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Banana cultivation, a critical tropical crop, is highly sensitive to water stress, nutrient imbalance, and
disease outbreaks, all exacerbated by climatic variability. Traditional wireless sensor network (WSN)
systems rely on static thresholds, limiting their adaptability to dynamic field conditions. This study
proposes a context-aware WSN framework integrated with a Convolutional Neural Network (CNN) for
real-time field condition classification and intelligent decision support in banana farming. Multimodal
data—including soil moisture, temperature, humidity, light intensity, and pH—are captured and
normalized using z-score standardization. A 1D CNN architecture (three convolutional layers with ReLU
activation, max pooling, and fully connected layers) processes the input feature vector X = [Ms, T, H, L,
pH] to classify four agronomic contexts: Water Stress, Nutrient Deficiency, Disease Risk, and Normal
Condition.

A dataset of 5,000 samples (3,200 real field records and 1,800 augmented via Gaussian noise and
bootstrapping) was used for model training and validation with 5-fold cross-validation. The proposed
CNN model achieved an accuracy of 95.3%, precision of 94.5%, recall of 95.2%, and F1-score of 94.8%,
outperforming baseline SVM (83.1%) and Decision Tree (80.5%) models. Field deployment
demonstrated a 28% improvement in water-use efficiency, a 41% reduction in disease incidence, and a
3.1% false alarm rate, confirming superior adaptability over rule-based systems. The framework
provides scalable, real-time decision support, offering a transferable model for sustainable and
intelligent precision agriculture.

Povzetek: Raziskava predstavlja pametni senzorski sistem s konvolucijsko nevronsko mrezo za banane,
ki omogoca prilagodljivo in natancno odlocanje v realnem casu ter izboljSa rabo vode in zdravje

pridelka.

1 Introduction

Precision agriculture represents a transformative
approach to modern farming, leveraging wireless sensor
networks (WSNSs), Internet of Things (1oT) technologies,
and artificial intelligence (Al) to enable data-driven, site-
specific crop management. By facilitating continuous
monitoring of environmental and soil parameters, these
systems optimize resource use, reduce operational costs,
and enhance sustainability — key priorities in the context
of climate change and growing food demand. Among
tropical crops, banana (Musa spp.) holds exceptional
economic and nutritional importance, serving as both a
staple food and a major export commodity across
developing regions. However, banana cultivation faces
distinct agronomic challenges that differentiate it from
other crops such as rice, grapes, or tomatoes. These

include:

« High disease susceptibility, particularly to fungal
infections such as Panama disease and black Sigatoka,
which thrive under humid conditions.

« Soil heterogeneity and pH sensitivity, affecting nutrient
uptake and plant health.

» Water management complexity, as bananas are sensitive
to both drought and waterlogging.

+ Microclimatic variability, which influences plant
physiology and increases unpredictability in field
conditions.

Conventional WSN-based systems in agriculture
typically rely on rule-based decision-making with static
thresholds for parameters like soil moisture or
temperature. While effective for simple environments,
these systems lack adaptability in dynamic field
conditions, often leading to false alerts and inefficient
interventions. In contrast, machine learning (ML) and
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deep learning (DL) models—yparticularly Convolutional
Neural Networks (CNNs)—offer the ability to extract
complex patterns and classify contextual states from
multi-sensor data, enabling more robust, adaptive
decision support. Despite promising results in other
crops, existing studies often focus narrowly on disease
detection using image data, without integrating
environmental sensor fusion or context-aware decision-
making. Moreover, few frameworks address real-time
field condition classification tailored to banana’s unique
agronomic profile.

To address these gaps, this paper proposes a CNN-
enabled context-aware WSN framework designed
specifically for smart banana cultivation. The proposed
system:

« Integrates heterogeneous sensor data (soil moisture,
temperature, humidity, light, and pH) to capture real-
time field conditions.

 Employs a CNN-based classifier to interpret
environmental contexts into actionable categories:
Water Stress, Nutrient Deficiency, Disease Risk, and
Normal Condition.

* Provides real-time alerts and adaptive recommendations
for irrigation, fertilization, and disease management.

