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Banana cultivation, a critical tropical crop, is highly sensitive to water stress, nutrient imbalance, and 

disease outbreaks, all exacerbated by climatic variability. Traditional wireless sensor network (WSN) 

systems rely on static thresholds, limiting their adaptability to dynamic field conditions. This study 

proposes a context-aware WSN framework integrated with a Convolutional Neural Network (CNN) for 

real-time field condition classification and intelligent decision support in banana farming. Multimodal 

data—including soil moisture, temperature, humidity, light intensity, and pH—are captured and 

normalized using z-score standardization. A 1D CNN architecture (three convolutional layers with ReLU 

activation, max pooling, and fully connected layers) processes the input feature vector X = [Ms, T, H, L, 

pH] to classify four agronomic contexts: Water Stress, Nutrient Deficiency, Disease Risk, and Normal 

Condition. 

A dataset of 5,000 samples (3,200 real field records and 1,800 augmented via Gaussian noise and 

bootstrapping) was used for model training and validation with 5-fold cross-validation. The proposed 

CNN model achieved an accuracy of 95.3%, precision of 94.5%, recall of 95.2%, and F1-score of 94.8%, 

outperforming baseline SVM (83.1%) and Decision Tree (80.5%) models. Field deployment 

demonstrated a 28% improvement in water-use efficiency, a 41% reduction in disease incidence, and a 

3.1% false alarm rate, confirming superior adaptability over rule-based systems. The framework 

provides scalable, real-time decision support, offering a transferable model for sustainable and 

intelligent precision agriculture. 

Povzetek: Raziskava predstavlja pametni senzorski sistem s konvolucijsko nevronsko mrežo za banane, 

ki omogoča prilagodljivo in natančno odločanje v realnem času ter izboljša rabo vode in zdravje 

pridelka. 

 

1 Introduction 
Precision agriculture represents a transformative 

approach to modern farming, leveraging wireless sensor 

networks (WSNs), Internet of Things (IoT) technologies, 

and artificial intelligence (AI) to enable data-driven, site-

specific crop management. By facilitating continuous 

monitoring of environmental and soil parameters, these 

systems optimize resource use, reduce operational costs, 

and enhance sustainability — key priorities in the context 

of climate change and growing food demand. Among 

tropical crops, banana (Musa spp.) holds exceptional 

economic and nutritional importance, serving as both a 

staple food and a major export commodity across 

developing regions. However, banana cultivation faces 

distinct agronomic challenges that differentiate it from 

other crops such as rice, grapes, or tomatoes. These  

 

 

 

 

include: 

• High disease susceptibility, particularly to fungal 

infections such as Panama disease and black Sigatoka, 

which thrive under humid conditions. 

• Soil heterogeneity and pH sensitivity, affecting nutrient 

uptake and plant health. 

• Water management complexity, as bananas are sensitive 

to both drought and waterlogging. 

• Microclimatic variability, which influences plant  

physiology and increases unpredictability in field 

conditions. 

Conventional WSN-based systems in agriculture 

typically rely on rule-based decision-making with static 

thresholds for parameters like soil moisture or 

temperature. While effective for simple environments, 

these systems lack adaptability in dynamic field 

conditions, often leading to false alerts and inefficient 

interventions. In contrast, machine learning (ML) and 
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deep learning (DL) models—particularly Convolutional 

Neural Networks (CNNs)—offer the ability to extract 

complex patterns and classify contextual states from 

multi-sensor data, enabling more robust, adaptive 

decision support. Despite promising results in other 

crops, existing studies often focus narrowly on disease 

detection using image data, without integrating 

environmental sensor fusion or context-aware decision-

making. Moreover, few frameworks address real-time 

field condition classification tailored to banana’s unique 

agronomic profile. 

