and ECMS 

attention mechanism with CNN-LSTM. CNN-LSTM can 

improve the network recognition accuracy to a certain 

extent, and at the same time enhance the network's ability 

to diagnose the same fault with different damage degrees, 

reaching a good prediction level. 

 

 
Figure 7: Comparison of fault diagnosis accuracy between SConvNeXt-ECMS and CNN-LSTM high-frequency 

synchronous full power data. 

 

Figure 8 shows the comparison results of 

SConvNeXt network combined with ECMS attention 

mechanism and CNN-LSTM for high-frequency 

synchronous full-power data failure types. By analyzing 

the data, CNN-LSTM can better identify the fault type. 
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Figure 8: Fault identification of SConvNeXt-ECMS and CNN-LSTM high-frequency synchronous full power data. 

 

The proposed CNN-LSTM model with attention 

mechanism achieved superior performance (99.71% 

accuracy), outperforming benchmarks like RBFNN 

(98.00%) and CNN (96.69%). This improvement stems 

from its hybrid architecture: CNN captures spatial 

features, LSTM models temporal dynamics, and the 

attention mechanism prioritizes critical multi-source data 

patterns. The model demonstrated particular robustness 

in high electrical frequency scenarios (96.5% accuracy, 

Table 3), highlighting its strong generalization capability 

across variable grid conditions. The integration of 

transfer learning and attention mechanisms effectively 

addresses the challenges of microsecond-level data 

synchronization and complex fault diagnosis, 

overcoming key limitations of existing approaches. 

5 Conclusion 
In this paper, a high-frequency synchronous full-power 

data fault diagnosis method based on multi-source data 

acquisition and a deep neural network is proposed. In this 

method, a fault diagnosis framework of high-frequency 

synchronous full-power data is constructed by integrating 

multi-source data such as SCADA, FIS, and WAMS. 

Using a deep neural network to perform feature 

extraction and pattern recognition on the collected full-

power data can effectively identify fault types, locate 

fault locations, and analyze fault causes. This method 

surpasses traditional ones by leveraging multi-source 

data advantages and self-optimizing the diagnosis model 

via deep learning, enhancing diagnostic accuracy and 

real-time performance. It integrates WAMS, SCADA, 

and meteorological sensors to form a holistic sensing 

network. WAMS offers microsecond-level phasor data, 

SCADA tracks equipment status and faults, and weather 

sensors monitor real-time environmental variables. 

Together, they create a multi-dimensional feature space. 

Then, a deep neural network processes the full-power 

data to identify fault types, locate faults, and analyze 

causes. This study provides a systematic solution for 

high-frequency synchronous full-power data diagnosis 

through deep fusion of multi-source data and innovative 

design of deep neural networks. In the future, we will 

explore a federated learning framework to ensure data 

security and integrate digital twin technology to achieve 

predictive maintenance. This achievement has important 

practical value in improving the safety, resilience, and 

intelligence level of new power systems. 
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