Field experiments demonstrate the system’s capacity to
achieve 95.3% classification accuracy, 28% improvement
in water-use efficiency, and 41% reduction in disease
incidence compared to traditional rule-based methods.
Beyond addressing crop-specific  challenges, the
framework establishes a scalable and transferable model
for Al-driven precision agriculture, promoting resilience
and sustainability across similar high-value crops. Figure
1 used to show how diseases and pests on banana plants
affects [8]. By adopting a context-based approach, tailored
to the specific requirements of banana plants, WSNs offer
the potential to revolutionize banana cultivation practices
and improve yield, quality, and sustainability. This paper
begins by providing an overview of precision agriculture
and the challenges faced in traditional farming methods. It
then introduces wireless sensor networks, discussing their
architecture, components, and applications in agriculture.
Subsequently, we delve into the context-based approach
for banana plantations, addressing the unique requirements
of soil, climate, and water management. Through
applications and case studies, we illustrate how WSNs
have been deployed to monitor and manage banana crops
effectively [24].

Figure 1: Visual overview of banana crop diseases and
pests
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The dynamic nature of challenges in banana
cultivation — such as fluctuating climatic conditions, pest
infestations, and soil variability — calls for adaptable and
intelligent monitoring systems. Traditional or static
management approaches fail to capture real-time
variability in soil parameters, microclimate, and plant
health, leading to delayed interventions and suboptimal
resource use. Recent studies underscore the need for
climate-resilient agricultural systems that can respond
proactively to evolving pathogens and abiotic stressors
influenced by climate change [31]. In addition, increasing
awareness of beneficial soil microorganisms, such as Plant
Growth Promoting Rhizobacteria (PGPR), highlights the
potential of holistic management strategies that enhance
both nutrient uptake and disease resistance [30].

Wireless Sensor Networks (WSNSs) have emerged as
transformative enablers in precision agriculture, providing
distributed, continuous, and automated monitoring of key
parameters like soil moisture,
humidity, pH, and temperature [9, 19]. However,
conventional WSN systems typically operate on static
threshold-based rules, lacking the adaptability needed to
handle dynamic and nonlinear field conditions. This
limitation often reduces their effectiveness in complex
cultivation environments such as banana plantations,
where context-sensitive decision-making is essential. To
address these gaps, this paper proposes a context-aware
WSN framework specifically tailored for precision banana
farming. By integrating heterogeneous environmental,
physiological, and agronomic data, the system generates
actionable insights for intelligent irrigation, fertilization,
and disease management. The framework employs sensor
fusion techniques and Convolutional Neural Networks
(CNNs) to dynamically classify field conditions and
enable adaptive decision-making. This research aims to
enhance resilience, productivity, and sustainability in
banana cultivation — one of the world’s most significant
and climate-sensitive fruit crops. Table 1. Used to
summarizes Key Challenges and Opportunities in Banana
Cultivation.

Table 1: Key Challenges and opportunities in banana
cultivation

Challenges

Climate Sensitivity:
Highly susceptible to

Opportunities

Technology Adoption:
Precision agriculture

temperature extremes
and humidity-induced
diseases (e.g., black
Sigatoka).

tools (e.g., WSNs and
Al) enable real-time
climate monitoring and
early disease detection

[3].

Water Management:
Sensitive to both
drought and over-
irrigation; requires

balanced water supply.

Sustainable Practices:
Smart irrigation
systems improve water-
use efficiency and
environmental
resilience.

Soil Quality: Erosion,
compaction, and
nutrient depletion

Soil Management:
Practices such as
mulching, composting,
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and biofertilizers
restore fertility and soil

reduce productivity in
many banana-growing

regions. health.
Pests and Diseases: Research and
Threatened by Breeding:

nematodes, weevils,
thrips, and fungal
diseases.

Development of
disease-resistant
varieties and use of
integrated pest
management (IPM)
strategies.
Mechanization:
Robotics and
automation reduce labor
dependency and
improve operational
efficiency.

Labor Intensity: High
manual labor
requirements for
planting, pruning, and
harvesting.

2 Related work

The advancement of precision agriculture has been
significantly accelerated by the integration of Wireless
Sensor Networks (WSNSs), the Internet of Things (loT),
and Autificial Intelligence (Al). These technologies enable
real-time environmental monitoring, data-driven farm
management, and automated decision-making across
diverse crop systems, including banana cultivation [9, 19,
24].