To address these gaps, this paper proposes a CNN-

enabled context-aware WSN framework designed 

specifically for smart banana cultivation. The proposed 

system: 

• Integrates heterogeneous sensor data (soil moisture, 

temperature, humidity, light, and pH) to capture real-

time field conditions. 

• Employs a CNN-based classifier to interpret 

environmental contexts into actionable categories: 

Water Stress, Nutrient Deficiency, Disease Risk, and 

Normal Condition. 

• Provides real-time alerts and adaptive recommendations 

for irrigation, fertilization, and disease management. 

 

Field experiments demonstrate the system’s capacity to 

achieve 95.3% classification accuracy, 28% improvement 

in water-use efficiency, and 41% reduction in disease 

incidence compared to traditional rule-based methods. 

Beyond addressing crop-specific challenges, the 

framework establishes a scalable and transferable model 

for AI-driven precision agriculture, promoting resilience 

and sustainability across similar high-value crops. Figure 

1 used to show how diseases and pests on banana plants 

affects [8]. By adopting a context-based approach, tailored 

to the specific requirements of banana plants, WSNs offer 

the potential to revolutionize banana cultivation practices 

and improve yield, quality, and sustainability. This paper 

begins by providing an overview of precision agriculture 

and the challenges faced in traditional farming methods. It 

then introduces wireless sensor networks, discussing their 

architecture, components, and applications in agriculture. 

Subsequently, we delve into the context-based approach 

for banana plantations, addressing the unique requirements 

of soil, climate, and water management. Through 

applications and case studies, we illustrate how WSNs 

have been deployed to monitor and manage banana crops 

effectively [24]. 

 

 
 

Figure 1: Visual overview of banana crop diseases and 

pests 

 

The dynamic nature of challenges in banana 

cultivation — such as fluctuating climatic conditions, pest 

infestations, and soil variability — calls for adaptable and 

intelligent monitoring systems. Traditional or static 

management approaches fail to capture real-time 

variability in soil parameters, microclimate, and plant 

health, leading to delayed interventions and suboptimal 

resource use. Recent studies underscore the need for 

climate-resilient agricultural systems that can respond 

proactively to evolving pathogens and abiotic stressors 

influenced by climate change [31]. In addition, increasing 

awareness of beneficial soil microorganisms, such as Plant 

Growth Promoting Rhizobacteria (PGPR), highlights the 

potential of holistic management strategies that enhance 

both nutrient uptake and disease resistance [30]. 

Wireless Sensor Networks (WSNs) have emerged as 

transformative enablers in precision agriculture, providing 

distributed, continuous, and automated monitoring of key 

parameters like soil moisture,  

humidity, pH, and temperature [9, 19]. However, 

conventional WSN systems typically operate on static 

threshold-based rules, lacking the adaptability needed to 

handle dynamic and nonlinear field conditions. This 

limitation often reduces their effectiveness in complex 

cultivation environments such as banana plantations, 

where context-sensitive decision-making is essential. To 

address these gaps, this paper proposes a context-aware 

WSN framework specifically tailored for precision banana 

farming. By integrating heterogeneous environmental, 

physiological, and agronomic data, the system generates 

actionable insights for intelligent irrigation, fertilization, 

and disease management. The framework employs sensor 

fusion techniques and Convolutional Neural Networks 

(CNNs) to dynamically classify field conditions and 

enable adaptive decision-making. This research aims to 

enhance resilience, productivity, and sustainability in 

banana cultivation — one of the world’s most significant 

and climate-sensitive fruit crops. Table 1. Used to 

summarizes Key Challenges and Opportunities in Banana 

Cultivation. 

 

Table 1: Key Challenges and opportunities in banana 

cultivation 

Challenges Opportunities 

Climate Sensitivity: 

Highly susceptible to 

temperature extremes 

and humidity-induced 

diseases (e.g., black 

Sigatoka). 

Technology Adoption: 

Precision agriculture 

tools (e.g., WSNs and 

AI) enable real-time 

climate monitoring and 

early disease detection 

[3]. 