2.1 WSN-based agricultural monitoring
Numerous studies have explored the use of WSNs in
agricultural applications, particularly for environmental
sensing and irrigation control. Ojha et al. [9] provided a
comprehensive review of WSN applications across crop
domains, emphasizing their potential to enhance resource-
use efficiency and environmental sustainability. However,
most conventional WSN systems employ predefined static
thresholds, making them incapable of dynamically
adapting to climate fluctuations, disease emergence, or soil
variability. To address these shortcomings, context-aware
systems have been proposed that adjust sensing and
decision-making in response to real-time data. Islam and
Dey [24], for instance, implemented a WSN-based smart
monitoring system powered by renewable energy and 10T,
successfully managing irrigation schedules and basic soil
monitoring. However, such systems lack machine learning
integration, limiting their ability to derive high-level
inferences or predictive insights.

2.2 Deep learning for agricultural diagnostics
Deep learning techniques, particularly Convolutional
Neural Networks (CNNs), have shown promise in
agricultural ~ diagnostics, especially for  disease
identification.

*Banerjee et al. [3] developed hybrid deep learning models
to classify banana leaf diseases, achieving high prediction
accuracy.

*Correa et al. [5] designed a CNN model that significantly
improved the accuracy of banana leaf infection detection.
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«Kakati and Das [11] employed deep learning to distinguish
between healthy and diseased leaves, enabling early
diagnosis.

Advanced architectures like YOLOv4 [13] and
segmentation-based CNNSs [14] further improved real-time
detection and precision, while transfer learning approaches
[12] enhanced model generalizability across field
conditions.

Despite these achievements, most of these image-based
approaches focus narrowly on leaf-level disease detection.
They do not integrate environmental sensor data, and
therefore cannot provide context-aware decision-making
(e.g., combining soil moaisture, humidity, and pH to infer
nutrient stress or irrigation needs).

2.3 Integrative AI-WSN frameworks

Few studies have proposed holistic frameworks that
combine multi-sensor environmental monitoring with
deep learning for adaptive agricultural decision support.
For example, Keerthana et al. [10] demonstrated the link
between soil mineral deficiencies and disease
susceptibility in bananas, emphasizing the importance of
multi-parameter integration. However, such studies lack
real-time adaptability and scalable deployment in field
conditions. To bridge this gap, the present work introduces
a CNN-enabled context-aware WSN that classifies field
conditions into actionable contexts — Water Stress,
Nutrient Deficiency, Disease Risk, and Normal Condition
— using multi-sensor fusion and real-time data processing.
This system extends beyond disease detection to enable
comprehensive, adaptive farm management shown in table
2.

Table 2: Comparative analysis of ai-based techniques for
disease detection in banana plants

Ref. Method / Key Findings Limitation

No. Technique

[3] Hybrid Deep Developed Focused on
Learning robust disease
Models classifiers for detection only;

banana leaf no context
diseases to integration
enhance

precision

agriculture.

[5] Convolutional | Designed a Image-only; no
Neural CNN for multi-sensor
Network classifying data integration
(CNN) diseased

banana leaves,
improving
detection
accuracy.

[6] Comparative Assessed No unified
Analysis multiple adaptive

methods for framework
leaf disease

detection,

highlighting

strengths and

weaknesses.
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[7] Deep CNN Achieved high | No

Architecture accuracy in environmental
banana sensing or
disease contextual
prediction awareness
using deep
CNN layers.

[11] | Deep Learning | Enabled Limited to
(Healthy vs. disease visual
Unhealthy classification symptoms
Leaves) using leaf

health
comparison
via deep
learning.

[12] | Transfer Offered No real-time
Learning for efficient plant | adaptability
Image-Based disease
Detection detection

using deep
transfer
learning
techniques.

[13] | Image Enhanced Focused on
Segmentation | detection leaf-level
with CNN precision detection only

using
segmentation-
based deep
learning
models.

[14] | YOLOv4 Detected Limited
Object Panama interpretability;
Detection disease in real | lacks sensor
Algorithm time using fusion

advanced
object
detection.