Water Management: 

Sensitive to both 

drought and over-

irrigation; requires 

balanced water supply. 

Sustainable Practices: 

Smart irrigation 

systems improve water-

use efficiency and 

environmental 

resilience. 

Soil Quality: Erosion, 

compaction, and 

nutrient depletion 

Soil Management: 

Practices such as 

mulching, composting, 
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reduce productivity in 

many banana-growing 

regions. 

and biofertilizers 

restore fertility and soil 

health. 

Pests and Diseases: 

Threatened by 

nematodes, weevils, 

thrips, and fungal 

diseases. 

Research and 

Breeding: 

Development of 

disease-resistant 

varieties and use of 

integrated pest 

management (IPM) 

strategies. 

Labor Intensity: High 

manual labor 

requirements for 

planting, pruning, and 

harvesting. 

Mechanization: 

Robotics and 

automation reduce labor 

dependency and 

improve operational 

efficiency. 

 

2  Related work 
The advancement of precision agriculture has been 

significantly accelerated by the integration of Wireless 

Sensor Networks (WSNs), the Internet of Things (IoT), 

and Artificial Intelligence (AI). These technologies enable 

real-time environmental monitoring, data-driven farm 

management, and automated decision-making across 

diverse crop systems, including banana cultivation [9, 19, 

24]. 

2.1 WSN-based agricultural monitoring 
Numerous studies have explored the use of WSNs in 

agricultural applications, particularly for environmental 

sensing and irrigation control. Ojha et al. [9] provided a 

comprehensive review of WSN applications across crop 

domains, emphasizing their potential to enhance resource-

use efficiency and environmental sustainability. However, 

most conventional WSN systems employ predefined static 

thresholds, making them incapable of dynamically 

adapting to climate fluctuations, disease emergence, or soil 

variability. To address these shortcomings, context-aware 

systems have been proposed that adjust sensing and 

decision-making in response to real-time data. Islam and 

Dey [24], for instance, implemented a WSN-based smart 

monitoring system powered by renewable energy and IoT, 

successfully managing irrigation schedules and basic soil 

monitoring. However, such systems lack machine learning 

integration, limiting their ability to derive high-level 

inferences or predictive insights. 

2.2 Deep learning for agricultural diagnostics 
Deep learning techniques, particularly Convolutional 

Neural Networks (CNNs), have shown promise in 

agricultural diagnostics, especially for disease 

identification. 

• Banerjee et al. [3] developed hybrid deep learning models 

to classify banana leaf diseases, achieving high prediction 

accuracy. 

• Correa et al. [5] designed a CNN model that significantly 

improved the accuracy of banana leaf infection detection. 

• Kakati and Das [11] employed deep learning to distinguish 

between healthy and diseased leaves, enabling early 

diagnosis. 

Advanced architectures like YOLOv4 [13] and 

segmentation-based CNNs [14] further improved real-time 

detection and precision, while transfer learning approaches 

[12] enhanced model generalizability across field 

conditions. 

Despite these achievements, most of these image-based 

approaches focus narrowly on leaf-level disease detection. 

They do not integrate environmental sensor data, and 

therefore cannot provide context-aware decision-making 

(e.g., combining soil moisture, humidity, and pH to infer 

nutrient stress or irrigation needs). 

 

2.3 Integrative AI-WSN frameworks 

Few studies have proposed holistic frameworks that 

combine multi-sensor environmental monitoring with 

deep learning for adaptive agricultural decision support. 

For example, Keerthana et al. [10] demonstrated the link 

between soil mineral deficiencies and disease 

susceptibility in bananas, emphasizing the importance of 

multi-parameter integration. However, such studies lack 

real-time adaptability and scalable deployment in field 

conditions. To bridge this gap, the present work introduces 

a CNN-enabled context-aware WSN that classifies field 

conditions into actionable contexts — Water Stress, 

Nutrient Deficiency, Disease Risk, and Normal Condition 

— using multi-sensor fusion and real-time data processing. 