[15] | Advanced Achieved high | No field-level
Convolutional | classification integration
Neural accuracy in
Network identifying

multiple
banana leaf
diseases.

[32] | Support Proposed Lower
Vector portable accuracy; lacks
Machine Sigatoka spot | adaptive
(SVM) disease intelligence

identifier for
real-time
disease
detection.

2.4 Research gap and contribution
From the literature, it is evident that:

*Most existing works focus on image-based disease

classification;
*Very few integrate multi-sensor environmental data;

*None offer a context-aware WSN that performs real-time
classification and adaptive decision-making for banana
cultivation.

To fill this gap, our proposed CNN-enabled context-aware
WSN provides a multi-modal, real-time, and adaptive
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decision-support system — marking a novel contribution
to precision banana agriculture.

3 Methodology

The proposed framework integrates context-aware sensing
with deep learning-based decision support to address the
dynamic challenges of banana cultivation. The
methodology involves sensor deployment, data
preprocessing, wireless communication, and real-time
context classification using a Convolutional Neural
Network (CNN). The entire process is illustrated in Figure
2.

Sensor Layer

Soil Moisture Sensor  Temperature Sensor ~ Humidity Sensor  Light Sensor

\E\F%« i W

Edge Processing Node
(ESP32/Raspberry Pi)

pH Sensor

Communication Layer

Wireless Protocol
(Wi-Fi/ LoRaWAN)

Server/Cloud Layer

CNN Model
Context Inference

S\

Alert & Recommendation Engine  Data Storage
SMS / App Alerts

Farmer

Figure 2: Proposed Context-Aware WSN framework for
banana cultivation

3.1 System overview

The system architecture is
interdependent layers:

= Sensor Layer

= Edge Processing Layer

= Communication Layer

= Cloud/Server Layer (CNN-based Decision Engine)
This modular structure supports adaptability and
scalability in diverse field environments, from smallholder
farms to commercial banana plantations.

Figure 3 illustrates the architecture of the proposed
Context-Aware WSN Framework for Banana Cultivation,
comprising four interconnected layers: the Sensor Layer,
Edge Processing Layer, Communication Layer, and
Cloud/Server Layer. The Sensor Layer collects real-time
data from multiple sources—soil moisture, temperature,
humidity, light, and pH sensors—forming the foundation
for environmental monitoring. The Edge Processing Layer
performs noise filtering and normalization, ensuring clean
and consistent data. This processed information is
transmitted via the Communication Layer (using Wi-Fi or
LoRaWAN) to the Cloud/Server Layer, where the CNN-
based Decision Engine classifies field conditions into four
categories: Water Stress (WS), Nutrient Deficiency (ND),

composed of four
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Disease Risk (DR), and Optimal Growth (OG). This
hierarchical design supports adaptive, real-time decision-
making for precision banana farming.

bl §ensor Liyer @ -\é‘-
H o
Soil @ éB Light PH CNN-based
l Decision Engine
Edge Processing Layer
L) b
Water Stress
T —> D
Nutrient
Communication Layer Deficiency
= DR

Disease Risk

oG
Optimal
Growth

i

Cloud/Server Layer

L

Figure 3: Context-aware WSN framework for banana
cultivation with CNN decision engine

3.2 Sensor layer: environmental and soil

monitoring

To capture critical agricultural parameters, multiple sensor
types are deployed throughout the banana field. These
include:

= Soil moisture sensors (capacitive)

=  Temperature sensors (DS18B20)

= Humidity sensors (DHT22)

= Light sensors (LDR or BH1750)

= pH sensors

Each sensor node continuously samples data at fixed
intervals (every 10 minutes), enabling timely detection of
agronomic stress conditions. The types and functions of
these sensors are summarized in Table 3.

Table 3: Types of sensors used in precision agriculture
and their functions

transpiration control.