This system extends beyond disease detection to enable 

comprehensive, adaptive farm management shown in table 

2. 

Table 2: Comparative analysis of ai-based techniques for 

disease detection in banana plants 

Ref. 

No. 

Method / 

Technique 

Key Findings Limitation 

[3] Hybrid Deep 

Learning 

Models 

Developed 

robust 

classifiers for 

banana leaf 

diseases to 

enhance 

precision 

agriculture. 

Focused on 

disease 

detection only; 

no context 

integration 

[5] Convolutional 

Neural 

Network 

(CNN) 

Designed a 

CNN for 

classifying 

diseased 

banana leaves, 

improving 

detection 

accuracy. 

Image-only; no 

multi-sensor 

data integration 

[6] Comparative 

Analysis 

Assessed 

multiple 

methods for 

leaf disease 

detection, 

highlighting 

strengths and 

weaknesses. 

No unified 

adaptive 

framework 
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[7] Deep CNN 

Architecture 

Achieved high 

accuracy in 

banana 

disease 

prediction 

using deep 

CNN layers. 

No 

environmental 

sensing or 

contextual 

awareness 

[11] Deep Learning 

(Healthy vs. 

Unhealthy 

Leaves) 

Enabled 

disease 

classification 

using leaf 

health 

comparison 

via deep 

learning. 

Limited to 

visual 

symptoms 

[12] Transfer 

Learning for 

Image-Based 

Detection 

Offered 

efficient plant 

disease 

detection 

using deep 

transfer 

learning 

techniques. 

No real-time 

adaptability 

[13] Image 

Segmentation 

with CNN 

Enhanced 

detection 

precision 

using 

segmentation-

based deep 

learning 

models. 

Focused on 

leaf-level 

detection only 

[14] YOLOv4 

Object 

Detection 

Algorithm 

Detected 

Panama 

disease in real 

time using 

advanced 

object 

detection. 

Limited 

interpretability; 

lacks sensor 

fusion 

[15] Advanced 

Convolutional 

Neural 

Network 

Achieved high 

classification 

accuracy in 

identifying 

multiple 

banana leaf 

diseases. 

No field-level 

integration 

[32] Support 

Vector 

Machine 

(SVM) 

Proposed 

portable 

Sigatoka spot 

disease 

identifier for 

real-time 

disease 

detection. 

Lower 

accuracy; lacks 

adaptive 

intelligence 

2.4 Research gap and contribution 
From the literature, it is evident that: 

•Most existing works focus on image-based disease 

classification; 

•Very few integrate multi-sensor environmental data; 

•None offer a context-aware WSN that performs real-time 

classification and adaptive decision-making for banana 

cultivation. 

To fill this gap, our proposed CNN-enabled context-aware 

WSN provides a multi-modal, real-time, and adaptive 

decision-support system — marking a novel contribution 

to precision banana agriculture. 

 

3  Methodology 
 The proposed framework integrates context-aware sensing 

with deep learning-based decision support to address the 

dynamic challenges of banana cultivation. The 

methodology involves sensor deployment, data 

preprocessing, wireless communication, and real-time 

context classification using a Convolutional Neural 

Network (CNN). The entire process is illustrated in Figure 

2. 

 

 
 

Figure 2: Proposed Context-Aware WSN framework for 

banana cultivation 

 

3.1 System overview 
The system architecture is composed of four 

interdependent layers: 

▪ Sensor Layer 

▪ Edge Processing Layer 

▪ Communication Layer 

▪ Cloud/Server Layer (CNN-based Decision Engine) 

This modular structure supports adaptability and 

scalability in diverse field environments, from smallholder 

farms to commercial banana plantations. 