. Examples /

Sensor Type Function Technologies

Measure soil water content Capacitive sensors,
Soil Moisture to optimize irrigation Resistive probes, TDR
Sensors sche%ulin 9 (Time Domain

9. Reflectometry) sensors

Temperature Monitor air, 50|_I,_ or water DS18B20,
Sensors temperature, critical for Therm_ocouples,

plant growth and stress. Thermistors, RTDs

Assess ambient humidity, .
Humidity aiding in disease g;-il—s?i%;ecljsifiléli\tl; and
Sensors prevention and

Sensors

Light Sensors

Evaluate light intensity and
Photosynthetically Active
Radiation (PAR).

BH1750, LDR (Light
Dependent Resistors),
Photodiodes

Measure soil acidity or

Glass Electrode Sensors,
ISFET (lon-Sensitive

Weather Sensors

conditions such as rainfall,
wind, and pressure.

pH Sensors alka_llmty, influencing Field Effect Transistor)
nutrient uptake.
pH sensors
Detect levels of soil lon-Selective Electrodes,
Nutrient Sensors | nutrients for informed Optical and
fertilization. Electrochemical Sensors
Record external weather Rain Gauges,
Barometers,

Anemometers, Weather
Stations

Pest & Disease
Sensors

Detect early signs of pest
infestation or plant disease.

Imaging Sensors,
Spectroscopy Devices,
Biosensors (DNA-based)
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3.3 Edge
normalization
Each sensor node is connected to a microcontroller (e.g.,
ESP32 or Raspberry Pi) that performs local processing.
This includes:

= Filtering to eliminate noise

= Normalization using z-score standardization:

layer:  preprocessing and

Where, X = raw sensor value, p= mean of historical data,
o= standard deviation

This preprocessing reduces data redundancy and supports
real-time analytics  without  overloading  the
communication network.

3.4 Communication layer: data transmission
Processed data is transmitted to a central processing unit
via either Wi-Fi or LoRaWAN, depending on the
plantation size and coverage needs. LoORaWAN is favored
for its low-power, long-range capabilities, especially in
rural and semi-urban areas with limited infrastructure.

3.5 Cloud/server layer: context inference via

CNN

The core of the system is a CNN-based context classifier,
trained to interpret sensor data and predict field conditions
such as:

= WS — Water Stress

= ND - Nutrient Deficiency

= DR - Disease Risk

= OG- Optimal Growth
The multivariate input vector:

X=[Ms, T, H, L, pH] X

is fed into a CNN model composed of convolutional and
pooling layers, followed by fully connected layers. The
model uses ReLU activation functions and is optimized
with backpropagation. The CNN model architecture and
its performance are illustrated in Figure 3, and the
classification results are presented in Table 4.

CNN Model Performance on Context Classification

Irrigation
Needed

Context Class.

Figure 4: CNN model performance for context
classification
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3.6 Alert engine and decision support

Based on the classification probabilities, an alert is

generated if the likelihood of a stress condition exceeds a

threshold:

Alert {l} if PCNN(Cla..SS)>T
0 Otherwise

These alerts are communicated to farmers via SMS or a

mobile app, enabling timely intervention.

3.7 Data pipeline and workflow summary

The system operates in the following sequence:

= Sensor nodes acquire raw environmental and soil data.

= Microcontrollers perform edge-level preprocessing.

= Wireless modules transmit data to the central server.

CNN model classifies the field condition in real time.

= Decision engine triggers alerts for irrigation, nutrient
correction, or disease mitigation.

This workflow is depicted in Figure 3: Proposed Context-

Aware WSN Framework for Banana Cultivation.

3.8 Supporting literature and feature

justification

The challenges in banana cultivation—such as water
sensitivity, disease prevalence, and soil degradation—
were detailed in Table 1, providing context for the
parameter selection in this framework. Further, recent
advancements in CNN-based disease detection in banana
farming are reviewed and synthesized in Table 2,
justifying the use of CNNs in the proposed system.

3 9 Advantages of the proposed methodology
Real-Time Context Recognition: CNNs outperform
rule-based systems in adapting to dynamic field
conditions.

= Resource Efficiency: Precision alerts reduce water,
fertilizer, and pesticide waste.

= Scalability: Modular sensor deployment allows
expansion across varied farm sizes.

= Integration of Multimodal Data: Combines visual and
environmental inputs for robust decision-making.

4 Results and analysis

The performance of the proposed context-aware wireless
sensor network (WSN) framework was evaluated through
a series of real-time experiments conducted in banana
plantations equipped with multi-sensor nodes and
microcontroller-based edge units. This section presents the
experimental setup, CNN model evaluation, contextual
classification results, and comparative analysis with a
conventional rule-based system.

4.1 Experimental setup

To validate the framework, a testbed was deployed in a
controlled banana cultivation area. The configuration
included
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= Sensor Devices

DHT11 for temperature and humidity
Capacitive soil moisture sensors
Photoresistors for light intensity

pH sensors for soil analysis

= Edge Processing Unit
e ESP32 microcontroller with local data
normalization and LoRa-based communication

= Server-Side Configuration
e A CNN model hosted on a cloud server, trained
with both real and synthetically augmented
datasets
e  Wireless communication over LoRaWAN or Wi-
Fi, depending on field coverage
Data was collected over a 30-day period under varying
environmental conditions to simulate typical challenges in
banana farming.

4.2 CNN model performance
The CNN was trained on a dataset of 5,000 labeled
samples, combining real sensor data and synthetically
augmented records to simulate various stress conditions.
The model was tasked with classifying field conditions
into four categories

e Irrigation Needed

e High Disease Risk

e Nutrient Deficiency

e Normal Condition

The model achieved high performance across all metrics
as presented in Table 4 and these results, also visualized in
Figure 4, demonstrate the CNN’s capability to detect early-
stage agronomic issues with high reliability.

Table 4: CNN model performance for context
classification

Context Class Accura | Precisio Recall Fl-

cy n Score
Irrigation 96.2% | 955% | 97.1% | 96.3%
Needed
gl'gli‘ Disease 948% | 941% | 935% | 93.8%
Nutrient 923% | 90.7% | 91.8% | 91.2%
Deficiency
Normal 98.1% | 97.6% | 98.3% | 97.9%
Condition
Average 95.3% | 945% | 9520 | 94.8%

4.3 CNN classification results
The proposed CNN model achieved superior performance
across all classes, as summarized in Table 5.
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Table 5: CNN classification results

Class Pr?g: )' on Recall (%) | F1-score (%)
Watg,rvggress 94.8 95.1 94.9
Defi’;lilé:éiln(tND) 937 94.2 93.9
Dis‘iﬁ;;{is" 95.4 95.8 95.6
Optinzg(gm""th 95.0 95.6 953
Overall 94.5 95.2 94.8

The overall classification accuracy was 95.3%, with an
average precision of 94.5% and an F1-score of 94.8%,
demonstrating robust and reliable context recognition.

4.4 Comparative analysis with baseline

models
To highlight the advantage of CNNs in resource-
constrained WSN environments, the proposed model was
compared against Decision Tree (DT) and Support
Vector Machine (SVM) classifiers using the same
dataset.

Table 6: Comparative analysis with baseline models

F1- False Ener
Accuracy Alarm 9y
Model (%) score Rate Consum
(%) (%) ption
(Prgyo';'e | 3 |94 | 3 Mogerat
SVM 83.1 82.5 12.4 Low
D‘*Tcr':'eon 805 | 799 | 147 Low

The CNN outperformed traditional models by over 12% in
accuracy and reduced false alarms by 9-11%, confirming
its superior generalization and adaptability for dynamic
field conditions.

4.5 Confusion matrix analysis

The confusion matrix, shown in Figure 4 highlights the
CNN model’s strong capability in accurately identifying
critical stress conditions, particularly irrigation needs. This
high performance is attributed to the distinct patterns in
sensor data—such as low soil moisture, elevated
temperature, and reduced humidity—which are effectively
captured during model training. As a result, the model
achieves a high true positive rate in detecting water stress.
Similarly, normal field conditions are classified with the
highest accuracy among all categories, likely due to their
stable and less variable sensor profiles. This leads to
excellent precision and recall, and consequently, a low
false positive rate in generating alerts. However, some
degree of confusion was observed between nutrient
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deficiency and disease risk, which is understandable given
that both can exhibit overlapping sensor patterns—Iike
abnormal humidity or shifts in soil pH—during early stress
stages. These occasional misclassifications reflect the
complex nature of distinguishing between subtle
agronomic stressors using environmental data alone.