Figure 3 illustrates the architecture of the proposed 

Context-Aware WSN Framework for Banana Cultivation, 

comprising four interconnected layers: the Sensor Layer, 

Edge Processing Layer, Communication Layer, and 

Cloud/Server Layer. The Sensor Layer collects real-time 

data from multiple sources—soil moisture, temperature, 

humidity, light, and pH sensors—forming the foundation 

for environmental monitoring. The Edge Processing Layer 

performs noise filtering and normalization, ensuring clean 

and consistent data. This processed information is 

transmitted via the Communication Layer (using Wi-Fi or 

LoRaWAN) to the Cloud/Server Layer, where the CNN-

based Decision Engine classifies field conditions into four 

categories: Water Stress (WS), Nutrient Deficiency (ND), 
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Disease Risk (DR), and Optimal Growth (OG). This 

hierarchical design supports adaptive, real-time decision-

making for precision banana farming. 

 

 
 

Figure 3: Context-aware WSN framework for banana 

cultivation with CNN decision engine 

 

3.2 Sensor layer: environmental and soil 

monitoring 
To capture critical agricultural parameters, multiple sensor 

types are deployed throughout the banana field. These 

include: 

▪ Soil moisture sensors (capacitive) 

▪ Temperature sensors (DS18B20) 

▪ Humidity sensors (DHT22) 

▪ Light sensors (LDR or BH1750) 

▪ pH sensors 

Each sensor node continuously samples data at fixed 

intervals (every 10 minutes), enabling timely detection of 

agronomic stress conditions. The types and functions of 

these sensors are summarized in Table 3. 

 
Table 3: Types of sensors used in precision agriculture 

and their functions 

Sensor Type Function 
Examples / 

Technologies 

Soil Moisture 

Sensors 

Measure soil water content 

to optimize irrigation 

scheduling. 

Capacitive sensors, 

Resistive probes, TDR 

(Time Domain 

Reflectometry) sensors 

Temperature 

Sensors 

Monitor air, soil, or water 

temperature, critical for 

plant growth and stress. 

DS18B20, 

Thermocouples, 

Thermistors, RTDs 

Humidity 

Sensors 

Assess ambient humidity, 

aiding in disease 

prevention and 

transpiration control. 

DHT22, Capacitive and 

Resistive Humidity 

Sensors 

Light Sensors 

Evaluate light intensity and 

Photosynthetically Active 

Radiation (PAR). 

BH1750, LDR (Light 

Dependent Resistors), 

Photodiodes 

pH Sensors 

Measure soil acidity or 

alkalinity, influencing 

nutrient uptake. 

Glass Electrode Sensors, 

ISFET (Ion-Sensitive 

Field Effect Transistor) 

pH sensors 

Nutrient Sensors 

Detect levels of soil 

nutrients for informed 

fertilization. 

Ion-Selective Electrodes, 

Optical and 

Electrochemical Sensors 

Weather Sensors 

Record external weather 

conditions such as rainfall, 

wind, and pressure. 

Rain Gauges, 

Barometers, 

Anemometers, Weather 

Stations 

Pest & Disease 

Sensors 

Detect early signs of pest 

infestation or plant disease. 

Imaging Sensors, 

Spectroscopy Devices, 

Biosensors (DNA-based) 

 

 

 

3.3 Edge layer: preprocessing and 

normalization 
Each sensor node is connected to a microcontroller (e.g., 

ESP32 or Raspberry Pi) that performs local processing. 

This includes: 

▪ Filtering to eliminate noise 

▪ Normalization using z-score standardization: 

 

𝑋𝑛 =
𝑋−𝜇

𝜕
     

 -----------(1)                                                

 

Where, X = raw sensor value, μ= mean of historical data, 

σ= standard deviation 

This preprocessing reduces data redundancy and supports 

real-time analytics without overloading the 

communication network. 