Confusion Matrix of CNN-Based Context Classification

Irrigation Needed

High Disease Risk -

True Label

Nutrient Deficiency 8 7 250 10

Normal Condition 2 3

&
N ® & *®

Predicted Label

Figure 5: Confusion matrix of CNN-based context
classification

Despite these overlaps, the model maintained a low false
alarm rate of 3.1%, significantly outperforming the 12.4%
rate observed in rule-based systems (as shown in Table 7).
This affirms the robustness of a learning-based approach
that adapts to dynamic field variability rather than relying
on rigid thresholds. Beyond evaluating performance, the
confusion matrix serves as a diagnostic tool for continuous
improvement. It helps identify which classifications are
most error-prone and where refinements are needed. For
instance, the noted confusion between disease risk and
nutrient deficiency suggests potential for enhancement
through integration of visual data, such as leaf imagery or
spectral sensing. Additionally, the confidence scores
produced by the CNN can guide the fine-tuning of alert
thresholds (t), enabling farmers to balance sensitivity and
specificity based on crop stage or season. This
interpretability not only validates model performance but
also supports more strategic, risk-aware decision-making
in precision banana cultivation.

4.4 Real-time system adaptability

The context-aware system's performance was evaluated

under live field conditions. Key outcomes observed during

the deployment phase include:

= Water-Use Efficiency: Improved by 28% due to timely
irrigation scheduling.

= Disease Management: Early detection of disease
symptoms led to a 41% reduction in leaf spot incidence
through timely spraying.

= Nutrient Correction: pH-based alerts enabled deficiency
correction within 3 days, reducing crop stress.

These results highlight the framework’s real-time

adaptability and agronomic impact.
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4.5 Comparative evaluation with rule-based
system

Metric CNN- Rule-Based
Based

Context

Classification 95.3% 78.6%

Accuracy

False Alarm 3.1% 12 4%

Rate

Adaptability to .

New Data High Low

Scalability Good Limited

For benchmarking, a conventional threshold-based
decision system was also deployed. As shown in Table 7
and visualized in Figure 6, the CNN-powered framework
significantly outperformed the rule-based model in all key
metrics.

V8.6
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(=]
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=]

% or Score

B
o

N
=]

12.4
3.1

0 I
Accuracy False Alarm Rate

Scalability

| I CNN-Based URulc—Bascd‘

Figure 6: Comparison of CNN-based and rule-based
approaches

4.6 Interpretation and Implications

The experimental outcomes confirm that the proposed

system offers substantial improvements in

= Early Warning Capability: Contextual alerts lead to
preventive, rather than reactive, action.

= Resource Efficiency: Water and fertilizer usage were
optimized.

= Scalability and Flexibility: The framework adapted well
to variable field conditions without reprogramming.

5 Conclusion

This study presented a CNN-enabled context-aware
Wireless Sensor Network (WSN) framework for smart
banana cultivation, integrating real-time environmental
sensing with deep learning-based decision support. The
system effectively classified field conditions into Water
Stress, Nutrient Deficiency, Disease Risk, and Optimal
Growth, achieving an overall accuracy of 95.3% and
significantly improving resource-use efficiency. By
leveraging multimodal sensor data and CNN-based
classification, the framework demonstrated superior
adaptability compared to traditional rule-based and
machine learning models. Field deployment confirmed a
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28% enhancement in water-use efficiency, 41% reduction
in disease incidence, and a 3.1% false alarm rate,
validating its applicability in real-world agricultural
settings. The system’s modular architecture supports
scalability across various field sizes and adaptability to
diverse climatic zones. Its design can be extended to other
high-value crops through retraining with crop-specific
datasets. Additionally, integrating adaptive control
methods—such as fuzzy logic and backstepping control—
offers future potential for closed-loop automation in
irrigation and nutrient management. In summary, the
proposed context-aware WSN framework offers a robust,
intelligent, and sustainable solution for precision
agriculture. It empowers farmers with actionable insights,
reduces resource wastage, and enhances resilience against
climatic and biological stressors. Future research will
focus on integrating spectral imaging, NDVI-based
indices, and self-learning control mechanisms to further
improve accuracy, adaptability, and autonomy.
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