 

3.4 Communication layer: data transmission 
Processed data is transmitted to a central processing unit 

via either Wi-Fi or LoRaWAN, depending on the 

plantation size and coverage needs. LoRaWAN is favored 

for its low-power, long-range capabilities, especially in 

rural and semi-urban areas with limited infrastructure. 

 

3.5 Cloud/server layer: context inference via 

CNN 
The core of the system is a CNN-based context classifier, 

trained to interpret sensor data and predict field conditions 

such as: 

▪ WS – Water Stress 

▪ ND – Nutrient Deficiency 

▪ DR – Disease Risk 

▪ OG – Optimal Growth 

The multivariate input vector: 

 

X= [Ms, T, H, L, pH] X     

-------------------- (2) 

 

is fed into a CNN model composed of convolutional and 

pooling layers, followed by fully connected layers. The 

model uses ReLU activation functions and is optimized 

with backpropagation. The CNN model architecture and 

its performance are illustrated in Figure 3, and the 

classification results are presented in Table 4. 

 

 
 

Figure 4: CNN model performance for context 

classification 
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3.6 Alert engine and decision support 
Based on the classification probabilities, an alert is 

generated if the likelihood of a stress condition exceeds a 

threshold: 

 

𝐴𝑙𝑒𝑟𝑡 {
1

0
} 

𝑖𝑓 𝑃𝐶𝑁𝑁(𝑐𝑙𝑎𝑠𝑠)>𝜏

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                       

---------- (3)      

 These alerts are communicated to farmers via SMS or a 

mobile app, enabling timely intervention. 

 

3.7 Data pipeline and workflow summary 
The system operates in the following sequence: 

▪ Sensor nodes acquire raw environmental and soil data. 

▪ Microcontrollers perform edge-level preprocessing. 

▪ Wireless modules transmit data to the central server. 

▪ CNN model classifies the field condition in real time. 

▪ Decision engine triggers alerts for irrigation, nutrient 

correction, or disease mitigation. 

This workflow is depicted in Figure 3: Proposed Context-

Aware WSN Framework for Banana Cultivation. 

 

3.8 Supporting literature and feature 

justification 
The challenges in banana cultivation—such as water 

sensitivity, disease prevalence, and soil degradation—

were detailed in Table 1, providing context for the 

parameter selection in this framework. Further, recent 

advancements in CNN-based disease detection in banana 

farming are reviewed and synthesized in Table 2, 

justifying the use of CNNs in the proposed system. 

 

3.9 Advantages of the proposed methodology 
▪ Real-Time Context Recognition: CNNs outperform 

rule-based systems in adapting to dynamic field 

conditions. 

▪ Resource Efficiency: Precision alerts reduce water, 

fertilizer, and pesticide waste. 

▪ Scalability: Modular sensor deployment allows 

expansion across varied farm sizes. 

▪ Integration of Multimodal Data: Combines visual and 

environmental inputs for robust decision-making. 

4  Results and analysis 

The performance of the proposed context-aware wireless 

sensor network (WSN) framework was evaluated through 

a series of real-time experiments conducted in banana 

plantations equipped with multi-sensor nodes and 

microcontroller-based edge units. This section presents the 

experimental setup, CNN model evaluation, contextual 

classification results, and comparative analysis with a 

conventional rule-based system. 

 

4.1 Experimental setup 
To validate the framework, a testbed was deployed in a 

controlled banana cultivation area. The configuration 

included 

 

▪ Sensor Devices 

• DHT11 for temperature and humidity 

• Capacitive soil moisture sensors 

• Photoresistors for light intensity 

• pH sensors for soil analysis 

 

▪ Edge Processing Unit 

• ESP32 microcontroller with local data 

normalization and LoRa-based communication 

 

▪ Server-Side Configuration 

• A CNN model hosted on a cloud server, trained 

with both real and synthetically augmented 

datasets 

• Wireless communication over LoRaWAN or Wi-

Fi, depending on field coverage 

Data was collected over a 30-day period under varying 

environmental conditions to simulate typical challenges in 

banana farming. 

 

4.2 CNN model performance 
The CNN was trained on a dataset of 5,000 labeled 

samples, combining real sensor data and synthetically 

augmented records to simulate various stress conditions. 

The model was tasked with classifying field conditions 

into four categories 

• Irrigation Needed 

• High Disease Risk 

• Nutrient Deficiency 

• Normal Condition 

 

The model achieved high performance across all metrics 

as presented in Table 4 and these results, also visualized in 

Figure 4, demonstrate the CNN’s capability to detect early-

stage agronomic issues with high reliability. 

 

 

Table 4: CNN model performance for context 

classification 

 

Context Class 
Accura

cy 

Precisio

n 
Recall 

F1-

Score 

Irrigation 

Needed 
96.2% 95.5% 97.1% 96.3% 

High Disease 
Risk 

94.8% 94.1% 93.5% 93.8% 

Nutrient 

Deficiency 
92.3% 90.7% 91.8% 91.2% 

Normal 
Condition 

98.1% 97.6% 98.3% 97.9% 

Average 95.3% 94.5% 95.2% 94.8% 

 

4.3 CNN classification results 
The proposed CNN model achieved superior performance 

across all classes, as summarized in Table 5. 
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Table 5: CNN classification results 

 

Class 
Precision 

(%) 
Recall (%) F1-score (%) 

Water Stress 

(WS) 
94.8 95.1 94.9 

Nutrient 

Deficiency (ND) 
93.7 94.2 93.9 

Disease Risk 

(DR) 
95.4 95.8 95.6 

Optimal Growth 

(OG) 
95.0 95.6 95.3 

Overall 94.5 95.2 94.8 

The overall classification accuracy was 95.3%, with an 

average precision of 94.5% and an F1-score of 94.8%, 

demonstrating robust and reliable context recognition. 

 

4.4 Comparative analysis with baseline 

models  
To highlight the advantage of CNNs in resource-

constrained WSN environments, the proposed model was 

compared against Decision Tree (DT) and Support 

Vector Machine (SVM) classifiers using the same 

dataset. 

Table 6: Comparative analysis with baseline models 

 

Model 
Accuracy 

(%) 

F1-

score 

(%) 

False 

Alarm 

Rate 

(%) 

Energy 

Consum

ption 

CNN 

(Proposed) 
95.3 94.8 3.1 

Moderat

e 

SVM 83.1 82.5 12.4 Low 

Decision 

Tree 
80.5 79.9 14.7 Low 

The CNN outperformed traditional models by over 12% in 

accuracy and reduced false alarms by 9–11%, confirming 

its superior generalization and adaptability for dynamic 

field conditions. 

 

4.5 Confusion matrix analysis 

The confusion matrix, shown in Figure 4 highlights the 

CNN model’s strong capability in accurately identifying 

critical stress conditions, particularly irrigation needs. This 

high performance is attributed to the distinct patterns in 

sensor data—such as low soil moisture, elevated 

temperature, and reduced humidity—which are effectively 

captured during model training. As a result, the model 

achieves a high true positive rate in detecting water stress. 

Similarly, normal field conditions are classified with the 

highest accuracy among all categories, likely due to their 

stable and less variable sensor profiles. This leads to 

excellent precision and recall, and consequently, a low 

false positive rate in generating alerts. However, some 

degree of confusion was observed between nutrient 

deficiency and disease risk, which is understandable given 

that both can exhibit overlapping sensor patterns—like 

abnormal humidity or shifts in soil pH—during early stress 

stages. These occasional misclassifications reflect the 

complex nature of distinguishing between subtle 

agronomic stressors using environmental data alone. 

 

 
 

Figure 5: Confusion matrix of CNN-based context 

classification 

 

Despite these overlaps, the model maintained a low false 

alarm rate of 3.1%, significantly outperforming the 12.4% 

rate observed in rule-based systems (as shown in Table 7). 

This affirms the robustness of a learning-based approach 

that adapts to dynamic field variability rather than relying 

on rigid thresholds. Beyond evaluating performance, the 

confusion matrix serves as a diagnostic tool for continuous 

improvement. It helps identify which classifications are 

most error-prone and where refinements are needed. For 

instance, the noted confusion between disease risk and 

nutrient deficiency suggests potential for enhancement 

through integration of visual data, such as leaf imagery or 

spectral sensing. Additionally, the confidence scores 

produced by the CNN can guide the fine-tuning of alert 

thresholds (τ), enabling farmers to balance sensitivity and 

specificity based on crop stage or season. This 

interpretability not only validates model performance but 

also supports more strategic, risk-aware decision-making 

in precision banana cultivation. 

 

4.4 Real-time system adaptability 
The context-aware system's performance was evaluated 

under live field conditions. Key outcomes observed during 

the deployment phase include: 

▪ Water-Use Efficiency: Improved by 28% due to timely 

irrigation scheduling. 

▪ Disease Management: Early detection of disease 

symptoms led to a 41% reduction in leaf spot incidence 

through timely spraying. 

▪ Nutrient Correction: pH-based alerts enabled deficiency 

correction within 3 days, reducing crop stress. 

These results highlight the framework’s real-time 

adaptability and agronomic impact. 
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4.5 Comparative evaluation with rule-based 

system 
 

Metric 
CNN-

Based 
Rule-Based 

Context 

Classification 

Accuracy 

95.3% 78.6% 

False Alarm 

Rate 
3.1% 12.4% 

Adaptability to 

New Data 
High Low 

Scalability Good Limited 

 

For benchmarking, a conventional threshold-based 

decision system was also deployed. As shown in Table 7 

and visualized in Figure 6, the CNN-powered framework 

significantly outperformed the rule-based model in all key 

metrics. 

 

Figure 6: Comparison of CNN-based and rule-based 

approaches 

 

 

4.6 Interpretation and Implications 
The experimental outcomes confirm that the proposed 

system offers substantial improvements in 

▪ Early Warning Capability: Contextual alerts lead to 

preventive, rather than reactive, action. 

▪ Resource Efficiency: Water and fertilizer usage were 

optimized. 

▪ Scalability and Flexibility: The framework adapted well 

to variable field conditions without reprogramming. 

 

5  Conclusion  
This study presented a CNN-enabled context-aware 

Wireless Sensor Network (WSN) framework for smart 

banana cultivation, integrating real-time environmental 

sensing with deep learning-based decision support. The 

system effectively classified field conditions into Water 

Stress, Nutrient Deficiency, Disease Risk, and Optimal 

Growth, achieving an overall accuracy of 95.3% and 

significantly improving resource-use efficiency. By 

leveraging multimodal sensor data and CNN-based 

classification, the framework demonstrated superior 

adaptability compared to traditional rule-based and 

machine learning models. Field deployment confirmed a 

28% enhancement in water-use efficiency, 41% reduction 

in disease incidence, and a 3.1% false alarm rate, 

validating its applicability in real-world agricultural 

settings. The system’s modular architecture supports 

scalability across various field sizes and adaptability to 

diverse climatic zones. Its design can be extended to other 

high-value crops through retraining with crop-specific 

datasets. Additionally, integrating adaptive control 

methods—such as fuzzy logic and backstepping control—

offers future potential for closed-loop automation in 

irrigation and nutrient management. In summary, the 

proposed context-aware WSN framework offers a robust, 

intelligent, and sustainable solution for precision 

agriculture. It empowers farmers with actionable insights, 

reduces resource wastage, and enhances resilience against 

climatic and biological stressors. Future research will 

focus on integrating spectral imaging, NDVI-based 

indices, and self-learning control mechanisms to further 

improve accuracy, adaptability, and autonomy. 
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